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ABSTRACT

Navigation filter software is currently being developed for an inertial navigation system
without rotating gyros. This system shall replace the navigation system that is currently used
in the Phoenix Autonomous Underwater Vehicle of the Naval Postgraduate School. The filter
combines acceleration sensors, angular rate sensors, a water speed sensor, a magnetic compass
and a GPS system. The harmonization of the sensors is performed by gain matrices. The filter
code must be tested for correctness and evaluated, and optimal values for the gain matrices
must be found. Both factors directly influence the accuracy of the computed positions, and
thus the quality of AUV navigation.

In this thesis, the Kalman filter code is tested by experimentation with a simulation of
a submarine. Two versions of the code are available, both written in LISP and C++. Test runs
are performed in different simulated sea-states (water current), with and without noise added
to the sensors, and with different values for the gain matrices.

Based on the experiments, the Kalman filter code seems to be correct and stable. Noise
is the most important determinant of the filter performance. The results can be optimized by

careful fine tuning of the gain matrices.
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SEA-FEVER

I must go down to the seas again, to the lonely sea and the sky,

And all I ask is a tall ship and a star to steer her by,

And the wheel's kick and the wind's song and the white sail's shaking,
And a grey mist on the sea's face and a grey dawn breaking.

I must go down to the seas again, for the call of the running tide
Is a wild call and a clear call that may not be denied;

And all I ask is a windy day with the white clouds flying,

And the flung spray and the blown spume, and the seagulls crying.

I must go down to the seas again to the vagrant gypsy life,

To the gull's way and the whale's way where the wind's like a whetted knife;
And all I ask is a merry yarn from a laughing fellow-rover,

And quiet sleep and a sweet dream when the long trick's over.

John Masefield
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I. INTRODUCTION
A. OVERVIEW

Inertial navigation hardware is commonly based on rotating gyros which stabilize a
platform that holds acceleration sensors. There are some limiting factors to this approach:
this setup is very expensive, because gyros and acceleration sensors must be of high
precision, rotating gyros consume a not inconsiderable amount of electrical power, are prone
to failure, and they may generate acoustic and structure-borne noise [Cox 94].

These factors are of importance in the philosophy of the Phoenix Autonomous
Underwater Vehicle (AUV) of the Naval Postgraduate School [McGhee 95] for two reasons.
First, one defined goal for the AUV is to provide a low cost general purpose platform, and
second, the intended mission profile of the AUV is based on long-term independent
operation in spite of the relatively small size of the vehicle which limits the available space
for power supplies such as batteries.

The navigation filter developed by [McGhee 95] at the Naval Postgraduate School
tries to solve the problems of cost and power consumption by eliminating rotating gyros and
replacing them with acceleration and angular rate sensors. This also results in a smaller
inertial module, leaving more space for payload. The problem is to accurately sense
accelerations evoked by tilting the platform, e.g., in the surf or in the dive or surface
processes of the vehicle, and filter out noise effectively enough to obtain accurate

navigational information.




B. RESEARCH QUESTIONS

This thesis will examine the following research areas:

Software for the navigation filter for a low cost shallow water AUV navigation
system (SANS), written in LISP by the author (adapted from [McGhee 96]) and in C++ by
[Bachmann 95], will be evaluated by simulation. Both software versions should return
identical results. This outcome will be accepted as a verification of the correctness of the
code. Data for the simulation will be produced artificially by the LISP simulation and fed
into the LISP and C++ filter code.

At the start of this work, the LISP simulation code was lacking pitch and roll
control. The vehicle could only be moved in two dimensions. Adding pitch and roll control
is important, because pitch and roll movements of the vehicle will disturb the
accelerometers and angular-rate sensors.

One of the most important parts of the navigation filter is the selection of values for
the gain matrices. In [Bachmann 95], it is shown that different combinations of gain values
greatly influence the quality of the estimated position. This thesis will try to find suitable
values for the gain matrices based on artificially generated data.

In the first version of the filter code, the computed apparent current was added to
water speed and north and east velocities. The resulting velocities were integrated with
north and east accelerations. This was suspected to lead to an unstable or underdamped
behavior of the filter. This work examines this problem. In the new version of the code, the
computed apparent current is added directly to the north and east water speed components

after the integration of sensed accelerations.



C. ORGANIZATION OF CHAPTERS

Chapter II gives an overview of other proposals to navigate an AUV. Two general
directions are described: navigation based on inertial techniques, and navigation based on
acoustic techniques, the latter approach being chosen by most authors. A few propose means
like video or chemical sensing, which are also briefly introduced.

Chapter III first describes problems encountered in the preceding work. Then the
organization of the simulation is described. After this, the code and code changes are
presented. Finally, the mission used for the tests in this thesis is introduced.

Chapter IV reports the results, and Chapter V summarizes this thesis, draws

conclusions, and proposes areas of future work.







II. REVIEW OF PREVIOUS WORK

A. INTRODUCTION

AUV's are typically developed for tasks that require exact knowledge of position
(mine hunting, environmental monitoring, underwater maintenance, etc.), making accurate
navigation a prerequisite of a successful mission. Depending on the mission (clandestine or
overt operation, operations near or far from the coast, in deep or shallow waters), a certain
degree of navigational autonomy must be achieved. Available systems for these purposes

" range from GPS and inertial sensors to the processing of acoustic, geophysical and visual

information [Scherbatyuk 95]. Bachmann and Gay [Bachmann 95] give a broad overview
of previous work, especially of GPS. This chapter will give an overview of newer
approaches to this problem or approaches not mentioned in the above thesis.
B. NAVIGATION SYSTEMS IN AUVs

1. Inertial and GPS Based Systems

[McGhee 95] describes a navigation system that is based on an inertial navigation
unit for submerged navigation and differential GPS (DGPS) for surfaced position updates.
Problems with this setup concerning time required to acquire GPS satellites and the
influence of water covering the GPS antenna during fixing were examined in [Norton 94].

The system described in [McGhee 95] senses accelerations and angular rates with
respective sensors and processes the data in a "nine-state” Kalman filter' resulting in an

estimated position. To further enhance navigation accuracy, there is also a mechanical water

'Counting rate term bias estimates, which are subtracted from the output of the
angular-rate sensors, the filter actually has twelve states.
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speed sensor and a magnetic compass added to complement acceleration and angular rate
data. The nine states can be divided into seven continuous-time states (three Euler angles,
two horizontal velocities, two horizontal positions), and two discrete-time states (estimated
east and north current), the later derived from the DGPS fixes. The problem with this
approach is that DGPS fixes appear aperiodically, whenever the vehicle surfaces and is able
to acquire a sufficient number of satellites. This makes it especially difficult to decide how
much weight should be given to the updated position and calculated current. [McGhee 95]

An approach quite similar to the above described by [McGhee 95], although
designed for long range (1000 km) ‘and deep water (6000 m), is pursued by [McPhail 93].
This navigation system uses GPS for position updates when surfaced, and dead-reckoning
when submerged. For attitude estimation, a tri-axis magnetic flux-gate sensor and a tri-axis
accelerometer system is used. The author points out that magnetic disturbances in the earth's
magnetic field and the perturbance of roll and pitch measurements with accelerometers by
vehicle lateral acceleration leads to heading estimation errors of about 1 degree.

While [McGhee 95] uses Euler-angles for vehicle attitude definition, [McPhail 93]
uses a direction cosine matrix. Euler-angles are ambiguous when the pitch attitude of the
vehicle approaches 90 degrees. Furthermore, the computational handling of direction cosine
matrices is more convenient compared to Euler angles.

[Cox 94] points to new devélopments in inertial navigation emphasizing accuracy,
low power consumption, light weight, small size, and low acoustic and structure-borne
noise. These goals are achieved with a solid-state Inertial Navigation Unit utilizing laser

angular rate sensors. The performance of the unit is enhanced by adding an external velocity
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meter coupled with a 19-state Kalman filter. The states are two level positions, two level
velocities, three attitudes, three gyro biases, two level accelerometer biases, two level
gravity deflection of the vertical, three log states, and two ocean current states.

Navigation is not the only important task of an INU, but also sensor stabilization,
especially for devices like laser line scanners and side-scan sonars. Here, the motion of the
vehicle must be sensed and compensated to correct quadratic phase error of the received
signals and improve image resolution [Cox 94].

2. Acoustic-Based Systems

[Scherbatyuk 95] describes a navigation system that combines on-board sensors such
as speed and heading sensors with a long-baseline (LBL) acoustic navigation® system and
Kalman filtering for position corrections. It is, however, pointed out that LBL has problems
such as limited range and noise. Sea bottom conditions and varying sea water densities can
disturb signal propagation. This means, correctly received signals must 'be filtered out from
the false ones.

[Atwood 95] have built and tested an AUV that is based on an LBL navigation
system with an innovative fix-finding algorithm and commercially available hardware. They
use a spherical navigation system, in which the vehicle actively interrogates acoustical
transponders and calculates ranges from round trip transit times, resulting in a greater

accuracy (about 1 m) compared to the hyperbolic method®. The acoustic transponders are

2A brief but concise overview of long-baseline, short-baseline and ultra-short baseline

navigation is presented in [Austin 94]

% A hyperbolic navigation system is described in [Bellingham 92].
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deployed in an area of about 1 km® In this system, the vehicle can use two operating
modes, master mode or transponder mode. In the first mode, the vehicle triggers the
acoustic transponders, which reply with a ping. The vehicle computer can then calculate
dist;nces and, applying acoustically measured depth, a position. In the second operating
mode, a surface vessel triggers the vehicle, which in turn interrogates the transponders.
Position can then be calculated in the surface vessel through an established GPS position
and knowledge of the relative positions of the submerged vehicle and the transponders. This
procedure is called the fish solution [Atwood 95]. It lets the operator on the ship monitor
vehicle progress.

A new navigation algorithm in [Atwood 95] solves the problem of fading or
destructive interference of the acoustic pings produced by the transponders. Especially in
shallow waters there can be multipath effects; i.e., pings reflected from various surfaces or
the sea bottom producing false transit times. The resulting error is typically greater than 10
m. To avoid this, fixes are calculated pairwise from every two transponders. The mean of
all these fixes is calculated and the worst position is eliminated. This process is repeated
until either the variance of the fixes is below a predefined threshold (e.g., 5 m), or, if the
threshold is not reached with two ;emaining fixes, the current dead reckoning position is
used as the fix. This procedure aims to imitate a human navigator who accepts an
automatically computed position when it seems good, or rejects it and prefers his dead
reckoning when it does not. The authors also conducted successful experiments with
multiple vehicles, where it is important to synchronize the times at which each vehicle

triggers its interrogations. One vehicle is designated master, the others are slaves. When the
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master initiates the interrogation cycle with a ping, the other vehicles also receive the ping
and wait a preset period of time before they start their interrogation cycle. The more
vehicles there are, the fewer times each can update its position. With this procedure, the
master can calculate the position of all the slaves.

[Carof 94] describes an acoustic system for long range navigation and guidance. He
points out that long range acoustic navigation is limited by the slow speed of acoustic
waves in the water. Passive-only acoustic systems normally need at least three external
references. With less references available, it is necessary to use additional means such as
vehicle motion measurement for a solution (Target Motion Analysis). For two available
transponders, the author proposes a system that uses differential signal delay for ranging,
plus Doppler between the received signals.

[Austin 94] chose ultra-short baseline navigation and spread spectrum signals for an
ROV to overcome the long-range problems of acoustic navigation. Spread spectrum signals
make it possible to lengthen the signal and to achieve a longer range without loss of
accuracy. [Austin 94] especially refers to the benefits of signal encoding, which enhances
reception and also makes it difficult to detect the signal without the knowledge of the code.
A disadvantage, however, is the increased complexity of the signal which requires more
complex processing, be it by softwgre or by hardware.

[Vaganay 95] also use an ultra-short baseline system. They combine dead reckoning
by an attitude and beading reference system (AHRS) or an inertial navigation unit, both
based on gyros, with an electromagnetic log, a Doppler log and a depth cell with acoustic

techniques to calculate an estimated position in a Kalman filter. One or two acoustic




beacons are deployed, floating in the ocean. The vehicle navigates autonomously as long
as possible and steers back into the beacon range for position updates. As the beacons are
floating freely, they are equipped with GPS receivers to provide the vehicle with their
respective positions via acoustic modem. The authors adopt a three level software
architecture similar to that described in [Byrnes 93] and used in the NPS Phoenix AUV
[Healey 94].

[Rendas 94] combines long-baseline navigation with dead reckoning and calls it a
hybrid system. The vehicle travels between deployed baseline arrays, each consisting, for
example, of four transponders, and uses acoustic navigation when in range of an array.
Outside the range, it uses a sonar/Doppler sensor and depth information for autonomous
navigation. The distances between the arrays must be carefully planned, because the
accuracy of navigation in the autonomous mode deteriorates with time, depending on the
quality of the sensing systems. The transition from one mode to another takes place
automatically. When the vehicle does not receive a sufficient number of range
measurements from the transponders, it switches to autonomous mode and stops sending
interrogation signals until it determines, based on estimated position and error prediction,
that it is close enough to another baseline array.

The above system uses a variable dimension Kalman filter for both navigation
modes. When there is no detectable acceleration, the filter assumes uniform motion and
estimates position and linear velocity. This is called the quiescent model. When there is
acceleration, the filter switches to a.larger order (maneuvering model) and extends its state

vector to include the accelerations.
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[Smith 95] propose a solution where active transponders are impracticable, as, for
example, in the vicinity of man-made underwater structures. This system uses several sonar
sensors to track previously known features which are stored in an on-board map.
Additionally, it tries to locate and classify further unknown features, measure their position
and add them to the on-board map to provide a relative position to the underwater structure.
The vehicle attitude information, necessary for three-dimensional operations, is supplied by
two inclinometers for pitch and roll, and a compass. Sonar and inertial information are
combined in an extended Kalman filter, resulting in a position estimate.

Using low-frequency sonar sensors, it is difficult to achieve exact navigation, because
most solid objects will produce mirror-like returns. In the above work, to obtain more
accurate data, three transducers are mounted closely spaced, co-axially on one pan-and-tilt
unit to measure the time-of-flight of a sound pulse. Furthermore, a sonar model was
developed that makes it possible to distinguish the form of the sonar target. The system tries
to deduce whether it is scanning a plane, a sphere, a cylinder, an edge, a corner, or a point.

3. Other Systems

Another method proposed by [Scherbatyuk 95] is the use of relief data; ie., the
update of AUV position by comparing sensed terrain features or depth isolines with a digital
map on board the AUV. This kind of navigation has been known to navigators for centuries,
especially in connection with the analysis of ground samples taken from the sea floor by
lead line. However, it can hardly be used for high precision navigation. Often, the sea
bottom does not contain sufficiently distinguishable features. This may become a problem

in the shallow water of a sandy coast.
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Finally [Scherbatyuk 95] proposes a hybrid video and sonar based navigation system.
The position can be updated using three different methods. First, position can be updated
by measuring linear and angular velocities from real video images. Second, artificial or
natural underwater features (like a pipeline, for example) can be used together with a side
scan sonar for position fixing, or, third, markers can be deployed in the sea area at known
positions to be used by video or sonar.

[Balasuriya 95] also proposes a vision based system. Pointing out acoustic shading
and multipath effects, especially in underwater structures, as disadvantages of acoustic
systems, he uses a vision based system to take advantage of the stability of speed of light
in changing water densities. Furthermore, it is not necessary to add energy to the
environment, and the information density of a video picture is very high as is the achievable
resolution. However, in this work it is assumed that the target area is well lit and that the
target consists of line features. Light patterns produced by the target and light intensity are

used to control the behavior of the vehicle.

A very interesting but also very specialized system is introduced by [Consi 94]. It
uses chemical sensing to localize a source of chemical discharge. Many animals use this
technique to find food, mates and spawning grounds, or to let them avoid predators. For an
AUV, one can imagine applications in scientific, environmental, commercial and defense-
related fields. For the marine environment, factors like dispersion of fluids or the choice of

a navigation algorithm are of primary concern.
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C. SUMMARY

Many approaches to the problem of AUV navigation have been devised and new
ones are still emerging. However, it seems that most of the above described proposals can
only be used in very specialized applications. Most are also limited either by dependence
on previously deployed external means or by some requirement to prepare or manipulate
the target. The preferred method of most developers is the acoustic approach.

Although all developers seem to agree on the above stated basic design goals for
AUV's, it appears that most described systems have a higher degree of complexity and
dependence on external means than the system built by [McGhee 95]. Also, in all other
systems, the degree of independence from outward references does not seem sufficient. Of
course, an approach like that of NPS would not be suitable for missions under a closed ice
field or missions that require deep dives, because the vehicle would not be able to surface
periodically to get a GPS fix [Carof 94]. There is also some cost to surfacing. A vehicle on
a 1000 km mission at an average depth of 5000 m that has to surface every 50 km for a
navigation update uses about 20 % of its resources for this maneuver [Carof 94].

Acoustic navigation requires previously deployed acoustic beacons in the area of
operation. Systems based on acoustic navigation do not fulfill the requirements for
clandestine operations, because there will be a lot of "noise” in the water. The above
mentioned encoding and use of the wide-band signals could be a solution to this problem.

It can be seen that high accuracy and other design goals for an inertial navigation
system are achievable. But clearly, the cost increases rapidly with the degree of

sophistication and the desired precision. From this point of view, the NPS Phoenix AUV,
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described in [Healey 94], together with the navigation system explored in this thesis, seems
to provide a very effective approach for achievement of clandestine missions in shallow

water by a small AUV.
The rest of this thesis is concerned with verification of the correctness of the current
NPS navigation filter [McGhee 95, Bachmann 95], and with experiments aimed at obtaining

useful values for the filter gains.
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II1. DESCRIPTION OF THE SIMULATION

A. INTRODUCTION

The early sea-trials of the SANS small AUV navigation system described in
[Bachmann 95] generally produced poor results. The estimated positions computed by the
filter were very inconsistent. Several reasons for this are known already. For example, the
filter gains were not yet optimized. One of the motivations for the sea-tests was "to obtain
data for post-processing to be used in optimizing the Kalman filter gains" [Bachmann 95].

Another reason was that the filter version shown in Figure 1 was suspected to
produce instability or underdamping in ocean current estimation. This comes about because,
in this version, the apparent current (X, ¥ .) was added to the velocities through the water
(%,,¥,,) - Then the difference of this sum and the estimated north and east velocities in
earth coordinates (x,, y ) was taken, multiplied by gain matrix K;, and added to north and
east accelerations in earth coordinates (X ,, y',) to correct bias errors in these signals. This
approach submits the effects of current on velocity over ground to a first order time lag
(inversely proportional to K,), which could cause instability or underdamping. This thesis
investigates this issue.

The latest version of the Kalman filter is shown in Figure 2. The main difference
between the old and the new version is the handling of the apparent current (X, y.) . In
the new version, the apparent current is added directly to the north and east velocities
relative to the water (X, y,) . This version is the basis on which this thesis will explore

the subject of the choice of values for the gain matrices.
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To make the simulation more realistic, the simulated submarine should also be able
to roll, pitch and dive. This was not implemented in the first version of the perfect autopilot
[McGhee 96], and will be done in this thesis. Pitch and roll will also influence the
acceleration and angular-rate sensors, and will disturb the position estimation of the Kalman
filter.

Sea-trials, as described in [Bachmann 95], are an expensive and time consuming
task. A simulation, on the other hand, offers a convenient way to test, verify and fine-tune
code "on dry land". Another advantage is the opportunity to test and compare two versions
of code, written by different authors, against each other. As one version is written in LISP,
it would not be possible to test this code at sea, because LISP uses garbage collection for
memory management and therefore is not useable for real-time systems with high sampling
rates, as required by the SANS system.

B. OVERVIEW OF THE SIMULATION

The LISP code can be divided into two parts. In the first part, the vehicle is steered
over a track, determined by a trajectory list, stored in the global variable *trajectory*. This
trajectory list contains elements which are lists themselves, and each of these lists contains
five elements with the following meaning. The first is the time in seconds. This determines
the time at which the parameters in the list become active. The second element sets the
speed of the vehicle, measured in feet per second. The third element sets the heading rate
in radians per second. The fourth' element determines the depth in feet the vehicle is

supposed to dive to, and the fifth element sets the roll rate in radians per second. These data
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The original version of the navigation filter [Bachmann 95]

Figure 1
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are processed in the appropriate methods of the perfect-autopilot class and its base class,

rigid-body, in the files perfect-autopilot.cl and euler-angle-rigid-body.cl. The updated
position (posture) and rate (posture-rate, velocity) information is stored in slots of the rigid-
body class; name, time and gain values specific to the perfect autopilot are stored in the
slots of the perfect-autopilot class.

The coordinate system used is a three-dimensional Cartesian system with the origin
at (0, 0, 0). Northings are measured along the x-axis, eastings along the y-axis, and depth
is measured positive downward along the z-axis. All units are English units, distances are
defined in feet, angles in radians, rates in feet per second or radians per second. Gravity is
measured in feet per second squared.

While the simulated vehicle is traveling, the current time in seconds, three
accelerometer readings (¥, Y, Z,), three angular rates (p, q, r), heading,
waterspeed, and position are recorded every tenth of a second in the global variable
*mission-data*. This variable is a list of lists which includes a binary flag to indicate GPS
fixes. This is necessary to synchronize position updates in both the LISP and the C++ filter
code. Whenever the vehicle surfaces, GPS fixes are performed in an interval of one second.
A GPS fix resets the estimated position calculated by the filter to the position recorded
during the simulation run. It is also used for the calculation of the apparent current.

When *mission-data* is completed, the recorded accelerations and angular-rates can
be fed into the LISP and C++ filter code, and the performance of the filter can be evaluated

by comparing actual (simulated) and estimated positions.
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C. DESCRIPTION OF CODE AND CODE CHANGES

1. The Perfect Autopilot

The perfect autopilot code was originally developed for aircraft simulation
[McGhee 96]. The code is written in LISP and defined in the file perfect-autopilot.cl. It is
used to steer a vehicle over a track defined in the global variable *trajectory*. The adjective
perfect implies the following assumptions: first, there is no time delay in the steering
process, as could be observed in the real world. For example, when the rudder of a boat is
set to turn the boat, there will be a time delay between the deflection of the rudder and the
beginning of the turn. The perfect autopilot changes the vehicle turn rate immediately when
a new turn rate command is issued. The same is true for changes in pitch rate and roll rate.
On the other hand, a new (longitudinal) speed command is followed with a first order

timelag according to the following equation:

u = K (Y ommanded Yacrual ) (1)

where K| is the longitudinal acceleration gain. Second, it is assumed that there is no sideslip
and no angle of attack, contrary to the behavior of a submarine. The equations associated
with these assumptions are presented in the following paragraphs.

In order to simulate the output of the acceleration sensors, the assumption of a flat,
non-rotating earth is used. The following Newton-Euler equations are taken from

[McGhee 69]:
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zi=vr~wq+?"—gsin9 (2)
v=up—ur+%+gcos£)sin¢ (3)
. f

w=uq - vp + —I—n-"'- + gcosBcose (4)

here u, v, w are velocities along the vehicle's x, y, and z axes, u, Vv, w the respective
velocity growth rates, p, ¢, and r are angular rates, g is gravitational acceleration, and m is
the mass of the vehicle. The quantities f. are components of the vector f~ expressing applied
forces in body coordinates. Thus the quotient f;n‘— , i €{x, y, z},canbe seen as the

specific force "felt" at the accelerometers. Rearranging the equations (2) - (4) results in

f

X, = ——-m" =4 - vr + wg + gsin® (3)
£

¥, = _n% =V - wp + ur - gcos@sing (6)
f

Z, = Fz =w - uqg + vp - gcos@cos¢ (7)
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As the assumption is used that the model neglects sideslip and angle of attack,

vE0->v=0 (8)
w=0 -»w=0 (9)
so that
X, =1+ gsind | (10)
¥, = up - gcosésing (11)
Z, = -up - gcosfcos¢ (12)

Equations (10) - (12) are encoded in the method accelerometer-output in the file
perfect-autopilot.cl. They are different from the equations published in [Bachmann 95],
which contained some typographical errors.

Roll and pitch control had to be added to the original code. Roll can be set as a rate
in the fifth element of the current trajectory list. As can be seen in Appendix B, file perfect-
autopilot.cl, the value is assigned directly to the fourth element of the rigid body velocity
vector in the method commanded-velocity. Depth can be set as the fourth element of the
current trajectory list. This value is passed to the method desired-dive-angle, listed in

Appendix B. The dive angle is computed based on the difference between the commanded
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depth and the current depth, stored in the rigid body posture vector, multiplied by a depth

error gain. This is shown in equation (13):

O0sve = Kive (Z commanded ~ Z acat ) (13)
Thus, the larger the difference in commanded and actual depth, the steeper will be the
desired dive angle. The computed dive angle is passed to the method dive-angle-rate. The
dive angle rate depends on the difference between the desired dive angle and the current
dive angle, mulﬁplie;d by a dive-angle-error-gain, as shown in equation (14):

éd.i.ve =P = K ze (ecommanded . eactual) (14)

The rate of change will thus be large when the difference is large, and small when the
difference is small. The computed dive-angle-rate is passed to the fifth element of the
velocity vector in the method commanded-velocity. Both above mentioned gain values must
be fine-tuned carefully to ensure a smooth ride; i.e., to minimize depth over- or undershoot.

2. The Navigation Filter

The first part of the navigation filter, that is, the part in the upper left corner of
Figure 2, converts the accelerations measured by the acceleration sensors into a vehicle
attitude and integrates them with angular rates measured by the angular-rate sensors. The

equations
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0, = asin —;gﬁ (15)
= - 2 16
9, = "asin g -cosé (16)

can be derived from equations (9) and (10), considering that ¥, v, w and u, v, w are not
available in the filter of Figure 2, but that #, v, w must have an average value of 0 if the
mean value of u, v, w is bounded [McGhee 96]. "Likewise, except for continuous turning,
the components of angular rate, (p, g, r), must average to zero." [McGhee 96]. The
third component of the attitude vector, V, , is measured directly by a magnetic compass.
The purpose of the transformation matrix 7(¢, @, ) is to convert the angular
rates (p, ¢, r) , which are measured in body coordinates, into Euler rates. The T-matrix is

derived from the following equations published in [McGhee 93]:

¢ = p + gsingtand + rcos¢tané (17)

6 = gcos¢ - rsing (18)

V¥ = gsin¢gsecd + rcos¢sechd (19)
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These equations are implemented in the form

¢| [1 sin ¢tan § cos ¢tan 8] [P
0| =10 cos ¢ -sin ¢ ||Q (20)
{| |0 sin ¢psec 6 cos dsec 8] [R

The above matrix-multiplication is performed in the method angle-derivatives in the
file navigation-filter.cl , and the T-matrix is computed in the function body-rate-to-euler-
rate-matrix in the file robot-kinematics.cl.

A rotation matrix describes the orientation of a coordinate system attached to a body
relative to a reference system [Craig 89]. The rotation matrices in the navigation filter make
it possible to convert the sensed ;ctccclerations (%, ¥, Z)and velocity u, from body
coordinates into earth coordinates. The function rotation-matrix is defined in the file robot-
kinematics.cl.

To change the navigation filter into the old version shown in Figure 1, the methods
velocity-derivatives and update-list had to be changed. In the last four lines of velocity-

derivatives the estimated current had to be added to read

(list (+ (first linear-acceleration)
(* k3 (- (+ (first water-relative-velocity)
(estimated-north-current filter))xdote)))
(+ (second linear-acceleration)
(* k3 (- (+ (second water-relative-velocity)
(estimated-east-current filter))ydote))))))

and in the last four lines of update-list the estimated current had to be removed to read
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(list (* delta-t (estimated-north-velocity filter)))
(list (* delta-t (estimated-east-velocity filter))))))

In the C++ code the following lines in the file postins.cpp had to be changed, the
changes being indicated in italics: In the first two lines, the current had to be added, and
in the next two lines the originally added current had to be removed to read

//Subtract out previous velocity and apply statistical gain

waterSpeedCorrection[0] =

Kthreel * (waterSpeedCorrection[0] - velocities[0] + current[0]);
waterSpeedCorrection[1] =

Kthree2 * (waterSpeedCorrection[1] - velocities[1] + current[1]);

and

//Integrate velocities to obtain posture

posture[0] += velocities[0] * deltaT;

posture[1] += velocities[1] * deltaT;

posture[2] += velocities[2] * deltaT;

3. The Rigid Body

The rigid-body class is the base class from which the simulated submarine is derived.
It provides slots to store the posture, posture change rates, velocities, and velocity change
rates as well as slots for the physical properties of a body like moments of inertia, forces,
torques, mass, and coordinates for a wire frame model of the body. The associated methods
provide for moves of the body and related updates of the above mentioned slots. The code

is based on the assumptions of a flat earth that does not rotate, and on which current or

wind have a constant linear velocity.
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D. DESCRIPTION OF THE TEST PROCEDURE

The test mission is shown graphically in Appendix A, Figure A-1 to A-4 (track,
depth profile and roll attitude). It is defined in the global variable *trajectory* in the file
perfect-autopilot.cl. The vehicle is initially positioned at coordinate (0, 0), heading north.
The speed for the whole mission is set to 3 feet per second (fps). This speed will be
reached with a first order time lag. After one second the vehicle starts a right turn at a turn
rate of 0.1 radians per second. The turn is finished after 11 seconds. During this first phase
GPS fixes are performed at an interval of 1 second. After 11 seconds the vehicle
commences a dive to a depth of 0.5 feet. At time 41 seconds, a right roll to an angle of
.18 radians is initiated, and at 43 seconds the roll rate is reversed until the vehicle is straight
and level again at 45 seconds. At 90 seconds the vehicle surfaces another 30 seconds for
GPS fixes, and after that, at time 120 seconds, it dives again to 0.5 feet. At 150 seconds,
a left turn at a rate of -0.1 radians per second is initiated, which is completed at
170 seconds. Between 190 and 210 seconds the vehicle surfaces again for GPS fixing, after
which it dives to 0.5 feet. At 230 seconds, a left roll to -0.18 radians is initiated, the roll
is reversed at 232 seconds to reestablish a straight and level attitude. At 240 seconds the
vehicle starts a climb to the surfacé and takes GPS fixes until the next dive to 0.5 feet at
260 seconds. It surfaces for the last time at 290 seconds, and the mission is completed at
300 seconds.

Two types of test runs are performed. For the first type, the water current is set to
0.5 fps north and 1.0 fps east. This seems to be a realistic assumption for a calm sea state.

For the second mission type the current is set to 0.5 fps north and 5.0 fps east. This can be
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seen as challenge for a navigation éystem in a vehicle travelling at 3.0 fps, because there
will be a lot of drift.

To add more realism to the simulation, additional tests were performed with noise
added to the acceleration signals, angular-rate signals and the compass in the following way:
A function add-noise-to-mission-data was added to the file perfect-autopilot.cl. This
function postprocesses the global variable *mission-data* and adds noise to the values of
X, Ya Za P, q, r and Y. The magnitude of the noise is set to a random number*
in the range of about +/-1% of the full scale output of the accelerometers and +/-0.5% of
the full scale output of the angular rate sensors. That is, +/-0.3 for the horizontal
accelerometers (1% of 1g, or 32.2185 feet per sec?), +/-0.6 for the vertical accelerometer
(1% of 2g), and +/-0.005 for the angular rate sensors (0.5% of 1 radian per sec.). The
compass was set to a precision of +/- 2 degrees.

E. SUMMARY

Inconsistent results in earlier trials made it necessary to conduct an experimental
evaluation both of the old and new filter versions. To make the simulation more realistic
and to correct errors, several code changes had to be made in the files perfect-autopilot.cl
and navigation-filter.cl. In an experimentation it is advantageous to have two versions of
code in different programming languages. The results can be compared, and when they
agree, one can have increased confidence that the desired algorithms have been correctly

coded.

“More precisely, LISP generates pseudo random numbers. Every time the LISP
environment is started it creates the same list of random numbers.
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The general course of the simulation is to record data from a known test run and
feed these data into the navigation filter. Real and estimated positions can be compared and
evaluated.

The rigid body in the file euier—angle-rigid—body.cl is the base class from which the
simulated submarine is derived. The perfect autopilot class in the file perfect-autopilot.cl
steers the submarine over the test track. The navigation filter class in the file navigation-
filter.cl estimates positions on an input of measured accelerations, angular rates, magnetic
heading and speed through the water (X', y,, Z,, p, g, r, Y., u,), Or resets
positions using simulated GPS fixes respectively. The file robot-kinematics.cl provides a
collection of functions for matrix and vector computations.

Finally, two test missions with different water current settings and several test runs
with and without noise are described. The resulting trajectories are shown graphically in

Appendix A.
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IV. EXPERIMENTAL RESULTS

A.  INTRODUCTION

This chapter describes results of the tests performed with different settings of perfect
autopilot and navigation filter parameters. First, values had to be found to provide a smooth
ride of the simulated submarine concerning the dive behavior and stabilization on
commanded depths. Then, the performance of the navigation filter in both, LISP and C++,
is compared and evaluated under diverse environment conditions. The main subject is to
research the filter behavior with different settings of the gain matrices K, to K,. The results
are plotted graphically in Appendix A and discussed in Section III of this chapter.

The goals of the tests are to find out whether the filter code is correct, whether the
original version of the navigation filter is unstable, and to get to conclusions about the filter
response to different gain matrix settings. The question is also, whether there are optimal
values for these matrices.

B. TEST RESULTS

After adding pitch and roll control in the perfect autopilot, a first consideration had
to be given to the tuning of the gain values dive-angle-error-gain and depth-error-gain. A
setting of .5 for dive-angle-error-gain and -.17 for depth-error-gain resulted in a smooth
transition to the new depth without any over- or undershoot at a speed of 1 foot per second
(fps). However, this proved inadequate for a speed of 3 fps due to a perceptible depth over-
and undershoot. A setting of .8 and -.08 for the respective gain values rendered

“approximately the same, smooth result as in the 1 fps case.
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The comparison of the filter performance in LISP and C++ showed only a hardly
perceptible difference in the resulting track on the GNUplot (compare the C++ plots and
the LISP plots in Appendix A). As this difference appears to be constant over all test runs,
it can probably be attributed to floating point precision. A difference could be observed,
however, between the new and the original version of the code. Comparing the width of the
steps that occur when the system updates its position by GPS fix, the new version seems
always to be a little more accurate than the old version (compare Figure A-5 to A-7).

Changing the values of the gain matrices showed the following filter behavior:
Assigning the value 0.1 to K, instead of the preset value 0.5 in the new filter version seems
to have a small, although perceptible effect (Figure A-8 and A-10). The old version,
however, showed a performance that could be interpreted as underdamping, with consequent
overshoot. The estimated position at GPS fix time was quite far off, and the plotted track,
on the other plots always an almosf straight line, showed some bending (Figure A-11 to
A-14). AtK, = 0.7, the effect is gone (Figure A-15 to A-18) . Changing the value of K, had
no perceptible effect in both filter versions (Figure A-19 to A- 22).

Assigning different values to K; and K, did not result in perceptibly different results
(Figure A-23 to A-26). It is interesting, however, that both versions of the filter showed the
best performance at a setting of 0.0 for both K, and K, (Figure A-5 to A-7). Increasing this
value to 0.1 led to a significantly worse performance (Figure A-27 to A-30). Adding noise

to the signals, as described above in Section III, Subsection D, led to a profound
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deterioration in performance’ with K, and K, set to 0.0 (Figure A-31 and A-36). Setting K,
and K, to 0.1 improved the performance visibly (Figure A-32 and A-37). Values beyond
0.1 showed deterioration again until the performance approximately stabilized for values
between 0.5 and 1.0 (Figure A-33 to A-35 and Figure A-38 to A-40).
C. DISCUSSION OF THE TEST RESULTS

The tests showed a similar behavior of the navigation filters written in LISP and in
C++. Both filter versions return acceptable results. The new version of the filter is better
than the original version, especially when K, is set to a low value (compare Figure A-5 to
A-7 and Figure A-8 to A-14). With K, set to a high value, 0.7, the performance is quite
similar (Figure A-15 to A-18). This is, because "if k is a component of a diagonal gain

matrix K, then the time constant of the corresponding closed loop state estimation filter is

_];"
k

are subject to a first order filtering effect with a time constant of 10 seconds, while K;= 0.7

the reciprocal of k. That is, 7 = [McGhee 95]. With K, set to 0.1, current estimates
corresponds to a time constant of only 1.4 seconds. So the shorter delay provides a better
result. Low values of K, do not show any effect (Figure A-19 to A-22). This does not seem
logical. The apparent current, based on the precise GPS system of the simulation, should
also be very precise, and thus very important for the quality of the filter output. However,
the submarine is surfaced for the first 11 seconds of the simulation and is performing GPS
fixes once a second. The lack of effect of changes in K, can be attributed to the fact that,

with no sensor noise, the filter is able to get a good current estimate in this period. With

SAs it can be concluded at this point that the new filter version shows a better
behavior than the original version, only the new version will undergo the additional tests.
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a setting of 0.5 for K,, for example, and no noise, half of the apparent current would be
added as a correction in the first iteration of the filter (this is the meaning of the summer
z in Figure 2). In the second iteration, half of the remaining half would be added, and so
on. Generally, after the first iteration, a fraction K, of the current is in the summer. After
the second iteration, it is K, + K, (1 - K,), and so on. So even if K, is set to 0.1, a surface
period of 11 seconds should be sufficient to compute a good current estimate.

Noise clearly proved to be the important factor of filter performance. First, without
noise, for best results, K, and K, had to be set to 0.0, which means that the acceleration
sensors had to be ignored completely. Any increase in K, and K, deteriorated the results
(compare Figure A-5 to A-7 and Figure A-27 to A-30). In the absence of noise, the
accelerometers seem to "misinterpret” attitude changes as a combination of acceleration and
gravity changes. Allowing this input by setting K to a value higher than 0.0 permits wrong
data to enter the system and deteriorates the output in the absence of noise. However, when
noise was added to the acceleration sensors, angular-rate sensors and the compass, a setting
of 0.0 for K, and K, was not sufficient any more. A value of 0.1 gave the best result,
decreasing the position error at the first GPS fix period from about 50 feet to about 20 feet,
and at the second from about 30 feet to about 10 feet. A further increase of the value of K,
and K, between 0.2 and 1.0 approximately stabilized the error at about 25 feet at the first
GPS fix period, and about 10 feet af the second (Figure A-31 to A-40). Clearly, care must
be taken when values for the gain matrices are selected.

The intensity of the actual current did not seem to have an influence on the

performance of the navigation filter. This can be seen when comparing Figure A-8 and A-9,
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with Figure A-11 and A-12. For this reason no further plots of the high current case are

added to Appendix A. This result was not anticipated, because the environment (the sea
state, for example) can be interprefed as a kind of noise, and a significant change in the
strength of the current was expected to have some influence. However, the artificial
environment of a simulation with the lack of errors in water speed sensing or GPS may be
the cause for this outcome. Adding noise to these sensors should be subject of further
research.

The test results show that the code for the navigation filter seems to be correct. Also,
the original version of the filter does not seem to be unstable. It is only less accurate.
Furthermore, there seem to exist optimal values for the gain matrices. However, these
values can not be found in the artificial environment of a simulation. They depend on the
noise characteristics, and these are more complex in the real world than can be generated
in a simulation, unless a large study is conducted to accurately characterize measurement
errors and environmental disturbances.

D. SUMMARY

Extensive experiments were performed to test the navigation filter code for
correctness and stability, and to learn about the filter response to changes in gain matrix
values. The correctness can be deduced from the similar behavior of the filter in both, the
LISP and the C++ version of the code. The original version of the filter also proved to be
stable within the range of the investigated parameters. However, the new version of the

filter was more accurate than the original version.
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Most emphasis was given to the examination of the influence of the gain matrix
values on filter behavior. Noise played a major part in filter response. In the absence of
noise, K, and K, had to be set to 0.0 to achieve the best results. With noise, the setting of
the gain matrices is dépendent on the noise level. Filter response to changes in K; and K,
were minimal. This was attributed to the missing noise on the water speed sensor and the
GPS. However, it seems clear that 'there are optimal values for the gain matrices. As the
values for the best result in the case with added noise, 0.1 for K, and K,, 0.5 for K;, and
0.7 for K, , are significantly different from the values used in [Bachmann 95], it can be

concluded that only tests in the "real world" will reveal true optimal values for the real

AUV navigation system.
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V. SUMMARY AND CONCLUSIONS

A. CONCLUSIONS

The goals of this thesis were to complete the AUV simulation by adding roll and
pitch control to the perfect autopilot, to verify the correctness of the navigation filter code
and to evaluate it, to find suitable values for the gain matrices on the basis of artificially
generated data, and to test the original version of the filter code for instability.

Both versions of the filter code in LISP and in C++ returned consistently good
results within the range of the investigated parameters. For this reason, the filter code can
be assumed to be a correct encoding of the desired algorithm. The original version of the
code did not show instability; however, it proved to be less accurate than the new version.

The tests showed that there are optimal values for the gain matrices, but the values
are dependent on the noise level added to the sensors. The noise characteristics of the "real
world" for the sensors are unknown at present. However, the magnetic compass used in the
sea trials described in [Bachmann 95], for example, is very undependable in the towfish
environment. It can show fluctuations up to +/-10 degrees, is restricted in roll, and is also
influenced by magnetic and electrical fields in the AUV. A "paddle wheel" water speed
sensor must be carefully calibrated and can not be considered a precision instrument. The
artificially generated noise in the range of +/-1% of the full scale output of the
accelerometers, +/-0.5% of the full scale output of the angular rate sensors, and +/-2 degrees

for the compass, is completely arbitrary as is the use of uniformly distributed and
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independent errors. Sea state (wave action and water current) will also have a significant
impact. Only tests in the "real world" will provide correct noise levels for which optimal
gain values can be found.

B. RECOMMENDATIONS FOR FUTURE WORK

As noise is obviously a very important parameter to be considered when optimal gain
values are desired, there is much room for research in this area. A first step would be the
generation of noise for the water speed sensor and the GPS. It can be expected that the
values used in this thcgis for the respective gain matrices will come out not to be optimal
ones, first, because they were chosen deliberately, and second, the results did not change
much when they were changed. Further consideration should also be given to the GPS
system. One tends to overestimate the precision and the reliability of this system, especially
the differential GPS, and thus choosé the gain for K, too high. But it is by no means certain
that even the DGPS yields data accurate enough for the purposes of an AUV mission. The
signals may be available only intermittently, for example due to shading by structures
between the differential transmitter and the vehicle antenna or wave action leaving the
antenna covered with water.

As it was discovered in the perfect autopilot that the appropriate gain values that
govern the smooth transition to a commanded depth were dependent on the speed of the
vehicle, a similar dependence can be suspected for the gain matrices of the navigation filter.
This means that further research can be done in the area of a dynamic selection of gain
matrix values. For example, gain values could be adjusted according to the speed of the

vehicle, on the grounds of environmental changes like wave action, and they could be
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changed based on experience the system deduces from the observed accuracy of previous
GPS fixes. Of course, the more variables are introduced into the system, the more complex

the system gets.

At the time of the completion of this work, new sea trials with a towfish
[Bachmann 95] are being performed. The acceleration, angular-rate, water speed, and
compass data recorded during these trials can be fed into the navigation filter and
postprocessed. This will give further clues concerning the optimization of the values for the
gain matrices. Much additional work of this sort needs to be accomplished before the

performance limits of the SANS system concept can be fairly evaluated.
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PLOTS OF THE TEST MISSIONS

APPENDIX A
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APPENDIX B: SOURCE CODE (LISP)

A. PERFECT-AUTOPILOT.CL

-This code defines a submarine autopilot which steers the body axes of the
:submarine to a desired orientation with no time delay. It also assumes no
:sideslip angle and no angle of attack. Longitudinal speed follows commanded
;speed with a first order time lag.

:Code written by R. B. McGhee, Naval Postgraduate School, mcghee@cs.nps.navy.mil,
:Code modified by R. Steven, Naval Postgraduate School
;in Allegro Common Lisp, 1994 Release.

;(load "robot-kinematics.cl")
:(load "euler-angle-rigid-body.cl")
;:(load "strobe-camera.cl")

(defclass perfect-autopilot ()
((vehicle-name ; This is the name of an instance of the rigid-body class.
:accessor vehicle-name)
(current-trajectory-segment
:accessor current-trajectory-segment)
(current-time
:initform 0
:accessor current-time)
(longitudinal-acceleration-gain
:accessor longitudinal-acceleration-gain)
(dive-angle-error-gain
:initform .8
:accessor dive-angle-error-gain)
(depth-error-gain
:initform -0.08
:accessor depth-error-gain)
(trajectory-segment-list ;This is a list of lists. Each list contains
:accessor trajectory-segment-list))) ;start-time and commanded speed,
; heading-rate, depth, and roll-rate. Last segment is end-time
; followed by nil.
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(defmethod initialize-4 ((autopilot perfect-autopilot) vehicle gain trajectory)
(setf (longitudinal-acceleration-gain autopilot) gain
(trajectory-segment-list autopilot) (rest trajectory)
(current-trajectory-segment autopilot) (first trajectory)
(vehicle-name autopilot) vehicle))

(defmethod update-segment ((autopilot perfect-autopilot) time)
(if (and (not (null (second (current-trajectory-segment autopilot))))
(>= time (caar (trajectory-segment-list autopilot))))
(setf (current-trajectory-segment autopilot)
(pop (trajectory-segment-list autopilot)))))

(defmethod commanded-velocity ((autopilot perfect-autopilot) delta-t)
(setf (current-time autopilot) (+ (current-time autopilot) delta-t))
(update-segment autopilot (current-time autopilot))

(if (second (current-trajectory-segment autopilot))
(list (+ (first (velocity (vehicle-name autopilot)))
(* (longitudinal-acceleration autopilot) delta-t))
00
(fifth (current-trajectory-segment autopilot))
(dive-angle-rate autopilot)
(third (current-trajectory-segment autopilot)))))

(defmethod longitudinal-acceleration ((autopilot perfect-autopilot))
(* (longitudinal-acceleration-gain autopilot)
(- (second (current-trajectory-segment autopilot))
(first (velocity (vehicle-name autopilot))))))

(defmethod dive-angle-rate ((autopilot perfect-autopilot))
(* (dive-angle-error-gain autopilot)
(- (desired-dive-angle autopilot)
(fifth (posture (vehicle-name autopilot))))))

(defmethod desired-dive-angle ((autopilot perfect-autopilot))
(* (depth-error-gain autopilot)
(- (fourth (current-trajectory-segment autopilot))
(third (posture (vehicle-name autopilot))))))
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(defmethod move-vehicle ((autopilot perfect-autopilot) delta-t)
(setf (velocity (vehicle-name autopilot))
(commanded-velocity autopilot delta-t))
(when (second (velocity (vehicle-name autopilot)))
(update-posture (vehicle-name autopilot) delta-t)
(setf (H-matrix (vehicle-name autopilot))
(homogeneous-transform (sixth (posture (vehicle-name autopilot)))
(fifth (posture (vehicle-name autopilot)))
(fourth (posture (vehicle-name autopilot)))
(first (posture (vehicle-name autopilot)))
(second (posture (vehicle-name autopilot)))
(third (posture (vehicle-name autopilot)))))
(transform-node-list (vehicle-name autopilot))))

(defmethod accelerometer-output ((autopilot perfect-autopilot))

(let ( (longitudinal-velocity (first (velocity (vehicle-name autopilot))))
(pitch-angle (fifth (posture (vehicle-name autopilot))))
(roll-angle (fourth (posture (vehicle-name autopilot))))
(pitch-rate (fifth (velocity (vehicle-name autopilot))))
(yaw-rate (sixth (velocity (vehicle-name autopilot)))))

(list (+ (longitudinal-acceleration autopilot)
(* *gravity* (sin pitch-angle)))
(- (* longitudinal-velocity yaw-rate)
(* *gravity* (cos pitch-angle) (sin roll-angle)))
(+ (- (* longitudinal-velocity pitch-rate))
(- (* *gravity* (cos pitch-angle) (cos roll-angle)))))))

(defmethod mission-data ((autopilot perfect-autopilot))
(append (IMU-data autopilot) (list (compass-heading autopilot))
(list (water-speed autopilot)) (true-position autopilot)))

(defmethod IMU-data ((autopilot perfect-autopilot))
(cons (current-time autopilot)
(append (accelerometer-output autopilot)
(angular-rate-output autopilot))))

(defmethod angular-rate-output ((autopilot perfect-autopilot))
(cons (fourth (velocity (vehicle-name autopilot)))
(cons (fifth (velocity (vehicle-name autopilot)))
(list (sixth (velocity (vehicle-name autopilot)))))))

(defmethod water-speed ((autopilot perfect-autopilot))
(first (velocity (vehicle-name autopilot))))
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(defmethod compass-heading ((autopilot perfect-autopilot))
(sixth (posture (vehicle-name autopilot))))

(defmethod true-position ((autopilot perfect-autopilot))
(list (first (posture (vehicle-name autopilot)))
(second (posture (vehicle-name autopilot)))
(third (posture (vehicle-name autopilot)))
(fourth (posture (vehicle-name autopilot)))
(fifth (posture (vehicle-name autopilot)))
(sixth (posture (vehicle-name autopilot)))))

(defun initialize-mission (north-current east-current)
(setf submarine-1 (make-instance ‘'rigid-body))
(setf (medium-north-velocity submarine-1) north-current)
(setf (medium-east-velocity submarine-1) east-current)
(setf autopilot-1 (make-instance 'perfect-autopilot))
(initialize-4 autopilot-1 submarine-1 1 *trajectory*)
(move-vehicle autopilot-1 0)
;(setf camera-1 (make-instance 'strobe-camera))
;(move camera-1 0 (- (/ pi 2)) 0 0 0 -60)
(setf (posture submarine-1) '(0 0 0 0 0 0))
(setf (velocity submarine-1) '(0 0 0 0 0 0)))
;(take-picture camera-1 submarine-1))

(defun execute-mission ()
(do* ( (mission-data (list (mission-data autopilot-1))
(cons (mission-data autopilot-1) mission-data))
(new-node-list (move-vehicle autopilot-1 .1)
(move-vehicle autopilot-1 .1)))
( (not (second (velocity (vehicle-name autopilot-1))))
(setf *mission-data* (reverse mission-data)))))
;(take-picture camera-1 submarine-1)))

(defun mission-file (north-current east-current)
(initialize-mission north-current east-current)
(execute-mission)

(tag-for-GPS-fix *mission-data*)
(add-noise-to-mission-data *mission-data¥)
(write-mission-data-to-file))

84



(setf *trajectory* '((03000)(13.100)(23.100)(1130.50)
(4130.5.09)(4330.5-09)@4530.50)
(903000)(12030.50)(1503-1.50)
(17030.50)(1903000) 2203 0.5 0)
(23030.5-.09)(23230.5.09 (23430.50)
(280 3 0 0 0) (300 nil)))

; components are; time, speed, heading-rate, depth, and roll-rate

(defun write-mission-data-to-file ()
(with-open-file (output-stream "traject.dat” :direction :output)
(dolist (element *mission-data* 'Moin!)
(format output-stream
"of ot ~f ~t ~f ~t ~f ~t ~f ~t ~f ~t ~f ~t ~f ~t ~f ~t ~f ~t ~f ~t ~f ~t ~f ~t ~f ~t ~f ~t ~d ~%"
(first element) (second element) (third element) (fourth element)
(fifth element) (sixth element) (seventh element) (eighth element)
(ninth element) (nth 9 element) (nth 10 element)
(nth 11 element) (nth 12 element) (nth 13 element)
(nth 14 element) (nth 15 element)))))

(defun write-filtered-data-to-file ()
(with-open-file (output-stream "estimate.dat" :direction :output)
(dolist (element *estimated-trajectory* ‘Moin!)
(format output-stream
"nf ~t ~f ~t ~f ~t ~f ~P"
(first element) (nth 9 element) (nth 10 element)))))

(defun tag-for-GPS-fix (dataList)
(let ((new-data-list nil) (new-element nil))
(dolist (element dataList ‘Moin!)
(if (and (< (nth 11 element) .25)
(< (multiple-value-bind (partl part2) (truncate (first element)) part2) .1))
(setf new-element (append element (list 1)))
(setf new-element (append element (list 0))))
(setf new-data-list (append new-data-list (list new-element))))
(setf *mission-data* new-data-list)))

85




(defun add-noise-to-mission-data (dataList)
(let ((new-data-list nil) (new-element nil))
(dolist (element datalist 'Moin!)
(setf new-element
(list (first element)
(+ (second element) (- .3 (random .6)))
(+ (third element) (- .3 (random .6)))
(+ (fourth element) (- .6 (random 1.2)))
(+ (fifth element) (- .005 (random .01)))
(+ (sixth element) (- .005 (random .01)))
(+ (seventh element) (- .005 (random .01)))
(+ (eighth element) (- .034 (random .068)))
(ninth element) (nth 9 element) (nth 10 element)
(nth 11 element) (nth 12 element) (nth 13 element)
(nth 14 element) (nth 15 element)))
(setf new-data-list (append new-data-list (list new-element))))
(setf *mission-data* new-data-list)))
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B. NAVIGATION-FILTER.CL

:This code defines a navigation filter that takes three accelerations (¥',, y,, Z',),
;three angular-rates (p, g, r), speed through the water (u,) , and compass
;heading () as input and computes a north and east postition (x,, y,) -

:The computed position can be corrected by a GPS fix procedure.

;Code written by R. B. McGhee, Naval Postgraduate School, mcghee@cs.nps.navy.mil,
;in Allegro Common Lisp, 1994 Release.

; (load "perfect-autopilot.cl")

(defclass navigation-filter ()
((estimated-roll-angle
:accessor estimated-roll-angle)
(estimated-pitch-angle
:accessor estimated-pitch-angle)
(estimated-heading
:accessor estimated-heading)
(roll-error-gain
:accessor roll-error-gain)
(pitch-error-gain
:accessor pitch-error-gain)
(heading-error-gain
:accessor heading-error-gain)
(estimated-roll-rate-bias
:accessor estimated-roll-rate-bias)
(estimated-pitch-rate-bias
:accessor estimated-pitch-rate-bias)
(estimated-yaw-rate-bias
:accessor estimated-yaw-rate-bias)
(rate-bias-gain
:accessor rate-bias-gain)
(estimated-north-velocity
:accessor estimated-north-velocity) ;Velocity is relative to water.
(estimated-east-velocity
:accessor estimated-east-velocity) ;Velocity is relative to water.
(velocity-error-gain
:accessor velocity-error-gain)
(estimated-north-position
:accessor estimated-north-position)
(estimated-east-position
:accessor estimated-east-position)
(estimated-north-current
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:initform 0

:accessor estimated-north-current)
(estimated-east-current

:initform 0

:accessor estimated-east-current)
(current-error-gain

:aCcCcessor current-error-gain)
(last-gps-fix-time

:initform O

:accessor last-gps-fix-time)
(time-stamp

:accessor time-stamp)))

(defmethod angle-derivatives ((filter navigation-filter) measurement-vector)
:Order is estimated phidot, estimated thetadot, estimated psidot.
(let* ( (ax (second measurement-vector)) (ay (third measurement-vector))
(az (fourth measurement-vector)) (p (fifth measurement-vector))
(q (sixth measurement-vector)) (r (seventh measurement-vector))
(psi (eighth measurement-vector))
(phie (estimated-roll-angle filter))
(thetae (estimated-pitch-angle filter))
(psie (estimated-heading filter))
(pb (estimated-roll-rate-bias filter))
(gb (estimated-pitch-rate-bias filter))
(rb (estimated-yaw-rate-bias filter))
(T-matrix (body-rate-to-euler-rate-matrix psie thetae phie))
(euler-rates (post-multiply T-matrix (list (- p pb) (- q gb) (- T b))))
(thetaa (asin (/ ax *gravity*)))
(phia (- (asin (/ ay (* *gravity* (cos thetae)))))))
(list (+ (first euler-rates)(* (roll-error-gain filter) (- phia phie)))
(+ (second euler-rates)(* (pitch-error-gain filter) (- thetaa thetae)))
(+ (third euler-rates)(* (heading-error-gain filter) (- psi psie))))))

(defmethod velocity-derivatives ((filter navigation-filter) measurement-vector)

:Velocity is relative to water under constant current assumption.

(let* ( (ax (second measurement-vector)) (ay (third measurement-vector))
(az (fourth measurement-vector)) (p (fifth measurement-vector))
(q (sixth measurement-vector)) (r (seventh measurement-vector))
(psi (eighth measurement-vector)) (uw (ninth measurement-vector))
(phie (estimated-roll-angle filter))
(thetae (estimated-pitch-angle filter))
(psie (estimated-heading filter))
(R-matrix (rotation-matrix psie thetae phie))
(xa (- ax (* *gravity* (sin thetae))))
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(ya (+ ay (* *gravity* (sin phie) (cos thetae))))
(za (+ az (* *gravity* (cos phie) (cos thetae))))
(xdote (estimated-north-velocity filter))
(ydote (estimated-east-velocity filter))
(k3 (velocity-error-gain filter))
(linear-acceleration (post-multiply R-matrix (list xa ya za)))
(water-relative-velocity (post-multiply R-matrix (list uw 0 0))))
(list (+ (first linear-acceleration) (* k3 (- (first water-relative-velocity) xdote)))
(+ (second linear-acceleration) (* k3 (- (second water-relative-velocity) ydote))))))

(defmethod rate-bias-derivatives ((filter navigation-filter) measurement-vector)
(let ((kb (rate-bias-gain filter)))
(list (* kb (- (fifth measurement-vector)

(estimated-roll-rate-bias filter)))

(* kb (- (sixth measurement-vector)
(estimated-pitch-rate-bias filter)))

(* kb (- (seventh measurement-vector)
(estimated-yaw-rate-bias filter))))))

(defun initialize-filter (angle-error-gain rate-bias-gain current-error-gain
estimated-north-current estimated-east-current)
(setf filter-1 (make-instance 'navigation-filter) (time-stamp filter-1) 0)
(setf (estimated-roll-angle filter-1) O (estimated-pitch-angle filter-1) 0
(estimated-heading filter-1) O (estimated-north-velocity filter-1) 0
(estimated-east-velocity filter-1) 0 (velocity-error-gain filter-1) .5
(estimated-north-position filter-1) O
(estimated-east-position filter-1) 0
(roll-error-gain filter-1) angle-error-gain
(pitch-error-gain filter-1) angle-error-gain
(heading-error-gain filter-1) angle-error-gain
(rate-bias-gain filter-1) rate-bias-gain (time-stamp filter-1) 0
(current-error-gain filter-1) current-error-gain
(estimated-north-current filter-1) estimated-north-current
(estimated-east-current filter-1) estimated-east-current
(estimated-roll-rate-bias filter-1) O
(estimated-pitch-rate-bias filter-1) 0
(estimated-yaw-rate-bias filter-1) 0))
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(defmethod update-list ((filter navigation-filter) measurement-vector)
(let* ( (current-time (first measurement-vector))
(delta-t (- current-time (time-stamp filter))))
(append (list delta-t)

(scalar-multiply delta-t (rate-bias-derivatives filter measurement-vector))

(scalar-multiply delta-t (angle-derivatives filter measurement-vector))

(scalar-multiply delta-t (velocity-derivatives filter measurement-vector))

(list (* delta-t (+ (estimated-north-velocity filter)
(estimated-north-current filter))))

(list (* delta-t (+ (estimated-east-velocity filter)
(estimated-east-current filter)))))))

(defmethod update-filter ((filter navigation-filter) measurement-vector)
(let ((update-list (update-list filter measurement-vector)))
(setf (time-stamp filter) (+ (first update-list) (time-stamp filter))
(estimated-roll-rate-bias filter)
(+ (second update-list) (estimated-roll-rate-bias filter))
(estimated-pitch-rate-bias filter)
(+ (third update-list) (estimated-pitch-rate-bias filter))
(estimated-yaw-rate-bias filter)
(+ (fourth update-list) (estimated-yaw-rate-bias filter))
(estimated-roll-angle filter)
(+ (fifth update-list) (estimated-roll-angle filter))
(estimated-pitch-angle filter)
(+ (sixth update-list) (estimated-pitch-angle filter))
(estimated-heading filter)
(+ (seventh update-list) (estimated-heading filter))
(estimated-north-velocity filter)
(+ (eighth update-list) (estimated-north-velocity filter))
(estimated-east-velocity filter)
(+ (ninth update-list) (estimated-east-velocity filter))
(estimated-north-position filter)
(+ (tenth update-list) (estimated-north-position filter))
(estimated-east-position filter)
(+ (nth 10 update-list) (estimated-east-position filter)))))

(defmethod state-vector ((filter navigation-filter))

(list (time-stamp filter) (estimated-roll-rate-bias filter)
(estimated-pitch-rate-bias filter) (estimated-yaw-rate-bias filter)
(estimated-toll-angle filter) (estimated-pitch-angle filter)
(estimated-heading filter) (estimated-north-velocity filter)
(estimated-east-velocity filter) (estimated-north-position filter)
(estimated-cast-position filter) (estimated-north-current filter)
(estimated-east-current filter)))
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(defmethod new-gps-fixp ((filter navigation-filter) measurement-vector)
(and (not (= (time-stamp filter) 0)) (= 1 (nth 15 measurement-vector))))

(defmethod gps-reset ((filter navigation-filter) measurement-vector)
(let* ( (gps-time-interval (- (first measurement-vector)
(last-gps-fix-time filter)))
(north-position (tenth measurement-vector))
(east-position (nth 10 measurement-vector))
(k4 (current-error-gain filter))
(north-position-error (- north-position
(estimated-north-position filter)))
(east-position-error (- east-position
(estimated-east-position filter)))
(north-current-increment
(/ (* k4 north-position-error) gps-time-interval))
(east-current-increment
(/ (* k4 east-position-error) gps-time-interval)))

(setf (last-gps-fix-time filter) (first measurement-vector)
(estimated-north-position filter) north-position
(estimated-east-position filter) east-position
(estimated-north-current filter) (+ north-current-increment

(estimated-north-current filter))
(estimated-east-current filter) (+ east-current-increment
(estimated-east-current filter)))))

(defmethod estimated-trajectory ((filter navigation-filter) mission-data)
(do ( (data mission-data (rest data))
(trajectory nil (cons (state-vector filter) trajectory)))
( (null data) (reverse trajectory))
(update-filter filter (first data))
(if (new-gps-fixp filter (first data)) (gps-reset filter (first data)))))

(defun test-filter ()
(initialize-filter (first *filter-parameter-list*)
(second *filter-parameter-list*)
(fifth *filter-parameter-list*)
(sixth *filter-parameter-list¥*)
(seventh *filter-parameter-list*))
(mission-file (third *filter-parameter-list*)
(fourth *filter-parameter-list*))
(setf *estimated-trajectory* (estimated-trajectory filter-1 *mission-data*))
(write-filtered-data-to-file)) '

(setf *filter-parameter-list* '(.6 0 .55 .7 0 0))
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;Components are: angle-error-gain, rate-bias-gain, north-current, east-current,
;current-error-gain, estimated-north-current, estimated-east-current.

C. EULER-ANGLE-RIGID-BODY.CL

;This code models a single rigid body moving in an irrotational medium which has
;a constant linear velocity (current or wind) relative to an inertial frame
;(flat earth).

;Code written by R. B. McGhee, Naval Postgraduate School, mcghee@cs.nps.navy.mil,
;in Allegro Common Lisp, 1994 Release.

(defclass rigid-body ()

((posture ;The vector (xe ye ze phi theta psi).
:initform ‘(00 0 00 0)
:initarg :posture
:accessor posture)

(posture-rate ;The vector (xe-dot ye-dot ze-dot phi-dot theta-dot psi-dot).
:initarg :posture-rate
:accessor posture-rate)

(velocity ;The six-vector (u v w p q r) in body coordinates.
:dnitform '(111.1.1.1)
:initarg :velocity
:accessor velocity)

(velocity-growth-rate ;The vector (u-dot v-dot w-dot p-dot q-dot r-dot).
:accessor velocity-growth-rate)

(forces-and-torques  ;The vector (Fx Fy Fz L M N) in body coordinates.
:initform (list 0 0 (- *gravity*) 0 0 0)
:accessor forces-and-torques)

(moments-of-inertia  ;The vector (Ix Iy Iz) in principal axis coordinates.
:diniform ‘(11 1)
:initarg :moments-of-inertia
:accessor moments-of-inertia)

(mass
:initform 1
:initarg :mass
:aCcCessor mass)

(node-list ;(x y z 1) in body coord for each node. Starts with (0 0 0 1).
;initform '((0001) 4 001) (2001)(-4001)(-50-21)

(-6-15-21)(-615-21)(-26-21)(-2-6-21)
(-2 0 0 1)) ;Defines a simple "airplane" as default rigid body.

:initarg :node-list
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:accessor node-list)
(polygon-list

:dinitform '((134543)(46)(7289))

:initarg :polygon-list

:accessor polygon-list)
(transformed-node-list ;(x y z 1) in earth coord for each node in node-list.

:accessor transformed-node-list)
(H-matrix

:initform (unit-matrix 4)

:accessor H-matrix)
(medium-north-velocity

:initform O

:accessor medium-north-velocity)
(medium-east-velocity

:initform 0

:accessor medium-east-velocity)
(time-stamp

:accessor time-stamp)))

(defmethod initialize ((body rigid-body))
(setf (transformed-node-list body) (node-list body))
(setf (velocity-growth-rate body) (update-velocity-growth-rate body))
(setf (posture-rate body) (earth-velocity body))
(setf (time-stamp body) (get-internal-real-time)))

(defmethod move ((body rigid-body) azimuth elevation roll x y z)
(setf (posture body) (list x y z roll elevation azimuth))
(setf (H-matrix body)
(homogeneous-transform azimuth elevation roll x y z))
(transform-node-list body))

(defmethod get-delta-t ((body rigid-body)) 0.1)

; (let* ((new-time (get-internal-real-time))

; (delta-t (/ (- new-time (time-stamp body)) 1000)))
;  (setf (time-stamp body) new-time)

; delta-t))

93




(defmethod update-rigid-body ((body rigid-body))  ;Euler integration.
(let* ((delta-t (get-delta-t body)))

(update-posture body delta-t)

(setf (H-matrix body) (homogeneous-transform (sixth (posture body))
(fifth (posture body)) (fourth (posture body)) (first (posture body))
(second (posture body)) (third (posture body))))

(transform-node-list body)

(update-velocity body delta-t)

(update-velocity-growth-rate body)))

(defmethod update-velocity-growth-rate ((body rigid-body))

(setf (velocity-growth-rate body) ;Assumes principal axis coordinates with
(multiple-value-bind ;origin at center of gravity of body.
FxFyFzZLMN uvwpqr Ixly]Iz) ;Declares local variables.
(values-list ;Values assigned.
(append

(forces-and-torques body) (velocity body) (moments-of-inertia body)))
(list (+ (*vr) (*-1wq) (/ Fx (mass body))
(* *gravity* (first (third (H-matrix body)))))
(+ (*wp) (*-1ur) (/ Fy (mass body))
(* *gravity* (second (third (H-matrix body)))))
(+ (*uq) (* -1 v p) (/ Fz (mass body))
(* *gravity* (third (third (H-matrix body)))))
(+F¢lylz)gnl)Ix)
(HFECFEZIX)rp) M) 1y)
(/ (+ (* (- x Iy) p @) N) Iz))))) ;Value returned.

(defmethod update-velocity ((body rigid-body) delta-t) ;Euler integration.
(setf (velocity body)
(vector-add (velocity body)
(scalar-multiply delta-t (velocity-growth-rate body)))))

(defmethod update-posture ((body rigid-body) delta-t) ;Euler integration.
(setf (posture-rate body) (earth-velocity body))
(setf (posture body)
(vector-add (posture body) (scalar-multiply delta-t (posture-rate body)))))

(defmethod transform-node-list ((body rigid-body))
(setf (transformed-node-list body)
(mapcar #(lambda (node-location)
(post-multiply (H-matrix body) node-location))
(node-list body))))

(defconstant *gravity* 32.2185)
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(defmethod earth-velocity ((body rigid-body))
(let* ( (linear-velocity (firstn 3 (velocity body)))
(rotational-velocity (cdddr (velocity body)))
(posture (posture body))
(R-matrix (rotation-matrix (sixth posture) (fifth posture) (fourth posture)))
(current-vector (list (medium-north-velocity body) (medium-east-velocity body) 0))
(linear-earth-velocity
(vector-add current-vector (post-multiply R-matrix linear-velocity)))
(T-matrix (body-rate-to-euler-rate-matrix (sixth posture)
(fifth posture) (fourth posture)))
(rotational-earth-velocity (post-multiply T-matrix rotational-velocity)))
(append linear-earth-velocity rotational-earth-velocity)))

(defun test-rigid-body ()
(setf airplane-1 (make-instance 'rigid-body))
(initialize airplane-1)
;(setf camera-1 (make-instance 'strobe-camera))
;(move camera-1 0 (- (/ pi 2)) 0 0 0 -30)
;(take-picture camera-1 airplane-1)
(dotimes (i 20 'done) (update-rigid-body airplane-1)))
;(take-picture camera-1 airplane-1))

D. ROBOT-KINEMATICS.CL

;This code contains functions for matrix and vector computations. It also contains
;functions for translational, rotational and transformation operators.

;Code written by R. B. McGhee, Naval Postgraduate School, mcghee@cs.nps.navy.mil,
;in Allegro Common Lisp, 1994 Release.

(defun transpose (matrix) ;A matrix is a list of row vectors.
(cond ((null (cdr matrix)) (mapcar 'list (car matrix)))
(t (mapcar 'cons (car matrix) (transpose (cdr matrix))))))

(defun dot-product (vector-1 vector-2) ;A vector is a list of numerical atoms.
(apply '+ (mapcar "* vector-1 vector-2)))

(defun vector-magnitude (vector) (sqrt (dot-product vector vector)))
(defun post-multiply (matrix vector)
(cond ((null (rest matrix)) (list (dot-product (first matrix) vector)))

(t (cons (dot-product (first matrix) vector)
(post-multiply (rest matrix) vector)))))
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(defun pre-multiply (vector matrix)
(post-multiply (transpose matrix) vector))

(defun matrix-multiply (A B) ;A and B are conformable matrices.
(cond ((null (cdr A)) (list (pre-multiply (car A) B)))
(t (cons (pre-multiply (car A) B) (matrix-multiply (cdr A) B)))))

(defun chain-multiply (L) :L is a list of names of conformable matrices.
(cond ((null (cddr L)) (matrix-multiply (eval (car L)) (eval (cadr L))))
(t (matrix-multiply (eval (car L)) (chain-multiply (cdr L))))))

(defun cycle-left (matrix) (mapcar ‘row-cycle-left matrix))
(defun row-cycle-left (row) (append (cdr row) (list (car row))))
(defun cycle-up (matrix) (append (cdr matrix) (list (car matrix))))

(defun unit-vector (one-column length) ;Column count starts at 1.
(do ((n length (1- n))
(vector nil (cons (cond ((= one-column n) 1) (t 0)) vector)))
((zerop n) vector)))

(defun unit-matrix (size)
(do ( (row-number size (1- row-number))
{ nil (cons (unit-vector row-number size) I)))
((zerop row-number) I)))

(defun concat-matrix (A B) ;A and B are matrices with equal number of rows.
(cond ((null A) B)
(t (cons (append (car A) (car B)) (concat-matrix (cdr A) (cdr B))))))

(defun augment (matrix)
(concat-matrix matrix (unit-matrix (length matrix))))

(defun normalize-row (row) (scalar-multiply (/ 1.0 (car row)) TOW))
(defun scalar-multiply (scalar vector)
(cond ((null vector) nil)

(t (cons (* scalar (car vector))
(scalar-multiply scalar (cdr vector))))))
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(defun solve-first-column (matrix) :Reduces first column to (1 0 ...
(do* ((remaining-row-list matrix (rest remaining-row-list))
(first-row (normalize-row (first matrix)))
(answer (list first-row)
(cons (vector-add (first remaining-row-list)
(scalar-multiply (- (caar remaining-row-list))
first-row))

answer)))
((null (rest remaining-row-list)) (reverse answer))))

(defun vector-add (vector-1 vector-2) (mapcar '+ vector-1 vector-2))

(defun vector-subtract (vector-1 vector-2) (mapcar - vector-1 vector-2))

(defun first-square (matrix) ;Returns leftmost square matrix from argument.

(do ( (size (length matrix))
(remainder matrix (rest remainder))
(answer nil (cons (firstn size (first remainder)) answer)))
((null remainder) (reverse answer))))

(defun firstn (n list)
(cond ( (zerop n) nil) ‘
(t (cons (first list) (firstn (1- n) (rest list))))))

(defun max-car-firstn (n list)
(append (max-car-first (firstn n list)) (nthcdr n list)))

(defun matrix-inverse (M)
(do ( (M1 (max-car-first (augment M))
(cond ((null M1) nil) ;Abort for singular matrix.
(t (max-car-firstn n (cycle-left (cycle-up M1))))))
(@ (1- (length M)) (1- n)))
( (or (minusp n) (null M1)) (cond ((null M1) nil) (t (first-square M1))))
(setqg M1 (cond ((zerop (caar M1)) nil) (t (solve-first-column M1))))))

(defun max-car-first (L) ;L is a list of lists. This function finds list with
(cond ((null (cdr L)) L) ;largest car and moves it to head of list of lists.
(t (if (> (abs (caar L)) (abs (caar (max-car-first (cdr L))))) L
(append (max-car-first (cdr L)) (list (car L)))))))
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(defun dh-matrix (cosrotate sinrotate costwist sintwist length translate)
(list (list cosrotate (- (* costwist sinrotate))
(* sintwist sinrotate) (* length cosrotate))
(list sinrotate (* costwist cosrotate)
(- (* sintwist cosrotate)) (* length sinrotate))
(list 0. sintwist costwist translate) (list 0. 0. 0. 1.)))

(defun homogeneous-transform (azimuth elevation roll x y z)
(let ( (spsi (sin azimuth)) (cpsi (cos azimuth)) (sth (sin elevation))
(cth (cos elevation)) (sphi (sin roll)) (cphi (cos roll)))
(list (list (* cpsi cth) (- (* cpsi sth sphi) (* spsi cphi))
(+ (* cpsi sth cphi) (* spsi sphi)) x)
(list (* spsi cth) (+ (* cpsi cphi) (* spsi sth sphi))
(- (* spsi sth cphi) (* cpsi sphi)) y)
(list (- sth) (* cth sphi) (* cth cphi) z)
(list 0. 0. 0. 1.))))

(defun inverse-H (H) ;H is a 4x4 homogeneous transformation matrix.
(let* ( (minus-P (list (- (fourth (first H)))

(- (fourth (second H)))
(- (fourth (third H)))))

(inverse-R (transpose (first-square (reverse (rest (reverse H))))))

(inverse-P (post-multiply inverse-R minus-P)))

(append (concat-matrix inverse-R (transpose (list inverse-P)))
(Ilist (list 0 0 0 1)))))

(defun rotation-matrix (azimuth elevation roll)
(let ( (spsi (sin azimuth)) (cpsi (cos azimuth)) (sth (sin elevation))

(cth (cos elevation)) (sphi (sin roll)) (cphi (cos roll)))
(list (list (* cpsi cth) (- (* cpsi sth sphi) (* spsi cphi))

(+ (* cpsi sth cphi) (* spsi sphi)))
(list (* spsi cth) (+ (* cpsi cphi) (* spsi sth sphi))

(- (* spsi sth cphi) (* cpsi sphi)))

@ist (- sth) (* cth sphi) (* cth cphi)))))

(defun body-rate-to-euler-rate-matrix (azimuth elevation roll)
(let ( (sth (sin elevation)) (cth (cos elevation)) (tth (tan elevation))
(sphi (sin roll)) (cphi (cos roll)))
(list (list 1 (* tth sphi) (* tth cphi))
(list O cphi (- sphi))
(list O (/ sphi cth) (/ cphi cth)))))

(defun rad-to-deg (angle) (* 57.2957795130823 angle))
(defun deg-to-rad (angle) (* .017453292519943295 angle))
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APPENDIX C: SOURCE CODE (C++)

A. TOETYPES.H

/***********************************************************************

FILE: TOETYPES.H

AUTHOR: Eric Bachmann, Dave Gay
modified by R. Steven

DATE: 11 July 1995, modified 15 December 1995

***********************************************************************/

#ifndef _ TOETYPES_H
#define __ TOETYPES_H

#include <stdio.h>

#define ONE_G 32.2185 // One g in feet per second
#define GRAVITY 32.2185 // In feet per second

#define K1 1.0
#define K2 1.0
#define K3 0.5
#define K4 0.7

#define BIAS_1 0.0
#define BIAS_2 0.0
#define BIAS_3 0.0

enum Boolean {FALSE, TRUE};

typedef char ONEBYTE;
typedef short TWOBYTE;
typedef long FOURBYTE;

typedef unsigned char UNSIGNED_ONEBYTE;
typedef unsigned short UNSIGNED_TWOBYTE;
typedef unsigned long UNSIGNED_FOURBYTE;
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J/ Holds a latitude and longitude expressed as doubles
struct latLongPosition {

double latitude;

double longitude;

};

J/ Holds a grid position
struct grid {

double north, east, depth;
b

// 3 X 3 matrix
struct matrix {
float element[3][3];

I

// 3 X 1 matrix or vector
struct vector {
float element[3];

)

J/ Structure for passing around various types of INS information.
// The positions in the sample field of a stampedSample structure

// sample[0]: x acceleration

// sample[1]: y acceleration

// sample[2]: z acceleration

// sample[3]: phi

// sample[4]: theta

// sample[5]: psi

// sample[6]: water speed

// sample[7]: heading

// sample[8]: true north position

// sample[9]: true east position

// sample[10]: true depth sample [10] - [13] inserted
// sample[11]: true posture[4] only to accomodate a changed
// sample[12]: true posture[5] mission-data format

// sample[13]: true posture[6]
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struct stampedSample {
grid est;
double sample[14];
double time;
int GPSfix;
float  deltaT;

b

#endif

B. POSTFISH.CPP

//position as estimated by the INS.
//sampler converted sample.

// 1: GPSfix, 0: no GPSfix

/***********************************************************************

FILE: POSTFISH.CPP

AUTHOR: Eric Bachmann, Dave Gay

modified by R. Steven

DATE:

11 July 1995, modified 15 December 1995

***********************************************************************/

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <iostream.h>

#include "toetypes.h”
#include "postnav.h”

void printPosition (const latLongPosition&);

int
main (int argc, char *argv[])
{
// char goOn ="y’
latLongPosition currentLocation;

int fixCount(0);
char *inputFile; :
Boolean runIlnComplete(TRUE);

// Lat/Long of most recent fix

101




if (argc == 2) {
inputFile = new char[strlen(argv[1])];
strcpy(inputFile, argv[1]); /fexplicit script file only

//Instantiate the navigator
navigator nav1(inputFile);

cout << "\nReading data from " << inputFile;

//Initialize the navigator
currentLocation = navl.initializeNavigator();

cout << "Initial Position:\n";
//Print the initial position
printPosition(currentLocation);

runlnComplete = nav1.navPosit(currentLocation);

while (runInComplete) {
++fixCount;

// Attempt to get a fix from the navigator
runInComplete = nav1.navPosit(currentLocation);

}

else {
cout << "\nEnter the data file\n";

}

cout << "\nTotal fixes: " << fixCount << endl;
return O;
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/***********************************************************************

PROGRAM:  printPositon

AUTHOR: Eric Bachmann, Dave Gay
modified by R. Steven

DATE: 11 July 1995, modified 15 December 1995
FUNCTION:  Displays position to the screen
RETURNS: void

CALLED BY: mail

CALLS: none

*************************************************************************/

void
printPosition (const latLongPosition& posit)

{

cout << "Latitude: " << posit.latitude << endl;
cout << "Longitude: " << posit.longitude << endl;

}

C. POSTNAV.H
Pk ook Rk Rk R kR kR ko ok ok
FILE: POSTNAV.H

AUTHOR: Eric Bachmann, Dave Gay
modified by R. Steven

DATE: 11 July 1995, modified 15 December 1995

***********************************************************************/

#ifndef _ NAVIGATOR_H
#define _ NAVIGATOR_H

#include <stdio.h>
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#include <fstream.h>
#include <iostream.h>
#include <math.h>

#include "toetypes.h”
#include "postins.h"

/****************************#******************************************

CLASS: navigator

AUTHOR: Eric Bachmann, Dave Gay
modified by R. Steven

DATE: 11 July 1995, modified 15 Dec 1995

FUNCTION: Combines GPS and INS information to return the current
estimated position.

*************************************************************************/

class navigator {
public:

//Constructor, opens script and data files
navigator(char* dataFile)
positionData ("postScrp"),
inputFile(dataFile),
elapsedTime (0.0) {}

//Destructor, closes script and data files
~navigator() {positionData.close();}

//provides the navigator's best estimate of current position
Boolean navPosit (latLongPosition&);

//Initialize the navigator
latLongPosition initializeNavigator();

private:
INS insl; //INS object instance.
ofstream positionData; // Position script file.
ifstream inputFile; //Post processing read file.

104



latLongPosition origin; // stores origin, normally (0, 0)

/[Write position information to script file
void writeScriptPosit(int, const grid&, char);

float elapsedTime; // Tracks elapsed time for output to script file

|5
#endif

D. POSTNAV.CPP

/***********************************************************************

FILE: POSTNAV.CPP

AUTHOR: Eric Bachmann, Dave Gay
modified by R. Steven

DATE: 11 July 1995, modified 15 December 1995

***********************************************************************/

/***********************************************************************

PROGRAM: navPosit

AUTHOR: Eric Bachmann, Dave Gay

|

|

|

|

#include "postnav.h”
modified by R. Steven

DATE: 11 July 1995, modified 15 Dec 1995
FUNCTION: Provides the navigator's best estimate of current position.
Attempts to obtain GPS and INS position fixes from the gps

‘ and ins objects and copies the most accurate fix available

[ into the input argument ‘navPosition’. Writes the raw position

| fix data to the output file for post processing. Sets a return

!{ flag to indicate whether a valid fix was obtained.

| RETURNS: TRUE, a valid position fix is in the variable ‘navPosition'.

FALSE, otherwise.
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CALLED BY: towfish.cpp (main)

CALLS: correctPosition (ins.h)
insPosition (ins.h)
writeScriptPosit (nav.h)

*************************************************************************/

Boolean
navigator::navPosit (latLongPosition& navPosition)
{
stampedSample newSample;
grid position; // to pass position to ins::correctposition
static int fixCount(0);
Boolean gpsFlag, insFlag;
if (inputFile.eof()) return FALSE;
else
{
inputFile >> newSample.time >> newSample.sample[0]

>> newSample.sample[1] >> newSample.sample[2]
>> newSample.sample[3] >> newSample.sample[4]
>> newSample.sample[5] >> newSample.sample[7]
>> newSample.sample[6] >> newSample.sample[8]
>> newSample.sample[9] >> newSample.sample[10]
>> newSample.sample[11] >> newSample.sample[12]
>> newSample.sample[13] >> newSample.GPSfix;

if (newSample.GPSfix == 1)

{
// prepare position to pass to ins::correctposition
// and writeScriptPosit
position.north = newSample.sample[8];
position.east = newSample.sample[9];
position.depth = 0.0;
// Update time for output to file
elapsedTime = newSample.time;
// Write new position to file
writeScriptPosit(++fixCount, position, 'G’);
// Pass GPS position to INS object for navigation corrections.
ins1.correctPosition(position, newSample.time);
// Update navPosition
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}

navPosition.latitude = position.north;
navPosition.longitude = position.east;
return TRUE;

else /| GPSfix ==

{

ins1.insPosition(newSample);

// Update time for output to file
elapsedTime = newSample.time;
//Write new position to script file
position.north = newSample.sample[0];
position.east = newSample.sample[1];
position.depth = 0.0;
writeScriptPosit(++fixCount, position, T')
navPosition.latitude = position.north;
navPosition.longitude = position.east;
return TRUE;

.
b
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/***********************************************************************

PROGRAM:  writeScriptPosit
AUTHOR: Eric Bachmann, Dave Gay
DATE: 11 July 1995

FUNCTION:  Writes the fix number, the position in milSec and the type
of fix to the script file.

RETURNS: void

CALLED BY: navPosit (név.cpp)
initialPosit (nav.cpp)

CALLS: None

*************************************************************************/

void

navigator::writeScriptPosit(int fixNumber, const grid& posit, char fixType)

{

positionData << fixNumber <<

<< positnorth <<
<< posit.cast <"’
<< fixType <<''
<< elapsedTime << endl;

}

/***********************************************************************

PROGRAM: initializeNavigator

AUTHOR: Eric Bachmann, Dave Gay
modified by R. Steven

DATE: 11 July 1995, modified 15 Dec 1995
FUNCTION:  Obtains an initial GPS fix for use as a navigational origin for

grid positions used by the INS object. Saves the origin and passes
it to the INS object in latLong form.

RETURNS: TRUE

CALLED BY: towfish (main)
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CALLS: correctPosition (ins.cpp)

*************************************************************************/

latLongPosition
navigator::initializeNavigator()
{
int originFixNum = 0;
grid origin;

latLongPosition tmpPosition;

// Set the origin to 0, 0

origin.north = 0.0;

origineast = 0.0;

writeScriptPosit (originFixNum, origin, ‘G');

tmpPosition.latitude = origin.north;
tmpPosition.longitude = origin.east;

ins1.insSetUp(inputFile);
//Return the initial position to the caller.
return tmpPosition;

}
E. POSTINSH

kool ok ok ok ok kR ko koo ook ok ook ok ok ok
FILE: POSTINS.H

AUTHOR: Eric Bachmann, Dave Gay
modified by R. Steven

DATE: 11 July 1995, modified 15 December 1995

***********************************************************************/

#ifndef _INS_H
#define _INS_H

#include <math.h>

#include <stdio.h>
#include <fstream.h>
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#include <iostream.h>

#include "toetypes.h"

/***********************************************************************

CLASS: ins

AUTHOR: Eric Bachmann, Dave Gay

DATE: 11 July 1995

FUNCTION: Takes in linear accelerations, angular rates, speed and
heading information and uses kalman filtering techniques to return

a dead reconing position.

*************************************************************************/

class INS {
public:
//Constructor initializes gains
INSQ);
~INSQ {}

//returns the ins estimated position

Boolean insPosition (stampedSample&);

//Updates the x, y and z of the vehicle posture
void correctPosition (const grid&, double);

//records the initial position of and time

void insSetUp (ifstream&);
private:

double posture[6];
double velocities[6];

double current[3];

double lastTime;
double lastGPStime;

// ins estimated posture (x y z phi theta psi)
// ins estimated linear and angular velocities

// x-dot y-dot z-dot phi-dot theta-dot psi-dot
// ins estimated error current (x-dot y-dot z-dot)

//time of last ins position fix
//time of last gps position fix
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matrix rotationMatrix; //body to euler transformation matrix
double biasCorrection[8]; //Software bias corrections for IMU rate sensors

// Kalman filter gains.
float Konel, Kone2, Ktwo, Kthreel, Kthree2, Kfourl, Kfour2;

// Transforms from body coordinates to earth coordinates
// and removes the gravity component
void transformAccels (double[l);

// Transforms water speed reading to x and y components
void transformWaterSpeed (double, double[]);

// Tranforms body euler rates to earth euler rates.
void transformBodyRates (double[]);

// Euler integrates the accelerations and updates the velocities
void updateVelocities (stampedSample&);

// Euler integrates the velocities and update the posture
void updatePosture (stampedSample&);

// Builds the body to euler rate matrix
matrix buildBodyRateMatrix ();

// Builds the body to earth rotation matrix
void buildRotationMatrix ();

// Convert magnetic direction based magnetic variation.
double trueHeading (const double);

//Calculates the imu bias correction during set up
void calculateBiasCorrections ();

//Applies bias corrections to a sample
void applyBiasCorrections(stampedSample&);

// Post multiply a matrix times a vector and return result.
vector operator* (matrix&, double(]);

#endif
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F. POSTINS.CPP
e
FILE: POSTINS.CPP

AUTHOR: Eric Bachmann, Dave Gay
modified by R. Steven

DATE: 11 July 1995, modified 15 December 1995

***********************************************************************/

#include <iostream.h>
#include "postins.h"
/***********************************************************************
PROGRAM: ins (constructor)
AUTHOR: Eric Bachmann, Dave Gay
DATE: 11 July 1995

FUNCTION:  Constructor initializes kalman filter gains and linear and
angular velocities.

RETURNS: nothing
CALLED BY: navigator class
CALLS: none

*************************************************************************/

INS::INS() : Konel(K1), Kone2(K1), Ktwo(K2),
Kthree1(K3), Kthree2(K3), Kfour1(K4), Kfour2(K4)

{
velocities[0] = 0.0; // x dot
velocities[1] = 0.0; // y dot
velocities[2] = 0.0; // z dot
velocities[3] = 0.0; // phi dot
velocities[4] = 0.0; // theta dot
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velocities[5] = 0.0;

// psi dot

// Initialize error bias to zero

current[0] = 0.0;

current[1] = 0.0;

current[2] = 0.0;
}

/***********************************************************************

PROGRAM:

AUTHOR:

DATE:

FUNCTION:

RETURNS:

CALLED BY:

CALLS:

insPosit

Eric Bachmann, Dave Gay
modified by R. Steven

11 July 1995, modified 15 Dec 1995

Make dead reckoning position estimation using kalman

filtering. Inputs are linear accelerations, angular rates, speed and
heading. Primary input data is obtained from a sampler object via the
getSample method. This data is stored in the sample filed of a
stampedSample structure called newSample. The sample field is then
used as a working variable as the linear accelerations and angular
rates it contains are converted to earth coordinates and integrated

to determine current velocities and posture. The data is complimentary
filtered against itself, speed and magnetic heading.

position in grid coordinates as estimated by the INS
navPosit (nav.cpp)

findDeltaT (ins.cpp)
transformBodyRates (ins.cpp)
buildRotationMatrix (ins.cpp)
transformAccels (ins)
transformWaterSpeed (ins)

*************************************************************************/

Boolean

INS::insPosition(stampedSample& newSample)

{

double thetaA, phiA, xIncline, yIncline;

double deltaT;

// Integration interval
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double waterSpeedCorrection[3]; // Filter correction for drift
// and water speed

static float elapsedTime = 0.0; // Maintains elapsed time
applyBiasCorrections (newSample);

deltaT = newSample.time - lastTime;

newSample.deltaT = deltaT;

xIncline = newSample.sample[0] / GRAVITY;
yIncline = newSample.sample[1] / (GRAVITY * cos(posture[4]));

if (fabs(yIncline) > 1.0) {
cerr << '"\n Inclination error! \n";
return FALSE;

}

//Calculate low freq pitch and roll
thetaA = asin(xIncline);
phiA = -asin(yIncline);

//Transform body rates to transform euler rates.
transformBodyRates(newSample.sample);

//Calculate estimated pitch rate (phi-dot).

velocities[3] = newSample.sample[3] + Konel * (phiA - posture[3]);

//Calculate estimated roll rate (theta-dot).

velocities[4] = nchamplc.samplc[4] + Kone2 * (thetaA - posture[4]);

//Calculate estimated heading rate (psi-dot).

velocities[5] = newSample.sample[5] + Ktwo * (newSample.sample[7] - posture[S]);

/fintegrate estimated pitch rate to obtain pitch angle
posture[3] += deltaT * velocities[3];

/fintegrate estimated roll rate to obtain roll angle
posture[4] += deltaT * velocities[4];

/fintegrate estimated yaw rate to obtain heading
posture[5] += deltaT * velocities[5];

elapsedTime += deltaT;

buildRotationMatrix ();
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//Transform accels to earth coordinates
transformAccels (newSample.sample);

/[Transform water speed to earth coordinates
transformWaterSpeed (newSample.sample[6], waterSpeedCorrection);

// Subtract out previous velocity and apply statistical gain

// This is the NEW version of the filter

waterSpeedCorrection[0] = Kthreel * (waterSpeedCorrection[0] - velocities[0]);
waterSpeedCorrection[1] = Kthree2 * (waterSpeedCorrection[1] - velocities[1]);

// Determine filtered accelerations
newSample.sample[0] += waterSpeedCorrection[0];
newSample.sample[1] += waterSpeedCorrection[1];

//Integrate accelerations to obtain velocities

velocities[0] += newSample.sample[0] * deltaT;
velocities[1] += newSample.sample[1] * deltaT;
velocities[2] += newSample.sample[2] * deltaT;

//Integrate velocities to obtain posture

// This is the NEW version of the filter

posture[0] += (velocities[0] + current[0]) * deltaT;
posture[1] += (velocities[1] + current[1]) * deltaT;
posture[2] += (velocities[2] + current[2]) * deltaT;

lastTime = newSample.time;

newSample.sample[0] = posture[0];
newSample.sample[1] = posture[1];
newSample.sample[2] = posture[2];
newSample.sample[3] = posture[3];
newSample.sample[4] = posture[4];
newSample.sample[5] = posture{5];

newSample.est.north = posture[0];
newSample.est.east = posture[1];
newSample.est.depth = posture[2];

return TRUE;
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/***********************************************************************

PROGRAM: correctPosition
AUTHOR: Eric Bachmann, Dave Gay
DATE: 11 July 1995

FUNCTION: Reinitializes the INS based on a known position and compute
apparent current based on past accumulated errors of the INS. It is
called by the navigator each time a new GPS (true) fix is obtained.

RETURNS: void
CALLED BY: navPosit (nav)

CALLS: none

*************************************************************************/
void
INS::correctPosition(const grid& truePosit, double positTime)

{
double deltaT;

// Find time since last gps fix.
deltaT = positTime - lastGPStime;

// Detemine INS error since last gps fix
double deltaX = truePosit.north - posture[0];
double deltaY = truePosit.east - posture[1];

// Reinitialize posture to known position (gps fix)
posture[0] = truePosit.north;

posture[1] = truePosit.east;

posture[2] = 0.0;

// Add gain filtered error to previous errors
current[0] += Kfourl * (deltaX / deltaT);
current[1] += Kfour2 * (deltaY / deltaT);

// Save the time of the gps fix for next calculation
lastGPStime = positTime; '
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/***********************************************************************

PROGRAM:  insSetUp
AUTHOR: Eric Bachmann, Dave Gay
DATE: 11 July 1995

FUNCTION:  Initializes the INS system. Sets the posture to the origin.
Initializes the heading using magnetic compass information. Initilizes
the times of the last GPS fix and last IMU information.

RETURNS: void
CALLED BY: initializeNavigator (nav)

CALLS: calulateBiasCorrections (ins)
buildRotationMatrix (ins)
transformWaterSpeed (ins)

*************************************************************************/

void
INS::insSetUp (ifstreamé& inputFile)
{

stampedSample newSample;

//Set posture to straight and level at the origin.
posture[0] = 0.0;

posture[1] = 0.0;
posture[2] = 0.0;
posture[3] = 0.0;
posture[4] = 0.0;

//set imu biases

calculateBiasCorrections();

cout << "nBiases: " << biasCorrection[3] <<''
<< biasCorrection[4] << "'
<< biasCorrection[5] << endl;

inputFile >> newSample.time >> newSample.sample[0]
>> newSample.sample[1] >> newSample.sample(2]
>> newSample.sample[3] >> newSample.sample[4]
>> newSample.sample[5] >> newSample.sample[7]
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>> newSample.sample[6] >> newSample.sample[8]
>> newSample.sample[9] >> newSample.sample[10]
>> newSample.sample[11] >> newSample.sample[12]
>> newSample.sample[13] >> newSample.GPSfix;

//set initial true heading
posture[5] = newSample.sample[7];

//set initial speed

buildRotationMatrix ();
transformWaterSpeed (newSample.sample[6], velocities);

// initialize times
lastTime = newSample.time;
lastGPStime = 0.0;

}

/***********************************************************************

PROGRAM: transformAccels
AUTHOR: Eric Bachmann, Dave Gay
DATE: 11 July 1995

FUNCTION: Transforms linear accelerations from body coordinates to
earth coordinates and removes the gravity component in the z direction.

RETURNS: void
CALLED BY: navPosit
CALLS: none

*************************************************************************/

void
INS::transformAccels (double newSample[])
{

vector earthAccels;
newSample[0] -= GRAVITY * sin(posture{4]);

newSample[1] += GRAVITY * sin(posture[3]) * cos(posture[4]);
newSample[2] += GRAVITY * cos(posture[3]) * cos(posture[4]);
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earthAccels = rotationMatrix * newSample;
newSample[0] = earthAccels.clefnent[O];

newSample[1] = earthAccels.element[1];
newSample[2] = earthAccels.element[2];

}

/***********************************************************************

PROGRAM: transformWaterSpeed
AUTHOR: Eric Bachmann, Dave Gay
DATE: 11 July 1995

FUNCTION:  Transforms water speed into a vector in earth coordinates
and returns them in the speedCorrection variable.

RETURNS: void
CALLED BY: navPosit

CALLS: none

*************************************************************************/

void
INS::transformWaterSpeed (double waterSpeed, double speedCorrection{])
{

double water[3] = {waterSpeed, 0.0, 0.0};

vector waterVelocities = rotationMatrix * water;

speedCorrection [0] = waterVelocities.element[0];

speedCorrection [1] = waterVelocities.element[1];
speedCorrection [2] = waterVelocities.clement[2];
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/***********************************************************************

PROGRAM: transformBodyRates

AUTHOR: Eric Bachmann, Dave Gay
modified by R. Steven

DATE: 11 July 1995, modified 15 Dec 1995
FUNCTION: Tranforms body euler rates to earth euler rates
RETURNS: none

CALLED BY: insPosit

CALLS: buildBodyRateMatrix

*************************************************************************/

void
INS::transformBodyRates (double newSample[])

{
vector earthRates = buildBodyRateMatrix() * &(newSample[3]);

newSample[3] = earthRates.element[0];
newSample[4] = earthRates.element[1];
newSample[5] = earthRates.clement[2];

}
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/***********************************************************************

PROGRAM: buildBodyRateMatrix

AUTHOR: Eric Bachmann, Dave Gay

DATE: 11 July 1995

FUNCTION: Builds body to Euler rate translation matrix.
RETURNS: rate translation matrix

CALLED BY: insPosit

CALLS: none

*************************************************************************/

matrix
INS::buildBodyRateMatrix ()
{

matrix rateTrans;

float tth = tan (posture[4]),
sphi = sin(posture[3]),
cphi = cos(posture[3]),
cth = cos(posture[4]);

rateTrans.element[0][0] = 1.0;
rateTrans.element[0][1] = tth * sphi;
rateTrans.element[0][2] = tth * cphi;
rateTrans.element[1][0] = 0.0;
rateTrans.element[1][1] = cphi;
rateTrans.element[1][2] = -sphi;
rateTrans.element[2][0] = 0.0;
rateTrans.element[2][1] = sphi / cth;
rateTrans.eclement[2][2] = cphi / cth;

return rateTrans;
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/***********************************************************************

PROGRAM: buildRotationMatrix
AUTHOR: Eric Bachmann, Dave Gay

DATE: 11 July 1995

FUNCTION: Sets the body to earth coordinate rotation matrix.

RETURNS: void

CALLED BY: insPosit
insSetUp

CALLS: none

*************************************************************************/

void

INS::buildRotationMatrix ()

{

float spsi = sin(posture[5]),

cpsi = cos(posture{5]),
sth = sin(posture[4]),
sphi = sin(posture[3]),
cphi = cos(posture[3]),
cth = cos(posture[4]);

rotationMatrix.element[0][0] = cpsi * cth;
rotationMatrix.element[0][1] = (cpsi * sth * sphi) - (spsi * cphi);
rotationMatrix.element[0][2] = (cpsi * sth * cph1) + (spsi * sphi);
rotationMatrix.element[1][0] = spsi * cth;
rotationMatrix.element[1][1] = (cpsi * cphi) + (spsi * sth * sphi);
rotationMatrix.element[1][2] = (spsi * sth * cphi) - (cpsi * sphi);
rotationMatrix.element[2][0] = -sth;

rotationMatrix.element[2][1] = cth * sphi;
rotationMatrix.element[2][2] = cth * cphi;
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/***********************************************************************

PROGRAM:  post multiplication operator *
AUTHOR: Eric Bachmann, Dave Gay
DATE: 11 July 1995

FUNCTION:  Post multiply a 3 X 3 matrix times a 3 X 1 vector and
return the result.

RETURNS: 3 X 1 vector
CALLED BY:

CALLS: " None

*************************************************************************/

vector
operator* (matrix& transform, double state[])

{

vector result;

for (inti=0; i< 3; i++) {
result.elementfi] = 0.0;
for (intj =0; j < 3; j++) {
result.element[i] += transform.clement[i]{j] * state[jl;
}
}

return result;
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/***********************************************************************

PROGRAM: calculateBiasCorrections
AUTHOR: Eric Bachmann, Dave Gay
DATE: 11 July 1995

FUNCTION:  Calculates the initial imu bias by averaging a number of
imu readings.

RETURNS: none
CALLED BY: insSetup

CALLS: none

*************************************************************************/

void
INS::calculateBiasCorrections ()
{
biasCorrection[3] = BIAS_1;
biasCorrection[4] = BIAS_2;
biasCorrection[5] = BIAS_3;

}
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/***********************************************************************

PROGRAM: applyBiasCorrections

AUTHOR: Eric Bachmann, Dave Gay

DATE: 11 July 1995

FUNCTION:  Applies updated bias corrections to a sample.
RETURNS: void

CALLED BY: insPosit

CALLS: none

*************************************************************************/

void
INS::applyBiasCorrections (stampedSample& sample)

{
static const float biasWght(0.999), sampleWght(0.001);

biasCorrection[3] = (biasWght * BIAS_1) - (sampleWght * sample.sample[3]);
biasCorrection[4] = (biasWght * BIAS_2) - (sampleWght * sample.sample[4]);
biasCorrection[5] = (biasWght * BIAS_3) - (sampleWght * sample.sample[5]);

sample.sample[3] += biasCorrection[3];

sample.sample[4] += biasCorrection[4];
sample.sample[5] += biasCorrection[5];
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