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ABSTRACT

Because of range limitations imposed by speed and power supplies, covert launch
and recovery of Autonomous Underwater V ehicles (AUV s) near the operating areawill be
required for their use in many military applications. This thesis documents the
implementation of precision control and planning facilities on the Phoenix AUV that will
be required to support recovery in asmall tube and provides a preliminary study of issues
involved with AUV recovery by submarines.

Implementation involves the devel opment of low-level behaviors for sonar and
vehicle control, mid-level tacticsfor recovery planning, and amission-planning system for
translating high-level goals into an executable mission. Sonar behaviors consist of modes
for locating and tracking objects, while vehicle control behaviors include the ability to
drive to and maintain a position relative to atracked object. Finally, a mission-planning
system allowing graphical specification of mission objectives and recovery parametersis
implemented.

Results of underwater virtual world and in-water testing show that precise AUV
control based on sonar data can be implemented to an accuracy of less than six inches and
that this degree of precision is sufficient for use by higher-level tacticsto plan and control
recovery. Additionally, the mission-planning expert system has been shown to reduce
mission planning time by approximately two thirds and results in missions with fewer

logical and programming errors than manually generated missions.



Vi



TABLE OF CONTENTS

INTRODUCTION ..ot ee ettt e s e e e e e sne e e s nnne e snneesnneeens 1
A. NPS CENTER FOR AUV RESEARCH AND THE PHOENIX AUV...... 1
B. @ I VAN I 3
C. PROBLEM DESCRIPTION.......ccotiirieiiisieiee e sseesestesaese s e 3
D. THESIS GOALS......ooe ettt e e ne e 4
E. THESIS ORGANIZATION....ciiiiieieeeestereete et 5
RELATED WORK ...ttt e s ste e stee e e tae st e s n e e s snae e s nnne e ennneesnneeens 7
A. INTRODUCTION ....ociiiiieiiiisieieesie e snens 7
B. RECOVERY OF AUTONOMOUS UNDERWATER VEHICLES.......... 8
1. Massachusetts Institute of Technology (MIT) ...cceeveevcieiiiecceeciecies 8
2. Florida Atlantic UNIVEISItY .......cccooeieiiienineneseseeeeee e 10
3. Shenyang Research and Development Centre of Robotics................ 13
4. Centre Technique Des Systemes NavalS (CTSN)......coovvervrereennene 17
5. Institute for Systems and Robotics, Instituto Superior Tecnico ........ 19
C. THE PHOENIX AUTONOMOUS UNDERWATER VEHICLE............ 20
1. Hardware Configuration ...........ccccceeiieeiieiiee s 20
2. TheRationa Behavior Model (RBM) .......coceveririniiienese e 22
3. Precision Maneuvering USING SONA ........ccccueeeeeeieesiieeseesiseesseesneens 28
D. SUMMARY ettt e e e b e e sne e e ere e e snneeens 31
RESEARCH METHODOLOGY ....covciiiiieieieiieieesie e sseessesnenens 33
A. INTRODUCTION ...ooiiiie et e e 33
B. UNDERWATER VIRTUAL WORLD (UVW) ..o, 33
I O 1Y a1 33
2. Sonar Simulation and VisualiZation.............ccoveeveneineenenien e 36
C. IMPLEMENTATION AND TESTING IN THE VIRTUAL WORLD ... 43
D. IMPLEMENTATION AND TESTING IN THE REAL WORLD .......... 44
E. SUMMARY ettt et e e e rae e e sne e e sre e e anneeens 45

Vii



VI.

A. INTRODUCTION ..ottt snens 47
B. SONAR BEHAVIOR ...ttt ettt 47
1. Manual Control ..o e 47
2. FOrWard SCaAN ......cccevieeeiese ettt 49
3. Target SEarCh ..o 49
4, Targel TraCking.......ccoooiiiinerereeree e 52
5. Target EAge TraCKing ......cccccueeiieiieeiie st esee e 54
C STATION KEEPING ...ttt 57
1. Station Keeping Commands..........ccceeeveeieeiiiieiie e ciee s 57
2. Commanded AUV Position and Control ............cceceeverveenenenenenenne. 58
G T N U AV A I = o (] o RSP 60
D. FINAL RECOVERY CONTROL .....oooiiiieeiiee et 62
E. SUMMARY ..ttt st st neene e 64
TACTICAL LEVEL IMPLEMENTATION ...oooiiieeee e 67
A. INTRODUCTION ..ottt s snens 67
B. RECOVERY PATH PLANNING. ... 67
1 TranSfOrmMatioNs..........ccooeeiirieninie e 67
2. Lineand Circle TraCking ......c.ccceeeeererererenesieseseeee e 70
3. Recovery Planning.......cccooeiiiiiiecie e 74
C. EXECUTION COMMAND GENERATION.......ccccoeevieecee e 78
D. SUMMARY ..ttt sttt sa et e neene e 81
STRATEGIC LEVEL IMPLEMENTATION ...t 83
A. INTRODUCTION ..ottt s snens 83
B. EVOLUTION OF THE STRATEGIC LEVEL ....ccovveevieeceeeee e, 83
1. MIiSSION CONLIOL ... e 83
2. Abstract Mission CONErOl.........cccuevveieeeeseeie e 85
3. Programming Language ISSUES..........cccevieiieesiecsieesie e eneesiee e 87
C. A MISSION-GENERATION EXPERT SYSTEM ....cccceevieveeceeee, 89

viii



ISR [ 11 0o 8o 1 o o 89

2. The AutomatiC MiSSION GENEIaor.........ccocureerieerierieneesie e seee e 90

3. Phase-by-Phase Mission SpecifiCation ..........c.cooeeereeieneneneneneene 97

4.  Automatic Code GENEration ...........coveeruerieereenesiee e 103

D. SUMMARY ettt e e e e e e e e e e s e e enneas 105
VII.  EXPERIMENTAL RESULTS ..ottt 107
A. INTRODUCTION ...ooiiiie e 107
B. VIRTUAL WORLD RESULTS.....ccoitiiieisiieese e 107
1. Recovery Control RESUITS.........ccoerieieiiiie e 107

2. Strategic Level and Mission Planning Expert System Results........ 114

C. REAL WORLD RESULTS. ...ttt 118
1. Sonar Tracking Behaviors..........ccccoeveeie e 118

2. Station-Keeping RESUILS..........cooiriiiiiieresesesesee e 123

3. Strategic Level and Mission Planning Expert System Results........ 129

D. SUMMARY ettt e e e e e e e e e s e e enneas 130
VIIl. CONCLUSIONS AND RECOMMENDATIONS .....ccocooiiiriiereece e 133
A. INTRODUCTION ..ot 133
B. RESEARCH CONCLUSIONS........cooitiiieisierieesie e 133
C. RECOMMENDATIONS.......ooi ettt 135
1. General Tactical Level Testsand Enhancements..........ccccveeevennnnne 135

2. Sonar Tracking BENAVIOIS........cccuceriiiiieresie s 135

3. Sonar ClassifiCatioN ..........ccceeierieiierienesee e e 137

4. AUV Tracking and Control ..........cccocevereneneninineeeeese e 137

5. Ocean Current and a Moving SUDMaring..........cccccceeveevieeveesiveennn. 138

6. Obstacle Avoidance During RECOVENY.........ccoureririienenicnienie e 139

7. Sensor and HardWare ISSUES ..........eoveveerieenieneesee e 139

8. Strategic Level ENhanCement ..........ccoooveveninenenenee e 140

9. TheMission Planning Expert System.........ccccvvveceeveevciecveescieennn, 141

10. Operating SyStemM ISSUES.........ccerereeiieiieresie st 142



11. Code OPLIMIZALION......ccciirieriirieeieee e 143

12. Underwater Virtual World Improvement...........cccoeeveveeiieeieeiinnens 144

D. SUMMARY ettt e e e e e e e e e e s e e enneas 144
APPENDIX A. OBTAINING ONLINE RESOURCES .......cccccoovvieirenieieesie s 147
APPENDIX B. EXECUTION LEVEL COMMAND LANGUAGE ......ccccceevverireeennee 149
APPENDIX C. MISSION GENERATION EXPERT SYSTEM USER GUIDE ......... 157
LIST OF REFERENCES .......oo ittt ettt e e s s 179
INITIAL DISTRIBUTION LIST ..ottt 185



LIST OF FIGURES

Figure 1: The Phoenix Autonomous Underwater Vehicle [Brutzman 96] ............cccceueue.. 2
Figure 2: The Odyssey Il AUV [MIT HOMePage 96] .........ccooceriereinerrieneenee e 8
Figure 3: The Ocean Voyager | AUV [FAU 96] ......cccoeiieiiieieece e 10
Figure 4: Fuzzy Docking Algorithm [Smith 96]..........cccooviiiininieeee 12
Figure 5: Virtual Docking Funnel for the Fuzzy Docking Algorithm [Smith 96]............ 14
Figure 6: The Explorer AUV Launcher[Ditang 92] ........ccceveeeeieeveccee s 15
Figure 7: An Explorer AUV Recovery [Ditang 92]........ccovvrerererinieenienesiese e 16
Figure 8: Phoenix External Configuration [Leonhardt 96]...........ccccoerererieninnenninneneee 20
Figure 9: Phoenix Internal Hardware Configuration [Leonhardt 96] .............cccccvevvrueenee. 22
Figure 10: The Rational Behavior Model Software Architecture [Holden 95] ................ 23
Figure 11: A Simple RBM Strategic Level Search MiSSION.........ccoccvveeveeieniinneeniesenee 25
Figure 12: Sample Execution Level Commands [Brutzman 94] .........cccccevveceveeviecnenee. 29
Figure 13: UVW Viewer Scene Graph Representation of Phoenix [Brutzman 94] ......... 35
Figure 14: Visualization INThe UV W ........ooiiiiiiiceeee e 35
Figure 15: Open Inventor Scene Graph Representing the ST725 Sonar ..........cccccevveeeee. 43
Figure 16: Sonar and AUV Range and Bearing.........ccoceverererenenieeieenieseseese e 52
Figure 17: Sonar Full Target-Track Mode GEOMELIY ..........ccceeeeieerenieneesesee e 54
Figure 18: Sonar Target-Edge-Track Mode GEOMELTY.........cccccveveeiieieeseereeie e 56
Figure 19: AUV and Recovery Tube Layout at Recovery Control Initiation................... 63
Figure 20: Steering Function Terms [Kanayama 96] ..........ccevererreneenennenieeneesie e 72

Xi



Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:

Figure 36:

Figure 37:
Figure 38:
Figure 39:
Figure 40:

Figure 41:

Tracking to a Desired Path Using the Steering Function.........c.ccccceeveevveenen. 73

Holonomic System Geometry [McGhee 91].......ccoceierieninninnesee e 75
Voronoi-Based Recovery Regions and Path Planning Segments................... 77
Recovery Regions and Station-K eeping Corner AssSignments..........ccccceeeenee. 79
Generated Commands Based on a Recovery Plan .........ccccoccevveieeieneeniceenne 80
Planned and Actual Recovery Path Results from aUVW Mission ................ 81
Strategic Level Mission Controller in Prolog and C++.......ccooevevencnenennene, 84
Strategic Level Phase Specified in Prolog ........cccveveeeieevie e 86
Search Mission Automatically Generated with Means-Ends Analysis........... 91
Graphical Representation of an Automatically Generated Mission................ 9
Top-Level Operator Definitions for Search and Explosive Planting Goals.... 96

Mission Planning Expert System Main Window ...........ccccccevveveeceeseesieceee 98
Data Input Windows for Phase-by-Phase Mission Specification.................... 99
Error Reports for Individual Phase Errors and Mission Errors..................... 101
State Table Summary of a Mission Specified Phase-by-Phase..................... 102
Sample Mission Defined with the Mission-Specification Language,

Automatically Generated Code in Prolog and C++........cccccceeveeneee. 104
Planned vs. Actual Virtual World Recovery in a Tube Oriented North........ 108
Planned vs. Actua Virtual World Recovery in a Tube Oriented Northeast . 109
Planned vs. Actual Virtual World Recovery in a Tube Oriented Southeast . 109
Planned vs. Actual Virtual World Recovery in a Tube Oriented South........ 110

Planned vs. Actua Virtual World Recovery in a Tube Oriented Southwest 110

Xii



Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:
Figure 62:

Figure 63:

Planned vs. Actual Virtual World Recovery in a Tube Oriented Northwest 111

Recovery with Poorly Tuned PD Control Constants............ccccecveeveeieennene. 114
Standalone Testing of aMission Using the ood _test Program..................... 115
UVW Results of aMission Generated Through Means-Ends Analysis........ 116

Stationary Sonar Full Target Track Bearing vs. Time........cccccceeveevcveevieenee. 119
Stationary Sonar Full Target Track Range vs. TIMe........cccocveveeveeveenieenene. 119
Stationary Sonar Target Edge Track Bearing vs. TIMe........cccccevveevveverneenne. 120
Stationary Sonar Target Edge Track Range vs. Time........ccccceeveevciecvieenee. 121
Range vs. Time Plot Showing Loss of Track in a Confined Area................ 122
Bearing vs. Time Plot Showing Loss of Track in a Confined Area.............. 122
Commanded and Actual Range to a Cylinder with Target Tracking............ 123
Commanded and Actual Bearing to a Cylinder with Target Tracking.......... 124
Commanded and Actual Heading while using Target Tracking................... 124
Commanded and Actual Range to a Cylinder with Edge Tracking.............. 126
Commanded and Actual Bearing to a Cylinder with Edge Tracking............ 126
Commanded and Actual Heading while using Edge Tracking ............ccc...... 127
Commanded and Actual Range during Tube Station Keeping ...........ccc.c..... 128
Commanded and Actual Bearing during Tube Station Keeping................... 128
Commanded and Actual Heading during Tube Station Keeping.................. 129
In-Water Results of an Automatically Generated Mission ...........cccceveneee. 130
Mission Planning Expert System Main Window ...........cccceveveveeincceesieenene 160

Initialization Parameters Data Input Window ............cccoeierenenenenenenieenns 161

Xiii



Figure 64:
Figure 65:
Figure 66:
Figure 67:
Figure 68:
Figure 69:
Figure 70:
Figure 71:
Figure 72:
Figure 73:

Figure 74:

Phase Type INPUE WINAOW ........cooririiieesese e 162
State Table Summary of a Mission Specified Phase-by-Phase..................... 163
Data Input Window for Transit Phase Specification...........c.cccoevveieieenene. 163
Phase Modification and Phase Deletion Windows............ccccevevenenenenennns 167
Invalid Phase Error RepOrt Window ...........ccceceeeeienienneenienee e 167
Means-Ends Mission Generator Facility Main Window............ccccecceeveenee. 169
Recovery Tube Data Entry WINAOW ..........cccoevereninienieieree e 170
Search Point Data Entry WINQOW ..........cccoeieeineneee e 171
Sample Means-Ends Analysis Mission Solution Window...........ccccceeveueenee. 172
Error Window for Detected MiSSioN EITOrS.........coeeeeeeieneneneneneseeeens 174
Output Language Selection WINAOW .........ccoeeiiieeneiinneneeeeee e 174

Xiv



Table 1;

Table 2:

Table 3:

Table 4:

Table5:

LIST OF TABLES

UUV Recovery Functions. After [Chapuis 96]..........ccovvvrerenenenenesesene 18
ST1000 and ST725 Positionsin AUV Body Coordinates ..........c.cceeeereeenee. 41
Station Keeping PD Control Law Constants .........ccccccevveeeeveeneecieceesie e 60
Mathematical Model Constants [Marco 96a] ...........ccoceveeveneneneneneneneenns 62
Recovery Control PD Control CONStaNtS .........ccceeeeveerieneeniennieseeseeeseeseeseens 64

XV



XVi



. INTRODUCTION

A. NPSCENTER FOR AUV RESEARCH AND THE PHOENIX AUV

Thisthesisis concerned with the mission planning, mission control, and precision
maneuvering required to support recovery of the Phoenix autonomous underwater vehicle
(AUV) inasimulated torpedo tube. Specific issues covered include automated mission
planning, finite state mission control, recovery path planning, recovery tube detection and
localization, and precise maneuvering control for docking.

The Naval Postgraduate School (NPS) has been actively involved in autonomous
underwater vehicle research for anumber of years. Recently the NPS Center for AUV
Research was established to explore conceptsin the design and control of AUVs. Asthey
are developed, concepts are implemented on the Phoenix AUV, a 236 centimeter long,
neutrally buoyant vehicle weighing approximately 200 kilograms. Research goalsinclude
proving the feasibility of AUV use in shallow water mine countermeasure (MCM)
operations by implementation of a working proof-of-concept system and furthering the
state of theart inthefield of AUV sin general. Specific research areas haveincluded AUV
control, navigation, software architecture and mission planning.

The Phoenix AUV (Figure 1) is controlled by two on-board computers connected
viaalocal-area network (LAN). ThisLAN can be operated independently or can be
connected to other networks for real-time monitoring of mission progress. Vehicle
physical control isimplemented using two lateral thrusters, two vertical thrusters, two aft
propellers, and eight control planes.

Until recently in-water testing of Phoenix had been limited to the Center’ s 7.5 meter
by 7.5 meter by 2.5 meter test tank and the sub-Olympic size NPS pool. Salt water testing
began in January 1996 at Moss Landing, California. Futuretesting will be conducted at all

three sites and preparations are in progress for open-water testing in Monterey Bay.



Figure 1: The Phoenix Autonomous Underwater Vehicle [Brutzman 96].



B. MOTIVATION

Counter-mine warfare has recently become an important issue in the eyes of the
Navy’ s senior leadership [Boorda 95]. Joint doctrinal changes, especially the introduction
of littoral warfare asaprimary mission area, have pushed MCM operationsto theforefront.
Mines have many characteristics that make them attractive to coastal nations that might be
thefocusof littoral warfare. Minesare inexpensive, readily available, easy to use, difficult
to detect and disable, and have proven very effective against naval and amphibious
operations. The inadequacy of current United States MCM capabilities is amply
documented [Cheney 92].

The inherently covert nature of AUV's makes them an appealing platform for
shallow-water MCM operations. A small AUV launched and recovered covertly might be
capable of mapping or neutralizing a mine field without being detected. This ought to be

true even if the minefield is actively monitored by hostile forces.

C. PROBLEM DESCRIPTION

Since asmall AUV will inevitably have alimited power supply, it will need to be
launched and recovered close to its operating area. While this constraint does not pose a
significant problem in civilian AUV applications, the need for covertness may preclude
launching the AUV from aircraft or ships for military missions such as MCM operations.
The obvious solution isto use submarinesto launch and recover AUVs. Of specificinterest
therefore is the launch and recovery of AUV s using a submarine’ s torpedo tubes.

Launch of an AUV from atorpedo tube is a simple matter since launching is what
torpedo tubes are designed for. Recovery is much more complex and is not a declared

capability of any submarine. Recovery of an AUV via submarine torpedo tube can be



broken down into three subproblems:. torpedo tube location and classification, recovery
path planning, and physical control of the AUV maneuvering along the recovery path.

Torpedo tube localization and classification involves using the AUV position, the
tube’ s expected position, and active sonar (or some other means) to precisely locate the
AUV relative to the torpedo tube. [Murphy 96] uses the term extoprioception to describe
thistype of localization which involves the position of the vehicle relative to objectsin the
operating environment. Thisisin contrast to exteroception, which is the localization of
objectsin the environment relative to the AUV. The precise nature of the motion required
for torpedo tube recovery dictates that estimates of AUV/tube relative positioning be
continually refined while the recovery isin progress in order to ensure the AUV is safely
maneuvering using the most accurate information possible.

Once the tube has been located and classified, a safe path into the tube must be
determined. The AUV will attempt to travel along this path during the recovery. A smooth
path must therefore be planned from the location of the AUV at the beginning of the
evolutiontoitsdesired location at theend. Thispath may need to be periodically replanned
as the position of the tube relative to the AUV isrefined and updated.

Thefinal aspect of torpedo tube recovery involves accurate movement of the AUV
to aseries of desired positions and orientations relative to the torpedo tube. Once the tube
has been identified and a path planned, the AUV must be capable of accurately following
the commanded path. Motion control must be robust, even in the presence of uniform or

variable ocean currents.

D. THESISGOALS

A large amount of research has been directed at executing MCM missions with the
Phoenix AUV, but recovery problems have not yet been addressed in any depth. The

primary goal of thisthesisis to begin adapting the software architecture of the Phoenix



AUV to enabletorpedo tube recovery. Specifically, developmentsto the Phoenix software
will enable reliable recovery in asimulated torpedo tube in the Underwater Virtual World
(UVW) [Brutzman 94]. UVW results are verified by in-water experiments to the greatest
extent possible. Issuesto be dealt with include global positioning of the recovery torpedo
tube, recovery path planning, and local AUV positioning using active sonar and a

mathematical model during recovery.

E. THESISORGANIZATION

TheRational Behavior Model (RBM) isathreelayer softwarearchitecture designed
to emulate the command structure of a manned submarine [Byrnes 96]. It iswithin the
context of this architecture that thisthesisis organized. This chapter is devoted to the
motivation, problem discussion and goals for this project. Chapter 11 discusses previous
work in the area of AUV recovery and related work conducted on the Phoenix AUV in
particular. Chapter |11 discusses the core problems addressed by this work, the general
research technique used in this project and the design of experiments. Chapters1V, V, and
V1 discuss implementation of features of this project at the three layers of the RBM.
Specifically, Chapter 1V discusses implementation at the lowest layer (execution level).
Chapter V discusses implementation at the middle layer (tactical level). Chapter VI
discusses implementation of the top layer (strategic level) and the off-line automatic
mission generation expert system. Chapter VII focuses on the conduct and results of
experiments. Conclusions and recommendations for future work are presented in Chapter
VIII. The appendices contain source code, directions on how to obtain current versions of

the software, and directions on how to install and use the software.






II. RELATED WORK

A. INTRODUCTION

There are several potential AUV applicationsin addition to MCM that are being
explored by various organizations around the world. Environmental monitoring,
oceanographic research and maintenance/monitoring of underwater structures are just a
few examples. AUV’ s are attractive in these areas for a number of reasons. Because of
their size and their nonreliance on human operators, they are potentially less expensive to
purchase and operate than manned or remotely operated underwater vehicles. AUV’s
might be deployed in larger numbers, for longer periods and on shorter notice [ Smith 94,
Bellingham 94]. While remotely operated vehicles (ROV’s) partialy share these
advantages, the requirement of aphysical connection between the ROV and ahost platform
or ship limitsthe ROV’ s operating range and the required tether can be easily fouled. The
latter problem can be particularly limiting in restricted environments such as kelp forests
or under ice [Bellingham 94]. Given the potential applications and advantages of AUV’s,
it isno wonder that military, academic and commercia organizations around the world are
conducting research using these vehicles.

This chapter is divided into two major parts. The first covers research efforts of
other organizations that have been directed towards the recovery of AUVs. Thissectionis
by no means a compl ete survey of world-wide AUV research. For abroader overview of
this subject, the reader isadvised refer to [UUST 95, AUV 96]. The second section of this
chapter describesrelated research conducted on Phoenix. In thislatter section emphasisis
given to the overal control architecture of Phoenix and the use of sonar for local-area

navigation.



B. RECOVERY OF AUTONOMOUSUNDERWATER VEHICLES

1. MassachusettsInstitute of Technology (MIT)

Odyssey 11 (Figure 2) isarobot developed by the Massachusetts | nstitute of
Technology (MIT) SeaGrant College Program. Odyssey || wasbuilt for the conduct of two
specific scientific missions. under-ice mapping and rapid response to volcanic events at
mid-ocean ridges. Odyssey 1 is 215 centimetersin length, 59 centimeters diameter and
displaces 140 kilograms. Major design goals were to minimize drag, power requirements
and size while maximizing hull strength and endurance. These sometimes contradictory
goals were necessary to support long missions under extreme environmental conditions.

[Bellingham 94]

> L2y
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Figure 2: The Odyssey || AUV [MIT Home Page 96].

Physical control of Odyssey |1 isviaasingle aft-mounted thruster and four control

planes mounted on the aft portion of the fuselage. The absence of lateral and vertical



thrusters means that Odyssey |1 must maintain forward motion in order to maneuver.
Minimum maneuvering speed is approximately 0.5 meters per second and turn radiusis
approximately five meters [Bellingham 94]. Programmed vehicle behaviors must take
these maneuvering characteristics into account.

Odyssey |1 uses three fixed sonars for obstacle detection/avoidance and an atitude
sonar that can be oriented vertically to maintain altitude from the seafloor or overhead ice.
A low-frequency hyperbolic long-baseline acoustic system is used for vehicle navigation
during the conduct of amission [Bellingham 92]. Mission sensors include various
oceanographic instruments, a still camera and a video recorder. The primary on-board
computer is a40MHz 68030 operating under the OS-9 real-time operating system. This
computer is connected to several microcontrollersthat are responsible for control of some
of the vehicle s subsystems. [Bellingham 94]

Logical control of Odyssey |1 usesalayered software system. The primary building
block of the system isreferred to as abehavior. Anindividual behavior isresponsible for
aspecific type of action. Examples of behavior typesinclude homing, collision detection,
survey with navigation, and race track. The current values and priorities of al active
behaviorsaswell asthe sensor datais maintained in avehicle state structure. Thisstructure
is evaluated by the dynamic controller which actually commands the vehicle's physical
actuators. [Bellingham 94]

Recovery of Odyssey |1 relies on homing and uses a commercially available ultra-
short baseline (USBL) acoustic system as abeacon. The homing behavior uses range and
bearing updates from the UBSL system to guide Odyssey |l into acapture net. The system
has been successfully tested in under-ice operations with the vehicle typically returning to
within 30 cm of the homing beacon [Bellingham 94]. While navigational accuracy of 30
cm is not sufficient to control an entire torpedo-tube recovery, a system such as this may

beideal for the near-field or close-proximity navigation portion of the recovery. An



acoustic navigation system providing accuracy to less than one meter might be used to
position the AUV relative to the recovery tube, so that on-board AUV sensors can acquire/

classify the recovery tube and control the final portions of the recovery.

2. Florida Atlantic University

a. Ocean Voyager |1

Ocean Voyager 1, shownin Figure 3, istheresult of ajoint research effort
conducted by the Ocean Engineering Department of FloridaAtlantic University (FAU) and
the Marine Science Department of the University of South Florida. Ocean Voyager Il isan
AUV similar in size and structure to Odyssey 11 and is intended for coastal oceanographic
research. Thevehicleis 240 centimeterslong and displaces approximately 250 kilograms.
Maximum speed is 1.54 meters per second and endurance is approximately eight hours.

[Smith 94]

Figure 3: The Ocean Voyager 11 AUV [FAU 96].

Like Odyssey Il, Ocean Voyager |l uses a single aft mounted thruster and
four control planes mounted on the aft portion of the fuselage. Again, this control

arrangement requires Ocean Voyager |1 to maintain forward speed to maintain posture
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control. Thisconstraint isnot a problem given the type of mission for which the vehicleis
intended. While Odyssey |1 is designed for deep-water operations, the missions for which
Ocean Voyager 1l isintended require the vehicle to cruise in aregular pattern at a fixed
altitude above the bottom [White 96, Smith 94]. Specific missions include monitoring sea
grass, monitoring macro-algae beds and eval uating the effects of storm-front passage
[Smith 94].

While the missions for which Ocean Voyager Il is designed are fairly
specific in nature, each mission requires different sensor packages. The sensor payload is
contained immediately aft of the AUV’ snose cone and isdesigned to be modular in nature.
Thismodularity allowsfor fairly simple but specialized sensor packagesinstalled for each
mission [White 96].

Logical control of Ocean Voyager |1 isimplemented by afuzzy rule-based
algorithm. The control algorithm is similar to that of Odyssey |1 except that instead of
behaviors, Ocean Voyager Il control modes use the results of fuzzy rulesto compute
control commands and confidence levels. The output of each mode is evaluated by the
fuzzy weighted decision arbiter which determines the actual control outputs. Abort and
avoid modes provide for vehicle safety. Track, stable and no-operation modes provide for
data collection during normal operation. Additional modes for waypoint navigation,

docking or other behaviors are possible but have not yet been tested. [ Smith 96]

b. Recovery of Ocean Voyager 11

Significant simul ation-based research in the areaof AUV recovery hasbeen
conducted using Ocean Voyager I1. In[Rae 92, Rae 93] the possibility of using fuzzy logic
to control recovery by asubmarine was explored, while [White 96] documents more recent

research into using the same general procedure to control docking with a fixed structure.
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The fuzzy docking algorithm uses a “virtual funnel” to control the AUV
towardsthe goal. The virtual funnel is represented by fuzzy rules that define desired
motion for the AUV given its current position. Aslong asthe vehicle remainsinside the
region defined by thevirtual funnel, it will proceed towardsthe docking target. 1f the AUV
wanders outside the funnel, it will be vectored towards a new starting position and will
begin again. The size and shape of the docking funnel are determined by vehicle
characteristics and the external environment. A strength of the fuzzy docking algorithmis
that obstacle avoidance is an integral consideration. A flow chart representation of the

fuzzy docking algorithm is depicted in Figure 4. [Rae 92, Rae 93, White 96]

Approach Target

— | |n Funnel? ﬂ)» Backout

Yes

No

Reached Dock?

Yes

y
Stop

Figure 4: Fuzzy Docking Algorithm [Smith 96].

[Rae 92, Rae 93] assume that the AUV has accurate relative position
information for itself and the dock throughout the docking procedure. While this

assumption precluded immediate implementation in the vehicle, tests documented in these
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papers indicated that the algorithm was valid so long as accurate navigational datawas
obtained. Specifically [Rae 92] documents simulation results of fuzzy docking algorithm
use to dock with a stationary submarine. [Rae 93] expands on thiswork by simulating the
use of the algorithm to dock with a moving submarine and also attempts to model suction
forces and wake turbulence created by a moving submarine. [White 96] documents
simulation results that indicate that if aboundary areaisincluded in the virtual funnel to
account for navigational inaccuracy as depicted in Figure 5, the algorithm is still valid.
Simulation results documented in [White 96] were based on expected navigational
accuracy using the DivetrackerTM system. An interesting additional result was that the
navigational accuracy of the DivetrackerTM system may be sufficient to control the entire

docking maneuver.

3. Shenyang Research and Development Centre of Robotics

The Shenyang Research and Development Centre of Roboticsis aresearch
organization inthe People' s Republic of China. The AUV being devel oped by this group
isnamed Explorer. While Explorer issimilar to the Odyssey 11 and Ocean Voyager Il in
operating capabilities and characteristics, it isinteresting and relevant in this context
because of itsrecovery device. Although Explorer isoperated from a surface ship, launch
and recovery takes place underwater.

Four optionswere considered for Explorer’ slaunch and recovery system: recovery
in the center well of a support ship, recovery using a submarine, recovery using a semi-
submersible platform, and recovery using asubmersible platform. Thefinal system usesa
submersible cage that is lowered by a crane on the support ship. The decision to use an
underwater launch and recovery procedure was based on two factors: the difficulty of a
surface recovery in high sea states and Explorer’ srelatively poor navigational capabilities

on the surface. [Ditang 92]
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Figure 5: Virtual Docking Funnel for the Fuzzy Docking Algorithm [Smith 96].
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The launcher itself isacage-like structure that islowered by crane to a depth of 30
to 50 meters. The launcher has two locking arms for securing the AUV wheniitisin the
launcher, atelevision camera for monitoring of the recovery and two vertical thrusters
which are used to maintain the launcher at the specified depth. Explorer uses an ultrashort
baseline (USBL) navigation system and an on-board video camerato navigate during the
recovery process. A drawing of the launcher configuration is depicted in Figure 6.

[Ditang 92]
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Figure 6: The Explorer AUV Launcher (units are mm) [Ditang 92].

The Explorer recovery process consists of five steps. First the launcher islowered
to the appropriate depth. Once lowered to the specified depth, the launcher thrusters
automatically maintain the launcher’ s depth so that motion control by the ship-board
operator isnot required. Next Explorer usesthe USBL system to navigate to apositionin
front of the launcher. Once within visual range, the on-board video camerais used to
identify reference points on the launcher and provide precise relative position information
during the final phase of the recovery. The launcher operator uses the launcher’s camera

to determine whenthe AUV isinthefinal recovery position. Oncethe AUV isin placethe
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locking arms are closed, and both launcher and AUV can be raised into the ship. A

depiction of an Explorer recovery using the launcher can be seen in Figure 7. [Ditang 92]
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Figure 7: An Explorer AUV Recovery [Ditang 92].

While recovery of an AUV inthisfashion isafar cry from recovery within a
torpedo tube, it isnoteworthy intwo respects. First, thissystem requires close coordination
between the recovering ship and the AUV. If the launcher is not at the appropriate depth
or location, or if the locking arms are not operated properly, the recovery will not be
successful. This coordination between the AUV and itsrecovery vehicleisa basic
assumption upon which successful recovery is based and is discussed in more detail in

[Gwin 92] and [Chapuis 96]. Second, Explorer uses multiple navigation techniques during
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different phases of the recovery. The on-board television camera provides accurate local
navigation during the final phase of the recovery, but video is of no use in locating the
launcher from a distance of more than afew feet. The USBL navigation system allows
Explorer to get close to the launcher, but does not provide enough precision to actually
enter the launcher.

The recovery procedure being considered for Phoenix is similar, using the
DivetrackerTM system to navigate to a position from which the recovery tube can be
acquired and identified using the two on-board sonar systems. The Phoenix sonars arethen
used for precision maneuvering into the tube using techniques described in [Healey 94] and

[Marco 963a)].

4. Centre Technique Des Systemes Navals (CTSN)

As part of alarger feasibility study on the design of recoverable unmanned
underwater vehicles (UUV’s), the Centre Technique Des Systemes Navals (CTSN),
located in Toulon France, has attempted to identify functions upon which UUV launch and
recovery from submarines rely and the environmental factors affecting each of these
functions [Chapuis 96]. For the most part the functions and environmental factors
identified are relevant to the launch and recovery of both AUV’sand ROV’s. Functions
are divided into two types: main functions and constraint functions. Main functions are
those functions that directly accomplish high level goals. Constraint functions are those
that facilitate the successful completion of main functions or are inherent subfunctions of
amain function.

For UUV recovery, one main function and six constraint functionswere identified.
These functions and the factors effecting them are shown in Table 1. The mainfunctionis
simply the transition of the UUV from the open seainto the submarine. Constraint

functions include communication with the submarine, entry into the recovery system,
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straight navigation despite swell and waves, adapting to depth effects such as pressure and
light level, obstacle avoidance, and resistance to the marine environment. By performing
this assessment process repeatedly, the problem requirements of torpedo-tube docking with

asubmarine are fully specified. [Chapuis 96]

Function Criteria

Transition from open seainto | vehicle speed
submarine vehicle path

Communicate with submarine | Communication system type
atenuation

intensity

frequency band

range

Enter recovery system vehicle path
vehicle speed
vehiclesize

recovery devicesize
recovery device sensors

Navigate straight in the pres- wave significant height
ence of waves and current wave period
wave direction
current speed

current direction

Adapt to depth effects depth
temperature

Avoid obstacles obstacle density
obstacle speed

obstacle direction
distance obstacle/vehicle

Resist the marine environment | acidity

Table 1. UUV Recovery Functions. Underlined criteria are considered dominant. After
[Chapuis 96]
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5. Institutefor Systemsand Robotics, Instituto Superior Tecnico

Still another AUV research project is being conducted by the Institute for Systems
and Robotics Instituto Superior Tecnico (1ST) of Lisbon, Portugal. Theresearch vehicle of
this organization isnamed Marius. However this research isrelevant in the context of this
thesis(specifically Chapter V1) because of the mission control/planning featuresrather than
the vehicleitself.

High level mission control of Marius uses a mathematical structure called a Petri
net [Cassandras 93, Peterson 81]. A Petri net is atype of graph consisting of transitions,
placesand arcs. When used for AUV mission control, transitions correspond to actionsto
be undertaken by the vehicle, places correspond to preconditions for execution of a
transition or results of transition execution, and arcs are used to connect transitions to the
appropriate precondition and postcondition places. A token is used to mark all places
whose conditions are satisfied. When all of atransition’s precondition places contain
tokens, the transition is enabled. Since multiple transitions may be enabled at the same
time, Petri nets are well suited to representing parallelism in a system.

The CORAL development environment has been developed by IST astheinterface
for generating missions. This system uses a graphical interface to define the Petri net
representing amission, and assign specific tasksto the transitions. A CORAL Engine has
also been developed to accept and execute Petri net descriptions. Details of the CORAL
system can be found in [Oliveira 96].

Recent research has been conducted to use the CORAL system for defining and
executing missions with other AUVs. Towards this end, a mission was successfully
executed by the Phoenix AUV using CORAL without making any modification to Phoenix
software [Healey 96]. The results of this research are an indication of the general

equivalence of several AUV multiple-level mission-control strategies.
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C. THE PHOENIX AUTONOMOUSUNDERWATER VEHICLE

1. Hardware Configuration

The Phoenix AUV is 235 centimetersin length, 41 centimeters in width, 25
centimetersin height and displaces 198 kilograms[Leonhardt 96]. The main body, which
houses Phoenix’ electronic and power equipment, is constructed of aluminum and is
designed to be water tight to eight meter depth. The free-flood nose coneis constructed of
fiberglass and houses the vehicle' s sonars, depth sensor and waterspeed probe. Physical
control of Phoenix is viatwo aft thrusters, two lateral cross-body thrusters, two vertical
cross-body thrusters, and eight control planes. Therectangular hull form and large number
of propulsion effectors are intended to facilitate precise position and orientation control
whether the vehicleishovering or transiting. The external layout of Phoenix isdepicted in

Figure 8.
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Figure 8: Phoenix External Configuration [Leonhardt 96].
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Phoenix is controlled by two on-board computers. The vehicle' s actuators and
sensors are monitored and controlled by processes running on a 30 MHz Gespac 68030
computer under the OS-9 real-time operating system. Higher-level mission control, data
collection and planning are handled by processes running on a Sun Voyager workstation
under the Unix operating system. The two computers are connected by an on-board
Ethernet |ocal-area network (LAN). The vehicle also has an external Ethernet connector
which can be used to communi cate with the on-board computersfrom an external network.
This external connection is primarily used for mission loading and data retrieval and is
simply terminated during untethered missions.

Phoenix’ primary navigational equipment consists of adifferential Global

Positioning System (GPS) receiver and a Divetracker ™ short baseline acoustic tracking
system. Phoenix’ use of these systemsis covered in detail in [McClarin 96] and
[Scrivener96]. In addition, Phoenix has aturbine flow-meter probe for water speed
measurement, a depth cell, pitch, roll and yaw rate gyros, and heading and vertical gyros.

Phoenix has three sonars. a PSA900 altimeter sonar, an ST1000 mechanically
steered sonar and an ST 725 mechanically steered sonar. The PSA900 and ST1000 sonars
are controlled from the GESPAC computer while the ST725 is controlled by the Sun
Voyager. The ST1000 has a one-degree conical beam and a 360-degree sweep [Tritech
International Ltd. 92a]. The ST725 aso has a 360-degree sweep, with a horizontal width
of 2.5 degrees and avertical width of 28 degrees [Tritech International Ltd. 92b].

Other on-board equipment includes two leak detectors, two |ead-acid-gel batteries
capable of providing approximately two hours of power for the vehicle's computers and
motors, and hydrogen absorbers |ocated throughout the vehicle. The internal layout of

Phoenix is depicted in Figure 9.
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Figure 9: Phoenix Internal Hardware Configuration [Leonhardt 96].

2. TheRational Behavior Model (RBM)

a. Overview

The Rational Behavior Model (RBM) isathree-layer software architecture
for the control of autonomous vehicles [Byrnes 93, Byrnes 96]. RBM attempts to closely
model the command structure of manned ships as depicted in Figure 10. The top layer
(strategic level) isresponsible for defining high-level goalsand controlling overall mission
sequencing. The strategic level of RBM roughly corresponds to the commanding officer
of amanned ship. The middle layer (tactical level) isresponsible for interpreting the high-

level guidance from the strategic level and issuing control commands to the lowest layer
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(execution level) [Marco 96b]. In addition to direction of the execution level, the tactical
level isresponsible for navigation, obstacle detection/classification, obstacle avoidance,
path planning, and system monitoring [Leonhardt 96]. The responsibilities of the tactical
level are analogous to those of the officer watch team on a manned ship. The execution
level isresponsible for interfacing with the vehicle' s hardware to produce desired physical
responses. Thislayer corresponds to the watch-standers on a manned ship. In Phoenix
implementation of RBM the strategic and tactical levels run on the Sun VVoyager while the
execution level runs on the Gespac computer. Communication between the tactical and
execution levelsisviaBSD Unix sockets while communication between processes at the

tactical level isviaUnix pipes [Leonhardt 96].
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Figure 10: The Rational Behavior Model Software Architecture [Holden 95].

b. Strategic Level
An RBM strategic-level mission is structured as a deterministic finite

automata (DFA), sometimesreferred to as afinite state machine [Hopcroft 79]. Each high-
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level mission goal (or phase) represents anode (or state) in the DFA. Transitions within
the DFA occur whenever a phase succeeds or fails. Upon phase completion or failure,
subsequent phases to execute are specified by the transitions of the DFA. Thus each node
hastwo exit transitions. onefor successful phase completion and one for phasefailure. On
first consideration, limiting each node of the DFA to exactly two exit transitions might
seem to restrict the versatility of the RBM strategic level. However any DFA of arbitrary
complexity can berestructured asalogically equivalent binary DFA because any decision
tree can be restructured into an equivalent binary decision tree [Rowe 88]. Thusthis
restriction on the DFA structure in no way limits the versatility of the strategic level. A
graphical representation of an RBM strategic-level DFA for asimple search mission is
shown in Figure 11. Implementation of the strategic level as a structured DFA provides a
flexible means of describing and sequencing sophisticated missions.

In order to execute amission, the strategic level requires three software
components. Thefirst part isaDFA specification of the mission. The second partisa
mission controller that will control transitions through the DFA and initiate the appropriate
phases at the appropriatetimes. Thefina partisaset of primitive strategic-level goalsthat
provide the syntax and semantics of acommand language from the strategic to the tactical
level. These goals are implemented as messages to the tactical level.

The set of available messages to the tactical level constitute what amounts
to atactical-level command language. Commands are used to tell the tactical level to start
timers, specify hover points and waypoints, conduct searches and to perform other high-

level operations that make up the strategic level’ s primitive goal set.

24



Commence

'

Dive

'

Trangit to
Op Area

'

Hover at:
X,Y,2)

Search at:
xX,Y,2)

'

Return to
Base

'

Mission
Complete

Goto
Shallow
Depth
Y Y
Returnto | Y > Mission
Base Abort
KEY

down arrow transitions
indicate phase success

right arrow transitions
indicate phase failure

Figure 11: A Simple RBM Strategic Level Search Mission.
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A final noteworthy aspect of the RBM strategic level is the absence of
mathematical computation. The RBM architectural structure permits arithmetic
computationsto be performed only in the lower two RBM layers. Infact the strategic level
asinitially proposed in [Byrnes 93] further required that numerical data be confined
entirely to the lower levels of theRBM. It has subsequently been found desirable to permit
numerical dataat the strategic level as part of the high-level goal specifications[Leonhardt
96], athough thislevel remains concerned only with initiating phases and waiting for
successful completion or failure. This example aludesto alarger issue that must
constantly be dealt with: what facilities need to be placed at what layers of a multi-layer
software architecture? In thisinstance, the final decision was based more on how the data

was being used than what type of datait was.

c. Tactical Level

On Phoenix several concurrent processes are used to implement the tactical
level. These processes consist of the officer of the deck (OOD) module, the sonar module,
the navigator module and the replanner module [Leonhardt 96]. Future plans include the
implementation of an engineer module that will be responsible for monitoring and
troubleshooting vehicle systems and detecting system failures and degradations.

The OOD module receives commands from the strategic level and state
information from the execution level. The OOD uses this information to direct the other
tactical level modules and the execution level [Leonhardt 96]. Additionally, the OOD
modul e determines when individual phases have completed or failed and responds
accordingly to strategic level queries concerning the status of the current phase. OOD
responses to strategic level queries are always binary in nature and indicate ayes or no
response [Byrnes 96]. More detailed information concerning the implementation of the

OOD module can be found in [Leonhardt 96].
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The sonar module is responsible for controlling the ST725 sonar and
interpreting the sonar’ s data. During most operations the sonar is swept back and forth
directly infront of the AUV in order to find and classify objectsin Phoenix’ path, but it can
also be used to conduct a 360 degree search from ahover [Campbell 96]. The sonar module
uses parametric linear regression to construct line segments from sonar returns and arule
based expert system to connect line segments into polygons. This sonar return
classification processis described in detail in [Brutzman 92] and [Campbell 96].

The navigator module is responsible for maintaining accurate current

position information. A Kalman filter is used to combine GPS, differential GPS,

Divetracker™ and dead reckoning data to compute Phoenix' position. Implementation
details of the navigator module can be found in [McClarin 96].

The replanner is responsible for planning safe paths around obstacles
detected by the sonar module. Replanner implementation is covered in detail in

[Leonhardt 96].

d. Execution Level

The execution level isimplemented as a single closed-loop process. Each
loop iteration consists of three phases. sense, decide and act. The execution level process
reads sensors and computes values for parameters that do not have a dedicated sensor
during the sense portion of theloop. The execution level processthen usesthisinformation
to determine what control inputs are necessary to achieve the most recent tactical level
command. Finally appropriate commands are sent to each control actuator. [Burns 96]

In addition the execution level forwards a copy of the updated state vector
tothetactical level and checksfor anew command from thetactical level each timethrough
the closed loop. The complete set of tactical level commands al so constitutes acommand

language [Brutzman 96]. Each command consists of a keyword followed by a number of
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parameters. Execution-level commands are available for explicitly setting control
actuators, setting control modes and updating state information such as position and ocean
current that is maintained at the execution level. The most recent command determines
what control mode the AUV will use. Available control modes include hover control,
waypoint control, lateral control, rotate control and afew others. A subset of the available
commands is shown in Figure 12, with a complete listing included in Appendix B.

A fina responsibility of the execution level isthe initiation of areflexive
mission abort under certain circumstances [Burns 96]. A mission will be aborted if any of
the following occurs: leak detected, low battery, imminent collision or loss of primary
navigation system. In the event of an automatic abort, the AUV will surface as quickly as

possible using thrusters and planes. Upon reaching the surface, the mission will terminate.

3. Precison Maneuvering using Sonar

Recognizing that accurate positioning relative to objectsin the AUV’ senvironment
is at times more important than accurate global navigation, research into using Phoenix’
sonars for navigational purposes was begun shortly after the project’ sinception. Early
efforts focused on tactical and execution level coordination and command sequencing in
order to facilitate navigational use of the sonar and on implementing primitive behaviors

for control and use of vehicle sonars.
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WAIT # Wait/run for # seconds

RPM # [#H] Prop ordered rpm values
COURSE # Set new ordered course
TURN # Change ordered course #

RUDDER # Force rudder to # degrees

DEPTH # Set new ordered depth
PLANES # Force planesto # degrees
ROTATE # Open loop rotate control
NOROTATE Disable open loop rotate

LATERAL # Open loop lateral control

POSTURE #a #b #c #d #e #f
(X, Y, z, phi, theta, psi)

POSITION # ## [###] Reset dead reckon
I.e. navigation fix

ORIENTATION # ## ## (phi, theta, psi)
WAYPOINT #X #Y [#Z]

HOVER [#X #Y] [#Z] [#orientation]
[#standoff-distance]

GPS-FIX Proceed to shallow depth
take GPS fix

GPS-FIX-COMPLETE Surface GPS fix complete

TRACE Verbose print statements

Figure 12: Sample Execution Level Commands [Brutzman 94].
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Early results were published in [Healey 94]. Thefirst significant result of this
research was the implementation of vehicle behaviors that used the newly installed |ateral
and vertical thrusters to obtain hover-like control. These behaviors included heading
control, depth and pitch control, lateral speed control and lateral position control.
Behaviorswere also implemented for use of the sonars and included center sonar, ping and
get sonar range, step sonar (without pinging) and initiate or reset the sonar datafilters. The
philosophy used during this research was to accurately implement functionality at the
execution level before attempting to use these behaviors at the higher RBM levels
[Healey 94].

Once accurately implemented, these behaviors were used to achieve bottom-
following and wall-following behaviors. These behaviors were implemented using simple
proportional derivative (PD) control laws for thruster values. Command sequencing and
timing were also addressed at this stage. For example, it isfutileto command the AUV to
maintain adistance from awall if the sonar is not directed towardsthewall. Itistherefore
the responsibility of the tactical level to sequence commands to the execution level
appropriately. [Healey 94]

Recently a more robust method of AUV positioning relative to an object has been
developed. Thismethod, documented in [Marco 964], uses the ST 1000 to |ocate the target
and uses a mathematical model to navigate to the commanded location relative to the
object.

The position of the object, in this case a0.5 meter diameter cylinder, is determined
by continually sweeping the ST 1000 through a sector centered on the expected bearing of
the object. The sector size was 70 degrees and angular resolution of the sonar was 1.8
degrees. Sonar returns are connected into segments which are examined to determine
which segments represent the cylinder. Simple rules based on the cylinder’ s size, shape

and location are used to determine which segments comprise the cylinder. Once the
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cylinder isidentified, the location of the vehicle in a navigation frame attached to the
cylinder with axes aligned North (x) and East (y) can be computed.

Since the target position update is much slower than the ten hertz control loop, a
simplified mathematical model for hydrodynamic response is used to navigate towards the
desired relative position between updates. The model includesdrag, added massand steady
state surge. It isassumed that the estimated position of the target based on sonar returnsis
accurate while the mathematical model isinaccurate. Thereforethe current model estimate
isreset whenever the sonar updates the target position. Results reported in [Marco 96a]
indicate that this methodol ogy workswell despite known inaccuraciesin the mathematical

model.

D. SUMMARY

Given the wide array of potentia uses and advantages for AUVs, it isno surprise
that research isbeing conducted by numerous organizationsworldwide. Thereare however
many issues that remain to be resolved. One of theseis AUV recovery. Severd
organizations have begun work on different recovery techniques, and there are anumber of
systemsin various research stages. Various aspects of these systems may prove helpful in
solving the problem of covert launch and recovery of AUV's from submarines.

Research conducted using Phoenix in the areaof precision maneuvering using sonar
may prove helpful aswell. The technique of combining sonar feature extraction and
model-based control in particular forms the basis of a significant portion of the research

detailed in the following chapters.
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IIl. RESEARCH METHODOLOGY

A. INTRODUCTION

This chapter isintended as an overview of the tools and methodology used during
thisresearch. This discussion is broken into three sections. Section B coversthe
Underwater Virtual World (UVW), athree-dimensional (3D) graphical simulation that
supports realistic and comprehensive testing of an AUV in the laboratory. Section B also
examines specific of the UVW and the enhancements that were made to support this
research. Section C coversimplementation and testing using the UVW. Section D covers

validation of vehicle software in the real world.

B. UNDERWATER VIRTUAL WORLD (UVW)

1. Overview

Implementation and testing of AUV softwareintherea worldisinherently difficult
for anumber of reasons. Logistical requirements, vehicle maintenance and limited power
supplies al limit the amount of in-water testing that is possible even under optimal
circumstances. Additionally, the remote environment in which AUV s operate precludes
run-time monitoring and can make data evaluation after the fact difficult at best. Finally
the unpredictability of the marine environment may make it difficult or impossible to
conduct tests within desired environmental parameters. The UVW is meant to address all
of theseissues. By providing ameans of comprehensively and accurately testing the AUV
in the laboratory, the UVW allows the implementation and testing of vehicle software
under conditions such as ocean current, restricted-area maneuvering and depths that are
impractical or impossible to duplicate in real-world testing. [Brutzman 94, Brutzman 95]

The UVW isorganized in two fairly distinct pieces: the dynamics module and the

viewer. The dynamics modulerepresentsthe virtual world in whichthe AUV isoperating.
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Included in the dynamics module are vehicle hydrodynamics and simulated sensor
response. During the sense portion of the control loop, the vehicle s execution-level
software relays a copy of the state vector from the previous loop to the dynamics module.
The state vector includes values for all salient vehicle characteristics including posture,
velocities, accelerations, and control and sensor settings. The dynamics module appliesthe
vehicle' s hydrodynamics formulas, cal cul ates the sensor readings, and returns an updated
state vector to the executionlevel. Thisrelay of state vectorsbetween the dynamicsmodule
and the execution level takes the place of physical sensor readings and actuator response
by the execution level in the real world. [Brutzman 94]

The second portion of the UVW, the viewer, provides real-time interactive 3D
graphics visualization of the AUV during test runsin the UVW. Control settings (planes,
propellers and thrusters) and sonar are represented graphically allowing intuitive
gualitative analysis of vehicle performance. Sincethe AUV reliesonly upon its sensors,
visudizationisof littleimportanceto the vehicleitself. Itis, however, extremely useful to
human operators to be able to see how the AUV is performing without having to analyze
large amounts of data. The diagnostic value of thistool has been proven on an almost daily
basis. [Brutzman 94, Brutzman 95]

The viewer is written using the Open Inventor graphics package [Wernecke 94].
Based on the Open GL graphics library, Open Inventor provides an object-oriented
extension to the C++ programming language for scene description and manipulation. A
sceneisrepresented asagraph. A node in the graph represents some piece of information
about the scene such as an object, alocation, amaterial or ascaling factor. When an action
(such asrender) is applied to the scene graph, the graph istraversed in a depth-first fashion
described in [Wernecke 94] and the action is applied to each nodein turn. Figure 13 shows
the Open Inventor scene graph used to represent Phoenix. A rendered depiction of ascene

graph from the UVW is shown in Figure 14.
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Figure 14: Visualization in the UVW.
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A second feature of Open Inventor isits scene description language [Wernecke 94].
The scene description provides a means of representing scene graphs using readabl e text.
Objects defined using the scene description language and stored in files can be loaded into
the scene graph at run-time. Similarly, any portion of the scene graph can be writtento a
fileat run-timefor later use or analysis. The ability to read and write portions of the scene
graph at run time is especially useful in the UVW since it allows arbitrary objects to be

loaded into the scene graph for different missions.

2. Sonar Simulation and Visualization

a. General

The most significant limitation of theinitial version of the UVW used
during this thesiswas the sonar model. Until recently UVW sonar representation was
limited to the ST1000 sonar and only to the 25 ft by 25 ft CAUVR test tank. This
representation used a simplified planar two-dimensional trigonometric model described in
[Brutzman 94] to calculate sonar returns based on aknown AUV position within the tank.
Other objects present in the scene graph were not represented in the sonar model. In order
to support this and other research, a more general sonar model representing arbitrary
targets and both the ST1000 and the ST 725 sonars was needed.

The solution produced for thisthesisisto use facilities present in the Open
Inventor package to simulate both sonars. One of the actions available in Open Inventor is
aray-pick action (SoRayPickAction) [Wernecke 94]. To use the ray-pick action, the
starting point of the ray and its orientation are specified and the action is applied to the
scene graph. After application, the ray-pick action returns the point (if any) whereit first
intersected an object in the scene graph to which it was applied. If the origin of the ray
corresponds to the location of a sonar, and the orientation of the ray corresponds to the

orientation of the sonar, then the distance from the origin of theray to thefirst intersection
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with an object in the scene graph is analogous to the sonar range. Because of the short
ranges involved (less than thirty meters), bending of the sonar beam is assumed to be
negligible [Brutzman 94]. Such an approximation usually remains valid at longer sonar
ranges (hundreds of meters) but depends on the sound speed profile of the environment
[Urick 83].

Since sensor modeling is handled in the dynamics module, a copy of the
scene graph must loaded into this module in order to use the ray-pick action to compute
sonar ranges. While the dynamics modul e uses a copy of the scene graph, thereis no need
for the dynamics module to render it. By maintaining a copy of the scene graph in the
dynamics module without rendering it, a general geometric sonar model has been
implemented without sacrificing real-time performance [ Brutzman 96].

Because of the imperfect nature of sonar data an error model must also be
implemented in order to accurately represent asonar. In the absence of empirical sonar
error data on the ST1000 and ST725 sonars, a uniform error distribution has been
implemented where the user can specify the maximum amount of error as a percent of the
range. The sonar range including error is computed for either sonar by the dynamics
module using the formula

Rray—error = € (rand(2) —1)Regy + Reqy (Eg. 1)
where e isthe maximum error percentage, rand(2) isarandom number between zero and
two and Rg,, isthe error-free sonar range returned by the geometric sonar model. Asmore
empirical error data becomes available, the sonar error distribution will be modified to
more accurately represent the performance of both sonars. A uniform error distribution can
be modified to provide an arbitrary empirical probability distribution in a straightforward

manner as explained in [Fishwick 95].
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b. ST21000 Sonar

Because the ST1000 sonar is a one-degree conical (pencil-beam) sonar, its
representation using theray-pick action isfairly straightforward and usesasingleray. The
location of the sonar head in world coordinates is computed using the position and
orientation of the AUV in world coordinates (data that is encapsulated in the AUV’ s
homogeneous transformation matrix) and the position of the ST1000 in AUV body

coordinates. The homogeneous transformation matrix is defined as [Craig 89]

c(y)c(6) c(y)s(0)s(9) —s(y)c(d) c(y)s(B)c(d) +s(8)s(9) x

= |S(W)S(8) S(y)S(B)S(9) + C(y)c(d) S(W)S(B)C(0) —C(8)S(9) ¥ (Eq. 2)
~s(6) c(0)S(9) c(0)c(0) z
0 0 0 1

where v, 6 and ¢ arethe AUV azimuth, elevation and roll respectively, (x, y, z) isthe
AUV position in world coordinates, and c(X) and s(X) are cosine and sine functions
respectively. Using the homogeneous transformation matrix the position of the ST1000

sonar in world coordinates is computed as

Xe Xp
Ye | = H Yb (Eq 3)
Ze Z,

1

where (x,, vy, z,) iSthe position of the ST1000 sonar head in AUV body coordinates.

The orientation of the ray representing the ST1000 isfound in asimilar
fashion using the orientation of the sonar beam relative to the AUV and the rotation matrix
corresponding to the orientation of the AUV. Since the ST1000 sonar only has one degree
of freedom (DOF) (rotation about the z-axis), the unit vector representing ST1000 beam

orientation relative to the AUV can be computed using
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Cos(Yp)
Vb = Sin(\Vb) (Eq 4)

0

where y,, isthe bearing of the ST1000 sonar. The vector representing the orientation of the

beam unit vector in world coordinates is computed using the formula
V. = RV, (Eg. 5)
where R isthe rotation matrix of the AUV given by [Craig 89]
c(y)c(6) c(y)s(0)s(d) —s(y)c(d) c(y)s(6)c(9) +s(8)s(¢)

R = Is(y)c(8) s(y)s(8)s(0) + c(y)c() s(w)s(8)c(9) —c(8)s(9) (Eq. 6)
—s(6) c(0)s(9) c(6)c(9)

This equation corresponds to the top left portion of the matrix of Equation 3.

Once the location of the sonar head and the orientation of the sonar beam
have been cal cul ated inworld coordinates, theray-pick action isapplied to the scenegraph.
The distance from the origin of the beam to the point returned by the ray-pick action isthen

calculated and error is added to the result using Equation 1.

c. ST725 Sonar

The ST725 sonar differsfrom the ST1000 sonar in two significant respects
that complicateits representation in the UVW. First, the sonar beam of the ST725isnot a
pencil-beam and cannot be adequately represented by a single ray like the ST1000.
Second, the data returned by the ST725 isnot simply arange to the nearest target but rather
adata structure representing the strength of the return at regular intervals out to the
maximum range. Theseissuesare both dealt with by fusing the results of multiple ray-pick
actions.

Before describing the actual implementation of the ST725 sonar in the
UVW, it isimportant to understand the data structure returned by the ST725 and how it is

interpreted by the sonar manager. The data structure returned by the ST725 is a 32-byte
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sequence that is divided into 64 bins of four bitseach. A bin represents the strength on a
scale from zero to 15 of the sonar return at a certain range. The range represented by abin
is proportional to the maximum sonar range and can be approximated linearly using the

formula

_ RMax . 1
Ri = —é~4—(l + é) (Eq 7)
where R, 1S the maximum range setting of the sonar and bins are numbered zero to 63.

Thetactical-level sonar manager usesthisdatastructureto computeasingle
range for the ST725. The range used is the shortest range whose bin value is above a
predefined minimum unlessthe value of abin representing alonger distanceissignificantly
larger (strength difference greater than two). If thisisthe case the longer range is used.
This algorithm is discussed in more detail in [Campbell 96].

The UVW implementation of the ST725 uses an array of 64 integersto
represent the returned data structure. The values contained in this array are determined by
the results of 13 ray-pick actions applied to the scene graph. Theraysfor all 13 ray-pick
actions originate at the position of the ST725 sonar head which is computed using
Equation 2with (x,, v, z,) representing thelocation of the ST725 sonar headin AUV body
coordinates (the positions of the ST725 and ST1000 sonarsin AUV body coordinatesis
shownin Table 2). The vector representing the orientation of each of the 13 raysin AUV
body coordinates varies above and below the horizontal plane of the sonar. Ray

orientations are computed using

cos(y,)
Vi = sin(y,) (Eqg. 8)
tan(2i° —12°)
where vy, isthe bearing of the ST725 sonar and rays are numbered from zero to 12. This

equation differsfrom Equation 4 only in thethird term of the vector which allowsthe entire
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vertical sonar beam to be represented. It should be noted that v,; isnot normally a unit

vector. While conversion to aunit vector isasimple matter, the ray-pick function does not
require orientation specified by a unit vector, so the conversion is not performed in the
interest of computational efficiency. Once the orientation of the raysin AUV body
coordinates has been calculated, the orientation in world coordinates can be computed
using Equation 5. A ray-pick action is applied to the scene graph for each of the 13 rays.
The range to the point returned by the ray-pick action is calculated, and the value stored in

the array of integers corresponding to the appropriate range bin isincremented by one.

Sonar Xp Yb Z,
ST1000 2.875 -0.167 0.3333
ST725 2.625 -0.167 -0.3333

Table 2. ST1000 and ST725 Positions (ft) in AUV Body Coordinates.

After al 13 ray-pick actions the error free sonar range is computed as the
range corresponding to the element of the array of integers with the highest value. If no
element inthe array isgreater than one, the error free sonar rangeis set to zero. Sonar error
isthen added to the error freerange using Equation 1. Although no profiling measurements
were performed on the source code, this operation appears highly efficient. The sonar
module (operating in series with the network communications and hydrodynamics model)
has no difficulty executing 14 ray-picks into complex scene graphs within the bounds of a
ten Hertz update rate. Thus computational performance of the arbitrary geometric sonar

model is excellent.
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d. Visualization

Once ranges have been computed for the ST725 and ST1000 sonars,
visualization using the viewer is straightforward. The goal of sonar visualization in the
UVW isto enable the human operator to see the operation of both sonars. Visualization
has proven particularly useful for detecting and troubleshooting sonar control algorithms
since it provides the only intuitive verification that the sonars are being controlled as
intended. Numerous experiments conducted in the course of thisresearch have shown that
sonar visualization is crucial to tactic diagnosis and mission rehearsal.

Sonar beams are represented in the UVW viewer using wireframe cones.
Nodes representing the sonar cones are placed in the portion of the scene graph
representing the AUV. Additional nodes are inserted into the graph to represent the
positions and orientations of the sonarsrelative to the AUV. In order to accurately depict
the pie-slice shape of the ST725 sonar beam, the vertical scale of the cone representing it
isincreased by afactor of 12. They are depicted aswire frames rather than solid objectsin
order to preclude the sonar cones from obscuring other portions of the scene.

In addition to positions and orientations of the sonars, target range
information is depicted. Thisisaccomplished quite ssmply by scaling the length of the
cones representing the sonar beams to the range of the appropriate sonar return. If the ray-
pick sonar rangeis zero (no scene graph object waswithin range), it isimportant to visually
depict lack of contact aswell. In thisinstance the sonar cone length is scaled out to the
maximum range, and for visual contrast the color is changed and the wireframe compl exity
isdecreased. The ST1000 sonar coneisred if avalid return isreceived and yellow if no
returnisobtained. The ST725 sonar iscorrespondingly rendered in magentaor white. The

portion of the viewer scene graph representing the ST725 sonar is shown in Figure 15.
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Figure 15: Open Inventor Scene Graph Representing the ST725 Sonar.

C. IMPLEMENTATION AND TESTING IN THE VIRTUAL WORLD

The UVW was the primary tool for Phoenix software implementation and initial
testing during the conduct of thisresearch. Whileit was often the case that in-water testing
was conducted concurrently with UVW testing, for safety and reliability no algorithms
were tested in the water prior to being tested in the UVW.

The genera philosophy used during the conduct of thisresearch was similar to that
of the research documented in [Marco 96]. Primitive functionality was implemented and
tested before attempting to implement higher level behaviors. Whileavariety of low-level
issues were not identified until higher-level behaviors were implemented, these were the
exception rather than the norm.

Thefirst issues dealt with were sonar control, target acquisition and tracking using
the ST1000 sonar. Once these behaviors were implemented, control modes were
implemented to allow Phoenix to maintain a commanded relative range and bearing from
asonar target. These behaviorsform the base uponwhich agreat deal of thisresearchrests.
The next step was to implement higher-level routines that used these sonar and control
modes to execute a torpedo-tube approach. These are primarily tactical-level issues and

involved path planning and command generation.
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Most strategic-level research relevant to this thesis was far enough removed even
from the tactical level issuesthat it could be conducted in parallel almost from the
beginning. The major goal of strategic level research was to simplify the mission-
generation process to such a degree that a user did not have to be a Phoenix expert to be
able to program a complex mission. Specification of location and type of recovery isone
aspect of this area of research. The most significant result of this research was a mission-
planning expert system for automatic generation of Phoenix missions. Much of thisjoint

research is documented in [Leonhardt 96] with more detailed coverage later in thisthesis.

D. IMPLEMENTATION AND TESTING IN THE REAL WORLD

Real-world implementation and testing occurred in two parts: implementation and
testing onthevehicle' shardware and verification of virtual world results. Because Phoenix
does not actually use physical sensors and controls when missions are conducted in the
virtual world, it is necessary to verify the software’ s interface with the actual vehicle
hardware before conducting in-water tests. Physical control of the sonars, reading and
filtering of sensor data, and polarity and response of control actuators all must be verified
by bench tests and (to alesser degree) by in-water tests. A more detailed discussion of this
topic can be found in [Burns 96].

Real-world verification of UVW resultsis conducted in much the same manner as
the initial implementation. Initial tests were intended to confirm the sonar control and
tracking behaviors, with subsequent tests verifying the station-keeping behaviors. Testing
of higher-level behaviors (including the full torpedo-tube recovery) were contingent upon
successful low-level behavior tests. A detailed discussion of real-world and virtual-world

test resultsis contained in Chapter VI of thisthesis.



E. SUMMARY

This chapter providesan overview on how thisresearch was conducted. The UVW
was of key importanceto the conduct of thisresearch. Inorder to facilitateitsuse, ageneral
sonar model was implemented to simulate the response of the ST725 and ST 1000 sonars.
The sonar model was implemented by importing a copy of the scene into the UVW’s
dynamics modul e using the Open Inventor ray-pick function to simulate the sonar beam.
Visualization was also implemented for both sonars in the viewer portion of the UVW.

Subsequent to implementation of ageneral sonar model for the ST725 and ST1000
sonars, the UVW was used as the primary implementation and testing tool. With the
exception of hardwareinterfacing, al aspects of thisresearch wereimplemented and tested
inthe UVW prior to attempting real-world tests. Implementation of Phoenix software was
conducted primarily in a bottom-up fashion with low level functionality being
implemented and tested prior to implementing higher level behaviors. Once functionality
was tested in the UVW, real-world tests were conducted to ensure proper hardware
utilization and response and verify UVW results.

The following chapter describes behaviors implemented at the execution level of
Phoenix software architecture to support recovery. Implemented behaviorsincludevarious
sonar control modes that can be used to locate and track objects in Phoenix environment, a
vehicle control mode for stationkeeping relative to an object being tracked, and a vehicle

control mode for physical entry into arecovery tube.
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V. EXECUTION LEVEL IMPLEMENTATION

A. INTRODUCTION

This chapter discusses implementation of behaviors at the execution level that are
required during recovery. Since the execution level is primarily responsible for low-level
physical control and interfacing with the vehicle shardware, behaviorsimplemented at this
level must be fairly smple but robust. Itisthe responsibility of thetactical level to invoke
execution-level behaviorsto carry out tacticsthat will (inturn) accomplish still higher-level
goals specified by the strategic level.

The next section in this chapter details implementation of ST1000 sonar control
which is built upon the primitive behaviors described in [Healey 94]. Specific sonar-
control modes implemented include a manual control mode, aforward-looking-scan mode
for collision avoidance, atarget-search mode for locating targets specified by the tactical
level, and two target-tracking modes for use during station keeping. The third section
covers implementation of vehicle control modes for station keeping relative to atarget.
Finally, implementation of avehicle control mode for entry into the recovery tubeis

presented in detail.

B. SONAR BEHAVIOR

1. Manual Control

The simplest and most obvious ST1000 behavior is“manual” control. This control
mode responds to commands from the tactical level by positioning the sonar at specified
relative bearings. Manual control provides a means for the tactical level to completely
control the operation of the ST1000 sonar for target classification, obstacle detection or

other operationsthat may be more suited to the ST1000 than the ST725. In addition manual
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control is used during the final phase of the recovery to position the ST1000 for distance
keeping from the side of the tube.

The current ST1000 bearing is maintained at the execution level. When a bearing
iscommanded, the ST1000 is stepped towards the commanded bearing at arate of one step
per closed loop cycle. Step sizefor the ST1000 can be set t0 0.9, 1.8 or 3.6 degrees (astep
size of 0.9 degrees was used during this research). Once the commanded bearing is
reached, the sonar will remain at this relative bearing until a new command is received or
until the control mode is changed.

When under manual control the sonar will ping once per closed loop cycle (six or
10 hertz) whether it is being stepped towards the commanded bearing or has already
reached it. Thisbehavior makesit possiblefor the tactical level to control amanual sector
scan simply by alternating bearing commands between the edges of the scan sector. Other
fairly robust behaviors can be similarly controlled by the tactical level.

Commanded sonar bearing is converted to an achievable bearing and normalized to
arange of [0 .. 360) degrees before the sonar is actually scanned. This prevents the sonar
from stepping back and forth across a commanded bearing and simplifies determination of
scan direction. Asan example suppose abearing command of -10.0 degreesisreceived by
the execution level. Using astep sizeof 0.9 degreesand starting from 0.0 degrees, the sonar
is capable of being scanned to -9.9 degrees or -10.8 degrees, but not -10 degrees exactly.
The commanded bearing is therefore converted to -9.9 degrees (since that legal valueis

closest to the actual commanded bearing). The roundoff function is defined as

(double)((' nteger)(\lfccémmand x 10.0)) y 9)

Wcommand —rounded ~ 10.0 (Eq 9)

Since the current ST1000 bearing is maintained in the range of [0 .. 360) degrees,

the commanded bearing is normalized to 350.1 degrees so that the commanded and current
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bearings can be compared. The difference between the commanded bearing and current
bearing is then normalized to arange of -180 degreesto 180 degrees. If thisdifferenceis
greater than zero, the sonar is scanned to theright; if it islessthan zero, the sonar is scanned

to the | eft.

2. Forward Scan

For many Phoenix evolutions, particularly transitsin flight mode, it is desirable to
use the ST1000 in aforward-looking scan pattern. This sonar operating mode has been
implemented and is automatically initiated whenever the execution level receivesa
command that will require any of the following vehicle control modes: hover control,
waypoint control, open-loop lateral control, open-loop rotate control or any other kind of
thruster control.

Thisforward scan pattern is primarily used for used for imminent collision
detection and will trigger areflexive mission abort as described in [Burns 96] if an obstacle
is detected within acertain range. The scan sector isof constant size and is centered about
zero degrees relative to the heading of the AUV. The default sector size is 30 degrees but

can be arbitrarily changed using mission-script commands which are listed in Appendix B.

3. Target Search

Sincethe ST1000isto beused for precision control relativeto objects near Phoenix,
sonar-control modes are necessary for locating and tracking those objects. The
implementation of the ST 1000 target-search mode makes two significant assumptions. the
target has been identified by the tactical level, and the target can be discriminated from
background objects based on range. The first assumption relates to the tasks assigned to
the different levels of RBM, while the second relates to the type of environment expected

during station keeping relative to a sonar target.
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The first assumption (regarding target identification) relates to successful
implementation of tactical level responsibilities including interpretation of sonar data and
classification of objects. Initial location of objects by the tactical level can rely on data
from the ST725, the ST1000 (probably using manual control by the tactical level) or both.
Real-time object classification using sonar has been the subject of previous Phoenix
research and continues to be an area of significant interest [Brutzman 92, Campbell 96].
Oncean object hasbeenidentified by thetactical level, the ST 1000 target-search mode uses
the approximate range and bearing information to find it.

The second assumption (regarding target discrimination) isthat the target isin a
relatively open area. Thisassumption allowsthetarget search to rely only on the expected
range and bearing to the target rather than heuristics concerning the type of target. The
advantage of this approach isits generality. Use of heuristics for target identification
assumes that the vehicle has a certain amount of knowledge concerning the characteristics
of thetarget [Marco 96]. This knowledge must be present for every type of object that is
to beidentified. Basing target identification strictly on range and bearing information does
not require knowledge about the characteristics of the target and can therefore be used to
locate any type of object. The disadvantageisthat it is possible to incorrectly identify a
target when operating in a cluttered environment. An uncluttered environment is a good
assumption for an at-seadocking station. On the other hand torpedo tubes are athemselves
ahighly cluttered environment. Even in this case, however, successful maneuvering in an
uncluttered environment is an essential prerequisite to attempting more difficult
environments.

The method used to determine scan direction for atarget search isthe same as that
used for manual control. Each sonar return during the search is examined to determine if
the desired object has been detected. Sonar range and bearing information is used to

determine earth-fixed coordinates. The bearing and range from the AUV to the object can
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then be computed and compared to the expected range and bearing to the target. In order
to simplify calculations, AUV pitch is assumed to be negligible. The position of the

ST1000 sonar head in world coordinates is then given by

Xe Xp
ye =H 2 yb (Eq 10)
1 sonar 1 sonar

where (x,, y,) iSsthe position of the ST1000 sonar head in AUV body coordinatesand H,

isthe two-dimensional version of Equation 4 and is given by [Kanayama 96]

Hy = |sin(y) cos(y) y (Eg. 11)

0 0 1

cos(y) —sin(y) x]

Once the global position of the sonar head has been determined, the range and bearing are

converted to world coordinates using

[ Xe J - [ Xe_sonar t Rcos(y + VYsonar) ] (Eq 12)
Ye return Ye—sonar T Rsin(\u + Wsonar)

where vy isthe AUV heading, v, iSthe ST1000 relative bearing and R isthe ST1000

range. Therange fromthe AUV centroid to the target is then computed as

R = /(X Xe_rewrn)? * (¥ = Ye-return)? (Eq. 13)
and bearing from the AUV to the target is computed as
B = atan(Yereturn—Y: %-return—X) (Ea. 14)
where atan(y,x) isafunction returning an angleintherangeof [0 .. 360) degrees. Equations
10 through 15 are equivalent to the equations defined in [Marco 964] to calculate the
location of Phoenix relative to acylinder. This relationship between sonar range and
bearing and AUV range and bearing is shown in Figure 16.
Once the range and bearing from the AUV to the sonar target have been computed,

they are compared to the expected range and bearing to the desired sonar target as a
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discriminator. If the measured range iswithin five feet of the expected range and the
measured bearing iswithin 15 degrees of the expected bearing, the return is assumed to be
part of the desired target. Once these conditions are met, the sonar-control mode is
automatically switched to target track or target-edge track. Which mode to select is

explicitly specified by the mission-script command that initiated the target search.

Range From
Sonar

Bearing

Range
From AUV

True
Bearing
From AUV

Figure 16: Sonar and AUV Range and Bearing.

4. Target Tracking

Oncethedesired sonar target has been located, asonar modeisrequired to maintain
contact with that target. Two such modes have been implemented: afull target-track mode

and atarget-edge-track mode. When using thefull target-track mode the sonar continually
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sweeps back and forth across the entire sonar target, updating target range and bearing only
after the sonar has scanned off the edge of the target.

As the sonar tracks across the target, each range is compared with the previous
range. If the rangeiswithin five feet of the previousrange, it is assumed to be part of the
same target. Because of the somewhat unreliable nature of sonar data, areturn that does
not meet the range criteriadoes not necessarily mean that the sonar has scanned of f the edge
of thetarget. To account for anomalous sonar returns, three consecutive off-target returns
are required to initiate a sonar-scan reversal aong with target range and bearing update.

When the sonar controller determines that the sonar has been scanned past the edge
of the target, range and bearing estimates are updated using averaging. Asthe sonar tracks
the target arange accumulator is maintained. Anomalous returns that cannot be included
in the target are not included in the range accumulator. Sonar range to the target is ssimply
the average of the valid returns from the previous sweep. In addition to the range
accumulator, the sonar controller maintains the initial bearing of the current scan. The
bearing to the target is then computed as the bisector of the starting and ending bearings of
the current scan. Once the range and bearing of the target from the sonar have been
determined, target range and bearing from the AUV are computed using Equations 10
through 14.

Anillustration of the target-track geometry isshown in Figure 17. Thetarget-track
control mode implementation is similar to the sonar control described in [Marco 96a] and
differssignificantly only in two regards. First, sector width is not fixed but is determined
by the size of the target. Second, aswith initial target detection, target identification is

based on range and bearing rather than target characteristics.
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Figure 17: Sonar Full Target-Track Mode Geometry.

In addition to providing target range and bearing information, the target-track
control mode has one more benefit. The range and bearing data obtained during the full
target track containsalarge amount of information about asingle object intheworld. Since
ST1000 range and bearing are part of the state-vector, this data can be concurrently

analyzed by the tactical-level sonar module to aid in object classification.

5. Target Edge Tracking

Maintaining sonar contact with the target by scanning across the entire target has
one significant disadvantage: the time period between successive range and bearing
updates can be as much as ten seconds [Marco 96a]. This slow update rate can lead to
sluggish AUV response and navigational inaccuracy because of errorsin the onboard

hydrodynamics mathematical model described in the following section. In order to
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increase the target data update rate, a second target-tracking sonar mode has been
implemented. Rather than scanning across an entire object, this control mode attempts to
track only the edge of the target.

Once atarget has been located using the target-search control mode, the sonar is
scanned left or right until it scans past the edge of the object. Thetarget’ sedgeisidentified
using the same algorithm as full target tracking. Again, once the edge is found the scan
directionisreversed. Rather than tracking across the target all the way to the opposing
edge, however, the sonar is scanned only until three returns that can be identified as part of
the target have been received. Returns are identified as part of the target in the same
manner as the full target-track mode. Once three target returns have been received, scan
directionisreversed. The edge-track algorithm can be summarized as aloop consisting of
four steps. scan off of the target, reverse scan direction, scan onto the target and reverse
scan direction. The smaller scan sector width results in target range and bearing update
rates that are much faster than those for full target tracking.

Since the sonar does not track across the entire target, average sonar range and
bearing to thetarget’ s center cannot be computed. Instead, range and bearing are computed
to the edge being tracked. Range computation isaccomplished in the same manner aswith
the full target track. Normally the range computed will be the average of three individual
sonar ranges. Depending on AUV motion during the scan, however, the actual number of
returnsincluded in the average may vary. The sonar bearing of the edge issimply the first
bearing from which avalid return wasreceived if the sonar isbeing scanned onto thetarget,
or the last bearing from which avalid return was received if the sonar is being scanned off
of thetarget. Again, once the range and bearing from the sonar have been determined,
range and bearing from the AUV are determined using Equations 10 through 14. Geometry

of the target edge-track mode is shown in Figure 18.
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The target edge used for tracking is determined by the direction that the sonar is
scanned immediately after target detection. If the sonar is scanned to the right, the right
edgeisused; if sonar isscanned |eft, theleft edgeisused. The sonar scan direction isbased
upon the direction that the AUV will need to move to reach the commanded range and
bearing. If the current bearing to the target is less than the commanded bearing, the AUV
will need to move left. In this case the sonar is scanned to the left following target
detection. Choosing the tracking edge in this manner isintended to prevent the AUV from

colliding with large targets because the wrong (i.e. far) edge was used.

Sonar A R N
Sector </ verage range A
A '
= bo» ComputedI
y /= é%"?@; True '
é@ & Sonar !
N Vob

Figure 18: Sonar Target-Edge-Track Mode Geometry.
As stated previously the major advantage of the target-edge-track control modeis
an increase in the range/bearing update rate over that of the target-track mode. Target-

edge-track has the disadvantage of not obtaining as much information about the target as
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the full target-track. Aninability to compute the center point of the target is one example
of this. Conceivably this disadvantage might be eliminated by simultaneous target-edge-
tracking and target-tracking using both the ST725 and ST1000 sonars.

C. STATION KEEPING

1. Station Keeping Commands

Two commands were added to the execution level command language defined in
[Brutzman 94] to control station keeping relativeto asonar target: target-station and target-
edge-station. These two commands correspond to the two target-tracking sonar modes:
target-track and target-edge-track respectively. Both commands have the same parameters
and are interpreted in the same way by the execution level. The sole difference between
these two commandsisthe sonar control mode that will beinitiated. Format and parameter
syntax details for both of these commands can be found in Appendix B.

Station keeping commands can have two, three, four, or five parameters. Thefour-
and five-parameter versions are used to initiate a target search prior to station keeping,
while the two- and three-parameter versions are used to change commanded range and
bearing from atarget already being tracked for station keeping. The two-parameter
command specifiesacommanded range and bearing, while the optional third parameter can
be added to specify a commanded vehicle heading. If no third parameter is present, AUV
heading will continuously point directly at the target. The four-parameter command
specifies an estimated range and bearing to the target for use during the target search and a
commanded range and bearing for station keeping. The fifth parameter specifies a
commanded vehicle heading. The difference between the commanded bearing and the
estimated current bearing specified in the command is used to determine which edge will

be used if target-edge-tracking is called for.
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Since execution-level target-track and target-edge-track sonar modes are initiated
automatically by the target-search sonar mode, it isimpossible to switch between target-
track and target-edge-track without initiating a new target search (i.e. by using the target-
station or target-edge-station command with four or five parameters). If the AUV is
maintaining station relative to atarget’ s edge and atarget-station command isreceived, the
target-station command will be interpreted as an edge-station command. Similarly, an
edge-station command will be interpreted as a target-station command as appropriate. In
addition, if atwo- or three-parameter station keeping command is received while the sonar
isnot in target-track or target-edge-track mode, the station keeping command will be

ignored.

2. Commanded AUV Position and Control

The implementation of Phoenix' target control involves the tranglation of the
commanded range and bearing to global (X, y) coordinates. Basing station-keeping control
laws on global coordinates allows the use of control laws similar to those used for hover
control as described in [Burns 96]. Each time the sonar control updates the range and
bearing to the target, the global position of the commanded station is computed as

[ Xcommand ) - [ X+ Cos(Bcurrent)Rcurrent + COS(Bcommand + 1800)Rc0mmand ) (Eq 15)

Ycommand y+sn (Bcurrent) Rcurrent +8n ( Bcommand + 1800)Rcommand

where B.yrent N Beommana &€ the current and command bearings from the AUV to the
target and Ry, ene AN Rgmmana @€ the current and commanded ranges from the AUV to the

target. Itisimportant to note that control is based on relative range and bearing between

the AUV and target, despite the conversion to world coordinates.
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The direction in which the AUV must move to achieve the commanded position is

computed as

I = atan(y — Ycommand s X_Xcommand) (Eq 16)

while the distance that the AUV needs to travel is computed as

d= A/(X_Xcommand)z"' (y_ycommand)2 (Eq 17)

The forward and lateral distances relative to the AUV are computed as

don—track = d- cos(I'—y) (Eq. 18)
and

deross—track = d - sSiN(I' =) (Eq. 19)
respectively. The computed valuesfor d,, . @Nd dgross_irack @€ USed with y, u and an

estimate of ocean current intheform (X, ent s Yeurrent ) 1N PD control lawsfor stern propeller

rpm, and bow and stern lateral thruster voltage. The stern propeller rpm control law is

rpPM = Prop,ange — ProPeyrrent — PFOPsurge (Eq. 20)
where
Prop,ange = kprop—hoverdon—track (EQ- 21)
ProPeyrrent = Kprop—current(Xcurrent - C0S(W) + Yeurrent - SIN(Y)) (Eq. 22)
and
Propgyrge = Ksurgel (Eq. 23)
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The bow and stern lateral thruster voltage control laws are

Vpow = —Thruster,,, + Thruster, ,qe + Thruster g, — Thruster . qent
and

Vern = Thruster yaw * Thr uster gnge * ThrustersWay —Thruster . rent
where

Thr USteryaw = - kthruster —\V(W ~ W eommand) — kthruster —rf
ThrUSterrange = kthrus,ter —hoverdcross—track
ThrUStersway = kthruster —swayv

and

ThrUStercurrent = kthrus,ter—(:urrent(xcurrent' Si”(\lf) ~Yeurrent COS\I!)

Values and units for PD control constants arelisted in Table 3.

Constant Value Units
Kprop— hover 200.0 | rpm/ft
Kprop—current 6600.0 | rpm-secs/ ft
Ksurge 2400.0 | rpm-secs/ ft
Kehruster -y 0.200 | Volts/ degrees
Kihruster —r 20 Volts-secs / degrees
Kenruster —hover | 2-3333 | Volts/ ft
Ksway 20.0 Volts-secs/ ft
k 40.0 Volts-secs/ ft

thruster —current

Table 3. Station Keeping PD Control Law Constants.

3. AUV Tracking

(Eq. 24)

(Eq. 25)

(Eq. 26)

(Eq. 27)

(Eq. 28)

(Eq. 29)

Because of the speed and asynchronous nature of sonar-based target-position

update rate, a method is required for computing Phoenix position and velocity between
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updates. Over the long term the best solution is probably the incorporation of an inertial
measurement unit (IMU) capable of providing position updatesin real time [McGhee 95,
Bachmann 96]. For the present however, Phoenix does not haveinstalled hardwarethat can
provide real-time navigational information. As a short-term solution, asimple
mathematical model based on control inputs has been developed and incorporated to
estimate Phoenix position and velocity between target updates [Marco 96a)].

The mathematical model is athree DOF dead reckoning model that includes drag,
added mass and steady state surge. Because Phoenix hardware includes adirectional gyro
that directly providesyaw and indirectly providesyaw rate (by differentiation of yaw), only
the surge and sway equations of motion from [Marco 96a] are used. The surge and sway
equations of motion are [Marco 964]

M, U(t) + b Ut u(t)] = 20,0, (D] vy(1) (Eq. 30)

MV(t) + b V(D) [V(D)] = 0t Vi (1) Vi (1] + 04, Vg (1) [Vge (1)) (Eq. 31)

where M, and M, are the sum of mass and added massin the x and y body axes, b, and b,
are square-law damping coefficients, o, and ., arevoltage-to-force coefficientsand v,(t) ,

v(t) and vg,(t) aretermsfor the voltage applied to the propellers, bow lateral thruster

and stern lateral thruster. More specifically asymmetric voltage to the aft propellersis

accounted for using [Marco 964]

Vls(t)‘vls(t)‘ + Vrs(t) ‘Vrs(t)‘
2

V(D)|V, (D] = (Eq. 32)

where v,(t) and v, (t) arethe voltages applied to the left and right propellers. Known

ocean current is accounted for when converting body fixed ratesto world rates:

[ X(t) —Xeurrent J — {COS(\V) —sin(w)M u(t) ] (Eq 33)
S/(t)_ycurrent Sin(‘lf) COS(W) V(t)
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Values and units of constants used in the mathematical moddl are shown in Table 4.

Constant | Value Units
M, 214.29 | Kg

M, 350.70 | Kg

b, 63.80 | Kg/m

by 815.40 | Kg/m
0Ly 0.056 | N/ Vvolts?
o 0018 | N/ Volts?

Table 4. Mathematical Model Constants [Marco 96a).

While this mathematical model is simple enough to calculate in real time and
accurate enough to compute reasonabl e navigational values, it isnot perfect [Marco 964 .
Target position updates based on sonar data remain the most accurate means of calculating
the location of the AUV relative to atarget. Since the purpose of the mathematical model
isto maintain AUV position and velocity information between sonar-based position
updates, it is reset each time a position update isreceived. Inthisway incremental errors
in the mathematical model are not permitted to build up to unacceptable values over time.

An important area for future work remains validation of AUV hydrodynamics
coefficients. Sinceageneral six-DOF hydrodynamicsvirtual world model for Phoenix can

runin real time, more accurate on-board dead reckoning is possible [Brutzman 94].

D. FINAL RECOVERY CONTROL

The final addition to the execution level in support of this research was the
implementation of a control mode to drive Phoenix into the recovery tube. Aswith the
target-tracking sonar modes and station keeping control mode, the recovery control mode

assumes that the position, orientation and size of the recovery tube has been determined by
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the tactical level. The goal of the recovery control modeis to drive Phoenix a specified
distance into a tube while maintaining adequate clearance from both sides.

Recovery control isinitiated by the tactical level once Phoenix is directly in front
of the recovery tube with its nose just inside. Upon recovery initiation the ST1000 sonar
is switched to manual control and slews relative 75 degrees |eft. At the same time the
tactical level sonar manager slewsthe ST 725 sonar relative 75 degreesto theright. Phoenix

positioning relative to the tube at this point is shown in Figure 19.

ST1000 Sonar RECOVERY TUBE

4

/

° Final Centroid
Recovery Position

\

|

ST725 Sonar

Figure 19: AUV and Recovery Tube Layout at Recovery Control Initiation.

PD control laws are then used to drive Phoenix into the tube. The mathematical
model described in the previous section is used to estimate the distance travelled into the
tubewhilethe ST1000 and ST 725 sonars are used to keep Phoenix in the center of the tube.
The control law for the aft propellersis

rPM = Korop—ranged = Kprop—current(Xcurrent - €OS(W) + Yeurrent - SN(W)) —Kprop_surgetl  (EQ. 34)
where d isthe remaining distance into the tube as computed by the mathematical model.
The control laws for the bow and stern lateral thrusters are

Vpow = —Thruster ,,, + Thruster, ,, . — Thruster g eeq — Thruster ., en (Eq. 35)
and

Vern = Thruster ., + Thruster . — Thruster g,eeq — Thruster ., o (Eq. 36)
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where Thruster,, and Thruster,, ., a€computed using Equations 26 and 29 respectively,
and
Thruster, ange = Kinruster —range( Rst725IN (75°)—Rgr1000SIN (75°)) (Eq. 37)
and
Thruster gyeeq = Kinruster - speedRsT1000SIN (75°) (Eq. 38)

where Rgri000 @8N0 Rgr7os @re the ST1000 and ST725 sonar ranges. These control laws are

very similar to Equations 20, 24 and 25, differing primarily in the values of the control

constantsand how theindividual termsare computed. Vauesof control constantsarelisted

in Tableb.

Constant Value Units
Korop—range 200.0 | rpm/ft
Korop—surge 6000.0 | rpm-secs/ ft
Kprop— current 6600.0 | rpm-secs/ ft
Kihruster -y 0.60 Volts/ degrees
Kinruster —r 8.0 Volts-secs / degrees
k 8.0 Volts/ ft

thruster —range

k 40.0 Volts-secs/ ft

thruster —speed

k 40.0 Volts-secs/ ft

thruster —current

Table 5. Recovery Control PD Control Constants.

E. SUMMARY

This chapter covers implementation of features at the execution level of Phoenix
software architecture to support recovery operations. Robust sonar behaviors are
implemented including modes to support manual control, forward scanning, target search,

target tracking and target-edge tracking. These behaviors are used to support a Phoenix
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control mode capable of transiting to and maintaining a commanded range and bearing
from asonar target. PD control laws are used to control motion relative to the target.
Additionally, because of the asynchronous target-position update rate, a mathematical
model was developed to estimate Phoenix motion between sonar-based target updates.
Finally, a control mode was implemented to actually drive Phoenix into the recovery tube
oncethevehicle obtainsapositionimmediately infront of thetube. Thiscontrol mode uses
PD control laws very similar to those used for station keeping. The ST1000 and ST725
sonars are used to ensure clearance from the sides of the recovery tube throughout the
recovery evolution while the mathematical model isused to estimate forward travel into the
tube.

The following chapter of this thesis coversimplementation of features at Phoenix’
tactical level that use the behaviors described in this chapter to control recovery.
Significant issues in that chapter are recovery path planning and command generation. In

addition, the mathematical structures used to implement path planning are discussed.
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V. TACTICAL LEVEL IMPLEMENTATION

A. INTRODUCTION

One of the primary responsibilities of the tactical level software isto use the low-
level functionality of the execution level in such away as to accomplish the high-level
goals of the strategic level. Specifically, this chapter will cover how the tactical level uses
the edge-tracking sonar behavior and the station-keeping control available at the execution
level to support vehicle recovery in atube.

The second responsibility of thetactical level that directly relatesto recovery isthe
identification and localization of the recovery tube. The ST725 and ST1000 sonars are the
primary on-board sensors upon which this task depends. Real-time sonar classification
using both of these sonars has been the subject of other research and is not directly
addressed here. For more information concerning research in this areainvolving Phoenix
refer to [Brutzman 92], [Campbell 96] and [Marco 96a]. A major assumption of the
research of thisthesisisthat the recovery tube is at a known position and orientation.

The first section of this chapter discusses tactical-level planning of the recovery
path. The mathematical structures used to implement recovery path planning are covered
aswell as the planning algorithm. The other major topic of this chapter is the generation

of execution-level commands necessary for following the planned path.

B. RECOVERY PATH PLANNING

1. Transformations

a. Description
The mathematical structure used for recovery path planning iscalled a
transformation. A transformation is a means of representing an object’s position and

orientation in two dimensions (2D) and takes the form of a state vector consisting of x
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position, y position and orientation. The coordinate system used for atransformation is
arbitrary and can represent an object’ s global position or its position relative to another
object. [Kanayama 96]

In addition to representing an object’ s position and orientation, a
transformation can be used to represent discrete motions with 2D translations and rotations
specified in body-fixed coordinates. Finally, transformations are useful for defining lines
and circles. Lines are specified by a position (which can be any point on the line) and an
orientation. Thisrepresentation of alineisconvenient for path planning becauseit includes
adirection which will generally represent the direction of motion along the line. The
transformation portion of acircle representation consists of a point on the circle and the
tangentia direction of the circle at that point. A circle requires afourth term representing
the curvature of the circle. [Kanayama 96] Representation of lines and circles using

transformations is covered in more detail in the following section.

b. Operations

There are two operations defined for transformations: composition and
inversion [Kanayama 96]. Composition isameans of combining two transformations.
Typically the first transformation represents a position and orientation, and the second
represents amotion or arelative position. The result of acomposition isthe final global
position of an object moved from a position (represented by the first transformation) by a
change in position and orientation (represented by the second transformation).

Composition is defined as [Kanayama 96]

Xy X5 Xi+ Xy €0S(8;) —Y,- sin(6,)
Yi |*| Y2 [T | Yo+ X Sin(8y) +y,- cos(8;) (Eg. 39)
0, 0, 0, +6,

68



This definition leads to the definition of the identity transformation (e). The identity

transformation is defined as (0, O, 0)T and has the following result when used in
compositions [Kanayama 96]:
gee=esq=q (Eq. 40)
The definition of e leadsto the definition of theinverse function. Theinverse function for
transformations is defined by [Kanayama 96]
geqt=gleg=e (Eq. 41)

andfor q = (x, y, 8)" theinverse, g1, is given by the equation [Kanayama 96]

—X- cos(0)—y- sin(v)
gt =| x sin(®) -y-cosd (Eq. 42)
-9

Transformation composition can also be used to generate smooth
trajectoriesin a plane by composition of a position and orientation with transformations
representing small discrete motions. The transformation representing the motion is
referred to asacircular transformation. A circular transformation is derived using the
length of the motion (1) and the amount of change in orientation over that length (o.). The
circular transformation is computed as [ Kanayama 96]

sin((x)l
o
Aq(la) = 1- cos(a), (Eq. 43)

o

o
For linear motions (o. = 0) this equation is undefined but can be approximated using a
Taylor expansion resulting in [Kanayama 96]

(1-02/3 +0a4/50 — ..

Aq(lo) = | (1/21 —02/4 +04/6l — ... )al (Eq. 44)
o
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A series of small discrete motions in the form of circular transformations is capable of
approximating a continuous smooth path. Aswith other discrete approximations of
continuous functions, smaller circular transformations will result in more accurate path

approximation.

2. Lineand Circle Tracking

a. Linesand Circles

As stated in the previous section, lines and circles can be specified using

transformations. Representation of alinetakestheform (X, y, 8)" where (x, y) isany point
on thelineand o isthe orientation of the line. Since any point on the line can be used in
the transformation representing aline, an infinite number of transformations are possible
for representation of asingle line. For this reason representation of lines using
transformations is probably inappropriate if lines are to be compared. Since the recovery
path planning involved in this research does not invol ve comparison of different paths, the
inability to compare lines for equivalence does not pose a problem.

Representation of circles using transformations is only slightly more

complex than representation of lines. Circle representation takes the form (x, y, 6, x)"
where (x, y) isany point on the edge of the circle, 6 isthe tangential orientation of the

circleat (x, y), and x isthe curvature of the circle defined as [Kanayama 96]

_ do
k= (Eq. 45)

where s isthe distance along the edge of the circle. Representation of circles using
transformations has similar advantages and disadvantages as representation of lines. The
most significant advantage is that by specifying atangential orientation it is possible to
implicitly represent the direction of desired motion when traveling along a circular path

(e.g., using 6). The disadvantage isthat there are an infinite number of transformation
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representations for asingle circle. Again, since recovery path planning does not involve

the comparison of circles, this potential disadvantage is not relevant here.

b. The Steering Function and Smooth Path Planning

While line and circle segments can be used to represent a desired path,
representation of the path isonly half the problem. The second problem isactually steering
avehicle (real or smulated) towards and along the desired path. Thisisthe role of the
steering function. The steering function is a continuous function based on the vehicle's
current state and the desired path [Kanayama 96]. V ehicle state includes atransformation
to represent vehicle position and orientation and afourth term to represent the curvature of
the vehicle' spath. The steering function isused to adjust the derivative of thisfourth term
to move the vehicle towards and aong the desired path. The steering function is given by

[Kanayama 96]

%‘é = —(a(k—ky) + b(0—06,) + cAd) (Eq. 46)

where x and 6 arethe vehicle's current path curvature and orientation, x, and e, are the
vehicle' s desired path curvature and orientation, Ad is the signed distance of the vehicle
from the desired path and a, b and ¢ are constants. Critically damped valuesfor a, b and

¢ (valuesthat will result in at most one overshoot) are computed as [Kanayama 96]

a= g (Eq. 47)

b = (% (Eq. 48)
_ 1

c=1 (Eq. 49)

where ¢ isan arbitrary positive constant corresponding to the vehicle' sdesired
responsiveness. Lower valuesof ¢ will causethe vehicleto steer more sharply towardsthe

desired path while larger values will cause a smoother path but a slower convergence with
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the desired path. Figure 20 showsanillustration of apath tracking problem. Ascanbe seen
intheillustration, the steering function must be able to not only maintain the vehicle onthe

desired path but steer the vehicle towards the path if necessary.

Desired Path

Vehicle 0
Figure 20: Steering Function Terms [Kanayama 96].

When avehicle defined by (x, v, 0, x)T istracking aline defined by
(X0, Yo, 05)7, x4 iSZEr0, 0, iS 6, and Ad is computed as [Kanayama 96]
—(X=Xg)siN(6g) + (Y —Yp) €0s(6y) (Eq. 50)

For the same vehicletracking acircle defined by (x,, vo, 69, KO)T, Kq ISKy. 64 and Ad are

computed as [Kanayama 96]
0y = atan(sin(6p) + Kq - (X—=Xp), (€0S(8g) —Kg - (Y—Yp))) (Eq. 51)
and
Ad = —(X=Xg)(Kg - (X=Xg) +28iN(0g)) — (Y —Yo) (g - (Y —Yp) —2€0S(8¢)) (Eq 52)

1+ /(K- (X=Xo) *+SiN(80))2+ (Ko (Y~ Yo) — COS(6))?
respectively.
Circular transformations are used along with the steering function to

incrementally steer the vehicle along the desired path. At each iteration the steering
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function is used to compute gi; . The vehicle s new position and orientation is then

computed as

oo = 0+ 20 (85 55 ) (Eq. 53)
where q isthe transformation representing the vehicle position and orientation at the
beginning of the iteration and As isthe circular distance traveled in each iteration. The

updated value for x is computed as

Knew = ¥ +3—§ - As (Eq. 54)

Figure 21 shows the track of a simulated vehicle steered using this method. The desired

path of the figure consists of two line segments and a circle segment.

Desired Track Circle
(counterclockwise orientation)
Desired Track Line /‘\ Desired Track Line

(oriented | eft to right) (oriented l€ft to right)

Vehicle Starting Position
and Computed Path

Figure 21: Tracking to a Desired Path Using the Steering Function.
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3. Recovery Planning

a. Overview

While Phoenix is capable of six-DOF motions, recovery path planning is
conducted in two dimensions in order to alow use of the methodology described above.
The use of only two dimensions places two limitations upon recovery: vehicle depth and
pitch control must be handled independently, and recovery isonly possiblein ahorizontally
level recovery tube. Presently these limitations are not considered significant, however
future work may include the expansion of these algorithms to take advantage of Phoenix’
six-DOF capability to support recovery in tubes of arbitrary orientation.

The steering function derived above isintended primarily for vehicles
restricted to arbitrary tangential motions [Kanayama 96]. Such vehicles are typically
incapable of lateral motion but are assumed to be capable of following a path of unlimited
curvature. Since the steering function is being used only for motion planning and not for
motion control, the steering function remains appropriate for recovery path planning even
though Phoenix is capable of nontangential motions. In thisimplementation a planning
vehiclethat isrestricted to tangential motionsisused to generate asmooth path. Theinitial
position of the virtual vehicleis set to Phoenix’ position at the start of the recovery
evolution while the initial orientation of the virtual vehicle points directly at the center of
the recovery tube (unless Phoenix istoo close to the tube in which case it points directly
away from the center). The steering function is then used to drive the virtual vehicle
around and into the recovery tubeto generate the recovery path. During the actual recovery
Phoenix must attempt to stay on the planned path but is not limited solely to tangential
motions.

Another issue concerning the use of this methodology for AUV path

planning is dealing with unintentional sideslip. While it is reasonable to assume that the
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velocity vector of awheeled vehicle will be aligned with the longitudinal axis, the same
cannot be said for vehicle' s such as Phoenix. Not only are lateral velocity components
possible, they arein large part unavoidable. Figure 22 showsthe geometry involved inthis
type of holonomic system. Inthefigure, v representsvehicleheading, B representsvehicle
sidedlipangle, and ¢ isthevelocity vector orientation, while u and v are components of the

velocity vector in vehicle coordinates.

Xe = north
A
vehicle longitudinal axis, x
vehicle velocity vector
vehicle position
X > V= east
Zo = depth

Figure 22: Holonomic System Geometry [McGhee 91].

Thelateral component of Phoenix velocity vector can be partially controlled
using lateral thrusters. A portion of the lateral velocity, however is dependent on the
longitudinal velocity and the turn rate. While rigorous modeling of this phenomenon can
become extremely complex, afairly smple model can be used to predict sideslip angle.
This model resultsin the equation [McGhee 91]

L 2ms
pAVC,

(Eq. 55)
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where m isthe vehicle mass, p isthe density of the medium, A isthe lateral surface area

of the vehicle, v isthe magnitude of the vehicle velocity (including sideslip), and C; isa

constant relating to lift forces generated as aresult of sidedlip. Using this equation, an
estimate of sideslip angle can be maintained as part of the vehicle state. Computer
simulation indicates that mathematical modeling of sidedlip in this manner is particularly
useful during waypoint navigation [Davis 95].

Because of the low velocities and turn rates involved during hover and
recovery operations, the uncommanded sideslip angle is small when compared to
commanded sidedlip induced by the lateral thrusters. Since the larger term dominates the
smaller, it is safe in the tube recovery scenario to ignore uncommanded sideslip.
Additionally, errors due to miscalculation of sideslip of other six-DOF holonomic effects
due to added mass and other cross-coupled hydrodynamic drag forces are not allowed to
accumul ate during execution because of the frequent recal culation of the AUV position

relative to the recovery tube.

b. Desired Path Planning

For overall recovery planning purposes, the area surrounding the recovery
tube is divided into nine regions. Each region corresponds to the VVoronoi region of a
segment or corner of the tube [Kanayama 96]. A lineor circle representing a desired path
isdefined for each region. With the exception of the line representing the final tube entry
path, the desired path circles and lines maintain a constant safe standoff distance of six feet
from the tube. Additionally, all lines and circles are directed towards the opening of the
recovery tube. The transformation representations of the desired path lines and circlesare
computed as soon as the position and orientation of the recovery tube are known. An

example of tube regions and desired paths is shown in Figure 23.
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acso

Figure 23: Voronoi-Based Recovery Regions and Path Planning Segments.

The next step is determining which region Phoenix isin at the beginning of
the recovery evolution. Since the size, shape, position and orientation of the tube are
known, thisis simply a matter of computing the ranges from Phoenix to the different
segments and corners of the tube and determining which is closest. After deciding which
region the AUV is starting the recovery from, the planning vehicle isinstantiated and
incrementally moved towards the desired path for the region using the steering function.
Asthe planning vehicle leaves one region and enters another, the desired path for the new
region isused. The planning vehicle has |eft one region and entered another when the
distancefrom the vehicleto the corner or segment defining the current regionisgreater than

the distance of the vehicle to the corner or segment defining the new region. This process
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continuesuntil the planning vehicle hasentered thetube. The path that the planning vehicle
travelled represents the planned recovery path for the actual AUV.

Again, since Phoenix is capable of nontangential motion, neither 8, in the

steering function nor 6 of the planning vehicle necessarily correspond to the desired
orientation of Phoenix during the recovery. Infact, in order to facilitate continuous sonar
contact, Phoenix will normally point directly at the portion of the recovery tube upon which
itistaking station. Thisvehicle orientation policy has an exception in the final recovery

phase when the AUV will be aligned with the recovery tube (although 6, and 6 still bear
no correlation to desired AUV orientation). Thus 6 and 8, pertain to the tangential

orientation of the track the AUV isto follow, while actual vehicle heading is determined
by the relative bearing to the sonar tracking landmark. Precise six-DOF maneuverability
and control of posture using the nontangential motion capabilities of Phoenix permit such

a decoupling between vehicle track and vehicle orientation.

C. EXECUTION COMMAND GENERATION

Which corner to use for generated station-keeping commands depends on the
recovery region that the planning vehicleisin when the command isgenerated. The corner
must be visible from anywhere within the region and the AUV sonar routines must be able
to recognize the edge. Since the target-search and edge-tracking sonar modes use range
information to recognize targets, there must be a significant increase in range as the sonar
scans past the corner. Figure 24 shows which corners are used for station-keeping

command generation for the different regions.
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Region 7 : Region 8 : Region 9
' |
' |
' |
1 Recovery Tube I L
Region 0 Region 1
1 | - - =
' |
' |
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I : | .
Region 4 | Region 3 | Region 2
! 1

Figure 24: Recovery Regions and Station-Keeping Corner Assignments.

At predetermined intervals along the planning vehicle' s path, execution-level
commands are generated and stored in afile. Generated commands invoke the execution
level’ s edge-tracking sonar mode and station-keeping control mode. Commanded stations
in each Voronoi region are in the form of range and bearing from the planning vehicle's
current location to the appropriate tube corner that Phoenix’ ST1000 sonar ismost likely to
be able to discriminate. Interestingly, it must be noted that commands for the entire
recovery are generated before any command isissued to the execution level. Upon
completion of the recovery through the appropriate VVoronoi regions plan the OOD module
will dequeue and issue the generated commands one at atime.

Thefinal command that is generated isthe recovery command. When issued to the

execution level, this command will invoke Phoenix recovery control mode. The recovery
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command will be generated immediately after the planning vehicle has entered the
recovery tube opening.

An example of recovery planning and virtual world results are shown in Figures 25
and 26. Figure 25 shows the execution-level commands generated for use during the
recovery while Figure 26 shows an x-y plot of the recovery tube, the planned path, and the
actual path followed by Phoenix in avirtual world test. The running of this and other test

missionsis discussed in Chapter VII.

#RECOVERY REGION 7

EDGE-STATION 6.231679 109.801091 6.231679 104.801091
EDGE-STATION 8.541297 115.850068

EDGE-STATION 9.411731 133.894357

#RECOVERY REGION 8

EDGE-STATION 11.636344 70.631182 11.636344 75.631182
EDGE-STATION 7.209702 101.266115

EDGE-STATION 5.999095 134.868091

#RECOVERY REGION 9

EDGE-STATION 9.332900 148.086638 9.332900 153.086638
EDGE-STATION 8.587834 171.619319

EDGE-STATION 7.367044 -168.706232 -135.000000

#RECOVERY REGION 1

EDGE-STATION 4.239524 -166.878360 -135.000000
EDGE-STATION 4.239524 -166.878360 -135.000000
EDGE-STATION 3.240133 -174.693612 -135.000000

#FINAL TUBE ENTRY
ENTER-TUBE 7.499992 -135.000000

Figure 25: Generated Commands Based on a Recovery Plan.
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Figure 26: Planned and Actual Recovery Path Results from a UVW Mission.

D. SUMMARY

Implementation of features at the tactical level in support of recovery include
recovery path planning and command generation. Recovery path planning utilizes a
mathematical structure called atransformation which is used to represent vehicle position
and orientation and discrete motionsin two dimensions. The planned recovery path is
generated by a planning vehicle which is driven by a steering function from Phoenix
position at the start of the tube recovery evolution.

The area surrounding the recovery tube is divided into nine VVoronoi regions, each
of which has an associated desired path. As the planning vehicle passes through each

region, the steering function drives the vehicle towards the desired path for that region. A
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corresponding tube corner is chosen for optimal sonar discrimination while tracking. The
path traveled by the planning vehicle becomes the planned path for Phoenix during the
actual recovery maneuver.

At predetermined intervals along the planning vehicle' s path, execution-level
commands are generated and stored in afile. These commands are later issued to the
execution-level one at atime by the OOD module. The commands use the execution
level’ s station-keeping behavior to follow the planned path. When the planning vehicle has
entered the recovery tube’ s opening, path planning is complete. A recovery command is
then generated that will invoke the execution level’ srecovery control modefor actual entry
into the recovery tube.

The following chapter discusses strategic level issues dealt with in the conduct of
thisresearch. Research at thislevel focuses primarily on mission specification, planning
and generation. Specificissuesincludeevolution of the strategic level and the development

of amission planning expert system.
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VI. STRATEGIC LEVEL IMPLEMENTATION

A. INTRODUCTION

Sincethe strategic level of RBM isresponsible only for high-level mission control,
itsresponsibilitiesregarding recovery arefew. Essentially, thestrategiclevel isresponsible
only for deciding where and when the recovery isto take place, and what type of recovery
isrequired. Thisroleisanaogousto that of aship’s commanding officer who specifies
what port to go to, when to go there, and whether to anchor or dock, but is not physically
involved in the actual anchoring or docking evolution.

Because of the limited role of the strategic level in recovery, research conducted at
this RBM level has been more general in nature. The most significant result has been to
simplify the process of strategic level mission planning and generation. The following
section of this chapter describes implementation of features at the strategic level that
facilitate thisgoal. The subsequent section describes the implementation of a graphical

expert system for mission planning and automatic strategic-level code generation.

B. EVOLUTION OF THE STRATEGIC LEVEL

1. Mission Control

As stated previously the strategic level is structured asa DFA and consists of three
software pieces: the DFA, the mission controller and aset of primitive goals. Themission
controller isshown in Figure 27 implemented equivalently in Prolog and C++. Loopingin
the Prolog implementation is conducted using the basic Prolog backtracking control
algorithmwhich triesto “prove” predicates[Rowe 88]. When amissionisinitiated, Prolog
triesto find a way to make the execute_phase predicate “true” by proving the
execute phase and mission_done predicates. If the execute phase predicate isfalse, the

phase has not yet completed. In this situation Prolog will backtrack into the repeat
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predicate (which is always considered true). It then retries the execute_phase predicate.
Thislooping pattern will continue until the execute_phase predicate becomestrue, at which
point the same process is executed for the mission_done predicate. When the
mission_done predicate is proven, execute_mission is proven, and the mission completes.
Otherwise, Prolog triesto prove the next_phase predicate. Which version of this predicate
can be proven is determined by success or failure of the current phase. In contrast to the
Prolog mission controller, the C++ mission controller uses atypical imperative

programming language loop to obtain behavior equivalent to that of the Prolog version.

execute mission :- asserta(current phase(initialize)),
repeat, execute phase, mission done.

execute phase :- current phase(X), execute phase (X),
next phase(X), !.

mission done :- current phase(mission_ abort) .
mission done :- current phase(mission complete).
(a)
currentPhase = initialize () ;

do {

if (currentPhase->complete ())
currentPhase = currentPhase->completeSuccessor;
currentPhase->initiate () ;

}

else if (currentPhase->abort())

{

currentPhase = currentPhase->abortSuccessor;

currentPhase->initiate ();

}

} while ((currentPhase != missionAbort) &&

(currentPhase != missionComplete)) ;

(b)

Figure 27: Strategic Level Mission Controller in (a) Prolog and (b) C++.



2. Abstract Mission Control

Sinceinitial Phoenix research was focused primarily on the strategic and execution
levels of RBM, early versions of the tactical level were greatly simplified and mainly
responsible for ssmply relaying commands from the strategic level to the execution level
[Marco 96b]. Consequently many tasks appropriate for the tactical level were first
implemented at the execution and strategic levels. Recent improvements in the tactical
level now handle many of the tasks previously divided between the strategic and execution
levels [Leonhardt 96, Campbell 96, McClarin 96, Scrivener 96]. This redistribution of
responsibility among the levels of Phoenix RBM implementation has allowed strategic-
level functionality to concentrate solely on the high-level mission control for which it was
originally intended.

With the reassignment of many tasks to the tactical level, it became apparent that
further strategic-level simplification was possible by limiting the allowable phase types to
afew generic types. In fact thislimitation was necessary since the tactical level is only
capable of interpreting strategic-level commands from a predetermined set of primitive
goals[Marco 96b, Leonhardt 96]. Asthe AUV’ sfunctionality evolves, new commands can
be implemented in tandem at the strategic and tactical levels by adding to the vehicle's
primitive goal set. Present strategic-level primitive goalsinclude transits, searches, global
positioning system (GPS) fixes, dives and hovers. Because of the explicit definition of all
possible strategic-level primitive goalsand theimplementation of arobust tactical level, the
RBM implementation of Phoenix is now versatile and simple enough to correctly perform
awide array of missions [Brutzman 96].

As stated in Chapter 11, the strategic level does not perform any numerical
computation [Byrnes 96], but the exclusive maintenance of numerical data at the lower

RBM layers proved impractical inimplementation. Thiswas dueto the high likelihood of
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mismatches between the strategic level DFA and the numerical datafile used by thetactical
level [Leonhardt 96]. The solution was to include numbers upon which aphaseis
dependent (such as the location of a search) in the command sent to the tactical level. The
tactical level interprets the parameters as numerical values, but at the strategic level they
are just place holders within the command. The implementation of phase parameters
eliminates the possibility of datafile/lDFA mismatch errors while maintaining the overall
non-numerical nature of the strategic level. Figure 28 shows a strategic-level search phase
with phase parameters defined in Prolog. Tactical-level repliesto strategic-level
commands are not tested so a sequence of strategic-level commands can initiate parallel
tasks at thetactical level. Repliesto strategic-level queries on the other hand, are tested so
that execution does not proceed to the next query or command until an appropriate reply to
the current query isreceived. Aswith the Prolog version of the mission controller,
backtracking is used to implement |ooping behavior so that aphase will continueto execute
until the execute phase predicate istrue. The phase depicted corresponds to the search

phase of the mission depicted in Figure 11.

execute phase (search 1) :- ood (“sonar_ search 20 45 3”,Reply),
ood(“start timer 250”,Reply),
repeat, phase completed(search 1).
phase completed(search 1) :- ood(“ask search complete”,Reply),
Reply==1, asserta(succeed(search 1)).
phase completed(search 1) :- ood(“ask time out”,Reply), Reply==1,
asserta (abort (search 1)) .
next phase(search 1) :- succeed (search 1),
retract (current phase(search 1)),

asserta (current phase(return to base)).
next phase(search 1) :- abort (search 1),

retract (current phase(search 1)),
asserta (current phase(go shallow)) .

Figure 28: Strategic Level Phase Specified in Prolog.
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While the primary goal of recent strategic-level research efforts has been the
effective implementation of RBM in the real world [Brutzman 96], a collateral result has
been the standardization of the strategic level. The strategic level code now has a standard
formfor agiventypeof phase. Theonly difference between two distinct phases of the same
type isthe parameters. A template can therefore be created for each type of phase.
Strategic level code for a phase can be easily generated by inserting a label and phase
parametersinto acopy of the appropriate phasetemplate. The boldface portionsof the code
fragment of Figure 28 indicate the phase |abel and parametersinserted into a sonar-search
template. Using templates to code the strategic level has a number of advantages. For
instance, the potential for syntactic programming errorsis great when manually
programming even asimple mission. Such errors can be virtually eliminated by utilizing
templates. Furthermore phase templates make it possible to automate strategic level code
generation and eliminate manual programming at the strategic level altogether
[Leonhardt 96, Brutzman 96].

3. Programming Language | ssues

A decision was made early in the development of mission-control software for the
Phoenix AUV to implement the strategic level using the Prolog programming language.
Because of itsroots in predicate calculus, one advantage of Prolog isthat it isrelatively
easy to use for specifying mission logic when compared to more common imperative
languages. Asaresult, programs written in Prolog are typically shorter than equivalent
programswritten in functional or imperative languages. Additionally, programming of the
strategic level of the RBM is primarily a symbolic programming problem which is well
suited to expression in Prolog [Byrnes 96]. Finally, use of the Prolog inference engineis
powerful sincethe current state of the DFA can berepresented implicitly by the current rule

that isbeing resolved [Byrnes 96]. However, inthe current strategic level implementation,
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the DFA state is maintained explicitly (using dynamically asserted facts) rather than
implicitly in order to improve code readability and ease of use. This approach amounts to
specializing the Prol og inference engine to amission control engine or “mission controller”
[Marco 96b].

A disadvantage of using Prolog at the strategic level isthat it must interface with
the tactical level whichis currently writtenin C. At present there is no standard Prolog
foreign language interface, so communication between the strategic and tactical levelsis
dependent on the vendor and version of the Prolog compiler used [ Quintus Corporation 95].
Portability of the software system to new platformsis therefore a problem. Another
disadvantage as missions become more complex is that the size of the Prolog program
grows rapidly since each phaseis programmed independently of all other phases. Finaly,
because of its reliance on backtracking for control of execution, Prolog tends to run more
slowly than imperative languages [Rowe 88]. To date thishas not been aproblem sincethe
speed at which the whole RBM system runs has been limited not by the speed of the
strategic and tactical levels, but rather by the speed of the execution level [Leonhardt 96,
Burns 96].

The advantages of using Prolog for Phoenix currently outweigh the disadvantages,
particularly given the mission planning expert system described in the following section.
However other programming languages have advantages which may make them attractive
for usein thefuture. Two strategic levels equivalent to the one described above have been
implemented using the Lisp and CLIPS programming languages [Byrnes 96]. However
these implementations have proved to be much harder to write and understand.

More recently, research has been conducted into implementation of the RBM
strategic level in C++ using object-oriented programming techniques. The polymorphism
and inheritance characteristics of C++ classes allow the definition of ageneric phase class

from which more specific phase classes representing all allowable types of phases can

88



inherit. All phase class definitions together determine the vehicle s operational
capabilities. A specific mission can be generated by instantiating instances of the
appropriate phase classes and using pointers to connect them into a graph representing the
strategic level DFA. Asshown in Figure 27 this mission controller portion of the strategic
level isimplemented using aloop that queries the tactical level about the status of the
current phase. If the current phase has either completed or aborted, the appropriate
transition is executed by following a pointer and initiating the next phase. If the current
phase has neither completed nor aborted, the loop repeats without initiating a new phase.
Implementation of the strategic level in C++ directly addresses al three of the previously
mentioned disadvantages of the Prolog strategic level (foreign language interface, sizeand
speed). Since C++ can be directly linked with C functions, the system is inherently more
portable than the Prolog version. Additionally, with the exception of individual phase
instantiation and DFA construction, al codeis contained within the phase class definitions.
Therefore, as mission complexity increases, the size of a strategic level source program
does not increase as rapidly as an equivalent mission written using Prolog. In the current
C++ implementation, the size of the source program will typically increase by two linesfor
each additional phase (one line to instantiate the phase object, one line to link the object
into the DFA graph). On the other hand, the very conciseness of this approach tends to
present a barrier to easy understanding of the meaning and behavior of the vehiclein
executing amission so encoded. This difficulty isresolved by the development of a

mission-generation expert system as explained in the following section.

C. A MISSION-GENERATION EXPERT SYSTEM

1. Introduction

In most scenarios involving the use of Phoenix class AUVsfor mine

countermeasure missions, operational naval personnel would be responsible for generation
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of mission control software. While these individuals can be expected to be expertsin anti-
mine warfare, they are unlikely to have ahigh skill level in computer programming.
Instead, they will probably require an easy-to-use mission programming interface in order
to effectively and reliably specify an AUV mission. Inthisregard such individuals are
probably typical of end users of autonomous vehiclesin general. [Brutzman 96]

In order to facilitate ease of use, an expert system for programming Phoenix AUV
missions has been developed. Thisexpert system consists of three distinct subsystemsand
agraphical user interface (GUI). Thefirst subsystem is used to automatically generate
missions by specification of overall mission goals. The second subsystem is amission-
specification facility that can generate arbitrarily complex missions phase-by-phase. The
last subsystem is an automatic strategic level code generator that creates Prolog or C++
programs using results from either of the other two subsystems. The GUI, automatic
mission-generation facility, and mission-specification facility have been implemented
using Quintus Prolog version 3.2 [Quintus Corporation 95] and XPCE version 4 for X-
windows (Prowindows) [Wielemaker 94]. The strategic level code generator iswritten
using C and can either be invoked explicitly as a standalone application or automatically

from within the expert system itself.

2. The Automatic Mission Gener ator

a. Means-EndsAnalysis

Theintent of the automatic mission generator isto allow the user to generate
amission simply by specifying the AUV launch position, recovery position and mission
objectives. A means-ends analysis algorithm is used to implement the automatic mission
generator. In general, means-ends analysis uses a set of start conditions, a set of desired
end conditions, and aset of operatorsto derive asequence of operationsthat will eventually

transform the system from the start state to the desired end state [Rowe 88, Winston 92].
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I n the automatic mission generator implementation of means-endsanalysis, start conditions
are the vehicle launch position, end conditions are the mission objectives and vehicle
recovery position, and the operators represent all possible phase types. The automatic
mission generator applies the means-ends analysis algorithm to produce results similar to

those of Figure 29 which depicts a search mission.

Figure 29: Search Mission Automatically Generated with Means-Ends Analysis.

In means-ends analysis, two mechanisms insure that a valid sequence of
operations is generated. First, each condition in the desired end state has one or more
recommended operators. for example if the desired end state is that a location has been
searched, the recommended operator is to conduct a sonar search from the required
location. Second, each operator has a set of required preconditions that must be satisfied
before the operator can be applied as well as a set of postconditions that result from the

application of the operator [Rowe 88]. The preconditions for the sonar search of position
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P, for instance, might be that the vehicle is near position P and that the position must be
verified by a GPSfix. An obvious postcondition of a sonar search is that position P has
been searched. The means-ends algorithm uses these two mechanisms by choosing one of
the desired end-state conditions and attempting to apply a recommended operator. If the
preconditions of the recommended operator have not been satisfied, the algorithm attempts
to satisfy the preconditions by recursively applying means-ends analysis. If the
preconditions are satisfied in thisway, the operator is applied. If the preconditions cannot
be satisfied, the next recommended operator is attempted. The algorithm proceedsin this
manner until all of the top level goals have been satisfied or until all recommended
operators have been exhausted. If the operators, preconditions and postconditions are
correct, means-ends analysis is guaranteed to compute a valid sequence of operations for
accomplishing the desired goals[Rowe 88]. Since means-ends analysisis used to generate
a sequence of phases, any sequence of phases generated can be logically executed by the

Phoenix AUV and will accomplish all of the goals specified.

b. Adaptation of Means-Ends Analysis for Phoenix

The means-ends analysis implementation of the mission-planning system
divides goalsinto two types. Top-level goals arethose that are specified by the user while
intermediate goals are used during recursive applications of the means ends analysisto
accomplish top level goals. Intermediate-level goals appear as preconditions and
postconditions of top-level goals and other intermediate-level goals. At present the top
level goalsimplemented for Phoenix are position searches, position searches with specific
routing, and entry into arecovery tube. Asthe functionality of lower layers of Phoenix
software architecture evolves, high level goals will be implemented to take advantage of
new capabilities. Future high level goals may include planting explosive charges,

communicating with the controlling platform and taking still photographs.
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There are anumber of characteristics of the solutions obtained using means-
ends analysis as presented in [Rowe 88] and [Winston 92] that are not well suited to
planning for autonomous vehicles. Thefirstisthat solutions obtained through means-ends
analysisarelinear in nature. A basic assumption of the algorithm isthat operations aways
succeed so there is no attempt to account for phase failure. This means that when the
mission DFA is constructed, another algorithm or heuristic must be used for failure
handling. The simplest and most obvious solution isto make the arbitrary decision that if
aphasefails, the mission aborts. However, if this simple heuristic is used, the resulting
DFA amounts to no more than asimple script that goes from one operation to the next and
stops whenever an operation fails. Similar solutions such as having the vehicle proceed to
its launch point or recovery point share thisfailing. Another possible solution might be
reattempt any failed phase. The obvious disadvantage here isthat if a phase cannot be
successfully completed, the mission may not end until the vehicle exhausts its power
supply. The solution that was opted for is to always attempt to proceed forward with the
mission in the event of individual phase failure. If any phase fails, the succeeding phase
will be the next transit or hover phase to be executed had the phase succeeded (the
exception istheinitia dive to operating depth). Inthisway if one or more phasesfail, the
vehicle will till attempt to accomplish as much of the mission as possible. Transit and
hover phases were chosen as the phase failure successor type because, unlike other types
of phases (such as searches and GPSfixes), transit and hover phases never directly rely on
their predecessor phase. A graphical representation of the DFA resulting from the means-

ends analysis solution of Figure 29 is shown in Figure 30.
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Figure 30: Graphical Representation of an Automatically Generated Mission.
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The second disadvantage of means-ends analysisis that operators are
implicitly prioritized by their order of appearancein the means-endsanalysis specification.
For instance if the operators search position P and plant an explosive charge at position P
are specified in that order, the solutions obtained by means-ends analysiswill always apply
the search position P operator as many times asit can before it attempts to apply the plant
an explosive charge at position P operator. |f mission goalsincluded a search of position
(X1, Y1, Z7), an explosive charge plant at position (X4, Y1, Z1), asearch of position
(X2, Y2, 25), and an explosive charge plant at position (X,, Y, Z,), the means-ends analysis
solution will conduct both searches, then plant both explosive charges. While thismay be

the type of behavior desired, if the transits between (X4, Y1, ;) and (X,, Yo, Z,) cover a

significant distance, missions of this sort become highly inefficient. The problem of
operator prioritization is only a problem for operators intended to accomplish top-level
goals since the ordering of intermediate-level goals do not significantly effect amission’s
efficiency. The solution to this problem is the implementation of a single operator that
accomplishesall top-level goals. What type of top level goal to accomplishis specified by
the parameters of the operator. Different sets of preconditions and postconditions are then
defined for each form of the single operator. Since only a single operator isinvolved,
prioritization isno longer an issue. Figure 31 shows this operator definition for the
accomplishment of searches and explosive placements (to date, the search operator has

been fully implemented in the vehicle, but not the explosive placement operator).
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$Recommended operators for goals. Format is
%$goal, operator

recommended (top_level done (X), handle top_ level (X)) .

$Preconditions for the application of operators
$Format is type of operator, preconditions that
$must be true list, and preconditions that
$must not be true list

precondition (handle top level ([searched,X,Y,Z]),
[position(X,Y,2)],

[explosive ready,gps fix required]).
precondition (handle top level ([charged, X,Y,Z]),

[position(X,Y,Z),explosive readyl,
[gps_fix required]).

$Postconditions for the application of operators
$Add postconditions are true after application
$Delete postconditions are false after application

addpostcondition (handle top level ([searched, X,Y,Z]),
[top_level done([searched, X,Y,Z]),
gps_fix required]).
deletepostcondition (handle top level ([searched,X,Y,Z]), [1).
addpostcondition (handle top level ([charged,X,Y,Z]),
[top_level done([searched,X,Y,z])]).
deletepostcondition (handle top level ([charged, X,Y,Z]),
[explosive readyl) .

Figure 31: Top-Level Operator Definitions for Search and Explosive Planting Goals.

One final potential shortcoming of means-ends analysisisthat while the
initial solution obtained is guaranteed to be valid and complete, more optimal solutions
may exist that can only be produced through repeated applications of the means-ends
analysisalgorithm. A possible solution to this shortcoming might beto obtain all solutions
possible using means-ends analysis, compare them for efficiency, and use the most
efficient one asthefinal solution. Another solution isto again obtain all possible solutions
but allow the user to choosethe oneto beused. A slight modification of the second solution

iscurrently used inthe system. After auser specifiesthevehicle’ slaunch position, mission
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goals and recovery position, the means-ends analysis algorithm is applied to obtain a
solution. The solution is displayed textually in awindow similar to the onein Figure 29
and a geographic plot of the mission path is displayed on an areamap. The user isthen
given the option of accepting or refusing the mission. If the mission isrefused, the means-
ends analysis algorithm is applied to generate another solution. Using this approach the

user can cycle through all obtainable solutions one at atime prior to selecting one.

3. Phase-by-Phase Mission Specification

While means-ends analysis provides asimple method for generating fairly complex
missions, it isincapable of generating missions that take full advantage of the DFA
structure of the strategic level. Therefore afacility has been developed for explicit
specification of individual phases that can be linked together more or less arbitrarily into
an executable mission. The mission-specification facility queriesthe user for information
for each phase and usesinformation for all input phasesto construct amission. Information
for each phase includes a phase label, the type of phase, phase parameters, the label of the
follow-on phase upon successful completion, and the label of the follow-on phase upon
phase failure. The expert system GUI insures that the user enters the appropriate
information at the appropriate time. For instance, if atransit phase is being entered, the
system will not ask for search-related information. The GUI also eliminates many data
entry errors by the use of clickable maps, push buttons, clickable menus, and sliding scales.
Sample GUI dataentry windowsare shownin Figures 32 and 33. Figure 32 showsthemain
window which is used for launching system facilities and visual entry and display of
geographic information. Figure 33 shows windows for specifying the type of phase to be
entered and phase related datafor atransit phase. Data entry windows for other types of

phases are similar to the one shown in Figure 33 but differ in the specific data entered.
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(b)
Figure 33: Data Input Windows for Phase-by-Phase Mission Specification.
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Since manual phase-by-phase specification of a mission can be much more
complicated than specifying amission using means-ends analysis, arule-based system has
been implemented to insure that only valid missions are generated by the system. This
requires checking each entered phase for validity in several ways. The phase must not be
missing any parameters, vehicle physical limitations must be observed, and the specified
locations must be within the designated operating area. This check is conducted as each
phase is entered. Detected errors are immediately reported and the user is given the
opportunity to modify the phase. If no errors are detected, the phase is accepted. Later, a
second check isrequired to insure that all of the phases together make avalid mission. In
general, many phases are inherently dependent upon their predecessors, so it ispossiblefor
aset of individually valid phases to constitute an invalid mission. For instance, alocation
cannot be searched until the vehicle hastransited to thelocation. Errorsof thistypeinclude
incomplete missions, loopsin the DFA, invalid phase sequences etc., and are detected by
parsing with a second rule base immediately prior to mission code generation. Again
detected errors are reported, and the user is given the opportunity to modify, delete or
specify phases. Sample error reports for individual phase errors and mission errors are
shown in Figure 34. If no errors are detected the mission is accepted and executable code
isgenerated. By error checking both individual phases and the mission as awhole, the
phase-by-phase mission-specification facility can insurethat any specified missionisvalid

and achievable by the vehicle.
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(b)
Figure 34: Error Reports for (a) Individual Phase Errors and (b) Mission Errors.

The phase-by-phase mission-specification facility is intended for users who are
familiar with the structure of the RBM strategic level. Although the GUI and two rule-
based systems prevent invalid missions from being specified, they do not insure that the
specified mission will accomplish itsintended goals. While the means-ends mission
generation facility isgoal driven, the phase-by-phase mission-specification facility is not.
Since validity of amission depends only on whether or not the mission is possible, it isnot
difficult to specify avalid mission that searches the wrong location, transits to the wrong
end point, or generally does not do what it is supposed to. For thisreason, it isimportant
that a user know exactly what the intended mission is supposed to accomplish before using

the mission-specification facility.
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To assist in phase-by-phase mission devel opment, a tabular representation of the
mission isdisplayed asit isentered (Figure 35). The mission isrepresented as a state table
listing each phase with the label of its follow-on phase upon successful completion and the
label of its follow-on phase upon failure. While it might be argued that a graphical
representation of the DFA (such asin Figures 11 and 30) is more intuitive, graph
complexity increases far more rapidly than that of a state table as mission size increases.
For arbitrarily complex missions, a state table is more concise and conveys the same

information as a graph.

Figure 35: State Table Summary of a Mission Specified Phase-by-Phase.
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4. Automatic Code Generation

Both the means-ends mission generator and the phase-by-phase mission-
specification facility produce output in the form of adatafile. Thisintermediate datafile
isnot an executable strategic level mission but rather isan annotated state table description
of astrategic level mission. Each linein the data file describes exactly one phase by
specifying (in order) the phase type, the phase label, the label of the follow-on phase upon
success, thelabel of the follow-on phase upon failure, the amount of timethat the phase has
to succeed, and the phase parameters. This output file format actually constitutes yet
another RBM mission-specification language. Because of its high level of abstraction, the
mi ssion-specification language is programming-language independent and (together with
the previously discussed phase type templates) enables automated executable code
generation in any language for which phase templates have been created.

To date, phase type templates for the have been created for Prolog and C++.
Concurrent with template devel opment has been the construction of programsto generate
executable code for missions specified using the mission-specification language. Figure 36
shows an example of a mission specified with the mission-specification language and the
automatically generated executable code. Code generation programs are written using the
C programming language and can be run as standal one programs or invoked from within
the mission planning expert system. Standal one execution can be used to generate a
mi ssion based on auser-specified datafile which can be automatically or manually created.
From within the mission planning expert system, executable codeisgenerated for amission
specified phase-by-phase or by means-ends analysis. While the mission planning system
asawhole is dependent upon availability of Quintus Prolog and Prowindows, the
programming language independence of the mission-specification language alowsthis

portion of the system to be ported to virtually any platform.
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#Mission Specification File Format

#phase_type phase_label completion successor abort_successor [parameters
depth_change dive transit_to_op_area mission_abort 30 3
waypoint transit_to_op_area hover 1 go_shallow 500 15 30 3
hoverpoint hover_1 search_ 1 go_shallow 500 20 45 3
rotate_sonar_search search_ 1 return_to_base go_shallow 200 20 45 3
hoverpoint return_to_base surface mission_abort 250 64 30 2
depth_change surface mission_complete mission_abort 150 0
depth_change go_shallow return_to_base mission_abort 100 1

(a) Mission-specification Language Example

134

222

execute_phase (hover_1) i - nl, printsc(‘PHASE hover_ 1 STARTED.'),
ood (‘hover 20 45 3 135’ ,Reply),
printsc(‘hover 20 45 3 135!’),
ood(‘start_timer 500’,Reply),

repeat,phase_completed (hover 1).

phase completed (hover 1) :- ood(‘ask_hoverpoint_reached’, Reply), Reply==1,
printsc (*‘HOVER COMPLETE. '),

asserta (succeed (hover_1)).

phase completed (hover 1) :- ood(‘ask_time_out’,Reply), Reply==1,
printsc ('PHASE hover_1 ABORTED DUE TO TIME OUT.'),

asserta (abort (hover_1)) .

next_phase (hover 1) :- succeed (hover_1),
retract (current_phase (hover_1)),
asserta(current_phase (search_1)).

next_phase (hover_ 1) - abort (hover_1),
retract (current_phase (hover_1)),
asserta (current_phase (go_shallow)) .

(b) Automatically Generated Prolog Code for One Phase

Phase *

buildMissionGraph ()

{

Hover *phhover_1 = new Hover (20,45,3,134,500);

phHover 1->specifySuccessors (phsearch_1,phgo_shallow) ;

} // buildMissionGraph

(c) Automatically Generated C++ Code for One Phase

Figure 36: Sample Mission Defined with (a) the Mission-Specification Language,

(b) Automatically Generated Code in Prolog and (c) C++.
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D. SUMMARY

This chapter describes recent modifications of the Phoenix strategic level and the
implementation of a mission planning expert system. Recent developmentsin the
execution and tactical levels of the RBM implementation on the Phoenix AUV have
facilitated significant improvement at the strategic level aswell. These improvements
include the smplification of the strategic level through redistribution of responsibilities
among thethree RBM layers, definition of afinite number of phasetypes, theincorporation
of phase parameters, and the development of phase templates. Additionally, the strategic
level has been equivaently implemented in C++ and Prolog.

These improvements in the strategic level have in turn facilitated the development
of the mission planning expert system. The system uses means-ends analysis to generate
missions based on goals specified by auser. The system also has afacility for specifying
missions one phase at atime. Thisfacility incorporates arule-based system to insure only
valid missionsare generated. Finally, automatic code generation programswere devel oped
that usethe phase templatesto tranglate the output of the other two facilitiesinto executable
Prolog or C++ code.

The following chapter describes experimentation in support of this research.

Attention is paid both to experimentation using the UVW and the physical vehicle.
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VII. EXPERIMENTAL RESULTS

A. INTRODUCTION

This chapter discusses the experimental results of thisresearch. The two major
topicsare virtual world results and real world results. While featureswereimplemented in
the virtual world one at atime (primarily in a bottom-up fashion), the focus of this section
ison final results once al of the individual features were successfully implemented and
integrated. This section consiststherefore of recovery control results and mission planning
system results. Mission planning expert system results aretreated separately because of the
broader nature of that research.

Since not all aspects of this research have been verified through in-water testing,
simulation results are covered in more detail. As stated in Chapter 111, the first area of in-
water testing was hardware control verification. While al other in-water testing relied
upon proper software/hardware interaction, this aspect of testing was not directly relevant
totheresearchitself. Success of thisaspect of testing ishowever shown implicitly by other
test results. The primary focus of the in-water test results portion of this chapter isthe
execution-level behaviors upon which recovery relies. In addition in-water results of

missions generated using the mission-planning expert system are covered.

B. VIRTUAL WORLD RESULTS

1. Recovery Control Results

UVW testsindicate that the low-level behaviors described in Chapter IV are
capable of controlling Phoenix with sufficient precision to conduct recovery in asmall
tube. Further, the path planning routines described in Chapter V proved capable of
planning an acceptable recovery path from virtually any location into a tube of known

position and orientation. Figures 37 through 42 show the planned path and the actual path
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followed by the vehicle during UVW test recoveries conducted using tubes of various
orientations. Missions for these tests were generated using the mission-planning expert
system and use the C++ version of the strategic level. The generated mission consists of
three phases: diveto depth (threefeet), transit to apoint near the tube (-2, -15), and recover
in the tube (located at (0, 0) at the orientations specified in the figures). Running the
missions in the UVW requires loading the Open Inventor description of the desired tube
(located in the viewer directory and named tube[angle€][neg].iv for these tests) into the
dynamics and viewer modules of the UVW. Occasional deviations between the planned
and performed paths are attributable to anomalies in the edge-tracking behavior when
simultaneously transitioning between voronoi regions and sonar edge-tracking targets.

These anomalies are discussed in more detail later in this chapter.

‘actual recov
. B L Ce planned Tecove
: : : recove

-10

-12 i i i i
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East -» {(yv_world) [ft]

Sat Jun 15 17:16:40 1996

Figure 37: Planned vs. Actual Virtual World Recovery in a Tube Oriented North.
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Figure 39: Planned vs. Actual Virtual World Recovery in a Tube Oriented Southeast.
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Figure 41: Planned vs. Actual Virtual World Recovery in a Tube Oriented Southwest.
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Figure 42: Planned vs. Actual Virtual World Recovery in a Tube Oriented Northwest.

The most significant aspect of these figures is that Phoenix transited to a point,
planned arecovery path into atube of arbitrary but known posture, and used automatically
generated commandsthat relied on low-level sonar tracking and station-keeping behaviors
to follow the planned path into the tube. There are however anomalies that require
explanation. Most notabl e are the excursionsfrom the planned path when rounding corners
in Figures40, 41 and 42. These excursionsresult from Phoenix being unableto distinguish
the appropriate corner with the ST 1000 sonar and therefore taking station on thewrong one.
When transitioning from the back of the tube to the side, the corner upon which Phoenix is
to take station is the opposing back corner. Depending on the vehicle' s orientation, this
corner may be masked by the near corner when Phoenix nears the corner. When this
occurs, the near corner will be mistaken for the opposing corner resulting in an excursion
from the planned path similar to the onein Figure 41. When rounding the tube’s front

corner, asimilar phenomenon can result where Phoenix mistakes the near corner for the
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opposing corner upon which it intends to take station. Thiswill result in planned path
excursions as depicted in al threefigures. Itisalso possiblefor Phoenix to mistake the far
corner for the near resulting in a planned path excursion that will bring the vehicle closer
to the recovery tube. Thistype of planned path excursion is significantly more dangerous
than excursions depicted in Figures 40, 41 and 42 since the vehicle may actualy strike the
tube. Excursionsof this sort were encountered only during testsin which improperly tuned
control constants resulted in underdamped vehicle response. In these tests it was not
uncommon for Phoenix to overshoot an intended station exposing a corner that was
supposed to be masked to the sonar. A potential solution to this problem might be to
generate adesired range and bearing to the center of the tube rather than to a corner of the
tube, thereby allowing OOD module to choose the most appropriate corner for station-
keeping (based on Phoenix current position relative to the tube) and generating the
appropriate execution-level command on thefly. Further testing may reveal whether such
additional precautions are necessary.

A second anomaly is the unreliability of recovery from starting points directly in
front of (or behind) the recovery tube. When directly facing the opening of either end of
the recovery tube, there is simply not enough cross section for the ST1000 sonar to
consistently locate and track a corner of the tube. UVW testsindicate a repeating pattern
of locating acorner (sometimes but not alwaysthe correct one) and losing track of it almost
immediately. This problem does not exist if the back portion of the tube is enclosed (as
must be the casefor an actual recovery tube). For the front portion of the tube, the simplest
solution may be to increase the sonar cross section by adding alip. Further testing is
required to determine the size of the lip required and to make sure the lip does not interfere
with tracking of the corner from other directions.

Finally, the figuresindicate that Phoenix is slightly to the right of the tube’s center

when entering (although clearance was maintained on both sides throughout the recovery
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evolution). Thisisaconsistent aspect of al test runs. The apparent reason for this result
isthat neither the ST1000 nor the ST725 is placed exactly on the vehicle' scenterline. This
is not accounted for in Equation 37. Slight modification to Equation this equations to the
following is the most likely solution.

Thruster ange = Kinruster - range( (Rsr7258N (75°) + [Ysr728]) = (Rsr 10008 (75°) + [Ysra000))  (EQ. 56)
where ygr1,s and ysri000 arethe’Y coordinates of the ST725 and ST1000 sonarsin AUV
body coordinates respectively.

Another issue that should be noted concerning UVW testing and the results shown
in Figures 37 through 42 istheissue of control constantsfor the station-keeping PD control
laws. UVW testing has shown that improper PD control constantswill result in afailureto
accurately follow the planned recovery path. Thruster and propeller PD constants must be
tuned in such away that lateral and longitudinal responsiveness are the same. Failure to
properly tune control constants will not preclude reliable recovery, but will result in
mediocre planned-path following such as that which occurred in the test depicted in Figure
43. It should aso be noted that control constants used in the tests depicted in Figures 37
through 42 were tuned in the UVW. In-water testing described in the following section
required retuning of the control constants. Control constants shown in Table 3 are real-
world constants. This disparity between the virtual and real worlds highlights possibly the
most important area of near-term future work: real-world validation of the UVW.
Adjustment of coefficients of the UVW hydrodynamic model to accurately reflect the
actual hydrodynamic characteristics of Phoenix is essential to long term software

development using the UVW.
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Figure 43: Recovery with Poorly Tuned PD Control Constants.

2. Strategic Level and Mission Planning Expert System Results

In addition to the real world and UVW, aninteractive standalone ood_test program
has been developed for strategic level testing. This program allows a human acting asthe
tactical level OOD to manually respond to strategic level queries by querying a human
rather than the tactical level. Logic and sequencing of the strategic level (the structure of
the DFA) can therefore be evaluated without the AUV or UVW. InFigure 44, the ood_test
program is used to debug an automatically generated Prolog mission corresponding to the
mission of Figure 11. By utilizing the standalone strategic level and UVW for code
development and initial testing, and in-water testing for final testing and validation, it has
been possible to rapidly and simultaneously develop and implement new features at all

three layers of the RBM architecture [Brutzman 96].
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Begin Initialization

?- yes

Phase Completed

Depth Reached
Phase Completed
Transit to 40 70 3

Waypoint Reached
Phase Completed
Hover at 20 60 3 270

?- yes
Hover Point Reached
Phase Completed

Conduct Sonar Search

?- no

?- yes
Timer Expired
Phase Aborted

Depth Reached
Phase Completed
Transit to 50 20 0

?- yes
Waypoint Reached
Phase Completed
Mission Complete

OOD Received Command:
00D Received Command:
00D Received Command:

OOD Received Command:
OOD Received Command:
OOD Received Command:

OOD Received Command:
00D Received Command:
00D Received Command:

OOD Received Command:

00D Received Command:
00D Received Command:
OOD Received Command:

initialize
start_timer 120
ask_initialized

Initialization Complete

Change Depth to 3 feet

hover 20.000000 60.000000 3.000000 270.000000
start_timer 300
ask_hoverpt reached

at 20 60 3 270

sonar_search 20.000000 60.000000 3.000000 270.000000
start_timer 180

ask_sonar_search_complete

ask_time_out

Change Depth to 0 feet

waypoint 50.000000 20.000000 0.000000
start_timer 300
ask_waypt_reached

Figure 44: Standalone Testing of aMission Using the ood_test Program.

Strategic-level test missions for Phoenix have been generated in both Prolog and
C++ using manual programming, the mission-specification language and automatic code-

generation programs, and using the entire mission planning expert system. The results of

these tests have been predictable and correct.

Figure 45 shows a graphical plot of a C++ mission created using the means-ends

analysis mission generation facility. Goalsfor the mission were to conduct sonar searches
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from two locations (one with specific routing to the search point). When executed, the
mission conducted both sonar searches, obtained GPS fixes to verify the search positions,
classified detected objects, planned a safe path around detected obstacles (object
classification and path planning were conducted at the tactical level), and proceeded to the
designated recovery position. The need for GPSfixesto verify search positions (aswell as
theinitial dive to operating depth) were not specified by the user, but were executed

because of the means-ends analysis preconditions and postconditions for the sonar search

operation.
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Figure 45: UVW Results of a Mission Generated Through Means-Ends Analysis.

Simplifications made in the structure of the strategic level proved useful. A Prolog
mission using the new strategic level format is approximately one third aslong as an
equivalent program manually prepared using theformat in place prior to the simplifications
described in this paper [Leonhardt 96]. Templates and automatic code generation proved

reliable and versatile and resulted in successful testing described here and in [Brutzman
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96]. Testing also showed that itisafairly simple matter to accurately implement the RBM
strategic level in C++ using objectsto represent the nodes of the DFA. Specifically, UVW
tests showed that C++ missions produced by the mission planning expert system were
indistinguishablein behavior from equivalent Prolog missions created by the same system.

In general, manually coded missions have been found to be error prone. Even
missions produced manually using templates or by manually modifying working code are
still subject to typographical errors, errors of syntax, and logical errorsinindividual phases
or sequences of phases, any of which result ininvalid or incorrect missions. Moreover the
increased magnitude of the Prolog code as mission complexity increases makes manual
programming of complex missions infeasible. The slower growth of C++ program size
aleviates this problem only slightly. Thisresult amounts to no more than a confirmation
of previous results that were a primary motivator of this research work.

Missions produced using manually edited mission-specification language files and
the automatic code-generation programs offer a substantial improvement over manual
editing but are still prone to errors. Thisis because the mission planning expert system
checksmissionsfor validity prior to generating theintermediate mission-specificationfile.
Mission specification files are not checked for errors by the automatic code generation
programs. Therefore, logical errors that are otherwise caught by the mission planning
expert system can be inserted by the human editor and processed by the automatic code
generation program without complaint, resulting in incorrect and unpredictable mission
code. Additionally, because the mission-specification language is significantly more
abstract than programming languages, it is somewhat terse and cryptic. Manually edited
mission-specification language files are therefore prone to typographical errors and
misordered data as well aslogical errors.

Missions produced using the entire mission planning system are easier to create

than those coded manually or using mission-specification files. They have also proved
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morereliable. The“Floridamission” [Marco 96b], a complex mine search and
classification mission consisting of roughly 25 phases, was produced using the mission
planning expert system in approximately ten minutes. A manually coded version of this

mission was originally generated and debugged over a period of approximately two weeks.

C. REAL WORLD RESULTS

1. Sonar Tracking Behaviors

The primary goal of in-water testing to date has been the verification of execution-
level sonar tracking and vehicle-control behaviors. Testing was conducted in the Center
for AUV Research test tank. Sonar tracking behaviors werefirst tested with the sonar at a
fixed position. Both the target-tracking and edge-tracking modes were successfully used
to track a 0.5 meter diameter cylinder. In this series of tests, the cylinder was placed in
various locations relative to the stationary sonar. The target search, target-tracking and
edge-tracking modes were then used to locate and track the target for approximately 60
seconds. Figures 46 and 47 show plots of bearing versus time and range versus time for a
test during which target-tracking mode was used to track the cylinder located on a bearing
of approximately 70 degrees at arange of approximately 13 feet relative to the sonar. As
can be seen in Figure 46, the sonar scanned to the right until reaching the target. At this
point it scanned back and forth across the target (a sector width of approximately ten
degrees). Figure 47 shows the range differential as the sonar scanned across and off the
target during its sweeps. Inthisplot, zero ranges actually indicate that no sonar return was

received.

118



bearing [degrees]
50 T T T T T T

T0

60

50

40

30

20

10} §

ﬁf
O 10 20 30 40 50 60 70
time [seconds]
Thu Aug 15 15:04:47 1996

Figure 46: Stationary Sonar Full Target Track Bearing vs. Time.
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Figure 47: Stationary Sonar Full Target Track Range vs. Time.
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Figures 48 and 49 show test results from static sonar tracking of the edge of the
cylinder located at arange of approximately nine feet bearing approximately 337 degrees
relative to the sonar. Figure 48 shows the sonar sweeping to the left until locating the
target. Atthispoint, it beginssweeping back and forth acrossthe cylinder’ sright edge. The
sweep width during tracking is approximately eight degrees. Astarget size decreases or
range increases, the sweep width for edge tracking will be very close to the sweep width
for full target tracking. Figure49 showstherangevstimeplot. Again, zero rangesindicate
no sonar return was received. In thistests, the sonar located the target and successfully
tracked the edge for aperiod of 60 seconds. In thisseriesof static sonar tests, both tracking
modes proved reliable so long as sufficient separation between the intended target and the
test tank wall existed to ensure adequate range differential between the target and the

background.
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Figure 48: Stationary Sonar Target Edge Track Bearing vs. Time.
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Figure 49: Stationary Sonar Target Edge Track Range vs. Time.

Because of the sometimes unreliable nature of sonar data it was occasionally
possible to lose atarget that was being tracked. Figures 50 and 51 show aportion of atest
where apair of spurious ranges caused the sonar to lose the edge of the recovery tube after
it had been tracking for over 90 seconds. Figure 50 shows that between 96 and 97 seconds
into the test, two sonar ranges at approximately nine feet were obtained. The previous on-
target return was at arange of approximately six feet, so the ninefoot ranges were assumed
to be part of thetarget. The subsequent ranges were accurate and represented the test tank
wall at approximately 12 feet, but since the previous on-target range was nine feet, the 12
foot range was also assumed to be part of thetarget. Figure 51 shows the sonar bearing as
it continues to sweep to the left acrossthe wall which it believesto be part of thetarget. At
present, the only solution to this problem isto avoid situations where a spurious return will
cause loss of track. This means that targets must be at |east ten feet from background

objects (or the range differential for target discrimination must be reduced from five feet).
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Figure 50: Range vs. Time Plot Showing Loss of Track in a Confined Area.
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Figure 51: Bearing vs. Time Plot Showing Loss of Track in a Confined Area.
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2. Station-Keeping Results

The next series of in-water tests were intended to verify execution-level station-
keeping behaviors. Testswerefirst conducted using full target tracking and edge tracking
to maintain aseries of stationsrelativeto the 0.5 meter diameter cylinder. AsUVW results
had indicated, both sonar control modes can be used to navigate to and maintain stationsto
within six inches. As expected, the higher target update rates of the edge-tracking sonar
mode allowed more responsive control than the full target-tracking sonar mode and
resulted in achievement of commanded stations in less than half the time. Figures 52
through 54 show the results of atest requiring Phoenix to proceed through a series of three
stations relative to the cylinder using afull target sonar scan. In addition, the vehicle
maintained thefinal station for aperiod of 30 seconds. V ehicle heading pointed directly at

the target for the first two stations and north for the final station.
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Figure 52: Commanded and Actual Range to a Cylinder with Target Tracking

123



_20 ; ; ; i i i i
4] 50 100 150 200 250 300 350 400
time [seconds] ]

Thu Aug 15 17:22:51 1996 a

Figure 53: Commanded and Actual Bearing to a Cylinder with Target Tracking.
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Figure 54: Commanded and Actual Heading while using Target Tracking.
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As can be seen in the previous figures, commanded stations were achieved and
maintained. However time between target updates was normally five to ten seconds and
occasionally aslong as 20 seconds. This slow update rate resulted in a slow convergence
with commanded range, bearing and heading and an occasional tendency to overshoot.
While part of thisislikely due to improperly tuned control constants, the fact that station
keeping using the edge-scanning sonar mode converges upon the commanded station much
more quickly indicates that the slow target update rate significantly reduces the vehicle's
ability to accurately control relative to the target.

Figures 55, 56 and 57 show the results of using edge tracking asthe basisfor station
keeping. Stationswere the same as those used during testing of the full target scan based
station-keeping behavior. Again, the vehicle achieves all three stations and maintains the
third for 30 seconds. The roughness of the range versustime and bearing versustime plots
indicates that further tuning of control constantsisrequired. The increased update rate of
edge tracking when compared to target tracking enables Phoenix to achieve each station in

approximately half the time and significantly improves the accuracy of vehicle control.

125



12 ! ! ! ! ' '

Adtual Rénge*—

5 i i i i i i

20 40 &0 80 100 120 140 16&
Time =->» [seconds]
Thu Aug 15 17:10:09 1996 g

Figure 55: Commanded and Actual Range to a Cylinder with Edge Tracking.
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Figure 56: Commanded and Actual Bearing to a Cylinder with Edge Tracking.
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Figure 57: Commanded and Actual Heading while using Edge Tracking.

Thefinal series of in-water tests were intended to test the vehicle' s ability to
maneuver around the recovery tube in order to position for final recovery. Because of the
uneven shape of the recovery tube, this was a much more difficult task than maneuvering
about the cylinder. Thistest required Phoenix to travel through a series of four stations
using the edge tracking sonar mode and maintain the final station for a period of 60
seconds. Heading was directed at the corner of the tube being tracked for the first two
stations, and was aligned with the recovery tube for the final two stations. The AUV
starting position was approximately 11 feet from the front left corner of the recovery tube.
The final station placed the nose of the vehicle just inside the recovery tube. From this
position, recovery is possible using the final recovery control mode described in

Chapter IV. Figures 58, 59 and 60 show the results of one of these tests.
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Figure 58: Commanded and Actual Range during Tube Station Keeping.
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Figure 59: Commanded and Actual Bearing during Tube Station Keeping.
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Figure 60: Commanded and Actual Heading during Tube Station Keeping.

The ability of Phoenix to maintain station on different types of objects using the
same sonar tracking and control modesis clearly demonstrated by these results. This
capability has the potential to prove valuable not only during recovery operations, but

during execution of various other types of missions as well.

3. Strategic Level and Mission Planning Expert System Results

While the primary purpose of in-water testing in support of this research wasto
verify execution-level behaviors upon which further testing would depend, an effort was
also made to test improvementsto the strategic level software and missions generated with
the mission planning expert system. In-water testing of Prolog missions generated with the
mission-planning expert system were conducted in the NPS sub-Olympic swimming pool
inMarch 1996. Many of theresults of thesetests can befoundin[Leonhardt 96]. Missions

consisted primarily of search missions and missions that transited through various
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locations. Figure61 showsageographic plot of asearch mission similar to the one depicted
graphically in Figure 11. This mission was generated with the phase-by-phase mission
specification facility. The mission includes two waypoints, a hoverpoint, a sonar search,
and a GPS fix followed by awaypoint and a hoverpoint enroute to the recovery position.
Similar missions were generated for in-water tests using the means-ends analysis
portion of the system and also by manually editing mission specification language files.

Results obtained during in-water testing were similar to results obtained in the UVW.,
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Figure 61: In-Water Results of an Automatically Generated Mission.

D. SUMMARY

Tests of features implemented during the conduct of this research were conducted
intwo distinct but complementary environments: the UVW and thereal world. UVW tests
were conducted to test features at all threelayers of Phoenix’ RBM implementation. These

tests using methods described in the previous chapters resulted in successful recovery in
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thetubein all but afew specific instances. The only failures occurred when Phoenix was
initially positioned directly in front of or behind the recovery tube and was unable to
acquire and track a tube edge because of the narrow sonar cross section.

In addition UVW tests were conducted to test modifications to the strategic level
software and the mission planning expert system. These tests were highly successful and
show that an expert system for AUV mission planning/generation is an extremely useful
tool that greatly reduces mission generation time while improving mission reliability.

In water tests were conducted to verify low level sonar and vehicle control
behaviors. Thesetestsindicate that the sonar control modes described in Chapter IV are
capable of reliably locating and tracking targetsin the AUV environment. Also, target data
obtained during sonar tracking can be used as the basis for maneuvering relative to objects
being tracked. Maneuvering based on target edge tracking proved to be more responsive,
but both sonar tracking modes were successfully used for station-keeping operations.
station keeping was demonstrated relative to a0.5 meter cylinder and also arecovery tube.
Station keeping relative to the recovery tube using target edge-tracking proved precise
enough to position Phoenix’ nose in a position from which final recovery as described in
Chapter 1V was possible.

Finally, missions were generated using the mission planning expert system and
successfully executed in the real world. Successful in-water tests of expert system
generated missions verify the utility of the system.

In the following chapter, the conclusions of this research are discussed.
Additionally, possible areas of future work are outlined. The conduct of this research has
indicated numerous possible future projects, not only relating to the goal s of thisthesis, but

also to broader research goals of the Center for AUV Research and other organizations.
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VIIT. CONCLUSIONSAND RECOMMENDATIONS

A. INTRODUCTION

Previous chapters of thisthesis document the implementation and testing of
features intended to support AUV recovery in asmall tube. The purpose of this chapter is
to draw conclusions based on the results of this research and to propose possible areas for
future work. The following section discusses conclusions. The section concerning
recommendations for future work is divided into twelve subsections. Each subsection
discusses an areafor possible future work that was directly or indirectly relevant to the

conduct and results of this research.

B. RESEARCH CONCLUSIONS

The most obvious conclusion of this research is that sonar target tracking can be
used as the basis for precision autonomous underwater maneuvering. UVW and in-water
testing indicate that the precision of this maneuvering is sufficient for use throughout a
recovery evolution. Further, UVW testing indicates that path planning and command
generation can be implemented at higher levels of the RBM to use lower-level sonar-based
maneuvering to plan and control recovery in asmall tube.

A more general conclusion concerning the station-keeping behaviorsisthe
applicability of sonar-based maneuvering to broader mission areas. The ability to take
station relative to arbitrary objects will enable an AUV to become an active participant in
the environment rather than merely an observer. This ability has potential applicationsin
many types of missions that require interaction with objects in the environment.
Underwater filming, sampling, repair and construction are just afew examples of potential

AUV tasks that will require this capability.
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The most significant conclusion concerning the mission planning expert systemis
that the use of a planning system such as this can greatly reduce mission generation effort
and improve reliability. Additionally, artificial intelligence planning techniques can be
used to create error-free missions that are guaranteed to accomplish the mission’s high-
level goals (assuming the goals are in fact possible and no catastrophic vehicle failures
occur). Itisthisresearch aspect that may prove most beneficial to the field of AUV
research in general. Only through the successful implementation of easy-to-use mission
planning tools will AUVs evolve beyond their current role of academic and industrial
research projects.

Another interesting conclusion that resulted indirectly from thisresearchisthatitis
possible to satisfactorily control areal-time system using an unmodified Unix operating
system. In Phoenix RBM implementation, hard-real-time (synchronous) tasks are executed
on the GESPA C computer under the OS-9 real-time operating system, while soft-real-time
(asynchronous) tasks are executed on a separate onboard computer running under the Sun
Unix operating system. Hard-real-time tasks consist primarily of physical control of
vehicle hardware. Soft-real-time tasks on the other hand, consist of high-level and
medium-level mission control, planning, object classification and navigation. Most of
what might be considered “intelligent” behaviorsfall into the category of these soft-real-
timetasks. By dividing tasksinto hard and soft real time categoriesin this manner, Phoenix
control softwareisimplemented primarily on asystem that many might consider unsuitable
for control of areal-time system. The only drawback of this systemisthat it requires two
separate onboard computers connected viaLAN and relies on BSD socket communication.

Perhaps the broadest and most significant conclusion of this research results from
the successful use of the UVW for the implementation of vehicle software. The robustness
of the UVW allowed for deterministic testing of vehicle softwarein abenign environment.

Features were implemented and comprehensively tested one at atime over a period of
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approximately one year prior to in-water verification. By exhaustively testing software
featuresin the UVW prior to attempting in-water tests, it was possible to conduct the bulk
of in-water testing documented in this thesis over atwo-week period. The UVW isa
virtually unlimited resource, whereas power supply, hardware limitations, and logistics
requirementslimit the availability of the physical vehiclefor in-water testing significantly.
The in-water results of this research area depended heavily upon virtual world testing and
would have not have been possible were it not for the UVW.

While the preceding conclusions are significant, they amount to little more than a
first step towards recovery of AUV s using docking stations and submarines. A great deal
of work remains. The research detailed in thisthesisis preliminary in nature and is
intended to begin dealing with issuesinvolved with self recovery of an AUV in aconfined

gpace. The following section of this thesis details some of the work that remains.

C. RECOMMENDATIONS

1. General Tactical Level Testsand Enhancements

The most obvious area for future work is the verification of tactical level features
through in-water testing. While the in-water tests described in Chapter VI verify the
reliability and correctness of the low-level sonar and vehicle-control behaviors, these tests
did not verify their use by thetactical level for successful recovery control. Alongthe same
lines, the devel opment of tactics that use these low-level behaviors to accomplish more
general goalsremains atopic for future work. In particular, these behaviors might be used

to implement many of the advanced capabilities outlined in [Brutzman 96].

2. Sonar Tracking Behaviors

Thenext areaof futurework involvesimprovement of the sonar tracking behaviors.

Asdepicted in Figures 50 and 51, under some circumstances it is possible for the sonar to
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lose contact with the target being tracked. Even under ideal circumstances (error-free sonar
data and a clutter free environment), it is possible for AUV motion to cause the sonar to
lose track of the intended target.

Improvementsin thisareafall into two categories. improvements intended to
prevent the sonar from losing contact with its intended target and improvements intended
to enable to sonar to regain the target in the event of loss (which also involves recognition
of target loss). If afull target scan is used, features can be extracted as the sonar sweeps
across the target as documented in [Marco 96a]. Thiswork might be augmented by the
implementation of asimple learning algorithm to “memorize” target features on the first
sweep to alow tracking of arbitrary objects without maintaining atarget feature database.
Successful implementation of thistype of system will also need to deal with issues such as
asymmetric objects which have different features when viewed from different angles.
Successful implementation of this type of system to support the faster edge tracking sonar
mode might involve periodic sweeps across the entire target to ensure that the proper target
was being tracked (by recognizing and verifying the features recorded in the previous full
target sweep).

The computational and storage requirements of this type of system will doubless
necessitate itsimplementation at the tactical rather than the execution level. Sincelearning
and object classification are involved, placement at the tactical level is agood match with
ideal RBM tasking. Tactical-level implementation will alow implementation with
minimal changes to the current execution level sonar modes. The addition of commands
to the execution level command language to enable switching from edge tracking to target

tracking for one sweep is probably the only change that is required at the execution level.

136



3. Sonar Classification

A third areafor future work exists in improving Phoenix’ sonar classification
capabilities. While asignificant amount of research effort has already been directed at this
topic, current Phoenix sonar classification capabilities were not specifically intended to
support recovery operations. Sonar classification research to date has been directed at the
general case of trandlating sonar datainto line segments and polygons representing generic
objects [Brutzman 92, Campbell 96] and the specific case of classifying mine-like objects
[Campbell 96, Marco 96a]. Complete implementation of recovery capabilities must
include sonar classification of the intended recovery device. The most straightforward
implementation of this capability is probably best performed by augmenting currently

existing sonar classification algorithms.

4. AUV Tracking and Control

While the PD control laws discussed in thisthesis are fairly effective, the
experimental results of the previous chapter clearly show that they are far fromideal. In
practice, sliding mode control laws such asthose derived in [Marco 96a] have proven more
accurate and responsive (albeit more computationally expensive) than PD control laws.
Because of the current Phoenix execution level implementation demands and aweak 60830
CPU, the incorporation of sliding mode control laws (for station keeping and other control
modes) may be possible only after optimization of the execution level as described later in
this section. A more thorough discussion of various control modes and their suitability for
AUV control during recovery can be found in [Chapuis 96].

In the interim an effort to tune PD control constantsis necessary. The present
Phoenix execution level uses PD control laws for al closed loop control modes (hover
control, waypoint control, etc.) and will require tuning of constant terms of these control

lawsaswell. UVW tests documented in the previous chapter demonstrate that PD control
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laws can be used to obtain smooth motion along a planned path. Tuning of constants based
on accurate Phoenix hydrodynamics to duplicate UVW results during in-water testing is
therefore possible. Ideally, thiswork will proceed in parallel with UVW validation
discussed later in this section, since accurate UVW hydrodynamics will enable tuning of
control constants without requiring in-water tests.

Similarly, an effort to ensure standardization of control law nomenclature among
the various Phoenix control modesis needed. Thiswill facilitate the modification and
tuning of existing control laws and the implementation of new control laws as well.

Finally, improvement of the mathematical model used for dead reckoning between
sonar target updatesisrequired. Errorsintroduced because of an inaccurate mathematical
model lead to improper control response that can be counterintuitive to diagnose. This
phenomenon was encountered on numerous occasi ons during the conduct of this research.
The six DOF model of the UVW world demonstrates that accurate mathematical modeling
of AUV hydrodynamicsis possible and can run in real time. Improvement of the
mathematical model represented by Equations 30, 31 and 32 will improve many aspects of
the system that depend on accurate vehicle response in addition to those documented in this
thesis. Hover behavior, navigation and sonar classification arethree examples. Ideally, the
need for a dead reckoning mathematical model can be eliminated entirely by the

incorporation of an IMU as described later.

5. Ocean Current and a Moving Submarine

Because of the preliminary nature of this research, no real-world experimentation
was conducted into the effects of current during recovery. UVW testing in the presence of
auniformly constant ocean current pointing in an arbitrary direction demonstrated that
these control algorithms are robust, but before this research can be applied in an

uncontrolled environment such as the open ocean, it will be necessary to research the
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effects of time-varying current during station-keeping operations. Flow field issues
(including their effects on control laws) need to be addressed in detail. Recovery in the
torpedo tube of amoving submarine will require the resolution of numerous similar issues.
Research documented in this thesis dealt only with station keeping relative to
stationary objects in a current-free environment. Nontrivial steady-state and varying

currents (as well as target motion) are issues that will require significant research efforts.

6. Obstacle Avoidance During Recovery

The tactical level of Phoenix current software implementation conducts path
planning and obstacle avoidance for waypoints and hoverpoints [Leonhardt 96]. Obstacle
avoidance is not currently included in the recovery path planning discussed in Chapter V
of thisthesis. Vehicle safety during recovery operationsrequiresthat thisissue beresolved.
Features already existing at the tactical level will adapt fairly easily to thisrole. Recovery

path planning can then use these enhanced features to plan an obstacle-free path.

7. Sensor and Hardware | ssues

The most significant hardware issues encountered during the conduct of this
research involved Phoenix navigation systems. While the Divetracker, GPS and
differential GPS systems make up arobust navigational suite by most standards, they are
all asynchronous in nature and provide navigational updates (fixes) every few seconds at
best [McClarin 96]. The asynchronous nature of hardware-derived navigational data
necessitates the use of the dead reckoning mathematical model described Chapter 1V for
real time navigation between fixes. The turbo-probe speed wheel mitigates this problem
somewhat when the longitudinal motion of the vehicle exceeds approximately 0.25 feet per
second, but even in thisinstance, the lateral motion of the vehicle must be accounted for

(e.g., using the sideslip model discussed in Chapter V1).
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As previously mentioned, the mathematical model currently in use contains
inherent errors. Even afar more robust mathematical model is unlikely to account for
external disturbances such as wave motion or uneven current effects. Navigational errors
introduced by the mathematical model have a significant negative impact on all vehicle
functionsthat rely on accurate navigational data. Among these are hover control, waypoint
control, path planning, obstacle avoidance and object classification.

Research is currently ongoing into incorporating an IMU into Phoenix [Bachman
96, McGhee 95]. The successful implementation of accurate real-time navigation using an

IMU iscritical to many Center for AUV Research goals.

8. Strategic L evel Enhancement

A possibility for future work at the RBM strategic level includes porting to other
languages such as Ada95 (including the development of phase templates and automatic
code generation programs) [Holden 95]. Additionally, work to be conducted at all three
levels of the RBM will involve the expansion of the strategic level’ s primitive goal set and
execution level command language [Brutzman 96]. Present primitive goals primarily
support search missions. Future improvements might support run-time communication
between Phoenix and its support platform, dynamic missions that can be modified as
directed by the support platform, and more versatile interaction with located underwater
objects (e.g., mine neutralization).

It may also be possible in the near future to implement a more dynamic strategic
level that is capable of constructing portions of the DFA at run time. Thismight prove to
be avery useful feature, particularly given the unpredictable nature of the marine
environment. The previously addressed shortcomings of the means-ends analysis
algorithm (particularly those concerning non-optimal solutions) may precludeitsuseinthis

manner. However, another planning algorithm such as search reduction through least
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commitment, dependency-directed search, or meta-level planning [Tate 90a] may prove
more applicablein thisarea. Planning systems such as Tweak [Chapman 90], MOLGEN
[Stefik 90], NONLIN [Tate 90b], DEVISER [Vere 90], and FORBIN [Dean 90] for
example, address both the efficiency and the temporal aspects of their solutions. Other
issues to be dealt with before this type of self-modifying system is possible include

missions of nondeterministic length and goal prioritization.

9. TheMission Planning Expert System

Possible future work might also be directed at improvements to the mission
planning expert system. Obviously, as the functionality of Phoenix evolves, the mission
planning expert system will need to evolve to take advantage of new vehicle capabilities.
Additionally, work isongoing to simplify the phase-by-phase mission-specification portion
of the system and to improve the automatic mission-generation portion of the system.
|deally, the means-ends analysis algorithm will evolve to allow automatic generation of
missions that take full advantage of the DFA structure of the strategic level. If the
automatic mission planning is enhanced substantially, it may be possible to completely
eliminate the phase-by-phase specification portion of the system without sacrificing
flexibility. Other planning systemsincluding those mentioned aspossiblerun-timemission
planners, may prove useful inthisareaaswell. Modificationsthat may be applicablein the
short term include modifying the phase-by-phase specification facility to incorporate error
correction rather than simple error detection.

One potential mission planner implementation might involve a combinion of
means-ends analysis with another search technique. For instance by assigning costs to the
application of each operator, it is possible to determine the total cost of asolution. If a
hybrid means-ends/search algorithm is applied in parallel to find operation sequences

satisfying each top level goal, the costs of each partial solution can be compared. By
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choosing the lowest cost option and reapplying the algorithm to the remaining goals
(starting from the end state after application of the low-cost partial solution), a sequence of
operations can be generated to accomplish all of the goals. This strategy amountsto a
combination of means-ends analysis with best-first search [Winston 92]. Other search
strategies may be useful in this sort of implementation as well.

Finally, the current version of the mission planning expert system is dependent
upon the availability of Quintus Prolog and Prowindows. Possible future work to permit
cross-platform independence includes porting the expert system to an HTML interface that
can be run across a computer network. Such a system would probably involve a server-
based script that executes queries against the rule base. Since such a system can be run
from any platform using any web browser, such an approach provides complete platform

and window system independence.

10. Operating System Issues

One of the conclusions drawn earlier in this chapter isthat it is possible to control
areal-time system using a standard Unix operating system. This does not however mean
that it is necessarily desirable. The requirement of two computers and the reliance upon
network communications may justify thetransition to asingle computer running areal-time
operating system such asVxWorks[Wind River Systems95]. On the other hand, sincethe
execution level is not multi-threaded, it may be possible to control even the hard-real-time
tasks by using a dedicated processor running a standard operating system such as Unix.
Thisimplementation still requires at least two onboard computers. As both of these
alternatives are worth looking into, a comparative study may lead to interesting and
insightful conclusions that will be relevant to a number of areas in addition to AUV

research.
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Another operating system issue involves the concurrent process implementation of
thetactical and strategic levels. The Unix version under which the current system runs
does not support shared memory between separate processes even when they are forked by
acommon process [Stevens 92]. This shortcoming necessitates the use of Unix pipes for
interprocess communication. Newer versions of the Unix operating system now support
shared memory [McKusick 96]. It may be worthwhile to rewrite the communications
portions of the tactical level to use shared memory for some communications. This might
improve the efficiency of the tactical level and may prove more readable aswell. Whileit
is probably impractical to replace all interprocess communication with shared memory,
maintaining a single copy of the vehicle state vector as opposed to one copy for each
tactical level module might prove very beneficial. A similar upgrade of the strategic and
tactical levelsthat addressesthe sameissues might be their implementation in an inherently

multi-threaded computer language such as Ada95 [Holden 95].

11. Code Optimization

Numerous features have been added to all three layers Phoenix RBM
implementation during the conduct of thisand other research. Whilethese new featuresare
quite robust, little effort has been expended to ensure efficiency of the overall system. As
aresult, the execution level in particular is only capable of maintaining a synchronous
speed of just over five Hertz [Burns 96]. While this speed appears adequate, it leaveslittle
room for future enhancements. Thetwo possible solutions are the methodical optimization
of source programs or an upgrade of execution level computer hardware (which likely will
require a software rewrite anyway).

Whilethetactical level does not currently suffer from inefficiency to as great a
degree asthe execution level, optimization istill possible. At the strategic level, however,

readability is considered more important than efficiency. This coupled with the relatively
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small size of strategic level programs makes optimization of this software layer

unnecessary.

12. Underwater Virtual World Improvement

A final areafor possible future work isimprovement of the UVW. Asdiscussedin
the previous section, the UVW proved to be an invaluable tool during the conduct of this
research. Validation of the UVW by using real-world data to tune hydrodynamic model
coefficients will make it even more valuable. Tuning of control constants based on an
invalid vehicle response model inevitably leads to control problems that are extremely
difficult to diagnose due to the large number of coefficient and variable termsin most
control laws. Problems of this sort encountered during this research included both
overdamped and underdamped control law coefficients. Complete validation and
verification of al vehicle hydrodynamic response parameters is essential to the accurate
modeling required for development of reliable control response. Thisis easily the most
important area of research concerning the UVW since improving the accuracy of vehicle
response in the UVW will have a dramatic effect on the reliability of developed software.

Another possible area of work concerning the UVW isthe translation of the viewer
from C++ and Open Inventor to Java[Gosling 96] and the Virtual Reality Modeling
Language version 2.0 (VRML) [VRML Repository 96]. Translation ov network code to
Java and graphics code to VRML will allow use of the UVW on any platform using a
VRML-compatible web browser. 1t will also facilitate the sharing of world models by

allowing objects to be imported into the UVW from anywhere on the Internet.

D. SUMMARY

This chapter discusses conclusions drawn based on this research and possible areas
for futurework. Thefirst major conclusions of thiswork arethat it is possible to use sonar

information as the basis for precision maneuvering of an AUV and that higher level
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behaviors can use this capability to control recovery operations. Additionaly, precision
maneuvering based on sonar data can be implemented in ageneral enough way to facilitate
its use during various portions of amission. It was further concluded that amission
planning expert systemisan invaluabletool for therapid devel opment of complex missions
that are free from errors and accomplish the mission’sgoals. Possibly the most important
conclusion drawn from this research is the value of the UVW for rapid development and
testing of vehicle software.

During the conduct of this research, numerous areas for potential future work were
encountered. First isthe development and in-water verification of tactical level behaviors
that rely on the sonar and vehicle control behaviors described in thisthesis. Other
possibilities directly related to furthering this research area are the enhancement of the
sonar tracking behaviors, sonar classification directed at identification of the recovery
device, improvements to the current PD control laws and dead-reckoning mathematical
model, and dealing with ocean current, moving targets and unexpected obstacles during
recovery operations. Concerning the strategic level and the mission planning expert
system, possible future work includes implementation of a more dynamic strategic level
capable of limited run-time planning, improvement of the automatic mission generation
and phase-by-phase mission specification facilities, and porting of the expert systemto a
platform-independent server based architecture accessible from theinternet. Finally, more
general areas of possible future work include a comparison of real-time and standard
operating systems for AUV control, optimization of the execution and tactical level
programs, validating the UVW based on real world data, and ultimately conversion of the
UVW viewer to Javaand VRML.
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APPENDIX A. OBTAINING ONLINE RESOURCES

One of the Naval Postgraduate School’ s primary missionsisto conduct research of
value to the military and public. The Center for Autonomous AUV Research makes all of
itssignificant work available online. Viathe Internet, copiesof all current software which
isused to run Phoenix or the underwater virtual world areavailablefor downloading. Other
items available include graphicsimages, photographs, master’ stheses, Ph.D. dissertations,
briefings, personndl listings, and other information relating to AUV research at NPS.
[Leonhardt 96]

An electronic mail (e-mail) group (auvrg@cs.nps.navy.mil) is used to distribute
messagetraffic to all membersinvolved in theresearch group. Interested individualsgroup
can subscribe to the e-mail group by filling out a request form which is available on the
Center for AUV Research World Wide Web site (http://mww.cs.nps.navy.mil/research/
auv). [Leonhardt 96]

Filesfor the software can be downloaded individually or as a complete compressed
archive package. In addition, numerous sample missions written in Prolog, C++, and the
execution level scripting language are included. The complete download and installation
instructions are available at the Software Reference site
(http://mwww.stl.nps.navy.mil/~brutzman/dissertation/software_reference.html). The size

of the complete uncompressed archive is approximately 15 MB.
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APPENDIX B. EXECUTION LEVEL COMMAND LANGUAGE

Thisappendix containsthe mission.script. HELPfile. Thisfile describesthe syntax
of the execution level language. Thislanguage isused to construct mission script filesthat
can be read by the execution level or tactical level process to execute a scripted mission.
Additionally, thislanguageisused by thetactical level to direct the execution level in order
to accomplish strategic-level goals. Finally, thislanguage can be used interactively and
entered from a command line to control the AUV using one command at atime. The
mission.script.HEL P file a so contains instructions on how to construct and use mission
script files. Thisfileisavailable online at
http: //www.stl.nps.navy.mil/~brutzman/dissertation/software_reference.htmi
Thisfileisavailableindividually or as part of the .tar package containing all Phoenix and

UVW software.
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mission.script.HELP 12 August 96

Mission script syntax for NPS AUV execution level and tactical
control, in water and in the NPS AUV Underwater Virtual World.

http://www.stl.nps.navy.mil/~auv/execution/mission.script.HELP

Don Brutzman brutzmanenps.navy.mil

This file describes how to change and create NPS AUV mission script files.
Example mission.script files and the ‘execution’ program are in the
~/execution subdirectory.

Script commands are received by the AUV execution level (execution.c) from
the tactical level during a mission, the operator at the keyboard, or
read from the “mission.script” file. Both tactical and execution can
carry out mission scripts.

To run a new mission, copy a different existing mission file over file
‘mission.script’ or edit the mission.script file for a new mission.

Example:

unix> cd execution
unix> cp mission.script.siggraph mission.script
unix> execution virtual fletch.cs.nps.navy.mil
or
unix> execution virtual fletch mission mission.script.siggraph

Many of the following commands will also work when invoked from the command
line upon execution. Detailed command line guidance is also available
interactively using the online NPS AUV process launcher form at
http://blackand.stl.nps.navy.mil/~auv/launcher/launcher.cgi

Numerous script keywords (and synonyms) are currently recognized. We have been
generous in the use of synonyms in order to reduce the possibility of
catastrophic spelling errors. This approach might be further extended
to include synonyms in other languages (French, Portuguese etc.)

Hint hint!

Sections in this syntax help file:

- Helm commands: open-loop and closed-loop control
- Navigation commands

- Mission timing commands

- Mission setup and configuration commands

- Sonar commands

- Miscellaneous commands

_________ o o o o e
Keywords Parameters |Description

Synonyms [optionall] (all units are feet, degrees or seconds as appropriate)
_________ o o m o e o e l___-
// Helm commands: open-loop and closed-loop control -----------—--————-——-- //
RPM ##] Set ordered rpm values to # for both propellers

# [
SPEED # [##] [ or independently set left & right rpm values
PROPS # [##] to # and ## respectively]
PROPELLORS # [##] maximum propellor speed is +- 700 rpm => 2 ft/sec
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THRUSTERS-ON Enable vertical and lateral thruster control

THRUSTERS
THRUSTERON
THRUSTERSON
NOTHRUSTER Disable vertical and lateral thruster control
NOTHRUSTERS
THRUSTERS-OFF
THRUSTERSOFF
RUDDER # Force rudder to remain at # degrees, thrusters-off.
Value is for after rudder, negative command turns left.
DEADSTICKRUDDER [#] Force rudder to remain at 0 [or #] degrees,
thrusters-off.
COURSE # Set new ordered course (commanded yaw angle)
HEADING #
YAW #
TURN # Change ordered course by # degrees
CHANGE-COURSE # (positive # to starboard, negative # to port)
PLANES # Force planes to remain at # degrees, thrusters-off.
Value is for after planes, negative command points down.
DEADSTICKPLANES [#] Force planes to remain at 0 [or #] degrees,
thrusters-off.
DEPTH # Set new ordered depth (commanded z)
PITCH # Set new ordered pitch (commanded theta angle).
THETA # Only effective during HOVERCONTROL.
ROTATE # open loop lateral thruster rotation control
at # degrees/sec
NOROTATE disable open loop lateral thruster rotation control
ROTATEOFF
ROTATE-OFF
LATERAL # open loop lateral thruster translation control
at # ft/sec
(positive is to starboard, maximum is 0.5 ft/sec)
NOLATERAL disable open loop lateral thruster translation control
LATERALOFF
LATERAL-OFF
// Navigation commands ------------ - - - - oo oo //

DIVETRACKER1 # ## ###Position of DiveTracker transducer 1
DIVETRACKER2 # ## ###Position of DiveTracker transducer 2
Still need to incorporate bearing to DiveTrackers.

GPS Proceed to shallow depth, take Global Positioning
GPSFIX System (GPS) fix, restore ordered depth when done.
GPS-FIX Control (thrusters, propellers/planes, combined)

is not modified. Maximum fix time is 30 seconds,
at which time execution returns to previously
ordered depth.

GPS-COMPLETE GPS fix complete, resume previously ordered depth.
GPS-FIX-COMPLETE

GYRO-ERROR Degrees of error measured for gyrocompass.
GYROERROR # [GYRO + ERROR = TRUE]

+H
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DEPTH-CELL-BIAS #
DEPTHCELLBIAS #
DEPTH-CELL-ERROR #
DEPTHCELLERROR #

Feet of bias error measured for depth cell.
[DEPTH CELL Z + BIAS = TRUE Z]

POSITION # ## [###]reset vehicle dead reckon position to (x, y) or
LOCATION # ## [###] (x, vy, z) = (#, ##, ###) at current clock time
FIX # ## [###]1This is a navigational position fix. Receipt of a

POSITION/LOCATION/FIX command resets the execution
level dead-reckon position. Note that depth value z
will likely be reset by depth cell if operational.

ORIENTATION # ## ###reset vehicle orientation to
ROTATION # ## ### (phi, theta, psi) = (#, ##, ###)

POSTURE #a #b #c #d #e #£f

reset vehicle dead reckon posture to
(x, vy, z, phi, theta, psi) = (#a, #b, #c, #d, #e, #f)

OCEANCURRENT #x #y [#z] Ocean current rate along North-axis, East-axis and
OCEAN-CURRENT #x #y [#z] [optional] Depth-axis (feet/sec)

(this is cartesian version of set and drift)

WAYPOINT #X #Y [#2Z] [#rpm]
WAYPOINT-ON #X #Y [#Z] [#rpm]

STANDOFF #
STAND-OFF #
STANDOFFDISTANCE #
STANDOFF-DISTANCE #
STAND-OFF-DISTANCE #

HOVER [#X #Y] [#Z]

Point towards waypoint with coordinates (#X, #Y)
(depth #Z optional) (speed #rpm optional). You can
leave waypoint control by ordering course, rudder,
sliding-mode, rotate or lateral thruster control.

If in TACTICAL mode, execution reports STABLE when
waypoint is achieved.

Change standoff distance for WAYPOINT-FOLLOW and HOVER
control

Hover using thrusters and propellers for longitudinal
and lateral positioning at specified or previous
waypoint

HOVER [#X #Y] [#2Z] [#orientation] [#standoff-distance]

HOVEROFF
HOVER-OFF
HOVER_OFF

TARGETSTATION #R #B
TARGET-STATION #R #B

Uses WAYPOINT control until within #standoff-distance
of HOVER point (#X, #Y, #Z), then switches to
HOVER control with [optional] final #orientation

Full speed (700 RPM) port & starboard is used if

AUV distance to WAYPOINT is > #standoff-distance + 10',
then slows to 200 RPM until within #standoff-distance,
then HOVER control.

HOVER without parameters is the preferred method of
slowing since backing down with negative propellers may
result in large sternway and severe depth excursions.

If in TACTICAL mode, execution reports STABLE when done.

Turn off HOVER mode

[#Psi]

[#Psi]
Hover relative to a sonar target at range = #R and
target bearing #B from the AUV. Commanded AUV
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heading is #Psi (default is point at target).
Stationkeeping will use full target tracking
sonar mode

TARGETSTATION #R1 #B1l #R2 #B2 [#Psil]

TARGET-STATION #R1 #B1l #R2 #B2 [#Psi]
Hover relative to sonar target. Target currently
at range = #R1, bearing #Bl from AUV. Commanded
range = #R2, commanded bearing = #B2, commanded
heading = #Psi (default is point at target).
Stationkeeping will use full target tracking
sonar mode

EDGESTATION #R #B [#Psi]

EDGE-STATION #R #B [#Psil]
Hover relative to a sonar target at range = #R and
target bearing #B from the AUV. Commanded AUV
heading is #Psi (default is point at target).
Stationkeeping will use full target tracking
sonar mode

EDGESTATION #R1 #B1l #R2 #B2 [#Psi]

EDGE-STATION #R1 #B1l #R2 #B2 [#Psi]
Hover relative to sonar target. Target currently
at range = #R1, bearing #B1l from AUV. Commanded
range = #R2, commanded bearing = #B2, commanded
heading = #Psi (default is point at target).
Stationkeeping will use target edge tracking
sonar mode

TARGET-OFF Turn off stationkeeping control mode

TARGETOFF

NO-TARGET

NOTARGET

TARGET-POINT Commanded #Psi during stationkeeping will point
TARGETPOINT directly at target center

NO-TARGET-POINT Commanded #Psi during stationkeeping can be
NOTARGETPOINT manually controlled using HEADING commands
TARGET-POINT-OFF

TARGETPOINTOFF

ENTERTUBE # ## Experimental control mode. This tells execution level
ENTER-TUBE # ## that nose has entered the tube, drive the rest of the

way in using dead reckon for forward motion and sonars
(pointing to opposite sides) to maintain tube side wall
standoff. Parameters:

# How far forward to travel to be fully inside tube
## Tube orientation in degrees

// Mission timing commands --------------- - - - -

WAIT # Wait (or run) for # seconds (letting the robot execute)
RUN # prior to reading from the script file again

If in TACTICAL mode, execution ignores WAIT commands.
TIME # Wait (or run) until robot clock time #
WAITUNTIL # (letting the robot execute its current orders)
PAUSEUNTIL # prior to reading from the script file again

If in TACTICAL mode, execution ignores TIME commands.
TIMESTEP # change default execution level time step interval
TIME-STEP # from default of 0.1 sec to # sec
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STEP
SINGLE-STEP

loop for another timestep prior to reading script again.
Only useful in execution keyboard mode.

PAUSE temporarily stop execution until <enters> is pressed
REALTIME run execution level code in real-time

REAL-TIME (busy wait at the end of each timestep if time remains)
NOREALTIME run execution level code as quickly as possible
NO-REALTIME

NONREALTIME

NOWAIT

NO-WAIT

NOPAUSE

NO-PAUSE

// Mission setup and configuration commands ------------—-—-—-—-~——-———~——~—~—~—~—~-- //
HELP Provide a list of available keywords

? (as specified in this HELP file).

/?

-7

// comments follow on this line which are not executed

/* note comments will still be spoken if AUDIO-ON

# pound sign also indicates a comment if in first column
// Three startup modes: [LOCATIONLAB] | TETHERED | UNTETHERED

LOCATIONLAB Vehicle is operating in lab using virtual world.

LOCATION-LAB

This is default mode.

TETHER command line switch only, used for in-water runs
TETHERED set DISPLAYSCREEN=TRUE and LOCACTIONLAB=FALSE
UNTETHER command line switch only, used for in-water runs
UNTETHERED set DISPLAYSCREEN=FALSE and LOCACTIONLAB=FALSE
NOTETHER

NO-TETHER

VIRTUAL hostname tells execution level to open socket to virtual world
VIRTUALHOST hostname which is already running and waiting on ‘hostname’
REMOTE hostname VIRTUALHOST is a command line switch. Example:
REMOTEHOST hostname unix> execution virtualhost fletch.stl.nps.navy.mil
DYNAMICS hostname

TACTICAL hostname tells execution level to open socket to tactical level
TACTICALHOST hostname which is already running and waiting on ‘hostname’
STRATEGIC hostname TACTICAL/STRATEGIC is a command line switch. Example:

STRATEGICHOST hostnameunix> execution tacticalhost fletch.stl.nps.navy.mil

MISSION filename
SCRIPT filename
FILE filename

TELEMETRY filename

NOSCRIPT
KEYBOARD
KEYBOARD-ON

KEYBOARD-OFF
NO-KEYBOARD

Replace ‘mission.script’ with ‘filename’ and start
the new mission. Read tactical commands for execution
level from filename.

Playback prerecorded telemetry data from filename.
Consider using with NOSCRIPT if no script file present.
dynamics should be run with selection

E dEad_reckon test with execution_ level

Ignore script command file. Selectively used
in combination with TELEMETRY data file playback.

read script commands from keyboard

read script commands from mission.script file
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TRACE
TRACE-ON

TRACEOFF
TRACE-OFF
NOTRACE
NO-TRACE

LOOPFOREVER
LOOP-FOREVER

LOOPONCE
LOOP-ONCE

LOOPFILEBACKUP
LOOP-FILE-BACKUP

ENTERCONTROLCONSTANTS

enable verbose print statements in execution level

disable verbose print statements in execution level

repeat current mission when done.
each repetition is called a ‘replication.’

do not LOOPFOREVER, stop when end of script is reached
back up output files during each loop replication

to permit inspection while new files are written

the backup files are in execution directory:

output.telemetry.previous & output.l second.previous

start a keyboard dialog to enter

ENTER-CONTROL-CONSTANTS revised control algorithm coefficients

CONTROLCONSTANTSINPUTFILE read revised control algorithm coefficients
CONTROL-CONSTANTS-INPUT-FILEfrom file “control.constants.input”

BENCH-TEST
BENCHTEST
BENCH

NOTEXT
NO-TEXT

TEXT
TEXT-ON

QUIT

STOP

DONE

EXIT

REPEAT
RESTART
COMPLETE
<eof> marker

KILL
SHUTDOWN

// Sonar commands

SONAR725 #b #r
SONAR-725 #b #r
SONAR_725 #b #r
ST725 #b #r

SONAR1000 #b
SONAR-1000 #b
SONAR 1000 #b
ST1000 #b

SCAN-WIDTH #
SCANWIDTH #

SONARTRACE

SONARTRACEOFF

Simplified initial command-line parameter for quick
switch setting during Russ’s control and prop testing.

Eliminate text display in command window
(useful for verbose/long runs in virtual world)
Turn text display in command window back on

do not execute any more commands in this script, but
repeat the mission again if LOOP-FOREVER is set

same as QUIT but also shuts down socket to virtual world
‘dynamics’ process.

Set the bearing (#b), range (#r), and power (#p) of the
ST-725 sonar. In virtual world, bearing is necessary for
sonar model. In water, this stores data in the state
vector for replay and examination.

Manually control the ST1000 sonar bearing to #b degrees
relative to Phoenix heading

Total degrees for default ST1000 sonar scan, centered
about bow

Enable verbose print statements in execution sonar code

Disable verbose print statements in execution sonar code
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SONARINSTALLED Sonar interface installed, use them
SONAR-INSTALLED

NOSONARINSTALLED Sonar interface not installed, don’t use
NO-SONAR-INSTALLED

// Miscellaneous commands ------- - - - oo oo oo oo //

AUDIBLE enable text-to-speech audio output
AUDIO

AUDIO-ON

SOUND-ON

SOUNDON

SOUND

SILENT disable text-to-speech audio output
SILENCE

NOSOUND

SOUNDOFF

SOUND-OFF

AUDIOOFF

AUDIO-OFF

QUIET

SOUNDSERIAL tell virtual world to pause while playing back sound
SOUND-SERIAL (default)

SOUNDPARALLEL tell virtual world to play sounds as parallel processes
SOUND-PARALLEL (this may cause garbles if speeches play simultaneously)

EMAIL ask wuser for electronic mail address at mission start,
EMAIL-ON send user an electronic mail report at mission finish
E-MAIL

E-MAIL-ON

EMATLON

EMAILOFF disable electronic mail address query feature
EMAIL-OFF

E-MAILOFF

E-MAIL-OFF

NO-E-MAIL

NO-EMAIL

NO-E-MAIL

NOEMAIL

SLIDINGMODECOURSE Sliding mode course control algorithm (not yet working)
SLIDING-MODE-COURSE

SLIDINGMODEOFF Disable sliding mode course control algorithm ( “ “ v )
SLIDING-MODE-OFF

PARALLELPORTTRACE enable trace statements for parallel port communications

WAYPOINTFOLLOW Set mode to arrive at each waypoint before reading the

WAYPOINT-FOLLOW next mission script command, i.e. continue towards each

WAYPOINTFOLLOWON waypoint for however long it takes to reach the standoff

WAYPOINT-FOLLOW-ON distance before pausing to read the next command.
Probably not needed anymore.

WAYPOINTFOLLOWOFF Disables WAYPOINTFOLLOW mode
WAYPOINT-FOLLOW-OFF
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APPENDIX C. MISSION GENERATION EXPERT SYSTEM USER
GUIDE

A. INTRODUCTION

This appendix consists of operating instructions for the mission planning expert
system. Included sectionsinclude startup and initial operations, tactical level initialization
file generation, the means-ends mission planning facility operation, phase-by-phase
mission specification facility operation, and finally, executable code generation,

compilation and execution.

B. STARTUPAND INITIAL OPERATIONS

The mission planning expert system requires Quintus Prolog version 3.2 and
Prowindows [Weilemaker 94]. At present, these are only installed on
ai4.cs.nps.navy.mil located in the artificial intelligence (Al) lab, however the
expert system can still be run from anywhere on campus by starting a remote xterm. Log
onto any Unix workstation on campus, start X-Windows (if necessary) and type the
following from any xterm shell:

> xhost ai4.cs.nps.navy.mil

> telnet ai4.cs.nps.navy.mil

Log onto the auv account on ai4 . cs.nps.navy.mil and changeto the
strategic directory. Start Prowindows by typing

ai4d> cd strategic

ai4d> xterm -display localmachine:0
For thiscommand, 1ocalmachine isthe machine upon which you are working. After
executing this command, a new xterm will pop up. In thiswindow type:

ai4> newprowin
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Once Prowindows has started, the expert system isloaded and started by typing (including
the period):

?- [mission expert].

Thiswill cause the software to load and start automatically. To later restart the expert
system from prowindows (if it has been exited using the quit button), smply type

?- go.

Once the windowed mission generation expert system has started, use the menu
button labeled Available Chartsto choose the operating areafor the mission you wish to
generate. Clicking the left mouse button over the menu will cause the available operating
areainformation (and the area maps) to cycle one at atime. Depressing the right mouse
button over the menu button will invoke a drop-down menu displaying all possible
operating areas. Dragging the mouse to the desired operating areaand rel easing the mouse
button will causeit to load. The currently displayed map will always correspond to the
currently loaded operating area. The operating area can be changed at any time, however,
changing the current operating area while editing a mission will automatically clear al
current mission data.

Itisalso agood ideaat this point to enter the name of the desired output file on the
Output File Name item (although the file name can be entered or changed any time prior
to code generation). The file name must conform to standard Unix naming conventions. It
isbestto add the .p1, .C, .cc, or . cpp extension appropriate for the final output
language, but thisis not arequirement of the expert systemitself. The naming convention
used to date followstheformmission.pl.myexample for Prolog code and
mission graph.C.myexample for C++ code. Prior to compiling or executing the
missions, the file should be copied intomission graph.Cormission.pl as

appropriate. Currently the autogenerated C++ code compiles and runs under the Silicon
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Graphics (SGI) Irix operating system on any campus SGI workstation. The autogenerated
Prolog runs on the Voyager laptop only (tony .cs.nps.navy.mil).

To start the different system facilities, the Available Oper ations menu buttons
(from the main menu shown in Figure 62) are used. Starting any system by selecting the
Phase by Phase Generation or M eans Ends Gener ation button will automatically end
any systemfacility currently being executed and will clear all datafrom that operation. Use
of the Create I nitialization File or M odify Current Mission will start the appropriate
facility, but will not clear data from memory if another system facility was interrupted.

Directions for use of each of the system facilities are provided in the following sections.

C. TACTICAL LEVEL INITIALIZATION FILE GENERATION

When running all three RBM layers, thetactical level requiresaninitiaizationfile.
Thisfile contains information such as the initial vehicle posture, the locations of the
Divetracker units, and the gyro error. To start generate thisfile, use the left mouse button
to click the Create I nitialization File button under Available Operations. At this point,
the data is entered using the datainput window shown in Figure 63. Data must be entered
using the dliding bars (point and click using the map isnot enabled). Locationsarein X, Y
coordinates corresponding to the grid overlaying the operating area map. When finished,
use the left mouse button to press the Done button on the I nitialization Parameter s data
entry window. The information will be saved in afile called
initialization.script. Toendthefacility without creatingtheinitializationfile,
use the left mouse button to press the Cancel button. NOTE: If more than one missionis
to be generated, copy each initialization.script fileto another file before

creating the next one to avoid overwriting.
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Figure 62: Mission Planning Expert System Main Window.




Figure 63: Initialization Parameters Data | nput Window.
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D. PHASE-BY-PHASE MISSION SPECIFICATION

1. Entering New Phases

To start the phase-by-phase mission specification facility, use the left mouse button
to click the Phase by Phase Gener ation button under Available Operations. At this
point, Phase Type and Phase Summary windows will be created. The Phase Type
window isused to specify thetype of phasethat isto be entered, whilethe Phase Summary
window will display astate table representation of themission asitisenteredin. ThePhase
Type and Phase Summary windows are depicted in Figures 64 and 65 respectively. To
enter a phase, use the left mouse button to choose the appropriate type of phase on the
Phase Type menu. Dataentry for phase parametersfor each type of phaseisviawindows
that vary depending on the type of phase (all are similar to the data entry window depicted
in Figure 66). Thefollowing section provides abrief summary of what each type of phase

will accomplish and what parameters must be specified.

Press hutton for next operation:
| Depth Change

Course Change

Transit

Howver
GPS Fix
Fotate Sonar Search
Rotate aUY Search
W ait

kAodify Phase
Delete Phase

Cancel

Figure 64: Phase Type Input Window.
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Figure 65: State Table Summary of a Mission Specified Phase-by-Phase.

Figure 66: Data Input Window for Transit Phase Specification.
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Depth Change: Change to new depth while hovering or after transiting.
New depth is specified.

Course Change: Changeto new course while hovering or after transiting.
New course is specified.

Transit: Use maximum RPM to transit to anew location. Vehiclewill not
stop upon reaching thisnew location, but will drivethrough. Transit
location is specified as an (X, Y) position and depth is specified as
well.

Hover: Transit to a new location and establish a hover. Hover location is
specified asan (X, Y) position. Hover depth and hover heading are
also specified.

GPSFix: Obtain aglobal positioning system fix. No special parameters
are required.

Rotate Sonar Search: Conduct asonar search from aspecified location by
rotating the sonar 360 degrees. Search locationisspecifiedasan (X,
Y) position. Search depth is specified aswell.

Rotate AUV Search: Conduct a sonar search from a specified location by
rotating the AUV 360 degrees while maintaining a fixed forward
sonar bearing relativetothe AUV. Searchlocationisspecified asan
(X, Y) position. Search depth is specified as well.

Wait: Continuewith current operation (eg., hover) for aspecified period of
time. Timeto wait is specified.

Recover in Tube: Perform arecovery in arecovery tube. Location of
recovery tubeis specified asan (X, Y) position. Recovery tube
depth and heading are also specified.

In addition to the above datarequired by each individual type of phase, all types of

phases require the following information:

Phase Name: This can be made up of numbers and letters and istyped in
by theuser. No blanks are allowed, and thefirst character cannot be
acapital letter (if Prolog code isto be generated).

Time Out: Thisisthe amount of time (in seconds) that the phase has to
succeed.
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Phase Complete Successor: The name of the phase to execute upon
successful completion of the phase currently being entered.

Phase Abort Successor: The name of the phase to execute upon failure of
the phase currently being entered.

The means of data entry varies depending on the type of data. Numerical data can
be entered using the dliders. The slider rangesfor X positions, Y positions, and depths are
defined according to the current operating area. Positionsfor hovers, transits and searches
can also be entered by clicking the desired position on the area map with the left mouse
button. The name of the phaseistyped in by the user at the Phase Nametext entry location.

Push button menus are used to enter the Phase Complete Successor and Phase
Abort Successor. The names of all phases that have been specified previously will have
pushbuttons on both menus (in addition to selections for Mission Abort and Mission
Complete). To set one of these phases as the complete or abort successor, simply use the
left mouse button to select the desired phase. If the desired successor phase hasnot yet been
defined, use the left mouse button to select the Unspecified menu item. A new data entry
window for specifying the name of the successor phase will then be displayed. Enter the
intended name of the successor phase on the Name blank and use the left mouse button to
press the Ok button. This phase will need to be specified later (using the correct name) or
an error will be generated when the system parses the mission prior to code generation.

Any phase information can be changed after being entered ssmply by re-entering it.
When al required phase information has been entered, use the left mouse button to press
the Done button on the data entry window. The phase will then be stored in memory and
displayed in the state table of the Phase Summary window. To cancel entry of the current

phase, use the left mouse button to pressthe Reset Phase button on the data entry window.
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NOTE: Mission specification can be interrupted at any time to create the tactical
level initiatialization file without losing phases that have been specified previously
(restarting the phase-by-phase specification facility is discussed later). 1f the means-ends
mission generation facility isinvoked or the phase-by-phase mission specification facility
isrestarted improperly, however, all previously specified phases will be deleted from
memory.

2. Modifying and Deleting Phases Specified Phases

To modify a phase that has been previously entered without deleting it, use the left
mouse button to select the M odify Phase button in the Phase Type window. A Phase
M odification window similar to the one shown in Figure 67 will be displayed. Usetheleft
mouse button to select the name of the phase that you wish to modify from the menu in this
window (or the Reset button to remove the window without modifying aphase). A data
entry window for this phase (with the phase data as previously entered) will be displayed.
Data can be entered using this window asif the phase were being initially specified. To
remove the window without changing the phase, use the left mouse button to press the
Reset Phase button, or press the Done button to store the changed phase definition.

To delete a phase that has been previously entered, use the left mouse button to
select the Delete Phase button in the Phase Type window. A Phase Deletion window
similar to the one shownin Figure 67 will be displayed. Usetheleft mouse button to select
the button corresponding to the phase to be deleted (or the Reset button to remove the
window without deleting a phase).

If no phases have been previously entered into the system and the M odify Phase or
Delete Phase button is depressed, an error window will be displayed. Use the left mouse
button to press the Ok button in the error window to clear the error message. When done
specifying the mission, do not press the Cancel button. Rather follow the instructions for

generation of executable code provided in Section F.
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Figure 67: () Phase Modification and (b) Phase Deletion Windows.

3. PhaseErrors

If the data entered for a phase isinvalid or incomplete when the Done button is
pressed, an error message will be displayed describing thetype of error inan I nvalid Phase
window similar to the one shown in Figure 68. Phases containing errors will not be
accepted by the system. To clear the error message use the left mouse button to press the
Ok button in the error window. Phase data can then be entered or changed as appropriate,

or the Reset Phase button can be used to cancel phase entry.

Figure 68: Invalid Phase Error Report Window.

4. Mission Modification
If the Phase Type window is not present and mission specification isnot complete,

mission specification can be continued without clearing previously specified phases from
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memory by using the left mouse button to select the M odify Current Mission button on
the Available Oper ations menu of the main system menu. Loss of the Phase Type
window can have anumber of causes. The most common is accidental (or intentional) use
of the Cancel button on the Phase Type window. The Phase Type window will also be
removed if the Create I nitialization File facility isinvoked. It may also be the case that
the window is simply hidden by another window on the screen. Regardless, use of the
Modify Current Mission button will generate a new Phase Type window. Mission
specification can then proceed. If the Modify Current Mission button is pressed when no
specified phases are contained in memory (either no phases have been specified or memory
was cleared by the invocation of one of the other system facilities), an error message will
be displayed. To clear the error message, use the left mouse button to press the Ok button
on the error window.

5. Code Generation

Once mission specification is complete, code can be generated by following the

instructionsin Section F, Executable Code Generation, Compilation and Operation.

F. MISSION GENERATION WITH MEANS-ENDSANALYSIS

1. Overview and Launch and Recovery Position Specification

The means-ends facility is used to automatically generate complete missions by
specifying the AUV launch position, recovery mission, type of recovery and the goals of
the mission. To invoke thisfacility, use the left mouse button to press the M eans Ends
Generator button on the Available Oper ations menu of the main window. The system
will display the window shown in Figure 69. Use the slidersin this window to enter the
AUV launch and recovery positions (point and click is not enabled). Thiswindow is also
used to define the type of recovery to be executed at the end of the mission and enter

locations to be searched during the mission.
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Fi gure 69: Means-Ends Mission Generator Facility Main Window.

2.  Specifying the Recovery

Thedefault AUV recovery issimply to surface oncereaching therecovery location.
Also availableisarecovery in atube. To specify thistype of recovery, use the left mouse
button to press the Recover In Tube button. The system will then request recovery tube
data using the window shown in Figure 70. The (X, Y) position of the recovery tube can
be entered using the sliders by using the left mouse button to select the appropriate position
from theareamap. TubeDepth and Tube Entry Heading (the heading of the AUV when
entering the tube) must be entered using the provided sliders. Once the data has been
entered, use the left mouse button to press the Stor e Data button to save the recovery tube
information. To cancel entry of recovery tube data without saving, use the left mouse
button to pressthe Cancel button on the Recovery Tube Datawindow. Oncetherecovery
tube data has been entered and saved, it can be changed simply by re-entering it. To cancel
atuberecovery that has been previously specified, ssmply usetheleft mouse button to press

the Cancel Tube Recovery button on the M eans End Help window.
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Tube X Position : [0] -20 — | 140

Tube ¥ Position : [0] 0O J'- 120
Tube Depth : [0] 0 | 10
Tube Entry Heading: [0) 0O J'- 360

Store Data]  Cancel )

Figure 70: Recovery Tube Data Entry Window.

When the position and orientation of the recovery tube have been specified and
saved, the system will automatically update the vehiclerecovery positioninformationinthe
Means End Help window. Thisinformation can be manually changed using the slidersif
desired, however the automatically updated position is one from which recovery is
possible. Manually changing this position may cause an error when the mission is parsed
prior to code generation if the manually selected position is not within the system defined
range limitations.

3. Specifying Search Points

At present the primary mission goal supported by the system is the conduct of
searchesfrom user-specified locations. Pointsat which to conduct searches are entered one
at atime. Anunlimited number of search pointscan beentered into the systemin any order.
Routing to a search point can also be specified.

To enter a search point, use the left mouse button to press the Enter Sear ch Point
button in the Means End Help window. The system will display the Sear ch Point Data
window shown in Figure 71. To enter the location to be searched, use the didersin the
window or use the left mouse button to indicate the search location on the areamap. This
will cause update of the search point location and the transit point location fieldsin the

Sear ch Point Datawindow. The search depth must be entered using the slider. To specify
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routing to the search point, use the transit point location field. The generated mission will
cause the AUV to transit through this point prior to establishing a hover at the search
location (if the search point and transit point are collocated, the AUV will transit directly
to the search point and establish a hover). This point can be specified using the sliders or
by indicating the transit point location on the area map using the right mouse button (after
the search location has been specified manually or with the left mouse button). To savethe
search data, use the left mouse button to press the Stor e Point button in the Sear ch Point
Data window. To cancel search point entry without saving the search point data, use the
Cancel button in the Sear ch Point Data window. Once asearchpoint has been entered into
the system and saved, it cannot be saved. All search points can however be deleted from
memory by using the left mouse button to press the Clear Search Points button in the

Means End Help window.

Search Point Location

X Position : [0] -20 — | 140

¥ Position : [0] 0 | 120
Depth : [0] 0 | 10

Transit Point Location:

X Position: [1]  -20 — | 140

Y Position: [1] 0 | 120

Store Point | Cancel )

Figure 71: Search Point Data Entry Window.
4. Computing a Sequence of Phases
Once the launch position, recovery position, type of recovery, and searchpoints
have been specified, the system can be used to generate a sequence of phases that will

accomplish the mission. To invoke this feature, use the left mouse button to press the
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Gener ate Phase Sequence button in the M eans End Help window. The system will then
generate the sequence of phases and display atextual description of the resulting mission
inawindow similar to the one shown in Figure 72. In addition the path of the mission will

be depicted on the area map of the main system window.

Figure 72: Sample Means-Ends Analysis Mission Solution Window.

Since means-ends analysis is not guaranteed to find the best solution first, the
capability existsto cycle through all possible solutions one at atime. To generate another
solution using means-ends analysis, use the left mouse button to press the Next Solution
button in the Means End Solution window. A new solution will be computed and
displayed textually in aM eans End Solution window and geographically on the areamap

of the main window.
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5. Code Generation
Once mission specification is complete and a satisfactory solution has been
obtained, code can be generated by following the instructions in Section F, Executable

Code Generation, Compilation and Operation.

F. EXECUTABLE CODE GENERATION, COMPILATION AND OPERATION

1. Code Generation

Executable code can be generated based on a mission specified using the phase-by-
phase mission specification facility or the means-ends mission generation facility. If the
phase-by-phase mission specification facility was used to specify the mission, the
generated executable code will correspond to the mission described inthe Phase Summary
window. If the means-ends-analysis mission generation facility was used, the generated
executable code will correspond to the mission described in the current M eans End
Solution window.

To generate executable code simply usethe left mouse button to pressthe Gener ate
Mission Code button in the main system window. If the phase-by-phase mission
specification facility was used to specify the mission, the system will request the name of
the first phase of the mission. Simply use the left mouse button to select the appropriate
first phase from the menu displayed. If the means-ends mission generation facility was
used, thisstep isnot required. In either case, the system will parse the mission to check for
errors (loopsin the graph, no mission compl ete specified, unspecified phases, etc.) prior to
generating code.

If errors are detected, awindow similar to the onein Figure 73 will be displayed.
To clear the error message, use the left mouse button to press the Ok button in the Phase
Error window. The mission can be then edited using the phase-by-phase mission

specification facility or means-ends mission generation facility as appropriate (the only
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errors that can be introduced by the means-ends mission-generation facility are caused by
manually changing the recovery position when a tube recovery is requested as described
above). Editing of missionswith errorsis conducted asif no attempt to generate code had

been made.

Figure 73: Error Window for Detected Mission Errors.

If no errors are detected during parsing, the window displayed in Figure 74 will be
displayed. To select the desired language for output, use the left mouse button to pressthe
Prolog or C++ button as appropriate. The output filewill be stored in the current directory
(~auv/strategic) and will be named according to the Output File Name entry. If
Prolog codeis generated, an additional filewill be created withastandalone added to
the beginning of the name. These two files are equivalent except that running the
standalone file will make queries to the user rather than the tactical level. To clear this

window without generating code, press the Cancel button.

Figure 74: Output Language Selection Window.
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2. Compiling and Running the Mission

a.

The Tactical Level Initialization File

To run amission, generated files must be transferred from

ai4.cs.nps.navy.mil tothe appropriate directories on file system of the machine

upon which the tactical level isto run. All files should be transferred as ascii files using

the Unix ftp facility.

Theinitialization.script fileshould betransferred to the

~auv/tactical directory (or ~auv/uvw/tactical ontheSunVoyager) regardiess

of the language generated by the expert system. When running, the tactical level requires

thefiletobecalled initialization.script, but for storing multipleinitialization

files, it is ok to use different names (eg., .extensions for describing what mission the

initializationfileisfor). Anexampleftp sessionisshown below. Thissessionisconducted

from the strategic directory onai4.cs.nps.navy.mil (fromthe xterm window).

aisd>

ftp gravy3.cs.nps.navy.mil

username: auv

password:

ftp> cd strategic

ftp> put mission graph.C.example

ftp> ed ../tactical

ftp> put mission.pl.example

ftp> put initialization.script initialization.script.example
ftp> put command strings command strings.example

ftp> quit

In thisexample, it is assumed that a Prolog and a C++ mission were generated. If only the

C++ version was created, theput mission.pl.example command can be omitted.

If only a Prolog version was created, the cd strategic and put
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mission graph.C.example canbeomittedandthecd ../tactical command
should be modified to

ftp> cd tactical

b.  Prolog Execution

If Prolog code was generated, the standalone file (standalone _ prefix)
should be placed inthe ~auv/strategic directory on thetarget machine. The mission
fileitself should be placed in the ~auv/tactical directory. Either of thesefiles can
have any name so long as they end in the Prolog . p1 extension (and contain no other
periods). Torunthestandalonestrategiclevel, switchtothe ~auv/strategic directory
on the appropriate machine and start Prolog (or Prowindows). Load the mission into
memory by typing the file name (minusthe . p1 extension) in brackets followed by a
period:

?- [mission].
To run the mission, type:

?- execute mission.
Answer the strategic level queries by typing yesor no. To runthe missioninthevehicle or
the virtual world (tactical level attached), switchtothe ~auv/tactical directory. Itis
probably a good ideato make sure the proper version of the tactical level has been
compiled. To do thistype:

> make strategic
Start Prolog and load the mission file into memory by typing thefile name (minusthe . p1
extension) in brackets followed by a period, just as for the standalone version of the
strategic level. The mission is started in the same way as the standalone version as well:

?- execute mission.
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c.  C++ Compilation and Execution

If the expert system generated a C++ strategic level mission, it must be
compiled prior to running themission. Thegenerated C++ file should betransferred to the
~auv/strategic directory on the appropriate file system. Before compiling, the C++
missionfilemust benamedmission graph.Candmustbelocatedinthestrategic
directory. To compile the mission, from the auv directory and type:

> cd strategic

> cp mission graph.C.example mission graph.C

> ed ../tactical

> make strategic cpp
The executable file upon completion of the make will be located inthe tactical
directory and will be called strategic. To make a standalone version of the mission,
type:

> make strategic standalone
fromthe tactical directory. The executable standalone mission will be placed in the
tactical directory and will be called ood test. Either the standalone version of the
strategic level or the full RBM version are invoked by typing the name of the executable

file on the command line.

G. EXITING THE SYSTEM AND INDIVIDUAL FACILITIES

To exit the system at any time during execution, use the left mouse button to press
the Quit button in the main window. The Prowindows interpreter can be exited by typing

?- halt.

Most system windows provide a Cancel button. Pressing this button using the left

mouse button will cancel the operation without performing it. Asarule, use this button to
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cancel operations and destroy windows rather than the minus button in the upper left

window corner.
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