
THESIS

PRECISION CONTROL AND MANEUVERING OF THE
PHOENIX AUTONOMOUS UNDERWATER VEHICLE FOR

ENTERING A RECOVERY TUBE

by

Duane T. Davis

 September 1996

 Thesis Advisors: Robert McGhee
Don Brutzman

Approved for public release; distribution is unlimited.

NAVAL POSTGRADUATE SCHOOL
Monterey, California

vi

v

ABSTRACT

Because of range limitations imposed by speed and power supplies, covert launch

and recovery of Autonomous Underwater Vehicles (AUVs) near the operating area will be

required for their use in many military applications. This thesis documents the

implementation of precision control and planning facilities on the Phoenix AUV that will

be required to support recovery in a small tube and provides a preliminary study of issues

involved with AUV recovery by submarines.

Implementation involves the development of low-level behaviors for sonar and

vehicle control, mid-level tactics for recovery planning, and a mission-planning system for

translating high-level goals into an executable mission. Sonar behaviors consist of modes

for locating and tracking objects, while vehicle control behaviors include the ability to

drive to and maintain a position relative to a tracked object. Finally, a mission-planning

system allowing graphical specification of mission objectives and recovery parameters is

implemented.

Results of underwater virtual world and in-water testing show that precise AUV

control based on sonar data can be implemented to an accuracy of less than six inches and

that this degree of precision is sufficient for use by higher-level tactics to plan and control

recovery. Additionally, the mission-planning expert system has been shown to reduce

mission planning time by approximately two thirds and results in missions with fewer

logical and programming errors than manually generated missions.

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION ..1

A. NPS CENTER FOR AUV RESEARCH AND THE PHOENIX AUV...... 1

B. MOTIVATION... 3

C. PROBLEM DESCRIPTION... 3

D. THESIS GOALS... 4

E. THESIS ORGANIZATION.. 5

II. RELATED WORK ...7

A. INTRODUCTION .. 7

B. RECOVERY OF AUTONOMOUS UNDERWATER VEHICLES 8

1. Massachusetts Institute of Technology (MIT).....................................8

2. Florida Atlantic University ..10

3. Shenyang Research and Development Centre of Robotics................13

4. Centre Technique Des Systemes Navals (CTSN)..............................17

5. Institute for Systems and Robotics, Instituto Superior Tecnico19

C. THE PHOENIX AUTONOMOUS UNDERWATER VEHICLE............ 20

1. Hardware Configuration ..20

2. The Rational Behavior Model (RBM) ...22

3. Precision Maneuvering using Sonar ..28

D. SUMMARY.. 31

III. RESEARCH METHODOLOGY ..33

A. INTRODUCTION .. 33

B. UNDERWATER VIRTUAL WORLD (UVW) 33

1. Overview..33

2. Sonar Simulation and Visualization...36

C. IMPLEMENTATION AND TESTING IN THE VIRTUAL WORLD ... 43

D. IMPLEMENTATION AND TESTING IN THE REAL WORLD 44

E. SUMMARY.. 45

viii

IV. EXECUTION LEVEL IMPLEMENTATION ...47

A. INTRODUCTION .. 47

B. SONAR BEHAVIOR ... 47

1. Manual Control ..47

2. Forward Scan ...49

3. Target Search ...49

4. Target Tracking..52

5. Target Edge Tracking ..54

C. STATION KEEPING ... 57

1. Station Keeping Commands ..57

2. Commanded AUV Position and Control ...58

3. AUV Tracking ...60

D. FINAL RECOVERY CONTROL .. 62

E. SUMMARY.. 64

V. TACTICAL LEVEL IMPLEMENTATION ..67

A. INTRODUCTION .. 67

B. RECOVERY PATH PLANNING .. 67

1. Transformations ...67

2. Line and Circle Tracking ...70

3. Recovery Planning ...74

C. EXECUTION COMMAND GENERATION... 78

D. SUMMARY.. 81

VI. STRATEGIC LEVEL IMPLEMENTATION ..83

A. INTRODUCTION .. 83

B. EVOLUTION OF THE STRATEGIC LEVEL.. 83

1. Mission Control ...83

2. Abstract Mission Control...85

3. Programming Language Issues ..87

C. A MISSION-GENERATION EXPERT SYSTEM 89

ix

1. Introduction..89

2. The Automatic Mission Generator...90

3. Phase-by-Phase Mission Specification ..97

4. Automatic Code Generation ..103

D. SUMMARY.. 105

VII. EXPERIMENTAL RESULTS ..107

A. INTRODUCTION .. 107

B. VIRTUAL WORLD RESULTS... 107

1. Recovery Control Results ..107

2. Strategic Level and Mission Planning Expert System Results114

C. REAL WORLD RESULTS .. 118

1. Sonar Tracking Behaviors..118

2. Station-Keeping Results...123

3. Strategic Level and Mission Planning Expert System Results129

D. SUMMARY.. 130

VIII. CONCLUSIONS AND RECOMMENDATIONS ...133

A. INTRODUCTION .. 133

B. RESEARCH CONCLUSIONS... 133

C. RECOMMENDATIONS.. 135

1. General Tactical Level Tests and Enhancements135

2. Sonar Tracking Behaviors..135

3. Sonar Classification ...137

4. AUV Tracking and Control ...137

5. Ocean Current and a Moving Submarine...138

6. Obstacle Avoidance During Recovery...139

7. Sensor and Hardware Issues ..139

8. Strategic Level Enhancement ..140

9. The Mission Planning Expert System..141

10. Operating System Issues ..142

x

11. Code Optimization ...143

12. Underwater Virtual World Improvement...144

D. SUMMARY.. 144

APPENDIX A. OBTAINING ONLINE RESOURCES ..147

APPENDIX B. EXECUTION LEVEL COMMAND LANGUAGE149

APPENDIX C. MISSION GENERATION EXPERT SYSTEM USER GUIDE157

LIST OF REFERENCES ..179

INITIAL DISTRIBUTION LIST ...185

xi

LIST OF FIGURES

Figure 1: The Phoenix Autonomous Underwater Vehicle [Brutzman 96] 2

Figure 2: The Odyssey II AUV [MIT Home Page 96] ... 8

Figure 3: The Ocean Voyager II AUV [FAU 96]... 10

Figure 4: Fuzzy Docking Algorithm [Smith 96]... 12

Figure 5: Virtual Docking Funnel for the Fuzzy Docking Algorithm [Smith 96]............ 14

Figure 6: The Explorer AUV Launcher[Ditang 92] ... 15

Figure 7: An Explorer AUV Recovery [Ditang 92].. 16

Figure 8: Phoenix External Configuration [Leonhardt 96]... 20

Figure 9: Phoenix Internal Hardware Configuration [Leonhardt 96] 22

Figure 10: The Rational Behavior Model Software Architecture [Holden 95] 23

Figure 11: A Simple RBM Strategic Level Search Mission... 25

Figure 12: Sample Execution Level Commands [Brutzman 94] 29

Figure 13: UVW Viewer Scene Graph Representation of Phoenix [Brutzman 94] 35

Figure 14: Visualization in the UVW ... 35

Figure 15: Open Inventor Scene Graph Representing the ST725 Sonar 43

Figure 16: Sonar and AUV Range and Bearing.. 52

Figure 17: Sonar Full Target-Track Mode Geometry... 54

Figure 18: Sonar Target-Edge-Track Mode Geometry... 56

Figure 19: AUV and Recovery Tube Layout at Recovery Control Initiation................... 63

Figure 20: Steering Function Terms [Kanayama 96] ... 72

xii

Figure 21: Tracking to a Desired Path Using the Steering Function 73

Figure 22: Holonomic System Geometry [McGhee 91]... 75

Figure 23: Voronoi-Based Recovery Regions and Path Planning Segments 77

Figure 24: Recovery Regions and Station-Keeping Corner Assignments........................ 79

Figure 25: Generated Commands Based on a Recovery Plan .. 80

Figure 26: Planned and Actual Recovery Path Results from a UVW Mission 81

Figure 27: Strategic Level Mission Controller in Prolog and C++................................... 84

Figure 28: Strategic Level Phase Specified in Prolog .. 86

Figure 29: Search Mission Automatically Generated with Means-Ends Analysis........... 91

Figure 30: Graphical Representation of an Automatically Generated Mission................ 94

Figure 31: Top-Level Operator Definitions for Search and Explosive Planting Goals.... 96

Figure 32: Mission Planning Expert System Main Window .. 98

Figure 33: Data Input Windows for Phase-by-Phase Mission Specification.................... 99

Figure 34: Error Reports for Individual Phase Errors and Mission Errors 101

Figure 35: State Table Summary of a Mission Specified Phase-by-Phase..................... 102

Figure 36: Sample Mission Defined with the Mission-Specification Language,
Automatically Generated Code in Prolog and C++ 104

Figure 37: Planned vs. Actual Virtual World Recovery in a Tube Oriented North........ 108

Figure 38: Planned vs. Actual Virtual World Recovery in a Tube Oriented Northeast . 109

Figure 39: Planned vs. Actual Virtual World Recovery in a Tube Oriented Southeast . 109

Figure 40: Planned vs. Actual Virtual World Recovery in a Tube Oriented South........ 110

Figure 41: Planned vs. Actual Virtual World Recovery in a Tube Oriented Southwest 110

xiii

Figure 42: Planned vs. Actual Virtual World Recovery in a Tube Oriented Northwest 111

Figure 43: Recovery with Poorly Tuned PD Control Constants..................................... 114

Figure 44: Standalone Testing of a Mission Using the ood_test Program 115

Figure 45: UVW Results of a Mission Generated Through Means-Ends Analysis 116

Figure 46: Stationary Sonar Full Target Track Bearing vs. Time 119

Figure 47: Stationary Sonar Full Target Track Range vs. Time..................................... 119

Figure 48: Stationary Sonar Target Edge Track Bearing vs. Time................................. 120

Figure 49: Stationary Sonar Target Edge Track Range vs. Time 121

Figure 50: Range vs. Time Plot Showing Loss of Track in a Confined Area 122

Figure 51: Bearing vs. Time Plot Showing Loss of Track in a Confined Area.............. 122

Figure 52: Commanded and Actual Range to a Cylinder with Target Tracking 123

Figure 53: Commanded and Actual Bearing to a Cylinder with Target Tracking.......... 124

Figure 54: Commanded and Actual Heading while using Target Tracking 124

Figure 55: Commanded and Actual Range to a Cylinder with Edge Tracking 126

Figure 56: Commanded and Actual Bearing to a Cylinder with Edge Tracking............ 126

Figure 57: Commanded and Actual Heading while using Edge Tracking 127

Figure 58: Commanded and Actual Range during Tube Station Keeping 128

Figure 59: Commanded and Actual Bearing during Tube Station Keeping................... 128

Figure 60: Commanded and Actual Heading during Tube Station Keeping 129

Figure 61: In-Water Results of an Automatically Generated Mission 130

Figure 62: Mission Planning Expert System Main Window .. 160

Figure 63: Initialization Parameters Data Input Window... 161

xiv

Figure 64: Phase Type Input Window .. 162

Figure 65: State Table Summary of a Mission Specified Phase-by-Phase..................... 163

Figure 66: Data Input Window for Transit Phase Specification..................................... 163

Figure 67: Phase Modification and Phase Deletion Windows.. 167

Figure 68: Invalid Phase Error Report Window ... 167

Figure 69: Means-Ends Mission Generator Facility Main Window............................... 169

Figure 70: Recovery Tube Data Entry Window ... 170

Figure 71: Search Point Data Entry Window ... 171

Figure 72: Sample Means-Ends Analysis Mission Solution Window............................ 172

Figure 73: Error Window for Detected Mission Errors .. 174

Figure 74: Output Language Selection Window .. 174

xv

LIST OF TABLES

Table 1: UUV Recovery Functions. After [Chapuis 96]... 18

Table 2: ST1000 and ST725 Positions in AUV Body Coordinates 41

Table 3: Station Keeping PD Control Law Constants ... 60

Table 4: Mathematical Model Constants [Marco 96a] .. 62

Table 5: Recovery Control PD Control Constants ... 64

xvi

1

I. INTRODUCTION

A. NPS CENTER FOR AUV RESEARCH AND THE PHOENIX AUV

This thesis is concerned with the mission planning, mission control, and precision

maneuvering required to support recovery of the Phoenix autonomous underwater vehicle

(AUV) in a simulated torpedo tube. Specific issues covered include automated mission

planning, finite state mission control, recovery path planning, recovery tube detection and

localization, and precise maneuvering control for docking.

The Naval Postgraduate School (NPS) has been actively involved in autonomous

underwater vehicle research for a number of years. Recently the NPS Center for AUV

Research was established to explore concepts in the design and control of AUVs. As they

are developed, concepts are implemented on the Phoenix AUV, a 236 centimeter long,

neutrally buoyant vehicle weighing approximately 200 kilograms. Research goals include

proving the feasibility of AUV use in shallow water mine countermeasure (MCM)

operations by implementation of a working proof-of-concept system and furthering the

state of the art in the field of AUVs in general. Specific research areas have included AUV

control, navigation, software architecture and mission planning.

The Phoenix AUV (Figure 1) is controlled by two on-board computers connected

via a local-area network (LAN). This LAN can be operated independently or can be

connected to other networks for real-time monitoring of mission progress. Vehicle

physical control is implemented using two lateral thrusters, two vertical thrusters, two aft

propellers, and eight control planes.

Until recently in-water testing of Phoenix had been limited to the Center’s 7.5 meter

by 7.5 meter by 2.5 meter test tank and the sub-Olympic size NPS pool. Salt water testing

began in January 1996 at Moss Landing, California. Future testing will be conducted at all

three sites and preparations are in progress for open-water testing in Monterey Bay.

2

Figure 1: The Phoenix Autonomous Underwater Vehicle [Brutzman 96].

3

B. MOTIVATION

Counter-mine warfare has recently become an important issue in the eyes of the

Navy’s senior leadership [Boorda 95]. Joint doctrinal changes, especially the introduction

of littoral warfare as a primary mission area, have pushed MCM operations to the forefront.

Mines have many characteristics that make them attractive to coastal nations that might be

the focus of littoral warfare. Mines are inexpensive, readily available, easy to use, difficult

to detect and disable, and have proven very effective against naval and amphibious

operations. The inadequacy of current United States MCM capabilities is amply

documented [Cheney 92].

The inherently covert nature of AUVs makes them an appealing platform for

shallow-water MCM operations. A small AUV launched and recovered covertly might be

capable of mapping or neutralizing a mine field without being detected. This ought to be

true even if the mine field is actively monitored by hostile forces.

C. PROBLEM DESCRIPTION

Since a small AUV will inevitably have a limited power supply, it will need to be

launched and recovered close to its operating area. While this constraint does not pose a

significant problem in civilian AUV applications, the need for covertness may preclude

launching the AUV from aircraft or ships for military missions such as MCM operations.

The obvious solution is to use submarines to launch and recover AUVs. Of specific interest

therefore is the launch and recovery of AUVs using a submarine’s torpedo tubes.

Launch of an AUV from a torpedo tube is a simple matter since launching is what

torpedo tubes are designed for. Recovery is much more complex and is not a declared

capability of any submarine. Recovery of an AUV via submarine torpedo tube can be

4

broken down into three subproblems: torpedo tube location and classification, recovery

path planning, and physical control of the AUV maneuvering along the recovery path.

Torpedo tube localization and classification involves using the AUV position, the

tube’s expected position, and active sonar (or some other means) to precisely locate the

AUV relative to the torpedo tube. [Murphy 96] uses the term extoprioception to describe

this type of localization which involves the position of the vehicle relative to objects in the

operating environment. This is in contrast to exteroception, which is the localization of

objects in the environment relative to the AUV. The precise nature of the motion required

for torpedo tube recovery dictates that estimates of AUV/tube relative positioning be

continually refined while the recovery is in progress in order to ensure the AUV is safely

maneuvering using the most accurate information possible.

Once the tube has been located and classified, a safe path into the tube must be

determined. The AUV will attempt to travel along this path during the recovery. A smooth

path must therefore be planned from the location of the AUV at the beginning of the

evolution to its desired location at the end. This path may need to be periodically replanned

as the position of the tube relative to the AUV is refined and updated.

The final aspect of torpedo tube recovery involves accurate movement of the AUV

to a series of desired positions and orientations relative to the torpedo tube. Once the tube

has been identified and a path planned, the AUV must be capable of accurately following

the commanded path. Motion control must be robust, even in the presence of uniform or

variable ocean currents.

D. THESIS GOALS

A large amount of research has been directed at executing MCM missions with the

Phoenix AUV, but recovery problems have not yet been addressed in any depth. The

primary goal of this thesis is to begin adapting the software architecture of the Phoenix

5

AUV to enable torpedo tube recovery. Specifically, developments to the Phoenix software

will enable reliable recovery in a simulated torpedo tube in the Underwater Virtual World

(UVW) [Brutzman 94]. UVW results are verified by in-water experiments to the greatest

extent possible. Issues to be dealt with include global positioning of the recovery torpedo

tube, recovery path planning, and local AUV positioning using active sonar and a

mathematical model during recovery.

E. THESIS ORGANIZATION

The Rational Behavior Model (RBM) is a three layer software architecture designed

to emulate the command structure of a manned submarine [Byrnes 96]. It is within the

context of this architecture that this thesis is organized. This chapter is devoted to the

motivation, problem discussion and goals for this project. Chapter II discusses previous

work in the area of AUV recovery and related work conducted on the Phoenix AUV in

particular. Chapter III discusses the core problems addressed by this work, the general

research technique used in this project and the design of experiments. Chapters IV, V, and

VI discuss implementation of features of this project at the three layers of the RBM.

Specifically, Chapter IV discusses implementation at the lowest layer (execution level).

Chapter V discusses implementation at the middle layer (tactical level). Chapter VI

discusses implementation of the top layer (strategic level) and the off-line automatic

mission generation expert system. Chapter VII focuses on the conduct and results of

experiments. Conclusions and recommendations for future work are presented in Chapter

VIII. The appendices contain source code, directions on how to obtain current versions of

the software, and directions on how to install and use the software.

6

7

II. RELATED WORK

A. INTRODUCTION

There are several potential AUV applications in addition to MCM that are being

explored by various organizations around the world. Environmental monitoring,

oceanographic research and maintenance/monitoring of underwater structures are just a

few examples. AUV’s are attractive in these areas for a number of reasons. Because of

their size and their nonreliance on human operators, they are potentially less expensive to

purchase and operate than manned or remotely operated underwater vehicles. AUV’s

might be deployed in larger numbers, for longer periods and on shorter notice [Smith 94,

Bellingham 94]. While remotely operated vehicles (ROV’s) partially share these

advantages, the requirement of a physical connection between the ROV and a host platform

or ship limits the ROV’s operating range and the required tether can be easily fouled. The

latter problem can be particularly limiting in restricted environments such as kelp forests

or under ice [Bellingham 94]. Given the potential applications and advantages of AUV’s,

it is no wonder that military, academic and commercial organizations around the world are

conducting research using these vehicles.

This chapter is divided into two major parts. The first covers research efforts of

other organizations that have been directed towards the recovery of AUVs. This section is

by no means a complete survey of world-wide AUV research. For a broader overview of

this subject, the reader is advised refer to [UUST 95, AUV 96]. The second section of this

chapter describes related research conducted on Phoenix. In this latter section emphasis is

given to the overall control architecture of Phoenix and the use of sonar for local-area

navigation.

8

B. RECOVERY OF AUTONOMOUS UNDERWATER VEHICLES

1. Massachusetts Institute of Technology (MIT)

Odyssey II (Figure 2) is a robot developed by the Massachusetts Institute of

Technology (MIT) Sea Grant College Program. Odyssey II was built for the conduct of two

specific scientific missions: under-ice mapping and rapid response to volcanic events at

mid-ocean ridges. Odyssey II is 215 centimeters in length, 59 centimeters diameter and

displaces 140 kilograms. Major design goals were to minimize drag, power requirements

and size while maximizing hull strength and endurance. These sometimes contradictory

goals were necessary to support long missions under extreme environmental conditions.

[Bellingham 94]

Physical control of Odyssey II is via a single aft-mounted thruster and four control

planes mounted on the aft portion of the fuselage. The absence of lateral and vertical

Figure 2: The Odyssey II AUV [MIT Home Page 96].

9

thrusters means that Odyssey II must maintain forward motion in order to maneuver.

Minimum maneuvering speed is approximately 0.5 meters per second and turn radius is

approximately five meters [Bellingham 94]. Programmed vehicle behaviors must take

these maneuvering characteristics into account.

Odyssey II uses three fixed sonars for obstacle detection/avoidance and an altitude

sonar that can be oriented vertically to maintain altitude from the sea floor or overhead ice.

A low-frequency hyperbolic long-baseline acoustic system is used for vehicle navigation

during the conduct of a mission [Bellingham 92]. Mission sensors include various

oceanographic instruments, a still camera and a video recorder. The primary on-board

computer is a 40MHz 68030 operating under the OS-9 real-time operating system. This

computer is connected to several microcontrollers that are responsible for control of some

of the vehicle’s subsystems. [Bellingham 94]

Logical control of Odyssey II uses a layered software system. The primary building

block of the system is referred to as a behavior. An individual behavior is responsible for

a specific type of action. Examples of behavior types include homing, collision detection,

survey with navigation, and race track. The current values and priorities of all active

behaviors as well as the sensor data is maintained in a vehicle state structure. This structure

is evaluated by the dynamic controller which actually commands the vehicle’s physical

actuators. [Bellingham 94]

Recovery of Odyssey II relies on homing and uses a commercially available ultra-

short baseline (USBL) acoustic system as a beacon. The homing behavior uses range and

bearing updates from the UBSL system to guide Odyssey II into a capture net. The system

has been successfully tested in under-ice operations with the vehicle typically returning to

within 30 cm of the homing beacon [Bellingham 94]. While navigational accuracy of 30

cm is not sufficient to control an entire torpedo-tube recovery, a system such as this may

be ideal for the near-field or close-proximity navigation portion of the recovery. An

10

acoustic navigation system providing accuracy to less than one meter might be used to

position the AUV relative to the recovery tube, so that on-board AUV sensors can acquire/

classify the recovery tube and control the final portions of the recovery.

2. Florida Atlantic University

a. Ocean Voyager II

Ocean Voyager II, shown in Figure 3, is the result of a joint research effort

conducted by the Ocean Engineering Department of Florida Atlantic University (FAU) and

the Marine Science Department of the University of South Florida. Ocean Voyager II is an

AUV similar in size and structure to Odyssey II and is intended for coastal oceanographic

research. The vehicle is 240 centimeters long and displaces approximately 250 kilograms.

Maximum speed is 1.54 meters per second and endurance is approximately eight hours.

[Smith 94]

Like Odyssey II, Ocean Voyager II uses a single aft mounted thruster and

four control planes mounted on the aft portion of the fuselage. Again, this control

arrangement requires Ocean Voyager II to maintain forward speed to maintain posture

Figure 3: The Ocean Voyager II AUV [FAU 96].

11

control. This constraint is not a problem given the type of mission for which the vehicle is

intended. While Odyssey II is designed for deep-water operations, the missions for which

Ocean Voyager II is intended require the vehicle to cruise in a regular pattern at a fixed

altitude above the bottom [White 96, Smith 94]. Specific missions include monitoring sea

grass, monitoring macro-algae beds and evaluating the effects of storm-front passage

[Smith 94].

While the missions for which Ocean Voyager II is designed are fairly

specific in nature, each mission requires different sensor packages. The sensor payload is

contained immediately aft of the AUV’s nose cone and is designed to be modular in nature.

This modularity allows for fairly simple but specialized sensor packages installed for each

mission [White 96].

Logical control of Ocean Voyager II is implemented by a fuzzy rule-based

algorithm. The control algorithm is similar to that of Odyssey II except that instead of

behaviors, Ocean Voyager II control modes use the results of fuzzy rules to compute

control commands and confidence levels. The output of each mode is evaluated by the

fuzzy weighted decision arbiter which determines the actual control outputs. Abort and

avoid modes provide for vehicle safety. Track, stable and no-operation modes provide for

data collection during normal operation. Additional modes for waypoint navigation,

docking or other behaviors are possible but have not yet been tested. [Smith 96]

b. Recovery of Ocean Voyager II

Significant simulation-based research in the area of AUV recovery has been

conducted using Ocean Voyager II. In [Rae 92, Rae 93] the possibility of using fuzzy logic

to control recovery by a submarine was explored, while [White 96] documents more recent

research into using the same general procedure to control docking with a fixed structure.

12

The fuzzy docking algorithm uses a “virtual funnel” to control the AUV

towards the goal. The virtual funnel is represented by fuzzy rules that define desired

motion for the AUV given its current position. As long as the vehicle remains inside the

region defined by the virtual funnel, it will proceed towards the docking target. If the AUV

wanders outside the funnel, it will be vectored towards a new starting position and will

begin again. The size and shape of the docking funnel are determined by vehicle

characteristics and the external environment. A strength of the fuzzy docking algorithm is

that obstacle avoidance is an integral consideration. A flow chart representation of the

fuzzy docking algorithm is depicted in Figure 4. [Rae 92, Rae 93, White 96]

[Rae 92, Rae 93] assume that the AUV has accurate relative position

information for itself and the dock throughout the docking procedure. While this

assumption precluded immediate implementation in the vehicle, tests documented in these

Figure 4: Fuzzy Docking Algorithm [Smith 96].

In Funnel?

Reached Dock?

Stop

Yes

No

Yes

Backout
No

Start
Approach Target

13

papers indicated that the algorithm was valid so long as accurate navigational data was

obtained. Specifically [Rae 92] documents simulation results of fuzzy docking algorithm

use to dock with a stationary submarine. [Rae 93] expands on this work by simulating the

use of the algorithm to dock with a moving submarine and also attempts to model suction

forces and wake turbulence created by a moving submarine. [White 96] documents

simulation results that indicate that if a boundary area is included in the virtual funnel to

account for navigational inaccuracy as depicted in Figure 5, the algorithm is still valid.

Simulation results documented in [White 96] were based on expected navigational

accuracy using the DivetrackerTM system. An interesting additional result was that the

navigational accuracy of the DivetrackerTM system may be sufficient to control the entire

docking maneuver.

3. Shenyang Research and Development Centre of Robotics

The Shenyang Research and Development Centre of Robotics is a research

organization in the People’s Republic of China. The AUV being developed by this group

is named Explorer. While Explorer is similar to the Odyssey II and Ocean Voyager II in

operating capabilities and characteristics, it is interesting and relevant in this context

because of its recovery device. Although Explorer is operated from a surface ship, launch

and recovery takes place underwater.

Four options were considered for Explorer’s launch and recovery system: recovery

in the center well of a support ship, recovery using a submarine, recovery using a semi-

submersible platform, and recovery using a submersible platform. The final system uses a

submersible cage that is lowered by a crane on the support ship. The decision to use an

underwater launch and recovery procedure was based on two factors: the difficulty of a

surface recovery in high sea states and Explorer’s relatively poor navigational capabilities

on the surface. [Ditang 92]

14

Figure 5: Virtual Docking Funnel for the Fuzzy Docking Algorithm [Smith 96].

Virtual
Docking
Funnel

Higher Precision Maneuvers
(slower)

Target

Prohibited
Region

Prohibited
Region

Boundary Boundary

Docking
Region

Lower Precision Maneuvers
(faster)

15

The launcher itself is a cage-like structure that is lowered by crane to a depth of 30

to 50 meters. The launcher has two locking arms for securing the AUV when it is in the

launcher, a television camera for monitoring of the recovery and two vertical thrusters

which are used to maintain the launcher at the specified depth. Explorer uses an ultrashort

baseline (USBL) navigation system and an on-board video camera to navigate during the

recovery process. A drawing of the launcher configuration is depicted in Figure 6.

[Ditang 92]

The Explorer recovery process consists of five steps. First the launcher is lowered

to the appropriate depth. Once lowered to the specified depth, the launcher thrusters

automatically maintain the launcher’s depth so that motion control by the ship-board

operator is not required. Next Explorer uses the USBL system to navigate to a position in

front of the launcher. Once within visual range, the on-board video camera is used to

identify reference points on the launcher and provide precise relative position information

during the final phase of the recovery. The launcher operator uses the launcher’s camera

to determine when the AUV is in the final recovery position. Once the AUV is in place the

Figure 6: The Explorer AUV Launcher (units are mm) [Ditang 92].

16

locking arms are closed, and both launcher and AUV can be raised into the ship. A

depiction of an Explorer recovery using the launcher can be seen in Figure 7. [Ditang 92]

While recovery of an AUV in this fashion is a far cry from recovery within a

torpedo tube, it is noteworthy in two respects. First, this system requires close coordination

between the recovering ship and the AUV. If the launcher is not at the appropriate depth

or location, or if the locking arms are not operated properly, the recovery will not be

successful. This coordination between the AUV and its recovery vehicle is a basic

assumption upon which successful recovery is based and is discussed in more detail in

[Gwin 92] and [Chapuis 96]. Second, Explorer uses multiple navigation techniques during

Figure 7: An Explorer AUV Recovery [Ditang 92].

17

different phases of the recovery. The on-board television camera provides accurate local

navigation during the final phase of the recovery, but video is of no use in locating the

launcher from a distance of more than a few feet. The USBL navigation system allows

Explorer to get close to the launcher, but does not provide enough precision to actually

enter the launcher.

The recovery procedure being considered for Phoenix is similar, using the

DivetrackerTM system to navigate to a position from which the recovery tube can be

acquired and identified using the two on-board sonar systems. The Phoenix sonars are then

used for precision maneuvering into the tube using techniques described in [Healey 94] and

[Marco 96a].

4. Centre Technique Des Systemes Navals (CTSN)

As part of a larger feasibility study on the design of recoverable unmanned

underwater vehicles (UUV’s), the Centre Technique Des Systemes Navals (CTSN),

located in Toulon France, has attempted to identify functions upon which UUV launch and

recovery from submarines rely and the environmental factors affecting each of these

functions [Chapuis 96]. For the most part the functions and environmental factors

identified are relevant to the launch and recovery of both AUV’s and ROV’s. Functions

are divided into two types: main functions and constraint functions. Main functions are

those functions that directly accomplish high level goals. Constraint functions are those

that facilitate the successful completion of main functions or are inherent subfunctions of

a main function.

For UUV recovery, one main function and six constraint functions were identified.

These functions and the factors effecting them are shown in Table 1. The main function is

simply the transition of the UUV from the open sea into the submarine. Constraint

functions include communication with the submarine, entry into the recovery system,

18

straight navigation despite swell and waves, adapting to depth effects such as pressure and

light level, obstacle avoidance, and resistance to the marine environment. By performing

this assessment process repeatedly, the problem requirements of torpedo-tube docking with

a submarine are fully specified. [Chapuis 96]

Function Criteria

Transition from open sea into
submarine

vehicle speed

vehicle path

Communicate with submarine Communication system type

attenuation

intensity

frequency band

range

Enter recovery system vehicle path

vehicle speed

vehicle size

recovery device size

recovery device sensors

Navigate straight in the pres-
ence of waves and current

wave significant height

wave period

wave direction

current speed

current direction

Adapt to depth effects depth

temperature

Avoid obstacles obstacle density

obstacle speed

obstacle direction

distance obstacle/vehicle

Resist the marine environment acidity

Table 1. UUV Recovery Functions. Underlined criteria are considered dominant. After
[Chapuis 96]

19

5. Institute for Systems and Robotics, Instituto Superior Tecnico

Still another AUV research project is being conducted by the Institute for Systems

and Robotics Instituto Superior Tecnico (IST) of Lisbon, Portugal. The research vehicle of

this organization is named Marius. However this research is relevant in the context of this

thesis (specifically Chapter VI) because of the mission control/planning features rather than

the vehicle itself.

High level mission control of Marius uses a mathematical structure called a Petri

net [Cassandras 93, Peterson 81]. A Petri net is a type of graph consisting of transitions,

places and arcs. When used for AUV mission control, transitions correspond to actions to

be undertaken by the vehicle, places correspond to preconditions for execution of a

transition or results of transition execution, and arcs are used to connect transitions to the

appropriate precondition and postcondition places. A token is used to mark all places

whose conditions are satisfied. When all of a transition’s precondition places contain

tokens, the transition is enabled. Since multiple transitions may be enabled at the same

time, Petri nets are well suited to representing parallelism in a system.

The CORAL development environment has been developed by IST as the interface

for generating missions. This system uses a graphical interface to define the Petri net

representing a mission, and assign specific tasks to the transitions. A CORAL Engine has

also been developed to accept and execute Petri net descriptions. Details of the CORAL

system can be found in [Oliveira 96].

Recent research has been conducted to use the CORAL system for defining and

executing missions with other AUVs. Towards this end, a mission was successfully

executed by the Phoenix AUV using CORAL without making any modification to Phoenix

software [Healey 96]. The results of this research are an indication of the general

equivalence of several AUV multiple-level mission-control strategies.

20

C. THE PHOENIX AUTONOMOUS UNDERWATER VEHICLE

1. Hardware Configuration

The Phoenix AUV is 235 centimeters in length, 41 centimeters in width, 25

centimeters in height and displaces 198 kilograms [Leonhardt 96]. The main body, which

houses Phoenix’ electronic and power equipment, is constructed of aluminum and is

designed to be water tight to eight meter depth. The free-flood nose cone is constructed of

fiberglass and houses the vehicle’s sonars, depth sensor and waterspeed probe. Physical

control of Phoenix is via two aft thrusters, two lateral cross-body thrusters, two vertical

cross-body thrusters, and eight control planes. The rectangular hull form and large number

of propulsion effectors are intended to facilitate precise position and orientation control

whether the vehicle is hovering or transiting. The external layout of Phoenix is depicted in

Figure 8.

Figure 8: Phoenix External Configuration [Leonhardt 96].

21

Phoenix is controlled by two on-board computers. The vehicle’s actuators and

sensors are monitored and controlled by processes running on a 30 MHz Gespac 68030

computer under the OS-9 real-time operating system. Higher-level mission control, data

collection and planning are handled by processes running on a Sun Voyager workstation

under the Unix operating system. The two computers are connected by an on-board

Ethernet local-area network (LAN). The vehicle also has an external Ethernet connector

which can be used to communicate with the on-board computers from an external network.

This external connection is primarily used for mission loading and data retrieval and is

simply terminated during untethered missions.

Phoenix’ primary navigational equipment consists of a differential Global

Positioning System (GPS) receiver and a DivetrackerTM short baseline acoustic tracking

system. Phoenix’ use of these systems is covered in detail in [McClarin 96] and

[Scrivener96]. In addition, Phoenix has a turbine flow-meter probe for water speed

measurement, a depth cell, pitch, roll and yaw rate gyros, and heading and vertical gyros.

Phoenix has three sonars: a PSA900 altimeter sonar, an ST1000 mechanically

steered sonar and an ST725 mechanically steered sonar. The PSA900 and ST1000 sonars

are controlled from the GESPAC computer while the ST725 is controlled by the Sun

Voyager. The ST1000 has a one-degree conical beam and a 360-degree sweep [Tritech

International Ltd. 92a]. The ST725 also has a 360-degree sweep, with a horizontal width

of 2.5 degrees and a vertical width of 28 degrees [Tritech International Ltd. 92b].

Other on-board equipment includes two leak detectors, two lead-acid-gel batteries

capable of providing approximately two hours of power for the vehicle’s computers and

motors, and hydrogen absorbers located throughout the vehicle. The internal layout of

Phoenix is depicted in Figure 9.

22

2. The Rational Behavior Model (RBM)

a. Overview

The Rational Behavior Model (RBM) is a three-layer software architecture

for the control of autonomous vehicles [Byrnes 93, Byrnes 96]. RBM attempts to closely

model the command structure of manned ships as depicted in Figure 10. The top layer

(strategic level) is responsible for defining high-level goals and controlling overall mission

sequencing. The strategic level of RBM roughly corresponds to the commanding officer

of a manned ship. The middle layer (tactical level) is responsible for interpreting the high-

level guidance from the strategic level and issuing control commands to the lowest layer

Figure 9: Phoenix Internal Hardware Configuration [Leonhardt 96].

23

(execution level) [Marco 96b]. In addition to direction of the execution level, the tactical

level is responsible for navigation, obstacle detection/classification, obstacle avoidance,

path planning, and system monitoring [Leonhardt 96]. The responsibilities of the tactical

level are analogous to those of the officer watch team on a manned ship. The execution

level is responsible for interfacing with the vehicle’s hardware to produce desired physical

responses. This layer corresponds to the watch-standers on a manned ship. In Phoenix

implementation of RBM the strategic and tactical levels run on the Sun Voyager while the

execution level runs on the Gespac computer. Communication between the tactical and

execution levels is via BSD Unix sockets while communication between processes at the

tactical level is via Unix pipes [Leonhardt 96].

b. Strategic Level

An RBM strategic-level mission is structured as a deterministic finite

automata (DFA), sometimes referred to as a finite state machine [Hopcroft 79]. Each high-

Figure 10: The Rational Behavior Model Software Architecture [Holden 95].

24

level mission goal (or phase) represents a node (or state) in the DFA. Transitions within

the DFA occur whenever a phase succeeds or fails. Upon phase completion or failure,

subsequent phases to execute are specified by the transitions of the DFA. Thus each node

has two exit transitions: one for successful phase completion and one for phase failure. On

first consideration, limiting each node of the DFA to exactly two exit transitions might

seem to restrict the versatility of the RBM strategic level. However any DFA of arbitrary

complexity can be restructured as a logically equivalent binary DFA because any decision

tree can be restructured into an equivalent binary decision tree [Rowe 88]. Thus this

restriction on the DFA structure in no way limits the versatility of the strategic level. A

graphical representation of an RBM strategic-level DFA for a simple search mission is

shown in Figure 11. Implementation of the strategic level as a structured DFA provides a

flexible means of describing and sequencing sophisticated missions.

In order to execute a mission, the strategic level requires three software

components. The first part is a DFA specification of the mission. The second part is a

mission controller that will control transitions through the DFA and initiate the appropriate

phases at the appropriate times. The final part is a set of primitive strategic-level goals that

provide the syntax and semantics of a command language from the strategic to the tactical

level. These goals are implemented as messages to the tactical level.

The set of available messages to the tactical level constitute what amounts

to a tactical-level command language. Commands are used to tell the tactical level to start

timers, specify hover points and waypoints, conduct searches and to perform other high-

level operations that make up the strategic level’s primitive goal set.

25

Commence

Dive

Transit to
Op Area

Hover at:
(X, Y, Z)

Search at:
(X, Y, Z)

Return to
Base

Mission
Complete

Go to
Shallow
Depth

Return to
Base

Mission
Abort

KEY

down arrow transitions
indicate phase success

right arrow transitions
indicate phase failure

Figure 11: A Simple RBM Strategic Level Search Mission.

26

A final noteworthy aspect of the RBM strategic level is the absence of

mathematical computation. The RBM architectural structure permits arithmetic

computations to be performed only in the lower two RBM layers. In fact the strategic level

as initially proposed in [Byrnes 93] further required that numerical data be confined

entirely to the lower levels of the RBM. It has subsequently been found desirable to permit

numerical data at the strategic level as part of the high-level goal specifications [Leonhardt

96], although this level remains concerned only with initiating phases and waiting for

successful completion or failure. This example alludes to a larger issue that must

constantly be dealt with: what facilities need to be placed at what layers of a multi-layer

software architecture? In this instance, the final decision was based more on how the data

was being used than what type of data it was.

c. Tactical Level

On Phoenix several concurrent processes are used to implement the tactical

level. These processes consist of the officer of the deck (OOD) module, the sonar module,

the navigator module and the replanner module [Leonhardt 96]. Future plans include the

implementation of an engineer module that will be responsible for monitoring and

troubleshooting vehicle systems and detecting system failures and degradations.

The OOD module receives commands from the strategic level and state

information from the execution level. The OOD uses this information to direct the other

tactical level modules and the execution level [Leonhardt 96]. Additionally, the OOD

module determines when individual phases have completed or failed and responds

accordingly to strategic level queries concerning the status of the current phase. OOD

responses to strategic level queries are always binary in nature and indicate a yes or no

response [Byrnes 96]. More detailed information concerning the implementation of the

OOD module can be found in [Leonhardt 96].

27

The sonar module is responsible for controlling the ST725 sonar and

interpreting the sonar’s data. During most operations the sonar is swept back and forth

directly in front of the AUV in order to find and classify objects in Phoenix’ path, but it can

also be used to conduct a 360 degree search from a hover [Campbell 96]. The sonar module

uses parametric linear regression to construct line segments from sonar returns and a rule

based expert system to connect line segments into polygons. This sonar return

classification process is described in detail in [Brutzman 92] and [Campbell 96].

The navigator module is responsible for maintaining accurate current

position information. A Kalman filter is used to combine GPS, differential GPS,

DivetrackerTM and dead reckoning data to compute Phoenix’ position. Implementation

details of the navigator module can be found in [McClarin 96].

The replanner is responsible for planning safe paths around obstacles

detected by the sonar module. Replanner implementation is covered in detail in

[Leonhardt 96].

d. Execution Level

The execution level is implemented as a single closed-loop process. Each

loop iteration consists of three phases: sense, decide and act. The execution level process

reads sensors and computes values for parameters that do not have a dedicated sensor

during the sense portion of the loop. The execution level process then uses this information

to determine what control inputs are necessary to achieve the most recent tactical level

command. Finally appropriate commands are sent to each control actuator. [Burns 96]

In addition the execution level forwards a copy of the updated state vector

to the tactical level and checks for a new command from the tactical level each time through

the closed loop. The complete set of tactical level commands also constitutes a command

language [Brutzman 96]. Each command consists of a keyword followed by a number of

28

parameters. Execution-level commands are available for explicitly setting control

actuators, setting control modes and updating state information such as position and ocean

current that is maintained at the execution level. The most recent command determines

what control mode the AUV will use. Available control modes include hover control,

waypoint control, lateral control, rotate control and a few others. A subset of the available

commands is shown in Figure 12, with a complete listing included in Appendix B.

A final responsibility of the execution level is the initiation of a reflexive

mission abort under certain circumstances [Burns 96]. A mission will be aborted if any of

the following occurs: leak detected, low battery, imminent collision or loss of primary

navigation system. In the event of an automatic abort, the AUV will surface as quickly as

possible using thrusters and planes. Upon reaching the surface, the mission will terminate.

3. Precision Maneuvering using Sonar

Recognizing that accurate positioning relative to objects in the AUV’s environment

is at times more important than accurate global navigation, research into using Phoenix’

sonars for navigational purposes was begun shortly after the project’s inception. Early

efforts focused on tactical and execution level coordination and command sequencing in

order to facilitate navigational use of the sonar and on implementing primitive behaviors

for control and use of vehicle sonars.

29

Figure 12: Sample Execution Level Commands [Brutzman 94].

WAIT # Wait/run for # seconds

RPM # [##] Prop ordered rpm values

COURSE # Set new ordered course

TURN # Change ordered course #

RUDDER # Force rudder to # degrees

DEPTH # Set new ordered depth

PLANES # Force planes to # degrees

ROTATE # Open loop rotate control

NOROTATE Disable open loop rotate

LATERAL # Open loop lateral control

POSTURE #a #b #c #d #e #f
 (x, y, z, phi, theta, psi)

POSITION # ## [###] Reset dead reckon
 i.e. navigation fix

ORIENTATION # ## ### (phi, theta, psi)

 [#standoff-distance]
HOVER [#X #Y] [#Z] [#orientation]

WAYPOINT #X #Y [#Z]

GPS-FIX Proceed to shallow depth
 take GPS fix

GPS-FIX-COMPLETE Surface GPS fix complete

TRACE Verbose print statements

30

Early results were published in [Healey 94]. The first significant result of this

research was the implementation of vehicle behaviors that used the newly installed lateral

and vertical thrusters to obtain hover-like control. These behaviors included heading

control, depth and pitch control, lateral speed control and lateral position control.

Behaviors were also implemented for use of the sonars and included center sonar, ping and

get sonar range, step sonar (without pinging) and initiate or reset the sonar data filters. The

philosophy used during this research was to accurately implement functionality at the

execution level before attempting to use these behaviors at the higher RBM levels

[Healey 94].

Once accurately implemented, these behaviors were used to achieve bottom-

following and wall-following behaviors. These behaviors were implemented using simple

proportional derivative (PD) control laws for thruster values. Command sequencing and

timing were also addressed at this stage. For example, it is futile to command the AUV to

maintain a distance from a wall if the sonar is not directed towards the wall. It is therefore

the responsibility of the tactical level to sequence commands to the execution level

appropriately. [Healey 94]

Recently a more robust method of AUV positioning relative to an object has been

developed. This method, documented in [Marco 96a], uses the ST1000 to locate the target

and uses a mathematical model to navigate to the commanded location relative to the

object.

The position of the object, in this case a 0.5 meter diameter cylinder, is determined

by continually sweeping the ST1000 through a sector centered on the expected bearing of

the object. The sector size was 70 degrees and angular resolution of the sonar was 1.8

degrees. Sonar returns are connected into segments which are examined to determine

which segments represent the cylinder. Simple rules based on the cylinder’s size, shape

and location are used to determine which segments comprise the cylinder. Once the

31

cylinder is identified, the location of the vehicle in a navigation frame attached to the

cylinder with axes aligned North (x) and East (y) can be computed.

Since the target position update is much slower than the ten hertz control loop, a

simplified mathematical model for hydrodynamic response is used to navigate towards the

desired relative position between updates. The model includes drag, added mass and steady

state surge. It is assumed that the estimated position of the target based on sonar returns is

accurate while the mathematical model is inaccurate. Therefore the current model estimate

is reset whenever the sonar updates the target position. Results reported in [Marco 96a]

indicate that this methodology works well despite known inaccuracies in the mathematical

model.

D. SUMMARY

Given the wide array of potential uses and advantages for AUVs, it is no surprise

that research is being conducted by numerous organizations worldwide. There are however

many issues that remain to be resolved. One of these is AUV recovery. Several

organizations have begun work on different recovery techniques, and there are a number of

systems in various research stages. Various aspects of these systems may prove helpful in

solving the problem of covert launch and recovery of AUVs from submarines.

Research conducted using Phoenix in the area of precision maneuvering using sonar

may prove helpful as well. The technique of combining sonar feature extraction and

model-based control in particular forms the basis of a significant portion of the research

detailed in the following chapters.

32

33

III. RESEARCH METHODOLOGY

A. INTRODUCTION

This chapter is intended as an overview of the tools and methodology used during

this research. This discussion is broken into three sections. Section B covers the

Underwater Virtual World (UVW), a three-dimensional (3D) graphical simulation that

supports realistic and comprehensive testing of an AUV in the laboratory. Section B also

examines specific of the UVW and the enhancements that were made to support this

research. Section C covers implementation and testing using the UVW. Section D covers

validation of vehicle software in the real world.

B. UNDERWATER VIRTUAL WORLD (UVW)

1. Overview

Implementation and testing of AUV software in the real world is inherently difficult

for a number of reasons. Logistical requirements, vehicle maintenance and limited power

supplies all limit the amount of in-water testing that is possible even under optimal

circumstances. Additionally, the remote environment in which AUVs operate precludes

run-time monitoring and can make data evaluation after the fact difficult at best. Finally

the unpredictability of the marine environment may make it difficult or impossible to

conduct tests within desired environmental parameters. The UVW is meant to address all

of these issues. By providing a means of comprehensively and accurately testing the AUV

in the laboratory, the UVW allows the implementation and testing of vehicle software

under conditions such as ocean current, restricted-area maneuvering and depths that are

impractical or impossible to duplicate in real-world testing. [Brutzman 94, Brutzman 95]

The UVW is organized in two fairly distinct pieces: the dynamics module and the

viewer. The dynamics module represents the virtual world in which the AUV is operating.

34

Included in the dynamics module are vehicle hydrodynamics and simulated sensor

response. During the sense portion of the control loop, the vehicle’s execution-level

software relays a copy of the state vector from the previous loop to the dynamics module.

The state vector includes values for all salient vehicle characteristics including posture,

velocities, accelerations, and control and sensor settings. The dynamics module applies the

vehicle’s hydrodynamics formulas, calculates the sensor readings, and returns an updated

state vector to the execution level. This relay of state vectors between the dynamics module

and the execution level takes the place of physical sensor readings and actuator response

by the execution level in the real world. [Brutzman 94]

The second portion of the UVW, the viewer, provides real-time interactive 3D

graphics visualization of the AUV during test runs in the UVW. Control settings (planes,

propellers and thrusters) and sonar are represented graphically allowing intuitive

qualitative analysis of vehicle performance. Since the AUV relies only upon its sensors,

visualization is of little importance to the vehicle itself. It is, however, extremely useful to

human operators to be able to see how the AUV is performing without having to analyze

large amounts of data. The diagnostic value of this tool has been proven on an almost daily

basis. [Brutzman 94, Brutzman 95]

The viewer is written using the Open Inventor graphics package [Wernecke 94].

Based on the Open GL graphics library, Open Inventor provides an object-oriented

extension to the C++ programming language for scene description and manipulation. A

scene is represented as a graph. A node in the graph represents some piece of information

about the scene such as an object, a location, a material or a scaling factor. When an action

(such as render) is applied to the scene graph, the graph is traversed in a depth-first fashion

described in [Wernecke 94] and the action is applied to each node in turn. Figure 13 shows

the Open Inventor scene graph used to represent Phoenix. A rendered depiction of a scene

graph from the UVW is shown in Figure 14.

35

Figure 13: UVW Viewer Scene Graph Representation of Phoenix [Brutzman 94].

Figure 14: Visualization in the UVW.

36

A second feature of Open Inventor is its scene description language [Wernecke 94].

The scene description provides a means of representing scene graphs using readable text.

Objects defined using the scene description language and stored in files can be loaded into

the scene graph at run-time. Similarly, any portion of the scene graph can be written to a

file at run-time for later use or analysis. The ability to read and write portions of the scene

graph at run time is especially useful in the UVW since it allows arbitrary objects to be

loaded into the scene graph for different missions.

2. Sonar Simulation and Visualization

a. General

The most significant limitation of the initial version of the UVW used

during this thesis was the sonar model. Until recently UVW sonar representation was

limited to the ST1000 sonar and only to the 25 ft by 25 ft CAUVR test tank. This

representation used a simplified planar two-dimensional trigonometric model described in

[Brutzman 94] to calculate sonar returns based on a known AUV position within the tank.

Other objects present in the scene graph were not represented in the sonar model. In order

to support this and other research, a more general sonar model representing arbitrary

targets and both the ST1000 and the ST725 sonars was needed.

The solution produced for this thesis is to use facilities present in the Open

Inventor package to simulate both sonars. One of the actions available in Open Inventor is

a ray-pick action (SoRayPickAction) [Wernecke 94]. To use the ray-pick action, the

starting point of the ray and its orientation are specified and the action is applied to the

scene graph. After application, the ray-pick action returns the point (if any) where it first

intersected an object in the scene graph to which it was applied. If the origin of the ray

corresponds to the location of a sonar, and the orientation of the ray corresponds to the

orientation of the sonar, then the distance from the origin of the ray to the first intersection

37

with an object in the scene graph is analogous to the sonar range. Because of the short

ranges involved (less than thirty meters), bending of the sonar beam is assumed to be

negligible [Brutzman 94]. Such an approximation usually remains valid at longer sonar

ranges (hundreds of meters) but depends on the sound speed profile of the environment

[Urick 83].

Since sensor modeling is handled in the dynamics module, a copy of the

scene graph must loaded into this module in order to use the ray-pick action to compute

sonar ranges. While the dynamics module uses a copy of the scene graph, there is no need

for the dynamics module to render it. By maintaining a copy of the scene graph in the

dynamics module without rendering it, a general geometric sonar model has been

implemented without sacrificing real-time performance [Brutzman 96].

Because of the imperfect nature of sonar data an error model must also be

implemented in order to accurately represent a sonar. In the absence of empirical sonar

error data on the ST1000 and ST725 sonars, a uniform error distribution has been

implemented where the user can specify the maximum amount of error as a percent of the

range. The sonar range including error is computed for either sonar by the dynamics

module using the formula

(Eq. 1)

where is the maximum error percentage, is a random number between zero and

two and is the error-free sonar range returned by the geometric sonar model. As more

empirical error data becomes available, the sonar error distribution will be modified to

more accurately represent the performance of both sonars. A uniform error distribution can

be modified to provide an arbitrary empirical probability distribution in a straightforward

manner as explained in [Fishwick 95].

RRay error– e rand 2() 1–()RRay⋅ RRay+=

e rand 2()

RRay

38

b. ST1000 Sonar

Because the ST1000 sonar is a one-degree conical (pencil-beam) sonar, its

representation using the ray-pick action is fairly straightforward and uses a single ray. The

location of the sonar head in world coordinates is computed using the position and

orientation of the AUV in world coordinates (data that is encapsulated in the AUV’s

homogeneous transformation matrix) and the position of the ST1000 in AUV body

coordinates. The homogeneous transformation matrix is defined as [Craig 89]

(Eq. 2)

where , and are the AUV azimuth, elevation and roll respectively, (, ,) is the

AUV position in world coordinates, and and are cosine and sine functions

respectively. Using the homogeneous transformation matrix the position of the ST1000

sonar in world coordinates is computed as

(Eq. 3)

where (, ,) is the position of the ST1000 sonar head in AUV body coordinates.

The orientation of the ray representing the ST1000 is found in a similar

fashion using the orientation of the sonar beam relative to the AUV and the rotation matrix

corresponding to the orientation of the AUV. Since the ST1000 sonar only has one degree

of freedom (DOF) (rotation about the z-axis), the unit vector representing ST1000 beam

orientation relative to the AUV can be computed using

H

c ψ()c θ() c ψ()s θ()s φ() s ψ()c φ()– c ψ()s θ()c φ() s θ()s φ()+ x

s ψ()c θ() s ψ()s θ()s φ() c ψ()c φ()+ s ψ()s θ()c φ() c θ()s φ()– y

s θ()– c θ()s φ() c θ()c φ() z

0 0 0 1

=

ψ θ φ x y z

c X() s X()

xe

ye

ze

1⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

H

xb

yb

zb

1⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

xb yb zb

39

(Eq. 4)

where is the bearing of the ST1000 sonar. The vector representing the orientation of the

beam unit vector in world coordinates is computed using the formula

(Eq. 5)

where is the rotation matrix of the AUV given by [Craig 89]

(Eq. 6)

This equation corresponds to the top left portion of the matrix of Equation 3.

Once the location of the sonar head and the orientation of the sonar beam

have been calculated in world coordinates, the ray-pick action is applied to the scene graph.

The distance from the origin of the beam to the point returned by the ray-pick action is then

calculated and error is added to the result using Equation 1.

c. ST725 Sonar

The ST725 sonar differs from the ST1000 sonar in two significant respects

that complicate its representation in the UVW. First, the sonar beam of the ST725 is not a

pencil-beam and cannot be adequately represented by a single ray like the ST1000.

Second, the data returned by the ST725 is not simply a range to the nearest target but rather

a data structure representing the strength of the return at regular intervals out to the

maximum range. These issues are both dealt with by fusing the results of multiple ray-pick

actions.

Before describing the actual implementation of the ST725 sonar in the

UVW, it is important to understand the data structure returned by the ST725 and how it is

interpreted by the sonar manager. The data structure returned by the ST725 is a 32-byte

V b

ψb()cos

ψb()sin

0⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

ψb

V e RV b=

R

R
c ψ()c θ() c ψ()s θ()s φ() s ψ()c φ()– c ψ()s θ()c φ() s θ()s φ()+

s ψ()c θ() s ψ()s θ()s φ() c ψ()c φ()+ s ψ()s θ()c φ() c θ()s φ()–

s θ()– c θ()s φ() c θ()c φ()

=

40

sequence that is divided into 64 bins of four bits each. A bin represents the strength on a

scale from zero to 15 of the sonar return at a certain range. The range represented by a bin

is proportional to the maximum sonar range and can be approximated linearly using the

formula

(Eq. 7)

where is the maximum range setting of the sonar and bins are numbered zero to 63.

The tactical-level sonar manager uses this data structure to compute a single

range for the ST725. The range used is the shortest range whose bin value is above a

predefined minimum unless the value of a bin representing a longer distance is significantly

larger (strength difference greater than two). If this is the case the longer range is used.

This algorithm is discussed in more detail in [Campbell 96].

The UVW implementation of the ST725 uses an array of 64 integers to

represent the returned data structure. The values contained in this array are determined by

the results of 13 ray-pick actions applied to the scene graph. The rays for all 13 ray-pick

actions originate at the position of the ST725 sonar head which is computed using

Equation 2 with (, ,) representing the location of the ST725 sonar head in AUV body

coordinates (the positions of the ST725 and ST1000 sonars in AUV body coordinates is

shown in Table 2). The vector representing the orientation of each of the 13 rays in AUV

body coordinates varies above and below the horizontal plane of the sonar. Ray

orientations are computed using

(Eq. 8)

where is the bearing of the ST725 sonar and rays are numbered from zero to 12. This

equation differs from Equation 4 only in the third term of the vector which allows the entire

Ri

RMax

64
------------ i

1
2
---+⎝ ⎠

⎛ ⎞=

RMax

xb yb zb

V bi

ψb()cos

ψb()sin

2i° 12°–()tan⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

ψb

41

vertical sonar beam to be represented. It should be noted that is not normally a unit

vector. While conversion to a unit vector is a simple matter, the ray-pick function does not

require orientation specified by a unit vector, so the conversion is not performed in the

interest of computational efficiency. Once the orientation of the rays in AUV body

coordinates has been calculated, the orientation in world coordinates can be computed

using Equation 5. A ray-pick action is applied to the scene graph for each of the 13 rays.

The range to the point returned by the ray-pick action is calculated, and the value stored in

the array of integers corresponding to the appropriate range bin is incremented by one.

After all 13 ray-pick actions the error free sonar range is computed as the

range corresponding to the element of the array of integers with the highest value. If no

element in the array is greater than one, the error free sonar range is set to zero. Sonar error

is then added to the error free range using Equation 1. Although no profiling measurements

were performed on the source code, this operation appears highly efficient. The sonar

module (operating in series with the network communications and hydrodynamics model)

has no difficulty executing 14 ray-picks into complex scene graphs within the bounds of a

ten Hertz update rate. Thus computational performance of the arbitrary geometric sonar

model is excellent.

Sonar

ST1000 2.875 -0.167 0.3333

ST725 2.625 -0.167 -0.3333

Table 2. ST1000 and ST725 Positions (ft) in AUV Body Coordinates.

V bi

xb yb zb

42

d. Visualization

Once ranges have been computed for the ST725 and ST1000 sonars,

visualization using the viewer is straightforward. The goal of sonar visualization in the

UVW is to enable the human operator to see the operation of both sonars. Visualization

has proven particularly useful for detecting and troubleshooting sonar control algorithms

since it provides the only intuitive verification that the sonars are being controlled as

intended. Numerous experiments conducted in the course of this research have shown that

sonar visualization is crucial to tactic diagnosis and mission rehearsal.

Sonar beams are represented in the UVW viewer using wireframe cones.

Nodes representing the sonar cones are placed in the portion of the scene graph

representing the AUV. Additional nodes are inserted into the graph to represent the

positions and orientations of the sonars relative to the AUV. In order to accurately depict

the pie-slice shape of the ST725 sonar beam, the vertical scale of the cone representing it

is increased by a factor of 12. They are depicted as wire frames rather than solid objects in

order to preclude the sonar cones from obscuring other portions of the scene.

In addition to positions and orientations of the sonars, target range

information is depicted. This is accomplished quite simply by scaling the length of the

cones representing the sonar beams to the range of the appropriate sonar return. If the ray-

pick sonar range is zero (no scene graph object was within range), it is important to visually

depict lack of contact as well. In this instance the sonar cone length is scaled out to the

maximum range, and for visual contrast the color is changed and the wireframe complexity

is decreased. The ST1000 sonar cone is red if a valid return is received and yellow if no

return is obtained. The ST725 sonar is correspondingly rendered in magenta or white. The

portion of the viewer scene graph representing the ST725 sonar is shown in Figure 15.

43

C. IMPLEMENTATION AND TESTING IN THE VIRTUAL WORLD

The UVW was the primary tool for Phoenix software implementation and initial

testing during the conduct of this research. While it was often the case that in-water testing

was conducted concurrently with UVW testing, for safety and reliability no algorithms

were tested in the water prior to being tested in the UVW.

The general philosophy used during the conduct of this research was similar to that

of the research documented in [Marco 96]. Primitive functionality was implemented and

tested before attempting to implement higher level behaviors. While a variety of low-level

issues were not identified until higher-level behaviors were implemented, these were the

exception rather than the norm.

The first issues dealt with were sonar control, target acquisition and tracking using

the ST1000 sonar. Once these behaviors were implemented, control modes were

implemented to allow Phoenix to maintain a commanded relative range and bearing from

a sonar target. These behaviors form the base upon which a great deal of this research rests.

The next step was to implement higher-level routines that used these sonar and control

modes to execute a torpedo-tube approach. These are primarily tactical-level issues and

involved path planning and command generation.

Figure 15: Open Inventor Scene Graph Representing the ST725 Sonar.

ST725 Separator

Offset
Translate

Rotate
Forward

Range
Translate

Azimuth
Rotate

Line
Draw
Style

Complexity Vertical
Scale

Sonar
Cone

Material

Sonar
Cone

44

Most strategic-level research relevant to this thesis was far enough removed even

from the tactical level issues that it could be conducted in parallel almost from the

beginning. The major goal of strategic level research was to simplify the mission-

generation process to such a degree that a user did not have to be a Phoenix expert to be

able to program a complex mission. Specification of location and type of recovery is one

aspect of this area of research. The most significant result of this research was a mission-

planning expert system for automatic generation of Phoenix missions. Much of this joint

research is documented in [Leonhardt 96] with more detailed coverage later in this thesis.

D. IMPLEMENTATION AND TESTING IN THE REAL WORLD

Real-world implementation and testing occurred in two parts: implementation and

testing on the vehicle’s hardware and verification of virtual world results. Because Phoenix

does not actually use physical sensors and controls when missions are conducted in the

virtual world, it is necessary to verify the software’s interface with the actual vehicle

hardware before conducting in-water tests. Physical control of the sonars, reading and

filtering of sensor data, and polarity and response of control actuators all must be verified

by bench tests and (to a lesser degree) by in-water tests. A more detailed discussion of this

topic can be found in [Burns 96].

Real-world verification of UVW results is conducted in much the same manner as

the initial implementation. Initial tests were intended to confirm the sonar control and

tracking behaviors, with subsequent tests verifying the station-keeping behaviors. Testing

of higher-level behaviors (including the full torpedo-tube recovery) were contingent upon

successful low-level behavior tests. A detailed discussion of real-world and virtual-world

test results is contained in Chapter VII of this thesis.

45

E. SUMMARY

This chapter provides an overview on how this research was conducted. The UVW

was of key importance to the conduct of this research. In order to facilitate its use, a general

sonar model was implemented to simulate the response of the ST725 and ST1000 sonars.

The sonar model was implemented by importing a copy of the scene into the UVW’s

dynamics module using the Open Inventor ray-pick function to simulate the sonar beam.

Visualization was also implemented for both sonars in the viewer portion of the UVW.

Subsequent to implementation of a general sonar model for the ST725 and ST1000

sonars, the UVW was used as the primary implementation and testing tool. With the

exception of hardware interfacing, all aspects of this research were implemented and tested

in the UVW prior to attempting real-world tests. Implementation of Phoenix software was

conducted primarily in a bottom-up fashion with low level functionality being

implemented and tested prior to implementing higher level behaviors. Once functionality

was tested in the UVW, real-world tests were conducted to ensure proper hardware

utilization and response and verify UVW results.

The following chapter describes behaviors implemented at the execution level of

Phoenix software architecture to support recovery. Implemented behaviors include various

sonar control modes that can be used to locate and track objects in Phoenix environment, a

vehicle control mode for stationkeeping relative to an object being tracked, and a vehicle

control mode for physical entry into a recovery tube.

46

47

IV. EXECUTION LEVEL IMPLEMENTATION

A. INTRODUCTION

This chapter discusses implementation of behaviors at the execution level that are

required during recovery. Since the execution level is primarily responsible for low-level

physical control and interfacing with the vehicle’s hardware, behaviors implemented at this

level must be fairly simple but robust. It is the responsibility of the tactical level to invoke

execution-level behaviors to carry out tactics that will (in turn) accomplish still higher-level

goals specified by the strategic level.

The next section in this chapter details implementation of ST1000 sonar control

which is built upon the primitive behaviors described in [Healey 94]. Specific sonar-

control modes implemented include a manual control mode, a forward-looking-scan mode

for collision avoidance, a target-search mode for locating targets specified by the tactical

level, and two target-tracking modes for use during station keeping. The third section

covers implementation of vehicle control modes for station keeping relative to a target.

Finally, implementation of a vehicle control mode for entry into the recovery tube is

presented in detail.

B. SONAR BEHAVIOR

1. Manual Control

The simplest and most obvious ST1000 behavior is “manual” control. This control

mode responds to commands from the tactical level by positioning the sonar at specified

relative bearings. Manual control provides a means for the tactical level to completely

control the operation of the ST1000 sonar for target classification, obstacle detection or

other operations that may be more suited to the ST1000 than the ST725. In addition manual

48

control is used during the final phase of the recovery to position the ST1000 for distance

keeping from the side of the tube.

The current ST1000 bearing is maintained at the execution level. When a bearing

is commanded, the ST1000 is stepped towards the commanded bearing at a rate of one step

per closed loop cycle. Step size for the ST1000 can be set to 0.9, 1.8 or 3.6 degrees (a step

size of 0.9 degrees was used during this research). Once the commanded bearing is

reached, the sonar will remain at this relative bearing until a new command is received or

until the control mode is changed.

When under manual control the sonar will ping once per closed loop cycle (six or

10 hertz) whether it is being stepped towards the commanded bearing or has already

reached it. This behavior makes it possible for the tactical level to control a manual sector

scan simply by alternating bearing commands between the edges of the scan sector. Other

fairly robust behaviors can be similarly controlled by the tactical level.

Commanded sonar bearing is converted to an achievable bearing and normalized to

a range of [0 .. 360) degrees before the sonar is actually scanned. This prevents the sonar

from stepping back and forth across a commanded bearing and simplifies determination of

scan direction. As an example suppose a bearing command of -10.0 degrees is received by

the execution level. Using a step size of 0.9 degrees and starting from 0.0 degrees, the sonar

is capable of being scanned to -9.9 degrees or -10.8 degrees, but not -10 degrees exactly.

The commanded bearing is therefore converted to -9.9 degrees (since that legal value is

closest to the actual commanded bearing). The roundoff function is defined as

(Eq. 9)

Since the current ST1000 bearing is maintained in the range of [0 .. 360) degrees,

the commanded bearing is normalized to 350.1 degrees so that the commanded and current

ψcommand rounded–

double()
integer() ψcommand 10.0×())

9
--- 9×⎝ ⎠

⎛ ⎞

10.0
---=

49

bearings can be compared. The difference between the commanded bearing and current

bearing is then normalized to a range of -180 degrees to 180 degrees. If this difference is

greater than zero, the sonar is scanned to the right; if it is less than zero, the sonar is scanned

to the left.

2. Forward Scan

For many Phoenix evolutions, particularly transits in flight mode, it is desirable to

use the ST1000 in a forward-looking scan pattern. This sonar operating mode has been

implemented and is automatically initiated whenever the execution level receives a

command that will require any of the following vehicle control modes: hover control,

waypoint control, open-loop lateral control, open-loop rotate control or any other kind of

thruster control.

This forward scan pattern is primarily used for used for imminent collision

detection and will trigger a reflexive mission abort as described in [Burns 96] if an obstacle

is detected within a certain range. The scan sector is of constant size and is centered about

zero degrees relative to the heading of the AUV. The default sector size is 30 degrees but

can be arbitrarily changed using mission-script commands which are listed in Appendix B.

3. Target Search

Since the ST1000 is to be used for precision control relative to objects near Phoenix,

sonar-control modes are necessary for locating and tracking those objects. The

implementation of the ST1000 target-search mode makes two significant assumptions: the

target has been identified by the tactical level, and the target can be discriminated from

background objects based on range. The first assumption relates to the tasks assigned to

the different levels of RBM, while the second relates to the type of environment expected

during station keeping relative to a sonar target.

50

The first assumption (regarding target identification) relates to successful

implementation of tactical level responsibilities including interpretation of sonar data and

classification of objects. Initial location of objects by the tactical level can rely on data

from the ST725, the ST1000 (probably using manual control by the tactical level) or both.

Real-time object classification using sonar has been the subject of previous Phoenix

research and continues to be an area of significant interest [Brutzman 92, Campbell 96].

Once an object has been identified by the tactical level, the ST1000 target-search mode uses

the approximate range and bearing information to find it.

The second assumption (regarding target discrimination) is that the target is in a

relatively open area. This assumption allows the target search to rely only on the expected

range and bearing to the target rather than heuristics concerning the type of target. The

advantage of this approach is its generality. Use of heuristics for target identification

assumes that the vehicle has a certain amount of knowledge concerning the characteristics

of the target [Marco 96]. This knowledge must be present for every type of object that is

to be identified. Basing target identification strictly on range and bearing information does

not require knowledge about the characteristics of the target and can therefore be used to

locate any type of object. The disadvantage is that it is possible to incorrectly identify a

target when operating in a cluttered environment. An uncluttered environment is a good

assumption for an at-sea docking station. On the other hand torpedo tubes are a themselves

a highly cluttered environment. Even in this case, however, successful maneuvering in an

uncluttered environment is an essential prerequisite to attempting more difficult

environments.

The method used to determine scan direction for a target search is the same as that

used for manual control. Each sonar return during the search is examined to determine if

the desired object has been detected. Sonar range and bearing information is used to

determine earth-fixed coordinates. The bearing and range from the AUV to the object can

51

then be computed and compared to the expected range and bearing to the target. In order

to simplify calculations, AUV pitch is assumed to be negligible. The position of the

ST1000 sonar head in world coordinates is then given by

(Eq. 10)

where (,) is the position of the ST1000 sonar head in AUV body coordinates and

is the two-dimensional version of Equation 4 and is given by [Kanayama 96]

(Eq. 11)

Once the global position of the sonar head has been determined, the range and bearing are

converted to world coordinates using

(Eq. 12)

where is the AUV heading, is the ST1000 relative bearing and is the ST1000

range. The range from the AUV centroid to the target is then computed as

(Eq. 13)

and bearing from the AUV to the target is computed as

(Eq. 14)

where is a function returning an angle in the range of [0 .. 360) degrees. Equations

10 through 15 are equivalent to the equations defined in [Marco 96a] to calculate the

location of Phoenix relative to a cylinder. This relationship between sonar range and

bearing and AUV range and bearing is shown in Figure 16.

Once the range and bearing from the AUV to the sonar target have been computed,

they are compared to the expected range and bearing to the desired sonar target as a

xe

ye

1⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

sonar

H2

xb

yb

1⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

sonar

=

xb yb H2

H2

ψ()cos ψ()sin– x

ψ()sin ψ()cos y

0 0 1

=

xe

ye⎝ ⎠
⎜ ⎟
⎛ ⎞

return

xe sonar– R ψ ψsonar+()cos+

ye sonar– R ψ ψsonar+()sin+⎝ ⎠
⎜ ⎟
⎛ ⎞

=

ψ ψsonar R

R x xe return––()2 y ye return––()2+=

β ye return– y– xx return– x–,()atan=

y x(,)atan

52

discriminator. If the measured range is within five feet of the expected range and the

measured bearing is within 15 degrees of the expected bearing, the return is assumed to be

part of the desired target. Once these conditions are met, the sonar-control mode is

automatically switched to target track or target-edge track. Which mode to select is

explicitly specified by the mission-script command that initiated the target search.

4. Target Tracking

Once the desired sonar target has been located, a sonar mode is required to maintain

contact with that target. Two such modes have been implemented: a full target-track mode

and a target-edge-track mode. When using the full target-track mode the sonar continually

Figure 16: Sonar and AUV Range and Bearing.

So
na

r T
ar

ge
t

Sonar
Bearing

Bearing
From AUV

Range
From AUV

Range From
Sonar

N

True

True

53

sweeps back and forth across the entire sonar target, updating target range and bearing only

after the sonar has scanned off the edge of the target.

As the sonar tracks across the target, each range is compared with the previous

range. If the range is within five feet of the previous range, it is assumed to be part of the

same target. Because of the somewhat unreliable nature of sonar data, a return that does

not meet the range criteria does not necessarily mean that the sonar has scanned off the edge

of the target. To account for anomalous sonar returns, three consecutive off-target returns

are required to initiate a sonar-scan reversal along with target range and bearing update.

When the sonar controller determines that the sonar has been scanned past the edge

of the target, range and bearing estimates are updated using averaging. As the sonar tracks

the target a range accumulator is maintained. Anomalous returns that cannot be included

in the target are not included in the range accumulator. Sonar range to the target is simply

the average of the valid returns from the previous sweep. In addition to the range

accumulator, the sonar controller maintains the initial bearing of the current scan. The

bearing to the target is then computed as the bisector of the starting and ending bearings of

the current scan. Once the range and bearing of the target from the sonar have been

determined, target range and bearing from the AUV are computed using Equations 10

through 14.

An illustration of the target-track geometry is shown in Figure 17. The target-track

control mode implementation is similar to the sonar control described in [Marco 96a] and

differs significantly only in two regards. First, sector width is not fixed but is determined

by the size of the target. Second, as with initial target detection, target identification is

based on range and bearing rather than target characteristics.

54

In addition to providing target range and bearing information, the target-track

control mode has one more benefit. The range and bearing data obtained during the full

target track contains a large amount of information about a single object in the world. Since

ST1000 range and bearing are part of the state-vector, this data can be concurrently

analyzed by the tactical-level sonar module to aid in object classification.

5. Target Edge Tracking

Maintaining sonar contact with the target by scanning across the entire target has

one significant disadvantage: the time period between successive range and bearing

updates can be as much as ten seconds [Marco 96a]. This slow update rate can lead to

sluggish AUV response and navigational inaccuracy because of errors in the onboard

hydrodynamics mathematical model described in the following section. In order to

Figure 17: Sonar Full Target-Track Mode Geometry.

Ta
rg

et

Sonar Start
Bearing

Sonar End
Bearing

Computed

Sonar
Bearing

Computed

AUV
Bearing

Sonar Range
AUV Range

N

True

TrueA
ve

ra
ge

Ran
ge

55

increase the target data update rate, a second target-tracking sonar mode has been

implemented. Rather than scanning across an entire object, this control mode attempts to

track only the edge of the target.

Once a target has been located using the target-search control mode, the sonar is

scanned left or right until it scans past the edge of the object. The target’s edge is identified

using the same algorithm as full target tracking. Again, once the edge is found the scan

direction is reversed. Rather than tracking across the target all the way to the opposing

edge, however, the sonar is scanned only until three returns that can be identified as part of

the target have been received. Returns are identified as part of the target in the same

manner as the full target-track mode. Once three target returns have been received, scan

direction is reversed. The edge-track algorithm can be summarized as a loop consisting of

four steps: scan off of the target, reverse scan direction, scan onto the target and reverse

scan direction. The smaller scan sector width results in target range and bearing update

rates that are much faster than those for full target tracking.

Since the sonar does not track across the entire target, average sonar range and

bearing to the target’s center cannot be computed. Instead, range and bearing are computed

to the edge being tracked. Range computation is accomplished in the same manner as with

the full target track. Normally the range computed will be the average of three individual

sonar ranges. Depending on AUV motion during the scan, however, the actual number of

returns included in the average may vary. The sonar bearing of the edge is simply the first

bearing from which a valid return was received if the sonar is being scanned onto the target,

or the last bearing from which a valid return was received if the sonar is being scanned off

of the target. Again, once the range and bearing from the sonar have been determined,

range and bearing from the AUV are determined using Equations 10 through 14. Geometry

of the target edge-track mode is shown in Figure 18.

56

The target edge used for tracking is determined by the direction that the sonar is

scanned immediately after target detection. If the sonar is scanned to the right, the right

edge is used; if sonar is scanned left, the left edge is used. The sonar scan direction is based

upon the direction that the AUV will need to move to reach the commanded range and

bearing. If the current bearing to the target is less than the commanded bearing, the AUV

will need to move left. In this case the sonar is scanned to the left following target

detection. Choosing the tracking edge in this manner is intended to prevent the AUV from

colliding with large targets because the wrong (i.e. far) edge was used.

As stated previously the major advantage of the target-edge-track control mode is

an increase in the range/bearing update rate over that of the target-track mode. Target-

edge-track has the disadvantage of not obtaining as much information about the target as

Figure 18: Sonar Target-Edge-Track Mode Geometry.

Ta
rg

et

Computed

Sonar
Bearing

Sonar Scan
Sector

Computed

AUV
Bearing

Sonar Range
AUV Range

Average Range

True

True

N

57

the full target-track. An inability to compute the center point of the target is one example

of this. Conceivably this disadvantage might be eliminated by simultaneous target-edge-

tracking and target-tracking using both the ST725 and ST1000 sonars.

C. STATION KEEPING

1. Station Keeping Commands

Two commands were added to the execution level command language defined in

[Brutzman 94] to control station keeping relative to a sonar target: target-station and target-

edge-station. These two commands correspond to the two target-tracking sonar modes:

target-track and target-edge-track respectively. Both commands have the same parameters

and are interpreted in the same way by the execution level. The sole difference between

these two commands is the sonar control mode that will be initiated. Format and parameter

syntax details for both of these commands can be found in Appendix B.

Station keeping commands can have two, three, four, or five parameters. The four-

and five-parameter versions are used to initiate a target search prior to station keeping,

while the two- and three-parameter versions are used to change commanded range and

bearing from a target already being tracked for station keeping. The two-parameter

command specifies a commanded range and bearing, while the optional third parameter can

be added to specify a commanded vehicle heading. If no third parameter is present, AUV

heading will continuously point directly at the target. The four-parameter command

specifies an estimated range and bearing to the target for use during the target search and a

commanded range and bearing for station keeping. The fifth parameter specifies a

commanded vehicle heading. The difference between the commanded bearing and the

estimated current bearing specified in the command is used to determine which edge will

be used if target-edge-tracking is called for.

58

Since execution-level target-track and target-edge-track sonar modes are initiated

automatically by the target-search sonar mode, it is impossible to switch between target-

track and target-edge-track without initiating a new target search (i.e. by using the target-

station or target-edge-station command with four or five parameters). If the AUV is

maintaining station relative to a target’s edge and a target-station command is received, the

target-station command will be interpreted as an edge-station command. Similarly, an

edge-station command will be interpreted as a target-station command as appropriate. In

addition, if a two- or three-parameter station keeping command is received while the sonar

is not in target-track or target-edge-track mode, the station keeping command will be

ignored.

2. Commanded AUV Position and Control

The implementation of Phoenix’ target control involves the translation of the

commanded range and bearing to global (x, y) coordinates. Basing station-keeping control

laws on global coordinates allows the use of control laws similar to those used for hover

control as described in [Burns 96]. Each time the sonar control updates the range and

bearing to the target, the global position of the commanded station is computed as

(Eq. 15)

where and are the current and command bearings from the AUV to the

target and and are the current and commanded ranges from the AUV to the

target. It is important to note that control is based on relative range and bearing between

the AUV and target, despite the conversion to world coordinates.

xcommand

ycommand⎝ ⎠
⎜ ⎟
⎛ ⎞ x βcurrent()cos Rcurrent βcommand 180°+()cos Rcommand+ +

y βcurrent()sin Rcurrent βcommand 180°+()sin Rcommand+ +⎝ ⎠
⎜ ⎟
⎛ ⎞

=

βcurrent βcommand

Rcurrent Rcommand

59

The direction in which the AUV must move to achieve the commanded position is

computed as

(Eq. 16)

while the distance that the AUV needs to travel is computed as

(Eq. 17)

The forward and lateral distances relative to the AUV are computed as

(Eq. 18)

and

(Eq. 19)

respectively. The computed values for and are used with , and an

estimate of ocean current in the form (,) in PD control laws for stern propeller

rpm, and bow and stern lateral thruster voltage. The stern propeller rpm control law is

(Eq. 20)

where

(Eq. 21)

(Eq. 22)

and

(Eq. 23)

Γ y ycommand– x xcommand–,()atan=

d x xcommand–()2 y ycommand–()2+=

don track– d Γ ψ–()cos⋅=

dcross track– d Γ ψ–()sin⋅=

don track– dcross track– ψ u

xcurrent ycurrent

rpm Proprange Propcurrent– Propsurge–=

Proprange kprop hover– don track–=

Propcurrent k prop current– xcurrent ψ()cos⋅ ycurrent ψ()sin⋅+()=

Propsurge ksurgeu=

60

The bow and stern lateral thruster voltage control laws are

(Eq. 24)

and

(Eq. 25)

where

(Eq. 26)

(Eq. 27)

(Eq. 28)

and

(Eq. 29)

Values and units for PD control constants are listed in Table 3.

3. AUV Tracking

Because of the speed and asynchronous nature of sonar-based target-position

update rate, a method is required for computing Phoenix position and velocity between

Constant Value Units

200.0 rpm / ft

6600.0 rpm-secs / ft

2400.0 rpm-secs / ft

0.200 Volts / degrees

2.0 Volts-secs / degrees

5.3333 Volts / ft

20.0 Volts-secs / ft

40.0 Volts-secs / ft

Table 3. Station Keeping PD Control Law Constants.

Vbow Thrusteryaw– Thrusterrange Thrustersway Thrustercurrent–+ +=

Vstern Thrusteryaw Thrusterrange Thrustersway Thrustercurrent–+ +=

Thrusteryaw kthruster ψ– ψ ψcommand–()– kthruster r– r–=

Thrusterrange kthruster hover– dcross track–=

Thrustersway kthruster sway– v=

Thrustercurrent kthruster current– xcurrent ψ()sin⋅ ycurrent ψcos⋅–()=

kprop hover–

kprop current–

ksurge

kthruster ψ–

kthruster r–

kthruster hover–

ksway

kthruster current–

61

updates. Over the long term the best solution is probably the incorporation of an inertial

measurement unit (IMU) capable of providing position updates in real time [McGhee 95,

Bachmann 96]. For the present however, Phoenix does not have installed hardware that can

provide real-time navigational information. As a short-term solution, a simple

mathematical model based on control inputs has been developed and incorporated to

estimate Phoenix position and velocity between target updates [Marco 96a].

The mathematical model is a three DOF dead reckoning model that includes drag,

added mass and steady state surge. Because Phoenix hardware includes a directional gyro

that directly provides yaw and indirectly provides yaw rate (by differentiation of yaw), only

the surge and sway equations of motion from [Marco 96a] are used. The surge and sway

equations of motion are [Marco 96a]

(Eq. 30)

(Eq. 31)

where and are the sum of mass and added mass in the x and y body axes, and

are square-law damping coefficients, and are voltage-to-force coefficients and ,

 and are terms for the voltage applied to the propellers, bow lateral thruster

and stern lateral thruster. More specifically asymmetric voltage to the aft propellers is

accounted for using [Marco 96a]

(Eq. 32)

where and are the voltages applied to the left and right propellers. Known

ocean current is accounted for when converting body fixed rates to world rates:

(Eq. 33)

Mxu̇ t() bxu t() u t()+ 2αxvx t() vx t()=

Myv̇ t() byv t() v t()+ αyvblt t() vblt t() αyvslt t() vslt t()+=

Mx My bx by

αx αy vx t()

vblt t() vslt t()

vx t() vx t()
vls t() vls t() vrs t() vrs t()+

2
---=

vls t() vrs t()

ẋ t() xcurrent–

ẏ t() ycurrent–⎝ ⎠
⎜ ⎟
⎛ ⎞ ψ()cos ψ()sin–

ψ()sin ψ()cos
u t()
v t()⎝ ⎠

⎜ ⎟
⎛ ⎞

=

62

Values and units of constants used in the mathematical model are shown in Table 4.

While this mathematical model is simple enough to calculate in real time and

accurate enough to compute reasonable navigational values, it is not perfect [Marco 96a].

Target position updates based on sonar data remain the most accurate means of calculating

the location of the AUV relative to a target. Since the purpose of the mathematical model

is to maintain AUV position and velocity information between sonar-based position

updates, it is reset each time a position update is received. In this way incremental errors

in the mathematical model are not permitted to build up to unacceptable values over time.

An important area for future work remains validation of AUV hydrodynamics

coefficients. Since a general six-DOF hydrodynamics virtual world model for Phoenix can

run in real time, more accurate on-board dead reckoning is possible [Brutzman 94].

D. FINAL RECOVERY CONTROL

The final addition to the execution level in support of this research was the

implementation of a control mode to drive Phoenix into the recovery tube. As with the

target-tracking sonar modes and station keeping control mode, the recovery control mode

assumes that the position, orientation and size of the recovery tube has been determined by

Constant Value Units

214.29 Kg

350.70 Kg

63.80 Kg / m

815.40 Kg / m

0.056 N / Volts2

0.018 N / Volts2

Table 4. Mathematical Model Constants [Marco 96a].

Mx

My

bx

by

αx

αy

63

the tactical level. The goal of the recovery control mode is to drive Phoenix a specified

distance into a tube while maintaining adequate clearance from both sides.

Recovery control is initiated by the tactical level once Phoenix is directly in front

of the recovery tube with its nose just inside. Upon recovery initiation the ST1000 sonar

is switched to manual control and slews relative 75 degrees left. At the same time the

tactical level sonar manager slews the ST725 sonar relative 75 degrees to the right. Phoenix

positioning relative to the tube at this point is shown in Figure 19.

PD control laws are then used to drive Phoenix into the tube. The mathematical

model described in the previous section is used to estimate the distance travelled into the

tube while the ST1000 and ST725 sonars are used to keep Phoenix in the center of the tube.

The control law for the aft propellers is

(Eq. 34)

where is the remaining distance into the tube as computed by the mathematical model.

The control laws for the bow and stern lateral thrusters are

(Eq. 35)

and

(Eq. 36)

Figure 19: AUV and Recovery Tube Layout at Recovery Control Initiation.

Final Centroid
Recovery Position

RECOVERY TUBEST1000 Sonar

ST725 Sonar

rpm kprop range– d kprop current– xcurrent ψ()cos⋅ ycurrent ψ()sin⋅+()– kprop surge– u–=

d

Vbow Thrusteryaw– Thrusterrange Thrusterspeed– Thrustercurrent–+=

Vstern Thrusteryaw Thrusterrange Thrusterspeed– Thrustercurrent–+=

64

where and are computed using Equations 26 and 29 respectively,

and

(Eq. 37)

and

(Eq. 38)

where and are the ST1000 and ST725 sonar ranges. These control laws are

very similar to Equations 20, 24 and 25, differing primarily in the values of the control

constants and how the individual terms are computed. Values of control constants are listed

in Table 5.

E. SUMMARY

This chapter covers implementation of features at the execution level of Phoenix

software architecture to support recovery operations. Robust sonar behaviors are

implemented including modes to support manual control, forward scanning, target search,

target tracking and target-edge tracking. These behaviors are used to support a Phoenix

Constant Value Units

200.0 rpm / ft

6000.0 rpm-secs / ft

6600.0 rpm-secs / ft

0.60 Volts / degrees

8.0 Volts-secs / degrees

8.0 Volts / ft

40.0 Volts-secs / ft

40.0 Volts-secs / ft

Table 5. Recovery Control PD Control Constants.

Thrusteryaw Thrustercurrent

Thrusterrange kthruster range– RST 725 75°()sin RST 1000– 75°()sin()=

Thrusterspeed kthruster speed– ṘST 1000 75°()sin=

RST 1000 RST 725

kprop range–

kprop surge–

kprop current–

kthruster ψ–

kthruster r–

kthruster range–

kthruster speed–

kthruster current–

65

control mode capable of transiting to and maintaining a commanded range and bearing

from a sonar target. PD control laws are used to control motion relative to the target.

Additionally, because of the asynchronous target-position update rate, a mathematical

model was developed to estimate Phoenix motion between sonar-based target updates.

Finally, a control mode was implemented to actually drive Phoenix into the recovery tube

once the vehicle obtains a position immediately in front of the tube. This control mode uses

PD control laws very similar to those used for station keeping. The ST1000 and ST725

sonars are used to ensure clearance from the sides of the recovery tube throughout the

recovery evolution while the mathematical model is used to estimate forward travel into the

tube.

The following chapter of this thesis covers implementation of features at Phoenix’

tactical level that use the behaviors described in this chapter to control recovery.

Significant issues in that chapter are recovery path planning and command generation. In

addition, the mathematical structures used to implement path planning are discussed.

66

67

V. TACTICAL LEVEL IMPLEMENTATION

A. INTRODUCTION

One of the primary responsibilities of the tactical level software is to use the low-

level functionality of the execution level in such a way as to accomplish the high-level

goals of the strategic level. Specifically, this chapter will cover how the tactical level uses

the edge-tracking sonar behavior and the station-keeping control available at the execution

level to support vehicle recovery in a tube.

The second responsibility of the tactical level that directly relates to recovery is the

identification and localization of the recovery tube. The ST725 and ST1000 sonars are the

primary on-board sensors upon which this task depends. Real-time sonar classification

using both of these sonars has been the subject of other research and is not directly

addressed here. For more information concerning research in this area involving Phoenix

refer to [Brutzman 92], [Campbell 96] and [Marco 96a]. A major assumption of the

research of this thesis is that the recovery tube is at a known position and orientation.

The first section of this chapter discusses tactical-level planning of the recovery

path. The mathematical structures used to implement recovery path planning are covered

as well as the planning algorithm. The other major topic of this chapter is the generation

of execution-level commands necessary for following the planned path.

B. RECOVERY PATH PLANNING

1. Transformations

a. Description

The mathematical structure used for recovery path planning is called a

transformation. A transformation is a means of representing an object’s position and

orientation in two dimensions (2D) and takes the form of a state vector consisting of x

68

position, y position and orientation. The coordinate system used for a transformation is

arbitrary and can represent an object’s global position or its position relative to another

object. [Kanayama 96]

In addition to representing an object’s position and orientation, a

transformation can be used to represent discrete motions with 2D translations and rotations

specified in body-fixed coordinates. Finally, transformations are useful for defining lines

and circles. Lines are specified by a position (which can be any point on the line) and an

orientation. This representation of a line is convenient for path planning because it includes

a direction which will generally represent the direction of motion along the line. The

transformation portion of a circle representation consists of a point on the circle and the

tangential direction of the circle at that point. A circle requires a fourth term representing

the curvature of the circle. [Kanayama 96] Representation of lines and circles using

transformations is covered in more detail in the following section.

b. Operations

There are two operations defined for transformations: composition and

inversion [Kanayama 96]. Composition is a means of combining two transformations.

Typically the first transformation represents a position and orientation, and the second

represents a motion or a relative position. The result of a composition is the final global

position of an object moved from a position (represented by the first transformation) by a

change in position and orientation (represented by the second transformation).

Composition is defined as [Kanayama 96]

(Eq. 39)
x1

y1

θ1⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞ x2

y2

θ2⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

•
x1 x2 θ1()cos⋅ y2 θ1()sin⋅–+

y1 x2 θ1()sin⋅ y2 θ1()cos⋅+ +

θ1 θ2+⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

69

This definition leads to the definition of the identity transformation (). The identity

transformation is defined as (0, 0, 0)T and has the following result when used in

compositions [Kanayama 96]:

(Eq. 40)

The definition of leads to the definition of the inverse function. The inverse function for

transformations is defined by [Kanayama 96]

(Eq. 41)

and for = (, ,)T the inverse, , is given by the equation [Kanayama 96]

(Eq. 42)

Transformation composition can also be used to generate smooth

trajectories in a plane by composition of a position and orientation with transformations

representing small discrete motions. The transformation representing the motion is

referred to as a circular transformation. A circular transformation is derived using the

length of the motion () and the amount of change in orientation over that length (). The

circular transformation is computed as [Kanayama 96]

(Eq. 43)

For linear motions () this equation is undefined but can be approximated using a

Taylor expansion resulting in [Kanayama 96]

(Eq. 44)

e

q e• e q• q= =

e

q q 1–• q 1– q• e= =

q x y θ q 1–

q 1–
x– θ()cos⋅ y θ()sin⋅–

x θ()sin⋅ y θcos⋅–

θ–⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

l α

q∆ l α,()

α()sin
α

----------------l

1 α()cos–
α

--------------------------l

α⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

α 0=

q∆ l α,()
1 α2 3!⁄ α4 5!⁄ …–+–()l

1 2!⁄ α2 4!⁄– α4 6!⁄ …–+()αl

α⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

70

A series of small discrete motions in the form of circular transformations is capable of

approximating a continuous smooth path. As with other discrete approximations of

continuous functions, smaller circular transformations will result in more accurate path

approximation.

2. Line and Circle Tracking

a. Lines and Circles

As stated in the previous section, lines and circles can be specified using

transformations. Representation of a line takes the form (x, y,)T where (x, y) is any point

on the line and is the orientation of the line. Since any point on the line can be used in

the transformation representing a line, an infinite number of transformations are possible

for representation of a single line. For this reason representation of lines using

transformations is probably inappropriate if lines are to be compared. Since the recovery

path planning involved in this research does not involve comparison of different paths, the

inability to compare lines for equivalence does not pose a problem.

Representation of circles using transformations is only slightly more

complex than representation of lines. Circle representation takes the form (, , ,)T

where (,) is any point on the edge of the circle, is the tangential orientation of the

circle at (,), and is the curvature of the circle defined as [Kanayama 96]

(Eq. 45)

where is the distance along the edge of the circle. Representation of circles using

transformations has similar advantages and disadvantages as representation of lines. The

most significant advantage is that by specifying a tangential orientation it is possible to

implicitly represent the direction of desired motion when traveling along a circular path

(e.g., using). The disadvantage is that there are an infinite number of transformation

θ

θ

x y θ κ

x y θ

x y κ

κ
sd

dθ=

s

θ

71

representations for a single circle. Again, since recovery path planning does not involve

the comparison of circles, this potential disadvantage is not relevant here.

b. The Steering Function and Smooth Path Planning

While line and circle segments can be used to represent a desired path,

representation of the path is only half the problem. The second problem is actually steering

a vehicle (real or simulated) towards and along the desired path. This is the role of the

steering function. The steering function is a continuous function based on the vehicle’s

current state and the desired path [Kanayama 96]. Vehicle state includes a transformation

to represent vehicle position and orientation and a fourth term to represent the curvature of

the vehicle’s path. The steering function is used to adjust the derivative of this fourth term

to move the vehicle towards and along the desired path. The steering function is given by

[Kanayama 96]

(Eq. 46)

where and are the vehicle’s current path curvature and orientation, and are the

vehicle’s desired path curvature and orientation, is the signed distance of the vehicle

from the desired path and , and are constants. Critically damped values for , and

 (values that will result in at most one overshoot) are computed as [Kanayama 96]

(Eq. 47)

(Eq. 48)

(Eq. 49)

where is an arbitrary positive constant corresponding to the vehicle’s desired

responsiveness. Lower values of will cause the vehicle to steer more sharply towards the

desired path while larger values will cause a smoother path but a slower convergence with

sd
dκ

a κ κd–() b θ θd–() c d∆+ +()–=

κ θ κd θd

d∆

a b c a b

c

a
3
σ
---=

b
3

σ2
------=

c
1

σ3
------=

σ

σ

72

the desired path. Figure 20 shows an illustration of a path tracking problem. As can be seen

in the illustration, the steering function must be able to not only maintain the vehicle on the

desired path but steer the vehicle towards the path if necessary.

When a vehicle defined by (, , ,)T is tracking a line defined by

(, ,)T, is zero, is and is computed as [Kanayama 96]

(Eq. 50)

For the same vehicle tracking a circle defined by (, , ,)T, is . and are

computed as [Kanayama 96]

(Eq. 51)

and

(Eq. 52)

respectively.

Circular transformations are used along with the steering function to

incrementally steer the vehicle along the desired path. At each iteration the steering

Desired Path

Vehicle

d∆

θ

κ

κd

θd

Figure 20: Steering Function Terms [Kanayama 96].

x y θ κ

x0 y0 θ0 κd θd θ0 d∆

x x0–() θ0()sin– y y0–() θ0()cos+

x0 y0 θ0 κ0 κd κ0 θd d∆

θd θ0()sin κ0 x x0–()⋅+ θ0()cos κ0 y y0–()⋅–(),()atan=

d∆
x x0–()– κ0 x x0–()⋅ 2 θ0()sin+() y y0–() κ0 y y0–()⋅ 2 θ0()cos–()–

1 κ0 x x0–()⋅ θ0()sin+()2 κ0 y y0–()⋅ θ0()cos–()2++
--=

73

function is used to compute . The vehicle’s new position and orientation is then

computed as

(Eq. 53)

where is the transformation representing the vehicle position and orientation at the

beginning of the iteration and is the circular distance traveled in each iteration. The

updated value for is computed as

(Eq. 54)

Figure 21 shows the track of a simulated vehicle steered using this method. The desired

path of the figure consists of two line segments and a circle segment.

sd
dκ

qnew q q∆ s
sd

dκ
s∆⋅,∆⎝ ⎠

⎛ ⎞•=

q

s∆

κ

κnew κ
sd

dκ
s∆⋅+=

Figure 21: Tracking to a Desired Path Using the Steering Function.

Desired Track Line
(oriented left to right)

Desired Track Circle
(counterclockwise orientation)

Desired Track Line
(oriented left to right)

Vehicle Starting Position
and Computed Path

74

3. Recovery Planning

a. Overview

While Phoenix is capable of six-DOF motions, recovery path planning is

conducted in two dimensions in order to allow use of the methodology described above.

The use of only two dimensions places two limitations upon recovery: vehicle depth and

pitch control must be handled independently, and recovery is only possible in a horizontally

level recovery tube. Presently these limitations are not considered significant, however

future work may include the expansion of these algorithms to take advantage of Phoenix’

six-DOF capability to support recovery in tubes of arbitrary orientation.

The steering function derived above is intended primarily for vehicles

restricted to arbitrary tangential motions [Kanayama 96]. Such vehicles are typically

incapable of lateral motion but are assumed to be capable of following a path of unlimited

curvature. Since the steering function is being used only for motion planning and not for

motion control, the steering function remains appropriate for recovery path planning even

though Phoenix is capable of nontangential motions. In this implementation a planning

vehicle that is restricted to tangential motions is used to generate a smooth path. The initial

position of the virtual vehicle is set to Phoenix’ position at the start of the recovery

evolution while the initial orientation of the virtual vehicle points directly at the center of

the recovery tube (unless Phoenix is too close to the tube in which case it points directly

away from the center). The steering function is then used to drive the virtual vehicle

around and into the recovery tube to generate the recovery path. During the actual recovery

Phoenix must attempt to stay on the planned path but is not limited solely to tangential

motions.

Another issue concerning the use of this methodology for AUV path

planning is dealing with unintentional sideslip. While it is reasonable to assume that the

75

velocity vector of a wheeled vehicle will be aligned with the longitudinal axis, the same

cannot be said for vehicle’s such as Phoenix. Not only are lateral velocity components

possible, they are in large part unavoidable. Figure 22 shows the geometry involved in this

type of holonomic system. In the figure, represents vehicle heading, represents vehicle

sideslip angle, and is the velocity vector orientation, while u and v are components of the

velocity vector in vehicle coordinates.

The lateral component of Phoenix velocity vector can be partially controlled

using lateral thrusters. A portion of the lateral velocity, however is dependent on the

longitudinal velocity and the turn rate. While rigorous modeling of this phenomenon can

become extremely complex, a fairly simple model can be used to predict sideslip angle.

This model results in the equation [McGhee 91]

(Eq. 55)

ψ β

ϑ

ye = east

xe = north

ze = depth

ϑ

ψ

β

vu

Figure 22: Holonomic System Geometry [McGhee 91].

vehicle longitudinal axis, x

vehicle velocity vector

vehicle position

ϑ̇ 2mϑ
ρAV Cβ
------------------+ ψ=

76

where is the vehicle mass, is the density of the medium, is the lateral surface area

of the vehicle, is the magnitude of the vehicle velocity (including sideslip), and is a

constant relating to lift forces generated as a result of sideslip. Using this equation, an

estimate of sideslip angle can be maintained as part of the vehicle state. Computer

simulation indicates that mathematical modeling of sideslip in this manner is particularly

useful during waypoint navigation [Davis 95].

Because of the low velocities and turn rates involved during hover and

recovery operations, the uncommanded sideslip angle is small when compared to

commanded sideslip induced by the lateral thrusters. Since the larger term dominates the

smaller, it is safe in the tube recovery scenario to ignore uncommanded sideslip.

Additionally, errors due to miscalculation of sideslip of other six-DOF holonomic effects

due to added mass and other cross-coupled hydrodynamic drag forces are not allowed to

accumulate during execution because of the frequent recalculation of the AUV position

relative to the recovery tube.

b. Desired Path Planning

For overall recovery planning purposes, the area surrounding the recovery

tube is divided into nine regions. Each region corresponds to the Voronoi region of a

segment or corner of the tube [Kanayama 96]. A line or circle representing a desired path

is defined for each region. With the exception of the line representing the final tube entry

path, the desired path circles and lines maintain a constant safe standoff distance of six feet

from the tube. Additionally, all lines and circles are directed towards the opening of the

recovery tube. The transformation representations of the desired path lines and circles are

computed as soon as the position and orientation of the recovery tube are known. An

example of tube regions and desired paths is shown in Figure 23.

m ρ A

V Cβ

77

The next step is determining which region Phoenix is in at the beginning of

the recovery evolution. Since the size, shape, position and orientation of the tube are

known, this is simply a matter of computing the ranges from Phoenix to the different

segments and corners of the tube and determining which is closest. After deciding which

region the AUV is starting the recovery from, the planning vehicle is instantiated and

incrementally moved towards the desired path for the region using the steering function.

As the planning vehicle leaves one region and enters another, the desired path for the new

region is used. The planning vehicle has left one region and entered another when the

distance from the vehicle to the corner or segment defining the current region is greater than

the distance of the vehicle to the corner or segment defining the new region. This process

Figure 23: Voronoi-Based Recovery Regions and Path Planning Segments.

Region 1

Region 2

Region 3

Region 4

Region 5
Region 6

Region 7

Region 8

Region 9

Region 0

78

continues until the planning vehicle has entered the tube. The path that the planning vehicle

travelled represents the planned recovery path for the actual AUV.

Again, since Phoenix is capable of nontangential motion, neither in the

steering function nor of the planning vehicle necessarily correspond to the desired

orientation of Phoenix during the recovery. In fact, in order to facilitate continuous sonar

contact, Phoenix will normally point directly at the portion of the recovery tube upon which

it is taking station. This vehicle orientation policy has an exception in the final recovery

phase when the AUV will be aligned with the recovery tube (although and still bear

no correlation to desired AUV orientation). Thus and pertain to the tangential

orientation of the track the AUV is to follow, while actual vehicle heading is determined

by the relative bearing to the sonar tracking landmark. Precise six-DOF maneuverability

and control of posture using the nontangential motion capabilities of Phoenix permit such

a decoupling between vehicle track and vehicle orientation.

C. EXECUTION COMMAND GENERATION

Which corner to use for generated station-keeping commands depends on the

recovery region that the planning vehicle is in when the command is generated. The corner

must be visible from anywhere within the region and the AUV sonar routines must be able

to recognize the edge. Since the target-search and edge-tracking sonar modes use range

information to recognize targets, there must be a significant increase in range as the sonar

scans past the corner. Figure 24 shows which corners are used for station-keeping

command generation for the different regions.

θd

θ

θd θ

θ θd

79

At predetermined intervals along the planning vehicle’s path, execution-level

commands are generated and stored in a file. Generated commands invoke the execution

level’s edge-tracking sonar mode and station-keeping control mode. Commanded stations

in each Voronoi region are in the form of range and bearing from the planning vehicle’s

current location to the appropriate tube corner that Phoenix’ ST1000 sonar is most likely to

be able to discriminate. Interestingly, it must be noted that commands for the entire

recovery are generated before any command is issued to the execution level. Upon

completion of the recovery through the appropriate Voronoi regions plan the OOD module

will dequeue and issue the generated commands one at a time.

The final command that is generated is the recovery command. When issued to the

execution level, this command will invoke Phoenix recovery control mode. The recovery

Figure 24: Recovery Regions and Station-Keeping Corner Assignments.

Recovery Tube

Region 1

Region 3 Region 2
Region 4

Region 5

Region 6

Region 7 Region 8 Region 9

Region 0

80

command will be generated immediately after the planning vehicle has entered the

recovery tube opening.

An example of recovery planning and virtual world results are shown in Figures 25

and 26. Figure 25 shows the execution-level commands generated for use during the

recovery while Figure 26 shows an x-y plot of the recovery tube, the planned path, and the

actual path followed by Phoenix in a virtual world test. The running of this and other test

missions is discussed in Chapter VII.

Figure 25: Generated Commands Based on a Recovery Plan.

#RECOVERY REGION 7
EDGE-STATION 6.231679 109.801091 6.231679 104.801091

#RECOVERY REGION 8

EDGE-STATION 8.541297 115.850068
EDGE-STATION 9.411731 133.894357

EDGE-STATION 11.636344 70.631182 11.636344 75.631182
EDGE-STATION 7.209702 101.266115
EDGE-STATION 5.999095 134.868091

#RECOVERY REGION 9
EDGE-STATION 9.332900 148.086638 9.332900 153.086638
EDGE-STATION 8.587834 171.619319
EDGE-STATION 7.367044 -168.706232 -135.000000

#RECOVERY REGION 1
EDGE-STATION 4.239524 -166.878360 -135.000000
EDGE-STATION 4.239524 -166.878360 -135.000000
EDGE-STATION 3.240133 -174.693612 -135.000000

#FINAL TUBE ENTRY
ENTER-TUBE 7.499992 -135.000000

81

D. SUMMARY

Implementation of features at the tactical level in support of recovery include

recovery path planning and command generation. Recovery path planning utilizes a

mathematical structure called a transformation which is used to represent vehicle position

and orientation and discrete motions in two dimensions. The planned recovery path is

generated by a planning vehicle which is driven by a steering function from Phoenix

position at the start of the tube recovery evolution.

The area surrounding the recovery tube is divided into nine Voronoi regions, each

of which has an associated desired path. As the planning vehicle passes through each

region, the steering function drives the vehicle towards the desired path for that region. A

Figure 26: Planned and Actual Recovery Path Results from a UVW Mission.

82

corresponding tube corner is chosen for optimal sonar discrimination while tracking. The

path traveled by the planning vehicle becomes the planned path for Phoenix during the

actual recovery maneuver.

At predetermined intervals along the planning vehicle’s path, execution-level

commands are generated and stored in a file. These commands are later issued to the

execution-level one at a time by the OOD module. The commands use the execution

level’s station-keeping behavior to follow the planned path. When the planning vehicle has

entered the recovery tube’s opening, path planning is complete. A recovery command is

then generated that will invoke the execution level’s recovery control mode for actual entry

into the recovery tube.

The following chapter discusses strategic level issues dealt with in the conduct of

this research. Research at this level focuses primarily on mission specification, planning

and generation. Specific issues include evolution of the strategic level and the development

of a mission planning expert system.

83

VI. STRATEGIC LEVEL IMPLEMENTATION

A. INTRODUCTION

Since the strategic level of RBM is responsible only for high-level mission control,

its responsibilities regarding recovery are few. Essentially, the strategic level is responsible

only for deciding where and when the recovery is to take place, and what type of recovery

is required. This role is analogous to that of a ship’s commanding officer who specifies

what port to go to, when to go there, and whether to anchor or dock, but is not physically

involved in the actual anchoring or docking evolution.

Because of the limited role of the strategic level in recovery, research conducted at

this RBM level has been more general in nature. The most significant result has been to

simplify the process of strategic level mission planning and generation. The following

section of this chapter describes implementation of features at the strategic level that

facilitate this goal. The subsequent section describes the implementation of a graphical

expert system for mission planning and automatic strategic-level code generation.

B. EVOLUTION OF THE STRATEGIC LEVEL

1. Mission Control

As stated previously the strategic level is structured as a DFA and consists of three

software pieces: the DFA, the mission controller and a set of primitive goals. The mission

controller is shown in Figure 27 implemented equivalently in Prolog and C++. Looping in

the Prolog implementation is conducted using the basic Prolog backtracking control

algorithm which tries to “prove” predicates [Rowe 88]. When a mission is initiated, Prolog

tries to find a way to make the execute_phase predicate “true” by proving the

execute_phase and mission_done predicates. If the execute_phase predicate is false, the

phase has not yet completed. In this situation Prolog will backtrack into the repeat

84

predicate (which is always considered true). It then retries the execute_phase predicate.

This looping pattern will continue until the execute_phase predicate becomes true, at which

point the same process is executed for the mission_done predicate. When the

mission_done predicate is proven, execute_mission is proven, and the mission completes.

Otherwise, Prolog tries to prove the next_phase predicate. Which version of this predicate

can be proven is determined by success or failure of the current phase. In contrast to the

Prolog mission controller, the C++ mission controller uses a typical imperative

programming language loop to obtain behavior equivalent to that of the Prolog version.

execute_mission :- asserta(current_phase(initialize)),

 repeat, execute_phase, mission_done.

execute_phase :- current_phase(X), execute_phase(X),

 next_phase(X), !.

mission_done :- current_phase(mission_abort).

mission_done :- current_phase(mission_complete).

currentPhase = initialize ();

do {

 if (currentPhase->complete ())

 {

 currentPhase = currentPhase->completeSuccessor;

 currentPhase->initiate ();

 }

 else if (currentPhase->abort())

 {

 currentPhase = currentPhase->abortSuccessor;

 currentPhase->initiate ();

 }

} while ((currentPhase != missionAbort) &&

 (currentPhase != missionComplete));

(a)

(b)

Figure 27: Strategic Level Mission Controller in (a) Prolog and (b) C++.

85

2. Abstract Mission Control

Since initial Phoenix research was focused primarily on the strategic and execution

levels of RBM, early versions of the tactical level were greatly simplified and mainly

responsible for simply relaying commands from the strategic level to the execution level

[Marco 96b]. Consequently many tasks appropriate for the tactical level were first

implemented at the execution and strategic levels. Recent improvements in the tactical

level now handle many of the tasks previously divided between the strategic and execution

levels [Leonhardt 96, Campbell 96, McClarin 96, Scrivener 96]. This redistribution of

responsibility among the levels of Phoenix RBM implementation has allowed strategic-

level functionality to concentrate solely on the high-level mission control for which it was

originally intended.

With the reassignment of many tasks to the tactical level, it became apparent that

further strategic-level simplification was possible by limiting the allowable phase types to

a few generic types. In fact this limitation was necessary since the tactical level is only

capable of interpreting strategic-level commands from a predetermined set of primitive

goals [Marco 96b, Leonhardt 96]. As the AUV’s functionality evolves, new commands can

be implemented in tandem at the strategic and tactical levels by adding to the vehicle’s

primitive goal set. Present strategic-level primitive goals include transits, searches, global

positioning system (GPS) fixes, dives and hovers. Because of the explicit definition of all

possible strategic-level primitive goals and the implementation of a robust tactical level, the

RBM implementation of Phoenix is now versatile and simple enough to correctly perform

a wide array of missions [Brutzman 96].

As stated in Chapter II, the strategic level does not perform any numerical

computation [Byrnes 96], but the exclusive maintenance of numerical data at the lower

RBM layers proved impractical in implementation. This was due to the high likelihood of

86

mismatches between the strategic level DFA and the numerical data file used by the tactical

level [Leonhardt 96]. The solution was to include numbers upon which a phase is

dependent (such as the location of a search) in the command sent to the tactical level. The

tactical level interprets the parameters as numerical values, but at the strategic level they

are just place holders within the command. The implementation of phase parameters

eliminates the possibility of data file/DFA mismatch errors while maintaining the overall

non-numerical nature of the strategic level. Figure 28 shows a strategic-level search phase

with phase parameters defined in Prolog. Tactical-level replies to strategic-level

commands are not tested so a sequence of strategic-level commands can initiate parallel

tasks at the tactical level. Replies to strategic-level queries on the other hand, are tested so

that execution does not proceed to the next query or command until an appropriate reply to

the current query is received. As with the Prolog version of the mission controller,

backtracking is used to implement looping behavior so that a phase will continue to execute

until the execute_phase predicate is true. The phase depicted corresponds to the search

phase of the mission depicted in Figure 11.

execute_phase(search_1) :- ood(“sonar_search 20 45 3”,Reply),

 ood(“start_timer 250”,Reply),

 repeat, phase_completed(search_1).

phase_completed(search_1) :- ood(“ask_search_complete”,Reply),

 Reply==1, asserta(succeed(search_1)).

phase_completed(search_1) :- ood(“ask_time_out”,Reply), Reply==1,

 asserta(abort(search_1)).

next_phase(search_1) :- succeed(search_1),

 retract(current_phase(search_1)),

 asserta(current_phase(return_to_base)).
next_phase(search_1) :- abort(search_1),

 retract(current_phase(search_1)),

 asserta(current_phase(go_shallow)).

Figure 28: Strategic Level Phase Specified in Prolog.

87

While the primary goal of recent strategic-level research efforts has been the

effective implementation of RBM in the real world [Brutzman 96], a collateral result has

been the standardization of the strategic level. The strategic level code now has a standard

form for a given type of phase. The only difference between two distinct phases of the same

type is the parameters. A template can therefore be created for each type of phase.

Strategic level code for a phase can be easily generated by inserting a label and phase

parameters into a copy of the appropriate phase template. The boldface portions of the code

fragment of Figure 28 indicate the phase label and parameters inserted into a sonar-search

template. Using templates to code the strategic level has a number of advantages. For

instance, the potential for syntactic programming errors is great when manually

programming even a simple mission. Such errors can be virtually eliminated by utilizing

templates. Furthermore phase templates make it possible to automate strategic level code

generation and eliminate manual programming at the strategic level altogether

[Leonhardt 96, Brutzman 96].

3. Programming Language Issues

A decision was made early in the development of mission-control software for the

Phoenix AUV to implement the strategic level using the Prolog programming language.

Because of its roots in predicate calculus, one advantage of Prolog is that it is relatively

easy to use for specifying mission logic when compared to more common imperative

languages. As a result, programs written in Prolog are typically shorter than equivalent

programs written in functional or imperative languages. Additionally, programming of the

strategic level of the RBM is primarily a symbolic programming problem which is well

suited to expression in Prolog [Byrnes 96]. Finally, use of the Prolog inference engine is

powerful since the current state of the DFA can be represented implicitly by the current rule

that is being resolved [Byrnes 96]. However, in the current strategic level implementation,

88

the DFA state is maintained explicitly (using dynamically asserted facts) rather than

implicitly in order to improve code readability and ease of use. This approach amounts to

specializing the Prolog inference engine to a mission control engine or “mission controller”

[Marco 96b].

A disadvantage of using Prolog at the strategic level is that it must interface with

the tactical level which is currently written in C. At present there is no standard Prolog

foreign language interface, so communication between the strategic and tactical levels is

dependent on the vendor and version of the Prolog compiler used [Quintus Corporation 95].

Portability of the software system to new platforms is therefore a problem. Another

disadvantage as missions become more complex is that the size of the Prolog program

grows rapidly since each phase is programmed independently of all other phases. Finally,

because of its reliance on backtracking for control of execution, Prolog tends to run more

slowly than imperative languages [Rowe 88]. To date this has not been a problem since the

speed at which the whole RBM system runs has been limited not by the speed of the

strategic and tactical levels, but rather by the speed of the execution level [Leonhardt 96,

Burns 96].

The advantages of using Prolog for Phoenix currently outweigh the disadvantages,

particularly given the mission planning expert system described in the following section.

However other programming languages have advantages which may make them attractive

for use in the future. Two strategic levels equivalent to the one described above have been

implemented using the Lisp and CLIPS programming languages [Byrnes 96]. However

these implementations have proved to be much harder to write and understand.

More recently, research has been conducted into implementation of the RBM

strategic level in C++ using object-oriented programming techniques. The polymorphism

and inheritance characteristics of C++ classes allow the definition of a generic phase class

from which more specific phase classes representing all allowable types of phases can

89

inherit. All phase class definitions together determine the vehicle’s operational

capabilities. A specific mission can be generated by instantiating instances of the

appropriate phase classes and using pointers to connect them into a graph representing the

strategic level DFA. As shown in Figure 27 this mission controller portion of the strategic

level is implemented using a loop that queries the tactical level about the status of the

current phase. If the current phase has either completed or aborted, the appropriate

transition is executed by following a pointer and initiating the next phase. If the current

phase has neither completed nor aborted, the loop repeats without initiating a new phase.

Implementation of the strategic level in C++ directly addresses all three of the previously

mentioned disadvantages of the Prolog strategic level (foreign language interface, size and

speed). Since C++ can be directly linked with C functions, the system is inherently more

portable than the Prolog version. Additionally, with the exception of individual phase

instantiation and DFA construction, all code is contained within the phase class definitions.

Therefore, as mission complexity increases, the size of a strategic level source program

does not increase as rapidly as an equivalent mission written using Prolog. In the current

C++ implementation, the size of the source program will typically increase by two lines for

each additional phase (one line to instantiate the phase object, one line to link the object

into the DFA graph). On the other hand, the very conciseness of this approach tends to

present a barrier to easy understanding of the meaning and behavior of the vehicle in

executing a mission so encoded. This difficulty is resolved by the development of a

mission-generation expert system as explained in the following section.

C. A MISSION-GENERATION EXPERT SYSTEM

1. Introduction

In most scenarios involving the use of Phoenix class AUVs for mine

countermeasure missions, operational naval personnel would be responsible for generation

90

of mission control software. While these individuals can be expected to be experts in anti-

mine warfare, they are unlikely to have a high skill level in computer programming.

Instead, they will probably require an easy-to-use mission programming interface in order

to effectively and reliably specify an AUV mission. In this regard such individuals are

probably typical of end users of autonomous vehicles in general. [Brutzman 96]

In order to facilitate ease of use, an expert system for programming Phoenix AUV

missions has been developed. This expert system consists of three distinct subsystems and

a graphical user interface (GUI). The first subsystem is used to automatically generate

missions by specification of overall mission goals. The second subsystem is a mission-

specification facility that can generate arbitrarily complex missions phase-by-phase. The

last subsystem is an automatic strategic level code generator that creates Prolog or C++

programs using results from either of the other two subsystems. The GUI, automatic

mission-generation facility, and mission-specification facility have been implemented

using Quintus Prolog version 3.2 [Quintus Corporation 95] and XPCE version 4 for X-

windows (Prowindows) [Wielemaker 94]. The strategic level code generator is written

using C and can either be invoked explicitly as a standalone application or automatically

from within the expert system itself.

2. The Automatic Mission Generator

a. Means-Ends Analysis

The intent of the automatic mission generator is to allow the user to generate

a mission simply by specifying the AUV launch position, recovery position and mission

objectives. A means-ends analysis algorithm is used to implement the automatic mission

generator. In general, means-ends analysis uses a set of start conditions, a set of desired

end conditions, and a set of operators to derive a sequence of operations that will eventually

transform the system from the start state to the desired end state [Rowe 88, Winston 92].

91

In the automatic mission generator implementation of means-ends analysis, start conditions

are the vehicle launch position, end conditions are the mission objectives and vehicle

recovery position, and the operators represent all possible phase types. The automatic

mission generator applies the means-ends analysis algorithm to produce results similar to

those of Figure 29 which depicts a search mission.

In means-ends analysis, two mechanisms insure that a valid sequence of

operations is generated. First, each condition in the desired end state has one or more

recommended operators. for example if the desired end state is that a location has been

searched, the recommended operator is to conduct a sonar search from the required

location. Second, each operator has a set of required preconditions that must be satisfied

before the operator can be applied as well as a set of postconditions that result from the

application of the operator [Rowe 88]. The preconditions for the sonar search of position

Figure 29: Search Mission Automatically Generated with Means-Ends Analysis.

92

P, for instance, might be that the vehicle is near position P and that the position must be

verified by a GPS fix. An obvious postcondition of a sonar search is that position P has

been searched. The means-ends algorithm uses these two mechanisms by choosing one of

the desired end-state conditions and attempting to apply a recommended operator. If the

preconditions of the recommended operator have not been satisfied, the algorithm attempts

to satisfy the preconditions by recursively applying means-ends analysis. If the

preconditions are satisfied in this way, the operator is applied. If the preconditions cannot

be satisfied, the next recommended operator is attempted. The algorithm proceeds in this

manner until all of the top level goals have been satisfied or until all recommended

operators have been exhausted. If the operators, preconditions and postconditions are

correct, means-ends analysis is guaranteed to compute a valid sequence of operations for

accomplishing the desired goals [Rowe 88]. Since means-ends analysis is used to generate

a sequence of phases, any sequence of phases generated can be logically executed by the

Phoenix AUV and will accomplish all of the goals specified.

b. Adaptation of Means-Ends Analysis for Phoenix

The means-ends analysis implementation of the mission-planning system

divides goals into two types. Top-level goals are those that are specified by the user while

intermediate goals are used during recursive applications of the means ends analysis to

accomplish top level goals. Intermediate-level goals appear as preconditions and

postconditions of top-level goals and other intermediate-level goals. At present the top

level goals implemented for Phoenix are position searches, position searches with specific

routing, and entry into a recovery tube. As the functionality of lower layers of Phoenix

software architecture evolves, high level goals will be implemented to take advantage of

new capabilities. Future high level goals may include planting explosive charges,

communicating with the controlling platform and taking still photographs.

93

There are a number of characteristics of the solutions obtained using means-

ends analysis as presented in [Rowe 88] and [Winston 92] that are not well suited to

planning for autonomous vehicles. The first is that solutions obtained through means-ends

analysis are linear in nature. A basic assumption of the algorithm is that operations always

succeed so there is no attempt to account for phase failure. This means that when the

mission DFA is constructed, another algorithm or heuristic must be used for failure

handling. The simplest and most obvious solution is to make the arbitrary decision that if

a phase fails, the mission aborts. However, if this simple heuristic is used, the resulting

DFA amounts to no more than a simple script that goes from one operation to the next and

stops whenever an operation fails. Similar solutions such as having the vehicle proceed to

its launch point or recovery point share this failing. Another possible solution might be

reattempt any failed phase. The obvious disadvantage here is that if a phase cannot be

successfully completed, the mission may not end until the vehicle exhausts its power

supply. The solution that was opted for is to always attempt to proceed forward with the

mission in the event of individual phase failure. If any phase fails, the succeeding phase

will be the next transit or hover phase to be executed had the phase succeeded (the

exception is the initial dive to operating depth). In this way if one or more phases fail, the

vehicle will still attempt to accomplish as much of the mission as possible. Transit and

hover phases were chosen as the phase failure successor type because, unlike other types

of phases (such as searches and GPS fixes), transit and hover phases never directly rely on

their predecessor phase. A graphical representation of the DFA resulting from the means-

ends analysis solution of Figure 29 is shown in Figure 30.

94

Dive to

Hover at

Search
(20, 25, 2)

Obtain
GPS Fix

Search at:
(40, 65, 5)

Transit to
(18, 54, 5)

Mission
Complete

Hover at:
(40, 65, 5) KEY

down arrow transitions
indicate phase success

right arrow transitions
indicate phase failure

(20, 25, 2)

 2 ft

Obtain
GPS Fix

Hover at:
(100, 70, 3)

Search at:
(100, 70, 3)

Obtain
GPS Fix

Hover at:
(85, 35, 0)

Mission
Abort

Figure 30: Graphical Representation of an Automatically Generated Mission.

95

The second disadvantage of means-ends analysis is that operators are

implicitly prioritized by their order of appearance in the means-ends analysis specification.

For instance if the operators search position P and plant an explosive charge at position P

are specified in that order, the solutions obtained by means-ends analysis will always apply

the search position P operator as many times as it can before it attempts to apply the plant

an explosive charge at position P operator. If mission goals included a search of position

(x1, y1, z1), an explosive charge plant at position (x1, y1, z1), a search of position

(x2, y2, z2), and an explosive charge plant at position (x2, y2, z2), the means-ends analysis

solution will conduct both searches, then plant both explosive charges. While this may be

the type of behavior desired, if the transits between (x1, y1, z1) and (x2, y2, z2) cover a

significant distance, missions of this sort become highly inefficient. The problem of

operator prioritization is only a problem for operators intended to accomplish top-level

goals since the ordering of intermediate-level goals do not significantly effect a mission’s

efficiency. The solution to this problem is the implementation of a single operator that

accomplishes all top-level goals. What type of top level goal to accomplish is specified by

the parameters of the operator. Different sets of preconditions and postconditions are then

defined for each form of the single operator. Since only a single operator is involved,

prioritization is no longer an issue. Figure 31 shows this operator definition for the

accomplishment of searches and explosive placements (to date, the search operator has

been fully implemented in the vehicle, but not the explosive placement operator).

96

One final potential shortcoming of means-ends analysis is that while the

initial solution obtained is guaranteed to be valid and complete, more optimal solutions

may exist that can only be produced through repeated applications of the means-ends

analysis algorithm. A possible solution to this shortcoming might be to obtain all solutions

possible using means-ends analysis, compare them for efficiency, and use the most

efficient one as the final solution. Another solution is to again obtain all possible solutions

but allow the user to choose the one to be used. A slight modification of the second solution

is currently used in the system. After a user specifies the vehicle’s launch position, mission

recommended(top_level_done(X), handle_top_level(X)).

%Preconditions for the application of operators

%Format is type of operator, preconditions that

%must be true list, and preconditions that

%must not be true list

precondition(handle_top_level([searched,X,Y,Z]),

 [position(X,Y,Z)],

precondition(handle_top_level([charged,X,Y,Z]),

 [position(X,Y,Z),explosive_ready],

 [gps_fix_required]).

%Postconditions for the application of operators

%Add postconditions are true after application

%Delete postconditions are false after application

addpostcondition(handle_top_level([searched,X,Y,Z]),

 [top_level_done([searched,X,Y,Z]),

%Recommended operators for goals. Format is

%goal, operator

 gps_fix_required]).

deletepostcondition(handle_top_level([searched,X,Y,Z]),[]).

addpostcondition(handle_top_level([charged,X,Y,Z]),

 [top_level_done([searched,X,Y,Z])]).

deletepostcondition(handle_top_level([charged,X,Y,Z]),

 [explosive_ready]).

 [explosive_ready,gps_fix_required]).

Figure 31: Top-Level Operator Definitions for Search and Explosive Planting Goals.

97

goals and recovery position, the means-ends analysis algorithm is applied to obtain a

solution. The solution is displayed textually in a window similar to the one in Figure 29

and a geographic plot of the mission path is displayed on an area map. The user is then

given the option of accepting or refusing the mission. If the mission is refused, the means-

ends analysis algorithm is applied to generate another solution. Using this approach the

user can cycle through all obtainable solutions one at a time prior to selecting one.

3. Phase-by-Phase Mission Specification

While means-ends analysis provides a simple method for generating fairly complex

missions, it is incapable of generating missions that take full advantage of the DFA

structure of the strategic level. Therefore a facility has been developed for explicit

specification of individual phases that can be linked together more or less arbitrarily into

an executable mission. The mission-specification facility queries the user for information

for each phase and uses information for all input phases to construct a mission. Information

for each phase includes a phase label, the type of phase, phase parameters, the label of the

follow-on phase upon successful completion, and the label of the follow-on phase upon

phase failure. The expert system GUI insures that the user enters the appropriate

information at the appropriate time. For instance, if a transit phase is being entered, the

system will not ask for search-related information. The GUI also eliminates many data

entry errors by the use of clickable maps, push buttons, clickable menus, and sliding scales.

Sample GUI data entry windows are shown in Figures 32 and 33. Figure 32 shows the main

window which is used for launching system facilities and visual entry and display of

geographic information. Figure 33 shows windows for specifying the type of phase to be

entered and phase related data for a transit phase. Data entry windows for other types of

phases are similar to the one shown in Figure 33 but differ in the specific data entered.

98

Figure 32: Mission Planning Expert System Main Window.

99

(a)

(b)

Figure 33: Data Input Windows for Phase-by-Phase Mission Specification.

100

Since manual phase-by-phase specification of a mission can be much more

complicated than specifying a mission using means-ends analysis, a rule-based system has

been implemented to insure that only valid missions are generated by the system. This

requires checking each entered phase for validity in several ways. The phase must not be

missing any parameters, vehicle physical limitations must be observed, and the specified

locations must be within the designated operating area. This check is conducted as each

phase is entered. Detected errors are immediately reported and the user is given the

opportunity to modify the phase. If no errors are detected, the phase is accepted. Later, a

second check is required to insure that all of the phases together make a valid mission. In

general, many phases are inherently dependent upon their predecessors, so it is possible for

a set of individually valid phases to constitute an invalid mission. For instance, a location

cannot be searched until the vehicle has transited to the location. Errors of this type include

incomplete missions, loops in the DFA, invalid phase sequences etc., and are detected by

parsing with a second rule base immediately prior to mission code generation. Again

detected errors are reported, and the user is given the opportunity to modify, delete or

specify phases. Sample error reports for individual phase errors and mission errors are

shown in Figure 34. If no errors are detected the mission is accepted and executable code

is generated. By error checking both individual phases and the mission as a whole, the

phase-by-phase mission-specification facility can insure that any specified mission is valid

and achievable by the vehicle.

101

The phase-by-phase mission-specification facility is intended for users who are

familiar with the structure of the RBM strategic level. Although the GUI and two rule-

based systems prevent invalid missions from being specified, they do not insure that the

specified mission will accomplish its intended goals. While the means-ends mission

generation facility is goal driven, the phase-by-phase mission-specification facility is not.

Since validity of a mission depends only on whether or not the mission is possible, it is not

difficult to specify a valid mission that searches the wrong location, transits to the wrong

end point, or generally does not do what it is supposed to. For this reason, it is important

that a user know exactly what the intended mission is supposed to accomplish before using

the mission-specification facility.

(a)

(b)

Figure 34: Error Reports for (a) Individual Phase Errors and (b) Mission Errors.

102

To assist in phase-by-phase mission development, a tabular representation of the

mission is displayed as it is entered (Figure 35). The mission is represented as a state table

listing each phase with the label of its follow-on phase upon successful completion and the

label of its follow-on phase upon failure. While it might be argued that a graphical

representation of the DFA (such as in Figures 11 and 30) is more intuitive, graph

complexity increases far more rapidly than that of a state table as mission size increases.

For arbitrarily complex missions, a state table is more concise and conveys the same

information as a graph.

Figure 35: State Table Summary of a Mission Specified Phase-by-Phase.

103

4. Automatic Code Generation

Both the means-ends mission generator and the phase-by-phase mission-

specification facility produce output in the form of a data file. This intermediate data file

is not an executable strategic level mission but rather is an annotated state table description

of a strategic level mission. Each line in the data file describes exactly one phase by

specifying (in order) the phase type, the phase label, the label of the follow-on phase upon

success, the label of the follow-on phase upon failure, the amount of time that the phase has

to succeed, and the phase parameters. This output file format actually constitutes yet

another RBM mission-specification language. Because of its high level of abstraction, the

mission-specification language is programming-language independent and (together with

the previously discussed phase type templates) enables automated executable code

generation in any language for which phase templates have been created.

To date, phase type templates for the have been created for Prolog and C++.

Concurrent with template development has been the construction of programs to generate

executable code for missions specified using the mission-specification language. Figure 36

shows an example of a mission specified with the mission-specification language and the

automatically generated executable code. Code generation programs are written using the

C programming language and can be run as standalone programs or invoked from within

the mission planning expert system. Standalone execution can be used to generate a

mission based on a user-specified data file which can be automatically or manually created.

From within the mission planning expert system, executable code is generated for a mission

specified phase-by-phase or by means-ends analysis. While the mission planning system

as a whole is dependent upon availability of Quintus Prolog and Prowindows, the

programming language independence of the mission-specification language allows this

portion of the system to be ported to virtually any platform.

104

#Mission Specification File Format
#phase_type

depth_change
waypoint
hoverpoint
rotate_sonar_search
hoverpoint
depth_change
depth_change

phase_label

dive
transit_to_op_area
hover_1
search_1
return_to_base
surface
go_shallow

completion_successor

transit_to_op_area
hover_1
search_1
return_to_base
surface
mission_complete
return_to_base

abort_successor

mission_abort
go_shallow
go_shallow
go_shallow
mission_abort
mission_abort
mission_abort

[parameters]

30 3
500 15 30 3
500 20 45 3 134
200 20 45 3
250 64 30 2 222
150 0
100 1

(a) Mission-specification Language Example

execute_phase(hover_1) :- nl, printsc(‘PHASE hover_1 STARTED.’),

ood(‘hover 20 45 3 135’,Reply),

printsc(‘hover 20 45 3 135!’),

ood(‘start_timer 500’,Reply),

repeat,phase_completed(hover_1).

next_phase(hover_1)

next_phase(hover_1)

phase_completed(hover_1)

phase_completed(hover_1) :-

:-

:-

:-

asserta(current_phase(go_shallow)).

retract(current_phase(hover_1)),

abort(hover_1),

asserta(current_phase(search_1)).

retract(current_phase(hover_1)),

succeed(hover_1),

asserta(abort(hover_1)).

printsc(‘PHASE hover_1 ABORTED DUE TO TIME OUT.’),

ood(‘ask_time_out’,Reply), Reply==1,

asserta(succeed(hover_1)).

printsc(‘HOVER COMPLETE.’),

ood(‘ask_hoverpoint_reached’,Reply), Reply==1,

(b) Automatically Generated Prolog Code for One Phase

Phase *

buildMissionGraph ()

{

Hover *phhover_1 = new Hover (20,45,3,134,500);

. . .

} // buildMissionGraph

. . .

phHover_1->specifySuccessors(phsearch_1,phgo_shallow);

. . .

(c) Automatically Generated C++ Code for One Phase

Figure 36: Sample Mission Defined with (a) the Mission-Specification Language,

(b) Automatically Generated Code in Prolog and (c) C++.

105

D. SUMMARY

This chapter describes recent modifications of the Phoenix strategic level and the

implementation of a mission planning expert system. Recent developments in the

execution and tactical levels of the RBM implementation on the Phoenix AUV have

facilitated significant improvement at the strategic level as well. These improvements

include the simplification of the strategic level through redistribution of responsibilities

among the three RBM layers, definition of a finite number of phase types, the incorporation

of phase parameters, and the development of phase templates. Additionally, the strategic

level has been equivalently implemented in C++ and Prolog.

These improvements in the strategic level have in turn facilitated the development

of the mission planning expert system. The system uses means-ends analysis to generate

missions based on goals specified by a user. The system also has a facility for specifying

missions one phase at a time. This facility incorporates a rule-based system to insure only

valid missions are generated. Finally, automatic code generation programs were developed

that use the phase templates to translate the output of the other two facilities into executable

Prolog or C++ code.

The following chapter describes experimentation in support of this research.

Attention is paid both to experimentation using the UVW and the physical vehicle.

106

107

VII. EXPERIMENTAL RESULTS

A. INTRODUCTION

This chapter discusses the experimental results of this research. The two major

topics are virtual world results and real world results. While features were implemented in

the virtual world one at a time (primarily in a bottom-up fashion), the focus of this section

is on final results once all of the individual features were successfully implemented and

integrated. This section consists therefore of recovery control results and mission planning

system results. Mission planning expert system results are treated separately because of the

broader nature of that research.

Since not all aspects of this research have been verified through in-water testing,

simulation results are covered in more detail. As stated in Chapter III, the first area of in-

water testing was hardware control verification. While all other in-water testing relied

upon proper software/hardware interaction, this aspect of testing was not directly relevant

to the research itself. Success of this aspect of testing is however shown implicitly by other

test results. The primary focus of the in-water test results portion of this chapter is the

execution-level behaviors upon which recovery relies. In addition in-water results of

missions generated using the mission-planning expert system are covered.

B. VIRTUAL WORLD RESULTS

1. Recovery Control Results

UVW tests indicate that the low-level behaviors described in Chapter IV are

capable of controlling Phoenix with sufficient precision to conduct recovery in a small

tube. Further, the path planning routines described in Chapter V proved capable of

planning an acceptable recovery path from virtually any location into a tube of known

position and orientation. Figures 37 through 42 show the planned path and the actual path

108

followed by the vehicle during UVW test recoveries conducted using tubes of various

orientations. Missions for these tests were generated using the mission-planning expert

system and use the C++ version of the strategic level. The generated mission consists of

three phases: dive to depth (three feet), transit to a point near the tube (-2, -15), and recover

in the tube (located at (0, 0) at the orientations specified in the figures). Running the

missions in the UVW requires loading the Open Inventor description of the desired tube

(located in the viewer directory and named tube[angle][neg].iv for these tests) into the

dynamics and viewer modules of the UVW. Occasional deviations between the planned

and performed paths are attributable to anomalies in the edge-tracking behavior when

simultaneously transitioning between voronoi regions and sonar edge-tracking targets.

These anomalies are discussed in more detail later in this chapter.

Figure 37: Planned vs. Actual Virtual World Recovery in a Tube Oriented North.

109

Figure 38: Planned vs. Actual Virtual World Recovery in a Tube Oriented Northeast.

Figure 39: Planned vs. Actual Virtual World Recovery in a Tube Oriented Southeast.

110

Figure 40: Planned vs. Actual Virtual World Recovery in a Tube Oriented South.

Figure 41: Planned vs. Actual Virtual World Recovery in a Tube Oriented Southwest.

111

The most significant aspect of these figures is that Phoenix transited to a point,

planned a recovery path into a tube of arbitrary but known posture, and used automatically

generated commands that relied on low-level sonar tracking and station-keeping behaviors

to follow the planned path into the tube. There are however anomalies that require

explanation. Most notable are the excursions from the planned path when rounding corners

in Figures 40, 41 and 42. These excursions result from Phoenix being unable to distinguish

the appropriate corner with the ST1000 sonar and therefore taking station on the wrong one.

When transitioning from the back of the tube to the side, the corner upon which Phoenix is

to take station is the opposing back corner. Depending on the vehicle’s orientation, this

corner may be masked by the near corner when Phoenix nears the corner. When this

occurs, the near corner will be mistaken for the opposing corner resulting in an excursion

from the planned path similar to the one in Figure 41. When rounding the tube’s front

corner, a similar phenomenon can result where Phoenix mistakes the near corner for the

Figure 42: Planned vs. Actual Virtual World Recovery in a Tube Oriented Northwest.

112

opposing corner upon which it intends to take station. This will result in planned path

excursions as depicted in all three figures. It is also possible for Phoenix to mistake the far

corner for the near resulting in a planned path excursion that will bring the vehicle closer

to the recovery tube. This type of planned path excursion is significantly more dangerous

than excursions depicted in Figures 40, 41 and 42 since the vehicle may actually strike the

tube. Excursions of this sort were encountered only during tests in which improperly tuned

control constants resulted in underdamped vehicle response. In these tests it was not

uncommon for Phoenix to overshoot an intended station exposing a corner that was

supposed to be masked to the sonar. A potential solution to this problem might be to

generate a desired range and bearing to the center of the tube rather than to a corner of the

tube, thereby allowing OOD module to choose the most appropriate corner for station-

keeping (based on Phoenix current position relative to the tube) and generating the

appropriate execution-level command on the fly. Further testing may reveal whether such

additional precautions are necessary.

A second anomaly is the unreliability of recovery from starting points directly in

front of (or behind) the recovery tube. When directly facing the opening of either end of

the recovery tube, there is simply not enough cross section for the ST1000 sonar to

consistently locate and track a corner of the tube. UVW tests indicate a repeating pattern

of locating a corner (sometimes but not always the correct one) and losing track of it almost

immediately. This problem does not exist if the back portion of the tube is enclosed (as

must be the case for an actual recovery tube). For the front portion of the tube, the simplest

solution may be to increase the sonar cross section by adding a lip. Further testing is

required to determine the size of the lip required and to make sure the lip does not interfere

with tracking of the corner from other directions.

Finally, the figures indicate that Phoenix is slightly to the right of the tube’s center

when entering (although clearance was maintained on both sides throughout the recovery

113

evolution). This is a consistent aspect of all test runs. The apparent reason for this result

is that neither the ST1000 nor the ST725 is placed exactly on the vehicle’s centerline. This

is not accounted for in Equation 37. Slight modification to Equation this equations to the

following is the most likely solution.

(Eq. 56)

where and are the Y coordinates of the ST725 and ST1000 sonars in AUV

body coordinates respectively.

Another issue that should be noted concerning UVW testing and the results shown

in Figures 37 through 42 is the issue of control constants for the station-keeping PD control

laws. UVW testing has shown that improper PD control constants will result in a failure to

accurately follow the planned recovery path. Thruster and propeller PD constants must be

tuned in such a way that lateral and longitudinal responsiveness are the same. Failure to

properly tune control constants will not preclude reliable recovery, but will result in

mediocre planned-path following such as that which occurred in the test depicted in Figure

43. It should also be noted that control constants used in the tests depicted in Figures 37

through 42 were tuned in the UVW. In-water testing described in the following section

required retuning of the control constants. Control constants shown in Table 3 are real-

world constants. This disparity between the virtual and real worlds highlights possibly the

most important area of near-term future work: real-world validation of the UVW.

Adjustment of coefficients of the UVW hydrodynamic model to accurately reflect the

actual hydrodynamic characteristics of Phoenix is essential to long term software

development using the UVW.

Thrusterrange kthruster range– RST 725 75°()sin yST 725+() RST 1000 75°()sin yST 1000+()–()=

yST 725 yST 1000

114

2. Strategic Level and Mission Planning Expert System Results

In addition to the real world and UVW, an interactive standalone ood_test program

has been developed for strategic level testing. This program allows a human acting as the

tactical level OOD to manually respond to strategic level queries by querying a human

rather than the tactical level. Logic and sequencing of the strategic level (the structure of

the DFA) can therefore be evaluated without the AUV or UVW. In Figure 44, the ood_test

program is used to debug an automatically generated Prolog mission corresponding to the

mission of Figure 11. By utilizing the standalone strategic level and UVW for code

development and initial testing, and in-water testing for final testing and validation, it has

been possible to rapidly and simultaneously develop and implement new features at all

three layers of the RBM architecture [Brutzman 96].

Figure 43: Recovery with Poorly Tuned PD Control Constants.

115

Strategic-level test missions for Phoenix have been generated in both Prolog and

C++ using manual programming, the mission-specification language and automatic code-

generation programs, and using the entire mission planning expert system. The results of

these tests have been predictable and correct.

Figure 45 shows a graphical plot of a C++ mission created using the means-ends

analysis mission generation facility. Goals for the mission were to conduct sonar searches

Begin Initialization
OOD Received Command: initialize
OOD Received Command: start_timer 120
OOD Received Command: ask_initialized

?- yes

Initialization Complete
Phase Completed
Change Depth to 3 feet

. . .

Depth Reached
Phase Completed
Transit to 40 70 3

. . .

Waypoint Reached
Phase Completed
Hover at 20 60 3 270
OOD Received Command: hover 20.000000 60.000000 3.000000 270.000000
OOD Received Command: start_timer 300
OOD Received Command: ask_hoverpt_reached

?- yes

Hover Point Reached
Phase Completed
Conduct Sonar Search at 20 60 3 270
OOD Received Command: sonar_search 20.000000 60.000000 3.000000 270.000000
OOD Received Command: start_timer 180
OOD Received Command: ask_sonar_search_complete

?- no

OOD Received Command: ask_time_out

?- yes

Timer Expired
Phase Aborted
Change Depth to 0 feet

. . .

Depth Reached
Phase Completed
Transit to 50 20 0
OOD Received Command: waypoint 50.000000 20.000000 0.000000
OOD Received Command: start_timer 300
OOD Received Command: ask_waypt_reached

?- yes

Waypoint Reached
Phase Completed
Mission Complete

Figure 44: Standalone Testing of a Mission Using the ood_test Program.

116

from two locations (one with specific routing to the search point). When executed, the

mission conducted both sonar searches, obtained GPS fixes to verify the search positions,

classified detected objects, planned a safe path around detected obstacles (object

classification and path planning were conducted at the tactical level), and proceeded to the

designated recovery position. The need for GPS fixes to verify search positions (as well as

the initial dive to operating depth) were not specified by the user, but were executed

because of the means-ends analysis preconditions and postconditions for the sonar search

operation.

Simplifications made in the structure of the strategic level proved useful. A Prolog

mission using the new strategic level format is approximately one third as long as an

equivalent program manually prepared using the format in place prior to the simplifications

described in this paper [Leonhardt 96]. Templates and automatic code generation proved

reliable and versatile and resulted in successful testing described here and in [Brutzman

Figure 45: UVW Results of a Mission Generated Through Means-Ends Analysis.

Wall

Wall

Sonar
Search

Wall

AUV
Track

Start / Finish

Sonar Search

Sonar Targets

117

96]. Testing also showed that it is a fairly simple matter to accurately implement the RBM

strategic level in C++ using objects to represent the nodes of the DFA. Specifically, UVW

tests showed that C++ missions produced by the mission planning expert system were

indistinguishable in behavior from equivalent Prolog missions created by the same system.

In general, manually coded missions have been found to be error prone. Even

missions produced manually using templates or by manually modifying working code are

still subject to typographical errors, errors of syntax, and logical errors in individual phases

or sequences of phases, any of which result in invalid or incorrect missions. Moreover the

increased magnitude of the Prolog code as mission complexity increases makes manual

programming of complex missions infeasible. The slower growth of C++ program size

alleviates this problem only slightly. This result amounts to no more than a confirmation

of previous results that were a primary motivator of this research work.

Missions produced using manually edited mission-specification language files and

the automatic code-generation programs offer a substantial improvement over manual

editing but are still prone to errors. This is because the mission planning expert system

checks missions for validity prior to generating the intermediate mission-specification file.

Mission specification files are not checked for errors by the automatic code generation

programs. Therefore, logical errors that are otherwise caught by the mission planning

expert system can be inserted by the human editor and processed by the automatic code

generation program without complaint, resulting in incorrect and unpredictable mission

code. Additionally, because the mission-specification language is significantly more

abstract than programming languages, it is somewhat terse and cryptic. Manually edited

mission-specification language files are therefore prone to typographical errors and

misordered data as well as logical errors.

Missions produced using the entire mission planning system are easier to create

than those coded manually or using mission-specification files. They have also proved

118

more reliable. The “Florida mission” [Marco 96b], a complex mine search and

classification mission consisting of roughly 25 phases, was produced using the mission

planning expert system in approximately ten minutes. A manually coded version of this

mission was originally generated and debugged over a period of approximately two weeks.

C. REAL WORLD RESULTS

1. Sonar Tracking Behaviors

The primary goal of in-water testing to date has been the verification of execution-

level sonar tracking and vehicle-control behaviors. Testing was conducted in the Center

for AUV Research test tank. Sonar tracking behaviors were first tested with the sonar at a

fixed position. Both the target-tracking and edge-tracking modes were successfully used

to track a 0.5 meter diameter cylinder. In this series of tests, the cylinder was placed in

various locations relative to the stationary sonar. The target search, target-tracking and

edge-tracking modes were then used to locate and track the target for approximately 60

seconds. Figures 46 and 47 show plots of bearing versus time and range versus time for a

test during which target-tracking mode was used to track the cylinder located on a bearing

of approximately 70 degrees at a range of approximately 13 feet relative to the sonar. As

can be seen in Figure 46, the sonar scanned to the right until reaching the target. At this

point it scanned back and forth across the target (a sector width of approximately ten

degrees). Figure 47 shows the range differential as the sonar scanned across and off the

target during its sweeps. In this plot, zero ranges actually indicate that no sonar return was

received.

119

Figure 46: Stationary Sonar Full Target Track Bearing vs. Time.

Figure 47: Stationary Sonar Full Target Track Range vs. Time.

120

Figures 48 and 49 show test results from static sonar tracking of the edge of the

cylinder located at a range of approximately nine feet bearing approximately 337 degrees

relative to the sonar. Figure 48 shows the sonar sweeping to the left until locating the

target. At this point, it begins sweeping back and forth across the cylinder’s right edge. The

sweep width during tracking is approximately eight degrees. As target size decreases or

range increases, the sweep width for edge tracking will be very close to the sweep width

for full target tracking. Figure 49 shows the range vs time plot. Again, zero ranges indicate

no sonar return was received. In this tests, the sonar located the target and successfully

tracked the edge for a period of 60 seconds. In this series of static sonar tests, both tracking

modes proved reliable so long as sufficient separation between the intended target and the

test tank wall existed to ensure adequate range differential between the target and the

background.

Figure 48: Stationary Sonar Target Edge Track Bearing vs. Time.

121

Because of the sometimes unreliable nature of sonar data it was occasionally

possible to lose a target that was being tracked. Figures 50 and 51 show a portion of a test

where a pair of spurious ranges caused the sonar to lose the edge of the recovery tube after

it had been tracking for over 90 seconds. Figure 50 shows that between 96 and 97 seconds

into the test, two sonar ranges at approximately nine feet were obtained. The previous on-

target return was at a range of approximately six feet, so the nine foot ranges were assumed

to be part of the target. The subsequent ranges were accurate and represented the test tank

wall at approximately 12 feet, but since the previous on-target range was nine feet, the 12

foot range was also assumed to be part of the target. Figure 51 shows the sonar bearing as

it continues to sweep to the left across the wall which it believes to be part of the target. At

present, the only solution to this problem is to avoid situations where a spurious return will

cause loss of track. This means that targets must be at least ten feet from background

objects (or the range differential for target discrimination must be reduced from five feet).

Figure 49: Stationary Sonar Target Edge Track Range vs. Time.

122

Figure 50: Range vs. Time Plot Showing Loss of Track in a Confined Area.

Figure 51: Bearing vs. Time Plot Showing Loss of Track in a Confined Area.

123

2. Station-Keeping Results

The next series of in-water tests were intended to verify execution-level station-

keeping behaviors. Tests were first conducted using full target tracking and edge tracking

to maintain a series of stations relative to the 0.5 meter diameter cylinder. As UVW results

had indicated, both sonar control modes can be used to navigate to and maintain stations to

within six inches. As expected, the higher target update rates of the edge-tracking sonar

mode allowed more responsive control than the full target-tracking sonar mode and

resulted in achievement of commanded stations in less than half the time. Figures 52

through 54 show the results of a test requiring Phoenix to proceed through a series of three

stations relative to the cylinder using a full target sonar scan. In addition, the vehicle

maintained the final station for a period of 30 seconds. Vehicle heading pointed directly at

the target for the first two stations and north for the final station.

Figure 52: Commanded and Actual Range to a Cylinder with Target Tracking

124

Figure 53: Commanded and Actual Bearing to a Cylinder with Target Tracking.

Figure 54: Commanded and Actual Heading while using Target Tracking.

125

As can be seen in the previous figures, commanded stations were achieved and

maintained. However time between target updates was normally five to ten seconds and

occasionally as long as 20 seconds. This slow update rate resulted in a slow convergence

with commanded range, bearing and heading and an occasional tendency to overshoot.

While part of this is likely due to improperly tuned control constants, the fact that station

keeping using the edge-scanning sonar mode converges upon the commanded station much

more quickly indicates that the slow target update rate significantly reduces the vehicle’s

ability to accurately control relative to the target.

Figures 55, 56 and 57 show the results of using edge tracking as the basis for station

keeping. Stations were the same as those used during testing of the full target scan based

station-keeping behavior. Again, the vehicle achieves all three stations and maintains the

third for 30 seconds. The roughness of the range versus time and bearing versus time plots

indicates that further tuning of control constants is required. The increased update rate of

edge tracking when compared to target tracking enables Phoenix to achieve each station in

approximately half the time and significantly improves the accuracy of vehicle control.

126

Figure 55: Commanded and Actual Range to a Cylinder with Edge Tracking.

Figure 56: Commanded and Actual Bearing to a Cylinder with Edge Tracking.

127

The final series of in-water tests were intended to test the vehicle’s ability to

maneuver around the recovery tube in order to position for final recovery. Because of the

uneven shape of the recovery tube, this was a much more difficult task than maneuvering

about the cylinder. This test required Phoenix to travel through a series of four stations

using the edge tracking sonar mode and maintain the final station for a period of 60

seconds. Heading was directed at the corner of the tube being tracked for the first two

stations, and was aligned with the recovery tube for the final two stations. The AUV

starting position was approximately 11 feet from the front left corner of the recovery tube.

The final station placed the nose of the vehicle just inside the recovery tube. From this

position, recovery is possible using the final recovery control mode described in

Chapter IV. Figures 58, 59 and 60 show the results of one of these tests.

Figure 57: Commanded and Actual Heading while using Edge Tracking.

128

Figure 58: Commanded and Actual Range during Tube Station Keeping.

Figure 59: Commanded and Actual Bearing during Tube Station Keeping.

129

 The ability of Phoenix to maintain station on different types of objects using the

same sonar tracking and control modes is clearly demonstrated by these results. This

capability has the potential to prove valuable not only during recovery operations, but

during execution of various other types of missions as well.

3. Strategic Level and Mission Planning Expert System Results

While the primary purpose of in-water testing in support of this research was to

verify execution-level behaviors upon which further testing would depend, an effort was

also made to test improvements to the strategic level software and missions generated with

the mission planning expert system. In-water testing of Prolog missions generated with the

mission-planning expert system were conducted in the NPS sub-Olympic swimming pool

in March 1996. Many of the results of these tests can be found in [Leonhardt 96]. Missions

consisted primarily of search missions and missions that transited through various

Figure 60: Commanded and Actual Heading during Tube Station Keeping.

130

locations. Figure 61 shows a geographic plot of a search mission similar to the one depicted

graphically in Figure 11. This mission was generated with the phase-by-phase mission

specification facility. The mission includes two waypoints, a hoverpoint, a sonar search,

and a GPS fix followed by a waypoint and a hoverpoint enroute to the recovery position.

Similar missions were generated for in-water tests using the means-ends analysis

portion of the system and also by manually editing mission specification language files.

Results obtained during in-water testing were similar to results obtained in the UVW.

D. SUMMARY

Tests of features implemented during the conduct of this research were conducted

in two distinct but complementary environments: the UVW and the real world. UVW tests

were conducted to test features at all three layers of Phoenix’ RBM implementation. These

tests using methods described in the previous chapters resulted in successful recovery in

Figure 61: In-Water Results of an Automatically Generated Mission.

Sonar
Search

Start

Finish

Obstacle

AUV Track

Hover/

Waypoint

Waypoint

GPS Fix

131

the tube in all but a few specific instances. The only failures occurred when Phoenix was

initially positioned directly in front of or behind the recovery tube and was unable to

acquire and track a tube edge because of the narrow sonar cross section.

In addition UVW tests were conducted to test modifications to the strategic level

software and the mission planning expert system. These tests were highly successful and

show that an expert system for AUV mission planning/generation is an extremely useful

tool that greatly reduces mission generation time while improving mission reliability.

In water tests were conducted to verify low level sonar and vehicle control

behaviors. These tests indicate that the sonar control modes described in Chapter IV are

capable of reliably locating and tracking targets in the AUV environment. Also, target data

obtained during sonar tracking can be used as the basis for maneuvering relative to objects

being tracked. Maneuvering based on target edge tracking proved to be more responsive,

but both sonar tracking modes were successfully used for station-keeping operations.

station keeping was demonstrated relative to a 0.5 meter cylinder and also a recovery tube.

Station keeping relative to the recovery tube using target edge-tracking proved precise

enough to position Phoenix’ nose in a position from which final recovery as described in

Chapter IV was possible.

Finally, missions were generated using the mission planning expert system and

successfully executed in the real world. Successful in-water tests of expert system

generated missions verify the utility of the system.

In the following chapter, the conclusions of this research are discussed.

Additionally, possible areas of future work are outlined. The conduct of this research has

indicated numerous possible future projects, not only relating to the goals of this thesis, but

also to broader research goals of the Center for AUV Research and other organizations.

132

133

VIII. CONCLUSIONS AND RECOMMENDATIONS

A. INTRODUCTION

Previous chapters of this thesis document the implementation and testing of

features intended to support AUV recovery in a small tube. The purpose of this chapter is

to draw conclusions based on the results of this research and to propose possible areas for

future work. The following section discusses conclusions. The section concerning

recommendations for future work is divided into twelve subsections. Each subsection

discusses an area for possible future work that was directly or indirectly relevant to the

conduct and results of this research.

B. RESEARCH CONCLUSIONS

The most obvious conclusion of this research is that sonar target tracking can be

used as the basis for precision autonomous underwater maneuvering. UVW and in-water

testing indicate that the precision of this maneuvering is sufficient for use throughout a

recovery evolution. Further, UVW testing indicates that path planning and command

generation can be implemented at higher levels of the RBM to use lower-level sonar-based

maneuvering to plan and control recovery in a small tube.

A more general conclusion concerning the station-keeping behaviors is the

applicability of sonar-based maneuvering to broader mission areas. The ability to take

station relative to arbitrary objects will enable an AUV to become an active participant in

the environment rather than merely an observer. This ability has potential applications in

many types of missions that require interaction with objects in the environment.

Underwater filming, sampling, repair and construction are just a few examples of potential

AUV tasks that will require this capability.

134

The most significant conclusion concerning the mission planning expert system is

that the use of a planning system such as this can greatly reduce mission generation effort

and improve reliability. Additionally, artificial intelligence planning techniques can be

used to create error-free missions that are guaranteed to accomplish the mission’s high-

level goals (assuming the goals are in fact possible and no catastrophic vehicle failures

occur). It is this research aspect that may prove most beneficial to the field of AUV

research in general. Only through the successful implementation of easy-to-use mission

planning tools will AUVs evolve beyond their current role of academic and industrial

research projects.

Another interesting conclusion that resulted indirectly from this research is that it is

possible to satisfactorily control a real-time system using an unmodified Unix operating

system. In Phoenix RBM implementation, hard-real-time (synchronous) tasks are executed

on the GESPAC computer under the OS-9 real-time operating system, while soft-real-time

(asynchronous) tasks are executed on a separate onboard computer running under the Sun

Unix operating system. Hard-real-time tasks consist primarily of physical control of

vehicle hardware. Soft-real-time tasks on the other hand, consist of high-level and

medium-level mission control, planning, object classification and navigation. Most of

what might be considered “intelligent” behaviors fall into the category of these soft-real-

time tasks. By dividing tasks into hard and soft real time categories in this manner, Phoenix

control software is implemented primarily on a system that many might consider unsuitable

for control of a real-time system. The only drawback of this system is that it requires two

separate onboard computers connected via LAN and relies on BSD socket communication.

Perhaps the broadest and most significant conclusion of this research results from

the successful use of the UVW for the implementation of vehicle software. The robustness

of the UVW allowed for deterministic testing of vehicle software in a benign environment.

Features were implemented and comprehensively tested one at a time over a period of

135

approximately one year prior to in-water verification. By exhaustively testing software

features in the UVW prior to attempting in-water tests, it was possible to conduct the bulk

of in-water testing documented in this thesis over a two-week period. The UVW is a

virtually unlimited resource, whereas power supply, hardware limitations, and logistics

requirements limit the availability of the physical vehicle for in-water testing significantly.

The in-water results of this research area depended heavily upon virtual world testing and

would have not have been possible were it not for the UVW.

While the preceding conclusions are significant, they amount to little more than a

first step towards recovery of AUVs using docking stations and submarines. A great deal

of work remains. The research detailed in this thesis is preliminary in nature and is

intended to begin dealing with issues involved with self recovery of an AUV in a confined

space. The following section of this thesis details some of the work that remains.

C. RECOMMENDATIONS

1. General Tactical Level Tests and Enhancements

The most obvious area for future work is the verification of tactical level features

through in-water testing. While the in-water tests described in Chapter VII verify the

reliability and correctness of the low-level sonar and vehicle-control behaviors, these tests

did not verify their use by the tactical level for successful recovery control. Along the same

lines, the development of tactics that use these low-level behaviors to accomplish more

general goals remains a topic for future work. In particular, these behaviors might be used

to implement many of the advanced capabilities outlined in [Brutzman 96].

2. Sonar Tracking Behaviors

The next area of future work involves improvement of the sonar tracking behaviors.

As depicted in Figures 50 and 51, under some circumstances it is possible for the sonar to

136

lose contact with the target being tracked. Even under ideal circumstances (error-free sonar

data and a clutter free environment), it is possible for AUV motion to cause the sonar to

lose track of the intended target.

Improvements in this area fall into two categories: improvements intended to

prevent the sonar from losing contact with its intended target and improvements intended

to enable to sonar to regain the target in the event of loss (which also involves recognition

of target loss). If a full target scan is used, features can be extracted as the sonar sweeps

across the target as documented in [Marco 96a]. This work might be augmented by the

implementation of a simple learning algorithm to “memorize” target features on the first

sweep to allow tracking of arbitrary objects without maintaining a target feature database.

Successful implementation of this type of system will also need to deal with issues such as

asymmetric objects which have different features when viewed from different angles.

Successful implementation of this type of system to support the faster edge tracking sonar

mode might involve periodic sweeps across the entire target to ensure that the proper target

was being tracked (by recognizing and verifying the features recorded in the previous full

target sweep).

The computational and storage requirements of this type of system will doubless

necessitate its implementation at the tactical rather than the execution level. Since learning

and object classification are involved, placement at the tactical level is a good match with

ideal RBM tasking. Tactical-level implementation will allow implementation with

minimal changes to the current execution level sonar modes. The addition of commands

to the execution level command language to enable switching from edge tracking to target

tracking for one sweep is probably the only change that is required at the execution level.

137

3. Sonar Classification

A third area for future work exists in improving Phoenix’ sonar classification

capabilities. While a significant amount of research effort has already been directed at this

topic, current Phoenix sonar classification capabilities were not specifically intended to

support recovery operations. Sonar classification research to date has been directed at the

general case of translating sonar data into line segments and polygons representing generic

objects [Brutzman 92, Campbell 96] and the specific case of classifying mine-like objects

[Campbell 96, Marco 96a]. Complete implementation of recovery capabilities must

include sonar classification of the intended recovery device. The most straightforward

implementation of this capability is probably best performed by augmenting currently

existing sonar classification algorithms.

4. AUV Tracking and Control

While the PD control laws discussed in this thesis are fairly effective, the

experimental results of the previous chapter clearly show that they are far from ideal. In

practice, sliding mode control laws such as those derived in [Marco 96a] have proven more

accurate and responsive (albeit more computationally expensive) than PD control laws.

Because of the current Phoenix execution level implementation demands and a weak 60830

CPU, the incorporation of sliding mode control laws (for station keeping and other control

modes) may be possible only after optimization of the execution level as described later in

this section. A more thorough discussion of various control modes and their suitability for

AUV control during recovery can be found in [Chapuis 96].

In the interim an effort to tune PD control constants is necessary. The present

Phoenix execution level uses PD control laws for all closed loop control modes (hover

control, waypoint control, etc.) and will require tuning of constant terms of these control

laws as well. UVW tests documented in the previous chapter demonstrate that PD control

138

laws can be used to obtain smooth motion along a planned path. Tuning of constants based

on accurate Phoenix hydrodynamics to duplicate UVW results during in-water testing is

therefore possible. Ideally, this work will proceed in parallel with UVW validation

discussed later in this section, since accurate UVW hydrodynamics will enable tuning of

control constants without requiring in-water tests.

Similarly, an effort to ensure standardization of control law nomenclature among

the various Phoenix control modes is needed. This will facilitate the modification and

tuning of existing control laws and the implementation of new control laws as well.

Finally, improvement of the mathematical model used for dead reckoning between

sonar target updates is required. Errors introduced because of an inaccurate mathematical

model lead to improper control response that can be counterintuitive to diagnose. This

phenomenon was encountered on numerous occasions during the conduct of this research.

The six DOF model of the UVW world demonstrates that accurate mathematical modeling

of AUV hydrodynamics is possible and can run in real time. Improvement of the

mathematical model represented by Equations 30, 31 and 32 will improve many aspects of

the system that depend on accurate vehicle response in addition to those documented in this

thesis. Hover behavior, navigation and sonar classification are three examples. Ideally, the

need for a dead reckoning mathematical model can be eliminated entirely by the

incorporation of an IMU as described later.

5. Ocean Current and a Moving Submarine

Because of the preliminary nature of this research, no real-world experimentation

was conducted into the effects of current during recovery. UVW testing in the presence of

a uniformly constant ocean current pointing in an arbitrary direction demonstrated that

these control algorithms are robust, but before this research can be applied in an

uncontrolled environment such as the open ocean, it will be necessary to research the

139

effects of time-varying current during station-keeping operations. Flow field issues

(including their effects on control laws) need to be addressed in detail. Recovery in the

torpedo tube of a moving submarine will require the resolution of numerous similar issues.

Research documented in this thesis dealt only with station keeping relative to

stationary objects in a current-free environment. Nontrivial steady-state and varying

currents (as well as target motion) are issues that will require significant research efforts.

6. Obstacle Avoidance During Recovery

The tactical level of Phoenix current software implementation conducts path

planning and obstacle avoidance for waypoints and hoverpoints [Leonhardt 96]. Obstacle

avoidance is not currently included in the recovery path planning discussed in Chapter V

of this thesis. Vehicle safety during recovery operations requires that this issue be resolved.

Features already existing at the tactical level will adapt fairly easily to this role. Recovery

path planning can then use these enhanced features to plan an obstacle-free path.

7. Sensor and Hardware Issues

The most significant hardware issues encountered during the conduct of this

research involved Phoenix navigation systems. While the Divetracker, GPS and

differential GPS systems make up a robust navigational suite by most standards, they are

all asynchronous in nature and provide navigational updates (fixes) every few seconds at

best [McClarin 96]. The asynchronous nature of hardware-derived navigational data

necessitates the use of the dead reckoning mathematical model described Chapter IV for

real time navigation between fixes. The turbo-probe speed wheel mitigates this problem

somewhat when the longitudinal motion of the vehicle exceeds approximately 0.25 feet per

second, but even in this instance, the lateral motion of the vehicle must be accounted for

(e.g., using the sideslip model discussed in Chapter VI).

140

As previously mentioned, the mathematical model currently in use contains

inherent errors. Even a far more robust mathematical model is unlikely to account for

external disturbances such as wave motion or uneven current effects. Navigational errors

introduced by the mathematical model have a significant negative impact on all vehicle

functions that rely on accurate navigational data. Among these are hover control, waypoint

control, path planning, obstacle avoidance and object classification.

Research is currently ongoing into incorporating an IMU into Phoenix [Bachman

96, McGhee 95]. The successful implementation of accurate real-time navigation using an

IMU is critical to many Center for AUV Research goals.

8. Strategic Level Enhancement

A possibility for future work at the RBM strategic level includes porting to other

languages such as Ada95 (including the development of phase templates and automatic

code generation programs) [Holden 95]. Additionally, work to be conducted at all three

levels of the RBM will involve the expansion of the strategic level’s primitive goal set and

execution level command language [Brutzman 96]. Present primitive goals primarily

support search missions. Future improvements might support run-time communication

between Phoenix and its support platform, dynamic missions that can be modified as

directed by the support platform, and more versatile interaction with located underwater

objects (e.g., mine neutralization).

It may also be possible in the near future to implement a more dynamic strategic

level that is capable of constructing portions of the DFA at run time. This might prove to

be a very useful feature, particularly given the unpredictable nature of the marine

environment. The previously addressed shortcomings of the means-ends analysis

algorithm (particularly those concerning non-optimal solutions) may preclude its use in this

manner. However, another planning algorithm such as search reduction through least

141

commitment, dependency-directed search, or meta-level planning [Tate 90a] may prove

more applicable in this area. Planning systems such as Tweak [Chapman 90], MOLGEN

[Stefik 90], NONLIN [Tate 90b], DEVISER [Vere 90], and FORBIN [Dean 90] for

example, address both the efficiency and the temporal aspects of their solutions. Other

issues to be dealt with before this type of self-modifying system is possible include

missions of nondeterministic length and goal prioritization.

9. The Mission Planning Expert System

Possible future work might also be directed at improvements to the mission

planning expert system. Obviously, as the functionality of Phoenix evolves, the mission

planning expert system will need to evolve to take advantage of new vehicle capabilities.

Additionally, work is ongoing to simplify the phase-by-phase mission-specification portion

of the system and to improve the automatic mission-generation portion of the system.

Ideally, the means-ends analysis algorithm will evolve to allow automatic generation of

missions that take full advantage of the DFA structure of the strategic level. If the

automatic mission planning is enhanced substantially, it may be possible to completely

eliminate the phase-by-phase specification portion of the system without sacrificing

flexibility. Other planning systems including those mentioned as possible run-time mission

planners, may prove useful in this area as well. Modifications that may be applicable in the

short term include modifying the phase-by-phase specification facility to incorporate error

correction rather than simple error detection.

One potential mission planner implementation might involve a combinion of

means-ends analysis with another search technique. For instance by assigning costs to the

application of each operator, it is possible to determine the total cost of a solution. If a

hybrid means-ends/search algorithm is applied in parallel to find operation sequences

satisfying each top level goal, the costs of each partial solution can be compared. By

142

choosing the lowest cost option and reapplying the algorithm to the remaining goals

(starting from the end state after application of the low-cost partial solution), a sequence of

operations can be generated to accomplish all of the goals. This strategy amounts to a

combination of means-ends analysis with best-first search [Winston 92]. Other search

strategies may be useful in this sort of implementation as well.

Finally, the current version of the mission planning expert system is dependent

upon the availability of Quintus Prolog and Prowindows. Possible future work to permit

cross-platform independence includes porting the expert system to an HTML interface that

can be run across a computer network. Such a system would probably involve a server-

based script that executes queries against the rule base. Since such a system can be run

from any platform using any web browser, such an approach provides complete platform

and window system independence.

10. Operating System Issues

One of the conclusions drawn earlier in this chapter is that it is possible to control

a real-time system using a standard Unix operating system. This does not however mean

that it is necessarily desirable. The requirement of two computers and the reliance upon

network communications may justify the transition to a single computer running a real-time

operating system such as VxWorks [Wind River Systems 95]. On the other hand, since the

execution level is not multi-threaded, it may be possible to control even the hard-real-time

tasks by using a dedicated processor running a standard operating system such as Unix.

This implementation still requires at least two onboard computers. As both of these

alternatives are worth looking into, a comparative study may lead to interesting and

insightful conclusions that will be relevant to a number of areas in addition to AUV

research.

143

Another operating system issue involves the concurrent process implementation of

the tactical and strategic levels. The Unix version under which the current system runs

does not support shared memory between separate processes even when they are forked by

a common process [Stevens 92]. This shortcoming necessitates the use of Unix pipes for

interprocess communication. Newer versions of the Unix operating system now support

shared memory [McKusick 96]. It may be worthwhile to rewrite the communications

portions of the tactical level to use shared memory for some communications. This might

improve the efficiency of the tactical level and may prove more readable as well. While it

is probably impractical to replace all interprocess communication with shared memory,

maintaining a single copy of the vehicle state vector as opposed to one copy for each

tactical level module might prove very beneficial. A similar upgrade of the strategic and

tactical levels that addresses the same issues might be their implementation in an inherently

multi-threaded computer language such as Ada95 [Holden 95].

11. Code Optimization

Numerous features have been added to all three layers Phoenix RBM

implementation during the conduct of this and other research. While these new features are

quite robust, little effort has been expended to ensure efficiency of the overall system. As

a result, the execution level in particular is only capable of maintaining a synchronous

speed of just over five Hertz [Burns 96]. While this speed appears adequate, it leaves little

room for future enhancements. The two possible solutions are the methodical optimization

of source programs or an upgrade of execution level computer hardware (which likely will

require a software rewrite anyway).

While the tactical level does not currently suffer from inefficiency to as great a

degree as the execution level, optimization is still possible. At the strategic level, however,

readability is considered more important than efficiency. This coupled with the relatively

144

small size of strategic level programs makes optimization of this software layer

unnecessary.

12. Underwater Virtual World Improvement

A final area for possible future work is improvement of the UVW. As discussed in

the previous section, the UVW proved to be an invaluable tool during the conduct of this

research. Validation of the UVW by using real-world data to tune hydrodynamic model

coefficients will make it even more valuable. Tuning of control constants based on an

invalid vehicle response model inevitably leads to control problems that are extremely

difficult to diagnose due to the large number of coefficient and variable terms in most

control laws. Problems of this sort encountered during this research included both

overdamped and underdamped control law coefficients. Complete validation and

verification of all vehicle hydrodynamic response parameters is essential to the accurate

modeling required for development of reliable control response. This is easily the most

important area of research concerning the UVW since improving the accuracy of vehicle

response in the UVW will have a dramatic effect on the reliability of developed software.

Another possible area of work concerning the UVW is the translation of the viewer

from C++ and Open Inventor to Java [Gosling 96] and the Virtual Reality Modeling

Language version 2.0 (VRML) [VRML Repository 96]. Translation ov network code to

Java and graphics code to VRML will allow use of the UVW on any platform using a

VRML-compatible web browser. It will also facilitate the sharing of world models by

allowing objects to be imported into the UVW from anywhere on the Internet.

D. SUMMARY

This chapter discusses conclusions drawn based on this research and possible areas

for future work. The first major conclusions of this work are that it is possible to use sonar

information as the basis for precision maneuvering of an AUV and that higher level

145

behaviors can use this capability to control recovery operations. Additionally, precision

maneuvering based on sonar data can be implemented in a general enough way to facilitate

its use during various portions of a mission. It was further concluded that a mission

planning expert system is an invaluable tool for the rapid development of complex missions

that are free from errors and accomplish the mission’s goals. Possibly the most important

conclusion drawn from this research is the value of the UVW for rapid development and

testing of vehicle software.

During the conduct of this research, numerous areas for potential future work were

encountered. First is the development and in-water verification of tactical level behaviors

that rely on the sonar and vehicle control behaviors described in this thesis. Other

possibilities directly related to furthering this research area are the enhancement of the

sonar tracking behaviors, sonar classification directed at identification of the recovery

device, improvements to the current PD control laws and dead-reckoning mathematical

model, and dealing with ocean current, moving targets and unexpected obstacles during

recovery operations. Concerning the strategic level and the mission planning expert

system, possible future work includes implementation of a more dynamic strategic level

capable of limited run-time planning, improvement of the automatic mission generation

and phase-by-phase mission specification facilities, and porting of the expert system to a

platform-independent server based architecture accessible from the internet. Finally, more

general areas of possible future work include a comparison of real-time and standard

operating systems for AUV control, optimization of the execution and tactical level

programs, validating the UVW based on real world data, and ultimately conversion of the

UVW viewer to Java and VRML.

146

147

APPENDIX A. OBTAINING ONLINE RESOURCES

One of the Naval Postgraduate School’s primary missions is to conduct research of

value to the military and public. The Center for Autonomous AUV Research makes all of

its significant work available online. Via the Internet, copies of all current software which

is used to run Phoenix or the underwater virtual world are available for downloading. Other

items available include graphics images, photographs, master’s theses, Ph.D. dissertations,

briefings, personnel listings, and other information relating to AUV research at NPS.

[Leonhardt 96]

An electronic mail (e-mail) group (auvrg@cs.nps.navy.mil) is used to distribute

message traffic to all members involved in the research group. Interested individuals group

can subscribe to the e-mail group by filling out a request form which is available on the

Center for AUV Research World Wide Web site (http://www.cs.nps.navy.mil/research/

auv). [Leonhardt 96]

Files for the software can be downloaded individually or as a complete compressed

archive package. In addition, numerous sample missions written in Prolog, C++, and the

execution level scripting language are included. The complete download and installation

instructions are available at the Software Reference site

(http://www.stl.nps.navy.mil/~brutzman/dissertation/software_reference.html). The size

of the complete uncompressed archive is approximately 15 MB.

148

149

APPENDIX B. EXECUTION LEVEL COMMAND LANGUAGE

This appendix contains the mission.script.HELP file. This file describes the syntax

of the execution level language. This language is used to construct mission script files that

can be read by the execution level or tactical level process to execute a scripted mission.

Additionally, this language is used by the tactical level to direct the execution level in order

to accomplish strategic-level goals. Finally, this language can be used interactively and

entered from a command line to control the AUV using one command at a time. The

mission.script.HELP file also contains instructions on how to construct and use mission

script files. This file is available online at

http://www.stl.nps.navy.mil/~brutzman/dissertation/software_reference.html

This file is available individually or as part of the .tar package containing all Phoenix and

UVW software.

150

//---//

 mission.script.HELP 12 August 96

 Mission script syntax for NPS AUV execution level and tactical
 control, in water and in the NPS AUV Underwater Virtual World.

 http://www.stl.nps.navy.mil/~auv/execution/mission.script.HELP

 Don Brutzman brutzman@nps.navy.mil

//---//

This file describes how to change and create NPS AUV mission script files.
Example mission.script files and the ‘execution’ program are in the
~/execution subdirectory.

Script commands are received by the AUV execution level (execution.c) from
the tactical level during a mission, the operator at the keyboard, or
read from the “mission.script” file. Both tactical and execution can
carry out mission scripts.

To run a new mission, copy a different existing mission file over file
‘mission.script’ or edit the mission.script file for a new mission.

Example:

unix> cd execution
unix> cp mission.script.siggraph mission.script
unix> execution virtual fletch.cs.nps.navy.mil

 or
unix> execution virtual fletch mission mission.script.siggraph

Many of the following commands will also work when invoked from the command
line upon execution. Detailed command line guidance is also available
interactively using the online NPS AUV process launcher form at
http://blackand.stl.nps.navy.mil/~auv/launcher/launcher.cgi

Numerous script keywords (and synonyms) are currently recognized. We have been
generous in the use of synonyms in order to reduce the possibility of
catastrophic spelling errors. This approach might be further extended
to include synonyms in other languages (French, Portuguese etc.)
Hint hint!

Sections in this syntax help file:

- Helm commands: open-loop and closed-loop control
- Navigation commands
- Mission timing commands
- Mission setup and configuration commands
- Sonar commands
- Miscellaneous commands

 | |
---------+------------+--
Keywords | Parameters |Description
Synonyms | [optional] |(all units are feet, degrees or seconds as appropriate)
---------+------------+--
 | |
 | |

// Helm commands: open-loop and closed-loop control ----------------------//

RPM # [##] Set ordered rpm values to # for both propellers
SPEED # [##] [or independently set left & right rpm values
PROPS # [##] to # and ## respectively]
PROPELLORS # [##] maximum propellor speed is +- 700 rpm => 2 ft/sec

151

THRUSTERS-ON Enable vertical and lateral thruster control
THRUSTERS
THRUSTERON
THRUSTERSON

NOTHRUSTER Disable vertical and lateral thruster control
NOTHRUSTERS
THRUSTERS-OFF
THRUSTERSOFF

RUDDER # Force rudder to remain at # degrees, thrusters-off.
Value is for after rudder, negative command turns left.

DEADSTICKRUDDER[#] Force rudder to remain at 0 [or #] degrees,
thrusters-off.

COURSE # Set new ordered course (commanded yaw angle)
HEADING #
YAW #

TURN # Change ordered course by # degrees
CHANGE-COURSE # (positive # to starboard, negative # to port)

PLANES # Force planes to remain at # degrees, thrusters-off.
Value is for after planes, negative command points down.

DEADSTICKPLANES[#] Force planes to remain at 0 [or #] degrees,
thrusters-off.

DEPTH # Set new ordered depth (commanded z)

PITCH # Set new ordered pitch (commanded theta angle).
THETA # Only effective during HOVERCONTROL.

ROTATE # open loop lateral thruster rotation control
at # degrees/sec

NOROTATE disable open loop lateral thruster rotation control
ROTATEOFF
ROTATE-OFF

LATERAL # open loop lateral thruster translation control
at # ft/sec
(positive is to starboard, maximum is 0.5 ft/sec)

NOLATERAL disable open loop lateral thruster translation control
LATERALOFF
LATERAL-OFF

// Navigation commands --//

DIVETRACKER1 # ## ###Position of DiveTracker transducer 1
DIVETRACKER2 # ## ###Position of DiveTracker transducer 2

Still need to incorporate bearing to DiveTrackers.

GPS Proceed to shallow depth, take Global Positioning
GPSFIX System (GPS) fix, restore ordered depth when done.
GPS-FIX Control (thrusters, propellers/planes, combined)

is not modified. Maximum fix time is 30 seconds,
at which time execution returns to previously
ordered depth.

GPS-COMPLETE GPS fix complete, resume previously ordered depth.
GPS-FIX-COMPLETE

GYRO-ERROR # Degrees of error measured for gyrocompass.
GYROERROR # [GYRO + ERROR = TRUE]

152

DEPTH-CELL-BIAS # Feet of bias error measured for depth cell.
DEPTHCELLBIAS # [DEPTH CELL Z + BIAS = TRUE Z]
DEPTH-CELL-ERROR #
DEPTHCELLERROR #

POSITION # ## [###]reset vehicle dead reckon position to (x, y) or
LOCATION # ## [###](x, y, z) = (#, ##, ###) at current clock time
FIX # ## [###]This is a navigational position fix. Receipt of a

 POSITION/LOCATION/FIX command resets the execution
 level dead-reckon position. Note that depth value z

 will likely be reset by depth cell if operational.

ORIENTATION # ## ###reset vehicle orientation to
ROTATION # ## ###(phi, theta, psi) = (#, ##, ###)

POSTURE #a #b #c #d #e #f
reset vehicle dead reckon posture to
(x, y, z, phi, theta, psi) = (#a, #b, #c, #d, #e, #f)

OCEANCURRENT #x #y [#z] Ocean current rate along North-axis, East-axis and
OCEAN-CURRENT #x #y [#z] [optional] Depth-axis (feet/sec)

 (this is cartesian version of set and drift)

WAYPOINT #X #Y [#Z] [#rpm]
WAYPOINT-ON #X #Y [#Z] [#rpm]

Point towards waypoint with coordinates (#X, #Y)
(depth #Z optional) (speed #rpm optional). You can
leave waypoint control by ordering course, rudder,
sliding-mode, rotate or lateral thruster control.

If in TACTICAL mode, execution reports STABLE when
waypoint is achieved.

STANDOFF # Change standoff distance for WAYPOINT-FOLLOW and HOVER
STAND-OFF # control
STANDOFFDISTANCE #
STANDOFF-DISTANCE #
STAND-OFF-DISTANCE #

HOVER [#X #Y] [#Z] Hover using thrusters and propellers for longitudinal
and lateral positioning at specified or previous
waypoint

HOVER [#X #Y] [#Z][#orientation] [#standoff-distance]
Uses WAYPOINT control until within #standoff-distance
of HOVER point (#X, #Y, #Z), then switches to
HOVER control with [optional] final #orientation

Full speed (700 RPM) port & starboard is used if
AUV distance to WAYPOINT is > #standoff-distance + 10’,
then slows to 200 RPM until within #standoff-distance,
then HOVER control.

HOVER without parameters is the preferred method of
slowing since backing down with negative propellers may
result in large sternway and severe depth excursions.

If in TACTICAL mode, execution reports STABLE when done.

HOVEROFF Turn off HOVER mode
HOVER-OFF
HOVER_OFF

TARGETSTATION #R #B [#Psi]
TARGET-STATION #R #B [#Psi]

Hover relative to a sonar target at range = #R and
target bearing #B from the AUV. Commanded AUV

153

heading is #Psi (default is point at target).
Stationkeeping will use full target tracking
sonar mode

TARGETSTATION #R1 #B1 #R2 #B2 [#Psi]
TARGET-STATION #R1 #B1 #R2 #B2 [#Psi]

Hover relative to sonar target. Target currently
at range = #R1, bearing #B1 from AUV. Commanded
range = #R2, commanded bearing = #B2, commanded
heading = #Psi (default is point at target).
Stationkeeping will use full target tracking
sonar mode

EDGESTATION #R #B [#Psi]
EDGE-STATION #R #B [#Psi]

Hover relative to a sonar target at range = #R and
target bearing #B from the AUV. Commanded AUV
heading is #Psi (default is point at target).
Stationkeeping will use full target tracking
sonar mode

EDGESTATION #R1 #B1 #R2 #B2 [#Psi]
EDGE-STATION #R1 #B1 #R2 #B2 [#Psi]

Hover relative to sonar target. Target currently
at range = #R1, bearing #B1 from AUV. Commanded
range = #R2, commanded bearing = #B2, commanded
heading = #Psi (default is point at target).
Stationkeeping will use target edge tracking
sonar mode

TARGET-OFF Turn off stationkeeping control mode
TARGETOFF
NO-TARGET
NOTARGET

TARGET-POINT Commanded #Psi during stationkeeping will point
TARGETPOINT directly at target center

NO-TARGET-POINT Commanded #Psi during stationkeeping can be
NOTARGETPOINT manually controlled using HEADING commands
TARGET-POINT-OFF
TARGETPOINTOFF

ENTERTUBE # ## Experimental control mode. This tells execution level
ENTER-TUBE # ## that nose has entered the tube, drive the rest of the

way in using dead reckon for forward motion and sonars
(pointing to opposite sides) to maintain tube side wall
standoff. Parameters:
How far forward to travel to be fully inside tube
Tube orientation in degrees

// Mission timing commands ---
//

WAIT # Wait (or run) for # seconds (letting the robot execute)
RUN # prior to reading from the script file again

If in TACTICAL mode, execution ignores WAIT commands.

TIME # Wait (or run) until robot clock time #
WAITUNTIL # (letting the robot execute its current orders)
PAUSEUNTIL # prior to reading from the script file again

If in TACTICAL mode, execution ignores TIME commands.

TIMESTEP # change default execution level time step interval
TIME-STEP # from default of 0.1 sec to # sec

154

STEP loop for another timestep prior to reading script again.
SINGLE-STEP Only useful in execution keyboard mode.

PAUSE temporarily stop execution until <enter> is pressed

REALTIME run execution level code in real-time
REAL-TIME (busy wait at the end of each timestep if time remains)

NOREALTIME run execution level code as quickly as possible
NO-REALTIME
NONREALTIME
NOWAIT
NO-WAIT
NOPAUSE
NO-PAUSE

// Mission setup and configuration commands --------------------------------//

HELP Provide a list of available keywords
? (as specified in this HELP file).
/?
-?

// comments follow on this line which are not executed
/* note comments will still be spoken if AUDIO-ON
pound sign also indicates a comment if in first column

// Three startup modes:[LOCATIONLAB] | TETHERED | UNTETHERED

LOCATIONLAB Vehicle is operating in lab using virtual world.
LOCATION-LAB This is default mode.

TETHER command line switch only, used for in-water runs
TETHERED set DISPLAYSCREEN=TRUE and LOCACTIONLAB=FALSE

UNTETHER command line switch only, used for in-water runs
UNTETHERED set DISPLAYSCREEN=FALSE and LOCACTIONLAB=FALSE
NOTETHER
NO-TETHER

VIRTUAL hostname tells execution level to open socket to virtual world
VIRTUALHOST hostname which is already running and waiting on ‘hostname’
REMOTE hostname VIRTUALHOST is a command line switch. Example:
REMOTEHOST hostname unix> execution virtualhost fletch.stl.nps.navy.mil
DYNAMICS hostname

TACTICAL hostname tells execution level to open socket to tactical level
TACTICALHOST hostname which is already running and waiting on ‘hostname’
STRATEGIC hostname TACTICAL/STRATEGIC is a command line switch. Example:
STRATEGICHOST hostnameunix> execution tacticalhost fletch.stl.nps.navy.mil

MISSION filename Replace ‘mission.script’ with ‘filename’ and start
SCRIPT filename the new mission. Read tactical commands for execution
FILE filename level from filename.

TELEMETRY filename Playback prerecorded telemetry data from filename.
Consider using with NOSCRIPT if no script file present.
dynamics should be run with selection
E dEad_reckon_test_with_execution_level

NOSCRIPT Ignore script command file. Selectively used
in combination with TELEMETRY data file playback.

KEYBOARD read script commands from keyboard
KEYBOARD-ON

KEYBOARD-OFF read script commands from mission.script file
NO-KEYBOARD

155

TRACE enable verbose print statements in execution level
TRACE-ON

TRACEOFF disable verbose print statements in execution level
TRACE-OFF
NOTRACE
NO-TRACE

LOOPFOREVER repeat current mission when done.
LOOP-FOREVER each repetition is called a ‘replication.’

LOOPONCE do not LOOPFOREVER, stop when end of script is reached
LOOP-ONCE

LOOPFILEBACKUP back up output files during each loop replication
LOOP-FILE-BACKUP to permit inspection while new files are written

the backup files are in execution directory:
output.telemetry.previous & output.1_second.previous

ENTERCONTROLCONSTANTS start a keyboard dialog to enter
ENTER-CONTROL-CONSTANTS revised control algorithm coefficients

CONTROLCONSTANTSINPUTFILE read revised control algorithm coefficients
CONTROL-CONSTANTS-INPUT-FILEfrom file “control.constants.input”

BENCH-TEST Simplified initial command-line parameter for quick
BENCHTEST switch setting during Russ’s control and prop testing.
BENCH

NOTEXT Eliminate text display in command window
NO-TEXT (useful for verbose/long runs in virtual world)

TEXT Turn text display in command window back on
TEXT-ON

QUIT do not execute any more commands in this script, but
STOP repeat the mission again if LOOP-FOREVER is set
DONE
EXIT
REPEAT
RESTART
COMPLETE
<eof> marker

KILL same as QUIT but also shuts down socket to virtual world
SHUTDOWN ‘dynamics’ process.

// Sonar commands ---//

SONAR725 #b #r #p Set the bearing (#b), range (#r), and power (#p) of the
SONAR-725 #b #r #p ST-725 sonar. In virtual world, bearing is necessary for
SONAR_725 #b #r #p sonar model. In water, this stores data in the state
ST725 #b #r #p vector for replay and examination.

SONAR1000 #b Manually control the ST1000 sonar bearing to #b degrees
SONAR-1000 #b relative to Phoenix heading
SONAR_1000 #b
ST1000 #b

SCAN-WIDTH # Total degrees for default ST1000 sonar scan, centered
SCANWIDTH # about bow

SONARTRACE Enable verbose print statements in execution sonar code

SONARTRACEOFF Disable verbose print statements in execution sonar code

156

SONARINSTALLED Sonar interface installed, use them
SONAR-INSTALLED

NOSONARINSTALLED Sonar interface not installed, don’t use
NO-SONAR-INSTALLED

// Miscellaneous commands ---//

AUDIBLE enable text-to-speech audio output
AUDIO
AUDIO-ON
SOUND-ON
SOUNDON
SOUND

SILENT disable text-to-speech audio output
SILENCE
NOSOUND
SOUNDOFF
SOUND-OFF
AUDIOOFF
AUDIO-OFF
QUIET

SOUNDSERIAL tell virtual world to pause while playing back sound
SOUND-SERIAL (default)

SOUNDPARALLEL tell virtual world to play sounds as parallel processes
SOUND-PARALLEL (this may cause garbles if speeches play simultaneously)

EMAIL ask user for electronic mail address at mission start,
EMAIL-ON send user an electronic mail report at mission finish
E-MAIL
E-MAIL-ON
EMAILON

EMAILOFF disable electronic mail address query feature
EMAIL-OFF
E-MAILOFF
E-MAIL-OFF
NO-E-MAIL
NO-EMAIL
NO-E-MAIL
NOEMAIL

SLIDINGMODECOURSE Sliding mode course control algorithm (not yet working)
SLIDING-MODE-COURSE

SLIDINGMODEOFF Disable sliding mode course control algorithm (“ “ “)
SLIDING-MODE-OFF

PARALLELPORTTRACE enable trace statements for parallel port communications

WAYPOINTFOLLOW Set mode to arrive at each waypoint before reading the
WAYPOINT-FOLLOW next mission script command, i.e. continue towards each
WAYPOINTFOLLOWON waypoint for however long it takes to reach the standoff
WAYPOINT-FOLLOW-ON distance before pausing to read the next command.

Probably not needed anymore.

WAYPOINTFOLLOWOFF Disables WAYPOINTFOLLOW mode
WAYPOINT-FOLLOW-OFF

//---//

157

APPENDIX C. MISSION GENERATION EXPERT SYSTEM USER
GUIDE

A. INTRODUCTION

This appendix consists of operating instructions for the mission planning expert

system. Included sections include startup and initial operations, tactical level initialization

file generation, the means-ends mission planning facility operation, phase-by-phase

mission specification facility operation, and finally, executable code generation,

compilation and execution.

B. STARTUP AND INITIAL OPERATIONS

The mission planning expert system requires Quintus Prolog version 3.2 and

Prowindows [Weilemaker 94]. At present, these are only installed on

ai4.cs.nps.navy.mil located in the artificial intelligence (AI) lab, however the

expert system can still be run from anywhere on campus by starting a remote xterm. Log

onto any Unix workstation on campus, start X-Windows (if necessary) and type the

following from any xterm shell:

> xhost ai4.cs.nps.navy.mil

> telnet ai4.cs.nps.navy.mil

Log onto the auv account on ai4.cs.nps.navy.mil and change to the

strategic directory. Start Prowindows by typing

ai4> cd strategic

ai4> xterm -display localmachine:0

For this command, localmachine is the machine upon which you are working. After

executing this command, a new xterm will pop up. In this window type:

ai4> newprowin

158

Once Prowindows has started, the expert system is loaded and started by typing (including

the period):

?- [mission_expert].

This will cause the software to load and start automatically. To later restart the expert

system from prowindows (if it has been exited using the quit button), simply type

?- go.

Once the windowed mission generation expert system has started, use the menu

button labeled Available Charts to choose the operating area for the mission you wish to

generate. Clicking the left mouse button over the menu will cause the available operating

area information (and the area maps) to cycle one at a time. Depressing the right mouse

button over the menu button will invoke a drop-down menu displaying all possible

operating areas. Dragging the mouse to the desired operating area and releasing the mouse

button will cause it to load. The currently displayed map will always correspond to the

currently loaded operating area. The operating area can be changed at any time, however,

changing the current operating area while editing a mission will automatically clear all

current mission data.

It is also a good idea at this point to enter the name of the desired output file on the

Output File Name item (although the file name can be entered or changed any time prior

to code generation). The file name must conform to standard Unix naming conventions. It

is best to add the .pl, .C, .cc, or .cpp extension appropriate for the final output

language, but this is not a requirement of the expert system itself. The naming convention

used to date follows the form mission.pl.myexample for Prolog code and

mission_graph.C.myexample for C++ code. Prior to compiling or executing the

missions, the file should be copied into mission_graph.C or mission.pl as

appropriate. Currently the autogenerated C++ code compiles and runs under the Silicon

159

Graphics (SGI) Irix operating system on any campus SGI workstation. The autogenerated

Prolog runs on the Voyager laptop only (tony.cs.nps.navy.mil).

To start the different system facilities, the Available Operations menu buttons

(from the main menu shown in Figure 62) are used. Starting any system by selecting the

Phase by Phase Generation or Means Ends Generation button will automatically end

any system facility currently being executed and will clear all data from that operation. Use

of the Create Initialization File or Modify Current Mission will start the appropriate

facility, but will not clear data from memory if another system facility was interrupted.

Directions for use of each of the system facilities are provided in the following sections.

C. TACTICAL LEVEL INITIALIZATION FILE GENERATION

When running all three RBM layers, the tactical level requires an initialization file.

This file contains information such as the initial vehicle posture, the locations of the

Divetracker units, and the gyro error. To start generate this file, use the left mouse button

to click the Create Initialization File button under Available Operations. At this point,

the data is entered using the data input window shown in Figure 63. Data must be entered

using the sliding bars (point and click using the map is not enabled). Locations are in X, Y

coordinates corresponding to the grid overlaying the operating area map. When finished,

use the left mouse button to press the Done button on the Initialization Parameters data

entry window. The information will be saved in a file called

initialization.script. To end the facility without creating the initialization file,

use the left mouse button to press the Cancel button. NOTE: If more than one mission is

to be generated, copy each initialization.script file to another file before

creating the next one to avoid overwriting.

160

Figure 62: Mission Planning Expert System Main Window.

161

Figure 63: Initialization Parameters Data Input Window.

162

D. PHASE-BY-PHASE MISSION SPECIFICATION

1. Entering New Phases

To start the phase-by-phase mission specification facility, use the left mouse button

to click the Phase by Phase Generation button under Available Operations. At this

point, Phase Type and Phase Summary windows will be created. The Phase Type

window is used to specify the type of phase that is to be entered, while the Phase Summary

window will display a state table representation of the mission as it is entered in. The Phase

Type and Phase Summary windows are depicted in Figures 64 and 65 respectively. To

enter a phase, use the left mouse button to choose the appropriate type of phase on the

Phase Type menu. Data entry for phase parameters for each type of phase is via windows

that vary depending on the type of phase (all are similar to the data entry window depicted

in Figure 66). The following section provides a brief summary of what each type of phase

will accomplish and what parameters must be specified.

Figure 64: Phase Type Input Window.

163

Figure 65: State Table Summary of a Mission Specified Phase-by-Phase.

Figure 66: Data Input Window for Transit Phase Specification.

164

Depth Change: Change to new depth while hovering or after transiting.
New depth is specified.

Course Change: Change to new course while hovering or after transiting.
New course is specified.

Transit: Use maximum RPM to transit to a new location. Vehicle will not
stop upon reaching this new location, but will drive through. Transit
location is specified as an (X, Y) position and depth is specified as
well.

Hover: Transit to a new location and establish a hover. Hover location is
specified as an (X, Y) position. Hover depth and hover heading are
also specified.

GPS Fix: Obtain a global positioning system fix. No special parameters
are required.

Rotate Sonar Search: Conduct a sonar search from a specified location by
rotating the sonar 360 degrees. Search location is specified as an (X,
Y) position. Search depth is specified as well.

Rotate AUV Search: Conduct a sonar search from a specified location by
rotating the AUV 360 degrees while maintaining a fixed forward
sonar bearing relative to the AUV. Search location is specified as an
(X, Y) position. Search depth is specified as well.

Wait: Continue with current operation (eg., hover) for a specified period of
time. Time to wait is specified.

Recover in Tube: Perform a recovery in a recovery tube. Location of
recovery tube is specified as an (X, Y) position. Recovery tube
depth and heading are also specified.

In addition to the above data required by each individual type of phase, all types of

phases require the following information:

Phase Name: This can be made up of numbers and letters and is typed in
by the user. No blanks are allowed, and the first character cannot be
a capital letter (if Prolog code is to be generated).

Time Out: This is the amount of time (in seconds) that the phase has to
succeed.

165

Phase Complete Successor: The name of the phase to execute upon
successful completion of the phase currently being entered.

Phase Abort Successor: The name of the phase to execute upon failure of
the phase currently being entered.

The means of data entry varies depending on the type of data. Numerical data can

be entered using the sliders. The slider ranges for X positions, Y positions, and depths are

defined according to the current operating area. Positions for hovers, transits and searches

can also be entered by clicking the desired position on the area map with the left mouse

button. The name of the phase is typed in by the user at the Phase Name text entry location.

Push button menus are used to enter the Phase Complete Successor and Phase

Abort Successor. The names of all phases that have been specified previously will have

pushbuttons on both menus (in addition to selections for Mission Abort and Mission

Complete). To set one of these phases as the complete or abort successor, simply use the

left mouse button to select the desired phase. If the desired successor phase has not yet been

defined, use the left mouse button to select the Unspecified menu item. A new data entry

window for specifying the name of the successor phase will then be displayed. Enter the

intended name of the successor phase on the Name blank and use the left mouse button to

press the Ok button. This phase will need to be specified later (using the correct name) or

an error will be generated when the system parses the mission prior to code generation.

Any phase information can be changed after being entered simply by re-entering it.

When all required phase information has been entered, use the left mouse button to press

the Done button on the data entry window. The phase will then be stored in memory and

displayed in the state table of the Phase Summary window. To cancel entry of the current

phase, use the left mouse button to press the Reset Phase button on the data entry window.

166

NOTE: Mission specification can be interrupted at any time to create the tactical

level initiatialization file without losing phases that have been specified previously

(restarting the phase-by-phase specification facility is discussed later). If the means-ends

mission generation facility is invoked or the phase-by-phase mission specification facility

is restarted improperly, however, all previously specified phases will be deleted from

memory.

2. Modifying and Deleting Phases Specified Phases

To modify a phase that has been previously entered without deleting it, use the left

mouse button to select the Modify Phase button in the Phase Type window. A Phase

Modification window similar to the one shown in Figure 67 will be displayed. Use the left

mouse button to select the name of the phase that you wish to modify from the menu in this

window (or the Reset button to remove the window without modifying a phase). A data

entry window for this phase (with the phase data as previously entered) will be displayed.

Data can be entered using this window as if the phase were being initially specified. To

remove the window without changing the phase, use the left mouse button to press the

Reset Phase button, or press the Done button to store the changed phase definition.

To delete a phase that has been previously entered, use the left mouse button to

select the Delete Phase button in the Phase Type window. A Phase Deletion window

similar to the one shown in Figure 67 will be displayed. Use the left mouse button to select

the button corresponding to the phase to be deleted (or the Reset button to remove the

window without deleting a phase).

If no phases have been previously entered into the system and the Modify Phase or

Delete Phase button is depressed, an error window will be displayed. Use the left mouse

button to press the Ok button in the error window to clear the error message. When done

specifying the mission, do not press the Cancel button. Rather follow the instructions for

generation of executable code provided in Section F.

167

3. Phase Errors

If the data entered for a phase is invalid or incomplete when the Done button is

pressed, an error message will be displayed describing the type of error in an Invalid Phase

window similar to the one shown in Figure 68. Phases containing errors will not be

accepted by the system. To clear the error message use the left mouse button to press the

Ok button in the error window. Phase data can then be entered or changed as appropriate,

or the Reset Phase button can be used to cancel phase entry.

4. Mission Modification

If the Phase Type window is not present and mission specification is not complete,

mission specification can be continued without clearing previously specified phases from

(a) (b)

Figure 67: (a) Phase Modification and (b) Phase Deletion Windows.

Figure 68: Invalid Phase Error Report Window.

168

memory by using the left mouse button to select the Modify Current Mission button on

the Available Operations menu of the main system menu. Loss of the Phase Type

window can have a number of causes. The most common is accidental (or intentional) use

of the Cancel button on the Phase Type window. The Phase Type window will also be

removed if the Create Initialization File facility is invoked. It may also be the case that

the window is simply hidden by another window on the screen. Regardless, use of the

Modify Current Mission button will generate a new Phase Type window. Mission

specification can then proceed. If the Modify Current Mission button is pressed when no

specified phases are contained in memory (either no phases have been specified or memory

was cleared by the invocation of one of the other system facilities), an error message will

be displayed. To clear the error message, use the left mouse button to press the Ok button

on the error window.

5. Code Generation

Once mission specification is complete, code can be generated by following the

instructions in Section F, Executable Code Generation, Compilation and Operation.

F. MISSION GENERATION WITH MEANS-ENDS ANALYSIS

1. Overview and Launch and Recovery Position Specification

The means-ends facility is used to automatically generate complete missions by

specifying the AUV launch position, recovery mission, type of recovery and the goals of

the mission. To invoke this facility, use the left mouse button to press the Means Ends

Generator button on the Available Operations menu of the main window. The system

will display the window shown in Figure 69. Use the sliders in this window to enter the

AUV launch and recovery positions (point and click is not enabled). This window is also

used to define the type of recovery to be executed at the end of the mission and enter

locations to be searched during the mission.

169

2. Specifying the Recovery

The default AUV recovery is simply to surface once reaching the recovery location.

Also available is a recovery in a tube. To specify this type of recovery, use the left mouse

button to press the Recover In Tube button. The system will then request recovery tube

data using the window shown in Figure 70. The (X, Y) position of the recovery tube can

be entered using the sliders by using the left mouse button to select the appropriate position

from the area map. Tube Depth and Tube Entry Heading (the heading of the AUV when

entering the tube) must be entered using the provided sliders. Once the data has been

entered, use the left mouse button to press the Store Data button to save the recovery tube

information. To cancel entry of recovery tube data without saving, use the left mouse

button to press the Cancel button on the Recovery Tube Data window. Once the recovery

tube data has been entered and saved, it can be changed simply by re-entering it. To cancel

a tube recovery that has been previously specified, simply use the left mouse button to press

the Cancel Tube Recovery button on the Means End Help window.

Figure 69: Means-Ends Mission Generator Facility Main Window.

170

When the position and orientation of the recovery tube have been specified and

saved, the system will automatically update the vehicle recovery position information in the

Means End Help window. This information can be manually changed using the sliders if

desired, however the automatically updated position is one from which recovery is

possible. Manually changing this position may cause an error when the mission is parsed

prior to code generation if the manually selected position is not within the system defined

range limitations.

3. Specifying Search Points

At present the primary mission goal supported by the system is the conduct of

searches from user-specified locations. Points at which to conduct searches are entered one

at a time. An unlimited number of search points can be entered into the system in any order.

Routing to a search point can also be specified.

To enter a search point, use the left mouse button to press the Enter Search Point

button in the Means End Help window. The system will display the Search Point Data

window shown in Figure 71. To enter the location to be searched, use the sliders in the

window or use the left mouse button to indicate the search location on the area map. This

will cause update of the search point location and the transit point location fields in the

Search Point Data window. The search depth must be entered using the slider. To specify

Figure 70: Recovery Tube Data Entry Window.

171

routing to the search point, use the transit point location field. The generated mission will

cause the AUV to transit through this point prior to establishing a hover at the search

location (if the search point and transit point are collocated, the AUV will transit directly

to the search point and establish a hover). This point can be specified using the sliders or

by indicating the transit point location on the area map using the right mouse button (after

the search location has been specified manually or with the left mouse button). To save the

search data, use the left mouse button to press the Store Point button in the Search Point

Data window. To cancel search point entry without saving the search point data, use the

Cancel button in the Search Point Data window. Once a searchpoint has been entered into

the system and saved, it cannot be saved. All search points can however be deleted from

memory by using the left mouse button to press the Clear Search Points button in the

Means End Help window.

4. Computing a Sequence of Phases

Once the launch position, recovery position, type of recovery, and searchpoints

have been specified, the system can be used to generate a sequence of phases that will

accomplish the mission. To invoke this feature, use the left mouse button to press the

Figure 71: Search Point Data Entry Window.

172

Generate Phase Sequence button in the Means End Help window. The system will then

generate the sequence of phases and display a textual description of the resulting mission

in a window similar to the one shown in Figure 72. In addition the path of the mission will

be depicted on the area map of the main system window.

Since means-ends analysis is not guaranteed to find the best solution first, the

capability exists to cycle through all possible solutions one at a time. To generate another

solution using means-ends analysis, use the left mouse button to press the Next Solution

button in the Means End Solution window. A new solution will be computed and

displayed textually in a Means End Solution window and geographically on the area map

of the main window.

Figure 72: Sample Means-Ends Analysis Mission Solution Window.

173

5. Code Generation

Once mission specification is complete and a satisfactory solution has been

obtained, code can be generated by following the instructions in Section F, Executable

Code Generation, Compilation and Operation.

F. EXECUTABLE CODE GENERATION, COMPILATION AND OPERATION

1. Code Generation

Executable code can be generated based on a mission specified using the phase-by-

phase mission specification facility or the means-ends mission generation facility. If the

phase-by-phase mission specification facility was used to specify the mission, the

generated executable code will correspond to the mission described in the Phase Summary

window. If the means-ends-analysis mission generation facility was used, the generated

executable code will correspond to the mission described in the current Means End

Solution window.

To generate executable code simply use the left mouse button to press the Generate

Mission Code button in the main system window. If the phase-by-phase mission

specification facility was used to specify the mission, the system will request the name of

the first phase of the mission. Simply use the left mouse button to select the appropriate

first phase from the menu displayed. If the means-ends mission generation facility was

used, this step is not required. In either case, the system will parse the mission to check for

errors (loops in the graph, no mission complete specified, unspecified phases, etc.) prior to

generating code.

If errors are detected, a window similar to the one in Figure 73 will be displayed.

To clear the error message, use the left mouse button to press the Ok button in the Phase

Error window. The mission can be then edited using the phase-by-phase mission

specification facility or means-ends mission generation facility as appropriate (the only

174

errors that can be introduced by the means-ends mission-generation facility are caused by

manually changing the recovery position when a tube recovery is requested as described

above). Editing of missions with errors is conducted as if no attempt to generate code had

been made.

If no errors are detected during parsing, the window displayed in Figure 74 will be

displayed. To select the desired language for output, use the left mouse button to press the

Prolog or C++ button as appropriate. The output file will be stored in the current directory

(~auv/strategic) and will be named according to the Output File Name entry. If

Prolog code is generated, an additional file will be created with a standalone_ added to

the beginning of the name. These two files are equivalent except that running the

standalone file will make queries to the user rather than the tactical level. To clear this

window without generating code, press the Cancel button.

Figure 73: Error Window for Detected Mission Errors.

Figure 74: Output Language Selection Window.

175

2. Compiling and Running the Mission

a. The Tactical Level Initialization File

To run a mission, generated files must be transferred from

ai4.cs.nps.navy.mil to the appropriate directories on file system of the machine

upon which the tactical level is to run. All files should be transferred as ascii files using

the Unix ftp facility.

The initialization.script file should be transferred to the

~auv/tactical directory (or ~auv/uvw/tactical on the Sun Voyager) regardless

of the language generated by the expert system. When running, the tactical level requires

the file to be called initialization.script, but for storing multiple initialization

files, it is ok to use different names (eg., .extensions for describing what mission the

initialization file is for). An example ftp session is shown below. This session is conducted

from the strategic directory on ai4.cs.nps.navy.mil (from the xterm window).

ai4> ftp gravy3.cs.nps.navy.mil

username: auv

password:

ftp> cd strategic

ftp> put mission_graph.C.example

ftp> cd ../tactical

ftp> put mission.pl.example

ftp> put initialization.script initialization.script.example

ftp> put command_strings command_strings.example

ftp> quit

In this example, it is assumed that a Prolog and a C++ mission were generated. If only the

C++ version was created, the put mission.pl.example command can be omitted.

If only a Prolog version was created, the cd strategic and put

176

mission_graph.C.example can be omitted and the cd ../tactical command

should be modified to

ftp> cd tactical

b. Prolog Execution

If Prolog code was generated, the standalone file (standalone_ prefix)

should be placed in the ~auv/strategic directory on the target machine. The mission

file itself should be placed in the ~auv/tactical directory. Either of these files can

have any name so long as they end in the Prolog .pl extension (and contain no other

periods). To run the standalone strategic level, switch to the~auv/strategic directory

on the appropriate machine and start Prolog (or Prowindows). Load the mission into

memory by typing the file name (minus the .pl extension) in brackets followed by a

period:

?- [mission].

To run the mission, type:

?- execute_mission.

Answer the strategic level queries by typing yes or no. To run the mission in the vehicle or

the virtual world (tactical level attached), switch to the ~auv/tactical directory. It is

probably a good idea to make sure the proper version of the tactical level has been

compiled. To do this type:

> make strategic

Start Prolog and load the mission file into memory by typing the file name (minus the .pl

extension) in brackets followed by a period, just as for the standalone version of the

strategic level. The mission is started in the same way as the standalone version as well:

?- execute_mission.

177

c. C++ Compilation and Execution

If the expert system generated a C++ strategic level mission, it must be

compiled prior to running the mission. The generated C++ file should be transferred to the

~auv/strategic directory on the appropriate file system. Before compiling, the C++

mission file must be named mission_graph.C and must be located in the strategic

directory. To compile the mission, from the auv directory and type:

> cd strategic

> cp mission_graph.C.example mission_graph.C

> cd ../tactical

> make strategic_cpp

The executable file upon completion of the make will be located in the tactical

directory and will be called strategic. To make a standalone version of the mission,

type:

> make strategic_standalone

from the tactical directory. The executable standalone mission will be placed in the

tactical directory and will be called ood_test. Either the standalone version of the

strategic level or the full RBM version are invoked by typing the name of the executable

file on the command line.

G. EXITING THE SYSTEM AND INDIVIDUAL FACILITIES

To exit the system at any time during execution, use the left mouse button to press

the Quit button in the main window. The Prowindows interpreter can be exited by typing

?- halt.

Most system windows provide a Cancel button. Pressing this button using the left

mouse button will cancel the operation without performing it. As a rule, use this button to

178

cancel operations and destroy windows rather than the minus button in the upper left

window corner.

179

LIST OF REFERENCES

Bachmann, E. R., McGhee, R. B., Whalen, R. H., Steven, R., Walker, R. G., Clynch, J. R.,
Healey, A. J. and Yun, X. P., “Evaluation of an Integrated GPS/INS System for Shallow-
Water AUV Navigation (SANS), Proceedings of the1996 Symposium on Autonomous
Underwater Vehicle Technology, pp. 268-275, Monterey California, June 1996.

Bellingham, J. G., Consi, T. R., Tedrow, U. and DiMassa, D., “Hyperbolic Acoustic
Navigation for Underwater Vehicles: Implementation and Demonstration,” Proceedings
of the 1992 Symposium on Autonomous Underwater Vehicle Technology, pp. 304-309,
Washington D.C., June 1992.

Bellingham J. G., Goudey, C. A., Consi, T. R., Bales, J. W., Atwood, D. K., Leonard, J. J.
and Chryssostomidis, C., “A Second Generation Survey AUV,” Proceedings of the 1994
Symposium on Autonomous Underwater Vehicle Technology, pp. 148-156, Cambridge
Massachusetts, July 1994.

Boorda, J. M., Mine Countermeasures: An Integral Part of Our Strategy and Our Forces,
White Paper, U.S. Navy, Washington D.C., December 1995.

Brutzman, D. P., Compton, M. A. and Kanayama, Y., “Autonomous Sonar Classification
Using Expert Systems,” Proceedings of the Oceans 92 Conference, pp. 554-559, October
1992.

Brutzman, D. P., A Virtual World for an Autonomous Undersea Vehicle, Ph.D.
Dissertation, Naval Postgraduate School, Monterey California, December 1994. Available
at http://www.stl.nps.navy.mil/~brutzman/dissertation

Brutzman, D. P., “Virtual World Visualization for an Autonomous Underwater Vehicle,”
Proceedings of the Oceans 95 Converence, pp. 1592-1600, San Diego California, October
1995. Available at ftp://taurus.cs.nps.navy.mil/pub/auv/oceans95.ps.Z

Brutzman, D., Burns, M., Campbell, M., Davis, D., Healey, T., Holden, M., Leonhardt, B.,
Marco, D., Mcclarin, D., McGhee, R. and Whalen, R., “NPS Phoenix AUV Software
Integration and In-Water Testing,” Proceedings of the1996 Symposium on Autonomous
Underwater Vehicle Technology, pp. 99-108, Monterey California, June 1996. Available
at ftp://taurus.cs.nps.navy.mil/pub/auv/auv96.ps

Burns, M., An Experimental Evaluation and Modification of Simulator-Based Vehicle
Control Software for the Phoenix Autonomous Underwater Vehicle (AUV), Master’s
Thesis, Naval Postgraduate School, Monterey California, September 1996. Available at
http://www.cs.nps.navy.mil/research/auv/auv_thesisarchive.html

180

Byrnes, R., The Rational Behavior Model: A Multi-Paradigm, Tri-Level Software
Architecture for the Control of Autonomous Vehicles, Ph.D. Dissertation, Naval
Postgraduate School, Monterey California, March 1993.

Byrnes, R., Healey, A., McGhee, M., Nelson, M., Kwak, S. and Brutzman, D., “The
Rational Behavior Software Architecture for Intelligent Ships,” Naval Engineers Journal,
vol. 108 no. 2, pp. 43-55, March 1996.

Campbell, M., Real-Time Sonar Classification for Autonomous Underwater Vehicles,
Master’s Thesis, Naval Postgraduate School, Monterey California, March 1996.

Cassandras, C., Discrete Event Systems: Modeling and Performance Analysis, Aksen
Associates Incorporated Publishers, Homewood Illinois, 1993.

Chapman, D., “Planning for Conjunctive Goals,” Readings in Planning, Morgan Kaufman
Publishers, San Mateo California, 1990, pp. 537-558.

Chapuis, D., Deltheil, C. and Leandre, D., “Determination and Influence of the Main
Parameters for the Launch and Recovery of an Unmanned Underwater Vehicle From a
Submarine,” Proceedings of the 1996 Symposium on Autonomous Underwater Vehicle
Technology, pp. 276-282, Monterey California, June 1996.

Cheney, R., Conduct of the Persian Gulf War, Final Report to Congress, U.S. Department
of Defense, Washington DC, April 1992.

Craig, J., Introduction to Robotics: Mechanics and Control, second edition, Addison-
Wesley Publishing Company, Reading Massachusetts, 1989.

Davis, D., CS4910 Class Project Computer Simulation of Control and Navigation of an
Autonomous Underwater Vehicle, Naval Postgraduate School, Monterey California,
December 1995.

Dean, T., Firby, R. and Miller D., “Hierarchical Planning Involving Deadlines, Travel time
and Resources,” Readings in Planning, Morgan Kaufman Publishers, San Mateo
California, 1990, pp. 369-386.

Ditang, W., Shouquan, K., Yulin, G., Yang, L. and Dalu, L., “A Launch and Recovery
System for an Autonomous Underwater Vehicle Explorer,” Proceedings of the 1992
Symposium on Autonomous Underwater Vehicle Technology, pp. 279-281, Washington
D.C., June 1992.

Fishwick, P. A., Simulation Model Design and Execution, Building Digital Worlds,
Prentice Hall, Englewood Cliffs New Jersey, 1995.

Florida Atlantic University Department of Ocean Engineering Advanced Marine Systems
Laboratory World Wide Web Home Page, July 1996. Available at
http://www.oe.fau.edu/AMS/auv.html, July 1996.

181

Gosling, J. and McGilton, H., The Java Language Environment, a White Paper, Sun
Microsystems, San Jose California, May 1996. Available at
http://java.sun.com/doc/language_environment/

Gwin, R. C. and Smith, J. T., “A Distributed Launch and Recovery System for an AUV
and a Manned Submersible,” Proceedings of the 1992 Symposium on Autonomous
Underwater Vehicle Technology, pp. 267-278, Washington D.C., June 1992.

Healey, A. J., Marco, D. B., McGhee, R. B., Brutzman, D. P., Cristi, R., Papoulias, F. A.
and Kwak, S. H., “Tactical/Execution Level Coordination for Hover Control of the NPS
AUV II using Onboard Sonar Servoing,” Proceedings of the 1994 Symposium on
Autonomous Underwater Vehicle Technology, pp. 129-138, Cambridge Massachusetts,
July 1994.

Healey, A. J., Marco, D. B., Oliviera, P., Pascoal, A., Silva, V. and Silvestre, C., “Strategic
Level Mission Control--An Evaluation of CORAL and PROLOG Implementations for
Mission Control Specifications,” Proceedings of the 1996 Symposium on Autonomous
Underwater Vehicle Technology, pp. 125-132, Monterey California, June 1996.

Holden, M. J., Ada Implementation of Concurrent Execution of Multiple Tasks in the
Strategic and Tactical Levels of the Rational Behavior Model for the NPS Phoenix
Autonomous Underwater Vehicle, Master’s Thesis, Naval Postgraduate School, Monterey
California, September 1995. Available at
http://www.cs.nps.navy.mil/research/auv/auv_thesisarchive.html

Hopcroft, J. and Ullman, J., Introduction to Automata Theory, Languages, and
Computation, Addison-Wesley Publishing Company, Reading Massachusetts, 1979, pp.
13-65.

Kanayama Y., Introduction to Theoretical Robotics, CS4313 Class Notes, Naval
Postgraduate School, Monterey California, April 1996.

Leonhardt, B., Mission Planning and Mission Control Software for the Phoenix
Autonomous Underwater Vehicle (AUV): Implementation and Experimantal Study,
Master’s Thesis, Naval Postgraduate School, Monterey California, March 1996.
Available at http://www.cs.nps.navy.mil/research/auv/auv_thesisarchive.html

Marco, D. B. and Healey, A. J., “Local Area Navigation Using Sonar Feature Extraction
and Model Based Predictive Control,” Proceedings of the 1996 Symposium on
Autonomous Underwater Vehicle Technology, pp. 67-77, Monterey California, June 1996.

Marco, D., Healey, A. and McGhee, R., “Autonomous Underwater Vehicles: Hybrid
Control of Mission and Motion,” Journal of Autonomous Robots, vol. 3, pp. 169-186,
April 1996.

182

Massachusetts Institute of Technology Sea Grant College Program World Wide Web
Home Page, July 1996. Available at http://web.mit.edu/org/s/seagrant/www/mitsg.htm

McClarin, D., Discrete Asynchronous Kalman Filtering of Navigation Data for the
Phoenix Autonomous Underwater Vehicle, Master’s Thesis, Naval Postgraduate School,
Monterey California, March 1996.

McGhee, R. B., A Simplified Dynamic Model for Horizontal Plane Maneuvering by the
NPS Model 2 AUV, CS4314 Course Notes, Naval Postgraduate School, March 1991.

McGhee, R. B., Clynch, J. R., Healey, A. J., Kwak, S. H., Brutzman, D. P., Yun, X. P.,
Norton, N. A., Whalen R. H., Bachmann, E. R., Gay, D. L. and Schubert, W. R., “An
Experimental Study of an Integrated GPS/INS System for Shallow-Water AUV
Navigation (SANS),” Proceedings of the 9th International Symposium on Unmanned
Untethered Submersible Technology, September 1995.

McKusick, M., Bostic, K., Karels, M. and Quarterman, J., The Design and Implementation
of the 4.4 BSD Operating System, Addison-Wesley Publishing Company, Reading
Massachusetts, 1996, pp. 137-146.

Murphy, R., “Coordination and Control of Sensing for Mobility Using Action-Oriented
Perception,” AI-Based Mobile Robots, MIT/AAAI Press, Cambridge Massachusetts, 1996.

Oliveira, P., Pascoal, A., Silva, V. and Silvestre, C., “Design, Development, and Testing of
a Mission Control System for the MARIUS AUV,” Proceedings of the 3rd Workshop on
Mobile Robots for Subsea Environments, Toulon France, March 1996.

Peterson, J., Petri Net Theory and the Modeling of Systems, Prentice-Hall, Englewood
Cliffs New Jersey, 1981.

Proceedings of the 1996 Symposium on Autonomous Underwater Vehicle Technology,
Monterey California, June 1996.

Proceedings of the 9th International Symposium on Unmanned Untethered Submersible
Technology, Durham New Hampshire, September 1995.

Rae, G. J. S., “A Fuzzy Rule Based Docking Procedure for Autonomous Underwater
Vehicles,” Proceedings of the Oceans 92 Conference, pp. 539-546, Newport RI, October
1992.

Rae, G. J. S., Smith, S. M., Anderson, D. T. and Shein, A. M., “A Fuzzy Logic Docking
Procedure for Two Moving Underwater Vehicles,” Proceedings of the 1993 American
Control Conference, pp. 580-584, San Francisco CA, June 1993.

Rowe, N., Artificial Intelligence Through Prolog, pp. 110-112, 263-281, Prentice Hall,
Englewood Cliffs New Jersey, 1988.

183

Scrivener, A., Acoustic Underwater Navigation of the Phoenix Autonomous Underwater
Vehicle Using the Divetracker System, Master’s Thesis, Naval Postgraduate School,
Monterey California, March 1996.

Smith, S. M. and Dunn, S. E., “The Ocean Voyager II: An AUV Designed for Coastal
Oceanography,” Proceedings of the 1994 Symmposium on Autonomus Underwater Vehicle
Technology, pp. 139-147, Cambridge Massachusetts, July 1994.

Stefik, M., “Planning with Constraints (MOLGEN: Part 1),” Readings in Planning,
Morgan Kaufman Publishers, San Mateo California, 1990, pp. 171-185.

Stevens, Richard W., Advanced Programming in the Unix Environment, Addison Wesley
Publishing Company, Menlo Park California, 1992.

Tate, A., Hendler, J. and Drummond, M., “A Review of AI Planning Techniques,”
Readings in Planning, Morgan Kaufman Publishers, San Mateo California, 1990, pp. 26-
49.

Tate, A., “Generating Project Networks,” Readings in Planning, Morgan Kaufman
Publishers, San Mateo California, 1990, pp. 291-296.

Tritech International Ltd., ST-1000 Sonar: User’s Manual, Mike E. Chapman Company,
Duvall Washington, 1992.

Tritech Internation Ltd., ST-725 Sonar: User’s Manual, Mike E. Chapman Company,
Duvall Washington, 1992.

Urick, R. J., Principles of Underwater Sound, 3rd edition, McGraw Hill Book Company,
New York New York, 1983, pp. 406-416.

The VRML Repository World Wide Web Home Page, San Diego Supercomputer Center,
August 1996. Available at http://sdsc.edu/vrml/

Vere, S., “Planning in Time: windows and Durations for Activities and Goals,” Readings
in Planning, Morgan Kaufman Publishers, San Mateo California, 1990, pp. 297-318.

Wernecke, J., The Inventor Mentor, Programming Object-Oriented 3D Graphics with
Open InventorTM, Addison-Wesley Publishing Company, Reading Massachusetts, 1994.

White, K. A., Smith, S. M., Ganesan, K., Kronen, D., Rae, J. S. and Lagenbach, R. M.,
“Performance Results of a Fuzzy Behavioral Altitude Flight Controller and Rendezvous
and Docking of an Autonomous Underwater Vehicle with Fuzzy Control,” Proceedings of
the 1996 Symposium on Autonomous Underwater Vehicle Technology, pp. 117-124,
Monterey California, June 1996.

Wielemaker J. and Anjerwierden, A., XPCE Reference Manual, University of Amsterdam,
Amsterdam Netherlands, 1994.

184

Wind River Systems, VxWorks Programmer’s Guide 5.2, Wind River Systems, San Jose
California, March 1995.

Winston, P., Artificial Intelligence, third edition, Addison-Wesley Publishing Company,
Reading Massachusetts, 1992, pp. 50-53.

