NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

ACOUSTIC MOTION ESTIMATION AND CONTROL
FOR AUTONOMOUS UNDERWATER VEHICLES

by
Hakki Celebioglu

June, 1997

Thesis Advisor: Roberto Cristi

Approved for public release; distribution is unlimited.

199r1er 038 -

REPORT DOCUMENTATION PAGE Form Appraved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burd i or any other aspect of this
collection of information, includi

ing suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
June 1997 Master’s Thesis
4. TITLE AND SUBTITLE ACOUSTIC MOTION ESTIMATION AND 5. FUNDING NUMBERS

CONTROL FOR AUTONOMOUS UNDERWATER VEHICLES
6. AUTHOR(S) Celebioglu, Hakks

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
Naval Postgraduate School ORGANIZATION
Monterey, CA 93943-5000 REPORT NUMBER
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13. ABSTRACT (maximum 200 words)

An integrated model of acoustic motion estimation and control is presented. The control system is designed on the
basis of the definitions of suitable Lyapunov functions for the different maneuvers in approaching a target. These
functions allow the navigation and maneuvering tasks to be performed in a two-layered hierarchical architecture for
closed-loop control. The motion estimation algorithm uses pencil beam profiling sonar range and bearing information.
The operating environment is modeled with a suitable three-dimensional potential function and its gradient which forms
an attractive field. This algorithm provides satisfactory performance for autonomous navigation and obstacle avoidance.

The applicability and robustness of this model are demonstrated with both actual test data obtained with the NPS
Phoenix submersible and computer generated simulation data. The results show the effectiveness of the combined
estimation and control model.

14. SUBJECT TERMS Autonomous Underwater Vehicle, navigation, guidance and control | 15. NUMBER OF
systems, Lyapunov functions, Extended Kalman Filtering PAGES 104

16. PRICE CODE

17. SECURITY CLASSIFICA- | 18. SECURITY CLASSIFI- 19. SECURITY CLASSIFICA- |20. LIMITATION OF
TION OF REPORT CATION OF THIS PAGE TION OF ABSTRACT ABSTRACT
Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18 298-102

Approved for public release; distribution is unlimited.

ACOUSTIC MOTION ESTIMATION AND CONTROL
FOR AUTONOMOUS UNDERWATER VEHICLES

Hakk: Celebioglu
Lieutenant Junior Grade, Turkish Navy
B.S., Turkish Naval Academy, 1991

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 1997

Author:

Hakki Celebloglu
Approved by: % V//

Roberto Cns’u Theis Advisor

A&‘-’\/SC/VW

/“Oppmyecon?ﬁader

Herschel H. Loomis, Jr., Ch
Department of Electrical and Computer Engmeenng

i
Lﬁle, Qb LIFY THETES TED & @5

v

ABSTRACT

An integrated model of acoustic motion estimation and control is presented. The
control system is designed on the basis of the definitions of suitable Lyapunov functions
for the different maneuvers in approaching a target. These allow the navigation and
maneuvering tasks to be performed in a two-layered hierarchical architecture for closed-
loop control. The motion estimation algorithm uses pencil beam profiling sonar range and
bearing information. The operating environment is modeled with a suitable three-
dimensional potential function and its gradient which forms an attractive field. This
algorithm provides satisfactory performance for autonomous navigation and obstacle
avoidance.

The applicability and robustness of this model are demonstrated with both actual
test data obtained with the NPS Phoenix submersible and computer generated simulation
data. The results show the effectiveness of the combined estimation and control

techniques.

vi

TABLE OF CONTENTS

I INTRODUCTION. ... e e e 1
A GOAL S 1
B. METHOD OF APPROACH.o i 1
C. ORGANIZATION. .. .ot e 2

II. ACOUSTIC MOTION ESTIMATION MODELING FOR AN AUV IN A

STRUCTURED ENVIRONMENTcoiiiiiiiiis oo 5
A GENERAL. ..o, 5
B. ENVIRONMENT MODEL...........ccciiiiiii ittt e 5
C. VEHICLE MODEL......... e) 8
D. COMBINED MOTION AND ENVIRONMENT MODEL............c............ 11
E. APPLICATIONS........c.ooiiiiit it e, 16

III. LYAPUNOV BASED CLOSED-LOOP MOTION CONTROL FOR

AN AUV e e 23
A GENERAL. ... 23
B. SYSTEM MODELS. e 23
C. CONTROL ARCHITECTURE..........coooiiiiiiiiiiiiiii s e 25
D. OUTERCONTROLLOOP. ... 26
1. Long Range Navigation..................ooooiiiiiinie it s o 26
2. Medium Range Navigation...................................cooii . 27
3. Short Range Navigation............................. i 28
E. INNER CONTROLLOOP.........ooiiiiiiiiiiit e e 29
F. SIMULATIONS AND RESULTS.......cooiiiiiiiii e, 31
vii

IV. SONAR BASED MOTION ESTIMATION AND CONTROL

FOR AN AUV .o e e 37
AL GENERAL. ... e 37
B. THE ACOUSTIC MOTION ESTIMATION AND CONTROL MODEL 37
C. SIMULATION AND RESULTS ... s i 38
V. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 43
A, SUMMARY ... o i e 43
B. CONCLUSIONS. .. e e e e 43
C. RECOMMENDATIONS ... 44
APPENDIX A. SONAR CHARACTERISTICS ..., 45

APPENDIX B. PROGRAM LISTINGS FOR SIMULATIONS IN CHAPTERIL. 47

ALGORITHM SIMULATIONS ... oo o i, 85

A GENERAL ... e 85

B. PROGRAMLISTINGSo o 85

LIST OF REFERENCES i el 91

INITIAL DISTRIBUTION LIST ...t e 93
viii

ACKNOWLEDGMENTS

This thesis is dedicated to my parents whose guidance and encouragement inspire
me to make them proud.

I would like to express my thanks to Professor Roberto Cristi for his help and
encouragement during this study. His technical expertise and insights were invaluable to
me. His patience, maturity, and understanding of human nature helped me to overcome

many difficulties.

I. INTRODUCTION

A. GOALS

An Autonomous Underwater Vehicle (AUV) is a self-contained unmanned vehicle
used for underwater missions such as surveying, pollution detection, or mine detection and
neutralization. In order to be deemed truly autonomous the vehicle must be able to
independently follow a mission plan, interact with its environment, accomplish a goal and
return to a predesignated destination.

This thesis addresses the problem of guidance and control of autonomous vehicles.
In particular, we will be focusing on the underwater applications, with the aid of sonar and
inertial sensors to detect features in the environment. We assume the environment to be
unknown at the beginning of the mission, and the vehicle must be capable of detecting
and reconstructing possible obstacles. Then, the next step is to estimate the motion of the
vehicle in this environment and keep the vehicle on the desired trajectory by applying a
closed-loop guidance and control system.

B. METHOD OF APPROACH

In this study, a guidance and control system based on a two layered hierarchical
architecture for closed-loop control has been integrated with an acoustic motion estimator
designed for navigation in structured environments. The computer simulations of both the
control system and the estimator are presented together with the combined system.

The guidance and control system design is based on the approach which tackles
the problems of using control laws based on Lyapunov functions. These allow the
navigation and maneuvering tasks to be performed in a closed-loop in the presence of
perturbations and modeling errors. The simulation results showing the possible
effectiveness of this closed-loop system are also provided.

In the motion estimation part, we address the problem of a vehicle navigating both
in an environment which could be entirely or partially known [Ref. 1]. The assumption on
the obstacles is that their reflective surfaces are piecewise modeled by segments having

constant orientation in two dimensions. We assume the vehicle's initial location and

1

velocity are known, and we measure its acceleration. The goal of the algorithm is to
provide the best estimate of the vehicle's motion and of the segments of the environment,
in terms of location and orientation. The environment is modeled by a potential function
based on the estimated location of the reflecting surfaces and their orientation. Then, this
potential function estimate of the environment is used to correct the vehicle's estimated
trajectory. By the potential function approach, through the range and bearing
measurements from a scanning sonar, the motion trajectory of the vehicle is estimated
using Kalman filtering techniques. The simulation results and program codes are
presented.

Finally, the combination of two systems yields a system of acoustic motion
estimation and control. The measurements from a scanning sonar are recursively
processed in the estimation algorithm, and the result is an estimate of the current position
of the vehicle. The estimated vehicle's position is processed in the control algorithm to
make it follow a desired trajectory.

C. ORGANIZATION

This thesis is organized in five parts. Chapter II provides the theory behind the
design of the vehicle and the environment models, as well as the interaction between the
two, provided by the sonar system. The Kalman filter-based algorithm which is used to
estimate the motion of the vehicle, is detailed. The simulation results due to this approach
are also included.

Chapter III deals with the guidance and control algorithms based on the Lyapunov
control techniques. The control algorithm which includes two loops: The outer control
loop which corresponds to three phases of the vehicle approach for the target, and the
inner control loop which is determined by the vehicle's dynamics, is detailed. The
simulation results using MATLAB SIMULINK software package are also included.

Chapter IV is based on the combined model of the vehicle motion estimation and
control system. After giving some brief definitions, the MATLAB SIMULINK model of

the design is detailed and the results are presented.

Chapter V summarize the results and conclusions of this study and provides

several recommendations for follow-on research.

IL. ACOUSTIC MOTION ESTIMATION MODELING FOR AN AUV
IN A STRUCTURED ENVIRONMENT

A. GENERAL

In this chapter, a nonlinear model for the dynamics of an AUV and the
environment in which it operates, is set up. Basically, it is intended to determine a
framework, so that we can combine inputs from the inertial navigation system (INS -
gyros, accelerometers) with sonar for the localization of the vehicle with respect to the
known initial conditions (position and velocity). A mission in which the vehicle explores
the surroundings guided by its INS equipment while it maps the environment, is
performed.
B. ENVIRONMENT MODEL

We define environment to be the locus E of reflecting surfaces [Ref. 1]. In order to
be able to estimate the vehicle's motion, it is assumed that a certain continuity and
smoothness conditions are satisfied, at least in a piecewise sense. Therefore at every point,
where the sonar beam pings on the reflecting surface E, a vector ¢, orthogonal to the

surface itself, is defined. This can be expressed as

9(q) q=1, @
where q is the tip of the sonar vector on the reflecting surface.

By this, it is assumed that the origin of the coordinate frame does not belong to the
reflecting surfaces. For example, the origin is assumed to be the initial location of the
vehicle, which is the assumption for beginning its mission in open waters.

Assuming that the sonar head continuously scans the environment, if the vehicle
moves smoothly, the point q on the reflecting surface and the vector ¢, normal to the

reflecting surface, can be related in a state space equation as

{(i)(t) =0, te3
2.2)

o) q=1

with 3, denoting the set of times when the slope vector @ changes. Clearly, at every

point of the reflecting surfaces, the vector @, is orthogonal to the surface.

At this point the hormal vector @ can be expressed as the gradient of a potential
function V [Ref. 1]. The potential function V will be defined over the whole operational
space, satisfying the following necessary conditions:

e V(q)20,forallq;

e V(q)=0, if and only if the point q belongs to the reflecting surface defined

on the map;

e For any small perturbation Aq, the gradient of V(q) is such that
0>Aq"VV(q+Aq), which states that the vector field is attractive towards the
reflecting surface, and also its gradient is orthogonal to this surface.

The critical point is the last property above, which shows that the two vectors @ and VV
are parallel. The reason behind the orhogonality of the gradient has been explained in
Ref. 1, and will be recalled later in the chapter.

The sonar returns produced by the sonar installed on the AUV, provide the
required interaction between the AUV dynamic model and the environment, through the
definition of the potential function. A summary of the operating characteristics of the
high frequency scanning sonar installed on the NPS Phoenix AUV is included as
Appendix A and a typical potential function for a rectangular pool is presented as Figure

2.1 and Figure 2.2.

l

Figure 2.1 Three Dimensional Potential Function of a Rectangular Pool (24x24 ft).

20+ .

15+

10

Figure 2.2 The Contours of the Potential Function of a Rectangular Pool(24x24 ft).

7

C. VEHICLE MODEL

The dynamics of the vehicle moving in an environment is represented by a state
vector determined by its position vector p with respect to a reference frame fixed with the
environment, a velocity and orientation vector z, and a command vector u, involving the
commands given to the actuators of the vehicle. The dynamics can be expressed as a
combination of the kinematics and the dynamic equations of the form [Ref. 1],

p = fl (Z),
_ 2.3
z=1,(z,u).

The mappings represent the kinematics and the dynamics relations respectively. In
the case of the acceleration being measured by its inertial navigation system (INS), as we
would use for our purposes, we can write the vehicle's equations using purely the

kinematics. Denoting a, the measured acceleration vector and v its velocity, this becomes

p=V,
{ 2.9

v=a.

The main component of the estimation process is based on the dynamic model of

the vehicle which is defined in equations (2.3) and (2.4).

The measurement vector p, consists of the dynamic observations of the sonar
range r, at an angle 8, with respect to the longitudinal axis of the vehicle, with w

indicating measurement noise [Ref. 2].

P=g(P,rs99W) 2.5)

We assume the noise sources w to be zero mean, white, and Gaussian, as is

standard in this class of problems.

The function g is defined by the map of the environment, and apart from the
measurement noise, it is zero when the sonar return information (r,0) is consistent with

the vehicle position on the map.
The criterion by which we choose g is based on the use of the potential function

V, which is defined in the previous section. For a vehicle moving on a plane located on
the position (x,y) with a heading 7, the function g is defined as
g(XY,%508)=V(x+rCos(y+0),y+rSin(y+0)), (2.6)

The vector q, for the location of the tip of the sonar range in the reference frame

can be expressed as the equations below

rp=[x y]T,

s= [r cos® r sin()]T R

cosy -—siny 2.7
T=| \
siny cosy
L q=p+Ts

where p, is again defining the position of the vehicle at any time, s is the sonar
information vector consisting of the measured range and angle of the sonar return. The
matrix T represents the coordinate transformation between the vehicle and the
environment reference frames.

In order to design an algorithm for the estimation of the vehicle's position from
sonar measurements, using the definitions in (2.7), the overall state space model

including the vehicle motion and the environment is considered as

p=v,
v=a, @.8)
0=V(p+Ts),

Defining the estimated position of the vehicle as p, for the general case where

acceleration measurement is available with an inertial navigation which includes
accelerometers, the correction can be applied to the position and velocity estimate [Ref.3].

These can be updated as

p=9+1,VV(H+Ts),
2.9

v=a+u,VV(P+Ts),

with p1; and 1, being positive constants.
To demonstrate local convergence of this method, let us consider a simpler

problem where the velocity vector v is measured. Defining the position error as p =p—p,

and combining equations (2.8) and (2.9), we obtain the error equation,

p=uvVv(Ep+Ts), (2.10)
and pre-multiplying by the transpose of the error yields,
pTPp=upTVV(p+Ts+p), (2.11)

where we recognize that the point p+Ts is on the reflecting surface and that for p being
sufficiently small, the right-hand side of the above equation is non-positive by the property

specified for the potential function. From (2.11) we can see that "f»”z is decreasing with

time since —%Ib“z =27 F<0 forall p=0.

10

Integration of the equation (2.11) with respect to time yields,

sdsol -lsol -

t 2.12)

1f B(O)TVV(p+Ts+B(r)dr
1}

Since the integrand is non-positive for all T, it will go to zero as time tends to infinity.

This implies that the error vector P tends to be orthogonal to the gradient of the field, and
that the point p+Ts tends to be on the reflecting surface.

A particular form of the gradient is obtained by defining it as
VV(p+Ts+p)=—00"p, 2.13)

where, @ is the orthogonal vector to the reflecting surface. The mathematical verification
or the proof of convergence in the special case of acceleration vice velocity measurements
is addressed in Ref. 1.

D. COMBINED MOTION AND ENVIRONMENT MODEL

The most important part of this research is to be able to identify the environment
in a dynamic fashion, by continuously updating the mathematical model (the potential
function). Ideally, we may start with an initial estimate of the environment and refine it
during the mission by including the data received from the sonar returns. The
identification of the new objects, not present in the local map would be the outcome of
the mission.

Firstly, from the known initial position of the vehicle, we build an initial estimate
of the environment for our task purposes. The operational area is divided into occupancy
cells, as described in Ref. 1. The number and the size of these cells is defined before the
construction of the potential function model of the environment. Then the sonar data,
using the initial position as a reference, is analyzed within each cell. In this approach,

within each cell ; , the reflecting surface is modeled by an ellipsoid defined by its center

11

vector ¢;; and covariance matrix Py, as it were a Gaussian distribution. These parameters

are computed as

¢y =, o PO +Ts(b),
t (2.14)
P, =2, o @) +Ts(t)—cy) @) +Ts(t)—c;)

where Z; restricts the summation to terms belonging to the cell &) . In the cell &)

where a return is detected, the potential function is constructed as

V(@) = (q-c)" Py (g-cyy) for g€ . 2. 15)

This is consistent with the definition of the potential function on the reflecting surfaces in

(2.8). In the cells where no return is detected, the nearest cell containing a reflecting

surface is determined.

After initially constructing the environment and defining the initial state, we move

on to the task of motion estimation.

The general structure of the sensor based navigation system is shown in Figure 2.3

[Ref. 1].

e A I I SR B

Feature Extraction Estimation Environment Model

—

Decision

Figure 2. 3 General Structure for Combined Motion and Model of the Environment.

12

We consider the case of navigating the vehicle within an unknown area using its
inertial navigation systems (INS), while collecting data from the scanning sonar. The
model of the environment built in this way is subsequently used to correct for the errors in
the INS and provide a current estimate of the vehicle's position.

The block ‘feature extraction' estimates relevant features of the environment, that
will be used to either validate or reject the potential function of the environment. While
collecting data from the scanning sonar, we are constructing the potential function model
of the environment, to be able to compare and/or update the initially estimated model. In
the 'feature extraction' block, the slope of the environment is estimated by using the
measured sonar data. As in (2.14), this time using the estimated vehicle position and
velocity, we obtain the centroid vector and covariance matrix of the measured data for the
time interval. It is considered that these reflecting cells are ellipsoids and are modeled as
Gaussian distributions. Since the covariance matrix Py is Hermitian, in our case where we
have a two dimensional problem, we can compute the two eigenvalues Amsx and Amin, and

the two corresponding orthonormal eigenvectors, €max and emin, satisfying the relation

Pij Ck=7\,k €k » k=1,2 (2. 16)

Typical contours of a Gaussian density function are ellipses. If we consider one of
the ellipses, it is centered at the coordinates of the mean vector, (centroid vector) and
oriented with its axes parallel to the direction of the eigenvectors. The major and minor
axes are proportional to the corresponding maximum and minimum eigenvalues,
respectively. The slope of this ellipse is the slope of the major axis, which is the
eigenvector corresponding to the maximum eigenvalue. In our case, the eigenvector
corresponding to the maximum eigenvalue of each covariance matrix Py , gives the slope
of the reflecting cell. This information of the measured data is going to be used in the

‘decision block'.

The 'decision block' uses the slope information to validate the current model of the

environment by either discarding the measurements which show inconsistencies with the

13

model, or/and, by updating the mathematical model itself with new segments. Ideally,

when the model and the measurements are consistent with each other, then this relation
holds

A, if k=m
€k Pij CmT= (2. 17)
0 if k#m

where k and m are the specified times and Ay is the maximum eigenvalue of the covariance
matrix of the initially predicted environment cell. This information is going to be used in
the 'estimation block’ , in order to estimate the position and the velocity of the vehicle

from the data and the potential function (model of the environment).

Although the overall above system is not observable, assuming we know the initial
conditions of the vehicle in terms of initial position and velocity, these can be applied to
the Extended Kalman Filter (EKF) to estimate the state vector p.

The Kalman Filter estimates the state of a system given a set of known inputs to
the system and a set of measurements. [Ref. 4]. The system is assumed to be driven by

both a known input and an unknown random input, in our case

pk+1)=Ap &) +Bak) +A w(k), 2.18)

where p(k) is the state vector (position and velocity of the vehicle), A is the known state
transition matrix, B is the known input matrix, a is the known acceleration vector, and Ay
and w(k) are the unknown, random input matrix and vectors. We assume w(k) is white

noise. The measurements of the system are related to the state by

q k) =Hp &k +nm &), 2.19)

where q (k) is the measurement, H is the measurement matrix , and M (k) is the random

noise. We assume that 1 (k) is white noise.

14

The solution of the estimation problem can be shown to have the following form
plk+ 1k +1) =p(k + k) + Kk + Dlqk +1) - gk +)], 2.20)

where K (k+1) is the Kalman Filter gain at each time index (k+1).

The form of the Extended Kalman filter equations are essentially similar to those of
the Linear Kalman filter. This can find applications in nonlinear systems. The nonlinear
model is used to predict the state and the nonlinear measurement is used to correct the
prediction. The details and the Extended Kalman Filter Equations can be found in [Ref. 4].

In using the Extended Kalman Filter, the nonlinearities are modeled as plant noise.
This means A; matrix in (2.19) is usually the identity matrix. Furthermore, because the
nonlinear effects are not included in the gain matrix, the Extended Kalman Filter can be
very sensitive to the W and M matrixes. In our case, considering M is the measurement
noise of the sensors, we can include the inconsistencies of the measured slope to the
model to this term in the equations. As with the measurement noise covariance matrix, if 1
is large, then the measurements are expected to deviate more from the states being
measured, and the Kalman Filter rely more on the predicted state than on the
measurements. [Ref. 2]. So, if the slope of the environment obtained from measurement
data is inconsistent with the model of the vehicle's position and velocity, the estimates are
based on the previous estimates and the model only.

In order to attempt to update dynamically the map of the environment, it is
important to have a criterion to establish whether a sonar return comes from a mapped or
unmapped object.

By standard Kalman Filtering techniques an estimate of the state p(t), v(t) and its
covariance matrix can be obtained. From [Ref. 1], denoting W(t) the covariance matrix
relative to the estimated position error, a likelihood function on the consistency of the

sonar return at time ¢ given all past measurements, can be defined.

15

In particular, assuming Gaussian errors, this would be given by the expression

L(t)=In Pr {s(t)| s(t—1),...,s(0)} =

, T 1 v 2.21)
C- 5 Ino® W(He(®)-3 o(t)T W(t)o(t)

with Pr indicating the probability, C is a constant and the terms V and its gradient ¢ can
be computed using the estimated vehicle position. A threshold can be established, by
which low probability status can be assigned for the unmapped object, most likely by trial
and error basis.

This model is suitable where the environment is composed of surfaces with a
piecewise constant orientation. This would be the case of the vehicle operating in an area
of walls or manmade structures.

E. APPLICATIONS

In this section, we address the problem of applying the combined model of the
vehicle motion and the potential function approach for the environment. Although we will
be using the model of the test tank at the NPS Annex, the results can be generalized to
more complex environments, such as harbors, pipelines, etc. The rectangular environment
with closed borders is the simplest realistic operating area which can be modeled with the
potential function approach and would reflect operations such as acoustic test data-
gathering with the NPS Phoenix AUV in the laboratory pool.

The program codes which are written in C for simulation purposes, are included in
Appendix B. The program is using real data, that is collected by the AUV during pool
testing. Although these programs are tested in simulations, they may be embedded with
the original program of the vehicle, and used in real time applications.

In the first set of the simulation we are going to use the real time data collected in
the test pool at NPS. For here we assume that the environment is partially known. The
operational area, in our case the sizes and the shape of the pool is known, however the
initial conditions (position and velocity) with respect to the fixed reference and the
presence of two unmarked cylinders are not known.

16

The environment, we are testing is the pool at the AUV lab. at NPS. Figure 2.4
shows the contours of the potential function of the pool and the two cylinders which have

been placed for testing purposes.

6 % ! ! ! !

x(m)
Figure 2. 4 The Contour Plot of The Pool with Two Cylinders.

A set of sonar data (range and bearing) has been collected while the vehicle is
moving at a constant rate. The Cartesian plot of the data is given in Figure 2.5, which
shows a collection of six consecutive scans. The scans have been taken 0.9 degrees apart.

That results in 400 data points per scan.

17

The data in Cartesian coordinates can be seen in Figure 2.5.

sonar track

PN U SR Koo JOUUTUR TRRRPURPRPRRS AR

-2 0] 2 4 6
Figure 2.5 The Data in Cartesian Coordinates.

At the beginning of the run, the vehicle does not know the environment, and it has
to build a map in terms of the potential function. The vehicle is moving, but the velocity of
the vehicle is not known, and the initial position of the vehicle is arbitrarily considered at
the middle of the pool. The orientation and the distance of each wall is computed by
applying the slope algorithm (as previously discussed) to the walls of the pool. Figure 2.6
shows the contours of the estimated environment where we can see both the walls of the
pool and the effect of the two obstacles. The data at the bottom right corner are due to
spurious returns of sonar, and can be easily filtered. These do not belong to the

environment.

18

y(m)

Figure 2.6 The Contours of the Estimated Environment.

In Figure 2.7, we show the estimated trajectory of the vehicle, since we do not
have the exact trajectory available.

2
1.5}-
1 :
g
> :
0.5
0 : : : : :
0.5 ; ; i ; ; ;
~0.5 o 0.5 1 1.5 2 2.5
x(m)

Figure 2. 7 The Trajectory Estimation of the Vehicle

19

We show the validity of the estimate by comparing the estimated locations of the
walls of the pool with the actual ones. We can see that the two coincide reasonably to

infer that the estimated trajectory is close to the actual trajectory. This is shown in Figure
2.8.

y(m)

Figure 2. 8 The Estimated Environment with the Actual Environment.

In the second set of the simulations, we are going to use a sonar data set, created

by using known position and velocity of the vehicle. This time we can see the consistency
of the real trajectory of the vehicle with the estimated one.

The vehicle is assumed to be moving from the initial position coordinates (0,0), to
the coordinates (6,6), in a same kind of environment (6 x 6 m rectangular pool), without

any obstacle presence. The vehicle velocity is set to be about 0.024 m/sec.

20

x(m)

y(m)

In Figure 2.6, the motion of the vehicle in the x-direction is shown.

3 SR Heeresaaeae
+— estimated
- real :
2 ..
D T B oy L R R R SRR R
o O A T T T T T T T L R R I I LRI S AL L SRR S
_1 I 1 L 1 1] 1
o 500 1000 1500 2000 2500 3000 3500 4000
time(sec)
Figure 2.9 The Trajectory of the Vehicle in the X-axis.
Then, the motion of the vehicle in the y-direction is shown in Figure 2.7.
7 1 l T T T 1 T
4 IR SR SO UUU UUUUPUUIUOE DOUPRPOPPUPS IORRORYS = JUpoO
I I SURURUUTRS SRRSO PR DD ETTTTITIO SRR
Ak R L
Y _ .. : :
: +— estimated
E e real
obo R L T R R R ETEIEN I I EET
B IR) R STUUUPTIUR SO SUTVOUUIOUE JOUURRRIRY SUPUOOUOP SRR
P ISSAR I | U T PR PP PTPTY: SUPIRRTS
-1 500 1000 1500 2000 2500 3000 3500 4000

time(sec)

Figure 2.10 The Trajectory of the Vehicle in the Y-axis.

21

Finally, the whole trajectory of the vehicle and the estimated value for its velocity

can be seen in Figure 2.8 and Figure 2.9, respectively

y(m)

1 ¥ l]) l
R DI A AT TR PR Bl estlr'nated -
..... rea'
i i i i i ;
(o] 1 2 3 4 5 6

x(m)

Figure 2.11 The Trajectory of the Vehicle.

22

III. LYAPUNOV BASED CLOSED-LOOP MOTION CONTROL
FOR AN AUV

A. GENERAL

In this chapter, the problems of navigation, guidance and control of the AUV are
addressed. In particular, these problems can be summarized as reaching a target frame
(position and orientation) and remaining stationary on site, even in the presence of
disturbances. It is intended to use the control laws based on the definition of suitable
Lyapunov functions [Ref. 5], in order to allow the navigation and maneuvering tasks to be
performed in a closed-loop without requiring any off-line preplanning.[Ref. 6]

B. SYSTEM MODELS

The kind of task to be performed governs the choice of the set of the coordinates
which will describe the position of a frame fixed on the vehicle with respect to the target
frame.

In general for an underwater vehicle, the state vector is not only composed of the
linear longitudinal velocity v and the angular velocity ® (which directly affects vehicle
rotation), but also of the lateral velocity v. The control variables refer to the orthogonal
reference frame centered on the vehicle itself. The first set of kinematics equations can be

directly obtained from Figure 3.1 [Ref. 7].

Vehicle

Figure 3. 1 System Coordinates.

23

In Figure 3.1, the vehicle's position X, y and the orientation angle ¢, are all

measured with respect to the target frame center O, then the first set of equations are

Xx=vcos¢ - vsind
y=vsin ¢ +Vvcosd 3.1

b=

where v,v and are the speeds defined above.

The second set defines the state vector as [e o §], which is chosen and assumed
to be completely measurable at any time. The variable e represents the distance error from
the target frame, o denotes the angle between advanced orientation and the vector e while
¥ is the angle between advanced orientation and the x axis of the target frame.

From their definitions and the geometry in Figure 3.1, the following equations can

be derived

r

é=-—1coso—Vvsina

<‘6='DSIII(X-_VCOS(X (3. 2)
€ v

) . vSin VCoso.
0=-0+0=—-0+ A

€

It should be noted that this set of equations is only valid for non-zero value of the
distance errors e, otherwise, both angles o and ¥ simply would be undefined quantities.

Both models (3.1) and (3.2) are kinematics, so the linear (v,v) and angular ()
velocities need to be imposed. To these ends, it is necessary to use a dynamic system
[Ref. 7]. Let us assume that all the masses and inertial moments are equal to the unitary

value. New variables describing the forces and moments are introduced.

24

In this case, the dynamics of the vehicle becomes

V=f+VO
V=g+0m 3.3)
o=M

where fand g are the forces of the thrusts of the frontal and lateral screw propeller and M
is the angular moment.
C. CONTROL ARCHITECTURE

The control loop is designed based on the approach described in Ref. 6. This is

set as two layered hierarchical control architecture seen in Figure 3.2.

Outer Control (v v ® | Inner Control |[fgM | System
Loop Loop Dynamics

v

>

VVO

Xydpead

Figure 3. 2 Two Layered Hierarchical Control Loop.

Defining the Lyapunov function V= V(z(t)), with z is the state [Ref. 6], the
control law is designed by imposing V<0. The particular operational variables of
motion are designated for each task, and the outer loop eliminates any operational error
by computing the reference velocities. These will be a feedback for the inner control loop
on the next turn.

The inner control loop is task independent and implements a velocity servo loop,
based on the vehicle dynamics. However, the outer control loop lets the reference

trajectory based on the task to be followed.

25

D. OUTER CONTROL LOOP

By the outer control loop, we set the desired motion of the vehicle in order to
perform the given task. As mentioned above, we define different vehicle trajectories to
satisfy different réquirements during the approach to the target. Three main tasks are
defined as the maneuvers of the vehicle [Ref. 6].

1. Long Range Navigation

Regardless of its orientation, this task is performed by the vehicle, when it is
sufficiently distant from the target area. The heading of the vehicle, yaw rate and speed

can be measured by a gyrocompass and a Doppler sonar.

Figure 3. 3 Long Range Navigation.

The Lyapunov function associated to the task of approaching the target and its

first time derivative can be expressed as [Ref. 6]

{V(x,y) =1/2e>=1/2(x* +y?),
(3. 4)

V(x,y)=XxX+Y7.

Now, the problem is to find a control which makes its derivative ne gative semidefinite.

26

Plugging the values for x and y from (3.1), and collecting the terms, we obtain

the expression below

V(x,y) = (xcosd+ysind)+V(y cos¢—xsin¢) 3.5

From here we are going to define the reference values for the outer control loop
variables, linear and angular velocities, and the heading angle, as v v ,0, and ¢". The
reference values for v and ®, are set to be V=o=0 [Ref. 6]. Also, by the fact that the

vehicle is heading to the target, ¢ would be

6" = tan™ (-y,~X) 3.6)
Then, using the reference variables, (3.5) can be expressed as
V(x,y) =0 (xcosd” +ysind’), 3.7

setting v as
v'=-k (xcosd+ysing) 3.8)

where 1)‘, describes the reference value for the linear velocity, v, and ¢* is the desired
heading, makes the first time derivative of the Lyapunov function negative definite.
2. Medium Range Navigation
At this phase, the vehicle is sufficiently close to the target, and it begins to
approach with the required orientation. For the simple case, it is assumed that the desired
orientation is ¢ = 0. The state vector [e o3], which is defined in Section B, will be used
to describe the task function. The state variables are shown in Figure 3.1. For this
operation the following Lyapunov function and its derivative can be defined as [Ref. 6]
{V(e,a,ﬁ): 1/2 %e* =1/2 (0> +hd?),
3.9

V(e,0,®) = ad + hod.

27

In general the lateral velocity v can be either neglected, due to the low term speed,
or compensated by the lateral thrusters. In this study we assume the lateral velocity to be
zero, i.e. V' = 0. Plugging the values for & and ¥ from (3.2), and collecting the terms,
we obtain the derivative expression as

°°:°° (0 —hd) (3.10)

. ino
V(e,oc,ﬁ)=—ozm+1)si;-(a+hﬁ)—v

Setting, the reference values for linear and angular velocities, v and © asin the
following, and v'=0, we guarantee that the derivative of the Lyapunov function is

negative definite.

:
v' =k, ecosa

v =0 3.11)

. coso sinQ
0" =no+ky —_—(a+hd)

\

In these equations 7, ky are positive constants.

3. Short Range Navigation / Hovering

At this phase, when the vehicle is very close to the target, it bovers above it. The
vehicle must be fully controllable, so it must be equipped with traverse thrusters as well
as longitudinal ones. When the area is structured, the position and the speed can be
estimated by a combination of sonar, visual techniques and its INS. The fine maneuvering

Lyapunov function [Ref. 6] and its first time derivative can be defined as

3.12)

{V(x,y,q)) =1/2Mx2+y*)+1/2h¢?,
V(x,y,0) = Mxx+yy) +hoo.

28

Plugging the values for x,y and ¢ from (3.1), and collecting the terms, we

obtain the derivative expression as
V(x,y,0) =A v (X cosd +y sing) +A v (-x sing +y cosd) +h ¢ @ (3.13)
Setting, the reference values for linear and angular velocities, v and @ asin
the following, we guarantee that the derivative of the Lyapunov function is negative

definite [Ref. 6].

v" =-k, (xcosdp+ysino), k, >0

v' =—k,(—xsin¢+ycosd), k,>0 (3.14)
o =-n9, n>0 and k, =k,

where 1, k, and ky are positive constants.

E. INNER CONTROL LOOP

As described above, the inner control loop structure in Figure 3.3 depends on the
system dynamics and is independent of the particular task performed. Thus, the dynamic
equations, (3.3), together with (3.1) and (3.2), globally yields a second order system, with
the control variables f, g, M as inputs, and either the state vector [x y ¢ v v @]' for the
long range and short range navigation phase or the state vector [e o & v v @] for the
medium range navigation phase as the outputs, as seen in Figure 3.2. The task of the
internal loop is to follow a desired vector w'=[v’ v" @7. Finally, a Lyapunov function

[Ref. 6] composed of the velocity terms is defined as

Viz ¥y (0-0 P+ (v-V ¥ + % A g (0 @) 3. 15)

29

After differentiating and substituting the expressions for the angular and linear

velocities in (3.3),

v, =lu(1)—1)')(1')—1')‘)+lv(v—v')(\'z—\'l')+7~w(o)—a)‘)((i)—d)’)
(3.16)

=2, (V=0)E+VO-D)+A, (V=V)(g-v0—-V")+A, (@-0) M-6")

the control variables are chosen to force the derivative of the task function to be negative

definite [Ref. 7]. Then, the control variables can be defined as follows

f=-va+0 —p,(V-v")
g=00+V —p, (V=V") 3.17)

M=6"-py(©®-0")

This choice implies that the error on velocity tends toward zero (A® — 0).
The coefficients pr , pg Pm are the gains of the proportional part and are free

parameters that can be tuned to achieve optimum performance.

30

F. SIMULATION RESULTS

All simulations were based on the hydrodynamic model explained in previous
sections. The scenario is designed by a MATLAB SIMULINK model shown in Figure
34, |

Foe L |

- - position
Kinematics state
vectors

Figure 3. 4 SIMULINK Model of the Control Algorithm.

The comresponding MATLAB files used in above model are presented in
Appendix C.

In this simulation the target is positioned in (10,10) with the final required
orientation of 0 degrees. The initial position of the vehicle is assumed to be in (1,1). All
of the constants and gains in the equations in previous sections are determined by trial
and error methods, in order to be able to get a sufficient and desired results.

As shown in Figure 3.5 below, when only the Long Range Navigation task is
scheduled, the vehicle moves in a straight line, towards the target and reaches it without

controlling its orientation.

31

Long Range Navigation
12 Y

y(m)

0 ; i L 1
(o] 2 4 10
x(m)

12

Figure 3. 5 Long Range Navigation Trajectory.

When the vehicle is Sm away from the target, the Medium Range Navigation
Phase starts, and a constraint on the vehicle orientation is introduced in the Lyapunov
function. The trajectory of the vehicle including this phase can be seen in Figure 3.6.

Long and Medium Range Navigation
12 T

y(m)

12

Figure 3.6 Long and Medium Range Navigation Trajectory.

32

In Figure 3.6 we see the vehicle taking a bend to approach the target. When the
vehicle is close to the target, since e goes to zero o and ¥ change very quickly for small
movements of the vehicle. |

In our simulation, the vehicle begins the Short Range Navigation/Fine
Maneuvering Phase, when it reaches the distance of 1 m. from the target. The resulting

trajectory is shown in Figure 3.7.

Long,Medium and Short Range Navigation
12 T T T T T

y(m)

o 2 4 6 8 10 12

Figure 3. 7 Long, Medium and Short Range Navigation Trajectory.

The Long Range Navigation phase makes the vehicle head straight for the target.
Its distance e from the target decreases and the angle o goes to zero. These are seen in

Figure 3.8.

33

Long Range Navigation Phase

10k et o RRCATEE b L
E :
& :
5._ .. _ ..
o : : ; ; ; ; -
(o] 200 400 600 800 1000 1200 1400
time(sec)
D _
S O5f- b . RS f e A g
3 . M : . : H H
= o
ok R eeernnaennnen SRR FP e PR .
-1 H i i i ; i i
[o] 200 400 600 800 1000 1200 1400
time(sec)

Figure 3. 8 Long Range Navigation Operational Variables (e (t) and o (1)).

When executing the Medium Range Navigation phase, the vehicle approaches the
target and lines up with the desired orientation, so minimizing the operational variables e,

(a+9). These variables can be seen in Figure 3.0.

Medium Range Navigation Phase

5 T T T T
4 -
BN -
E : :
® 5 -
T R TR EEEEER RS
o i i ; i i i ;
1400 1600 1800 2000 2200 2400 2600 2800 3000
time(sec)
100 T T T T T T T
= (o]
D
=
o]
._g:_: -100
-+
K
‘© —200
-300 i i i ; i i i
1400 1600 1800 2000 2200 2400 2600 2800 3000
time(sec)

Figure 3. 9 Medium Range Navigation Operational Variables (e(t) and a(t)+19(t)).

34

In the fine maneuvering phase the distance e from the target goes to zero, and the

orientation angle ¢ will do small oscillations but finally goes to the desired orientation.

Short Range Navigation Phase
1 T T ¥ T T T T T T

H i H H H H H H H
0'35000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000
time(sec)
; : :

3300 3400 3500 3600 3700 3800 3900 4000
time(sec)

Figure 3. 10 Fine Maneuvering Operational variables (e(t) and ¢(t)).

35

36

IV. SONAR BASED MOTION ESTIMATION AND CONTROL

FOR AN AUV
A. GENERAL

In this chapter, a combined model of navigation, guidance and control in an AUV
is addressed. In particular, a Lyapunov based control system for guidance and an acoustic
motion estimation module are integrated in a two layered hierarchical architecture for
closed-loop control [Ref. 8]. The guidance system is designed, as mentioned in Chapter
III, on the basis of the definition of suitable Lyapunov functions for the different

maneuvers in approaching a target. The motion estimation algorithm, as anticipated in

Chapter II, is based on scanning sonar returns and uses the sonar range and bearing
information in an Extended Kalman Filter-based structure. The overall estimation and
control model is simulated in MATLAB SIMULINK model and the results are presented.
B. THE ACOUSTIC MOTION ESTIMATION AND CONTROL MODEL

As previously discussed, we are going to use a nested-loop Lyapunov based
guidance algorithm of the integrated acoustic motion estimation model. A two layered
hierarchical architecture for closed-loop control which does not require any planning has
been designed through the definitions in Chapter IIl. This approach is suitable for
handling the different target approach maneuvers, which require different precision in
motion control, and so it introduces different phases of approaching the target based on
the distance to it. On the other hand, this method includes an independent inner control
loop for different tasks.

For the motion estimation module in the integrated model, we are going to use the
low speed AUV motion estimation model as previously discussed in Chapter IL This
method allows high precision motion estimation in the direction orthogonal to a tracked
linear reflecting surface for the case of structured environments. The vehicle's planar
motion is estimated through the range and bearing measurements of a scanning sonar,

using Kalman Filtering techniques.

37

Finally, a Kalman Filter based acoustic navigation module and a two nested loop
guidance and control module have been combined to control the motion of an underwater
vehicle. Chapter III dealt with the control algorithms based on Lyapunov techniques and
the phases in the approaching a target for the vehicle. This will be our guidance and
control module. On the other hand, the dynamic model of the Extended Kalman Filter
based motion estimation technique from the scanning sonar measurements were discussed

in Chapter II. This will be our motion estimation module for the combined model.

S
14

Guidance/Control

the estimated position the poéition/heading

Sonar Range/Bearing

Estimation Sonar

Figure 4. 1 The Acoustic Motion Estimation and Control Model.

In Figure 4.1, the 'Guidance/Control' module represents the Lyapunov based
control model, previously designed in Figure 3.2, and the 'Estimation’ module represents
the potential function based environment and motion estimation model, previously

designed in Figure 2.3.
C. SIMULATIONS AND RESULTS

In this section we present the application of combined model of the vehicle
motion and the potential function approach for the environment with two layered
Lyapunov based control/guidance system. As an operating area we will assume a
rectangular closed environment described by a suitable potential function. We are going
to simulate the combined model with a MATLAB SIMULINK model shown in Figure
4.2. The corresponding MATLAB files can be found in Appendix C.

38

bl
<
— Estimation
position xhat/yhat
>
- >
o -’ <>
-)
oy r—ppemu » Mux
conto >
L
x/y/psi i
xhat/yhat/psi
e/theta/alfa e/theta/alfa

Figure 4.2 The SIMULINK Model of the Motion Estimation and Control.

Each simulation is organized into two phases: initialization and navigation
between the initial point and the target. At the beginning, the vehicle builds a local map
of the operating environment, which is a rectangular shaped pool with perpendicular
walls. To do this, the vehicle stands virtually still (constant depth and orientation) and it
scans the walls with its sonar. The orientation and the distance of each wall is computed
using the 'slope estimation algorithm', previously discussed in Chapter II. The Three
dimensional plot of the potential function is shown in Figure 4.3.

Potential Function

Figure 4.3 Potential Function of the Rectangular Pool Environment (24x24 m).

39

Upon completion of the initialization phase, the potential function model of the
environment is constructed. Then, the vehicle moves between its initial position and the
position of the target, estimating its motion on the basis of the algorithm presented in
Chapter II, while updating the potential function model of the environment. The
estimated positions are processed in the Control/Guidance module for each phase of the
approach to the target. The Control/Guidance module computes the desired trajectory to
be followed by the vehicle. A good performance of the algorithm relies on a consistent
estimate of the vehicle's location by the estimator.

For our case the vehicle is moving in a 24x24 m pool, starting at the origin (the
(0,0) position) to a final target located at position (10,10). The desired orientation of the
vehicle at the target is zero degrees in the target fixed frame. The contour plot of the
potential function is shown in Figure 4.4, where we can see the location of the target at
position (10,10).

Potential Function
Ve WA N A N N N N I V0 I N N s Ve e W e S G VO b |

R e W e e e

y(m)

x(m)

Figure 4.4 The Contour Plot of the Potential Function Model of the Pool (24x24m).

40

x{(m)

Figure 4.5 Vehicle's Trajectory from Its Initial Position to the Target.

12 T L) 1) T T
: : : : Firle maneuveting
T] S P RE (R ETTTTRPRRERs e L SRR N]
8_ .. —
! Medium Range
=Y R L I O B RS E R -~
4._ .. -
P T SEER R S P -
: Long Range
o._ .. -
-2 L 1 1 !] 1
-2 o 2 4 6 8 10 12

The trajectory of the vehicle including all of the phases of approaching to the

target, is shown in Figure 4.5. Firstly, the vehicle adjusts its heading to the target, then

approaches it a distance of 7 m. on a straight line. When it is about 7 m. from the target, it

maneuvers in order to be able to reach the target at the desired orientation. Finally, at the

fine maneuvering phase, about 1 m. apart from the target, it moves to the target keeping

its orientation. At the target, the resulting orientation is ¢=0 degrees and the vehicle is

hovering above the target.
Fine Manesuvering Phase
10 T T T
P | SN 1O N i
6_ .. é —
B | YRR SOUUUURUUIUTOTUUIY: UUUPPRRRPRTPUS UPPORPTTRRPRY TP _
:S’ PO I S R R R R EEEEE -
Z ol ST]
Y h -
s e -
el U i
—8s 50 1 50 2(5)0 250

time(sec)

Figure 4.6 Vehicle's Orientation Angle During the Fine Maneuvering Phase.

41

42

V. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

A. SUMMARY

This study investigated the problem of navigation, guidance and control in

Autonomous Underwater Vehicles. In particular, a Lyapunov function based guidance

and control system and an acoustic motion estimation module are integrated in a two-

layered closed-loop control architecture. The control system is designed on the basis of

the definition of suitable Lyapunov functions for the different maneuvers in approaching

a target. The motion estimation algorithm uses the range and bearing information of a

scanning sonar in an Extended Kalman Filter based structure. The combined system is

tested in computer simulations, and the results are presented in previous chapters.
B. CONCLUSIONS '

The following conclusions have been reached as a result of this study:

Estimation of vehicle position and velocity is possible with the motion
estimation algorithm.

The algorithm performed adequately through the actual sonar data gathered
by the NPS Phoenix AUV.

Lyapunov function approach and defining appropriate constants result in
smooth control actions during vehicle motion for the control system
algorithm.

For the combined system, the Lyapunov based guidance system performed
adequately in presence of uncertainty in position estimation. On the other hand
the performance of the whole system relies on getting better estimates of the
vehicle position and velocity.

The algorithm is applicable to the NPS Phoenix AUV. The programs for the
acoustic estimation module are written in C programming language and can be

directly embedded to the original program of the AUV.

43

C. RECOMMENDATIONS
The following recommendations are made for follow-on research in the on-going
AUV development effort at NPS:

e Convert the control algorithm programs which are written with MATLAB
SIMULINK software package to the C programming language for direct
implementation into the NPS Phoenix original program.

e Generate sonar test data for scenarios of greater complexity to allow testing of

the algorithm which goes beyond simulation/modeling.

APPENDIX A. SONAR CHARACTERISTICS

The primary sonar currently installed aboard the NPS Phoenix AUV is the Tritech
ST1000 Profiling System. This profiling sonar is a high performance, high resolution
compact and lightweight system which produces accurate underwater measurements. The

following list provides a summary of the sonar performance characteristics and

specifications:
Frequency......ocooevevvieneineneeneniinininne. 1 MHz.
Beamwidth......ccovviiiiiiiiiiiii 0.9/1.8 degree conical
Maximum Range.........cocoviviiiiiininiiiiinininennne. 50 meters (160 feet)
Minimum Range.........cocovviiiniiiniiiiiinininenneen 0.3 meters (1 foot)
WEIGHE oo 1.5kg.
VIEW SECTOT. .. euveereiiinineiiiiiiitrrireeieenenenns 360 degrees
SCAN RALE...vveiieiieeeieneiiiiiieiiiieneareaeaaes 40 degrees/second

45

46

APPENDIX B. PROGRAM LISTINGS FOR SIMULATIONS
IN CHAPTER II

A. GENERAL
This appendix contains the files generated for the simulations in Chapter II. They

are written in C software language. The main program consists of C modules and their
corresponding header files. These can be connected through a ‘Make file' and run to get
results. Basically, whole program reads data which is the real data collected from the
scanning sonar of the AUV in the 6x6 feet rectangular test pool. The data length in the
header file for initializing the variables, can be changed due to the length of the collected
data.
B. PROGRAM LISTINGS
/***

FILENAME: terms.h

PURPOSE: 'Header file to initiate all the program variables

AUTHOR: Hakki Celebioglu

DATE: 1996
sfeske kst sk sk e sk s sk sk ok sk skosk sk skok sk ok skeokokoke sk ke skok sk sk sokokeskoke st sk ok skskok sk ke stk ok sk skosk sk skesk ok sk ook skokok |
#ifndef TERMS_H
#define TERMS_H
#define min(a,b) (((a)< (b)) ? (a):(b))
#define max(a,b) (((a)< (b)) ? (b):(a))
#define MULT3(a,b,c) (matrix_multiply(matrix_multiply(a,b),c))
#define ADDMULT2(a,b,c,d) (matrix_add(matrix_multiply(a,b),matrix_multiply(c,d)))
#define OUT(a) (output_matrix(a))

intI;
int J; /*cell indicators*/

double data[2168][2];

47

/*enviroment parameters™/

double xmin; /*pool dimensions*/

double ymin;

double xmax;

double ymax;

int Nx; /#*number of the cells*/
int Ny;

double dt; /*time interval*/
matrix neigbors_matrix;
matrix] potential_matrixV;
matrix] potential_matrixVx;
matrixl potential_matrixVy;
matrix] potential_matrixVpl;
matrix! potential_matrixVp2;
matrixl potential_matrixVp3;
matrixl point_i;

matrixl point_j;

matrix covariance_matrix;
matrix covariance_matrixP;

matrix centroid_vector;

/*kalman parameters*/
matrix A;

matrix B;

matrix acceleration_vector;
matrix initial_covariance;

matrix state;

48

int window_length;

int 10;

int JO; /*initial cells*/
matrix data_set;

matrix posest;

/*slope algorithm parameters*/
double eigenvalue;

matrix eigenvector,
#endif

/***

FILENAME: matrix.h
PURPOSE: 'Header file for matrix operators. In order to minimize the memory usage
two different type is defined and used according to size of the operation.
sk sk sk 3k 3k sk ke sk she sk sk ske s 3k sk sk ok ok sk sk ko sk ok sk s sk she e sk sk ke e ok sfe sk ok sk ske ke ok sk sk ok ok sk ok sk sk sk sk sk sk sk ke sk ok sk sk sfeske sk ke sk sk ke ok sk ke skok ok
/
#ifndef MATRIX_H
#define MATRIX_H
/* defines the matrix data structure type */
typedef struct{
double m[30][30];
int row, col;

}matrix;

/* defines the large matrix data structure type */
typedef struct{
double m[50][50];

49

int row, col;
}matrixl;
/* function prototypes for matrix.c */
matrix matrix_multiply(matrix mat1, matrix mat2);
matrix matrix_add(matrix mat1, matrix mat2);
matrix matrix_subtract(matrix matl, matrix mat2);
matrix matrix_transpose(matrix mat1);
void output_matrix(matrix input_matrix);
void output_matrixl(matrixl input_matrix);
matrix zeros_matrix(int N1,int N2);
matrixl zeros_matrixl(int N1,int N2);
matrix ones_matrix(int N1,int N2);
matrixl ones_matrixl(int N1,int N2);
matrix scalar_matrix(double C,matrix input_matrix);
matrixl scalar_matrixl(double C,matrixl input_matrix);
matrix matrix_diagonal(matrix mat1);
matrix matrix_mean(matrix input_matrix);
matrix identity_matrix(int N1);
matrix matrix_col(int N1,matrix input_matrix);

matrix matrix_row(int N1,matrix input_matrix);

#endif

/***

FILENAME: listh

PURPOSE: 'Header file for including operational functions

AUTHOR: Hakki Celebioglu
DATE: 1996

***/

#ifndef LIST_H

50

#tdefine LIST_H
/* functions in list.c */
void read_data(int Length);

void initial(double x_min,double y_min,double x_max,double y_max,int NX,int NY);

void initial_kalman(int L,double initial_velx,double initial_vely);
matrix initialize_data(int step,int L);

matrix cartesian_conv(matrix input_matrix);

void estimate(matrix input_matrix);

int round(double number);

void cell(matrix q);

void eig(matrix matl);

void write_result(char filename[20],matrix mat1);
void write_resultl(char filename[20],matrixl mat1);
void potential(void);

void slope(int length_data);

#endif

/***

FILENAME: matrix.c
PURPOSE: Create matrix operators to include addition, subtraction,
multiplication, inverse and gauss_elimination, and
create a rotation matrix, zero matrix, ones matrix, scalar matrix
multiplication, diagonal matrix, mean of matrix colons,
recover row and colons from matrix, identity matrix
FUNCTIONS: matrix_multiply()
matrix_add()
matrix_subtract()
matrix_transpose()
output_matrix()

51

output_matrixl()
zeros_matrix()
zeros_matrix1()
ones_métrix()
ones_matrixl()
scalar_matrix()
scalar_matrixl()
matrix_diagonal()
matrix_mean()
matrix_row()
matrix_col()
identity_matrix()
sk sk sk sk sk sk ok 3k ok ok ok sfe 3 ke 3K 3k sk ok sk ok ok ok ok 3k ok sk ok sk sk 3k 3k sk ok sfe sfe ke e o ok 3K sk sk sk sk sk ke ke ok sk skeske ke ok sk sk sk skok ok ok sk sk skok ok ke ke ok ok
*/
#include <stdio.h>
#include <math.h>
#include "matrix.h"
/***
FUNCTION: matrix_multiply()
PURPOSE: Multiplies two matrix's together
RETURNS: Matrix]1 * Matrix2 in a matrix data structure
e sk s sk 3k 3k sk 3k sk ok sk sk sk sk 3k sk 3 ok sfe 3k ok sk ok 3k sk sk 3k sk sk sk sk sk sfe sk sk s fe sk sfe ke ok sk sk sk ok ok ok sk sk sk sk sk ke sk sk ofe ke sk e ok sk skeoke sk sk sk sk sk ke skeok
*/
matrix matrix_multiply(matrix mat1, matrix mat2)
{
int row, col, i;
matrix answer;
/* conducts multiplication */

for (row=0; row<matl.row; row++) {

52

for (col=0; col<mat2.col; col++) {
answer.m[row]{col]=0.0;
for (i=0; i <matl.col; i++){

answer.m[row][col] += matl.m[row][i] * mat2.m[i][col];

}

/* assigns new row and col number to matrix data structure */
answer.row = matl.row;
answer.col = mat2.col;

return answer;

}

/***

FUNCTION: matrix_add()

PURPOSE: Adds two matrix's together

RETURNS: Matrix1 + Matrix2 in a matrix data structure
sk sk sk ok 5K 3k sk sk sk sk sk ke ok sk sk ke sk sk ok ok 3k ok ok sk sk sk sk sk ok sk sk sk sk e 3k sk o ok ok sk sk ok sk sk ke sk sk sk oke sk ok sk sk sk sk she sk sk sk e sk ok sk sk ok ok sk ok s ok ok
*/
matrix matrix_add(matrix mat1, matrix mat2)
{
int row, col;
matrix answer;
/* conducts addition */
for (row=0; row<matl.row; row++) {

for (col=0; col<matl.col; col++) {

answer.m[row][col] = matl.m[row][col] + mat2.m[row][col];

}

/* assigns new row and col number to matrix data structure */

53

answer.row = matl.row;
answer.col = matl.col;

return answer;

}

/***

FUNCTION: matrix_subtract()
PURPOSE: Subtracts two matrix's from each other
RETURNS: Matrix1 - Matrix2 in a matrix data structure

st ok s sk ok ke ok sk sk s ke ke ok ok sfe s sk s e e sk ok ok e sk s sk sk e s ok sk e e sk e fe e s sk oo ke sk sk e e sk sk sk s sk sk ok sk sk sk sk sfe sk sk oke ke sk ok sk ek sk sk

*/
matrix matrix_subtract(matrix mat1, matrix mat2)
{
int row, col;
matrix answer;
/* conducts subtraction */
for (row=0; row<matl.row; row++) {
for (col=0; col<matl.col; col++) {

answer.m[row][col] = mat1.m[row][col] - mat2.m[row][col];

}

/* assigns new row and col number to matrix data structure */
answer.row = matl.row;
answer.col = matl.col;

return answer,

}

/***

FUNCTION: matrix_transpose()
PURPOSE: Creates the transpose of a matrix
RETURNS: transpose(Matrix) in a matrix data structure

54

**

*/

matrix matrix_transpose(matrix mat1)

{

int row, col;

matrix answer;

/* conducts transpose */

for (row=0; row<mat1.row; row++) {
for (col=0; col<matl.col; col++) {

answer.m[col][row] = mat1.m[row][col];

}

/* assigns new row and col number to matrix data structure */
answer.row = matl.col;
answer.col = matl.row;

return answer;

}

/***

FUNCTION: output_matrix()

PURPOSE: Prints the contens of a matrix

RETURNS: Void
**
*/
void output_matrix(matrix input_matrix)
{
int i,j;
for (i=0;i<input_matrix.row;i-++){

for(j=0;j<input_matrix.col;j++){

printf("%If ",input_matrix.m[i][j1);

55

}

printf("\n");
}
printf("\n");
}

/***

FUNCTION: output_matrixl()
PURPOSE: Prints the contens of a matrix 1
RETURNS: Void
**
*/
void output_matrixl(matrixl input_matrix)
{
int i,j;
for (i=0;i<input_matrix.row;i++){
for(j=0;j<input_matrix.col;j++){
printf("%If ",input_matrix.m[i][j]);
}
printf("\n");
}
printf("\n");
}

/***

FUNCTION: zeros_matrix()

PURPOSE: Creates a matrix of zeros at given sizes

RETURNS: zero(Matrix) in a matrix data structure
**
*/

matrix zeros_matrix(int N1,int N2)

56

{

int row, col;

matrix answer;

answer.row=N1;

answer.col=N2;

/* conducts zero */

for (row=0; row<N1; row++) for (col=0; col<N2; col++)
answer.m[row][col] = 0.0;

return answer;

}

/***

FUNCTION: zeros_matrixl()
PURPOSE: Creates a matrix of zeros at given sizes
RETURNS: zero(Matrix)l in a matrix data structure
e sfesfe e e sk 3k sk 3k sk ofe o ok sfe ok 3k ok ok o sk sk e sk 3k sk e ok sk ok ke 3k sk ke ke sk sk sk sk ke ke sk ok ok sk sk sk ske sk ok sk ske sk sk sk ske sk sk sfesk sk ek ok skeskok sk skeok sk ke
*/
matrixl zeros_matrixl(int N1,int N2)
{
int row, col;
matrix] answer;
answer.row=N1;
answer.col=N2;
/* conducts zero */
for (row=0; row<N1; row++) for (col=0; col<N2; col++)
answer.m[row][col] = 0.0;

return answer,

}

/***

FUNCTION: ones_matrix()

57

PURPOSE: Creates a matrix of ones at given sizes
RETURNS: ones(Matrix) in a matrix data structure
**
*/
matrix ones_matrix(int N1,int N2)
{
int row, col;
matrix answer;
answer.row=N1;
answer.col=N2;
/* conducts ones */
for (row=0; row<N1; row++) for (col=0; col<N2; col++)
answer.m[row][col] = 1.0;

return answer,

}

/***

FUNCTION: ones_matrixl()
PURPOSE: Creates a matrix of ones at given sizes
RETURNS: ones(Matrix)l in a matrix data structure
st ke ke o e sk e sk s sk ok ke e ke e sk sk s sk sk s e s s sk sk sk s o sk e s s s s sk sk s sk s e s ok sk sk st ke ke s s skokeske ke skt e ek skeoke sk sk ke s sk sk skok sk ok
*/
matrix] ones_matrixl(int N1,int N2)
{
int row, col;
matrixl answer;
answer.row=N1;
answer.col=N2;

/* conducts ones */

58

for (row=0; row<N1; row++) for (col=0; col<N2; col++)

answer.m[row][col] = 1.0;
return answer,

}

/***

FUNCTION: matrix scalar_matrix()
PURPOSE: multiplies a scalar with matrix
RETURNS: result(Matrix) in a matrix data structure
**
*/
matrix scalar_matrix(double C,matrix input_matrix)
{
int row, col;
matrix answer;
/* conducts multiplication */
for (row=0; row<input_matrix.row; row++) {
for (col=0; col<input_matrix.col; col++) {
answer.m[row][col] = C*input_matrix.m[row][col];
}
}

answer.row=input_matrix.row;
answer.col=input_matrix.col;

return answer,

}

/***

FUNCTION: matrix scalar_matrixl()
PURPOSE: multiplies a scalar with matrix
RETURNS: result(Matrix)l in a matrix data structure

59

**

*/
matrix] scalar_matrixl(double C,matrixl input_matrix)
{
int row, col;
matrix]l answer;
/* conducts multiplication */
for (row=0; row<input_matrix.row; row++) {
for (col=0; col<input_matrix.col; col++) {

answer.m[row][col] = C*input_matrix.m[row][col];

}
}

answer.row=input_matrix.row;
answer.col=input_matrix.col;

return answer,

}

/***

FUNCTION: matrix_diagonal()
PURPOSE: writes elements of one dimensional matrix to diagonal
RETURNS: Diagonal(Matrix) in a matrix data structure
**
*/
matrix matrix_diagonal(matrix mat1)
{
int row, col;
matrix ans;
/* conducts diagonal */
if (mat1.row==1 |l mat1.col==1){

if (mat1.row!=1)

60

mat1=matrix_transpose(mat1);
for (col=0; col<matl.col; col++)
ans.m[col][col] = matl.m[0][col];
ans.row = matl.col;

ans.col = matl.col;

}

for(row=0;row<ans.row;row++)for(col=0;col<ans.col;col++)
{
if(row!=col)
ans.m[row][col]=0.0;
}
return ans;
.
/***
FUNCTION: matrix_mean()
PURPOSE: Gets mean of the colons of the matrix
RETURNS: mean (matrix) in a matrix data structure
**
*/
matrix matrix_mean(matrix input_matrix)
{
int row,col;
double a=0.0;
matrix answer;
/* getting mean of colons */
for (col=0; col<input_matrix.col; col++){
for(row=0; row<input_matrix.row;row-++){
a+= input_matrix.m[row][col}/(double) input_matrix.row ;

answer.m[0][col]=a;

61

}
a=0.0;
}
answer.row=1;
answer.col=input_matrix.col;

return answer,

}

/***

FUNCTION: matrix_row()
PURPOSE: Gets given rows of the matrix
RETURNS: result(in given sizes) in a matrix data structure
**
*/
matrix matrix_row(int N1,matrix input_matrix)
{
int col;
matrix answer;
/* getting wanted row */
for (col=0; col<input_matrix.col; col++) {
answer.m[0][col] = input_matrix.m[N1-1][col];
}
answer.row=1;
answer.col=input_matrix.col;

return answer,

}

/***

FUNCTION: matrix_col()
PURPOSE: Gets given col of the matrix
RETURNS: result(one col) in a matrix data structure

62

s ok sk sk ok ke s sk sk s sk ok o ok o ke sk ok sk 3K ok e s s e s ke ok sk sk sk ok s sk ok ok e sk sk sk sk sk sk sk ofe sk sesfe e sk sk sk sk skok sk sk skeokeokeske sk sk sk ok sk sk sk sk kekok

*/

matrix matrix_col(int N1,matrix input_matrix)

{

matrix answer;

/* getting wanted col */
answer=matrix_transpose(input_matrix);
answer=matrix_transpose(matrix_row(N1,answer));

return answer;

}

/***

FUNCTION: identity_matrix()
PURPOSE: establish given size identity matrix
RETURNS: identity matrix in Matrix structure
sk sk 3k ske 3k sk e sk s sk sk ok s s sk 3k sk ok 5k 3k ok ok ok sk s sk sk sk sk sfe sk sk e sk ok ok sk sk sk ok sk ok sk ok ok sk ok sk sfe sk sk sk ok skeske sk e sk sk ok sk sk sfe sk ek sk ok skesk ok
*/
matrix identity_matrix(int N1)
{
matrix answer;
answer=ones_matrix(1,N1);
answer=matrix_diagonal(answer);
return answer,

}

63

/***

FILENAME: list.c
PURPOSE: All operations of the algorithm
AUTHOR: Hakki Celebioglu
DATE: 1996
***/
#include <stdio.h>
#include <math.h>
#include "matrix.h"
#include "terms.h"
#include "list.h"
#define pi 3.14159265358979
/*

Functions
read_data()
initial()
initial_kalman()
initialize_data()
cartesian_conv()
estimate()
round()
cell()
eig
write_result()
write_resultl()
potential()
slope()

/***

FUNCTION: read_data()

PURPOSE: Reading file to an array defined globally
RETURNS: void

e sk sk sk e s e she sk s e sk sk sk ke sk sk sk ke e st sk sk ok sk sk sk sk s sk sk sk sk sk sk sk ok skeok sk ks sk skokskeskeskeokosk stk sk skokosk e kok sk sk skok sk kil sk

void read_data(int Length)

{
int row,col;
FILE *fp;
if((fp=fopen("test.txt","r"))==NULL)
{
fprintf(stderr,"Error openning");
}

for(row=0;row<Length;row++)for(col=0;col<2;col++){
fscanf(fp," %If ",&data[row][col]);

}
fclose(fp);

}

/***

FUNCTION: initial()
PURPOSE: initilize neighbors_matrix,I,J,10,JO,potential matrices
point_i,point_j,xmin,xmax,ymin,ymax,Nx,Ny

RETURNS: void (all are globally decleared)
***/
void initial(double x_min,double y_min,double x_max,double y_max,int NX,int NY)
{
double a,b,c;
a=sqrt(2.0);
b=2.0%*a;
c=sqrt(5.0);

Xmin=X_1min;

65

ymin=y_min;

Xmax=x_[max;

ymax=y_max;

Nx=NX;

Ny=NY;

dt=0.1;
potential_matrixV=zeros_matrixI(Nx,Ny);
potential_matrixVx=potential_matrixV;
potential_matrixVy=potential_matrixV;
potential_matrixVpl=potential_matrixV;
potential_matrix Vp2=potential_matrixV;
potential_matrixVp3=potential _matrixV;
potential_matrixV=sca1ar__matrixl(10.0,0nes_matrixl(NX,NY));
point_i=scalar_matrixI(-1 .0,ones_matrixIINX,NY));
point_j=point_i;
neigbors_matrix.m[0][0]=b;
neigbors_matrix.m[0][1]=c;
neigbors_matrix.m[0][2]=2.0;
neigbors_matrix.m{0][3]=c;
neigbors_matrix.m[0][4]=b;
neigbors_matrix.m[1][0]=c;
neigbors_matrix.m[1][1]=a;
neigbors_matrix.m{1][2]=1.0;
neigbors_matrix.m{1][3]=a;
neigbors_matrix.m[1][4]=c;
neigbors_matrix.m[2][0]=2.0;
neigbors_matrix.m[2][1]=1.0;
neigbors_matrix.m[2][2]=0.0;
neigbors_matrix.m[2][{3]}=1.0;

66

neigbors_matrix.m[2][4]=2.0;
neigbors_matrix.m[3][0]=c;
neigbors_matrix.m[3][1]=a;
neigbors_matrix.m[3][2]}=1.0;
neigbors_matrix.m[3][3]=a;
neigbors_matrix.m[3][4]=c;
neigbors_matrix.m[4][0]=b;
neigbors_matrix.m[4][1]=c;
neigbors_matrix.m[4][2]=2.0;
neigbors_matrix.m[4][3]=c;
neigbors_matrix.m[4][4]=D;
neigbors_matrix.row=>5;
neigbors_matrix.col=5;

}

/***

FUNCTION: initial_kalman()
PURPOSE: initilize Kalman dynamics(initial_state,initial _covariance,
window_length,A,B matrices
RETURNS: void (all are globally decleared)
sesfe sk sk ok ok oo sk sk sk o ok sk ke s sk skeske s sk skesfe s s ke sk sk sk ke st sk sk ke ok sk sk sk sk sk skeske st sk skske sk stk e sk skokoke sk skeskoskok stk skokeok
void initial_kalman(int L,double initial_velx,double initial_vely)
{
10=0;
J0=0;
A=zeros_matrix(4,4);
A.m[0][2]=1.0;
A.m[1][3]=1.0;
A.row=4;

A.col=4;

67

A=matrix_add(identity_matrix(4),scalar_matrix(dt,A));
B.m[0][0]=0.0;

B.m[0][1]=0.0;

B.m[1][0]=0.0;

B.m[1]{1]=0.0;

B.m[2][0]=1.0;

B.m[2][1]=0.0;

B.m[3][0]=0.0;

B.m[3][1]=1.0;

B.row=4;

B.col=2;

B=scalar_matrix(dt,B);
state.m[0][0]=0.0;
state.m[1][0]=0.0;
state.m[2][0]=initial_velx;
state.m[3][0]=initial_vely;
state.row=4,

state.col=1;
initial_covariance.m[0][0]=0.0;
initial_covariance.m[0]{1]=0.0;
initial_covariance.m[0][2]=0.01;
initial_covariance.m[0][3]=0.01;
initial_covariance.row=1;
initial_covariance.col=4;
initial_covariance=matrix_diagonal(initial_covariance);
window_length=L;
acceleration_vector.m[0][0]=0.0;
acceleration_vector.m[1][0]=0.0;

acceleration_vector.row=2;

68

acceleration_vector.col=1;

}

/***

FUNCTION: initialize_data()
PURPOSE: Reading file to a matrix (size*2(angle&range) windowing)
RETURNS: data matrix in Matrix structure
**
*/
matrix initialize_data(int step,int L)
{
int row,i;
matrix answerl;
int size=L*2+1;
i=0;
for(row=step*size;row<step*size+size;row++){
answerl.mf[i}[0]=data[row][0];
answerl.m[i][1]=data[row][1];
i++;
}
answer 1.row=size;
answerl.col=2;

return answerl;

}

/***
FUNCTION: cartesian_conv()

PURPOSE: making conversian (theta&rho) to (x&y)
RETURNS: matrix in Matrix structure

3K 3t sk Sk sk sk sk sk e ok 3K 3K oK sk ok ok sk sfe s sk sk sk sk s sfe sk sfe e ke ke ok sk she sk ke ke ok sk sk sk sk sk sk ok sk ok sk ok sk sk ok ok sk sk sk skokokok ok sk sk sk skeskesk sk sk ok

*/

69

matrix cartesian_conv(matrix input_matrix)
{
int row,col;
matrix answer,ariswerl;
matrix s1,s2,theta,rho;
double a=pi/180.0;
theta:matrix_transpose(scalar_matrix(a,matrix_col(1,input_matrix)));
for(row=0;row<theta.row;row++) for(col=0;col<theta.col;col++){
s1.m[row][col]=cos(theta.m[row][col]);
s2.m[row][col]=sin(theta.m[row][col]); }
sl.row=theta.row;
s2.row=theta.row;
s1.col=theta.col;
s2.col=sl.col;
for(col=0;col<theta.col;col++){
answerl.m[0][col]=s1.m[0][col];
answerl.m[1][col}=s2.m[0][col];
}
answerl.row=2*theta.row;
answerl.col=theta.col;
rho=matrix_diagonal(matrix_col(2,input_matrix));
answer=matrix_multiply(answer1,rho);
answer.row=input_matrix.col;
answer.col=input_matrix.row;

return ansSwer,

}

/***

FUNCTION: estimate()

PURPOSE: estimates covariance matrix and centroid vector

70

RETURNS: void (parameter would be defined global
so these will be initialize in a matrix data structure(P and c)
P~covariance_matrix, c~centroid_vector(one colon)
sfe 3k s 3k ok sk sk sk sk 3k sk ok sk sk ok sk sk sk ok sk sk sk sk ske she sk sk sfe sk e sk sk ok ok e sk ok ok 3k ok sk sk sk sk sk sk sk sk e sk skesfe sk sk o skesk sk sk sk sk sk sk skskok sk ok
*/
void estimate(matrix input_matrix)
{ .
matrix Q,QQ,PP;
centroid_vector=matrix_transpose(matrix_mean(matrix_transpose(input_matrix)));
QQ=matrix_multiply(centroid_vector,ones_matrix(1,input_matrix.col));
Q=matrix_subtract(input_matrix,QQ);
PP=matrix_multiply(Q,matrix_transpose(Q));

covariance_matrix=scalar_matrix(1.0/(double)input_matrix.col,PP);

}

/***

FUNCTION: round()
PURPOSE: rounds the number
RETURNS: integer rounding
e sk she 3k sk she 3k sk sk sk ok sk ok sk sk 3 sk ok ok ok 3k sk sk ok sk sk sk ok sk ok ok sk e sk sk ok ok sk e sk sk ke sk sk sfe ske sk sk sk sk sk sk skok ok skesk sk skeske sk skesk kol sk sk sk ke ok
*/
int round(double number)
{
int no;
if (number>0)
{
if(number+0.5>ceil(number))
number = ceil(number);
else

number=floor(number);

71

no=(int)number;

}

else

{

number=-1.0*number;
if(number+0.5>ceil(number))
number = ceil(number);
else
number=floor(number);
no=(int)number;
no=-1*no;
}

return no;

}

/***

FUNCTION: cell()
PURPOSE: calculates the values of cell indicators IJ

input would be a vector

RETURNS: void (I&]J are globally decleared)

/***

/
void cell(matrix q)

{
double qq,qqq,deltax,deltay;

int v,vv;
deltax=(xmax-xmin)/(double)Nx;
deltay=(ymax-ymin)/(double)Ny;
if (q.row>q.col){

72

qq=(q.m[0][0]-xmin)/deltax;
v=round(qq);
qqq=(q.m[1][0]-ymin)/deltay;
vv=round(qqq);
if(v<l)v=1;
if(vv<1)vv=1;
if(v>Nx) v=Nx;
if(vw>Ny) vv=Ny;
I=v;
J=vv;
}

else{
qq=(q.m[0][0]-xmin)/deltax;
v=round(qq);
qqq=(q.m[0][1]-ymin)/deltay;
vv=round(qqq);
if(vel)v=1;
if(vv<l)vv=1;
if(v>Nx) v=Nx;
if(vv>Ny) vv=Ny;
I=v;
J=vv;
}

}

/***

FUNCTION: eig()
PURPOSE: computes eigenvalue and eigenvector of 2*2 matrix

RETURNS: void(globally)

73

**

*/
void eig (matrix mat1)
{
double tol,1,Isav,kk;
matrix Xx,z;
if(mat1.m[0][0]==0.0 && matl.m[0][1]==00 && matl.m[1][0]==00 &&
mat1.m[1][1]==0.0)
{
eigenvalue=0.0;
eigenvector.m[0][0]=0.0;
eigenvector.m[1][0]=1.0;
eigenvector.row=2;
eigenvector.col=1;

}

else
{
1=0.0;
Isav=1.0;
tol=0.00001;
x=ones_matrix(2,1);
while(fabs(Isav-1)> tol)
{
Isav=l;
z=matrix_multiply(mat1,x);
I=max(fabs(z.m[0][0]),fabs(z.m[1][0]));
x=scalar_matrix((1.0/1),z);
}

eigenvalue=l;

74

eigenvector=x;

kk=eigenvector.m[0][0]/eigenvector.m[1][0];
eigenvector.m[1][0]=sqrt(1.0/(1+kk*kk));
eigenvector.m[0]-[0]=sqrt(l-eigenvector.m[l][0]*eigenvector.m[1][0]);
if (kk<0)

eigenvector.m[0][0]=-1.0*eigenvector.m[0][0];

eigenvector.row=2;

eigenvector.col=1;

}
}

/***

FUNCTION: potential()
PURPOSE: Estimates the potential function of the enviroment(cells)
RETURNS: fills all the globally decleared variables
sk sk 3k sk ok ok sk sk ok ok sk o sk sk sk sk 3k sk ok sk sk sk ok sk sk sk sk sk ofe ke sk sk sk sk sk sk sk sk sk ke ke Sk sk sk sk s sk ke ofe ok sk ok ok e ok ok 3k sk sk ke ofe ok sk ok sk sk sk ke ok sk sk ke
*/
void potential(void)
{
int iter,i,tt,ttt,ii,jj,is,js,ns;
matrix s,sL,tip_sonar,tempq,temp;
double D1,D2;
for (iter=2*window_length+1;iter<=400;iter++)
{
s=cartesian_conv(initialize_data(iter-1,0));
state=matrix_add(matrix_multiply(A,state),matrix_multiply(B,acceleration_vector));
if (data_set.row>data_set.col)
ns=data_set.row;
else

ns=data_set.col;

75

for(ttt=0;ttt<data_set.row;ttt++)
{
sL.m[ttt][0]=data_set.m[ttt][ns-window_length-1];
sL.row=data_set.row;
sL.col=1;
}
tempq.m[0][O]=state.m[0][O0];
tempq.m[1][0]=state.m[1][0];
tempgq.row=sL.row;
tempg.col=sL.col;
tip_sonar=matrix_add(tempq,sL);
cell(tip_sonar);
/*printf(" %d\t%d\t%ed\t%d\n",1,3,10,J0); */
if =10 && J==J0)
{
data_set.col=data_set.col+s.col;
data_set.m[0][data_set.col-1]=s.m[0][0];
data_set.m[1][data_set.col-1]=s.m[1][0];
posest.col=posest.col+s.col;
posest.m[0][posest.col-1]=state.m[0] [0];
posest.m[1][posest.col-1]=state.m[1][0];
}

else

{
estimate(matrix_add(posest,data_set));

covariance_matrixP=covariance_matrix;
=0;
for(i=(ns-2*window_length)-1;i<ns;i++)

{

76

tempq.m[0][tt]=data_set.m[O][i];
tempq.m[1][tt]=data_set.m[1][i];
temp.m[0][tt]=posest.m[0][i];
temp.m[1][tt]=posest.m[1][i];
tt++;
}
data_set=tempq;
posest=temp;
data_set.row=2;
data_set.col=2*window_length+1;
posest.row=2;
posest.col=2*window_length+1;
10=I;
JO=J;
if (10!'=0 && JO!=0)
{
potential_matrixVx.m[I0-1][JO-1]=centroid_vector.m[0][0];
potential_matrixVy.m[I0-1]{JO-1]=centroid_vector.m[1][0];
potential_matrixVp1.m[I0-1][JO-1]=covariance_matrixP.m[0][0];
potential_matrixVp2.m[I0-1][JO-1]=covariance_matrixP.m[1][1];
potential_matrixVp3.m[I0-1]{JO-1]=covariance_matrixP.m[O0][1];
potential_matrixV.m[I0-1][JO-1]=0.0;
for (ii=0;ii<5;ii++){for(jj=0:jj<5;jj++)
{
is=ii-2;
js=ij-2;
if(I0+is>08 &J0+js>0& &I0+is<Nx+1&&JO<Ny+1)

{
D1=potential_matrixV.m[I0+is-1][J0+js-1];

77

D2=neigbors_matrix.m[ii][jj];
if(D2<D1)
{
potential_matrix V.m[I0+is-1][J0+js-1 1=D2;
point_i.m[I0+is-1][J0+js-1}=(double)I0;
point_j.m[I0+is-1][JO+js-1]=(double)JO;
}
}
1
point_i.m[I0-1][JO-1]=-1.0;
point_j.m[I0-1]{JO-1}=-1.0;
}

}

/***

FUNCTION: slope()
PURPOSE: Estimates the slope of the enviroment
RETURNS: filling the the slope variables
**
*/
void slope(int length_data)
{
int iter,tt,ttt,i,slope_window,il,j1;
matrix s,tempq,covariance_matrixW.temp;
matrix eigenvectorw,eigenvectorp,phi,H,K;
matrix]l Q;
double eigenvaluep,indice,R,den;

FILE *fp;

78

if((fp=fopen("resultl.m","w"))==NULL)
fprintf(stderr,"Error openning");

fprintf(fp,"xm=[");

slope_window=10;
state=matrix_add(matrix_multiply(A,state),matrix_multiply(B,acceleration_vector));

for (tt=401;tt<=400+slope_window;tt++)
{
=cartesian_conv(initialize_data(tt-1,0));

if(tt==401)
{
data_set=s;
posest.m[0][0]=state.m[0][0];
posest.m[1][0]=state.m[1][0];
posest.row=2;
posest.col=1;

}

else

{

data_set.col=data_set.col+1;
data_set.m[0][data_set.col-1]=s.m[0][0];
data_set.m[1][data_set.col-1}=s.m[1][O];
posest.col=posest.col+1;
posest.m[0][posest.col-1]=state.m[0][0];
posest.m[1][posest.col-1}=state.m[1][0];

}
fprintf(fp," %1\t %1\t %1\t o1f\n" state. m[0][0] state. m[1][0],state.m[2][0] state.m[3][0]);

}
=zeros_matrixI(Nx,Ny);

79

for (iter=401+slope_window;iter<=length_data;iter++)
{
estimate(matrix_add(posest,data_set));
covariance_matrixW=covariance_mmatrix;
cell(centroid_vector);
while ((point_i.m[I-1][J-1]!=-1.0) && (point _j-m[I-1][J-1]!=-1.0))
{
il=(int) point_i.m[I-1][J-1];
j1=(int) point_j.m[I-1][J-1];
I=il;
J=jl;
}
Q.m[I-1][J-1}=1.0;
centroid_vector.m[0][0]=potential_matrixVx.m[I-1][J-1];
centroid_vector.m[1][0]=potential_matrixVy.m[I-1]{J-1];
covariance_matrixP.m[0][0]=potential_matrixVpl.m(I-1][J-1];
covariance_matrixP.m[0][1]=potential_matrixVp3.m[I-1]{J-1];
covariance_matrixP.m[1][0]=potential_matrixVp3.m{I-1][J-1];
covariance_matrixP.m[1][1]=potential_matrixVp2.m[I-1][J-1];
covariance_matrixP.row=2;
covariance_matrixP.col=2;
eig(covariance_matrixP);
eigenvectorp=eigenvector;
eigenvaluep=eigenvalue;
eig(covariance_matrixW);
eigenvectorw=eigenvector;
if (eigenvaluep!=0.0)
{

80

tempq=MULT?3(matrix_transpose(eigenvectorw) ,covariance_matrixP,eigenvectorw);

indice=tempq.m[0][0)/eigenvaluep;
}

R=0.1;

if (indice < 0.9 Il covariance_matrixP.m[0] [0]+covariance_matrixP.m[1]{1]==0.0)
R=100000.0;

phi.m[0][0]=eigenvectorp.m[1][0];

phi.m[1][0]=-1.0*eigenvectorp.m[0][0];

phi.row=2;

phi.col=1;

H.m[0][0]=phi.m[0][0];

H.m[0][1]=phi.m[1][0];

H.m[0][2]=0.0;

H.m[0][3]=0.0;

H.row=1,

H.col=4;

tempq=MULT3(H,initial_covariance,matrix_transpose(H));

den=R-+tempq.m[0][0];

K=scalar_matrix(1.0/den, MULT?3(A,initial_covariance,matrix_transpose(H)));

temp=matrix_subtract(centroid_vector,s);

temp=matrix_multiply(matrix_transpose(temp),phi);

temp=matrix_subtract(temp,matrix_multiply(H,state));

state=matrix_add(ADDMULT2(A state,B,acceleration_vector),matrix_multiply(K,temp))

.
’

initial_covariance=matrix_subtract(MULT3(A,initial_covariance,matrix_transpose(A)),m
atrix_multiply(scalar_matrix(den,K),matrix_transpose(K)));
=cartesian_conv(initialize_data(iter-1,0));

for(ttt=0;ttt<data_set.row;ttt++) for (i=2;i<=slope_window;i++)

81

{

data_set.m[ttt][i-2]=data_set.m[ttt][i-1];

posest.m{ttt][i-2]=posest.m[ttt][i-1];

\ .
data_set.row=data_set.row,
data_set.col=slope_window-1;
posest.col=slope_window-1;
data_set.col=data_set.col+1;
data_set.m[0][data_set.col-1]=s.m[0][O];
data_set.m[1][data_set.col-1]=s.m[1][0];
posest.col=posest.col+1;
posest.m[0] [posest.col-1]=state.m[0][0];

posest.m[l]{posest.col-1]=state.m[1][0];
fprintf(fp,"%lf\t%lt\t%lf\t%lf\n",state.m[O] [0],state.m[1][0],state.m[2][0],state.m[3][0]);

}
fprintf(fp,"];ﬁgure(l),plot(xm(:,1));ﬁgure(Z),plot(xm(:,2));f1gure(3),plot(xm(:,3));ﬁgure(4
),plot(xm(:,4));");

}

/***

FUNCTION: write_result()

PURPOSE: Writing a file

RETURNS: creates a file for pltting
**
*/
void write_result(char filename[20],matrix mat1)
{

int row,col;

FILE *fp;

if(fp=fopen(filename,"w"))==NULL)

82

fprintf(stderr,"Error openning");
for(row=0;row<mat1.row;row-++)
{
for(col=0;col<mat1.col;col++)
fprintf(fp," %If\t ",matl.mfrow][col]);
fprintf(fp,"\n");
}
fclose(fp);
}

/***

FUNCTION: main()
PURPOSE: main program file
RETURNS: resulting

ek ske sk sfe s sk sk s s sk 3K 3k 3k sk ok s ke ke sk s ok sk ok sk sk e ke ke ke sk sk sk sk sk ok sk ok sk sk ok ok ok ok s sl sk sk sk sk sk sk st sfe ke sk st sk sk skokokok sk sk sk sk sk sk ok okok

*/

#include <stdio.h>

#include <math.h>

#include "matrix.h"

#include "list.h"

#include "terms.h"

#define pi 3.14159265358979

int main(void)

{

int data_length;

printf("Enter the data length");

scanf("%d" ,&data_length);

read_data(data_length);

initial(-6.0,-6.0,6.0,6.0,50,50);

initial_kalman(2,0.0,0.0);

83

data_set=cartesian_conv(initialize_data(0,window_length));
posest=zeros_matrix(data_set.row,data_set.col);

potential();

slope(data_length);

return 1;

}

84

APPENDIX C. PROGRAM LISTINGS FOR CONTROL
ALGORITHM SIMULATIONS

A. GENERAL
This appendix contains the MATLAB files generated for the simulations in
Chapter III and IV. These files are used in MATLAB SIMULINK simulation models for
the control system. The constants used are defined in a trial error basis on the occasion of
the intended trajectory of the vehicle, and will have to be determined for every different
mission.
B. PROGRAM LISTINGS
%% % % %o % %o %o Fo To To %o %o %o %o To To To %o T o To Fo To To To To Fo To To To To T o To Fo To To To To o To
FILENAME: occont.m
PURPOSE: MATLARB function giving the outputs of the outer control-loop
AUTHOR: Hakki Celebioglu
DATE: 1996
%% % %o % %o %o %o % %o %o %o %o To To o o To To To Fo To Fo To To To Fo To To To To To To To To To To To To To To To
function uvwstar=occont(xxx)
% Target positions
x0=10;
yo=10;
x=xxx(1); % estimated x-axis vehicle position
y=xxx(2); % estimated y-axis vehicle position
sie=xxx(3); % orientation of the vehicle with respect to target frame
e=xxx(4); % the distance between the vehicle and the target frame
theta=xxx(5); % the angle 6 defined in Chapter II.
alfa=xxx(6); % the angle o defined in Chapter II.
% The constant denoted for the Long Range Phase
kLR=0.12;
%The constant denoted for the Medium Range Phase

85

kMR=0.0173;
%The constant denoted for Fine Maneuvering Phase
kF=0.0001;
%% % % %6 %o %o % %o Fo %o % o Fo To % %o Yo To To %o %o Fo To %o To To Fo To T To Fo To To To o To Fo To T To Fo
%Long Range Navigation
if(e>=7.1)
siestar=atan2(yo-y,X0-X);
ustar=- R*(x*cos(siestar)+y*sin(sieétar));
vstar=0;
wstar=0;
uvwstar=[ustar vstar wstar];
end
% Medium Range Navigation
if(e<7.1 & e>=1)
ustar=kMR *e*cos(alfa);
vstar=0;
wstar=.01*alfa+kMR*(cos(alfa)*sinc(alfa/pi)*(alfa-1.26*theta));
uvwstar=[ustar vstar wstar];
end
% Fine Maneuvering
if(e<1)
ustar=-kF*(x*cos(sie)+y*sin(sie));
vstar=-kF*(-x*sin(sie)+y*cos(sie));
wstar=-0.8*sie; % here gamma is 0.8.
uvwstar=[ustar vstar wstar];

end

86

%%%6% %o %0 %o % % %o %o %o %o %o % %o To To To To %o o o o To To To Fo To To To T To T To To To To To To To T To
FILENAME: iccont.m
PURPOSE: MATLAB function giving the outputs of the inner control-loop
AUTHOR: Hakki Celebioglu
DATE: 1996
%% % %o %o %o % %o %o %o %o %o %o % To %o To To %o %o o o To Fo To To o Fo To To To To e To To Fo Fo To To %o T Jo
function fgM=iccont(stars)
% Outputs of the outer cbn&ol loop will be inputs for inner control loop
ustar=stars(1);
vstar=stars(2);
wstar=stars(3);
% The linear and angular velocities
=stars(7);
v=stars(8);
w=stars(9);
% Time drivatives of the output of the outer control loop
ustard=stars(4);
vstard=stars(5);
wstard=stars(6);
%Inner Control Loop adjusting parameters
px=0.1;
py=0.04;
pm=0.001;
%% % % %% %o % %o % Yo % %o To To o To o o To To Fo Fo To To To To To To To Yo To To To To To To To To Fo Fo To
% The lateral trusts and the angular moment being computed
f=-v*w+ustard-px*(u-ustar);
g=u*w-+vstard-py*(v-vstar);
M=wstard-pm*(w-wstar);

fgM=[f g M u v w]; % The computed forces and the velocities will be outputs.

87

9% % %% % Fo % %o % %o %o %o To %o Fo %o Fo %o o % o To o Fo T To To o To To %o o %o To Fo To Fo To To To Fo
FILENAME: dinamic.m
PURPOSE: MATLAB function for dynamics of the vehicle
AUTHOR: Hakki Celebioglu
DATE: 1996
9% %% %o % %o % %o % %o %o o %o %o Fo % Fo %o %o %o To To To Fo %o To T Fo To o %o To To To Fo To Fo To Fo To To
function uvw=dinamic(xxx)
% the outputs of the inner control loop will be inputs for vehicle's dynamics.
f=xxx(1);
g=xxx(2);
M=xxx(3);
u=xxx(4);
v=xxx(5);
w=xxx(6);
%The state space parameters of the vehicle's dynamics
ud=f+v*w;
vd=g-u*w;
wd=M;
uvw=[ud vd wd];
%% %0 % % %o %o % %o % %o %o %o %o To Fo % %o %o %o To %o %o To To %o To Fo To To To %o To To To o To To To To To To
FILENAME: xysie.m
PURPOSE: MATLAB function for kinematics of the vehicle
AUTHOR: Hakki Celebioglu
DATE: 1996
%% %6 %6 % %o % % %o % %o To %o %o Fo To %o To %o To %o %o o To To To o To To To %o To To To To To To To To To o To
function xysie=scont(Xxx)
% Second set of system states and system kinematics
u=xxx(1);

v=xxx(2);

88

B

w=xxx(3);

sie=xxx(4);

alfa=xxx(5);

e=xxx(6);
xd=u*cos(sie)-v*sin(sie);
yd=u*sin(sie)+v*cos(sie);
sied=w;

. ed=-u*cos(alfa)-v*sin(alfa);
thetad=(u*sin(alfa)/e)-(v*cos(alfa)/e);
alfad=-w-+thetad;
xysie=[xd yd sied ed thetad alfad];

89

90

-

LIST OF REFERENCES

1. R.Crsti, M.Caccia, G.Veruggio, "Motion Estimation and Modeling of the
Environment for Underwater Vehicles," paper presented at Proceedings of 6"
IARP in Underwater Robotics, Toulon, France ,1996.

2. E.Percin, Sonar Localization of an Autonomous Underwater Vehicle, Master's
Thesis, Naval Postgraduate School, Monterey, CA, December 1993.

3. K.D.Conowitch, Sensor Based Navigation and Localization Methods for
Autonomous Underwater Vehicles, Master's Thesis, Naval Postgraduate School,
Monterey, CA, June 1995.

4. CK.Chui, G.Chen, Kalman Filtering with Real-Time Applications, Springer-
Verlag Series in Information Science, 2™ Edition, New York, NY, 1991.

5. J.-1E. Slotine, W. Li, Applied Nonlinear Control, Prentice-Hall Inc., Englewood
Cliffs, New Jersey, NY, 1991.

6. G.Casalino, G.Cannata, M.Caccia, "Lyapunov Based Closed-Loop Motion Control
for UUV's," paper presented at Proceedings of 3 International Symposium on
Methods and Models in Automation and Robotics, Miedzyzdroje, Poland, 1996.

7. M.Caccia, A.C.Colombo, G.Casalino, MDecia, G.Veruggio, "Closed-loop
Approach Algorithm Based on Lyapunov Techniques for an Autonomous
Underwater Vehicle," paper presented at Proceedings of 3 [FAC Workshop on
Control Applications in Marine Systems, Trondheim, Norway, May 1995.

8. M.Caccia, G.Casalino, R.Cristi, G.Veruggio, "Acoustic Motion Estimation and

Control for an Unmanned Underwater Vehicle in a Structural Environment," paper
presented at MMC 97, Brijuni, Croatia, September 1997.

91

92

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

Dudley Knox Library
Naval Postgraduate School
411 Dyer Rd.

Monterey, CA 93943-5101

Chairman, Code EC

Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, CA 93943-5121

Professor Roberto Cristi, Code EC/Cx

Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, CA 93943-5121

Professor Xiapping Yun, Code EC/Xi
Department of Electrical and Computer Engineering

Naval Postgraduate School
Monterey, CA 93943-5121

Deniz Kuvvetleri Komutanlhig:
Personel Daire Bagkanhig:
Bakanliklar, Ankara, TURKEY

Deniz Harp Okulu Komutanhg:
Tuzla, Istanbul- 81704, TURKEY

Birol Zeybek

Deniz Kuvvetleri Komutanhg:
Gemi Inga Dairesi Bsk.
Bakanliklar, Ankara, TURKEY

Hakki Celebioglu

1730 Sokak No: 69/3
Karsiyaka, 1zmir-35530, TURKEY

93

No. Copies

2

