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- ABSTRACT

The main problem addressed by this research is the lack of a small, low-cost integrated naviga-
tion system to accurately determine the position of an Autonomous Underwater Vehicle (AUV)
during all phz_ises of an underwater search or mapping mission. The approach taken utilized an
evolving prototype, called the Shallow-Water AUV Navigation System (SANS), combining Glo-
bal Posit;ioning System (GPS), Inertial Measurement Unit (IMU), water speed, and magnetic
heading information using Kalman, low-pass, and complimentary filtering techniques. In previ-
ous work, addition of a math coprocessor improved system update rate from 7 to 18 Hz, but
revealed input/output coordination weaknesses in the software. The central focus of this thesis is
on testing and programming improvements which resulted in reliable integrated operations and an
increased processing speed of 40 Hz. This now allows the filter to perform in real time. A stan-
dardized tilt table evaluation and calibration procedure for the navigation filter also was devel-
oped.

The system was evaluated in dynamic tilt table experiments. Test results and qualitative error
estimates using differential GPS suggest that submerged navigation with SANS for a period of
several minutes will result in position estimation errors typically on the order of 10 meters rms,

even in the presence of substantial ocean currents.
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I. INTRODUCTION

A. BACKGROUND

Autonomous Underwater Vehicles (AUVs) are capable of a variety of overt and
clandestin:e missions. Such vehicles have been proposed for inspection, mine
countermeasures, survey, and observation. Recent research trends in underwater robotics
have emphasized minimizing the need for human interaction by increasing AUV
autonomy. (Yuh 95)

The NPS Phoenix AUV is an experimental vehicle designed primarily for research in
support of shallow-water mine countermeasures and coastal environmental monitoring
(Healey 93, 95, Brutzman 96). The clandestine nature of the missions for which Phoenix
was designed necessitates minimum surfaced exposure time while in the operating area, the
ability to submerge in order to investigate targets, and a navigation system that is accurate
enough to allow target revisit if desired.

Many missions of the Phoenix class of vehicles can be separated into two distinct
phases: transit and search. After being launched from an aircraft, submarine, or surface
vessel, the AUV would execute a transit phase in order to arrive at the search area. Once
established in the mission area, it would enter a search phase, which might include missions
such as miné hunting, mapping, or environmental data collection. Navigation is one of the
most important and difficult aspects of an AUV mission. Therefore, a robust, real-time
navigation system is critical for a multi-mission capable AUV. Typically, a search phase
would require more precise navigation than a transit phase. This could be accomplished by

obtaining more frequent Global Positioning System (GPS) fixes, or by using Differential




GPS (DGPS) either in real-time if available, or after mission completion using post-
processiﬁg (Walker 96). After the search is completed, the AUV would commence a
second transit phase and return to a recovery position. Both kinds of mission phases would
typically involve waypoint steering, and possibly obstacle avoidance.

An a-pproach is described in Kwak (93) for determining the position of submerged
detected objects by executing a “pop-up” maneuver to obtain a GPS fix. This fix is then
extrapolated backwards to the submerged object location using recorded inerﬁal data.
Navigation accuracy during such a surfacing maneuver is strongly enhanced by the use of
accurate depth information available from low-cost pressure cells (Kwak 93). However,
this form of “aided” inertial navigation is not applicable to a surfaced or neér surface AUV
(Brown 92).

Continuously reliable GPS reception would not be possible unless the AUV were to
be fitted with an extensible mast mounted antenna. Extending an antenna above the effects
of wave action is not desirable for a military application and, at any rate, would probably
be mechanically impractical for a small AUV. As aresult, any system relying solely upon
GPS would not be sufficiently robust to provide accurate navigation information during
surfaced or near surface operations due to intermittent reception. ~ Therefore, inertial
navigation is needed between periods where continuous reliable reception of GPS satellite
signals is not possible. (Bachmann 95)

Inertial navigation hardware is sometimes based on rotating gyros, which provide
attitude information needed to stabilize a platform that holds acceleration sensors. The

limiting factors to this approach include: high expense due to required precision, inordinate




power consumption, high failure rates, and acoustic and structure-borne noise (Cox 94).
These féctors counter the Phoenix AUV philosophy of providing a low cost, general
purpose platform capable of long-term independent operation, despite relatively small
vehicle size (McGhee 95). Additionally, the rotating gyros now installed in Phoenix are
aging an<-j mechanically unreliable. It is therefore desirable to find a solution to the AUV
navigation and control problem not requiring such components.

In order to achieve robust navigation, the AUV should be capable of navigating with
GPS and/or an Inertial Navigation System (INS). GPS is capable of highly accurate
positioning when the AUV is surfaced, while an INS can be used for submerged navigation
and periods between GPS satellite reception. In order to ensure accurate r;avigation for a
wide variety of missions, GPS and INS components can be combined. A favorable analysis
of this type of navigation system was conducted in McKeon (92). The hardware and
software architecture required for a typical mapping scenario was evaluated in Norton (94).

Bachmann (95) made the architecture evaluated in Norton (94) a reality, and
subseqﬁently developed the first working prototype of the proposed Shallow-Water AUV
Navigation System (SANS). The SANS was designed to overcome the problem of
intermittent GPS satellite tracking. It is an experimental system that uses a low-cost,
strapped-down inertial measurement unit (IMU), complemented with magnetic heading
and water speed sensors, to enable inertial navigation between GPS fixes. This system 1is
well suited for pop-up navigation. Finding this means of navigating near the sea surface
provides a complete solution to the overall navigation problem associated with tiansiting

an AUV to a shallow water work site, recording the position of detected submerged objects,




and then returning to a recovery site where stored mission data can be uploaded (McGhee
95).

Additionally, the navigation filter developed by McGhee (95) solves the problems of
cost and ‘power consumption by eliminating rotating gyros and replacing them with
accelerati.on and angular rate sensors. This filter is implemented in SANS by Bachmann
(95). One application of SANS is to upgrade the Phoenix navigation system. Others,
particularly as component miniaturization continues, include marine mammal and diver
navigation.

With the prototype SANS having achieved favorable results in open-water, at-sea test
trials, Walker (96) advanced the SANS to another level of maturity, méking it a truly
integrated system ready for direct application to a real-world AUV. The physically
redesigned system includes an on-board processor and consolidated the diverse
components into a compact unit, while improving individual component reliability and
performance. The research reported in this thesis continues the evolution of the SANS by
incorpérau'ng software improvements to accommodate the dramatically improved

processing speed, implementing a networking capability to monitor at-sea tests and prepare

' for installation into the AUV, and developing a standardized calibration procedure for the

navigation filter.

B. RESEARCH QUESTIONS

This thesis will examine the following research topics:
- Evaluate the hardware and software architecture of the SANS.

- Develop a calibration procedure for the SANS navigation filter.




- Evaluate the performance of the SANS navigation filter in a laboratory environment.

- Evaluate the SANS hardware and software architecture for installation in Phoenix.

C. SCOPE, LIMITATIONS AND ASSUMPTIONS

This :thesis reports part of the findings of the fifth year of research in an ongoing
research project. The scope of this thesis is to evaluate SANS attitude estimation
capabilities for eventual installation as a replacement for the older technology gyros now
used on board the Phoenix AUV. The requirements for an ideal SANS described by Kwak
(93) which impact this project are:

- Low power consumption. Operation from a small external battery pack for 12 hours

is desirable.

- Limited exposure time. The amount of time that the GPS antenna is exposed in the
search phase should be as short as possible. Up to 30 seconds of exposure is allowed,
but less is better, and time between exposures should be maximized.

- Maintain clandestine operation. The GPS antenna should present a very small cross
section when exposed and should not extend more than a few inches above the
surface of the water.

- Maximize accuracy. During the search phase of the mission, system accuracy of 10
meters or better is required following postprocessing, both while submerged and
surfaced.

- Total volume not to exceed 120 cubic inches. Elongated, streamlined packaging is

preferred.




D. ORGANIZATION OF THESIS

The purpose of this thesis is to present the development of a prototype system intended
to meet the mission requirements of the SANS. The term AUV is understood to include
any small underwater vehicle (including human divers) which can easily carry such a
compact device. The term “towfish” refers to the test vehicle used to evaluate the SANS
during at-sea testing.

This thesis provides an evaluation of the hardware and software used to provide
accurate navigation for the NPS AUV. The major thrust of the thesis is to evaluate the
attitude estimation capabilities of the SANS both statically and dynamically in a laboratory
env_ironment.

Chapter 1I reviews. previous work on this project as well as on GPS and INS
navigation, AUV submerged navigation, and navigation filtering theory. Chapter I
provides a summary description of both the original and current SANS prototype hardware.
Chapter IV provides a detailed description of the software architecture, including the
navigaﬁon filter. Particular emphasis is placed on changes, additions, and updates made to
the C++ code in support of this portion of the project. Chapter V is a description of the
experiment design and an analysis of the experimental results. Finally, Chapter VI presents

the thesis conclusions and provides recommendations for future research.




II. SURVEY OF RELATED WORK

A. INTRODUCTION

Autonomous Underwater Vehicles (AUVs) have the potential to be used in an efficient
and cost: effective manner in a variety of missions involving military and non-military
applications. Accurate navigation is one of the most important capabilities supporting
AUV mission effectiveness. Many possible AUV missions, such as mine hunting, require
a high degree of navigation accuracy. This chapter will discuss some of the possible AUV
navigation solutions.

Navigation systems are generally categorized by whether they are based on external
signal reception or internal sensors. External-signal-based navigation systems, such as
Loran, Omega, and Global Positioning System (GPS), are limited to determining position
only while the receiver is exposed to the signal. Loran and Omega are relatively inaccurate
compared to GPS. While Loran covers most of the northern hemisphere, it has almost no
coverage in the southern hemisphere (Bowditch 84). GPS provides an attractive,
affordable system for the surfaced portion of an AUV mission because it is capable of
world-wide coverage with a high degree of navigational accuracy.

Internal-sensor-based navigation can be implemented as a self-contained unit which
can be composed of various types of equipment such as inertial measuring units (IMUs),
acoustic transponders, or geophysical map comparison. All sensors are subject to some
amount of error, which may compound to unacceptable levels for some AUV missions if
not accounted for. Each of these components also has unique disadvantages. Acoustic

transponders must be pre-deployed at precisely known locations and may require costly




maintenance. Geophysical map. interrogation requires a precise bottom contour map be
previouély stored in the AUV’s computer. IMU-based navigation is prone to sensor drift,
which if left uncorrected, can become very large. However, it has advantages relative to

the other-navigation options due to a lack of dependence on external signals and no

requirement to transmit any signals which might reveal its presence.

B. GPS NAVIGATION
The Navigation Satellite Timing and Ranging (NAVSTAR) Global Positioning System

(GPS) is a space-based radio positioning, navigation and time-transfer system sponsored
by the U.S. Department of Defense (DoD). It was originally intended to provide the
military with precise navigation and timing capabilities (Parkinson 80). The system is
designed to provide 24-hour, all-weather navigation anywhere on earth. Itis comprised of
24 satellites in 22,200 km orbits that are inclined at 55° to the earth’s spin axis, with 12
hour periods. The sateliites broadcast two L-band frequencies: L1 (1575.4 MHz) and L2
(1227.6 MHz). Navigation and system data, predicted satellite position (ephemeris)
information, atmospheric propagation correction data, satellite clock error information, and
satellite health data are all superimposed on these two carrier frequencies. (Logsdon 92,
Wooden 85)

There are two different navigation services available from the GPS satellites depending
on the type of receiver being used: the Standard Positioning Service (SPS), and the Precise
Positioning Service (PPS). The SPS is based on receiving the L1 carrier signal, which is
broadcast with an intentional inaccuracy called Selective Availability (SA). SA limits

world-wide navigation to 100 m horizontal accuracy with a 95% confidence level (Logsdon




92). PPS is based on the L2 signal. It is limited to U.S. and allied military, and specific
non-military uses that are in the national interest. Access to PPS is restricted by use of
special cryptographic equipment. PPS provides the highest stand alone accuracy: 16 m
Spherical Error Probable (SEP), a velocity accuracy of 0.1 m/sec, and a timing accuracy of
better tha{n 100 nanoseconds. (Logsdon 92, Wooden 85)

Civilian custorlners have determined a way to improve the accuracy of the SPS in order
to take full advantage of GPS precision without having access to cryptographic equipment.
This method, called Differential GPS (DGPS), provides a way of working around the
inaccuracies of the SPS. It may be used in real-time or during post-processing. The general
idea is to place a receiver at a surveyed stationary site. The receiver 'is then able to
determine the difference betwéen its actual position and its computed GPS position, and
broadcast the resulting pseudorange (distance to satellite) corrections to any DGPS capable
receivers. Real-time differential processing can reduce the typical 100 m accuracy of the
SPS to 2-4 m regardless of the status of SA (Logsdon 92). It is also possible to record the
raw PPS or SPS GPS information for later comparison to a known geographical site using
post-processing.  Precise procedures can be used to reconstruct extremely accurate
positioning information, typically in the submeter range. Table 1 shows a comparison of
expected GPS accuracies.

The size and cost of GPS receivers have decreased drastically as GPS technology has
matured. Miniaturization is continuously progressing while maintaining or increasing GPS
receiver performance capability. Since as early as 1992, the GPS industry has been able to

produce receivers that are essentially a single printed circuit board. Souen (92) reports




POSITIONING SERVICE PPS (m) SPS (m)

Non-Differential 16 100
Differential 2-4 2-4

TABLE 1: Expected RMS GPS Accuracy Levels (Logsdon 92)
that the Furuno GPS reqeiver module LGN-72 is an eight-channel receiver implemented on
a single printed circuit board measuring 100 mm x 70 mm x 20 mm and requiring only 2
W of power.

There is currently a performance trade-off associated with the miniaturization of GPS
receivers. For instance, Trimble offers the PC Card 110 GPS miniature receiver in the form
of a Personal Computer Memory Card International (PCMCIA) intcrfacc.‘ This credit card-
sized device simply slides into any laptop, most palmtops, or pen-based computers
compliant with PCMCIA (release 2.0). Itis capable of tracking eight satellites using three
channels. However, because it does not have an allocated channel for each of the satellites,
it does not use a continuous tracking scheme. This degrades its acquisition time
performance. In order to reduce receiver size, manufacturers often reduce the number of
channels on the receiver. GPS receivers in this configuration are called “sequencing”
receivers (Logsdon 92). Sequencing receivers utilize a time-sharing technique to “dwell”
on each satellite for a brief interval before switching to the next satellite in the sequence.
They have a typical acquisition time of about two minutes. Continuous tracking GPS
receivers have typical acquisition times of about 30 seconds or less. However, their larger

number of receiver channels results in a less compact size. Given this trade-off between
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size and performance, the choice of GPS receiver must be made with the particular
applicaﬁon inmind. A sequencing receiver offers an adequate compromise for applications

| such as mobile navigation that are not so dynamic. However, if the application requires a
short time to initial acquisition, the most viable option is the continuous tracking receiver.
GPS is a;l obvious choice for AUV navigation given the level of miniaturization and its
excellent accuracy performance.

One manner of using GPS to locate an AUV is to place buoys with GPS receivers at
appropriate locations. These buoys would translate the GPS signal and retransmit an
underwater acoustic signal. The AUV would then determine its position via ranging and
position fixes to the buoys. Youngberg (91) suggests that the GPS ant'enna, receiver,
processing and contfol subsystem, acoustic transmitter, battery power, and homing beacon
could all be contained in a buoy measuring 123 mm diameter x 910 mm long and weighing
5-15kg. A simulation which showed the feasibility of this approach is presented in Leu
(93). The simulation consisted of several sonobuoys spaced one kilometer apart. Due to
uncertéinties in buoy position caused by wave action and variations in altitude, the study
proposed the use of Kalman filtering techniques to combine the outputs of an accelerometer
and DGPS to enhance accuracy. Each GPS buoy would essentially act as a GPS satellite
and broadcast its position via spread spectrum acoustic signals used by the AUV for
ranging. This technique would eliminate the requirement to predeploy a surveyed
transponder field.

Another possible method for using GPS to determine the AUV’s position is to

physically mount the GPS antenna and receiver on-board the AUV. For areas covered by
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DGPS service, this has the advantage of making the system self-contained. One major
concerﬁ would be that the GPS receiver would be unable to acquire satellites in a timely
manner due to splash effects on the antenna. However, Norton (94) describes both static
and dynamic test results which show that a submersible system is able to meet the accuracy
and time' requirements of the mission, even while being splashed by wave wash. Therefore,

this method was adopted in the SANS configuration.

C. INS NAVIGATION

Inertial navigation is essentially a complex method of dead reckoning. Its purest form
involves no outside references to fix position. All position data is calculated relative to a
known starting point. An inertial navigation system (INS) continuously measures three
mutually orthogonal acceleration components using accelerometers. These measurements
are taken in short time increments and multiplied by elapsed time in order to determine an
estimate of instantaneous velocity. The three-dimensional change in position can then be
determined by integrating respective velocities over time. (Bachmann 95)

The primary drawback of any INS is the tendency for small sensor drift rates to
accumulate as errors over time. Without outside references for correction, these errors
grow relentlessly and eventually lead to large errors in the estimated position. Highly
accurate inertial navigation systems can be constructed, but they are large, costly, and
complex (Touhy 93). Size alone makes them unacceptable for the SANS. A compromise
solution to meet SANS requirements is to integrate a low-cost, miniature INS with GPS.
In such a system, GPS will provide the INS with the periodic position fixes necessary to

correct slowly building INS errors.
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The acceleration measurements required by an INS can be made by several types of
IMUs. There are two fundamental categories: gimbaled and strapdown. Due to their large
size and power requirements, gimbaled systems are not suitable for the SANS. In a
strapdown unit, three mutually orthogonal accelerometers and three angular rate sensors
are moun-ted parallel to the three body axes of the vehicle. Linear accelerations and
rotational velocities are continuously measured. Strapdown systems are smaller and
simpler than gimbaled systems, but necessitate much larger computational capabilities.

(Logsdon 92)

D. INTEGRATED GPS/INS NAVIGATION

SPS mode GPS navigation could be used to adequately perform both the transit and
search phases of an AUV mission. During surfaced transit phases, non-differential SPS, a
water speed sensor, and a magnetic compass would provide the primary source of
navigation data. In order to utilize GPS as a meaningful correction to a low-cost INS
system, periods between GPS fixes during the transit phase must not exceed the time in
" which the INS error has accumulated to an amount comparable to the horizontal accuracy
of SPS (100m) (Bachmann 95). The search or mapping phases of an AUV mission would
require the vehicle to maintain a more accurate navigational picture, both submerged and
on the surface. This would necessitate the use of periodic differentially corrected GPS
information in order to keep the INS system accurate while submerged. This differential
correction could be provided in real-time during overt missions along friendly shores where
a DGPS reference signal is available, or during mission post-processing following a

clandestine mission.
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Integration of GPS and INS into a single system can produce continuously accurate
navigational information even when using relatively low-cost components. This
integration not only allows periodic reinitialization of the INS to correct accumulated
errors, but can also (with the aid of Kalman filtering techniques) improve the performance
of the II\.IS between fixes. Complementary filtering of acceleration data with additional
sensor information such as water speed and heading will further improve system accuracy.
Overall, an integrated system will provide improved reliability, smaller navigation errors,
and superior survivability. (Logsdon 92)

Kalman filtering is a method of combining all available sensor data, regardless of their
precision, to estimate the current posture of a vehicle (Cox 90). The filter is .actually adata-
processing algorithm which minimizes the error of this estimate statistically using currently
available sensor data and prior knowledge of system characteristics. Each piece of data is
weighted relative to data from other system components based upon the expected accuracy
of the measurement it represents. In a complementary filter, low-frequency data, which is
trusted»over the long term, and high-frequency data, which is trusted only in the short term,
are used to “complement” each other providing a much better estimate than either can
alone. (Brown 92)

Bachmann (95) demonstrated the use of the complementary filter technique by
combining low-frequency orientation data from accelerometers and a magnetic compass
with high-frequency angular rate information to estimate heading and attitude.
Intermediate position results were obtained by integrating high-frequency water-speed

data. GPS data was used to reinitialize the system each time a fix was obtained and to
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develop an error bias, expressed-as an apparent ocean current. The current was utilized to
correct fhe system between GPS fixes. The concept of using a relatively inexpensive IMU
with limited accuracy, coupled with differentially-corrected GPS, has proven to be a viable
solution to the challenge of shallow-water AUV navigation. (Bachmann 95)

The a.bove conclusion has been independently duplicated in Wolf (96). Utilizing an
integrated GPS/INS system using the same Systron-Donner IMU used in SANS, but
without incorporating DGPS, accuracies in attitude of better than 0.2° in roll aqd pitch and
0.3° in azimuth were achieved. Specific results from those tests, along with static tests
indicating the SANS software filter (described in Chapter IV) response to IMU inputs are

discussed further in Chapter VI, System Testing. (Wolf 96)

E. AUV SUBMERGED NAVIGATION

There are many techniques available for submerged navigation, including dead
reckoning, inertial, electromagnetic, and acoustic navigation. With acoustic navigation,
time of arrival and direction of propagation of acoustic waves are the two principal
measurements made. A wide varietjr of acoustic navigation systems have been developed
for underwater vehicle use. They are typically divided into long, short, and ultrashort
baseline systems. All involve the use of acoustic beacons or receivers whose positions
must be known to an accuracy somewhat better than the desired vehicle localization
accuracy (Tuohy 93). Unfortunately, most acoustic navigation systems require major
expeditions for their accurate set-up and periodic maintenance. This makes them
expensive, and in many ways reduces the level of autonomy achievable by an AUYV. Also,

acoustic methods are affected by changes in the speed of sound in the ocean and suffer from
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refraction and multipath propagation problems in restricted shallow water coastal and ice-
covered. areas. (Tuohy 93)

There are various alternative submcrged navigation methods not dependent upon the
aid of external signals. Charge Coupled Device cameras, laser scanning, or variations in
the earth;s magnetic field can aid in determining position (Bergem 93). Position can also
be estimated by the double integration of acceleration as sensed by an IMU.

Doppler sonar or correlation velocity log sensors can be utilized to determine speed
through the water or over the ground. Doppler velocity logs utilize the physics of
frequency shifts in the sound waves of sources and receivers with relative radial motion. A

critical assumption for two-way transmission in the ocean is that the sound scatterers,

.(small particles and plankton) uniformly populate the environment, and at the average

move at the same horizontal velocity as the water. Correlation velocity logs, on the other
hand, use reflections from the sea bottom, even at great depths, and on-board sensor arrays
to detect forward and lateral motion occurring between sonar pings. (Gordon 96)
Doppler technology has been redesigned as the Acoustic Doppler Current Profiler
(ADCP). The ADCP measures water velocity more accurately, and allows measurement
in range cells over a depth profile. Throughout the 1980’s, ADCPs were further improved
by production of self-contained, vessel-mounted, and direct-reading models, and by the
addition of broadband capability in 1991. Broadband ADCPs take advantage of having
typically 100 times as much bandwidth for measuring velocity as the original, narrow-

bandwidth models, reducing variance nearly 100 times. (Gordon 96)
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Broadband Doppler processing computes the phase change of propagation time delay.
Since lénger propagation times provide greater accuracy, but incur phase changes beyond
360°, a mathematical autocorrelation function resolves ambiguity and allows transmission
of a series of coded pulses within a single long pulse. Multiple beams are utilized to obtain
velocity -in three dimensions, under the assumption of uniform currents across layers of
constant depth. Non-homogenous current layers produce large velocity errors. (Gordon
96)

ADCP single-ping random or short-term error may range from just a few mmy/s to as
much as 0.5 m/s, depending on internal factors such as frequency, depth cell size, number
of pings averaged together, and beam geometry. Since this random error.is uncorrelated
from ping to ping, the sténdard deviation of the velocity error can be reduced by the square
root of the number of pings through averaging. Although averaging can greatly reduce the
relatively large, single-ping error, at a certain point it fails to improve on overall error as
the random error becomes smaller than the bias. (Gordon 96)

The bias is typically less than 10 mm/s and depends on factors such as temperature,
mean current speed, signal/noise ratio, and beam geometry. It is not yet possible to
measure ADCP bias and calibrate or remove it in post-processing. External error factors
include turbulence, internal waves, and ADCP motion, and can dominate internal errors.
While the technology behind the ADCP is impressive and bears serious consideration for
future small AUV navigation development, the combination of relative affordability and

unpredictable bias make it a les attractive option for the SANS application. (Gordon 96)
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For covert missions, an AUV may not be able to refer to external signals while
submeréed. In this case, the system must rely on some sort of dead reckoning. Modern
dead reckoning systems typically use magnetic or gyroscopic heading sensors, and a
bottom or water-locked velocity sensor (Grose 92). The presence of an ocean current will
add a vel;)city component to the vehicle which is not detected by a water speed sensor. In
the vicinity of the shore, ocean currents can exceed two knots (Tuohy 93). Using dead
reckoning vﬁth currents which are relatively large in relation to the typical 4-6 knot speed
of an AUV can produce extremely inaccurate results (Tuohy 93). This inaccuracy
represents the central challenge of AUV submerged dead reckoning navigation.

There are many techniques for measuring acceleration and angular rates: These include
using ring laser and fiber optic gyros, rotating mass gyros, vibratory rate sensors, and high
performance IMUs. Inertial grade IMUs typically contain three angular rate sensors, three
precision linear accelerometers and a three-axis magnetometer. The acceleration
measurements required by an INS can be made by several types of IMUs. All of these
sensoré are subject to drift errors which relentlessly increase with time. High quality
sensors are subject to less drift, but can cost up to $100,000 (Tuohy 93), making them
unattractive for small AUVs.

McKeon (92) proposes a combination of GPS and INS to allow an AUV to determine
position information. While submerged, the AUV uses a low-cost inertial navigation
system. However, when on the surface, the vehicle has access to GPS information. GPS/
INS information could be combined with Kalman filter techniques to reduce errors during

the next dive sequence as simulated in Nagengast (92) and demonstrated in McGhee (95).
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The system described in McGhee (95) senses linear accelerations and angular rates with
respectfve sensors and processes the data in a twelve state Kalman filter, resulting in an
estimated position. A mechanical water speed sensor and a magnetic compass are added
to complement acceleration and angular rate data and further enhance navigation accuracy.
The twel.ve states can be divided into seven continuous-time states (three Euler angles, two
horizontal velocities, two horizontal positions), two discrete-time states derived_ from the
DGPS fixes (estimated east and north current), and three angular rate sensor bias estimates,
(subtracted from the output of these sensors). The DGPS fixes occur aperiodically
whenever the vehicle surfaces and is able to acquire a sufficient number of satellites.

(Bachmann 96)

F. NAVIGATION FILTER THEORY

The inherent sensor measurement errors plaguing inertial measurement systems may
be partially compensated for, but never eliminated. Drift is the tendency of bias errors in
the angular rate sensors of the inertial platform to cause relentlessly increasing orientation
measurement errors. The single integration of a bias-ridden angular rate signal will cause
a steady build-up of error over time. This leads to an incorrect estimation of the body
orientation relative to the earth-fixed coordinate system and a corresponding body position
estimate error. Angular rate sensor biases typically change unpredictably over time,
making a simple, complete compensation impossible. (Frey 96)

Standard inertial navigation procedures utilize fix updates if an alternative method of
determining instantaneous orientation exists. Drift is compensated for by périodic

adjustments of the inertial system to the external reference, returning the bias error
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accumulation to zero. Short fix intervals then result in relatively insignificant bias errors.
Higher 'quality angular rate sensors typically have lower bias errors and correspondingly
longer fix intervals. (Frey 96)

Linear acceleration sensor drift errors are compounded by the double integration of the
linear ac;:eleration measurements to obtain position data. This results in a position estimate
in error proportional to time-squared, rather than simply time. This error may be similarly
compensated. However, given the same sensor quality, the fix interval needed to maintain
comparable accuracy will be much shorter than that required for the angular rate sensor bias
compensation alone. (Frey 96)

Discrete low pass filter theory provides a method for obtaining a rate bias estimate.
Such filters may be represented by a signal-flow graph (SFG), which is a simplified version
of a block diagram. The SFG was introduced by S. J. Mason for the cause-and-effect
representation of linear systems that are modeled by algebraic equations (Kuo 95). A SFG
may be defined as a graphical means of portraying the input-output relationships between

the variables of a set of linear algebraic equations, or simply
Eq (2.1)
output = Zgain X input
Corresponding block and signal flow graph diagrams for a single input discrete low pass

filter are shown in Figures 1 and 2 below.

-
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input, u c X output, y
1/t T Y

Figure 1: Discrete Low Pass Filter Block Diagram

approximated by
input, u e le(‘)At 1 y

Figure 2: Discrete Low Pass Filter Signal Flow Graph

In this diagram, p~! stands for the time domain integration operator, and tau is the

relaxation time constant. Directly from Figure 2,
Eq (2.2)
x(t+Af) = x (t) + 2(1)At

or

Eq (2.3)

new output = old output + Input — O;d output »;

This is the classic relationship describing a low pass filter (McGhee 96). Rewritten,

Equation 2.3 becomes Eq (2.4)

(input —x,(£))At
T

xl(t+At) = x () +

Which can also be written
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Eq (2.5)

. At At
xl(t+At) = xl(t)+mput—1——x1(t)—£-
and, finally
Eq (2.6)
x(t+AL) = xl(t)(l —éﬁc-t)+input%

or, in more common terminology, and the terms used in the SANS code

Eq (2.7)
new output = outputWeight X old output + input X sampleWeight

The above general result can be applied to the SANS system for rate sensor bias
estimation. In this case, the signal used for attitude estimation is the raw rate sensor reading
with the estimated bias subtracted. An alternative formulation is to add the negative of the
bias to the sensor reading. This formulation is derived similarly, and is implemented in the

SANS code as,

Eq (2.8)
new negative bias = biasWeight x old negative bias — input X sampleWeight

In this form, the bias estimation integrator is initialized to a negative average value and the

bias is then added to the sensor input.
G. SUMMARY

Many approaches to the problem of AUV navigation have been devised. New ones
are still emerging and technological improvements are improving current approaches.
Choices range from simple dead reckoning, to systems which use acoustic information
from floating or stationary transponders, to complex systems which use sophisticated IMUs

and GPS receivers combined with Kalman filtering techniques. Most of the described
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approaches can only be used in very specialized applications. Most are also limited by
dependence on previously deployed external means and by some requirement to actively
exchange data with those means. The preferred method of many developers is the acoustic
approach. However, most of these systems have a higher degree of complexity and
dcpendénce on external means than the system implemented in McGhee (95).

It can be seen that high accuracy and other design goals for an inertial navigation
system are. achievable. But clearly, the cost increases rapidly with the degree of
sophistication and the desired precision. From this point of view the NPS Phoenix AUV,
described in Healey (94), together with the SANS navigation system developed by
Bachmann (95), McGhee (95), Steven (96), and Walker (96), promises to‘provide a very
effective means for achievement of clandestine missions in shallow water by a small AUV.

The remainder of this thesis continues an ongoing experimental study pertaining to the
development of the SANS system and associated problems. The current system under
evaluation is of small physical size and relatively low cost. The IMU selected is
representative and has limited accuracy, so additional water-speed and magnetic heading
information is required. Accelerometers are used mainly to derive low frequency attitude
information, and are not utilized for velocity or position estimation for periods of more than
a few seconds.

Previous research on the prototype SANS has produced test results and qualitative
error estimates which indicate that submerged navigation accuracy comparable to GPS
surface navigation is attainable (Bachmann 95). The research goal of this thesis is to refine

the hardware and software configuration to allow more accurate submerged navigation, and
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to develop the SANS into a self contained system capable of being internally or externally

attached to any AUV, delivering regular, accurate, real-time position updates.
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III. SYSTEM HARDWARE CONFIGURATION

A. INTRODUCTION

Bachmann (95) describes the initial prototype in the bngoing development of the
SANS. Walker (96) redesigned the original prototype to consolidate components in one
integrated system. In addition, he presented an evaluation summary of the original
prototype hardware, with particular emphasis on the noise characteristics of the Systron-
Donner MotionPak IMU, which is retained in the SANS.

Figure 3 presents a block diagram for the hardware making up the redesigned SANS.
Figure 4 presents a photograph of the SANS components fully assembled into their testing
configuration. The project box in which the components are currently mounted is an
interim solution. A more permanent, water-tight, streamlined housing is currently in
development.

This configuration is significantly different from the previous prototype presented in
Bachmann (95). The SANS components are no longer separated; all components are
physically located in one self-contained package. When joined with its accompanying
power source (a 12 VDC battery), the complete system can now be strapped-down to a tilt
table or inserted into a towfish for at-sea testing. In its current configuration, the SANS has
its processor and GPS/DGPS components “on-board,” thus no longer requiring the transfer
of sensor data via modem to an external processor or GPS/DGPS receiver. (Bachmann 95,
Walker 96)

The SANS processor is linked with an external processor via a DOS TCP/IP network

connection to allow for human monitoring and interaction during the course of an
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Figure 3: Redesigned SANS Hardware Configuration (Walker 96)

experiment.

This external processor’s only function is to maintain a remote control

session with the SANS processor and receive its attitude and position updates. Unlike the

original SANS proof of concept design presented in Bachmann (95), the SANS now

maintains the capability to on-board process its own data and interface with any other

higher-level processor via a network. This capability will directly enable smooth

incorporation of SANS into the Phoenix architecture. This chapter will summarize the

hardware component capabilities realized in Walker (96).
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Figure 4: SANS Hardware Configuration (Walker 96)
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B. HARDWARE DESCRIPTION

1. Computer
The on-board processor is an Extremely Small Package (E.S.P.) Cyrix 486SLC DX2

50 MHz computer, pictured in Figure 5. Itis specifically designed to offer off-the-shelf
PC—comﬁatible solutions in space and/or power constrained environments. This particular
E.S.P computer possesses a total of eight modules which perform various system tasks.
Together, the processor and its accompanying modules provide a small, low-power system
with system performance comparable to a standard, desk-top type system. (MAXUS 95,

Walker 96)

Figure 5: E.S.P. 486SLC DX2 50 MHz Computer (Walker 96)

The CPU Madule provides the processing capability, the interface for a standard
keyboard, the Flash PROM containing the system BIOS, and memory and bus controller
logic. The DC-DC Power Module provides for all the system power requirements up to a
maximum 35W total output. It accepts an unregulated 12 V DC and provides the required

+5, +12, -12, and -28 V DC to power various system components and optional peripherals
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(ie., an external floppy and hard drive, as is used in the tilt-table test configuration).
(Maxus 95, Walker 96)

The VGA Adapter Module provides the interface to operate an external VGA monitor.
A PC /O Module provides for two Serial ports and one parallel I/O port. It also provides
two type;III PCMCIA sockets which conform to PCMCIA Release 2.01 standard. These
two ports can be used for a variety of compatible devices (i.e., Ethernet Adapter, Modem,
GPS Receiver, etc.). This module was included in the current design to provide additional
secondary storage in the form of PCMCIA SRAM cards, as well as to enable possible
future expansion. An Ethernet Module provides the SANS with an external ethernet
interface. (Maxus 95, Walker 96) |

The Analog to Digital (A/D) Module provides 8 differential or 16 single-ended input
channels at 12-bit resolution. In its current configuration, the A/D module samples only 8
of the available 16 single-ended channels. It features a single-channel maximum sampling
rate of 333 KHz, and an input range from +/- 1.25mV to +/-10V (MAXUS 95). The A/D
modulé provides a 34-pin external connector (J3) to which developers can connect their
input signals. (Walker 96)

The DRAM Module provides for high-speed (70ns) memory storage available in 2, 4,
6, 8,or 16MB capacities (MAXUS 95). This module is to the E.S.P. as a hard disk is to a

standard desk-top PC. (Walker 96)

2.  Inertial Measuring Unit

The inertial navigation component of the SANS is provided by a Systron-Donner

Model MP-GCCCQAAB-100 “MotionPak” inertial sensing unit, pictured in Figure 6. This
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acceleration and angular velocity. It consists of a cluster of three accelerometers and three

self-contained unit provides analog measurements in three orthogonal axes of both linear
“Gyrochip” angular rate sensors. (Walker 96)

|

|

|

Figure 6: Systrdn-Donner Inertial Measuring Unit (Bachmann 95)
3.  GPS/DGPS Receiver Pair
The GPS/DGPS receiver used is the ONCORE 8-channel receiver which incorporates
an imbedded DGPS capability (Oncore 95). The receiver is capable of tracking up to eight
satellites simultaneously. It can provide position accuracy of better than 25 meters
Spherical Error Probable (SEP) without Selective Availability (SA), and 100 meters (SEP)
with SA. Typical Time-To-First-Fix is 18 seconds with a typical reacquisition time of 2.5

seconds (Oncore 95). This receiver meets or exceeds the capabilities of the receiver
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described in Norton (94), which, under normal operating conditions, met the accuracy and
time réquircments of the SANS project. Norton (94) also demonstrated that a receiver with
these qualities will perform well when using an antenna that is located on or near the sea
surface; as is necessary during a clandestine mission. Figure 7 shows the ONCORE GPS/

DGPS receiver used in the SANS project. (Walker 96)

Figure 7: ONCORE GPS/DGPS Receiver (Walker 96)

4. Compass

The compass used in the SANS project is a Precision Navigation model TCM2
Electronic Compass Module. This compass does not employ the mechanical gimbal
technology utilized in the compass described in Bachmann (95), but rather employs a three-
axis magnetometer and a high-performance two-axis tilt sensor in a small form-factor
(TCM2 95). The TCM2 compass is capable of providing readings of pitch, roll, and
surrounding magnetic field strength in addition to heading. The TCM2 provides greater
accuracy by calibrating (performed by the user) for distortion fields in all tilt orientations,
providing an alarm when local magnetic anomalies are present, and giving out-of-range

warnings when the unit is being tilted too far (TCM2 95). (Walker 96)
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5.  Other Components -

The water speed sensor and the depth sensor are those described in Bachmann (95) and
therefore are not depicted in Figure 5. The GPS antenna shown in Figure 5 is an active
antenna, which was selected for its performance and low profile. Because the E.S.P.
Ethernet module’s output media type is AUI, a standard AUI-to-BNC media converter is
employed to allow the use of durable RG-58 coax cable to span the roughly 100m distance
required while pulling the towfish behind a towing vessel. The GPS/DGPS Interface box
is nothing more than an adapter to interface the GPS receiver signal with the serial port of
the E.S.P. computer. (Walker 96)

Based on the analysis given in Walker (96), the 2-pole anti-aliasing Bessel filters used
in Bachmann (95) were replaced with new low-harmonic distortion filters. These come
factory tuned to a user-specified corner frequency of 10 Hz, require no external components
or adjustments, and operate with a dynamic input voltage range from non-critical +/- 5V to
+/-18V power supplies (Frequency Devices 96). To implement these filters into the SANS,
a doubie-sided printed circuit board was designed and machined to receive all six filter
DIPs, as well as three quad op-amp LM324 DIPs configured as voltage-followers to
provide input and output circuit protection. (Walker 96)

To provide for the requisite +/-15 VDC, a DATEL model BWR-15/330-D12 DC-DC
Converter is used to convert the unregulated 12 VDC battery input into regulated +/-15
VDC needed to power the low-pass filter circuits and the IMU. This converter features

over-current and short-circuit protection, a compact form-factor, and high reliability at a
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minimum efficiency of 82%. It employs switching regulator technology, which minimizes
heat géneration and current usage. (DATEL 95, Walker 96)

Physically connecting the IMU, Low-pass Filters/DC-DC Converter PCB, the Analog-
Digital Converter, input power, water speed sensor, and depth sensor, is a 25-strand flat
ribbon -cable. This type of cable was chosen to allow all system components to be easily

interconnected. (Walker 96)

C. SUMMARY

The SANS design described in this chapter is significantly different from that
described in Bachmann (95). The processing capability, along with t'hc GPS/DGPS
receiver, is now on-board the SANS, making it completely self-contained. The only
external link is a DOS ethernet environment to a remote PC -utilized for test monitoring
purposes. The IMU sensor data, after low-pass filtering, along with water speed and depth
data, are converted from analog to digital form, with 12-bit resolution, and then passed to
the Processor. GPS data is passed separately to the processor, which computes updated
attitude and position information to be exported over an ethernet socket. The hardware for
this version of the SANS was chosen to comply as far as possible with the requirements set
forth in Kwak (93). Though there are many possible choices of hardware for each of the
components in Figure 4, trade-offs between accuracy, size, power requirements, and cost
have been considered. As further advances in miniaturization are made, accuracy will
continue to increase while price and size decrease, thus making it easier to meet the
challenges of the SANS baseline requirements. The next chapter of this thesis will describe

the software which supports this hardware configuration.
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IV. SOFTWARE DEVELOPMENT

A. INTRODUCTION

The purpose of the SANS software is to control some of the individual hardware
cdmpo:ncnts, to control input/output interface communications between the components, to
assimilate all of the incoming data, and to implement a twelve state navigation filter. This
chapter will review the software structure inherited from Bachmann (95) and Walker (96),
and will concentrate particularly on the changes made to accommodate the greatly
improved processing speed that Walker (96) made possible.

The code is written in C++ and is designed for use on an IBM-compatible personal
computer using the Borland version 3.1 compiler under DOS 5.0. This project code choice
has proven to complicate the integration of the hardware interfaces. Additionally, the dated
software compiler formats and DOS system calls make the code specific to this application
only and increases the difficulty of troubleshooting or implementing changes. Although
most of the code is transportable to other C++ compiler environments, the interrupt
processing and input/output communications control uses obsolete type declarations and
function calls to the rapidly aging operating system.

This limitation could easily be resolved in future project work in either of two ways.
Utilizing a Borland version 5.0 compiler with updated communications code would allow
continued use of a traditional IBM-compatible environment. Converting those sections of
code to be compatible with Unix environment compilers could also be implemented on the

PC under the Linux operating environment.
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The software design instantiates objects corresponding either to the individual
hardwérc components or to the purpose accomplished, in a straightforward manner. The
class and object relationships are shown in Figure 8. All of the concrete classes depicted
are specifically instantiated by the class instance above them, in descending chronological
order a; the program is initiated. All are instantiated as a single object, named as shown.
There is no need in this application for extensive polymorphism. The serialPortClass and
bufferClass classes are abstract parent classes containing the common definitions and
functions from which the specific compassPort, compassBuffer, gpsPort, and gpsBuffer
classes inherit. The stampedSample object, defined in the main program’s header file,
contains the latest update of all pertinent navigation information. Therefore, it is the object
which is passed between the class objects. Other objects which support the calculations are
structures to hold such things as position in the various formats. For simplicity, they are
not shown in Figure 8.

This architecture represents a substantial change from the original design, while
retaining most of the functionality. As the project evolved, it was determined that much of
the flexibility originally envisioned did not prove to be necessary. This includes features
such as the capability to instantiate an array of serial ports, or a need for a wide variety of
buffers for the data received through the serial ports.

The above features were included in the original object oriented design approach, but
have been streamlined to a more specific, less complicated structure. Specifically, the
portbank and bytebuffer classes have been removed. Only two serial ports are required, for

the compass and gps interfaces, respectively. The serial port code was modified, and the
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Main
————— inheritance
E:l concrete class stampedSample
instantiates
© abstract class “nav1” (nav data struct,
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navigatorClass
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gpsl
insClass gpsClass
serialPortClass
private member
113 Saml” / \
/\
/ \ global b
samplerClass / \ &0 “o or;ﬁ? ot
/ public \
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“a2d1” “compl” \
/ \
/ \
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/ \
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L‘portz’, @
y Y
compassPortClass /N gpsPortClass
7/ N\
< \
private member y 7 public buffers > private member
“headings” Y N “messages”’
compBufferClass gpsBufferClass

Figure 8: SANS Code Classes and Objects
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buffered serial port class has been specialized to a compassPort class and a gpsPort class,
while fetaining the same basic function. This resulted in the compassPort and gpsPort
classes representing a kind of serial port, similar to the way the compBuffer and gpsBuffer
classes already were a kind of bytebuffer and continue to be a kind of buffer. This
simplified the class membership hierarchy and variable passing across class lines. The
specific nature of the application made efficiency a higher priority than general
applicability.

Other improvements included the addition of configuration files containing such data
as gain settings to allow repeated testing without the necessisity of recompiling after every
change. The increased processing speed overwhelmed the DOS operating -system’s ability
to print information to the user’s screen in real time, so an interval was added that reduced
screen output to a more usable human rate that also reduced input/output conflicts. All
screen output and data writing to files were consolidated to single points to further simplify
exchanges. And finally, some error checking was added to ensure such things as proper A/

D converter channel initialization.

B. SOFTWARE FILTER

The purpose of the software filter is to utilize IMU, heading, and water-speed
information to implement an INS, and then to integrate this with GPS information. This
results in a single system which can produce continuously accurate navigational
information in real time. The filter mitigates the effects of sensor inaccuracies (inherent,
electronic noise, and transitory), ocean current (the largest single factor affecting AUV

navigation), dynamic model uncertainty, measurement e€rrors, and calculation errors.
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Kalman filtering techniques are-used to implement the INS using DGPS fixes as “error-free
data”. 'This allows periodic reinitialization of the INS to correct accumulated drift and
development of error biases. All sensor data is logged in raw form for post-mission
processing. (Bachmann 96)

Figl;rc 9 is a data flow diagram for the SANS software filter. On this diagram, R
represents a rotation matrix and 7' is a body rate to Euler rate transformation matrix. Table
2 gives the state variables for the navigation filter. The twelve state variablés include the
outputs of the three integrator blocks, the estimated current in north and east direction

components, and the bias estimates for the angular rate readings. (Bachmann 96)

Euler Angles @ .0 .y
North & East Velocity Xe Y.
North & East Position X, Y,
Apparent Current %o Y.
Angular Rate Bias Estimates Py s b

TABLE 2: State Variables of the Kalman Filter (Bachmann 96)

Ten of the state components are “continuous time”: the three Euler angles (®,6,v ),
two horizontal velocities (x,, y,), two horizontal positions (x, ,y, ), and three angular rate

bias estimates. Continuous time integration is approximated by numerical integration,
making these “continuous time” components discrete time values in the reality of the digital
filter. This is necessary due to the minimum integration sampling time limitation of the

computer and A/D hardware. The apparent ocean current values (i y.) are updated

aperiodically as a result of both diving and wave action, which produce inherently discrete
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gps fix information. This discrete event dynamic system is well suited to application of

Kalman filter theory to obtain optimal time-varying values for the gain matrices K; in

Figure 9. However, at the time of writing this thesis, there are inadequate statistics on
DGPS noise and AUV maneuvering as needed by this approach. Therefore, bandwidth
and steady-state error considerations were used to compute initial constant gains
(Bachmann 95, McGhee 95), which were subsequently adjusted based on the results of
experimental studies. (Bachmann 96)

One area for future project work involves obtaining the necessary statistical data
needed for refinement of the aperiodic, gps update portion of the filter. The optimum reset
weight for application to the final integrator block could then be determined. Additionally,

application of the gps fix interval (1/At) just prior to X, is under consideration for removal.

The principal difference between the current filter and that described in Bachmann
(95) regards the point in the filter process at which the apparent current error correction is
made. The previous filter added the apparent current to the water speed. The difference
between this value and the estimated north and east velocities was input to the north and
east accelerations with a gain k,. Poor initial sea test results in Bachmann (95) indicated
this approach was possibly underdamped or even unstable. The present approach is to
apply the apparent current as feedback to the output of the third integrator block, prior to
input to the final, position integrator. (Bachmann 96)

The continuous state portion of Figure 9 shows that the Euler angle and linear velocity
outputs are fed back to the corresponding integrator inputs. Thus, with diagonal gain

matrices K,, K,, and K, each of these integrators is in fact a low pass filter for its

respective inputs (Bachmann 96). Figure 10 isolates one feedback loop to help illustrate
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this relationship. The integrator block is shown using s-domain (Laplace transform)
notatioﬁ. This approach prevents unlimited state estimate growth caused by unmodeled
bias errors in state derivative inputs to the integrators (Bachmann 96). Complementary,
low frequency information from an independent source (accelerometers) is also furnished
to each ‘integrator to correct for long-term decay of the state estimates resulting from this
feedback (McGhee 95). The low frequency information sources include attitude estimates

from accelerations sensed by the accelerometers (%, ,7,,%,), the magnetic compass

readings (¥, ), and water speed (u,). (Bachmann 96)

angle estimation

from A
accelerometer + -
estimated
angular + Euler
rate sensor 1 angle
— >
S
+

Figure 10: Complementary Filter Feedback Loop for Euler Angle Estimation

The IMU acceleration readings require correction in addition to filtering. The
accelerometer data is utilized as an inclinometer, to determine how much of the specific
force felt along each axis is due to gravity. Computed gravity is then subtracted from
specific force readings of the accelerometers (%, j %), to transform them into

accelerations, prior to rotation into earth-fixed coordinate values (%, , 7, ,z). (Bachmann
96)
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The rate sensor input in Figure 10 is added to accelerometer attitude estimates after the
gain métrix is applied. This signal already has the estimated bias removed utilizing the low
pass filter methodology derived in Chapter II and resulting in Equation 2.7. New biases are
calculated on each filter cycle by the calculateBiasCorrections function of the insClass,
and are a-pplied to new navigational state information in the applyBiasCorrections function.
Filter response to example and real world inputs will be discussed in detail in Chapter VI,

System Testing.

C. IMPLEMENTATION DESCRIPTION

Figure 11 shows the revised data flow between software objects. The tasks performed
by the SANS software can be divided into two basic categories. The primary tasks are
related tobcalculating the current position and other navigational state information. This
includes processing incoming GPS data, IMU data, water-speed, and heading information,
and integrating all of this information through the navigational filter to obtain a fix. These
tasks are performed by the gpsClass, insClass, and Navigator software objects respectively.
The secondary tasks involve hardware interfacing, communications, data filtering and unit
conversion. These basic but crucial tasks are handled by the Sampler, Buffer, compBuffer,
gpsBuffer, A2D, Serial Port, compassPort, and gpsPort software objects. The main
program serves to drive the other objects by continually querying the navigator for position
updates and performs output to the user screen and data files from a single location. Real
time navigation source code is provided in Appendix A. Supporting serial communication

and other administrative function code is provided in Appendix B. The following summary
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Figure 11: SANS Data Flow Between Software Objects
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of the source code is presented bottom-up to illustrate construction of the navigation state

from the individual data elements. (Bachmann 95)

1. Compass Data

The _éompassClass contains the code and member objects which implement reception
of compass messages in a design similar to, with the exception of specific hardware details,
the gpsClass. Private member compassPort instantiates a kind of serialPortClass object to
allow data communication on COM2. CompassPort in turn has private member
compBufferClass which provides a kind of bufferClass structure for temporary storage of
incoming compass messages. Figure 12 illustrates the comqufferClass and
gpsBufferClass data structures. The compassClass therefore contains code to
communicate with the serial port, as well as to check the “checksum’” and header of each
compass message received. The samplerClass object instantiates compassClass object
“compl” and periodically interrogates compl to empty the buffer of information.

(Bachmann 95, Walker 96)

2. GPS Data

The gpsClass, as previously mentioned, is similar in design to the compassClass, with
differences driven by the different message formats, and it utilizes COMI. It obtains GPS
position messages in the Motorola proprietary format (@@Ea). Before the code
recognizes a GPS message as being valid, the message must pass three conditions; 1) it
must have a valid checksum, 2) the fix must be based on at least 4 satellites, and 3) the

differential bit in the message must be set (i.e., the fix must have the differential correction
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applied to it). The navigatorClass instantiates gpsClass object “gps1” and interrogates gpsl

to empty its buffer directly. (Bachmann 95, Walker 96)

compBuffer “compData” / gpsBuffer “GPSdata”
‘rawMessage’
byte . . . . 120 / 152
__ _ (twiceaslongasmessageineachcase) _ _ _ _ _ _ _ _ _ __
‘ compBuffer “headings” gpsBuffer “messages”
last current
1 L/
! compData / GPSdata
TN |
v putplace v block
8 4

Figure 12: Buffer Data Structures

3. Inertial Sensor Data

Inertial sensor data passes through the new filter circuit board. From there, it is input

directly to the A/D converter module in the processor.

a A/D

The A/D module came with demonstration T source code provided by the unit
manufacturer. Walker (96) modified the demo code and converted it to C++ for the SANS
application. The a2dClass provides all of the requisite software operation for the A/D
module in the E.S.P. computer, which is completely controlled through software. Control

is maintained through the manipulation of the A/D Control Register and the A/D Status
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Register. These registers are manipulated by writing to and reading from specific memory
addressés. The a2dClass is designed with some degree of user flexibility. For instance, the
user can choose between one of two base addresses. (Walker 96)

-The SANS software only uses a few of the member functions in accomplishing
its missioh. Those member functions not directly utilized in this particular application are
useful for troubleshooting, or allow a variety of options for specific applications. The
following general discussion explains how the A/D module works in the SANS application.

(Walker 96)

The A/D provides 12 bits of resolution, or 2'2 = 4096 discrete quantization
levels. The A/D module may be employed in differential mode or single-ended mode. The
SANS application employs the A2D in the single-ended mode of operation. The A2D
samples the dual-ended swing of the IMU sensor signals, and represents these voltages as
a digital value in the range 0 - 4095. A general A/D conversion table is provided as Table

3 to further illustrate how the sensor voltages are mapped over to their digital equivalents.

(Walker 96)
Sensor DC Voltage Converted Equivalent
+10 =Volts 4095
+5 Volts 3071
0 Volts 2047
-5 Volts 1023
-10 Volts 0

TABLE 3: A2D DC-to-Digital Conversion Mapping (Walker 96)
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When an a2dClass object is instantiated, the class constructor sets several default
data mémber values, and then reads the A/D configuration file A2D.cfg. This
configuration file provides simple user update of A/D module operation without
recompiling the source code. The constructor initializes the system addresses, then
initializc's the A/D hardware using those variables that were loaded upon reading the
configuration file. The a2dClass object is instantiated by the samplerClass object as
“a2d1”. Itis a private data member of the samplerClass. (Walker 96)

The A/D module is set into operation by a call to the samplerClass function
initSampler(). It utilizes a2dClass member functions to program the sequencer and tell it
which channels to sample and in what order, resets the A/D First-In-First.-Out (FIFO) to
enable it to receive data, and then toggles the trigger bit in the A/D Control Register from

a low to a high, which starts the A/D into operation. (Walker 96)

4.  Sampler

The samplerClass object prepares raw IMU, heading, and water speed data for use by
the INS. This preparation includes simple filtering, unit conversion, and time stamping.
Figure 13 provides a summary of the principal class members and functions, with
psuedocode descriptions of the principal methods. The samplerClass interface consists of
a single method (getSample) which controls the data formatting and returns a formatted
sample if valid raw data is available, and a negative response otherwise. (Bachmann 95)

Figure 14 provides an illustration of the process of obtaining samples from the A/D.
During SANS operation, the samplerClass member function readSamples() is called

repeatedly to retrieve inertial data from the A/D FIFO. It first checks to ensure that the
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\ /
\ v /
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* ‘ : -- check a2d FIFO overflow
getSample() --! empty FIFO:
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Figure 13: samplerClass Summary
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Figure 14: samplerClass Data Flow
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FIFO is not FULL. If the FIFO ever gets filled without being immediately emptied, data
will cohtinue to push into the FIFO. There is no room for this additional data and all
information from that point on will be lost. Preventing the FIFO from overflowing is
critical for proper SANS operation. If this check is ever true, the SANS software has been
rcwn'ttcr; to reinitialize the a2d and continue to navigate. One full FIFO plus the data
received in the time since the overflow will be discarded. This will result in a very short
period of lost data with a minimal impact on navigation accuracy.

To prevent FIFO overflow, one need only be mindful of the rate at which the A/D is
sampling its inputs and be sure the A/D FIFO is emptied at the same rate or faster. If the
FIFO does have data in it, this data is emptied from the FIFO and storéd in a doubly-
subscripted array with 8 rows and 1000 columns to coincide with storing up to 1000, 8
channel samples of sensor data. This type of data structure is used to temporarily store the

data to enable access to a history of samples. Figure 15 presents a model of this array.

(Walker 96)

X-acc X-acc

y-acc y-acc

Z-acc Z-acc

X-ang X-ang

y-ang y-ang

Z-ang Z-ang

waterspeed [waterspeed
depth depth

0 I . eoe e e .. 999

Sample Number/Array Index
Figure 15: Model of the A2D Sample Array (Walker 96)
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The first action taken by the Sampler when a packet is received is to time stamp it.
Since tﬁe time difference between the eight samples contained in a single message packet
is relatively small, the Sampler object then respectively averages the eight corresponding
data variables contained in a packet. As the samples are emptied from the FIFO, the
variable“‘timeCounter” is incremented once for every 8 samples. This variable is then
multiplied by the sample period to calculate the “deltaT”, or the time between adjacent
samples. The samplerClass code then avefages over all the samples received since the last
sample was taken from this array. The averaged measurements which result represent a
simple low-pass filtering of the samples. This has the effect of filtering out small
fluctuations in the data. (Bachmann 95, Walker 96) |

The integers contained in a sample are digital measurements of analog voltages output
by the SANS sensors. Once these eight filtered measurements are obtained they are
converted from voltages to units which are usable by the INS object (i.e., feet and radians).
Finally, each of the measurements is checked to ensure that it is within the limits of the
sensor. from which it came. If any values fall outside the capabilities of the sensor from

which it came, the entire packet is considered invalid and discarded. (Bachmann 95)

5. INS

The INS class implements the SANS inertial navigation. It is the most complex class
in the software. It has been changed very little as the project has evolved. Figure 16
provides a summary of the principal member objects and functions which constitute the
INS methods. The interface consists of three public methods. Each is directly involved in

the implementation of the twelve-state Kalman filter. The primary method (insPosition)
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I
getSample() \ initSampler()) | calculateBiasCorrection()
insPosition correctPosition
- getSample(newSample) - correct for new day if nec.
-applyBiasCorrections(newSample) - deltaT = positTime - lastGPStime
- transformBodyRates () (to euler rates) - calculate INS error
- calculate estimated pitch/roll/yaw rates - Reinit posture to gps fix
- integrate estimated angular rate to - Add Again filtered error to to
obtain angles previous errors
- transform accels and water speed to - update time
earth coordinates
-calculate, apply waterSpeed Correction Admin Functions
. . .. - transformAccels (body to earth,
- integrate accels to obtain velocities eliminate g from z)
- integrate velocities to obtain posture - transformWaterSpeed(earth coord)
- save estimated positions -transformBodyRates(body to earth,
Euler)
- buildBodyRateMatrix
- buildRotationMatrix
- postimultiplication operator
- readInsConfig

Figure 16: insClass Summary
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combines all sensor information and uses the Kalman filter to produce a dead reckoning
position- estimate. The other methods support the primary method by performing one-time
or periodic operations. Initialization of the INS is performed by the insSetUp method,
which sets the INS posture at the grid coordinate origin, sets an initial heading and speed,
and marl;s the beginning of the first integration intervals. The last public method of the
class (correctPosition) inputs GPS information to reinitialize the INS position while
determining a current and error correction bias. The INS class instantiates é samplerClass

object “sam1”, from which it obtains all sensor data except for GPS position fixes.

(Bachmann 95)

6. Navigator

The navigatorClass acts as coordinator of all navigational information. As such it
determines which source is currently providing the best information, converts various
position formats from one format to another, and instantiates the GPS and INS objects
“gpsl’f and “ins1”. Like the insClass, this portion of the code has been changed very little
as the project has evolved. Figure 17 provides a summary of the class members and
functions that provide the principal navigation methods. The interface to the object is made
up of two public methods. (Bachmann 95)

The main program instantiates navigatorClass object “nav1”. The first method of the
navigatorClass (initializeNavigator), initializes nav1, preparing it to begin providing the
current position upon request. This method obtains an initial GPS fix for use as the origin
of the grid used by the INS object to specify positions, and calls the initialization method

of the INS. (Bachmann 95)
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Main

-- instantiates “nav1”
-- initializes navigator

-- prints initial posit,
screen set up

-- continuous loop:
while(T) fix received
= navl.navPosit(curLoc)
if so, print and file

l

Navigator

'

initializeNav()

-- loops for gps fix, calling
gpsPosition()

-- saves initial fix as the origin

-- passes origin time to
insLinsSetUp()

stampedSample (nav structure)

main - ‘curLoc¢’ nav - ‘posit’
ins & sam - ‘newSample’

gps/ins flags

latLongPosition ‘navLatLong’

grid ‘est’ (ins est. posit.)

GPSdata ‘satPosition’

float rawSample[8] (pre-sampler)
[0] xacceleration
[11 yacceleration
[2] zacceleration
[31 phi (roll)
[4] theta (pitch)
[5]  psi(yaw)
[6]  water speed
[7] heading

double sample[11] (sampler converted)

double deltaT

float bias[3]

float current[3]

'

insSetUp()

/ N\

initSampler() getSample()

calculateBiasCorrections()| [initCompass() |

navPosit()
-- get gps, ins fixes
both?
gps posit-->
insl.correctPosition()
ins only?
update ins posit

gps only?

gps posit-->
insl.correctPosition()
new ins posit = gps posit

Figure 17: Navigation Class and Initialization Summary
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The second navigator method (navPosit) drives both the GPS and INS objects, and
providéé the navigator’s best estimate of current position in hours, minutes, seconds and
milliseconds of latitude and longitude. Each time the method is invoked, it interfaces with
the GPS -and INS objects to determine if none, one, or both have an updated estimate of the
current [;osition. If no update is available, the navigator returns a negative reply indicating
that it can not provide a position update. If only INS information is available, it is returned
as the current estimated position. Whenever GPS information is available, it overrides the
INS estimate of position. GPS information is also passed to the INS object as a reference
for reinitialization and error estimation purposes. (Bachmann 95)

The navigator deals with three different position formats. GPS positions from the
Motoroia receiver are initially obtained entirely as latitude/longitude in milliseconds. INS
positions are expressed in x-y grid coordinates based upon a navigator-stored origin. GPS
positions must be converted to grid coordinates prior to utilization by the INS. The
positions produced by the navigator are expressed in hours, minutes and seconds of latitude
and loﬁgitude. A total of four methods are used to convert from one format to another.

Figure 18 illustrates uses and conversions of the different position formats. (Bachmann 95)

7.  Communication Objects

The bufferClass and serialPortClass objects are abstract parent classes from which
specific instances are instantiated for the compassClass and gpsClass, respectively. As
such, they contain the common class members and functions to support the routine but

essential tasks of serial port communication and buffering received data.
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USER

Positions expressed in
hours, minutes, seconds
and milliseconds of
latitude and longitude.

NAVIGATOR

Positions expressed in
milliseconds of latitude
and longitude

Positions expressed
in grid coordinates

Figure 18: Navigation Position Format Utilization (Bachmann 95)

D. SUMMARY

The SANS software is designed to produce continuously accurate navigational
information in real time. While submerged, IMU, heading and water-speed information are
processed by the SANS Inertial Navigation System (INS) to produce a dead reckoning
position estimation. This is integrated with DGPS information obtained during aperiodic
surfacings using Kalman filtering techniques. The DGPS information is used to reset the
position of the INS. It is also used to generate ar: apparent current vector to correct future

INS position estimates. (Bachmann 95)
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The software was implemented using object oriented paradigms. It was written in
Bor]and version 3.1, C** for use on an IBM-compatible processor. The primary tasks of the
software are estimation of current position and communication. The former is handled by
the Navigator, Sampler, a2d, Compass, INS, and GPS classes. The later is accomplished by
the bufferClass, compBufferClass, gpsBufferClass, serialPortClass, compassPortClass,

and gpsPortClass objects. (Bachmann 95)

The next chapter of this thesis will present the testing methodology and results for the

tilt-table tests of the operational code.
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V. SYSTEM TESTING

A. INTRODUCTION

This chapter presents both the testing methodology and the experimental results of the
tilt-table :testing used to determine the functionality and accuracy of the SANS attitude
estimation. These tests focus on the operational C++ code, on determination of optimal
gain settings for the attitude portion of the navigation filter, and on evaluation of the
hardware accuracy and noise characteristics in a controlled environment. Factors which

control attitude response include the k, gain value, the bias weight (biasWght), sample

weight (sampleWght), and the x and y axis accelerometer scale factors.

* As areminder from Chapter II, the rate sensor input in Figure 11 has the estimated bias
removed utilizing the low pass filter methodology resulting in Equation 2.7. Further
background on low pass filter bias response is provided below in order to show the

reasoning behind the testing methodology and to help explain the results.

B. LOW PASS FILTER BIAS RESPONSE

Applying Mason’s formula to the signal-flow graph of Figure 2 from Chapter 2, in the
s (Laplace transform) domain gives the transfer function of a low pass filter as

(Eq 5.1)
1
s _ U(S)gactual _ L{output} _ Y(s)
l+ts 1+1s U(s) L{input} U(s)

G(s) =

commanded

A typical tilt-table test of the attitude and angular rate sensors involves a step input of

a constant roll rate to a commanded roll angle, for example, 10 degrees per second to an
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angle of 45 degrees, resulfing in'a 4.5 second input. The filter bias estimation response can

be determined from x(t) = u(t), leading, in the s domain, to X(s) = U(s) = 1/s, and

1 1
bt 1 -
A = = = —— E .
Y(s) = G(5)X(s) s ST +719) S(S+ l) (Eq 5.2)
1+71s T
Thus
_! _t
y(t) = %’r[l—e T] =l-e" (Eq 5.3)
and
. 1
y(t) = % - (Eq54)

which represents the bias filter output slope. Thus, the simplified response of the bias
estimation to the initial roll input is an exponential rise beginning at the instant the input is
initiated. After one time constant (T), 63 percent of the input value has been reached. The
output value gradually approaches the limit of the input as time continues. This is

graphically represented in Figure 19.

100 ——
output

6.3 (since 1/e ~ .37)

P

20 20+7 time

Figure 19: Bias Filter Response to a Roll Rate Step Input of 10°/sec
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The developed testing procedure for the SANS allows approximately 20 seconds of
initial stabilization time for the components and filter to “steady out”. This was followed
by an initial roll input, a similar stabilization period after the platform had reached the
commanded angle, and then return to the zero position at the same rate. Typically, two of
these cycles were performed under each testing condition.

To shift a unit step to start at 20 seconds

0  for t<20
y(t) = _(£-20) (Eq5.5)
T

1-e for 220

The example input pulse of 4.5 seconds can be written

x(8) = 10(u(t-20) —u(t-24.5)) ' (Eq 5.6)
giving
(0 for t<20
=20
10(1 —e " } for  20<r<245
y(£) = 4 (Eq 5.7)
' =20 (t-245
10 Ll_e T j—(l—e T ] for 245<t
Since
2
¢ = l+x++... (Eq 5.8)
2!
then, for small x
(Eq 5.9)

t-20 t—20
= — — || = —_— <t<
(1) 10[1 (1 1000)] 10(1000) for  20<t<245
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for a time constant of 1000 seconds. This produces the first part of the response illustrated

in Figure 20.
10_ 10
.10-——‘ slope= = = 1500 01
05— - - — = = — - ——— — —— —— —— -
—
| { >
20 24.5 ' time

Figure 20: Estimated Short Term Bias Response to a 45 Roll Completed in 4.5
Seconds

For times equal to or greater than 24.5,
(Eq 5.10)

t—24.5 t—24.5
t—20 t-24.5 _( 1000 ) _( 1000 )
y() =10 000 ~ 1000 = (.045e

This result is shown in Figure 21 on a longer scale to illustrate the gradual correction

over time.

0.1 ——

20 245 = 1000

Figure 21: Estimated Long Term Bias Response to a 45° Roll Completed in 4.5
Seconds

Taken together, Figures 20 and 21 illustrate that the bias response of a low pass filter

to a time-shifted step roll input is a rapid rise to the calculated value, followed over the
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Jength of the relaxation time constant by a gradual correction to zero. Combining this
rcsponsé with the complementary filter design, incorporated as depicted in Figure 11,
results in the time domain filter response including a time lag effect which barely sees
minor transients. The initial response to a step change in attitude comes almost entirely
from the- angular rate sensors. Over time, input from the accelerometers takes over and
compensates exactly for the decay of the rate sensors. The nature of this response
influenced development of the testing methodology and is directly reflected in the

following testing results.

C. FILTER TESTING METHODOLOGY
The tilt-table testing methodology has evolved through Bachmann (95) and Walker

(96). Although basically unchanged from the method used in Walker (96), it is presented
here in a standardized, sequential order with extensive background for the first time. It is
also presented at Appendix D in a checklist format. The testing methodology is designed
to separate the complementary effects of the filter and treat them individually before
evaluating the entire filter process.

The SANS is mounted to the tilt-table described in (Bachmann 96) for a series of pitch
and roll tests. If the unit is carefully leveled prior to testing, the actual commanded attitudes
are extremely accurate in reference to real-world pitch and roll angles. Relative angle
excursions are always extremely accurate on the tilt-table. The amount of the actual angle
excursion is the important value for the testing. In other words, a valid 45 degree pitch from
a beginning baseline of 2 degrees to 47 degrees, for example, is a successful test for the

IMU. Once calibrated and installed in Phoenix, the SANS becomes the reference for
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attitude determination. That is; if roll and pitch SANS outputs are zero, then this defines

level oﬁcntaﬁon for Phoenix.

The general procedure is to allow a 15 to 20 second period for the sensors to initialize
and stabilize after the filter code begins execution. This is followed by a pitch or roll
excursio;l to 45 degrees at various commanded rates (consistent during each individual
run). The unit is then tilted back to the zero position, followed by a roll excursion in the
opposite direction, and then finally back again to zero. Each movement is followed by the
stabilization period to allow observation of filter effects. Those cases where the excursions
were both in the same direction reflected physical limitations as to how the SANS box
could be mounted on the tilt-table. Maximum tilt rate was 90 degrees per second, but tests
were normally cohductcd at either 10 or 45 degrees per second. These conditions are much
more severe than those encountered by the SANS in the real world, with the possible
exception of surfaced operations in a very heavy sea state, and therefore represent worst
case performance for the filter.

In order to determine the rate sensor bias value, X, is set to zero to prevent

accelerometer inputs from effecting the results. Therefore, only the high frequency angular
rate and bias get to the first integrator. Any errors in attitude can then be attributed to the
bias and scale factor. The appropriate initial angular rate scale factor (qScale for pitch, etc.)
is then determined by taking the commanded tilt-table angles as truth. The scale factor
adjusts the output of the IMU to the actual tilt results. Starting with a baseline of 1.0, it is

possible to continuously apply the ratio of indicated and actual angles to the current setting

in order to scale it to a proper value. For example, if the SANS says the unit pitched to 41°




when the actual pitch was 45°, the new scale factor is increased to 45/41 multiplied by the
old scaie factor.

The initial bias weight (biasWght) is chosen through a combination of project
experience and filter theory considerations. Extensive simulation and tilt-table
experim;ents can then refine the proper values prior to at-sea testing.

After setting the gain weight to some value other than zero, multiple test runs can
refine the proper settings. ’f‘he accelerometer scale factors are then adjusted in the same
manner as the angular rate scale factors if indications show that the combined inputs result
in inaccurate angle excursions. A complete tuning of one axis may take an extensive set of

alternating adjustments to the various factors, as illustrated in the testing results provided.

D. IMU TEST RESULTS

The testing results included here utilized the current hardware configuration, along
with the original code from Bachmann (95) only slightly modified to improve input/output
rates. This resulted in update rates of approximately 18 Hz. The complete code revision
described in‘ this thesis resulted in an increased update rate of 40 Hz, making the filter real-
time capable for the first time. That update rate unfortunately overwhelms the internal data
storage of the SANS in the current configuration, so further testing will have to either be
done at reduced rates or be conducted after new, larger storage cards (now available) have
been obtained.

Figure 22 shows the initial pitch test run. Both k', values are set to 0.0, isolating the

angle-rate input from the accelerometer input. Pitch was at a rate of 10 degrees per second.
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The gScale value had already been adjusted to 4.02 to reflect 45° of pitch. When compared
to previous project results (see Walker (96) and Bachmann (95)), the faster update rate
significantly reduced initial overshoot of the final pitch angles. The stabilization periods
following each pitch show that the effects of the filter cancel in that the initial slight
overshoc;ts gradually return to the proper value, regardless of pitch direction, as expected
from the earlier explanation. In fact, for the pitch which is initiated at approximately 20

seconds, if no other pitch excursions occurred, the angle value would become essentially

45° by 1020 seconds (20 + 7). The stabilization period is only a small fraction of the time
constant, and the bias is subtracted from each new sample. Thus, the accumulated bias
from the excursion is only partially corrected for, with a slope in the direction of the

“correct” value.

Figure 23 shows a second pitch test with all values unchanged with the exception of T,
which increased from 1000 to 5000. Ideally, the filter should be initialized for a period of
one time constant, however, the shorter stabilization periods here are sufficient to
demonstrate filter behavior. The stabilization periods of Figure 23 show a flatter slope than
those of Figure 22. This reduced slope shows that increasing T minimizes the accumulated

rate bias.

Turning to the roll axis, Figure 24 shows the initial roll test. The time constant T has
been reset to 1000 seconds. The roll rate is still 10 degrees per second and the initial scale
factor (pScale) was set to be 4.01. The nearly identical scale factors show the IMU to be

very consistent between axis. Otherwise, the roll results are similar to the pitch results.
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Figure 22: Initial Pitch Test, k, = 0.0, T = 1000, gScale = 4.02, 10°/sec
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Figure 23: Pitch Test, x, = 0.0, t = 5000, gScale = 4.02, 10°/sec
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Figure 24: Initial Roll Test, x, = 0.0, T = 1000, pScale = 4.01, 10°/sec

The roll rate was increased to 40 degrees per second for the second roll test. This
becomes obvious with the more widely separated fix dots on the graph in Figure 25. Since
the update may occur at any point during it’s cycle (worst case immediately before the
commanded angle is reached), more overshoot is possible, and in fact occurs. This leads
to a more pronounced return effect during the stabilization periods.

The third roll test, shown at Figure 26, has identical settings to the previous test with
the exception of Kk, , which has been set to 0.01 to allow an accelerometer effect to return.
This is what causes the wander in roll angle seen in the initial stabilization period. This
effect is also present in the stabilization following the initial roll, but is less pronounced

after the return to the zero position as the time grows closer to the initial time constant.
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Figure 25: Roll Test: &, = 0.0, T = 1000, pScale = 4.01, 40 °/sec

10 I 1 T T 1 1 T
"roll5.tst" «
-5} * * ]
- *
L3
-10 b N g
’15 o * .
- ¢
=26 t+ i
& >
25 b * N 1
*
.
=30 - . i ]
5 4
'35 r >3 * T
. 5
-40 M 4
_45 e L. 1 1 1 L ]
0 20 40 60 80 100 120 140 160

Figure 26: Roll Test: &, = 0.01, T = 1000, pScale = 4.01, 40 °/ sec
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Increasing K, to 0.05 and reducing T to 200 produces the results of Figure 27. These
stabilizétion periods are characterized by more aggressive corrections to the “proper”
angle. Both Figure 26 and 27 show the importance of increasing the filter update rate from
the 18 Hz rate shown to the 40 Hz rate achieved in this thesis to prevent undershoot and
overshoot due to sampling effects. The results of Figure 27 are essentially duplicated,

although at a reduced roll rate of 10 degrees per second, in Figure 28.
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Figure 27: Roll Test: K, = 0.05, T = 200, pScale = 4.01, 40 °/sec

The following roll test, Figure 29, shows the effect of varying the accelerometer scale

factor (yAccelScale) from 1.34 to 1.405. The stabilization periods are flatter with respect
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to the “correct” angle and the accelerometer effects less pronounced when compared to
Figure 28.
Figure 30 returns the time constant to 1000 seconds while also doubling k. It was
determinéd at this point that the yAccelScale value had been adjusted too high. Prior to the
next roll test (Figure 31), it was adjusted by (45/48) * 1.405 since the unit computed an
initial roll of 48° vice 45. Figure 31 shows a flatter response, but there is still some
overshoot. The pScale was adjusted again for the test shown in Figure 32 by the amount
(45/46) * 4.01. Finally, the yAccelScale was adjusted once again by (45/44) * 1.317 to

produce the output in Figure 33. This sequence clearly illustrates the alternating, gradually
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.

finer tuning approach which must be taken in order to tune a filter of this complexity.
Figure 33 clearly has the least overshoot/undershoot and the flattest stabilization periods
while exhibiting a proper correction tendency before the next input is encountered.
Figures 34 and 35 are provided to illustrate filter response at the more radical rates of
45°/sec a-nd 90°/sec. Although there is slightly more overshoot, as expected, even at these
extremes, the filter behaves predictably and well within acceptable accﬁacy for the

Phoenix or other small scale portable navigation applications.
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Figure 33: Roll Test: k, = 0.1, t = 1000, yAccelScale = 1.347, 10°/sec
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E. SUMMARY

This chapter has provided a methodology for dynamic tilt-table testing with rationale
and illustrative experimental results. Taken together, the results graphically show that the
SANS design, code architecture, and filter implementation are performing as expected.
Additior{ally, while room for some improvement remains, the sensor/filter combination is
easily accurate enough to meet both the Phoenix AUV and other potential small scale
portable navigation applications. It is important in reviewing the results presented to
remember that these testing conditions are much more severe than are likely to be
encountered in actual SANS operation except when surfaced in significant sea states.
Other independent testing of the SANS approach (Henault 96) suggeéts that attitude
estimation to an accuracy of a few tenths of degrees should be realized in normal operating
conditions.

Addition of a math coprocessor to the E.S.P CPU module has increased performance
dramatically and decreased the undersampling seen, as expected by Walker (96).
Accompanying code revisions have resulted in a legitimate real-time navigation filter
which is expected to improve accuracy even further. The final chapter of this thesis will

review conclusions reached and recommendations for future project work.
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VI. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE
WORK

A. CONCLUSIONS

The research topics addressed by this thesis were: 1) evaluate the hardware and
software architecture of the SANS, 2) develop a calibration procedure for the SANS
navigation filter, 3) evaluate the specific performance of the SANS navigation filter, and 4)
evaluate the SANS hardware and software architecture for installation in the Phoenix AUV.
Each incremental step in the SANS project work has provided evolutionary improvement
in capability and performance. Walker (96) built on the Bachmann (95) hardware
prototype and provided the cmcnt hardware capability. This thesis has improved on the
code architecture of Bachmann (95) to accommodate the greatly increased processing
speeds resulting from the Walker (96) hardware configuration and addition of a math
COpPTOCESSOr.

A basic tilt-table testing methodology was utilized for an overall evaluation of the
SANS attitude estimation pursuant to addressing the research issues. Combining the
procedures used in Walker (96) and Bachmann (95) to produce a specific filter calibration
procedure sirhultaneously addressed all of the topics in a general manner. The results
showed that the filter is working correctly and as expected from the supporting theory.
Furthermore, the real-time capability now makes SANS a bonafide option as a new
navigation solution for Phoenix or alternative small scale portable navigation applications.

The SANS project is now poised for meaningful at-sea trials to further validate the recent
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improvements to allow further development of the linear velocity and position estimation

portions of the filter.

B. RECOMMENDATIONS FOR FUTURE WORK

There remain many areas for further research on the SANS project. The next major
step will I-Je at-sea testing utilizing a tow fish as in Bachmann (95). Successful completion
of these tests will make the SANS ready for adaptation and installation in Phoenix if it is
chosen as the navigation solution. Incorporation into Phoenix is expected to be very
straightforward. The ethernet connection can be utilized to pass the Phoenix “Officer of
the Deck” software module the required navigation state elements. These elements are
currently stored at each update and written to a data file. Compatibility issues should be
limited to data communication between SANS and the Phoenix navigator software. In the
meantime, purchase of a larger PCMCIA SRAM card will immediately alleviate the data
storage problem encountered during laboratory testing resulting from the faster processing

speeds.

Consideration should be given to updating the software utilized in SANS. Two
approaches exist. The first is to update the DOS/BORLAND PC environment by
upgrading to the latest versions. This option will entail rewriting some of the basic input/
output system function calls. The second option would be a complete rewrite to make the
software compatible with the final Linux or LonWorks implementation option that is
incorporated into Phoenix. Although more involved, this option is attractive because it

prevents a proliferation of different operating systems within the same architecture.
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Postprocessing of the navigation data file remains an unfinished area from Bachmann
(95) and Walker (96). Test runs could be repeated multiple times to more easily optimize
the Kalman filter gains. In a related matter, the incorporation of the aperiodic GPS updates
into the overall Kalman filter scheme also still remains to be refined. The author hopes that

the results presented in this thesis will prove to be valuable in this ongoing effort.
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APPENDIX A: Real Time Navigation Source Code (C++)

A. TOWTYPES.H

#ifndef __TOETYPES_H
#define _ TOETYPES_H

#include "globals.h" // Types used by serial communications software

#define GPSBLOCKSIZE 76 // Size of Motorola @E@Ea position message
#define PACKETSIZE 133 // Size of packet received via X-modem protocol
#define COMPSIZE 60

#define ONE_G 32.2185 // One g in feet per second
#define GRAVITY 32.2185 // In feet per second

#define TicksToSecs(x) ((double) ((10 * x) / 182))

typedef char ONEBYTE;
typedef short TWOBYTE;
typedef long FOURBYTE;

typedef unsigned char UNSIGNED_ONEBYTE;
typedef unsigned short UNSIGNED_TWOBYTE;
typedef unsigned long UNSIGNED_FOURBYTE;

struct latLongMilSec { // Holds lat/long expressed in miliseconds
long latitude;
long longitude;

}i

// Holds a latitude or longitude expressed in hours minutes and degrees
struct T_GEODETIC {

TWOBYTE degrees;
UNSIGNED_TWOBYTE minutes;
double seconds;

}i

// Holds a latitude and longitude expressed as T_GEODETICs

struct latLongPosition ({
T GEODETIC latitude;
T_GEODETIC longitude;

}:

struct grid { // Holds a grid position
double x,v,2z;

}:
struct matrix // 3 X 3 matrix

float element[3]1[3];
}i
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struct vector ( . : // 3 X 1 matrix or vector
float element(3];
Y

| // Oversize area to hold a GPS message
typedef BYTE GPSdata[2 * GPSBLOCKSIZE];

// Defihes a type for holding compass messages
typedef. BYTE compData[2 * COMPSIZE];

// Structure for passing around various types of INS information.
// The positions in the sample field of a stampedSample structure

// sample[0]: x acceleration gnuplot: 2

// sample(l]: y acceleration 3

// sample[2]: z acceleration 4

// samplel[3]: phi (roll) 5

// sample[4]: theta (pitch) 6

// sample[5]: psi (yaw) 7

// sample[6]: water speed

// sample[7]: heading

struct stampedSample {

Boolean. gpsFlag; // True -- GPS fix obtained
Boolean insFlag; // True -- INS fix obtained
latLongPosition navLatLong; // posit in hours, mins, secs
grid est; // position as estimated by the INS
GPSdata satPosition; // the latest GPS position
float rawSample(8]; // Original readings for post processing
double sample[l1l]; // sampler converted sample
double deltaT; // delta of the sample
float bias[3]; // bias corrections
float current([3]; // error correction current
Y:
#endif
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B. TOEFISH.CPP

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <iostream.h>
#include <conio.h>
#include <dos.h>
#include <time.h>

#include "toetypes.h"
#include "nav.h"

extern compassPortClass port2; // so breakhandler can call destructors
extern gpsPortClass portl; // to insure cleanup on program exit

int breakHandler (void);

void screenSetUp(void);

void printPosition (const latLongPosition&);
void positOut (stampedSample& posit);

// Write an INS packet and its timeStamp to the outPut file
void writeData(const stampedSample& drPosition, ofstreamé&);

// Write a GPS message to the outPut file.
void writeGpsData (const GPSdata& satPosition);

/***********************************************************************

PROGRAM: Main

AUTHOR: Eric Bachmann, Dave Gay, Rick Roberts

DATE: 11 July 1995, last modified January 1997

FUNCTION: Drives the navigator and its associated software. Counts
the positions & displays each to the screen. Exited only
when control break (Ctrl c¢) is entered at the keyboard.

RETURNS: 0

CALLED BY: none

CALLS: initializeNavigator (nav.h)
navPosit (nav.h)
printPosition
breakHandler
**********************************************************************x/
int
main ()
{
ctrlbrk(breakHandler) ; // trap all breaks to release com ports
setcbrk(1l); // turn break checking on at all times
char dataFile[] = "att.dat";
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cout << *\nWriting attitude data to " << dataFile << endl;
// Instantiate the navigator (also private members gpsl & insl)
navigatorClass navl;

ofstream attitudeData(dataFile);

stampedSample curlLoc; // Lat/Long of most recent fix
Boolean fixReceived(FALSE) ; // True if a new fix was received
int fixCount (0) ; // Count of navigation fixes received
float timeCount (0.0); // Counter for screen output

cerr << "\nInitializing . . ." << endl;

navl.initializeNavigator (curlLoc) ;

// Check a2d initialization, channels off if y-accel != -32.2
while (curLoc.sample[2] <= -33.0 || curloc.sample[2] >= =31.5) {
cerr << "reinitializing for a2d channelization®" << endl;
navl.initializeNavigator (curLoc);
navl.navPosit (curlLoc);

clrscr();

gotoxy (1,6) ;

cerr << "Initialization Complete!" << endl;
cout << "Initial Position:" << endl;

// Print the initial position

cout << "latitude: " << curLoc.navLatLong.latitude.degrees <<
<< curLoc.navLatLong.latitude.ﬁinutes << '
<< curloc.navlatLong.latitude.seconds << endl;

cout << "longitude: " << curLoc.navLatLong.longitude.degrees <<
<< curloc.navLatLong.longitude.minutes << ':*
<< curlLoc.navlLatLong.longitude.seconds;

screenSetUp () ;

while (TRUE) { // Attempt to get a fix from the navigator
fixReceived = navl.navPosit (curLoc);

if (fixReceived) ( // New fix received
// Save fix info to the data file
writeData (curLoc, attitudeData);
// Print info to screen at designated print interval
fixCount++;
timeCount += curloc.deltaT;
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if (timeCount >=-1.0) {
gotoxy (9,11);
cout << fixCount << endl;
positOut (curLoc) ;
timeCount = 0.0;

/***************'k'k*****************************************************

PROGRAM: printPosition

AUTHOR: Eric Bachmann, Dave Gay

DATE: 11 July 1995

FUNCTION: Displays position to the screen
RETURNS: void

CALLED BY: main

CALLS: none

***********************************************************************/

void printPosition (const latLongPosition& posit)

{

gotoxy (11,14);
cout << posit.latitude.degrees << ':'<<
posit.latitude.minutes << ':' << posit.latitude.seconds << endl;

gotoxy (12,15);
cout << posit.longitude.degrees << ':'<<
posit.longitude.minutes << ':' << posit.longitude.seconds
<< endl;

/***********************************************************************

PROGRAM : breakHandler

AUTHOR : Eric Bachmann, Dave Gay, Rick Roberts
DATE: 11 July 1995

FUNCTION: Cleans up com ports upon program exit.
RETURNS : 0

CALLED BY: main

CALLS: compass port and gps port destructors

***********************************************************************/

int breakHandler (void)

{

port2.~compassPortClass () ;

portl.~gpsPortClass ()
raturn 0; // keep the compiler happy
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/***********************************************************************

PROGRAM: screenSetup

AUTHOR: Eric Bachmann, Randy Walker
DATE: 12 May 1996

FUNCTION: Sets up the output screen
RETURNS: 0

CALLED BY: main

CALLS: none

***********************************************************************/

void screenSetUp (void)

{

gotoxy (4,11);
cout << "Fix ";

gotoxy (1,14);
cout << "Latitude: " << "\nLongitude: *;

gotoxy (1,17);
cout << "Roll: " << "\nPitch: ";

gotoxy (1,25);
cout << “"deltaT: *;

int col(45),row(l);

gotoxy (col, row++) ;
cout << "x accel: ";
gotoxy (col, row++) ;
cout << "y accel: ";
gotoxy (col,row++) ;

cout << "z accel: *;
gotoxy (col, row++) ;
cout << "phi dot: ";

gotoxy (col, row++) ;

cout << "theta dot: ";
gotoxy (col, row++) ;

cout << "psi dot: *;
gotoxy (col, row++) ;

cout << "water speed: “;
gotoxy (col, row++) ;

cout << "heading: ";

col = 45;
row = 12;

gotoxy (col, row++) ;
cout << "x: ";
gotoxy (col, row++) ;
cout << "y: ";
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gotoxy (col, row++) ;
cout << "z: ";
goéoxy(col,row++);
cout << *phi: "
gotoxy (col, row++) ;
cout << "theta: *;
gotoxy (col, row++) ;
cout << "psi: *;

gotoxy (45,20) ;
cout << "Bias Values®;

gotoxy (60,20} ;
cout << "Current Values";

/***********************************************************************

PROGRAM: positOut

AUTHOR: Eric Bachmann

DATE: 21 October 1996
FUNCTION: Updates the Screen
RETURNS: 0 )
CALLED BY: main

CALLS: none

***********************************************************************/

void positOut (stampedSample& posit)
{

printPosition (posit.navlatLong) ;

if (posit.gpsFlag) ({
gotoxy (20,11) ;
cout << "GPS";

}
else {
gotoxy (20, 11) ;
cout << " "
}

// Output the bias values
for(int j = 3; 3 < 6; j++) {
gotoxy (45, 3+18);
cout << posit.bias[j];

}

// Set output precision and fixed format
//cout .precision(6);
//cout.setf(ios::fixed);
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// Display linear accelrations and angular rates
for (3 = 0; § < 8; j++) {

gotoxy (59, j+1);

cout << posit.rawSample[jl;

}

// Display time delta to the screen.
gotoxy (9,25);
cout << posit.deltaT;

// Display roll and pitch

gotoxy (8,17) ;

cout << (posit.sample[3] * radToDeg);
gotoxy (8,18) ;

cout << (posit.sample[4] * radToDeq):

// Display current location and posture
for (3 = 0; j < 6; Jj++) {
gotoxy (52, 3+12) ;
cout << posit.samplel[j];

}

// Display error current values
for (3 = 0; j < 3; j++) {
gotoxy (60, j+21) ;
cout << posit.current[j];

}

// Output the biases

for (3 = 3; 3 < 6; j++) {
gotoxy (45,3+18) ;
cout << pqsit.bias[j];

/***********************************************************************

PROGRAM : writeData

AUTHOR: Eric Bachmann, Dave Gay

DATE: 11 July 1985

FUNCTION: Writes the packet and the time stamp contained in a stamped

sample to the out put file for post processing.
RETURNS : void
CALLED BY: navPosit (nav.cpp)
CALLS: None

***************************’k*******************************************/
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void writeData (const- stampedSample& drPosition, ofstream& attitudeData)

{
static float elapsedTime(0.0);

elapsedTime += drPosition.deltaT;

// Output attitude data to a file

attitudeData
<< elapsedTime << ' '
<< drPosition.sample{0] << ' '
<< -1.0 * drPosition.samplefl] << ' '
<< drPosition.sample[2] << * '
<< {(radToDeg * drPosition.sample[3]) << ' '
<< (radToDeg * drPosition.sample([4]) << * '
<< (radToDeg * drPosition.sample[5]) << ' '
<< drPosition.sample{6] << ' '
<< (radToDeg * drPosition.sample[7]) << ' '
<< drPosition.current[0] << ' !
<< drPosition.current(1l] <<endl;

/*****-k*****************************************************************

PROGRAM: writeGpsData

AUTHOR: Eric Bachmann, Dave Gay

DATE: 11 July 1995

FUNCTION: Writes a raw GPS message to a binary output file for
post processing.

RETURNS : void

CALLED BY: navPosit (nav.cpp)

CALLS: None

*****‘******************************************************************/
/*

void

navigator::writeGpsData (const GPSdata& satPosition)

{
for( int j = 0; j < GPSBLOCKSIZE; j++) {
putc(satPosition[j], rawData);

}
*/

// end of file toefish.cpp
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C. NAV.H

#ifndef _NAVIGATOR_H
#define _NAVIGATOR_H
#include <stdio.h>
#include <fstream.h>
#include <iostream.h>
#include <math.h>
#include <dos.h>
#include "toetypes.h"
#include *globals.h*
#include “"gps.h"
#include "ins.h"

/***********************************************************************

CLASS: navigatorClass
AUTHOR : Eric Bachmann, Dave Gay, Rick Roberts
DATE: 11 July 1995, Modified January 1997

FUNCTION: Combines GPS and INS information to return the current

estimated

position.

**********************.*************************************************/

class navigatorClass {

public:

// Constructor, initializes object slots

navigatorClass ()

gpsSpeedSum(0.0), insSpeedSum(0.0)

{ cerr << "\nconstructing navl" << endl; };

‘~navigatorClass()

{3 // Destructor

// provides the navigator's best estimate of current position

Boolean navPosit

(stampedSample&) ;

// Initialize the navigator
Boolean initializeNavigator (stampedSampleé&);

void userInitNav (stampedSample&) ; // Allows user to initialize nav

private:
double gpsSpeed,
insClass insl;

gpsClass gpsl;

insSpeed, gpsSpeedSum, insSpeedSum;
// ins object instance

// gps object instance

// Obtains system time to utilize for origin
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double getSystemTime() ;
latLongMilSec origin; // lat-long of navigational origin

// Returns the position in Miliseconds
latLongMilSec getMilSec(const GPSdatak);

/7 Returns the position in degrees, minutes, seconds and milisecs
latLongMilSec latLongToMilSec (const latLongPosition&);

// Convert position in milSec to degress, minutes, seconds and milsec
latLongPosition milSecToLatLong(const latLongMilSeck);

// Convert xy (grid) position to lat long
latLongMilSec gridToMilSec(const grid&);

// Converts lat/long to xy position
grid milSecToGrid(const latLongMilSec&):

// Parses and returns the time of a GPS message.
double getGpsTime (const GPSdata& rawMessage);

// Parses and returns the velocity in fps of a GPS message.
double getGpsVelocity(const GPSdata& rawMessage);

Y.
Ja

#endif
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D. NAV.CPP

#include
#include
#include
#include

<signal.h>
<dos .h>
<time.h>
“nav.h"

#define SIGFPE 8 // Floating point exception

/**********************************************************************‘k

PROGRAM: navPosit

AUTHOR: Eric Bachmann, Dave Gay

DATE:

11 July 1995

FUNCTION: Provides the navigator's best estimate of current position.

Attempts to obtain GPS and INS position fixes from the gps
and ins objects and copies the most accurate fix available
into the input argument 'navPosition'. Sets a return

flag to indicate whether a valid fix was obtained.

RETURNS : TRUE, a valid position fix is in the variable ‘navPosition'.

FALSE, otherwise.

'CALLED BY: towfish.cpp (main)

CALLS:

gpsPosition (gps.h) gridToMilSec (nav.h)
correctPosition (ins.h) milSecToGrid (nav.h)
insPosition (ins.h) milSecToLatLong (nav.h)
getMilSec (nav.h) writeScriptPosit (nav.h)

***********************************************************************/

void fpeNavPosit (int sig)
{if (sig == SIGFPE) cerr << "floating point error in navPosit\n";}

Boolean navigatorClass: :navPosit (stampedSample& posit)

{

signal (SIGFPE, fpeNavPosit);
latLongMilSec gpsMilSec; // the latest GPS position in milseconds
latLongMilSec insMilSec; // the latest INS position in milseconds

// Attempt to get the INS and GPS positions
posit.insFlag = insl.insPosition(posit);
posit.gpsFlag = gpsl.gpsPosition(posit.satPosition);

// INS and GPS positions obtained?

if (posit.insFlag && posit.gpsFlag) {
// Parse position from GPS messsage
gpsMilSec = getMilSec(posit.satPosition);

posit.est = milSecToGrid(gpsMilSec);
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// Pass GPS position to INS object for navigation corrections.
insl.correctPosition (posit, getGpsTime(posit.satPosition));

// Convert position in milisec to latitude and longitude.
posit.navlLatLong = milSecToLatLong (gpsMilSec);

return TRUE;
}

else {
if (posit.insFlag) { // Only INS position obtained?

insMilSec = gridToMilSec(posit.est);
posit.navLatLong = milSecToLatLong(insMilSec) ;
insSpeed = posit.sample[6];
return TRUE;

}

else {
if (posit.gpsFlag) { // Only GPS position obtained?

// Parse position from GPS messsage
gpsMilSec = getMilSec(posit.satPosition);
posit.est = milSecToGrid(gpsMilSec);

// Pass GPS position to INS object for navigation corrections.
insl.correctPosition(posit, getGpsTime (posit.satPosition));

// Convert position in milisec to lat/long.

posit.navLatLong =
milSecTolatLong (getMilSec (posit.satPosition));

return TRUE;
}

else {
return FALSE; // No new position available

/***********************************************************************

PROGRAM: initializeNavigator

AUTHOR: Eric Bachmann, Dave Gay, Rick Roberts

DATE: 11 July 1995

,FUNCTION: Obtains an initial GPS fix for use as a navigational origin

for grid positions used by the INS object. Saves the origin
and passes it to the INS object in latLong form.

RETURNS: TRUE
CALLED BY: towfish (main)

CALLS: gpsPosition (gps.cpp) writeGpsData (nav.cpp)
correctPosition (ins.cpp) getMilSec (nav.cpp)
writeInsData (nav.cpp) milSecToGrid (nav.cpp)

***********************************************************************/
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Boolean navigatorClass::initializeNavigator (stampedSample& posit)

{

Boolean gpsFlag(FALSE);

cerr << "Initializing Navigator." << endl;
cerr << " Initializing GPS." << endl;

// Loop until an initial GPS fix is obtained.
for (int i = 1 ; ((i < 100) && (gpsFlag == FALSE)) ; i+4) {
if (gpsl.gpsPosition(posit.satPosition))
gpsFlag = TRUE;

}
else {

delay (500) ;
}

}
if (gpsFlag == FALSE) ({
cerr << "\nWARNING: UNABLE TO OBTAIN INITIAL GPS FIX!" << endl;

userInitNav(posit);

}

else {
cerr << " GPS initialization complete." << endl;
// Save navigational origin for later grid position conversions.
origin = getMilSec(posit.satPosition);
// Pass time of first GPS fix to INS object initialization routine.
insl.insSetUp (getGpsTime (posit.satPosition), posit);

}

cerr << "Navigator initialization complete." << endl;

return TRUE;

/**************'k***'k***************************************************:’:

PROGRAM: userInitNav

AUTHOR: Rick Roberts

DATE: 03 November 1996

FUNCTION: Allows user to input current position and initialize

nav if no gps fix is available. (ie for testing)
RETURNS: void
CALLED BY: initializeNavigator
CALLS: getMilSec (nav.cpp), getSystemTime (nav.cpp)

***********************************************************************/
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void navigatorClass::userInitNav(stampedSample& posit)

{

int choice;

cerr << "\nEnter a 0 to enter posit and continue without GPS"
<< "\nEnter a 1 to continue without GPS or initial posit, or"
<< "\nEnter a 2 to exit: " << endl;

cin >> choice;

if (choice == 0) {
cerr << "\nEnter current position in the following format: " << endl;
cerr << "Latitude: (36, Enter, 35 Enter, 41.5 Enter)" << endl;
cin >> posit.navLatLong.latitude.degrees;
cin »>> posit.navLatLong.latitude.minutes;
cin »>> posit.navlLatLong.latitude.seconds;
cerr << "Longitude: (-121, Enter, 52, Enter, 30.2, Enter)" << endl;
cin >> posit.navLatLong.longitude.degrees;
cin >> posit.navLatLong.longitude.minutes;
cin >> posit.navLatLong.longitude.seconds;

}

else if (choice == 2) { exit(1l); }

// Save nav origin for later grid position conversions
origin = latLongToMilSec(posit.navLatLong);

// Pass system time of initialization to ins object
insl.insSetUp (getSystemTime (), posit);
}

/***********************************************************************

PROGRAM: latLongToMilSec

AUTHOR : Rick Roberts

DATE: 22 January 1997

FUNCTION: Converts a position expressed in latitude and longitude
degrees, minutes and seconds to mili seconds & returns it.

RETURNS : latLongMilsSec

CALLED BY: userInitNav

CALLS: none

*************'k*********************************************************/

latLongMilSec navigatorClass::latLongToMilSec(const latLongPosition&
latLong)

{
latLongMilSec milSec;
double degrees, minutes, seconds;

milSec.latitude = (latLong.latitude.degrees * DEGREES_TO _MSECS) +
(latLong.latitude.minutes *~ MINS_TO_MSECS) +
(latLong.latitude.seconds * 1000.0);

milSec.longitude = (latLong.longitude.degrees * DEGREES_TO_MSECS) +
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(latLong.longitude.minutes * MINS_TO_MSECS) +
(latLong.longitude.seconds * 1000.0);
return milSec;

/***********************************************************************

PROGRAM: getSystemTime

AUTHOR: Rick Roberts

DATE: 03 November 1996

FUNCTION: Obtains system time to utilize for origin.
RETURNS : double (origin time in seconds)

CALLED BY: userInitNav

CALLS: dos time function

***********************************************************************/

double navigatorClass::getSystemTime ()

{

dostime_t* sysTime; // pointer to dos time structure

_dos_gettime (sysTime) ;

return double((sysTime->hour * 3600.0) + (sysTime->minute * 60.0)
+ (sysTime->second)) ;

/***********************************************************************

PROGRAM: getMilSec

AUTHOR: Eric Bachmann, Dave Gay

DATE: 11 July 1995

FUNCTION: Extracts a position in miliseconds from a Motorola (@@Ba)
A position contained in the input argument 'rawMessage'.

RETURNS: The latitude and longitude in miliseconds.

CALLED BY: navPosit (nav.cpp)
initializeNavigator (nav.cpp)
CALLS: none.

****‘k******************************************************************/

latLongMilSec navigatorClass::getMilSec(const GPSdata& rawMessage)
{

FOURBYTE tempsdbyte;

latLongMilSec position;

tempsdbyte = rawMessage[15];

tempsdbyte = (tempsdbyte<<8) + rawMessage[l6];
tempsdbyte = (tempsdbyte<<8) + rawMessage[1l7];
temps4byte = (tempsd4byte<<8) + rawMessage[18];

position.latitude = tempsédbyte;
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tempsédbyte = rawMessage[1l9];

tempsédbyte = (tempsdbyte<<8) + rawMessage[20];
teﬁps4byte = (tempsdbyte<<8) + rawMessage[21};
tempsdbyte = (tempsdbyte<<8) + rawMessage[22];

position.longitude = tempsdbyte;

return position;

}

/***********************************************************************

PROGRAM: milSecToLatLong

AUTHOR : Eric Bachmann, Dave Gay

DATE: 11 July 1995 .

FUNCTION: Converts a position expressed totally in miliseconds to
degrees, minutes, seconds and miliseconds.

RETURNS: The position in degrees, minutes, seconds and miliseconds.

CALLED BY: navPosit (nav.cpp)

CALLS: none

***********************************************************************/

latLongPosition navigatorClass::milSecToLatLong(const latLongMilSec&
milSec)

{

latLongPosition position;
double degrees, minutes;

degrees = (double)milSec.latitude * MSECS_TO_DEGREES;
position.latitude.degrees = (TWOBYTE)degrees;

if (degrees < 0) {

degrees = fabs(degrees);
}
minutes = (degrees - (TWOBYTE)degrees) * 60.0;
position.latitude.minutes (TWOBYTE)minutes;
position.latitude.seconds (minutes - (TWOBYTE)minutes) * 60.0;

degrees = (double)milSec.longitude * MSECS_TO_DEGREES;
position.longitude.degrees = (TWOBYTE)degrees;

if (degrees < 0) {

degrees = fabs(degrees);
}
minutes = (degrees - (TWOBYTE)degrees) * 60.0;
position.longitude.minutes = (TWOBYTE)minutes;
pesition.longitude.seconds = (minutes - (TWOBTE)minutes) * 60.0;

return position;
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PROGRAM: gridToMilSec

AUTHOR: Eric Bachmann, Dave Gay

DATE: 11 July 1995

FUNCTION: Convert a grid position to a latitude and longitude in mili-
" seconds and returns the result.

RETURNS: The latitude and longitude in miliseconds.

CALLED BY: navPosit (nav.cpp)

CALLS: none

/***********************************************************************
***********************************************************************/

void fpeGridToMilSec(int sig)
{(if (sig == SIGFPE) cerr << "floating point error in gridToMilSec\n";}

1 latlLongMilSec navigatorClass::gridToMilSec (const grids& posit)
| {

signal (SIGFPE, fpeGridToMilSec);

latLongMilSec latLong;

// converts grid in ft to latitude

latLong.latitude = origin.latitude + (posit.x / LatToFt);

// converts grid in ft to longitude

latLong.longitude = origin.longitude +
HemisphereConversion * (posit.y / LongToFt);

return latLong;

/***********************************************************************

PROGRAM: milSecToGrid

AUTHOR: Eric Bachmann, Dave Gay

DATE: 11 July 1995

FUNCTION: Convert a latitude and longitude expressed in milseconds to
a grid position in xy coordinates in feet from the origin.

RETURNS: The grid position

CALLED BY: navPosit (nav.cpp), initializeNavigator (nav.cpp)

CALLS: none

COMMENTS: altitude is always assumed to be zero.

***********************************************************************/
grid navigatorClass::milSecToGrid(const latLongMilSec& posit)

{

grid position;

position.x = (posit.latitude - origin.latitude) * LatToFt;
position.y = HemisphereConversion *

(posit.longitude - origin.longitude) * LongToFt;

position.z = 0;

return position;
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/************************_***v********************************************

PROGRAM: getGpsTime

AUTHOR: Eric Bachmann, Dave Gay

DATE : 11 July 1995

FUNCTION: Parse the time of a gps message.

RETURNS: The time of the gps message in seconds

CALLED BY: navPosit (nav.cpp), initializeNavigator (nav.cpp)
CALLS: none

***'k********************************'k**********************************/

double navigatorClass::getGpsTime (const GPSdata& rawMessage)
{
UNSIGNED_ONEBYTE tempchar, hours, minutes;
UNSIGNED_FOURBYTE tempudbyte;
double seconds;

hqurs = rawMessage([8];
minutes rawMessage([9];

n

tempchar = rawMessage[1l0];
tempudbyte = rawMessage[1ll];
tempudbyte = (tempudbyte<<8) + rawMessage[l2];
tempudbyte = (tempudbyte<<8) + rawMessage[l3];

tempudbyte = (tempudbyte<<8) + rawMessage(1l4];
seconds = (double)tempchar + (((double)tempudbyte)/1.0E+9);

return hours * 3600.0 + minutes * 60.0 + seconds;

/***********************************************************************

PROGRAM: getGpsVelocity

AUTHOR: Eric Bachmann, Dave Gay

DATE: 11 July 1995

FUNCTION: Parse the velocity out of a gps message.

RETURNS: The velocitiy of the gps message in feet per second
CALLED BY: navPosit (nav.cpp), initializeNavigator (nav.cpp)
CALLS: none

***********************************************************************/

double navigatorClass::getGpsVelocity(const GPSdata& rawMessage)

{
UNSIGNED_ONEBYTE tempchar=rawMessage[31l];

return (double) (3.2804 * ((tempchar << 8) + rawMessage[32]) / 100.00);

}
// end of file nav.cpp
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E. GPS.H

#ifndef _GPS_H
#define _GPS_H

#include <iostream.h>
#include <fstream.h>
#include <conio.h>

#include "toetypes.h"
#include "globals.h"
#include "gpsPort.h"

/***********************************************************************

CLASS: gpsClass
AUTHOR: Eric Bachmann, Dave Gay, Rick Roberts
DATE: 11 July 1995, last modified January 1997

FUNCTION: Reads GPS messages from the GPS buffer. Checks for valid
checksum and minimun number of satellites in view.

*******************************'k***************************************/
class gpsClass {
public:
// Class constructor and destructor :
gpsClass() { cerr << "\nconstructing gpsl" << endl; };

~gpsClass () {}

// returns the latest gps position and a flag
Boolean gpsPosition(GPSdata&);

private:

// calculates the check sum of the message
Boolean checkSumCheck(const GPSdata);

¥

#endif
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F. GPS.CPP

#include <math.h>
#include "gps.h"

// instantiates serial port communications on comml, global to allow
// interrupt processing, cleanup to function properly
gpsPortClass portl;

/******************‘k****************************************************

NAME : gpsPosition
AUTHOR: Eric Bachmann, Dave Gay
DATE: . 11 July 1995

FUNCTION: Determines if an updated gps position message is available
and copies it into the input argument 'rawMessage'. If the
message has a valid checksum and was obtained with at least

three satelites in view, a 'TRUE' is returned to the caller,
indicating that the message is valid.

RETURNS : TRUE, if a valid position message is contained in the
input argument. :

CALLED BY: navPosit (navigator.h)

CALLS: Get (buffer.h)
checkSumCheck (gps.h)

***********************************************************************/

Boolean gpsClass::gpsPosition(GPSdata& rawMessage)

{

unsigned long Mask(4);
if (portl.Get (rawMessage)) {
// Check for a valid check sum and more the 3 satelites and DGPS
"return Boolean((checkSumCheck (rawMessage)) && (rawMessage[39] > 3)
&& ((rawMessage[GPSBLOCKSIZE - 4] & Mask) == Mask));
}
else {
return FALSE; // No updated position is available.
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/***********************************************************************

PROGRAM: checkSumCheck
AUTHOR: Eric Bachmann, Dave Gay
DATE: 11 July 1995
FUNCTION: Takes an exclusive or of bytes 2 through 78 in a Motorola
format (@QEA) position message and compares it to the
. checksum of the message.
RETURNS : TRUE, if the message contains a valid checksum

CALLED BY: gpsPosition (gps)
CALLS: none

***********************************************************************/

Boolean gpsClass::checkSumCheck (const GPSdata newMessage)

{
BYTE chkSum(0) ;

for (int i = 2; 1 < GPSBLOCKSIZE - 3; i++)
chkSum ~= newMessage[i];

)

return Boolean(chkSum == newMessage[GPSBLOCKSIZE - 3]);

}
// end of file gps.cpp

G. INS.CFG

0.1 //Konel
0.1 //Kone2
0.6 / /Ktwo
0.5 //Kthreel
0.5 //Kthree2
0.5 //Kfourl
0.5 //Kfour2
1000 //tau
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H. INS.H

#ifndef _INS_H
#define _INS_H

#include <time.h>
#include <math.h>
#include <dos.h>
#include <stdio.h>
#include <conio.h>
#include <fstream.h>
#include <iostream.h>

#include "toetypes.h"
#include "globals.h"
#include "sampler.h"

/**********'k*********'k**************************************************

CLASS: insClass

AUTHOR: Eric Bachmann, Dave Gay

DATE: 11 July 1995

FUNCTION: Takes in linear accelerations, angular rates, speed and
heading information and uses Kalman filtering techniques to
return a dead reconing position.

***********************************************************************/

class insClass {

public:
~insClass(); // Constructor, initializes gains
~insClass () {} // destructor
Boolean insPosition(stampedSample&); // returns ins est. position

// Updates the x, y and z of the vehicle posture
void correctPosition(stampedSample&, double);

// Sets posture to the origin and develops initial biases
void insSetUp(double, stampedSample&);

private:
float posturel6]; // ins estimated posture (x v z phi theta psi)
double velocities[6]; // ins estimated linear and angular velocities
// x-dot y-dot z-dot phi-dot theta-dot psi-dot
float current([3]; // ins estimated error current

// (x-dot y-dot z-dot)
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}i

float lastGPStime; // time of last gps position fix

" int tau; // filter time constant

samplerClass saml; // sampler instance
matrix rotationMatrix; // body to euler transformation matrix

double biasCorrection[3]; // Software corrections, IMU rate sensors

// Kalman filter gains.
float Konel, Kone2, Ktwo, Kthreel, Kthree2, Kfourl, Kfour2;

// Transforms body coords to earth coords, removes gravity component
void transformiAccels (doublel]);

// Transforms water speed reading to x and y components
void transformWaterSpeed (double, double[]):

// Tranforms body euler rates to earth euler rates.
void transformBodyRates (doublel]);

// Euler integrates the accelerations and updates the velocities
void updateVelocities (stampedSample&);

// Euler integrates the velocities and updates the posture
void updatePosture (stampedSample&);

// Builds the body to euler rate matrix
matrix buildBodyRateMatrix() ;

// Builds the body to earth rotation matrix
void buildRotationMatrix();

// Calculates the imu bias correction during set up
void calculateBiasCorrections (stampedSample&) ;

// Applies bias corrections to a sample
void applyBiasCorrections (stampedSample&) ;

// Reads filter constants from 'ins.cfg'
void readInsConfigFile();

// Post multiply a matrix times a vector and return result.
vector operator* (matrix&, doublel]);

#endif
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I. INS.CPP

#include <iostream.h>

#include <signal.h>

#include "ins.h"

#define SIGFPE 8 // Floating point exception

/********************************************************************’k**

PROGRAM : insClass (constructor)

AUTHOR : Eric Bachmann, Dave Gay, Rick Roberts

DATE: 11 July 1995

FUNCTION: Constructor initializes kalman filter gains and linear and
angular velocities.

RETURNS : nothing

CALLED BY: navigator class

CALLS: none

***********************************************************************/

insClass::insClass() : Konel(0.5), Kone2(0.5), Ktwo(0.6), Kthreel(0.5),
Kthree2(0.5), Kfourl(0.5), Kfour2(0.5), tau(1000)

cerr << "\nconstructing insl® << endl;

readInsConfigFile(); // Read the config file
velocities[0] = 0.0; // % dot

velocities[1] 0.0; // y dot

velocities[2] = 0.0; // z dot

velocities[3] 0.0; // phi dot

velocities[4] 0.0; // theta dot
velocities[S] = 0.0; // psi dot

posture[0] = 0.0; // Set posture to straight and level at the origin.
posture(l] = 0.0;

posture([2] = 0.0;

posture (3] 0.0;

posture (4] 0.0;

posture[5] = 0.0;

current[0] = 0.0; // Initialize erroxr current to zero
current[1l] = 0.0;

current[2] = 0.0;
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/************************.***********************************************

PROGRAM: insPosit
AUTHOR: Eric Bachmann, Dave Gay
DATE: 11 July 1995

FUNCTION:

RETURNS :
CALLED BY:
CALLS:

Make dead reckoning position estimation using kalman
filtering. Inputs are linear accelerations, angular rates,
speed and heading. Primary input data is obtained from a

sampler object via the getSample method. This data is stored

in the sample filed of a stampedSample structure called
newSample. The sample field is then used as a working
variable as the linear accelerations and angular rates it
contains are converted to earth coordinates and integrated
to determine current velocities and posture. The data is
complimentary filtered against itself, speed and magnetic
heading.
position in grid coordinates as estimated by the INS
navPosit (nav.cpp)

getSample (sampler.cpp)

findDeltaT (ins.cpp)

transformBodyRates (ins.cpp)

buildRotationMatrix (ins.cpp)

transformAccels (ins)

transformWaterSpeed (ins)

***********************************************************************/

void fpelInsPosit(int sig)
{(if (sig == SIGFPE) cerr << "floating point error in insPosit\n";}

Boolean insClass::insPosition(stampedSample& newSample)

{

signal (SIGFPE, fpeInsPosit);

double thetal, phiA, xIncline, yIncline; // Working variables
double waterSpeedCorrection[3]; // Filter correction for drift

// and water speed

if (saml.getSample (newSample)) {

applyBiasCorrections (newSample) ;

newSample.rawSample[0] = newSample.sample[0];
newSample.rawSample[1l] = newSample.sample[l];
newSample.rawSample[2] = newSample.sample[2];

newSample.rawSample[3]
newSample.rawSample [4]
newSample.rawSample[5]
newSample.rawSample[6]

newSample.sample[3];
newSample.sample(4];
newSample.sample[5];
newSample.sample[6];

]

newSample.rawSample[7] = newSample.sample([7];

xIncline = newSample.sample[0] / GRAVITY;
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yIncline = (newSample.sample[l] -
(newSample.sample[5] * newSample.sample[6]))
/ (GRAVITY * cos(posturel[4])):;

if (fabs(yIncline) > 1.0) {
static int inclineCount (0);

gotoxy (1,24);
cerr << "Inclination errors: " << ++inclineCount << endl;
. return FALSE;
}
thetal = asin(xIncline); // Calculate low freq pitch and roll
phiA = -asin(yIncline);

// Transform body rates to euler rates.
transformBodyRates (newSample.sample) ;

// Calculate estimated roll rate (phi-dot).
velocities[3] = newSample.sample{3] + Konel * (phiA - posture(3]);
// Calculate estimated pitch rate (theta-dot).
velocities[4] = newSample.sample[4] + Kone2 * (thetadA - posture[4]);
// Calculate estimated heading rate (psi-dot).
velocities (5] =
newSample.sample[5] + Ktwo ~* (newSample.sample([7] - posture(5]);

// integrate estimated angular rates to obtain angles
posture[3] += newSample.deltaT * velocities([3];// pitch rate to angle
posture[4] += newSample.deltaT * velocities[4]; // roll rate to angle
posture[5] += newSample.deltaT * velocities[5]; // yaw rate to angle

buildRotationMatrix();

// Transform accels to earth coordinates
transformAccels (newSample.sample) ;

// Transform water speed to earth coordinates
transformWaterSpeed (newSample.sample[6], waterSpeedCorrection);

// Subtract out previous velocity and apply statistical gain
waterSpeedCorrection(0] =

Kthreel * (waterSpeedCorrection[0] - velocities[0]);
waterSpeedCorrection[l] =
Kthree2 * (waterSpeedCorrection[l] - velocities([1]):

// Determine filtered accelerations
newSample.sample[0] += waterSpeedCorrection[0];
newSample.sample[l] += waterSpeedCorrection{l];

// Integrate accelerations to obtain velocities

velocities[0] += newSample.sample[0] * newSample.deltaT:;
velocities[1l] += newSample.sample[l] * newSample.deltaT;
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velocities[2] += newSample.sample[2] * newSample.deltaT;

'// Integrate velocities to obtain posture

posture[0] += (velocities[0] + current([0]) * newSample.deltaT;
posture[l] += (velocities[l] + current([1l]) * newSample.deltaT;
posture[2] += velocities[2] * newSample.deltaT;

newSample.sample[0] = posture(0];
newSample.sample[1l] = posture(l];
newSample.sample[2] = posture([2];
newSample.sample[3] = posture([3];
newSample.sample[4] = posturel[4]:

newSample.sample[S5] = posture([5];

newSample.est.xX = posture(0];
newSample.est.y posture(l];
newSample.est.z posture[2];

it

return TRUE;
}

else {
return FALSE; // New IMU information was unavailable.

/*****'k*****************************************************************

PROGRAM: correctPosition
AUTHOR: Eric Bachmann, Dave Gay
DATE: 11 July 1995
FUNCTION: Reinitializes the INS based on a known position and computes
apparent current based on past accumulated errors of the INS.
It is called by the navigator each time a new GPS (true) fix
is obtained.

RETURNS : void
CALLED BY: navPosit (nav)
CALLS: none

*********-k*********************************************************-k***/

void
insClass: :correctPosition (stampedSample& posit, double positTime)

{
double deltaT;

if (positTime < lastGPStime) { // Correct for new day if necessary
positTime += 86400;

}

deltaT = positTime - lastGPStime; // Find time since last gps fix.
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// Determine INS error since last gps fix
double deltaX = posit.est.x - posture([0];
double delta¥Y posit.est.y - posture(l];

// Reinitialize posture to known position (gps fix)

posture[0] = posit.est.x;

posture[l] = posit.est.y;

posture[2] = 0.0; // Unit is assumed to be on the surface

// Add gain filtered error to previous errors
posit.current[0] = current[0] += Kfourl * (deltaX / deltaT);
posit.current[1] current[1l] += Kfour2 * (deltaY / deltaT):

// Save the time of the gps fix for next calculation
lastGPStime = positTime;

/********************************’k***********************************'k**

PROGRAM: insSetUp
AUTHOR: Eric Bachmann, Dave Gay
DATE: 11 July 1985
FUNCTION: Initializes the INS system. Sets the posture to the origin.
Initializes the heading using magnetic compass information.
Initializes the last GPS fix and last IMU information times.
RETURNS: void
CALLED BY: initializeNavigator (nav)
CALLS: calculateBiasCorrections (ins)
getSample (sampler)
buildRotationMatrix (ins)
transformWaterSpeed (ins)

***************'k*******************************************************/

void fpeInsSetUp(int sig)
{if (sig == SIGFPE) cerr << "floating point error in inSetUp\n";}

void insClass::insSetUp(double originTime, stampedSample& posit)
{

cerr << " Initializing INS." << endl;

signal (SIGFPE, fpelnsSetUp);

saml.initSampler () ; // Initialize the sambler
calculateBiasCorrections (posit); // set imu biases
posture[5] = posit.sample(7]; //set initial true heading
buildRotationMatrix () ; //set initial speed

transformWaterSpeed (posit.sample[6], velocities);
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= 0.0;
posit.current([l] = 0.0;
posit.current[2] = 0.0;
lastGPStime = originTime; // initialize times

posit.current[0]
cerr << " INS initialization complete." << endl;
| .

|

/**************************************************’k********************

PROGRAM: transformAccels
AUTHOR: Eric Bachmann, Dave Gay

DATE: 11 July 1995
FUNCTION: Transforms linear accelerations from body coordinates to

| earth coordinates and removes the gravity component in the
| z direction.

RETURNS: void

CALLED BY: navPosit

CALLS: none

**************;k********************************************************/

void insClass::transformAccels (double newSample[])

{

vector earthAccels;
newSample[0] -= GRAVITY * sin (posturel4]);

newSample[1l] += GRAVITY * sin (posture[31) * cos (posture(4]);
newSample[2] += GRAVITY * cos (posture[3]) * cos (posture[4]);

earthAccels = rotationMatrix * newSample;

newSample[0] = earthAccels.element{0];
newSample[l] = earthAccels.elementil];
newSample{2] = earthAccels.element[2];

/***********************************************************************

PROGRAM: transformWaterSpeed
AUTHOR: Eric Bachmann, Dave Gay

DATE: 11 July 1995
FUNCTION: Transforms water speed into a vector in earth coordinates and

returns them in the speedCorrection variable.
RETURNS : void
CALLED BY: navPosit
CALLS: aone

************'k*******************************************************'k**/
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void insClass::transformWaterSpeed (double waterSpeed, double
speeonrrection[])

{
double water[3] = (waterSpeed, 0.0, 0.0};
vector waterVelocities = rotationMatrix * water;
speedCorrection [0] = waterVelocities.element{0];
speedCorrection [1] = waterVelocities.element[1l];
speedCorrection [2] = waterVelocities.element[2];
}

/***********************************************************************

PROGRAM: transformBodyRates

AUTHOR: Eric Bachmann, Dave Gay

DATE: 11 July 1995

FUNCTION: Tranforms body euler rates to earth euler rates
RETURNS : none

CALLED BY: insPosit

CALLS: buildBodyRateMatrix

***********************************************************************/

void insClass::transformBodyRates (double newSample[])

{
vector earthRates = buildBodyRateMatrix() * &(newSample[3]);
newSample[3] = earthRates.element[0];
newSample[4] = earthRates.element[1];
newSample[5] = earthRates.element[2];
}

/***********************************************************************

PROGRAM: buildBodyRateMatrix

AUTHOR : Eric Bachmann, Dave Gay

DATE: 11 July 1995

FUNCTION: Builds body to Euler rate translation matrix.
RETURNS : rate translation matrix

CALLED BY: insPosit

CALLS: none

***********************************************************************/

matrix insClass::buildBodyRateMatrix()
{

matrix rateTrans;

float tth = tan{(posturel4]),
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sphi = sin(posture3]),
cphi = cos(posture([3]),
cth = cos(posturel[47);

rateTrans.element{0][0] 1.0;
rateTrans.element[0][1] = tth * sphi;
rateTrans.element[0] [2] = tth * cphi;
rateTrans.element{1]{0] = 0.0;
rateTrans.element[1][1l] = cphi;
rateTrans.element[1][2] = -sphi;
rateTrans.element[2][0] = 0.0;
rateTrans.element[2][1] = sphi / cth;
rateTrans.element[2][2] = cphi / cth;

return rateTrans;

/***********************************************************************

PROGRAM: buildRotationMatrix

AUTHOR: Eric Bachmann, Dave Gay

DATE: 11 July 1995

FUNCTION: Sets the body to earth coordinate rotation matrix.
RETURNS : void

CALLED BY: insPosit, insSetUp

CALLS: none

***********************************************************************/

void insClass::buildRotationMatrix ()
{

float spsi = sin(posture[5]),
cpsi = cos(posture([5]),
sth = sin(posture[4]),
sphi = sin(posture([3]}),
cphi = cos(posture([3]),

cth = cos(posture(4]);

rotationMatrix.element{0}[0] = cpsi * cth;
rotationMatrix.element[0][1l] = (cpsi * sth * sphi) - (spsi * cphi);
rotationMatrix.element[0][2] = (cpsi * sth * cphi) + (spsi * sphi);
rotationMatrix.element[1][0] = spsi * cth;
rotationMatrix.element{1][1] = (cpsi * cphi) + (spsi * sth * sphi);

rotationMatrix.element[1] [2] = (spsi * sth * cphi) - (cpsi * sphi);
rotationMatrix.element[2][0] = -sth;
rotationMatrix.element{2]}{1] = cth * sphi;

rotationMatrix.element[2][2] = cth * cphi;
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/********************‘*****.**********************************************

PROGRAM: postmultiplication operator *
AUTHOR : Eric Bachmann, Dave Gay
DATE: 11 July 1995

FUNCTION: Post multiply a 3 X 3 matrix times a 3 X 1 vector and
return the result.

RETURNS: 3 X 1 vector

CALLED BY:

CALLS: None

*****************************************'k*****************************/

vector operator* (matrix& transform, double statel])
{
vector result;
for (int i = 0; i < 3; i++) {
result.element{i] = 0.0;

for (int j = 0; j < 3; Jj++) {

result.element[i] += transform.element[i][j] * state[j]:;
}
}

return result;

/***********************************************************************

PROGRAM: calculateBiasCorrections
AUTHOR: Eric Bachmann, Dave Gay, Rick Roberts
DATE: 11 July 1995

FUNCTION: Calculates the initial imu bias by averaging a number of
imu readings.

RETURNS : none
CALLED BY: insSetup
CALLS: none

****************************************'k******************************/

void fpeCalculateBiasCorrections (int sig)
(if (sig == SIGFPE) cerr << "floating point error in
CalculateBiasCorrections\n®;}

void insClass::calculateBiasCorrections (stampedSample& biasSample)

{
signal (SIGFPE, fpeCalculateBiasCorrections);
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int biasNumber (tau/10);

biasCorrection[0] = 0.0; // p roll rate
biasCorrection([1l] = 0.0; // g pitch rate
biasCorrection[2] = 0.0; // r yaw rate

for (int i = 0; i < biasNumber; i++) {

// Find the average of the biasNumber packets
while (!saml.getSample(biasSample)) {/* */};
biasCorrection[0] += biasSample.sample[3]/biasNumber; // roll-rate/

b#
biasCorrection[l] += biasSample.sample[4]/biasNumber; // pitch-rate/

b#
biasCorrection[2] += biasSample.sample[5]/biasNumber; // yaw-rate/b#

}

// set biasSample correction fields to new bias correction values

// negative biasCorrection value is taken so biases are added to sensor
values

biasSample.bias[3] = biasCorrection[0] = - (biasCorrection{0]);

biasSample.bias[4] biasCorrection(l] - (biasCorrection(1]);

biasSample.bias[S] biasCorrection(2] - (biasCorrection{2]);

/***********************************************************************

PROGRAM: applyBiasCorrections
AUTHOR: Eric Bachmann, Dave Gay, Rick Roberts

DATE: 11 July 1995
FUNCTION: Applies updated bias corrections to a sample.

RETURNS: void
CALLED BY: insPosit
CALLS: none

ok ddkkhkkhhkhkrhkkhkhdhkhkkhhhhkhkkddkdhhkdhdhkdhhrhrhkhdhhdhrdkddhdhdhdhhrdrrhddhditx /
/

void insClass::applyBiasCorrections (stampedSample& posit)

{
const float sampleWght (posit.deltaT/tau);

const float biasWght (1l - sampleWght);

//Calculate updated bias values

biasCorrection[0] = (biasWght * biasCorrection[0])

- (sampleWght * posit.sample([3]);
biasCorrection[l] = (biasWght * biasCorrection(l1])

- (sampleWght * posit.sample(4]);
biasCorrection[2] = (biasWght * biasCorrection[2])

- (sampleWght * posit.sample[5]);
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posit.sample[3] += biasCorrection[0]; //Apply the bias to the sample
posit.sample[4] += biasCorrection[l];
posit.sample[5] += biasCorrection[2];

posit.bias[3] = biasCorrection[0]; //Save the bias to the sample
posit.bias[4] = biasCorrection(l];

posit.bias[5] = biasCorrection([2];

/********'k**************************************************************

PROGRAM : readInsConfigFile

AUTHOR: Rick Roberts, Eric Bachmann

DATE: 02 Nov 96

FUNCTION: Reads filter constants from 'ins.cfg’
RETURNS: void

CALLED BY: ins class constructor

CALLS: none

***********************************************************************/

void insClass::readInsConfigFile()

{

)

cerr << "Reading ins configuration file." << endl}
ifstream insCfgFile(“ins.cfg", ios::in);

if(!insCfgFile) {
cerr << "could not open ins configuration file!" << endl;

else {
char comment[128];

insCfgFile

>> Konel >> comment
>> Kone2 >> comment
>> Ktwo >> comment
>> Kthreel >> comment
>> Kthree2 >> comment
>> Kfourl >> comment
>> Kfour2 >> comment
>> tau >> comment;

}

insCfgFile.close();

// end of file ins.cpp
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J. SAM.CFG

S
0 W wwooo

N

;pScale(roll)
;qScale (pitch)
;rScale(yaw)
;xAccelScale (pitch)
;vAccelScale(roll)
- ;zAccelScale (yaw)
7 _ ;waterSpeedScale

K. SAMPLER.H

#ifndef _SAMPLER_H
#define _SAMPLER_H

#include <time.h>
#include <math.h>
#include <dos.h>
#include <conio.h>
#include <stdio.h>
#include <fstream.h>
#include <iostream.h>

#include "toetypes.h"
#include *"globals.h"
#include "a2d.h"
#include "compass.h"

#define MAX_SAMPLE_NUM 1000

#define xyAccellLimit ONE_G // Max accell in x and y direction
#define zAccelLimit 2 * ONE_G // Max accel in z direction
#define rateLimit 0.872665 // Max rotational rate in radians
#define speedLimit 25.3 // Max water speed

#define headingLimit 2 * M_PI

const int INBUFFSIZE = 512;

/***********************************************************************

CLASS:
AUTHOR:
DATE:
FUNCTION:

COMMENTS :

samplerClass

Eric Bachmann, Dave Gay, Rick Roberts

11 July 1995, last modified January 1997

Formats, timestamps, low pass filters and limit checks IMU,
water-speed and heading information.

This class is extremely dependent upon the specific
hardware configuration. It is designed to isolate the

INS from these particulars.

*************‘k*******:\'*************************************************/
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class samplerClass -

public:
samplerClass() ; //
~samplerClass () ()
-Boolean initSampler(); //

‘// checks for the arrival of a new
Boolean getSample (stampedSample&) ;

Class constructor, destructor

Initializes Sampler

sample and formats it

private:
float pScale; // roll
float gScale; // pitch
float rScale; // yaw
float xAccelScale; // pitch
float yAccelScale; // roll
float zAccelScale; // yaw
float waterSpeedScale;
compassClass compl; // instantiate member compass object

a2dClass a2dl; //

// stores incoming FIFO samples by
float sample[MAX_ SAMPLE_NUM] [8];

int subSampleIndex; //
int samplelIndex; //
int sampleCount; /7

float samplePeriod;

Boolean readSamples (stampedSample&

instantiate member a2d object

channel

counts channels
indexes samples' array

counts samples

newSample) ;

void filterSample (stampedSample& newSample) ;

void formatSample (stampedSample& newSample);

void increment (int& index)

{ if (++index == MAX_ SAMPLE_NUM) index = 0;}

void decrement (int& index)

{ if (--index < 0) index = MAX_SAMPLE_NUM - 1;}
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// Reads filter constants from 'sam.cfg'
void readSamplerConfigFile();

double pUnits (double angular)

{ return
(pScale * (((angular-2047.0) / 2047.0 ) * 50.0) * (M_PI/180.0));}

double qUnits(double angular)

{ return

' (gScale * (((angular-2047.0) / 2047.0 ) * 50.0) * (M_PI/180.0));}
|

|

double rUnits(double angular)

{ return
(rScale * (((angular-2047.0) / 2047.0 ) * 50.0) * (M_PI/180.0)});}

double xAccelUnits(double linear)
{ return (xAccelScale * ((linear-2047.0) / 2047.0 ) * GRAVITY);}

double yAccelUnits(double linear)
{ return (yAccelScale * ((linear-2047.0) / 2047.0 ) * GRAVITY) ;}

double zAccelUnits (double linear)

{ return
(zAccelScale * ((linear-2047.0) / 2047.0) * (2.0 * GRAVITY));}

double depthUnits (double depth)
{ return (((depth - 819.0) / (4095.0-819.0)) * 180.0);}

double waterSpeedUnits (double speed) //feet per second
{ return (waterSpeedScale * ({speed - 2047.0) / 2048.0) * 25.3);}

}i
#endif
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L. SAMPLER.CPP

#include "sampler.h"

/***********************************************************************

PROGRAM: samplerClass Constructor

AUTHOR : Eric Bachmann, Randy Walker, Rick Roberts

DATE: 12 May 1995, last modified December 1996

FUNCTION: Constructs saml, initializes default config values, calls
readSamplerConfigFile to read any updated values.

RETURNS: saml

CALLED BY: insSetUp (ins.cpp)

CALLS: readSamplerConfigFile

***********************************************************************/

samplerClass: :samplerClass()

: sampleIndex(0), subSampleIndex(0),
samplePeriod(a2dl.chent * a2dl.delta_t * 0.000001),
pScale(0.0), gScale(0.0), rScale(0.0),
xAccelScale(0.0), yAccelScale(0.0), zAccelScale(0.0),
waterSpeedScale (0.0)

cerr << "\nconstructing sampler w/ a2dl, compl" << endl;
readSamplerConfigFile();

/***********************************************************************

PROGRAM: initSampler

AUTHOR: Eric Bachmann, Randy Walker, Rick Roberts
DATE: 12 May 1995

FUNCTION: Instantiates the compass A2D objects.
RETURNS: TRUE

CALLED BY: insSetUp (ins.cpp)

CALLS: initCompass (), A2D member functions

***'k*******************-}:***********************************************/

Boolean samplerClass::initSampler()

{
cerr << " Initializing Sampler" << endl;
compl.initCompass () ;

cerr << " Initializing A2D." << endl;

a2dl.initA2d();
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cerr << " "A2D initialization complete." << endl;

cerr << " Sampler initialization complete." << endl;

return TRUE;
|

3 /******_*****************************************************************
|

| PROGRAM: getSample

AUTHOR: Eric Bachmann, Dave Gay

DATE: 11 July 1995
FUNCTION: Prepares raw sample data for use by the INS object

| RETURNS: TRUE, if a valid sample was obtained
| CALLED BY: insPosit (ins)
| insSetup (ins)
CALLS: readSamples (sampler)
filterSample (sampler)
formatSample (sampler)

***********************************************************************/

Boolean samplerClass::getSample(stampedSample& newSample)

{

if (readSamples (newSample)) { // checks for the arrival of a new sample
filterSample (newSample) ;
formatSample (newSample) ;

~return TRUE;

return FALSE; // Sample packet not available
}

/***********************************************************************

PROGRAM: readSamples

AUTHOR: Eric Bachmann, Randy Walker

DATE: 12 May 1996

FUNCTION: Retrieves all samples of the IMU, water speed, and depth
that are present in the A2D FIFO until the FIFO is EMPTY.
Calculates delta_t.

RETURNS: TRUE - There were new samples pulled from the FIFO
FALSE - There were no new samples

CALLED BY: getSample

CALLS: getFifoStatus (), getFifoData()

***'k*******************************************************************/
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Boolean samplerClass::readSamples (stampedSample& newSample)
¢ :

static int overflowCount (0);
// Did the FIFO overflow?

if (a2dl.getFifoStatus() == FULL) (
gotoxyﬁ1,19);
cout << "FIFO Overflowed, #: " << ++overflowCount

<< " reiniting a2d" << endl;
a2dl.reinita2d();
return FALSE;

}
if (a2dl.getFifoStatus() != EMPTY) { // Does the FIFO have new samples?
sampleCount = 0; // Counts the number of samples taken
while (a2dl.getFifoStatus() != EMPTY) { // Empty the FIFO
sample [sampleIndex] [subSampleIndex++] = a2dl.getFifoData() ;
// Has it pulled one sample of each channel from the FIFO?
if (subSamplelIndex == 8) { :
subSampleIndex= 0;
increment (sampleIndex) ; // set to record next sample
++sampleCount;
}
}
if (sampleCount > 0) {
// calculate time delta
newSample.deltaT = sampleCount * samplePeriod;
return TRUE;
)
else { // No full samples
return FALSE; '
}
}
else { // No new samples

return FALSE;
}
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/*******'k***************-k.***********************************************

PROGRAM:
AUTHOR:
DATE:
FUNCTION:

RETURNS :

filterSample

Eric Bachmann, Dave Gay

11 July 1995

Low pass filters eight closely spaced sets of sensor
readings by summing the readings of each sensor and computing

the average.

void

CALLED BY: getSample

CALLS:

none

***********************************************************************/

void samplerClass::filterSample(stampedSample& newSample)

{
for (int

i=20; 1< 8; i++) {

newSample.sample{i] = 0;

int j(samplelIndex) ;

<

for (i =

0; i < sampleCount; i++) {

decrement (j) ;

newSample.sample[0] += sample[j][0]
newSample.sample[l] += sample{j][1]
newSample.sample[2] += sample[j][2]
newSample.sample[3] += sample[j][3]
newSample.sample[4] += sample([j][4]
newSample.sample[5] += sample[j] (5]
newSample.sample[6] += sample[j][6]
newSample.sample[7] += sample(3]1[7]

sampleCount;
sampleCount;
sampleCount;
sampleCount;
sampleCount;
sampleCount;
sampleCount;
sampleCount;

NN N N NN NN N

/***********************************************************************

PROGRAM:
AUTHOR:
DATE:
FUNCTION:

RETURNS :

formatSample

Eric Bachmann, Dave Gay

11 July 1995

Converts integers representing voltage readings into
real world units which are useable by the INS.

void

CALLED BY:getSample

CALLS:

none

***********************************************************************/
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void samplerClass::formatSample (stampedSample& newSample)
{
newSample.sample[0] xAccelUnits (newSample.sample{0]);
newSample.sample[1] = yAccelUnits(newSample.sample[l]);
newSample.sample[2] = zAccelUnits(newSample.sample[2]);

"

newSample.sample[3] = pUnits(newSample.sample[3]);
newSample.sample[4] = gUnits(newSample.sample([4]);
newSample.sample[5] = rUnits(newSample.sample[5]);

newSample.sample[6] = waterSpeedUnits (newSample.sample(6]);
newSample.sample[7] = compl.getHeading();

/**********'k**************************************’k*******'k*************

PROGRAM: readSamplerConfigFile

AUTHOR: Rick Roberts, Eric Bachmann

DATE: 02 Nov 96

FUNCTION: Reads filter constants from 'ins.cfg’

RETURNS: void

CALLED BY: ins class constructor

CALLS: none

COMMENTS : * Do not allow blanks in 'comment' section of sam.cfg *

************************-k*'k********************************************/

void samplerClass::readSamplexrConfigFile()
{
FILE *samCfgFile;
if ((samCfgFile = fopen("sam.cfg", "r")) == NULL){

cerr << "could not open sampler configuration file!" << endl;

}
else {
cerr << "\nReading Sampler configuration file." << endl;

char line[128];

fscanf (samCfgFile, "%£f%s", &pScale, line);
cerr << "pScale: " << pScale << endl;

fscanf (samCfgFile, “$£%s", &gScale, line);
cerr << "gScale: " << gScale << endl;

fscanf (samCfgFile, "%$f%s", &xrScale, line);
cerr << "rScale: " << rScale << endl;

fscanf (samCfgFile, "%$£f%s", &xAccelScale, line);
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cerr << "xAccelScale: " << xAccelScale << endl;

cerr << "yAccelScale: " << yAccelScale << endl;

fscanf (samCfgFile, “3£%s", &zAccelScale, line) ;
cerr << "zAccelScale: " << zAccelScale << endl;

fscanf (samCfgFile, "$f%s", &waterSpeedScale, line);
cerr << "waterSpeedScale: " << waterSpeedScale << endl;

}
fclose(samCfgFile);

}
// end of file sampler.cpp

M. COMPASS.H

‘fscanf (samCfgFile, "$f%s*, &yAccelScale, line);
|
|
|
\
|
|
|
|
|
\
|
|
|
\

‘ #ifndef _COMPASS_H
| #define _COMPASS_H

#include <iostream.h>
#include <fstream.h>
#include <conio.h>

#include "toetypes.h"
#include "globals.h"

| #include “compport.h®

BYTE asciiToHex (BYTE) ; // conversion function prototype

/*************************************************************'k*********

CLASS: compassClass
AUTHOR: Eric Bachmann, Dave Gay, Rick Roberts
DATE: 11 July 1995, last modified January 1997

FUNCTION: Reads compass messages from the compass buffer. Checks for
valid checksum. Corrects heading for magnetic variation.
Heading is continuous. There is no branch cut at 360 degrees.

********'k*****************************************************‘k********/
class compassClass ({
public:
// class constructor and destructor
compassClass() : currentHeading(0.0)

{ cerr << "Compass constructed." << endl; }
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~compassClass () ()

float initCompass(); // initialize currentHeading
float getHeading(); // returns the latest heading
private:

//‘Maintains the most recently obtained heading.
float currentHeading;

// calculates the check sum of the message
Boolean checkSumCheck (const compData);

// Parses a selected field out of a compass message.
float parseCompData(const compData, const BYTE);

// Converts magnetic direction based on magnetic variation.
float trueHeading(const float);

// Returns the heading without branch cuts
float continousHeading(const float);

}i
#endif

N. COMPASS.CPP

#include <math.h>
#include <stdlib.h>
#include "compass.h"

// instantiates serial port communications on comm2, global to allow
// interrupt processing, cléanup to function correctly
compassPortClass port2;

/***************'k'k******************************************************

NAME :
AUTHOR:
DATE:
FUNCTION:

RETURNS :
CALLED BY:
CALLS:

initCompass

Eric Bachmann, Dave Gay, Rick Roberts

11 July 1995

Determines if a valid compass message is held in the

compass buffer and initializes currentHeading to that value.

Will attempt 10 times with a built in delay and then exit
with a warning if a valid heading is not obtained.
currentHeading

INSsetUp (ins.cpp)

Get (buffer.h) parseConmpData (compass.cpp)
checkSumCheck (gps.h) continuousHeading (compass.cpp)
trueHeading (compass.cpp)

**********************************************************************/
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float compassClass::initCompass ()

{

cerr << " Initializing Compass" << endl;

Boolean compFlag(FALSE) ;
float tempHeading;
compData rawMessage;

// try 10 times to get a valid message
for (int i = 1 ; ((i < 10) && (compFlag == FALSE)); i++ ) {

if ((port2.headings.Get (rawMessage)) && (checkSumCheck (rawMessage) ) ) {
tempHeading = parseCompData(rawMessage, ‘C'} * degToRad;
currentHeading = continousHeading(trueHeading (tempHeading));
compFlag = TRUE;
}
else { // invalid message - delay
delay (1000);

if (compFlag == FALSE) {
cerr << "\nWARNING: UNABLE TO OBTAIN INITIAL COMPASS HEADING!*
<< endl;
delay (2000) ;
}
else {
cerr << " Compass initialization complete." << endl;
)

7

return currentHeading;

/*‘***********************************************************'k**********

NAME : getHeading
AUTHOR: Eric Bachmann, Dave Gay, Rick Roberts
DATE: 11 July 1995

FUNCTION: Determines if an updated compass message is available and
copies it into the input argument 'rawMessage'. If the
message has a valid checksum, currentHeading is returned
to the caller, currentHeading is also the default return.

RETURNS : currentHeading
CALLED BY: navPosit (navigator.h)
CALLS: Get (buffer.h)

checkSumCheck (compass.cpp)

*****************************'k*****************************************/

float compassClass::getHeading()

{
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float tempHeading:;
Boolean checkSumFlag;
compData rawMessage;

if ((port2.headings.Get (rawMessage)) && (checkSumCheck(rawMessage)))

tempHeading = parseCompData(rawMessage, 'C') * degToRad;
currentHeading = continousHeading(trueHeading(tempHeading));

return currentHeading;

}
else {
return currentHeading; // No updated position is available.

/****'k**************'k****************'k**********************************

NAME : asciiToHex

AUTHOR: Eric Bachmann, Dave Gay

DATE: 11 July 1995

FUNCTION: Administrative conversion function
RETURNS : Hex version of an ascii character
CALLED BY: checkSumCheck

CALLS: None

****************************************’k******************************/

BYTE asciiToHex (BYTE letter)
{
if (letter >= 'A') {
return (lettexr - 'A' + 10);
}
else {
return (letter - 48);

/***********************************************************************

PROGRAM : checkSumCheck

AUTHOR: Eric Bachmann, Dave Gay

DATE: 11 July 1995

FUNCTION: Calculates the checksum of the compass message and
compares it to the indicated checksum of the message.

RETURNS : TRUE, if the message contains a valid checksum

CALLED BY: initCompass, getHeading

CALLS: none

***********************************************************************/
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Boolean compassClass: :checkSumCheck (const compData newMessage)
{

BYTE calChkSum(0) ;

BYTE mesChkSum(0) ;

for (int i = 1; newMessage[i] != '*'; i++) {
calChkSum “= newMessage([i];
|

mesChkSum = asciiToHex (newMessage[i+1]) * 16
+ asciiToHex (newMessage[i+2]);

return Boolean(calChkSum == mesChkSum) ;

/********************'k*****************************'k********************

PROGRAM: trueHeading

AUTHOR: Eric Bachmann, Dave Gay

DATE: 11 July 1995

FUNCTION: Converts magnetic direction to true based on local
magnetic variation.

RETURNS : true heading
CALLED BY: insPosit

insSetUp
CALLS: none

***********************************************************************/

'float»compassclass::trueHeading(const float magHeading)

{
static double twoPi (2.0 * M_PI);

double trueHeading = magHeading + RADIANMAGVAR;
if (trueHeading > twoPi) {

trueHeading -= twoPi;

}

return trueHeading;
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/***********************************************************************

PROGRAM: continousHeading

AUTHOR: Eric Bachmann

DATE: 11 July 1995

FUNCTION: Maintains track of branch cuts & returns a continous heading.
RETURNS : continous true heading

CALLED BY: insPosit, insSetUp

CALLS: none

***********************************************************************/

float compassClass::continousHeading(const float trueHeading)

{ .
const float twoPi (2.0 * M_PI);
static int branchCutCount (0) ;
static float previousHeading (trueHeading);

if ((4.71 < previousHeading) && (trueHeading < 1.57)){

++branchCutCount; // Went through North in a right hand turn
} .
else {
if ((1.57 > previousHeading) && (trueHeading > 4.71)) {
--branchCutCount; // Went through North in a left hand turn
}
}

previousHeading = trueHeading;

return trueHeading + (branchCutCount * twoPi};

/***********************************************************************

PROGRAM: parseCompData

AUTHOR: Eric Bachmann

DATE: 11 July 1995

FUNCTION: Parses the heading out of a compass message.
RETURNS : the message heading as a float

CALLED BY: insPosit, insSetUp

CALLS: none

***********************************************************************/

float compassClass::parseCompData(const compData rawMessage,
const BYTE key)

float datasSum(0);

for(int j = 0; rawMessage(j] != key: Jj++){}
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.

JH++i
for(int i = 0; rawMessagel[i + Jj1 != '.'; i++){}
switch (i) {
case 3:
dataSum = (rawMessage[j] - 48) * 100f0 +
(rawMessage[j+1] - 48) * 10.0 +

(rawMessage[j+2] - 48) + (rawMessage[j+4] - 48) * 0.1;
break;

case 2:

(rawMessage([j] - 48) * 10.0 +
(rawMessage[j+1] - 48) + (rawMessage[j+3] - 48) * 0.1;

dataSum

break:;

case 1:
dataSum = (rawMessage[j] - 48) + (rawMessage[j+2] - 48) * 0.1;

break;

}

return dataSum;

}

// end of file compass.cpp

0. A2D.CFG

8 ;seqcnt:number_of_seq_addresses_to_load

0 ;mode_sel:_ DIFF=1__ SE=0

1 ;mode_acdc:_Signal_coupling_select_ DC=1_ AC=0

8 ;chent: Number_of_channels_to_sequence_(hex, _1-F)
3125 ;delta_t:_ Sample_rate_in_microsecs_3-8192

7 ;samprate:__Sample_rate_in_recurrent_mode__O(fast)—7(slow)
0 ;sampindex:_Which_channel_to_sample_in_recurrent_mode
0 0 0 0

1 1 0 0

2 2 0 0

3 3 0 0

4 4 0 0

5 5 0 0

6 6 0 0

7 7 0 0

8 8 0 0

9 A 2 0

130




Loy B e I I T v e i o
oo ooy ;m

P. A2DH

#ifndef _A2D_H
#define _A2D_H

#include <dos.h>
#include <math.h

NN NN
OO0 000 O

>

#include <conio.h>
#include <stdio.h>

#include <stdlib
#include <stdarg

.h>
-h>

#include <iostream.h>
#include <fstream.h>

//ESP A2D Genera
#define DEFBASE
#define FIFOSIZE
#define MAXCHAN

//ESP A2D Status
//BASE+02h: 011D
#define INT_STAT
#define TRG_STAT

#define FULL
#define HALF
#define EMPTY

//ESP A2D Contro
//BASE+08h: DDDD
//BASE+09h: DDDD
#define GATELOUT

#define TRG_POS
#define SET_TRG
#define RST_TRG
#define INT _EN

#define DIFF
#define RMS

#define CAL
#define PRG_SEQ

1 Global Definitions

1 0x100 // Base address SEL=1->0x300 & SEL=0->0x100
1000 // FIFO size (MAX=1000 decimal)
0x10 // Max channels

Register Definitions
DDDD

0x10 // 0001 0000 INTERRUPT STATUS (1=IRQ Pending)

0x08 // 0000 1000 TRIGGER STATUS (1=Triggered)
0x01 // 0000 0001 FIFO FULL (001=Full)
0x05 // 0000 0101 FIFO HALF FULL (101=Half Full)
0x06 // 0000 0110 FIFO EMPTY (110=Empty)

1 Register Definitions
DDDD
DDRR

0x0008 // 0000 0000 0000 1000 GATEL1OUT (Always Driven)

0x0010 // 0000 0000
0x0020 // 0000 0000
0x0040 // 0000 0000
0x0080 // 0000 0000

0001 0000 TRIG POS (Trig on +1{-)
0010 0000 TRIG SET (Active LOW)
0100 0000 TRIG CLR {Active LOW)
1000 0000 IRQ ENAB (Active HIGH)

0x0400 // 0000 0100 0000 0000 DIFF/SE (1=DIFF 0=SE)
0x0800 // 0000 1000 0000 0000 RMS Mode (1=ON 0=0FF)

0x100G6 // 0001 0000
0x1000 // 0001 0000
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0000 0000 CAL Mode (1=ON 0=0FF)
0000 0000 SEQ Mode (1=PRG 0=RUN)




#define ACDC 0x2000. // 0010 0000 0000 0000 ACDC Mode (1=DC 0=AC)
#define SAM_SEQ 0x4000 // 0100 0000 0000 0000 SAMP/SEQ (1=SEQ 0=SAMP)
#define RST_FIFO 0x8000 // 1000 0000 0000 0000 FIFO Reset(1=EN O0=REW)

//ESP A2D Useful Definitions
#define CLRRATE OxFFF8 // CLEAR RATE TO HIGHEST RATE

//Class- Definition for the A2D Class
class a2dClass

public:

a2dClass(); // reads a2d.cfg file, initializes hardware
~a2dClass () { lockTrigger(): }

void readConfigFile(); // reads a2d.cfg file

void initA2d(); // initializes the a2d

void reinitA2d(); // reinitializes the a2d after FIFO overflow
void initSysAddr (veoid):; // sets address mapping

void initHardware (void); // initializes the a2d control register

// Print out the variable ctrlw, for debug purposes
void printCtriliw(void);

// Sets the A2D Control Register for Single-Ended mode
void setSe(void);

// Sets the A2D Control Register for Differential mode
void setDiff (void);

// Loads sequencer memory with channel data
void setChannel (unsigned seq,unsigned ch,unsigned gl0,unsigned g2);

// Sets sequencer to program mode
void setProgSeq(void);

// Sets sequencer to run mode
void setRunSeqg(void);

// Loads sequencer address counter with number of channels to scan.
void setCount (unsigned nch);

void setAcDc(unsigned acdc); // sets AC or DC coupling

void lockTrigger (void) ; // prevents triggering

void unlockTrigger (void) ; // allows the trigger to function
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// Toggle the trigger.(software triggering)
void setTrigger (void);

void resetTrigger (void) ; // clears the trigger

// Switches in the RMS measurement chip
void setRmsOn(void) ;

// Switches out RMS measurement chip
void setRmsOff (void);

// Sets the A2D module to segquencer mode
void setSequencer (void) ;

// Sets the A2D module to sampler mode
void setSamplerRate(unsigned);

// Set GATEL1OUT bit of control word high
void gateloutOn(void) ;

// Set GATElOUT bit of control word low
void gateloutOff (void) ;

// Sets timer channel 1 to square-wave input
void squareWaveTimerl (unsigned) ;

// Initialize the A2D timing using timer 2
void initTiming(unsigned dt);

void resetFifo(void); // rewind FIFO to beginning of memory
void setFifo(void); // enable FIFO to acquire data
unsigned getFifoStatus(void); // returns the state of the FIFO

// Returns next data word stored in FIFO
signed getFifoData(void) ;

// Program timer channel 0 to set the desired interrupt rate
void setIntRate(unsigned intrate);

void intOff (void); // locks out the interrupt request line
void intOn (void); // enables system interrupt request

// Sets the trigger level; trigger level (0=-10V, 128=0V, 255=+10V)
void setTriggerLevel (unsigned tl);

// Sets falling or rising edge trigger
void setTriggerPosition(unsigned tp);
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void zeroOffset(void); -

void freelnput (void);

void- zeroAdjust (void) ;

int chent;

unsigned delta_t;

private:

unsigned ctrlw;

// ungrounds the two differential inputs

// calibrates zero offset error

// Grounds the two differential inputs for zero adjust
void grndInput (void);

// adjust the trimmer on the PGA

// Number of channels to sequence

// period between channels

// Holds A2D Control Register update values

unsigned segcnt; // Sequence Counter
unsigned mode_sel; // Single-ended or Differential
unsigned mode_acdc; // AC/DC Coupling
unsigned samprate; // Sample Rate in Recurrent Mode
| unsigned sampindex; // Which Channel to Sample in Recurrent Mode
| unsigned segaddr [MAXCHAN]; // Sequencer Address :
unsigned chan[MAXCHAN] ; // Channel
unsigned gl0[MAXCHAN]; // x10 Gain
unsigned g2 [MAXCHAN] ; // X2 Gain
}i
#endif
Q. A2D.CPP

#include "a2d.h"

//ESP A2D Addresses

unsigned BASE = DEFBASE; // BASE I/0 ADDR [BASE] O
unsigned FIFO = 0x00; // FIFO READ ADDR [00-01] (R)
unsigned MEM = 0x00; // SEQUENCER ADDR [00-01] (W)
unsigned STAT = 0x02; // STATUS REGISTER [02] (R)
unsigned COUNT = 0x02; // SEQUENCER ADDR PTR 021 (W)
unsigned TIMERO = 0x04; // TIMER O [04] (R/W)
unsigned TIMER1 = 0x05; // TIMER 1 [05] (R/W)
unsigned TIMER2 = 0x06; // TIMER 2 [06] - (R/W)
unsigned TIMERC = 0x07; // TIMER CONTROL WORD [07] (R/W)
unsigned CNTL = 0x08; // A2D CONTROL REGISTER [08-09]1 (W)
unsigned DAC = 0x0C; // DAC DATA [oC] (W)
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//**********-k***********************************************************

/7
//
7/
//
//
//
//
/7

FUNCTION NAME: a2dClass ()

AUTHOR: Randy Walker

DATE: 27 March 1996

DESCRIPTION: Reads a2d.cfg file, initializes address map and hardware
RETURNS: void

CALLS: readConfigFile(), initSysAddr(), initHardware()

CALLED BY: Object declaration

************************************************************************

a2dClass::a2dClass (void)

{

/7

cerr << "constructing a2dl" << endl;

ctrlw=0;
segecnt=1;
mode_sel=0;
mode_acdc=1;
delta_t=3;
chent=1;
samprate=0;
sampindex=0;
readConfigFile() ;
initSysaAddr () ;
initHardware () ;

B R R R R R E R R X R E R E R RS RS Rt b ok b i ko

/7
//
/7
/7
/7
//
//
/7

FUNCTION NAME: readConfigFile ()

AUTHOR: Randy Walker, based on [MAXUS 95] code

DATE: 27 March 1996

DESCRIPTION: Reads the a2d.cfg file and sets variables
RETURNS: void

CALLS: none

CALLED BY: a2d class constructor

dhkhhkrkhkkdhhdhhhkdhdkhhkhddhbhddhhdrrhhdrhkrhhhkdhhddrhbbrddbbhdddbhhdrrhdhbdrrdrhrrrr

void a2dClass::readConfigFile ()

{

FILE *configFile;
char junk{128];

if ((configFile = fopen("a2d.cfg*, *r")) == NULL)

fprintf (stderr, "Cannot open file A2D.CFG...\n");
exit(l);
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fscanf (configFile, "%$x%s", &segcnt, junk) ;

if (segecnt==0 || seqent>0x0F) { // segent must be 1-F (15 max in seq mode)
cout << "\nsegecnt out of range in A2D.CFG...\n";
exit(1);

}

fscanf (configFile, "%d%s", &mode_sel, junk);

if (mode_sel !=0 && mode_sel != 1){
cout << "\nmode_sel out of range in A2D.CFG...\n";
exit(1l);

}

fscanf (configFile, "%d%s", &mode_acdc, junk) ;

if (mode_acdc !=0 && mode_acdc != 1){
cout << "\nmode_acdc out of range in A2D.CFG...\n";
exit(1);

)

fscanf (configFile, "$x%s", &chent, junk) ;
if (chent == 0 || chent > 0x0F) { //chent must be 1-F (15 max in seq mode)

cout << "\nchent out of range in A2D.CFG...\n";
exit(1);
}

fscanf (configFile, "%d%s", &delta_t, junk);

if (delta_t < 3 || delta_t > 8192)({
cout << "\ndelta_t out of range in A2D.CFG...\n";
exit(1);

}

if (delta_t < 6 && chent > 1)
~cout << "\ndelta_t must be > 6 for chent > 1...\n";

exit (1) ;
}

fscanf (configFile, "%d%s", &samprate, junk) ;

if (samprate > 7){
cout << "\nsamprate out of range in A2D.CFG...\n";

exit(1l);
3

fscanf (configFile, "%x%s", &sampindex, junk) ;
if (sampindex > 0xO0F){
cout << "\nsampindex out of range in A2D.CFG...\n";

exit(1);
}
for (int i = 0; i < segent; i++){
fscanf(configFile,"%x%x%x%x“,&seqaddr[i],&chan[i],&glO[i],&g2[i]);
}

fclose(configFile);
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//********‘***********"k*************************************************

// FUNCTION NAME: initSysAddr()

// AUTHOR: Randy Walker, based on [MAXUS 95] code
// DATE: 27 March 1996

// DESCRIPTION: Sets system address mappings

// RETURNS: void

// CALLS: none

// CALLED BY: a2d class constructor

//*****_***********************’k********'k*******************************

void a2dClass::initSysAddr (void)

{
//clear BASE
FIFO &= 0xOF; // FIFO READ ADDRESS [00,01] (R)
MEM &= OxOF; // SEQENCER MEM ADDRESS [00,01] (W)
STAT &= OxOF; // STATUS REGISTER [02] (R)
COUNT &= OxOF; // SEQENCER ADDRESS PTR [02] (W)
TIMERO &= OxOF; // TIMER 0 [04] (R/W)
TIMER]1 &= OxOF; // TIMER 1 [05] (R/W)
TIMER2 &= O0xO0F; // TIMER 2 [06] {R/W)
TIMERC &= OxOF; // TIMER CONTROL WORD {071 (R/W)
CNTL &= O0xOF; // CONTROL REGISTER [08] (R/W)
DAC &= OxOF; // DAC DATA [ocj (W)
//set BASE
FIFO |= BASE; // FIFO READ ADDRESS [00,01} (R)
MEM = BASE; // SEQENCER MEM ADDRESS [00,01] (W)
STAT |= BASE; // STATUS REGISTER [02] (R)
COUNT | = BASE; // SEQENCER ADDRESS PTR [02] (W)
TIMERO |= BASE; // TIMER 0 [04] (R/W)
TIMER1 |= BASE; // TIMER 1 [05] {R/W)
TIMER2 |= BASE; // TIMER 2 [06] (R/W)
TIMERC |= BASE; // TIMER CONTROL WORD [07] (R/W)
CNTL ]= BASE; // CONTROL REGISTER [08] (R/W)
DAC | = BASE; // DAC DATA [oc] (W)

//*********************************************************************

// FUNCTION NAME: initA2d()

// AUTHOR: Rick Roberts

// DATE: 13 November 1996

// DESCRIPTION: Performs necessary steps for initialization of the a2d
// or to reinitialize if acceleration parameters are in
// error due to a poor initial data transfer.

// RETURNS: void

// CALLS: setRmsOff(), setSequencer(), lockTrigger(), resetFifol(),

// unlockTrigger(), and setTrigger(), all in a2d.cpp

// CALLED BY: sampler class constructor

//*********************************************************************
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void a2dClass::initAZd(void)

{

setRmsOff () ;
setSequencer();
lockTrigger () ;
resetFifo();
setFifo();
unlockTrigger () ;
setTrigger () ;

//*****************’****************************************************

1/
/7
/7
/7
/7
//
1/
/7
//
/7
/7

FUNCTION NAME: reinita2d()
AUTHOR: Rick Roberts
DATE: 13 November 1996
DESCRIPTION: Performs necessary steps for reinitialization of the a2d
or to reinitialize if acceleration parameters are in
error due to a poor initial data transfer.
RETURNS: void
CALLS: readConfigFile(), initSysAddr(), initHardware(),2’
setRmsOff (), setSequencer(), lockTrigger(), resetFifo(),
unlockTrigger(), and setTrigger(), all in a2d.cpp
CALLED BY: sampler class readSamples if a2d FIFO has overflowed

//*********************************************************************

void a2dClass::reinita2d(void)

{

}

readConfigFile();
initSysaddr () ;
initHardware () ;
setRmsOff () ;
setSequencer () ;
lockTrigger () ;
resetFifo();
setFifo();
unlockTrigger () ;
setTrigger();

//*‘k*******************************************************************

//
/7
7/
//
/7
/7
!/
//
/7

FUNCTION NAME: initHardware()

AUTHOR: Randy Walker, based on [MAXUS 95] code

DATE: 27 March 1996

DESCRIPTION: Sets the A2D Control Register to 0020 and sets the data
member, ctrlw=0060; initializes the module setup for
software triggering of the A2D. Programs each channel.

RETURNS: void

CALLS: outpw()

CALLED BY: a2d class constructor

//*********************************************************************
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void aZdClass::initHardware(void)
{

outpw (CNTL, SET_TRG) ;

ctrlw = SET_TRGIRST_TRG;

if (mode_sel == 0)
setSe();

else
setDiff () ;

for(int i = 0;1 < chent;i++){
setChannel (segqaddr{i],chan{i],gl0[i],g2[il]);
}
setAcDc (mode_acdc) ;
initTiming(delta_t);
setCount (chent) ;

//*********************************************************************

// FUNCTION NAME: printCtrliw()

// AUTHOR: Randy Walker, based on [MAXUS 95] code

// DATE: 27 March 1996

// DESCRIPTION: Print A2D control register var, ctrlw.

// The variable is used to set a byte in the
/7 ESP 22D control register at BASE + 08h/0%h
// Used during application code debug

// RETURNS: void
// CALLS: none
// CALLED BY: none

//*********************************************************************

void a2dClass::printCtrlw(void)
{
printf("ctrlw: %04x\t"*, ctrlw);
for (int i=0x00; i < 0x10; i++){
printf("%i", ( (ctrlw>>0x0F-i) & 1));
if ((i+1)%4==0)
printf (" ");
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//***********************:k**:k******************************************

// FUNCTION NAME: setSe()

// AUTHOR: Randy Walker, based on [MAXUS 95] code

// DATE: 27 March 1996

// DESCRIPTION: Sets ctrlw for single ended mode and writes ctrlw to
/7 A2D Control Register

// RETURNS: void

// CALLS: outpw()

// CALLED BY: initHardware ()

//*********************************************************************

void a2dClass::setSe(void)
{

ctrlw &= ~DIFF;

outpw (CNTL, ctriw) ;

//*********************************************************************

// FUNCTION NAME: setDiff ()

// AUTHOR: Randy Walker, based on [MAXUS 95] code

// DATE: 27 March 1996

// DESCRIPTION: Sets ctrlw for differential mode and writes ctrlw to
// A2D Control Register

// RETURNS: void

// CALLS: outpw()

// CALLED BY: initHardware()

//*********************************************************************

void a2dClass::setDiff (void)
{

ctrlw |= DIFF;

outpw (CNTL, ctrlw) ;

//*************************************'k*******************************

// FUNCTION NAME: setChannel ()

// AUTHOR: Randy Walker, based on [MAXUS 95] code

// DATE: 27 March 1996

// DESCRIPTION: Loads sequencer memory with channel data
// CALLS: progSeq(), outpw(), runSeq()

// CALLED BY: initHardware()

// VARIABLES: seqg - sequencer number

// ch - channel number
// gl0 - x10 gain value
/7 g2 - X2 gain value

//*********************************************************************
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void a2dClass: :setChannel (unsigned seq,unsigned ch,unsigned glo0,
unsigned g2)

{
unsigned 4 = 0;
setProgSeq() ; // set sequencer program mode
outpw (COUNT, sed) ; // set sequencer address
'/ /load sequencer memory
d |= ch<<8; // channel
d |I= (g2<<12); // gain X2
d |= (gl0<<14); // gain X10
outpw (MEM, 4) ; // load sequencer
setRunSeq() ; // set sequencer run mode
}

//*****************************************'k***************************

// FUNCTION NAME: setProgSeg()

// AUTHOR: Randy Walker, based on [MAXUS 95] code
// DATE: 27 March 1996

// DESCRIPTION: Sets sequencer to program mode

// RETURNS: void

// CALLS: outpw()

// CALLED BY: setChannel ()

//*********************************************************************

void a2dClass::setProgSeq(void)
{

ctrlw [= PRG_SEQ;

outpw (CNTL, ctrlw) ;

//***********'k*********************************************************

// FUNCTION NAME: setRunSeq()

// AUTHOR: Randy Walker, based on [MAXUS 95] code
// DATE: 27 March 1996

// DESCRIPTION: Sets sequencer to run mode

// RETURNS: void

// CALLS: outpw()

// CALLED BY: main

//******************************************************************1\'**

void a2dClass::setRunSeq(void)

{
ctrlw &= ~PRG_SEQ;
outpw (CNTL, ctrlw) ;
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//*******************‘k****,*********************************************

// FUNCTION NAME: setCount ()

// BAUTHOR: Randy Walker, based on [MAXUS 95] code

// DATE: 27 March 1996

// DESCRIPTION: Loads sequencer address counter with number of channels
// to scan.

// RETURNS: vo::

// CALLS: outpw(), setProgSeq(), setRunSeq()

// CALLED BY: initHardware()

// VARIABLES: nch - number of channels to sequence

//*********************************************************************

void a2dClass::setCount (unsigned nch)

{
nch=nch<<4; // put in upper nibble
outpw (COUNT, nch) ; // out to register
setProgSeq() ; // reset segquencer
setRunSeq() ; // put it in run mode
}

//*********************************************************************

// FUNCTION NAME: setAcDc ()

// AUTHOR: Randy Walker, based on [MAXUS 95] code
// DATE: 27 March 1996

// DESCRIPTION: Sets AC or DC Coupling

// RETURNS: void

// CALLS: outpw()

// CALLED BY: initHardware()

// VARIABLES: acdc - holds coupling value

//*********************************************************************

void échlass::setAch(unsigned acdc)

{
if (acdc)
ctrlw |= ACDC; // acdc=1 -> DC
else
ctrlw &= ~ACDC; // acdc=0 -> AC
outpw (CNTL, ctriw) ;
}

//*********************************************************************

// FUNCTION NAME: lockTrigger()

// AUTHOR: Randy Walker, based on [MAXUS 95] code
// DATE: 27 March 1996

// DESCRIPTION: Prevents triggering

// RETURNS: void

// CALLS: outpw()

// CALLED BY: main ?

//*********************************************************************
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void q2dClass::lockTrigger(void)
{

ctrlw &= ~RST_TRG;

outpw (CNTL, ctrlw) ;

//*********************************************************************

// FUNCTION NAME: unlockTrigger()

// AUTHOR: Randy Walker, based on [MAXUS 95] code
// DATE: 27 March 1996

// DESCRIPTION: Allow the triger to function

// RETURNS: void

// CALLS: outpw()

// CALLED BY: main

//*********************************************************************

void a2dClass::unlockTrigger (void)
{
ctrlw |= RST_TRGISET_TRG;
outpw (CNTL, ctrlw) ;

//*********************************************************************

// FUNCTION NAME: setTrigger ()

// AUTHOR: Randy Walker, based on [MAXUS 95] code

// DATE: 27 Maxch 1996

// DESCRIPTION: Toggle the trigger (software triggering)
// RETURNS: void

// CALLS: outpw()

// CALLED BY: main

//**’*******************************************************************

void a2dClass::setTrigger (void)

{
outpw (CNTL, ctrlw&~SET_TRGIRST_TRG) ;
outpw (CNTL, ctrlw| SET_TRGIRST_TRG);

//**************************-k******************************************

// FUNCTION NAME: resetTrigger ()

// AUTHOR: Randy Walker, based on [MAXUS 95] code
// DATE: 27 March 1996

// DESCRIPTION: Clears the trigger

// RETURNS: void

// CALLS: outpw()

// CALLED BY: main

//*********************************************************************
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void a2dClass::resetTrigger (void)

{
outpw (CNTL, ctrlw!SET_TRG&~RST_TRG) ;
outpw (CNTL, ctrlw|SET_TRG| RST_TRG);

//*********************************************************************

// FUNCTION NAME: setRmsOn()

// AUTHOR: Randy Walker, based on [MAXUS 95] code

// DATE: 27 March 1996

// DESCRIPTION: Switches in the RMS measurement chip
// RETURNS: void

// CALLS: outpw()

// CALLED BY: main

//*********************************************************************

void a2dClass::setRmsOn(void)
{

ctrlw = RMS;

outpw (CNTL, ctrlw) ;

//*********************************************************************

// FUNCTION NAME: setRmsOff ()

// AUTHOR: Randy Walker, based on [MAXUS 95] code
// DATE: 27 March 1996

// DESCRIPTION: Switches out RMS measurement chip
// RETURNS: void

// CALLS: outpw()

// CALLED BY: main

//*********************************************************************

void a2dClass::setRmsOff (void)
{

ctriw &= ~RMS;

outpw (CNTL, ctrlw) ;

//*********************************************************************

// FUNCTION NAME: setSeqguencer ()

// AUTHOR: Randy Walker, based on [MAXUS 95] code

// DATE: 27 March 1996

// DESCRIPTION: Sets the A2D module to sequencer mode
// RETURNS: void

// CALLS: outpw()

// CALLED BY: main

//****************************************'k****************************
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void a2dClass::setSeduencer (void)

{

ctrlw |= SAM_SEQ;
outpw (CNTL, ctrlw) ;

//*********************************************************************

/7
/7
//
/7
//
1/
/7
//

FUNCTION NAME: setSamplerRate()

AUTHOR: Randy Walker, based on [MAXUS 95] code
DATE: 27 March 1996

DESCRIPTION: Sets the A2D module to sampler mode
RETURNS: void

CALLS: outpw()

CALLED BY: main

VARIABLES: rate - sampler rate

//******************************************'k**************************

void a2dClass::setSamplerRate (unsigned rate)

{

ctrlw &= ~SAM_SEQ; //Set to sampler mode

ctrlw &= CLRRATE; //Clear previous rate to 000
ctrlw |= rate; //Set new rate

outpw (CNTL, ctrlw) ; //Set Control Word

//*********************************************************************

/7
/7
/7
//
/7
/7
//

FUNCTION NAME: gateloutOn()

AUTHOR: Randy Walker, based on [MAXUS 95] code
DATE: 27 March 1996

DESCRIPTION: Set GATE1OUT bit of control word high
RETURNS: void

CALLS: outpw()

CALLED BY: main

//********'k***************************'k'********************************

void a2dClass::gateloutOn (void)

{

ctrlw {= GATE1OUT;
outpw (CNTL, ctrlw) ;

145




//**********************************’k**********************************

/7
/7
//
//
/7
//
/7

FUNCTION NAME: gateloutOff ()

AUTHOR: Randy Walker, based on [MAXUS 95] code
DATE: 27 March 1996

DESCRIPTION: Set GATE1OUT bit of control word low
RETURNS: wvoid

CALLS: outpw()

CALLED BY: main

//*****************************************************'k***************

void a2dClass::gateloutOff (void)

{

ctrlw &= ~GATEL1OUT;
outpw (CNTL, ctrlw) ;

//*********************************************************************

/7
/7
//
/7
//
/7
/7
/7
/7
/7
/7
/

FUNCTION NAME: squareWaveTimerl ()
AUTHOR: Randy Walker, based on [MAXUS 95] code
DATE: 27 March 1996
DESCRIPTION: Sets timer channel 1 to square-wave input
RETURNS: void
CALLS: outp()
CALLED BY: main
VARIABLES: dt-micro seconds per period (1 to 8192)
assuming 8 MHz clock input
ch-timer channel 1
ph-local variable
pl-local variable

//*********************************************************************

void é2dclass::squareWaveTimerl(unsigned dt)

{

char ph,pl;

pl = (dt*8)&0xXFF; // 8 CLOCKS PER uS

ph = (dt*8)>>8;

outp (TIMERC, 0x76) ; // initialize timer

outp (TIMERL, pl) ; // dt usS delay

outp (TIMER1, ph) ; // with 8 MHz clock
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//***********************'{e*********************************************

// FUNCTION NAME: initTiming()

// AUTHOR: Randy Walker, based on [MAXUS 95] code

// DATE: 27 March 1996

// DESCRIPTION: Initialize the A2D timing using timer 2
// RETURNS: void

// CALLS: outp()

// CALLED BY: initHardware()

// VARIABLES: dt - number of micro seconds (3 to 2730)

//*****************'k***************************************'k***********

void a2dClass::initTiming(unsigned dt)

{
char ph,pl;
pl = (dt*8)&0xXFF; // 8 CLOCKS PER uS
ph = (dt*8)>>8;
outp (TIMERC, 0xB6) ; // initialize timer2
outp (TIMER2,pl) ; // dt us delay
outp (TIMER2, ph) ; // with 8 MHz clock
}

//*******************************************‘k*************************

// FUNCTION NAME: resetFifo()

// AUTHOR: Randy Walker, based on [MAXUS 95] code
// DATE: 27 March 1996

// DESCRIPTION: Rewind FIFO to beginning of memory
// RETURNS: void

// CALLS: outpw()

// CALLED BY: main

//*********************************************************************

void a2dClass::resetFifo(void)
{

ctrlw &= ~RST_FIFO;

outpw (CNTL, ctxrlw) ;

//*********************************************************************

// FUNCTION NAME: setFifo()

// AUTHOR: Randy Walker, based on [MAXUS 95] code
// DATE: 27 March 1996

// DESCRIPTION: Enable FIFO to acquire data

// RETURNS: void

// CALLS: outpw()

// CALLED BY: main

//*****************'k***************************************************
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void a2dClass::setFifo(void) -
{

ctrlw |= RST_FIFO;

outpw (CNTL, ctrlw) ;

//**********************************************************‘k**********

// FUNCTION NAME: getFifoStatus()

// AUTHOR: Randy Walker, based on [MAXUS 95] code
// DATE: 27 March 1996 :

// DESCRIPTION: Returns FIFO status

// RETURNS: RETURNS: 6 - empty

// 5 - half full

// 1 - full

// CALLS: inpw()

// CALLED BY: main

//*******************************************************************'k*

unsigned a2dClass: :getFifoStatus (void)
{

return (inpw(STAT)&7);
}

//*********************************************************************

// FUNCTION NAME: getFifoData()

// AUTHOR: Randy Walker, based on [MAXUS 95] code

// DATE: 27 March 1996

// DESCRIPTION: Returns next data word stored in FIFO
// RETURNS: 1l6bits of data. Lower 12 are A2D data

// CALLS: inpw()

// CALLED BY: a2d class constructor

//*********************************************************************

signed a2dClass::getFifoData(void)
{
return (inpw(FIFO)&0x0FFF); //Get data and mask upper nibble

}

//*********************************************************************

// FUNCTION NAME: setIntRate()

// AUTHOR: Randy Walker, based on [MAXUS 95] code

// DATE: 27 March 1996

// DESCRIPTION: Program timer channel 0 to set the desired interrupt rate
// RETURNS: void

// CALLS: outp()

// CALLED BY: main

// VARIABLES: intrate-micro secs per period (1 to 8192)

// assuming 8 MHz clock input
//*********************************************************************
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void a2dClass::setIntRate(unsigned intrate)

{
outp (TIMERC, 0x36) ; // Set timer 0 to mode 3
outp (TIMERO, (intrate*8)&0xFF); // Load Least Significant Byte
outp (TIMERO, (intrate*8)>>8); // Load Most Significant Byte
}

//*********************************************************************

// FUNCTION NAME: intOff()

// AUTHOR: Randy Walker, based on [MAXUS 95] code
// DATE: 27 March 1996

// DESCRIPTION: Locksout the interupt request line
// RETURNS: void

// CALLS: outpw()

// CALLED BY: main

//***************************'k************'k****************************

void a2dClass::intOff (void)

{
ctrlw &= ~INT_EN; // INT_EN is active high
outpw (CNTL, ctrliw) ;

//*********************************************************************

// FUNCTION NAME: intOn()

// AUTHOR: Randy Walker, based on [MAXUS 95] code
// DATE: 27 March 1986

// DESCRIPTION: Enables system interuppt request
// RETURNS: void

// CALLS: outpw()

// CALLED BY: main

//****************************************************'***********‘k*****

void a2dClass::intOn{void)

{
ctrlw |= INT_EN; // INT_EN is active high
outpw (CNTL, ctrlw) ;

}

//*********************************************************************

// FUNCTION NAME: setTriggerLevel()

// AUTHOR: Randy Walker, based on [MAXUS 95] code

// DATE: 27 March 1996

// DESCRIPTION: Sets the trigger level

// RETURNS: void

// CALLS: outp()

// CALLED BY: main

// VARIABLES: tl-trigger level (0=-10V, 128=0V, 255=+10V)

//*********************************************************************
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void a2dClass::setTriggerLevel (unsigned tl)
{

outp (DAC, t1);
}

//*********************************************************************

// FUNGTION NAME: setTriggerPosition()

// AUTHOR: Randy Walker, based on [MAXUS 95] code
// DATE: 27 March 1996

// DESCRIPTION: Sets falling or rising edge trigger
// RETURNS: void

// CALLS: outpw()

// CALLED BY: main

// VARIABLES: tp: 0O=falling, l=rising

//*****************************************'k***************************

void a2dClass::setTriggerPosition(unsigned tp)

{
ctrlw &= ~TRG_POS; //Clear previous TRG_POS
ctrlw |= (tp)?TRG_POS:0; //Evaluate tp and set ctrlw
outp (CNTL, ctrlw) ;

}

//************************************‘**-k******************************

// FUNCTION NAME: zeroOffset()

// AUTHOR: Randy Walker, based on [MAXUS 95] code
// DATE: 27 March 1996

// DESCRIPTION: Calibrates zero offset error

// RETURNS: void

// CALLS: outpw()

// CALLED BY: a2d class constructor

//**************************'k******************************************

void a2dClass::zeroOffset (void)
{
unsigned d=0,1,g2,gl0;
float sum;
float offsetErr{4]1{4];
float bits[4][4];
unsigned gainsl0[4]
unsigned gains2[4]

{1,10,100,100};
{1, 2, 4, 83};

clrscr():;
printf (*\n\tGl0\tG2\t OFFSET\t\t BITS");

for(gl0 = 0; gl0 < 4; glO0++)

for(g2 = 0; g2 < 4; g2++)
printf ("\n\t3d\t2d\t+X.ZXXXXX\t+XX.X",gl0,g2);
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setRmsOff () ;
setAcDc(0) ;
setSequencer();
initTiming(3);
setChannel (0,0,910,92);
grndInput () ;

delay(5);

//Let new gain values stabilize

while (!kbhit()){
for (gl0 = 0; gl0 < 4; gl0++){

}

for (g2 = 0; g2 < 4; g2++){

setChannel(0,0,gl0,g92);

grndInput () ;

lockTrigger();

resetFifo();

setFifo();

unlockTrigger () ;

setTrigger () ;

delay (1) ;

while (getFifoStatus() != FULL);
lockTrigger();

for (i = 0, sum = 0.0; i < FIFOSIZE; i++){

d=getFifoData();

sun+=(float)d*10/2048;
}
offsetErr[glO][g2]=((float)(sum/FIFOSIZE)-lO{/

(float) (gainsl0[gl0] *gains2([g2]});

bits[gl0][g2] =
(float) (of fsetErr[gl0] [g2]1*4096/20*gains10{gl0] *gains2[g2]);

clrscr();
printf (*\n\tGl0\tG2\t OFFSET\t\t BITS");
for (gl0 = 0; gl0 < 4; glO++){

for (g2 = 0; g2 < 4; g2++)(
printf ("\n\t%d\t2d\t%+1.6£\t%+04.1£",g10,9g2,
offsetErr(gl0][g2],bits[gl0][g2]):

freelnput();
getch();

151




//*********************************************************************

// FUNCTION NAME: grndInput ()

// AUTHOR: Randy Walker, based on [MAXUS 95] code

// DATE: 27 March 1996

// DESCRIPTION: Grounds the two diff input for zero adjust
// RETURNS: void

// CALLS: outpw()

// CALLED BY: main

//*********************************************************************

void a2dClass: :grndInput (void)
{

ctrlw |= CAL;

outpw (CNTL, ctrlw) ;

//*************************'3\'*******************************************

// FUNCTION NAME: freelnput()

// AUTHOR: Randy Walker, based on [MAXUS 95] code
// DATE: 27 March 1996 .

// DESCRIPTION: Ungrounds the two diff inputs

// RETURNS: void

// CALLS: outpw()

// CALLED BY: main

//*********************************************************************

void a2dClass::freelnput (void)
{

ctrlw &= ~CAL;

outpw (CNTL, ctrlw) ;

//*********************************************************************

// FUNCTION NAME: zeroAdjust ()

// AUTHOR: Randy Walker, based on [MAXUS 95] code
// DATE: 27 March 1996

// DESCRIPTION: Adjust the trimmer on the PGA

// RETURNS: void

// CALLS: outpw()

// CALLED BY: main

//*********************************************************************

void a2dClass::zeroAdjust (void)

{
int i;
unsigned d;
float sum,offsetErr;

clrscr();
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printf ("\n\nADJUST THE. TRIM POT FOR 0.0 OFFSET\n\n") ;

setRmsOff () ;
setAcDc (0) ;
setSequencer () ;
initTiming(3) ;

while (tkbhit () ) {
setChannel(0,0,3,3);
grndInput () ;
lockTrigger () ;
resetFifo();
setFifo();
unlockTrigger () ;
setTrigger();
while(getFifoStatus() != FULL);
lockTrigger () ;

for (i = 0, sum = 0.0; i < FIFOSIZE; i++) {
d = getFifoDatal();
sum += (float)d*10/2048;

}

offsetErr=((float) (sum/FIFOSIZE)-10)/8000.0;

printf ("\tTHE MEASURED DC OFFSET IS: %+8.6f\r",offsetErr);
}

freeInput();
getch();

}
// end of file a2d.cpp
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APPENDIX B:

A. GLOBALS.H

#ifndef

#define

_GLOBALS_H
_GLOBALS_H

#include <dos.h>

// types

typedef
typedef
typedef

#define
#define

unsigned charBYTE;

Serial Port Communications Source Code (C++)

unsigned short WORD;
unsigned long DWORD;
MEM(seg,ofs) (* ((BYTE far*)MK_FP(seg,ofs)))
MEMW (seg, ofs) (* ((WORD far*)MK_FP(seg,ofs)))

enum Boolean {FALSE, TRUE};

// basic bit twiddles

#define
#define
#define
#define
#define

set (bit)
setb(data,bit)
clrb(data,bit)
setbit (data,bit)
clrbit(data,bit)

// specific to ports

#define
#define

setportbit (reg,bit)
clrportbit (reg, bit)

(1<<bit)

(data
(data
(data
(data

!
&

set (bit))
Iset (bit))
setb(data,bit))
clrb(data,bit))

(outportb(reg, setb(inportb(reg), bit)))
(outportb(reg,clrb(inportb(reg) ,bit)))

// navigation conversion factors and useful glcbal variables
MSECS_TO_DEGREES (1.0/(1000.0 * 3600.0)) // time conversion

#define
factors
#define
#define

DEGREES_TO_MSECS 3600000.0

MINS_TO_MSECS 60000.0

// Conversion constants for location of 36:35:42.2N and 121:52:28.7W

#define
#define
#define
#define
#define

#define

#endif

LatToFt 0.10134
T-ngToFt 0.08156

HemisphereConversion -1

// converts degrees Latitude to ft
// converts degrees Longitude to ft
// -1 if west of of Greenwich

RADIANMAGVAR 0.261799 // Local Magnetic variation in radians

radToDeg (180.0/M_PI)
degToRad (M_PI/180.0)
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B. BUFFER.H

#ifndef _BUFFER_H
#define _BUFFER_H

#include "toetypes.h*
#include "globals.h"

#define ONE (unsigned short)l

/***********************************************************************

CLASS: bufferClass

AUTHOR: Frank Kelbe, Eric Bachmann, Dave Gay, Rick Roberts
DATE: 11 July 1995

FUNCTION: Base class for use as a polymorphic reference in the

serial port code which defines a buffer to be used in
serial port communications.

R L R R R R R R AR R R E A XL R R E R R R R o R

class bufferClass (
public:
// Constructor
bufferClass (WORD sz);
~bufferClass() {}

// Checks for the arrival of new characters in the buffer
Boolean hasData() { return Boolean(putPtr != getPtr); }

.// How much of the Buffer is used (rounded percentage 0 - 100)
int capacityUsed();

Boolean Get (BYTE&) ; // read from the buffer
void A4ddA(BYTE) ; // write to the buffer
protected:

// Increment the pointer to next position

void inc(WORD& index) { if (++index == size) index = 0; }
WORD before (WORD index) // decrement the pointer
{ return ((index == 0) ? size - ONE : index - ONE);}
WORD getPtr; // Location of unread data
WORD putPtr; // Location to read data to
WORD size; // Size of the buffer in bytes
BYTE* buf;
Y:
#endif
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C. BUFFER.CPP

#inclﬁde <iostream.h>
#include <stdio.h>:

#include “globals.h"
#include "buffer.h"

//'k*********************************************************************

// FUNCTION NAME: bufferClass constructor

// AUTHOR: Frank Kelbe, Eric Bachmann, Dave Gay, Rick Roberts

// DATE: 11 July 1995

// DESCRIPTION: Instantiates a buffer

// RETURNS: void

// CALLS: none

// CALLED BY: compBuffer, GPSbuffer, bufferedSerialPort constructors
//

******************************-k**'k**************************************

pbufferClass: :bufferClass (WORD sz) : getPtr(0), putPtr(0), size(sz)

{
buf = new BYTE([size];

}

//**********************************************************************

// FUNCTION NAME: capacityUsed()

// AUTHOR: Frank Kelbe, Eric Bachmann, Dave Gay, Rick Roberts
// DATE: 11 July 1995

// DESCRIPTION: Returns the rounded percentage of the buffer used.
// RETURNS: void

// CALLS: none

// CALLED BY: bufferedSerialPort: :processinterrupt

//

************************************************************************

int bufferClass::capacityUsed()
{

<

int cap = (putPtr + size) % size - getPtr;
return 100 * cap / size;
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//*******************'*****,**********************************************

// FUNCTION NAME: Get

// AUTHOR: Frank Kelbe, Eric Bachmann, Dave Gay, Rick Roberts
// DATE: 11 July 1995

// DESCRIPTION: Reads a character from the buffer

// RETURNS: Boolean

// CALLS: hasData ()

// CALLED BY: GPSbuffercClass, compBufferClass

//

************************************************************************

Boolean bufferClass: :Get (BYTE& data)

{
if (hasbhata()) ({
data = buf[getPtr]:;
inc(getPtr) ;
return TRUE;
}
return FALSE;
}

//*****************‘k****************************************************

// FUNCTION NAME: Add

// AUTHOR: Frank Kelbe, Eric Bachmann, Dave Gay, Rick Roberts

// DATE: 11 July 1995

// DESCRIPTION: Writes a character to the buffer and checks for buffer
// overflow

// RETURNS: void

// CALLS: hasData

// CALLED BY: GPSbufferClass, compBufferClass

//

************************************************************************

void bufferClass::A4d(BYTE ch)

{
buf [putPtr] = ch;
inc (putPtr) ;
if (thasData()) { // if no data after adding data, it overflowed
cerr << "\nError: byteBuffer overflow\n";
}
}

// end of file buffer.cpp
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D. GPSBUFF.H

#ifndef _GPSBUFF_H
#define _GPSBUFF_H

#include "globals.h"
#include "toetypes.h"
#include "buffer.h*

#define GPSBLOCKS 4
#define LINE_FEED 10
#define CARR_RETURN 13

/****’k***************************************‘***************************

Class buffers GPS position messages via serial port communications.
Uses a multiple buffer system in which each buffer is capable of
holding a single position message. Buffers are filled and processed
sequentially in a round robin fashion. Messages are checked for
validity only upon attempted reads from the buffer.

***********************************************************************/
class gpsBufferClass : public bufferClass {
public:

gpsBufferClass (BYTE GPSblocks = GPSBLOCKS) ;
~gpsBufferClass() { delete [] block; }

Boolean hasData(); // a complete structure is ready
.Boolean Get (BYTES) { return FALSE; }
Boolean Get (GPSdata); // £ill in a complete structure
void Add(BYTE ch) ; ' // build the structure byte by bvte
protected:
Boolean validHeader (GPSdata); // check a block for valid header
GPSdata *block; // hold the buffered GPS data
WORD current, last; // current and last GPS block in
use
BYTE *putPlace; // for the next character received
}:
#endif
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E. GPSBUFF.CPP

#incldde <iostream.h>
#include <stdio.h>

#include *gpsbuff.h"”

i******.*****************************************************************

PROGRAM: gpsBuffer (Constructor)

AUTHOR: Eric Bachmann, Dave Gay

DATE: 11 July 1995

FUNCTION: Allocates message buffers, indicate that no data has been
received by equalizing current and last and set position
into which initial character will be read.

RETURNS : nothing.

CALLED BY: navigator class (nav.h)

CALLS: none.

***********************************************************************/

gpsBufferClass: :gpsBufferClass (BYTE GPSblocks) : current (0), last(0),
bufferClass (GPSblocks) // Call to base class constructor
{
cerr << "constructing gpsBuffer" << endl;
block = new GPSdata[GPSblocksl; // Create an array of GPSdata elements
putPlace = &(block[current][0]); // Set the place for first character

/***********************************************************************

PROGRAM: add

AUTHOR : Eric Bachmann, Dave Gay

DATE: 11 July 1985

FUNCTION: Interrupt driven routine which writes incoming characters
into the gps buffers

RETURNS:: nothing.

CALLED BY: interupt driven by bufferedSerialPort

CALLS: none.

***********************'k***********************************************/

void gpsBufferClass::Add(BYTE data)
{

static BYTE lastChar (data); // Holds last for <cr> <lf> detection
static Boolean lfFlag = FALSE; // True when message end is detected
if (1lfFlag && (data == ‘'@')) { // Is a new message starting?
last = current; // Set last to buffer with newest message.
inc (current); // Set current to the next buffer
160




// Set putPlace to the beginning of the next buffer.
putPlace = &(block[current] [0]);
1fFlag = FALSE; // reset for end of next message.

*putPlace++ data; // Write character into the buffer.

//Has the end of a message been received?
if ((lastChar == CARR_RETURN) && (data == LINE_FEED)) {
1fFlag = TRUE;
}
lastChar = data; //Save last character for <cr> <1lf>
detection

}

/***********************************************************************

PROGRAM: Get

AUTHOR: Eric Bachmann, Dave Gay

DATE: 11 July 1995

FUNCTION: Checks to see if a new message has arrived, copies it into
the input argument data and returns a flag to indicate
whether a new message was received.

RETURNS : TRUE, if a new valid position has been received.
FALSE, otherwise

CALLED BY: navPosit (nav.cpp)
initializeNavigator (nav.cpp)

CALLS: gpsBufferClass: :hasData

***********************************************************************/

Boolean gpsBufferClass: :Get (GPSdata data)
{

if (hasDataf()) { // Has a new valid message been
received.
// Copy the message out of the buffer.
nemcpy (data, block + last, GPSBLOCKSIZE);
last = current; // Indicate that this message has been read.
return TRUE;
}
else {
return FALSE;
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/************************_***********************************************

PROGRAM:  hasData

AUTHOR: Eric Bachmann, Dave Gay

DATE: 11 July 1995

FUNCTION: Determines whether a new message has been received and
checks to sée if it has a valid header.

RETURNS : TRUE, if a new valid message has been received.
CALLED BY: gpsBufferClass::Get (buffer.cpp)
CALLS: validHeader (buffer.cpp)

**************'k********************************************************/

Boolean gpsBufferClass::hasData()

{
// Has a new message with a valid header been received
if (last != current)
if (validHeader (block[last])) ({
return TRUE;
}
else {
return FALSE;
}
}
return FALSE;
}

/***********************************************************************

PROGRAM: validHeader

AUTHOR: Eric Bachmann, Dave Gay

DATE: 11 July 1995

FUNCTION: Checks to see if a message has the proper header for a
Motorola position message. (@E@Ea)

RETURNS : TRUE, if the header is valid. FALSE, otherwise.

CALLED BY: gpsBufferClass::hasData (buffer.cpp)

CALLS: none.

***********************************************************************/

Boolean gpsBufferClass::validHeader (GPSdata dataPtr)

{
if ((dataPtr[0] == ‘'@') && (dataPtr(l] == '@') &&
(dataPtr[2] == 'E') && (databPtr(3] == 'a')) {
return TRUE;
}
else {
return FALSE;
3
}

// end of file gpsbuff.cpp

162




F. COMPBUFF.H

#ifndef __COMPBUFF_H
#define __COMPBUFF_H

#include
#include
#include

#define
#define
#define
#define
#define

/**************************'k********************************************

Class buffers COMPASS messages received via serial port communications.
Uses a multiple buffer system in which each buffer is capable of
holding a single message. Buffers are filled and processed
sequentially in a round robin fashion. Messages are checked for
validity only upon attempted reads from the buffer.

*****'k*****************************************************************/

class compBufferClass

public:

compBufferClass (BYTE compBlocks

"toetypes.h"
"globals.h"
"buffer.h"

COMPBLOCKS
LINE_FEED
CARR_RETURN

g
o

10
13
103

111

: public bufferClass

COMPBLOCKS) ;

~c6mpBufferClass() {delete [] block:;}

Boolean hasData():;
Boolean Get (BYTE&L)

Boolean Get (compData);

void

Add (BYTE ch);

protected:

Boolean validHeader (compData) ;

compData *block;
current, last;

WORD

BYTE
}:

#endif

*putPlace;

{return FALSE;}

// for the next character received
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// get a complete structure filled in
// build the structure byte by byte

// for inheritance
// check a block for valid header
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G. COMPBUFF.CPP -

#include <iostream.h>
#include <stdio.h>-

#include "compbuff.h"

/******-*****************************************************************

PROGRAM: compBuffer (Constructor)
AUTHOR: Eric Bachmann, Randy Walker
DATE: 28 April 1996
FUNCTION: Allocates message buffers, indicates that no data has been
received by equalizing current and last and sets the position
into which initial character will be read.

RETURNS: nothing.
CALLED BY: compassClass (compass.h)

CALLS: none.

***********************************************************************/

compBufferClass: :compBufferClass (BYTE compBlocks): current(0), last (0),
bufferClass (compBlocks) // Call to base class constructor

cerr << "compBuffer constructor called" << endl;

block = new compData[compBlocks]; // Create array of message buffers
putPlace = & (block[current][0}); // Set position for first character

cerr << "compBuffer constructed." << endl;

/*****************************************************'k**************‘k'k*

PROGRAM: compBuffer: :Add

AUTHOR: Eric Bachmann, Randy Walker

DATE: 28 April 1996

FUNCTION: Interrupt driven routine which writes incoming characters
into the compass message buffers

RETURNS : nothing.

CALLED BY: interrupt driven by compassPort

CALLS: none.

***********************’r*****************'k*****************************/

164



void compBufferClass::Add(BYTE data) {

static Boolean 1fFlag = FALSE; //True, if message end detected

static int messageCount(0); // Counts characters in current message

if (1fFlag‘&& (data == '$')) | // Is a new message starting?
last = current; // Set last to buffer with newest message.
inc (current) ; // Set current to the next buffer

// Set putPlace to the beginning of the next buffer.
putPlace = &(block[current][0]);

1fFlag = FALSE; // reset for end of next message.
}
*putPlace++ = data; // Write character into the buffer.
messageCount++;

//Has the end of a message been received (<cr><1lf>)?
if (data == LINE_FEED) {
1fFlag = TRUE;

}

/***********************************************************************

PROGRAM : compBuffer: :Get

AUTHOR: Eric Bachmann, Randy Walker

DATE: 28 April 1996

FUNCTION: Checks to see if a new message has arrived, copies it
into the input argument data and returns a flag to indicate
whether a new message was received.

RETURNS : TRUE, if a new valid position has been received.
FALSE, otherwise

CALLED BY: compass.cCpp

CALLS: compBuffer: :hasData

***********************************************************************/

Boolean compBufferClass::Get (compData data)

{

if (hasbData()) { // Has a new valid message been received.
// Copy the message out of the buffer.
memcpy (data, block + last, COMPSIZE);
last = current; // Indicate that this message has been read.
return TRUE;

}

else {
return FALSE;
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/********************‘*******************'k*******************************

PROGRAM: compBuffer: :hasData

AUTHOR: Eric Bachmann, Randy Walker

DATE: 28 April 1996

FUNCTION: Determines whether a new message has been received and
checks to see if it has a valid header.

RETURNS: TRUE, if a new valid message has been received.
CALLED BY: compBuffer::Get
CALLS: validHeader (compBuffer.cpp)

***********************************************************************/

Boolean compBufferClass::hasDatal()

{
if ((last != current) && (validHeader (block[last]))) {
return TRUE;
}
else {
return FALSE;
}
}

/***********************************************************************

PROGRAM: validHeader

AUTHOR: Eric Bachmann, Dave Gay

DATE: 11 July 1995

FUNCTION: Checks to see if a message has the proper header for a
compass message. ($C)

RETURNS: TRUE, if the header is valid. FALSE, otherwise.

CALLED BY: compBuffer::hasData

CALLS: none.

***********************************************************************/

Boolean compBufferClass::validHeader (compData dataPtr)
{
if ((dataPtr[0] == '$') && (dataPtr[1l] == 'C')) {
return TRUE;
}
else ({
return FALSE;
}
}
//end of file compbuff.cpp
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H. SERIAL.H

#ifndef _SERIAL_H
#define _SERIAL_H

#include <dos.h>

#include <stdio.h>

#includé "globals.h"

#define ALMOST FULL 80 // % full to turn off DTR (user defines)

// leave the following alone - hardware specific

enum COMport {coM1=1, COM2, COM3, COM4};

enum BaudRate {b300, bl1200, b2400, b4800, b9600};
enum ParityType {ERROR=-1, NOPARITY, ODD, EVEN};
enum handShake {NONE, RTS_CTS, XON_XOFF};

enum Shake {off, on};

enum interruptType ({(rx_rdy, tx_rdy, line_stat, modem stat};

#define BIOSMEMSEG 0x40

#define DLAB 0x80
#define IRQPORT 0x21
#define EOI outportb(0x20, 0x20)

#define COMlbase MEMW (BIOSMEMSEG, 0)
#define COM2base MEMW (BIOSMEMSEG, 2)

#define TX (portBase)

#define RX (portBase)

#define IER (portBase+1)
#define IIR (portBase+2)
#define LCR (portBase+3)
#define MCR (portBase+4)
#define LSR (portBase+5)
#define MSR (portBase+6)
#define LO_LATCH (portBase)

#define HI_LATCH (portBase+1)

/***********************************************************************

CLASS: serialPortClass

AUTHOR: Frank Kelbe, Eric Bachmann, Dave Gay, Rick Roberts
DATE: 11 July 1995, last modified January 1997

FUNCTION: Parent class, defines a simple serial port.

***********************************************************************/

class serialPortClass {

public:
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serialPortClass (COMport port, BaudRate baud, ParityType parity,
BYTE wordlen, BYTE stopbits, handShake hs);

‘~serialPortClass() {}
Boolean Send (BYTE data);
Boolean Get (BYTE& data);

pro

};
#endif

inline Boolean dataReady () :;
Boolean statusChanged()
{ return Boolean((ifportbit (MSR,0) || ifportbit(MSR,1))); }

// the rest are only if handshake is specified as RTS_CTS

Boolean isCTSon () { return ifportbit (MSR,4); }
Boolean isDSRon () { return ifportbit (MSR,5); }
void setDTRon () { setportbit (MCR,0); }
void setDTRoff () { clrportbit (MCR,0); }
void toggleDTR() ;
void setRTSon () { setportbit (MCR,1); }
void setRTSoff () { clrportbit (MCR,1); }
void toggleRTS () ;
tected:
WORD portBase;
handShake ShakeType;
Shake DTRstate, RTSstate;

inline Boolean ifportbit (WORD, BYTE);
inline void toggle (Shake&) ;
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I. SERIAL.CPP

#include <iostream.h>
#include <stdio.h>
#include "serial.h"

// Usage Note: Because of the interrupt handlers used, you MUST call
/7 your compassPort & gpsPort objects port2 & portl so the
// right handler gets called and can properly service the interrupt.

/***********************************************************************

PROGRAM: serialPortClass (Constructor)
AUTHOR: Frank Kelbe, Eric Bachmann, Dave Gay, Rick Roberts
DATE: 11 July 1995, last modified January 1997

FUNCTION: Initializes one of the Serial Ports.
1) Determines the base I/0 port address for the given COM port
2) Sets the 8259 IRQ mask value
3) Initializes the port parameters - baud, parity, etc.
4) Calls the routine to initialize interrupt handling
5) Enables DTR and RTS, indicating ready to go

***********************************************************************/

serialPortClass: :serialPortClass (COMport port, BaudRate speed,
ParityType parity, BYTE wordlen,
BYTE stopbits, handShake hs) :
DTRstate(off), RTSstate(off), ShakeType(hs)

cerr << "serialPort constructor called" << endl;

delay (500);
switch (port) { // initialize appropriate port base
case COMl: portBase = COMlbase; ’
break;
case COM2: portBase = COM2Zbase;
break;
} // switch
const WORD bauddiv[] = {0x180, 0x60, 0x30, 0x18, 0xC};
// Change 1
outportb(IER,0); // disable UART interrupts

(void) inportb (LSR) ;

(void) inportb (MSR) ;

(void) inportb(IIR) ;

(void) inportb (RX) ;

outportb(LCR,DLAB); // set DLAB so can set baud rate (read only port)
outportb (LO_LATCH, bauddiv[speed] & O0XFF);

outportb (HI_LATCH, (bauddiv(speed] & OxFF00) >> 8);

setportbit (MCR, 3) ; // turn OUT2 on
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BYTE opt = 0;
if (parity != NOPARITY) {
setbit (opt, 3); // enable parity
if (parity == EVEN) // set even parity bit. if odd, leave bit 0
setbit (opt,4);
}
// now set the word length. len of 5 sets both bits 0 and 1 to
// 0, 6 sets to 01, 7 to 10 and 8 to 11
opt |= wordlen-5;
opt |= --stopbits << 2;
outportb (LCR, opt) ;

if (ShakeType == RTS_CTS) {
setDTRon () ;
setRTSon() ;

}

cerr << "serialPort constructed" << endl;

/*:**********************************************************************

PROGRAM: Get

AUTHOR: Frank Kelbe, Eric Bachmann, Dave Gay

DATE: 11 July 1895

FUNCTION: Gets a byte from the port. Returns true if there's one
there, and fills in the byte parameter. If there's no
character, the parameter is left alone, and false is
returned.

***********************************************************************/

Boolean serialPortClass::Get (BYTE& data)

{

if (dataReady()) ({ // make sure there's a char there
data = inportb(RX); // read character from 8250
return TRUE;

}

else
return FALSE;
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/*******************.********_********************************************

PROGRAM:
AUTHOR:
DATE:
FUNCTION:

Send

Frank Kelbe, Eric Bachmann, Dave Gay

11 July 1985

Outputs a single character to the port. Returns Boolean
status indicating whether successful

***********************************************************************/

Boolean serialPortClass::Send(BYTE data)

{
while (! (ifportbit(LSR,5))) {(}; // wait until THR ready
switch (ShakeType) ({
case NONE:
outportb(TX, data) ;
return TRUE;
case RTS_CTS:
if (isCTSon() && isDSRon()) {
outportb(TX,data) ;
return TRUE;
}
else {
return FALSE;
}
// case XON_XOFF: // add this later if needed
default:
break;
}
return FALSE;
}

/***************************************************************‘k*******

PROGRAM:
AUTHOR:
DATE:
FUNCTION:

dataReady

Frank Kelbe, Eric Bachmann, Dave Gay

11 July 1995

Checks port to see if a character has arrived.

**************************************************'k********************/
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inline Boolean serialPortClass::dataReady ()

{
/* " Un-commenting this code increases transmission errors, but this
code is useful for troubleshooting, so is retained if needed
if (ifportbit(LSR,1)) {
cerr <<"\nOverrun Error\n";
}
if t¢ifportbit(LSR,2)) {
cerr <<"\nParity Error\n";
)
if (ifportbit(LSR,3))
cerr <<"\nFraming Error\n";
}
*/
return ifportbit(LSR,0);
}

/***********************************************************************

PROGRAM: ifportbit

AUTHOR: Frank Kelbe, Eric Bachmann, Dave Gay
DATE: 11 July 1995

FUNCTION: Checks for byte on inportb register

***********************************************************************/

inline Boolean serialPortClass::ifportbit(WORD reg, BYTE bit)
{
BYTE on = inportb(reg);
on &= set(bit);
return Boolean(on == set(bit));

}

/***************************************************************’k*******

PROGRAM: toggleDTR

AUTHOR: Frank Kelbe, Eric Bachmann, Dave Gay

DATE: 11 July 1995

FUNCTION: toggles Data Transmit Ready if RTS_CTS is off

******‘k*******************************'k*'k*‘k**'k’k************************/

void serialPortClass::toggleDTR()
{
if (ShakeType != RTS_CTS)
return;
if (DTRstate == off)
setDTRon () ;
else
setDTRoff () ;
tcggle (DTRstate) ;
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/************************‘***********************************************

PROGRAM: toggleRTS

AUTHOR:: Frank Kelbe, Eric Bachmann, Dave Gay

DATE: 11 July 1995

FUNCTION: toggle Ready to Send (RTS) if RTS_CTS is on.

*******.****************************************************************/

void serialPortClass::toggleRTS ()
{
if (ShakeType != RTS_CTS)
return;
if (RTSstate == off)
setRTSon() ;
else
setRTSoff () ;
toggle (RTSstate) ;

ll***********************************************************************

PROGRAM: toggle

AUTHOR: Frank Kelbe, Eric Bachmann, Dave Gay
DATE: 11 July 1995

FUNCTION: toggles value of the input variable

-k**********************************************************************/

inline void serialPortClass::toggle(Shake& h)

{
if (h == off)
h = on;
else
h = off;
}

// end of file serial.cpp
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J. GPSPORT.H

#ifndef _GPSPORT_H
#define _GPSPORT_H

#include
#include
#include
#include
#include
#include

<dos .h>
<stdio.h>
"toetypes.h"
*globals.h"
"serial.h"
"gpsbuff.h*

// this is the type for a standard interrupt handler
typedef void interrupt (IntHandlerType) (...):

// com handler to interface with processlInterrupt
void interrupt COMlhandler(...);

/*******'k***********************‘****************************************

CLASS:gpsPortClass

AUTHOR:Rick Roberts

'DATE:28 January 1997

FUNCTION: Defines a buffered serial port which is interrupt driven

on receive, and buffers all incoming characters in the
gps buffer

***********************************************************************/

class gpsPortClass : public serialPortClass {

public:

gpsPortClas’s (COMport portnum = COM1, BYTE irg = 4,

BaudRate speed = b9600,

ParityType parity = NOPARITY, BYTE wordlen = 8,
BYTE stopbits = 1,

handShake hs = XON_XOFF) ;

~gpsPortClass () ;

Boolean Get (GPSdata& data); // buffered version

void processInterrupt(); // buffers the incoming character
protected:

gpsBufferClass messages;

BYTE irgbit; // Value to allow enable PIC interrupts for COM port
BYTE origirg; // keep the original 8259 mask register value
BYTE comint;
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IntHandlerType *origcomint; // keep original vector for restoring
// later

// this allows the actual handler to access processInterrupt ()
friend IntHandlerType COM2handler;

}i
extern gpsPortClass portl;

#endif

K. GPSPORT.CPP

#include <iostream.h>
#include <stdio.h>
#include *gpsPort.h"

/*'k*****************************************‘k**********'k****************

PROGRAM: gpsPortClass (Constructor)
AUTHOR: Rick Roberts
DATE: 28 January 1997
FUNCTION: Initializes the interrupts for the gps Serial Port.
1) takes over the original COM interrupt
2) sets the port bits, parity, and stop bit
3) enables interrupts on the 8250 (async chip)
4) enables the async interrupt on the 8259 PIC

************************************************‘***********************/

gpsPortClass: :gpsPortClass (COMport portnum, BYTE irg, BaudRate baud,
ParityType parity, BYTE wordlen,
BYTE stopbits, handShake hs)
serialPortClass (portnum, baud, parity, wordlen,
stopbits, hs),
irgbit(irqg), comint (irgbit+8)

cerr << "gpsPort constructor called" << endl;

if (ShakeType == RTS_CTS) { // turn it off first, it was enabled

setDTRoff () ; // in the base class
setRTSoff () ;
}
origcomint = getvect (comint); // remember the original vector
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setvect (comint, COMlhandler) ; // point to the new handler

setportbit (MCR, 3) ; // turn OUT2 on

disable(); // disable all interrupts - critical section
setportbit (IER,rx_rdy); // enable ints on receive only
origirg = inportb(IRQPORT); // remember how it was
clrportbit (IRQPORT, irgbit); // enable COM ints

if (ShakeType == RTS_CTS) ({
setDTRon () ;
setRTSon () ;

}

enable () ;

EOI;
cerr << "exiting gpsPort constructor' << endl;

/***********************************************************************

PROGRAM: ~gpsPortClass
AUTHOR: Rick Roberts, Frank Kelbe, Eric Bachmann, Dave Gay
DATE: 28 January 1997

FUNCTION: Resets the interrupts.
1) disables the 8250 (async chip)
2) disables the interrupt chip for async int
3) resets the 8259 PIC

***********************************************************************/

gpsPortClass::~gpsPortClass ()
{
setvect (comint, origcomint) ;
outportb(IER,0);
outportb(MCR, 0) ;
outportb (IRQPORT, origirqg) ;
EOI;

// set the interrupt vector back
// disable further UART interrupts
// turn everything off

/***********************************************************************

PROGRAM: Get

AUTHOR: Frank Kelbe, Eric Bachmann, Dave Gay

DATE: 11 July 1985

FUNCTION: Calls Get based on buffer type

‘k*****************************'k****************************************/
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Boolean gpsPortClass::Get (GPSdata& data)
{

retﬁrn messages .Get (data) ;

/***********************************************************************

PROGRAM: showPorts

AUTHOR: Frank Kelbe, Eric Bachmann, Dave Gay

DATE: 11 July 1995

FUNCTION: Prints interrupt vector addresses. This function is for

trouble shooting, it is not called in the code.

***********************************************************************/

/*
int showPorts()
{
BYTE* p = (BYTE*)COM2base;
p += 5;
fprintf (stderr, "%X “,*p+4) ;

fprintf (stderr, "$X\n", *p++) ;
fprintf (stderr, "IRQPORT = %X*, inportb(IRQPORT));
return 0;

/*********************************************************************'k*

PROGRAM: COMlhandler

AUTHOR: Frank Kelbe, Eric Bachmann, Dave Gay, Rick Roberts
DATE: 11 July 1995, last modified January 1997

FUNCTION: Specific interrupt handler which maps each interrupt to

the proper ISR.

***********************************************************************/

void interrupt COMlhandler(...)
{

portl.processInterrupt();
EOI;
3

/***********************************************************************

PROGRAM:: processInterrupt

AUTHOR : Frank Kelbe, Eric Bachmann, Dave Gay, Rick Roberts
DATE: 11 July 1995

FUNCTION: Calls the ISR based upcon buffer type

***********************************************************************/
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void gpsPortClass::processInterrupt ()

{

if (dataReady ()) { // make sure there's a char there
BYTE data = inportb(RX); // read character from 8250
nmessages .Add (data) ;

if (ShakeType == RTS_CTS && messages.capacityUsed() > ALMOST_FULL)

setDTRoff();

} .

} ;
// end of file gpsport.cpp

L. COMPPORT.H

#ifndef _COMPORT_H
#define _COMPORT_H

#include <dos.h>
#include <stdio.h>
#include “"toetypes.h"
#include "globals.h"
#include "serial.h"
#include *"compbuff.h"

// this is the type for a standard interrupt handler
typedef void interrupt (IntHandlerType) (...);

// com handler to interface with processInterrupt
void interrupt COM2handler(...);

/*******1\'*******'k***************************************************'k***

CLASS: compassPortClass

AUTHOR: Rick Roberts

DATE: 28 January 1997

FUNCTION: Defines a buffered serial port which is interrupt driven

on receive, and buffers all incoming characters in the
compass buffer

***********************'k********‘k*********‘:****************************/
class compassPortClass : public serialPortClass {
friend compassClass;
public:
compassPortClass (COMport portnum = COM2, BYTE irg = 3,
BaudRate speed = b9600,

ParityType parity = NOPARITY, BYTE wordlen = 8,
BYTE stopbits = 1, handShake hs = NONE);
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~compassPortClass () ;

Boolean Get (BYTE& data); // buffered version
void processInterrupt(); // buffers the incoming character
private:

compBufferClass headings;

BYTE irgbit; // Value to allow enable PIC interrupts for COM port
BYTE origirg; // keep the original 8259 mask register value
BYTE comint;

IntHandlerType *origcomint; // keep original vector for restoring
// later

// this allows the actual handler to access processInterrupt ()
friend IntHandlerType COM2handler;

Y
extern compassPortClass port2;

#endif

M. COMPPORT.CPP

#include <iostream.h>
#include "compport.h"

/***********************************************************************

PROGRAM: compassPortClass (Constructor)
AUTHOR: Rick Roberts
DATE: 28 January 1997

FUNCTION: Initializes the interrupts for the compass Serial Port.
1) takes over the original COM interrupt
2) sets the port bits, parity, and stop bit
3) enables interrupts on the 8250 (async chip)
4) enables the async interrupt on the 8252 PIC

***********************************************************************/

compassPortClass: :compassPortClass (COMport portnum, BYTE irgq,
BaudRate baud, ParityType
parity, BYTE wordlen, BYTE
stopbits, handShake hs) :
serialPortClass (portnum, baud, parity, wordlen,
stopbits, hs)
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}

cerr << "compassPort constructor called" << endl;

irgbit = irqg;
comint = irgbit + 8;
if (ShakeType == RTS_CTS) { // turn it off first, it was enabled
setDTRoff () ; // in the base class
setRTSoff () ;
}
origcomint = getvect{comint); // remember the original vector
setvect (comint,COM2handler) ; // point to the new handler
setportbit (MCR, 3} ; // turn OUT2 on
disable() ; // disable all interrupts - critical section
setportbit (IER, rx_xrdy) ; // enable ints on receive only

origirg = inportb(IRQPORT

Y; // remember how it was
clrportbit (IRQPORT, irgbit) ;

// enable COM ints

if (ShakeType == RTS_CTS) {
setDTRon () ;
setRTSon () ;

}

enable();

EOI;
cerr << "exiting compassPort constructor" << endl;

/***********************************************************************

PROGRAM: ~compassPort
AUTHOR: Rick Roberts, Frank Kelbe, Eric Bachmann, Dave Gay
DATE: 28 January 1997

FUNCTION: Resets the interrupts.
1) disables the 8250 (async chip)
2) disables the interrupt chip for async int
3) resets the 8259 PIC

***********************************************************************/

compassPortClass: :~compassPortClass ()

{

setvect (comint, origcomint) ; // set the interrupt vector back
outportb(IER,0); // disable further UART interrupts
outportb(MCR,0) ; ' // turn everything off
outportb (IRQPORT, oxrigirqg) ;
EOI;
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/***********************************************************************

PROGRAM: Get

AUTHOR: Frank Kelbe, Eric Bachmann, Dave Gay
DATE: 11 July 1995

FUNCTION: Calls Get based on buffer type

************************************'k**********************************/

Boolean compassPortClass::Get (BYTE& data)
{

return headings.Get (data);

/***********************************************************************

PROGRAM: showPorts

AUTHOR: Frank Kelbe, Eric Bachmann, Dave Gay

DATE: 11 July 1995

FUNCTION: Prints interrupt vector addresses. This function is for

trouble shooting and is not called from the code.

***********************************************************************/

/*
int showPorts()
{
BYTE* p = (BYTE*)COM2base;
p += 5;
fprintf (stderr, "%X "L RD4+) ;

fprintf (stdexrr, "%X\n", *p++) ;
fprintf(stderr, "IRQPORT = %X", inportb(IRQPORT)) ;
return 0;

}

*/

/';\-**********************************************************************

PROGRAM : COM2handler

AUTHOR:Frank Kelbe, Eric Bachmann, Dave Gay, Rick Roberts

DATE:11 July 1995, last modified January 1997

FUNCTION: Specific interrupt handler which maps each interrupt to
the proper ISR.

***********************************************************************/

void interrupt COM2handler(...)
{

port2.processInterrupt()};
EOI;
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/***********************************************************************

PROGRAM: processInterrupt

AUTHOR : Frank Kelbe, Eric Bachmann, Dave Gay, Rick Roberts
DATE: 11 July 1995

FUNCTION: Calls the ISR based upon buffer type

***********************************************************************/

void cqmpassPortClass::processInterrupt()

{

}

if (dataReady()) { // make sure there's a char there
BYTE data = inportb(RX); // read character from 8250

headings.2dd (data) ;
if (ShakeType == RTS_CTS && headings.capacityUsed() > ALMOST_FULL)

setDTRoff () ;
}

// end of file compport.cpp
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APPENDIX C. SANS TILT-TABLE TEST TUNING AND
CALIBRATION PROCEDURE

Isolate Accelerometer Input From Integrator

--Set K, to zero.

--Orily angular rate scale factor and bias effects will be reflected in error

Choose Initial Bias Weight (biasWght)

--Using project experience, background theory

Determine Angular Rate Scale Factor

--Baseline setting is 1.0.

- --Adjust by determining SANS output vs. actual angle excursion.
--Apply ratio to current scale factor to obtain corrected scale factor.
--Commanded tilt table angles taken as truth

--Scale factor adjusts the output of the IMU to actual tilt results.

--pScale (roll), gScale (pitch) rScale (yaw)

Adjust Gain Value Above Zero

--Re-includes accelerometer input to filter

Determine Accelerometer Scale Factor

--Same process as angular rate scale factor

--xAccelScale (pitch), yAccelScale (roll), zAccelScale(yaw)

Fine Tuning

--Adjust various factors from 1-5 above
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