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ABSTRACT [

sjk
The asymptotic method for determining

resonant responses of nonstationary non-

linear systems is presented. Resonance

conditions, resonance coefficients, and

higher order resonances are discussed. F!

The first asymptotic approximation nonsta- Ffjj
tionary solution is obtained for general s3jj
resonances. A gyroscopic system is ana- fj
lyzed for combination differential res-
onances vV = W, - 2w; and vV = w, = W;. T
Using the general solution, nonstationary
and stationary responses and stability
conditions are obtained. The numerical
results indicate that the change in the T
rate of variation of the frequency of ex- P
citation may shift the nonstationary re-
sponse from one stable mode to another I,
stable mode.
NOMENCLATURE
A? = nonoscillatory function L
L
aj = amplitude of the jth mode !
? = nonoscillatory function L,
b = linear stiffness of bearing C M
in the a and B directions m
_ (Figure 1) -
b, = quadratic nonlinear coeffi- n
cient of bearing C in the B P
~ direction m
b, = cubic nonlinear coefficient of Yy
bearing C in the B direction
= n X4
D v(t)[d/96] + Z£=1 wl[a/awll X?
= eccentricity of the rotor, D, 30
with respect to the rotation X,
axis (Figure 1) 30
P&, = coefficient of cos (k_© a,B
cik 0
n .
+ 2r=1 krwr) in
fm= Fm €

3j cikg...ky

1] o

coefficient of sin (k,6

+ k ¥ ) in

r=1
£ = F",
j Sjko...kn
coefficient of cos yj in f%

coefficient of sin y; in f;

perturbation force in the jth
mode

moment of inertia of the rotor
with respect to the trans-
verse axis passing through
the rotor's CG

moment of inertia of the rotor
with respect to the axis of
symmetry

moment of inertia of the rotor
with respect to an axis
passing through the lower
bearing perpendicular to the
symmetry axis, I, = I + ML}

upper limit of time interval

distance from bearing O to
bearing C (Figure 1)

distance from bearing O to the
rotor's CG

mass of the rotor

order of the asymptotic
approximation

number of degrees of freedom

weight of the rotor

periodic function of angles ©

and Y,,ee0, Yy

normalized coordinate

first asymptotic approximation
of X4, X3, = ajy cos Y35

first asymptotic approximation
of Xj, Xy, = —ajwy sin Yy

angles defining the position
of the axis of gyroscope in
the fixed coordinate axis
0XYZ (Figure 1)

small positive parameter
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9 = phase angle of the external
periodic excitation; angle
of rotation of the rotor in

Figure 1

v = instantaneous frequency of the
external excitation v = 9

T = slow time, T = et, which
varies from 0 to L

T* = gpecific time in the range of
T, T*¢([0,L]

¥y = phase angle of the jth mode

9} = angle between the axis of sym~
metry of the rotor system
and the rotation axis

By = natural frequency of the jth

mode of the linear system
. = d/dt, or differentiation with
respect to time t

Subscripts

c coefficient of the cosine
function

jth mode

coefficient of Y, in the har-
monic function associated
with the term

coefficient of 6 in the har-
monic function associated
with the term

s = coefficient of the sine

function

.
(] [

~
o
]

Superscript

1,2,...,m = order of the asymptotic ap~-
proximation for A,,B;,f.,N.,
3773707
Uj,kr; power for %he remain-
ing symbols except g's

INTRODUCTION

Nonstationary mechanical systems are
those systems whose parameters, such as
mass, stiffness, natural frequency, and
external perturbation frequency, are time
dependent. These systems are frequently
encountered in practical applications such
as transition resonance of turbo engines,
vibration testing of space vehicles, and
variable mass of a rocket during launch.

~ Lewis (1) was the first to present a
solution for the response of a nonstation-
ary, linear, single-degree-of-freedom me-
chanical system subjected to an excitation
whose frequency is a linear function of
time. An outstanding contribution in this
field of mechanics was also made by the
Russian school. In particular, Mitropol-
skii extended the asymptotic method to
nonstationary problems, although he did
not mention combination resonances in his
monograph. Combination resonances and
related concepts, such as resonance coef-
ficients and resonance conditions in sta-
tionary nonlinear systems, are discussed
by Mettler, (3) who applied the averaging
method, and by Leiss, (4) who used the
asymptotic method. An exhaustive bibliog-
raphy on the subject of nonstationary sys-
tems can be found in a survey paper by
Evan-Iwanowski.

In this paper, the asymptotic method is
presented to determine the resonant re-
sponse of nonstationary, nonlinear,
multidegree~of-freedom systems for general
resonances such as combination resonances.
The first asymptotic approximation solu-
tion is obtained for the general res-
onance. The concept of virtual work is
applied to define resonance, resonance co-
efficients, and higher order resonances.

A gyroscopic system exhibiting combination
differential resonances v = w, - 2w, and

v = w, -w, is analyzed. The general solu-
tion is used to obtain the nonstationary
response, stationary response, and stabil-
ity conditions for these resonances. Non-
stationary responses are obtained for the
various functions of the frequency of ex-
citation. The details of the work pre-
sented in this paper are given in
Reference 6.

ASYMPTOTIC METHOD

The equations of motion of an n-degree-
of-freedom, asymptotic, holonomic mechani-
cal system can be normalized and written
in the following form:

. 2
Xj + wj(r) Xj

= €£5(T,0, X peee s XnrKyrenesXy)
j = 1,¢..,n (1)

In equation (1), the terms which are func-
tions of T are varying slowly with time.
The method presented in this paper re-
quires that the system parameters vary
slowly compared to a natural time unit,
which is a time unit of the order of the
vibration period. The time T varies from
0 to L. Setting € = 0 in equation (1) and
assuming that T is a parameter results in
an equation, called an unperturbed equa-
tion, which can be solved as follows:

Xj = aj cos ¢j
aj = 0
Yy = wy

= 1,040 (2)

When ¢ # 0, i.e., in the presence of
perturbation, higher harmonics may appear
in the solutions and the natural frequency
may depend on the amplitude., Furthermore,
various resonances may take place, and the
variation of wj(t) and v(t) with slow
time, T, will result in additional phenom-
ena which are not observed in nonlinear
stationary systems. Taking into account
these physical arguments and keeping in
mind that when ¢ + 0 the solution should
be represented by equation (2), we use the
following form to solve equation (1) for
the mth approximation:

m
= i
Xj = aj('t) cos wj('r) + Z €
i=1
x Ud(T,a 0000 08n,0, 010000, ¥p) (3)
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where U% are unknown functions, periodic
in 6 and ¥;, « . ., Y, and dependent on
a5, « « oy an. The functions aj and ¥y
are determined from the following
equations:

m
a. = 2 : i
aj €
i=1
X A%‘(‘[,al,...,aHIGIUHI-O-Iwn) (4a)
m
0. o= E i
w] = wj + £
i=1
x B;‘(’l’,al,..-'anrerwll---r‘pn) (4b)

where Al and B% are nonoscillatory
functions.

U%, A%, and B} are selected so that,
after a; and ¥4 are replaced with the
functions defihed in equation (4), equa-
tion (3) will satisfy equation (1) up to
€™, The coefficients A} and B§ are also
unknowns in the determihation of Xy, Ob-
viously, equation (1) is insufficient to
determine the unique values of these coef~
ficients. To obtain unique values, an
additional condition is necessary; i.e.,
U% must be finite.

The asymptotic method presented here is
similar to the asymptotic method developed
by Mitropolskii for nonstationary systems.
The essential difference lies in the form
in which the solution is sought. In the
present method, this form is the same for
all resonances; in Mitropolskii's method,
it changes for different resonances., The
former approach, as will be clear later,
is a unified approach for all resonances,
and makes it possible to obtain resonance
coefficients and conditions.

After determining the first and second
derivatives of X. with respect to time t
by using equatjions (3) and (4) and substi-
tuting X: and X; in the left-hand side of
equation” (1), wé obtain

. 2 _ 1
Xj + ijj = e[}os wj(DAj

- sin yylay 57 393
1 2111 211
+ aJDBJ> + D Uj + UJJUJ]
m
i i
+ E € [Eos wj<DAj
i=2
- Biy.) - si . in,
2a3BJwJ) sin wj<2Aij
i 27 i
21
+ ijﬂ (5)

where the differential operators D, NB

17
and Ujg are defined as follows: J
n
_ 9 ]
D = v(t) z5 + E T (6a)
=1
aaj~t — Lni-g
i _ - i-
NJ cos wj —3%—— aJ ; Bij
=1
i-1 n
ant i-2 BA% i-%
+ e Akt oy B3
£=1 k=1
api-1 = e iog
- . 1=
sin wj aj —3%—— + 2 E AJBJ
2=1
i-1 n
sBY
. J ai=%
+ aj <8ak Ak
2=1 k=1
L i=-1
. 9B Bi‘l . aDUj . ng’l_l
Yy 3T 9T
i-1 n
sout .,
+ DUj; + 5ay A
2=1 k=1
I3 j=1 n
DUZ : .
L 005 ), B9 Hi-t
Y, kK da), k
2=1 k=1
JU.
+ 8(!»32 B;lc'2> (6b)
k
aud-1
U = J
ik aT
2=-1 n
U . aug . >
—d -p — -pP
+ 5ar, ARTP + T By (7)
p=1 k=1

Expanding f. in the right-hand side of
equation (1; into Taylor's series results
in

€55 (T, 0, X p0ee, X s Xy puen,Xy)

= e{E5(1,0,Xy1070eesXnoreeerXigrecesXny)

1 [ake,
+ z :- —31 (axHk
kt |axk
k=1 Xi=Xj,
aKE. .
+ < J (Axi)k]
oxk |,
Xi=Xji,

= 2 :eif§(r,e,a1,...,an,wl,...,wn) (8)

i=1



Xig = aj cos Vi

> .

Xip = —ajwj sin Yj
AX; = X; - a; cos Y,

= eul + €20} + €U + ...

AX; = X; + ajw; sin Yy
=¢e[ 1+ €2 1+ ...
f; = fj(T'e'XIO""'Xnorx1o""lxno) (9)

Equating the coefficients of the same
power of g, up to and including mth-order
terms, in equations (5) and (8), we obtain

2:q1 2r71

; Bwj 1 1
= 8sin w] aj 5t + 2Ajwj + aJDBJ
2a:Blu.)

J7317)
+ E5(T,8, X grenn i XngrXygrenniXpy) (20.1)

- cos wj(DA3 -

2712 2112
D U3 + ijj
= : 2 2

2a;B%w;)

- . 2
cos Y (DA iP3%5

+ fg - N% (10.2)

21m Zm
D Uj + ijJ

= sin ¢j(2A?wj + ajDB?)

2a.B%w.)

- cos y; (DAY - 2a BJuy

m _ m

The steps leading to the mth-order ap-
proximation are as follows: 1. calculate
ul, Al!, and B! by solving equation (10.1)
and constraining U} to exclude secular
terms. 2. Substifute the values of U!,
A%, and B! obtained in step 1 into f§ = n?
inh equation (10.2); calculate U2, AZ;, and
B? by solving equation (10.2) and con-
s%raining U§ to exclude secular terms.

Proceeding in a similar manner, we de-
termine the mth approximations as follows.
The values of U%, A%, and B} (i =1, 2,

e e oy I = 1) ogtained from the previous
steps are substituted into £% - N? in
equation (10.m). U™, AT, an& B® are then
calculated by solviﬁg e&uation %10.m) and
constraining UJ to exclude secular terms.
Substituting UW, Ag, and BT into equa-
tions (3) and }4) ields the mth asymp-
totic solution.

Resonances

Resonance is characterized by a large
system response amplitude caused by a
small perturbation force. This phenomenon
can be explained in terms of virtual work;
that is, it takes place when the virtual
work done by the perturbing forces over a

cycle of a particular mode is not equal to
zero over a large time interval.

Consider the virtual work of the per-
turbing force ef. along the virtual dis-
placement corresponding to the mode of the
first harmonic of Xj; i.e.,

virtual work = eijXj

z miem
€ [fj(daj cos wj
m=1

- ijaj sin wj)]

1]

(11)

Expanding f? into Fourier series results
in

m m
ERD I 31

kg kn
n

X cos <koe + z krwr> + FE3k,...kg
r=1
n

x sin <k°e + z qu;r>] (12)
r=1

Henceforth, F_ 4 and Fg4 will
be referred tSJ§§°F;¥£ and F:gtf°ié§pec-
tively. Substituting £% from equa-

tion (12) into equation” (11) and averaging
the virtual work over a large time inter-
val, T, indicates that only nonperiodic
terms will be nonzero. Hence, only those
terms whose frequencies are equal to ws,
i.e., whose indices k satisfy the follow-
ing relationship

n
kgv(Th) + D kpw  (T4) = & uy(x¥)

r=1

(13)

for some time t*c[0,L], will contribute
to f?,

The Fourier coefficients Fg s, and F_i,,
which correspond to the previols resonahce
relationship, are called resonhance coeffi-
cients. Hence, in order to have reso-
nance, two conditions should be satisfied.
First, the resonance relationship k,v(t)

+ Iy=q kpw,(t*) = £ w4 (7*) must be satis-~
fieé, and second, at least one of the cor-
responding resonance coefficients should
be nonzero.

Clearly the resonance conditions may be
satisfied by asymptotic approximations of
various orders of e, That is,

n
klv + klu, = * ws
oV Wy = % Wy
r=1

Fiju # 0 or Fgy # 0 (14.1)
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n
k%\) + E k%uur = % wj
r=1

Fl # 0 or Fiy # 0 (14.2)
where the superscripts indicate the order
of ¢ of the asymptotic approximation.

Some of the resonances may be satisfied
in more than one order of €, Hence, the
fth-order resonance may be defined as fol-
lows, Let us denote the elements of the

The resonance expressed by equation (16)
may be considered to be a general reso-
nance., Other types of resonance, which
are special cases of equation (16), are
listed in Table 1.

First Asymptotic Approximation Solution

. By expanding £5(t, 6, X190, . « «, Xpo,
Xip¢s « o o7 X9) into a Fourier series and
substituting the resulting values into
equation (10.1), we obtain

sets of indices satisfying the fth-orde p2yl! + w?yul! = sin ¢-<a- 321
resonance relationship as |(k&}. 1If {kr} J 373 I\I ot
is not contained in any {kg where i < &, + 2AY4. + a.pBm!
and if either the Fg4x or Féjk or both are 173 1773
nonzero, then the conditions are satisfied - cos ¢-<DA3 - 2a-B3w->
for the existence of the fth-order reso- 3 J 37373
nance. This resonance relationship may be 1,
expressed as + ce Fsjx sin [ko0
k, k,
n
2 2 (15) z
kv + kiwy = * w5 1
0 E rWr J + z krwr> + chk cos <k°e
r=1 r=1
The resonance relationship expressed by z
equation (13) may be rewritten as + E krwr> (17)
r=1
n
hov(t*) = Z ; hywy (T*) (16) For U} to be finite, the right-hand side
- of eqlation (17) must not contain harmon-
r=1 ics of frequency wj. Thus the terms con-
h taining harmonics of w; or secular terms
where should be set equal to zero. It should be
= k noted that, in £!, the harmonic terms
hy = k, whose frequency is w; for t*¢[0,L]} con-
h, = -k, ¢t drj tribute virtual work”in equation (11l);
Table 1. Resonance Types
Resonance Relationship Type of Resonance
n
hyv = E hrwy,
r=1
h, >0 Combination Additive Resonance
some h, < 0 Combination Differential Resonance
n
hw, =10, h, =0 Internal Resonance
r=1
Vo= Wy, hy =1, h, = Grj Principal Resonance
-\)— = w
hj i’
hy =1, h =0, r #3j Subharmonic Resonance
hj = 2 Parametric Resonance
hyv = wy, hy = 8¢5 Superharmonic Resonance
hyv .
Pyl Rational Resonances
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hence these terms cause resonance, These
same terms are secular terms in equa-

tion (17). Nonresonant and resonant cases
will be discussed in the following
paragraphs.

Nonresonance. If both resonance condi-~
tions are not satisfied, then the system
is called nonresonant. This indicates
that f% does not contain harmonic terms
whose frequency is w5 for t*e[0,L].
Equating to zero the coefficients contain~
ing harmonics of wj in equation (17) re-
sults in

2w
el [ DB} 1., =
aj 3—= + 2Ajwj + ayDB + Fgy5 = 0
- Blw. - Fl.. =
DAj ZaJBJwj FcJJ 0 (18)

where F¢55 and F344 are the coefficients
of cos y; and sin yj, respectively. Solv-
ing equation (18) for A! and B! and sub-
stituting these values into eqiation (4)

yields
1
2= e|-fFsyy L, (ouyem)
J 2 ws 2 73 ws
J J
Fl..
Ve = we = _cJJ
lpJ Wy € 2ajw] (19)
Resonance. A system is resonant if

both resonance conditions are satisfied.

This indicates that f! contains harmonic

terms whose frequency  is w5 for 1*¢[0,L].
Hence,

n
kov(t*) + }E: krwy (T*) = + wy(z*) (20)
r=1

Equating to zero coefficients containing
harmonics whose frequency is W for 1* re-
sults in

.DBl 1 . + pl,
+ ajDB} + Fliy * Flgy

+1

n
kpdy + lpj) Féjk

DAj - 2ayBjwy ~ Flyy - Fosy
n
x sin (#oe + }E: k¥, + wj> - Flix
r=1
n
x cos (koe + k oy, ¥ wj> =0 (21)
r=1

Solving equation (21) for A} and B! and
substituting these values into equa-~
tion (4) yields

. 1 Fl.. .
2= el- L Esis i a. (8wj/ar)
J 2 w5 2 73 Wy

n
cos (koe + E Kb, ¥ wj>
r=1

sjk n
ko\) + E krwr + wj
r=1
n
sin <k°6 + E ke * lp:|>
1 r=1
+ chk ”
ko\) + E kr(l)r + wj
r=1
. 1 Fl,
Yy =y toelT 5 gt
373
n
sin (koe + z kv, + ¢j>
- 1 r=1
+ stk "
aj<k°v + E k. w, £ wj)
r=1
n
cos <k°6 + E k.Y, + wj>
- 1 r=1
+ chk (22)

n
aj<%ov + E kpywy * wj)
r=1

It should be noted that the harmonic terms
in f! whose frequency is w; for T* con-
tribute virtual work in equation (11), re-
sulting in resonance., These terms, which
are secular terms in equation (17), con-
tribute terms in equation (22).

GYROSCOPIC SYSTEM

Consider the gyroscopic system shown in
Figure 1. It consists of a rotor, D,
mounted on the shaft, which is supported
by two bearings, C and O. The rigidity of
the upper bearing, C, is only assumed to
be nonlinear with respect to angle 8.

This assumption is made to simplify the
analysis, since the resonance phenomena
which will be discussed will be present
even if bearing C is also nonlinear with
respect to angle a. However, in this
case, the analysis will be much more in-
volved. The rotor D is assumed to be un-
balanced statically and dynamically.
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: | S = SHAFT
41 py X

Figure 1, Schematic Representation
of a Gyroscopic System Consisting
of a Disc Mounted on the Shaft

The differential equations of motion of
the rotor D are:

I,a + Ip8R + bya + ca

[(Ip - I) & + ML,e] [-82% sin 0 + § cos 6]
- eP sin 6 - Ip68

I,B - 1,80 + b,8 + b,8% + b8 + CB

[(Ip - I) & + ML,e][8% cos & + 6 sin 6]

- €eP cos 6 + Ipéa (23)
where
I, = I + ML2
b, = bL? - PL,

The bared terms are small and of the order
€. By defining

b, = ¢b,
53 = ¢gb,
c = ec
e = ece
6 = v(t)

8§ = ¢ av(t)
_ 9T
Q= €@ (24)

substituting equation (24) into equa-
tion (23), and neglecting terms of a
higher order of e than unity, we obtain

Iv, .
a+ TE_ B + Ka = e[-éa - F, sin 8
1

Ip(av/ar)
- —_—F B] (25a)
1

v, .
B-3a+xrp= s[—dB - K,B2
1
- K,B® + F, cos 6
I_(3v/31)
+ -iLE————— o (25b)
1
where
b,
K = =
Il
b2
K T e
1 Il
b
K = -3
2 Il
= S
§ = T,
Foo= {[(IP - I) @ + ML,e] v? + eP}
1 Il
[[(IP - I) 2 + ML,e] v2 - eP}
F, = = (26)
1
Normalization

Let the solution of equation (25) be in
the following form

Q
]
-
9]
.
s
.

.
(NI}

B = X (27)
j=1

(=

where Y, are indefinite integrals of x..
If equa%ion (25) is unperturbed, i.e., if
€ = 0, x: 1s assumed to be a harmonic
function”of frequency w;. Differentiating
equation (25a) with respect to t and sub-
stituting o and B from equation (27) into
the resulting equation and equation (25b)
results in the following characteristic
determinant:

K - w? _lEXu,z
I,
=0 (28)
I,v
- B K - w?
I,

Denoting the roots of equation (28) as

w =% wy
j=1, 2 (29a)
we obtain
I 12 12
w, = —[—2 v - ( vZ o+ 4K>
211, 1?
I T2y2 1/2
w, = —[—2 v + (—2;— + 4K>
I
1 1
Cy = -wj
j=1, 2 (29b)



Here the modes corresponding to the posi-
tive sign in equation (2%a) are consid-
ered. w,, which is negative, represents
an inverse precession, and w,, which is
positive, represents a direct precession.
By differentiating equation (25a) with
respect to t, substituting o and B from
equation (27) into the resulting equation
and equatlon (25b), and solving for xJ

+ w? %40 we obtain

= e[— }E: As

X+UJX

MN
[v]w

CyxiXyg

-
=
[ I}

L

-
jun

Nl

Cjaxixkxl

P
]
[
=
il
[
L
=

+

Lav)

Q

e]

]

D
e

, 2 (30)

where

>
]

3i (- 1)3[2—23—B <32> + 6Kwjy = W w05

Kw
-2t (3] /imc - o

. wsK
12 Wy = Wy
. wsK,
Cs, = (-1)3 —L~——
33 Wy = W,y
. wyw,VF, + KwiF
Py = (-1)3 - 2 Rl (31)

K(w, - w,)

Asymptotic Solution

Let us assume that v # w, or w, for any
7*¢[0,L], i.e., that there is no main res-
onance. In this case, X4 can be repre-
sented as follows:

x: = X

j j + Aj(r) cos 6 (32)

cos 6 is the forced vibration of
and Aj is

where A.
the linéar system due to P
given by

A. = _—_J (33)

Substituting x. from equation (32) and A

from equation %33) into equation (30) ana
including terms up to the order of ¢ re-

sults in

X + wiX.

- 1 2 3 .
Xy = e[gj + gj cos 8 + g3 sin 6

+ gg cos 20 + gg cos 38
+ g§1X1 + ggzxz + (951

+ g3, cos 6 + gj, cos 26)

x (X, + X,) + (g%2

+ g, cos 8) (X, + X,)?

+ gy (X + X5)°) (34)
where
g3 = -% Cyp (A, + A,)°2
g5 = —% Cys5(B) + Ay)2

g3 = v(Ay1A; + Ay,R,) + 2 ;;i v
+ Ay o7
g3 = -% Cy, (A + A,)2
i = -3 C55 (A, + A,)?
951 = =Xy

i
3
9%1 = "3 cjs(Al +A,)?

9;1 = ‘% Cja(Al + Az)z
932 = 'Cjz

932 = =3C45(a; + A,)
953 = ~Cy3

931 = -2C4, (A,

+ A,) (35)

Equation (34) is a special case of equa-
tion (1) with n = 2. Confining our anal-
ysis to the first asymptotic approxima-
tion, from equation (9) we obtain

f; = fj(Trerxlorxzorklorizo)

= g% + g§ cos 8 + g; sin @
+ gg cos 26 + gg cos 36

- g§,a,0, sin ¥, - g§,a,w, sin y,

+ (g}, + g5, cos 68 + g, cos 26)

x (a, cos ¥, + a, cos y,)

+ (g]!2 + g;Z cos 06)

x (a, cos ¥, + a, cos P,)?

+ gj,(a, cos §, + a, cos v,)®  (36)

Combination Differential Resonance
v = =20, + w,

Assume that

V(T*) = w, (T*) - 2w, (T*) (37)

for some time T*. The terms in f£! and f}
which cause the resonance expressed by
equation (37) are 1/2 [gi,a,a, cos (8 + y,
- ¥,)] for the resonance relatlonshlp
V+w, - w, ==-w,, and 1/4[g3,a} cos (8

+ 2¢,;)] for the resonance relationship

v + 2w, = w,, respectively. Equation (22)
can be used to obtain the following non-
stationary solution for the resonance re-
lationship v = w, - 2w,:
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. 1 1 (dw,/931)
a, = ¢g|3 g9},a, - 5 a, ———
2 2 n
sin (6 + 2y, - ¢,)
Vo~ w,

1 2 2

. gl, a2 a2
= + [ =R TS -1 _ 4 -2
¥ @1 €[<2w1 3915 8w, 3914 4w1>

+ % gi,a, == (6 + 2v, - wz)] (38b)

Vo= w,

. 1 1 (3w, /3T)

a, = e[% 9z23, - 3 &, —“1%;‘“‘
2 _p sin (8 + 2y, - ¥,)

7 92231 v + 2w, + w,

2 2

. g a a
v, = w, + e[}(iil + 3g,, §£— + 3g9,, I&;>
, cos (6 + 2y - ¢ )

- 9523 da,(v + 2w, + wz)

1
+ 5 9%,a,a, (38a)

(38¢c)

(38d)

In the stationary mode, amplitudes a,
and a, are constant; i.e.,
a, =a, =0 (39)

For the resonance region, using equa-
tions (38) and (39), we obtain

2 6 .2
a W
1. E%LE%L_a (40a}
a; 9119220
1 1
= - 911 _ 921 39,,
V= W, 2w, + € @, 0, + a [;w

_ 39,3 _ <3g13 - 3923><g§1922w1 )]
4w, 2w, 8w, 298,9%,w,

_ 93,932l _ 9229?1
32w, w,

I
) (2)"]]

From the Routh-Hurwitz stability criteria,
the stability conditions are

+1

X

(40b)

+

> 0, j=1, 2 (41)

aaj

and the stationary amplitude a,; should be
greater than-a%¥ which is the solution of
the following equation:

1
- 7(951 + g:z)

6 .6
911922 -
) [}_3"_— ¥ <

2 2 .2
9229128)

_ 9229§1>

32w, w, 4
6 6 6
922 )] 2 .2 2<2911 + gzz)
x | —=% - 4 + a‘| —t 2
<9$1 92291223 40,0,

2a2<_ 97,932} - ggzgf1>1ﬁ 4“"1><gt1;1>1/2
! 32w,w, 4 9i,/\q93,

+1

x <_ 393,952,915 + 393,972925 + 397191295
16w1w3 64w 3202

39?1912923 -
T T 32u,w, =0 (42)

Combination Differential Resonance
Vo= ow, = w,

Assume that
v(Tt*) = w,(t*) - w,(1*) (43)

for some time t1*e[0,L]. The terms in f!
and f1 which cause the resonance expressed
by equatlon (43) are 1/2 g%,4, cos (8

- ¥,) for the resonance relatlonshlp

vV - ~w;, and 1/2 g cos (8 + y,)
for tﬁe resdnance relatlonshlp v+ o,

= w,, respectively. Equation (22) can be
used to obtain the following nonstationary
solution for v = w, - w,:

(3w,/9d1)
a, =

1 1

7 9118 T 3 &, T

1 g?,a, sin (6 - ¢, + v, )
2 Vo= W, = W .

P, = w, + e[—(E gil + 3 gllii + 2 gléfé>
2 w, 8 w, 4 w,

cos (8 = Y, + y¥,)

(44a)

2
+ 5 918, a0 =0, - o) | (44Db)
. 1 1 (3w, /31)
a, = 5[? 9548, -~ 3 4 ‘“’ﬁ;’“‘
1 g>,a, sin (8 - y, + ¥, )] (44c)

[N}

v +ow;, + o, =

. 1g), 3 a3 3 a?j
wz““’z"'e[“(ja'z—""ggzaw +Zgzaw_2

1, cos (B - ¢y, + ¢;)
T 7 90% FvF W, F 0,0 (444)
The stationary solution is
2 6 2
a; _ _92,91.19,
PR S (45a)
a; 9119219,
149, 1493,
V= w0, = w, + g{y = - =
2 ! 2w, 2 w,

< <9519§1w1)] I <_
9229110, 16w, w, 4

N AR
911 ggz

(45b)
and the stability conditions are
£+ 500 j =1, 2 4
_aa.>r =1 (46)

]

Numerical Results

The following parameters have been used
for numerical calculation:

K = 352
K, = 6.25
K, = 9.4



£ = 0.0625

Il

F, = 0.128v% + 0.375
F, = 0.128v2 - 0.375

The nonstationary responses are ob-
tained by numerically integrating the non-
stationary solutions. It should be noted
that the natural frequencies and amplitude
of exciting force are functions of v;
i.e., they are time dependent. The sta-
tionary solutions of the system and the
nonstationary solutions for various func-
tions of v are plotted for the combination
differential resonances v = w, - 2w, and
v W, = w; in Figures 2 and 3 and Fig-
ures 4 and 5, respectively. It is obvious
from the nonstationary response that the

STATIONARY
STABLE

NONSTATIONARY
v =70 + 28t

NONSTATIONARY
v =70 + 36t

STATIONARY
UNSTABLE

e

STATIONARY
UNSTABLE

NONSTATIONARY
y=70+1t

A 1 1 L i L 1
0 60 70 80 90 100 1o 120

Figure 2. Nonstationary Response
for a Combination Differential
Resonance, v = w2 - 2w;, for
Linearly Increasing Fre-
quency of Perturbation

NONSTATIONARY
v =95 - 4

STATIONARY
STABLE

NONSTATIONARY
v=95 -1t

STATIONARY
UNSTABLE

o
Figure 3. Nonstationary Response
for a Combination Differential
Resonance, Vv W, 2w,, for
Linearly Decreasing Fre-
quency of Perturbation
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rate of the frequency of perturbation, v,
plays a significant role -in the modifica-
tion of the nonstationary response. The
nonstationary response may be shifted from
one stable solution to another by changing
the rate of variation of v.

NONSTATIONARY
v = 49 + 6t

"

NONSTATIONARY
v =49 + B8t

STATIONARY
STABLE

7/
4
STATIONARY
/ N UNSTABLE
/
NONSTATIONARY
v A8+ 0

-

Figure 4., Nonstationary Response
for a Combination. Differential
Resonance, V W, w,;, for
Linearly Increasing Fre-
quency of Perturbation

NONSTATIONARY
v =60+ 25 sint

STATIONARY
STABLE

/

/
A STATIONARY d
/

UNSTABLE ,\
/ NONSTATIONARY

v = 60 + 25 sin (0.5t}

70

Figure 5. Nonstationary Response
for a Combination Differential
Resonance, Vv W, w,, for
Periodically Varying Fre-
quency of Perturbation

CONCLUSIONS

The asymptotic method presented in this
paper results in a unified approach for
the determination of the resonant response
of a nonstationary, nonlinear mechanical
system for general resonances, including
combination resonances. The resonance
conditions can be used to determine the
possible resonances in a system. The
first asymptotic nonstationary solution

ﬁyg} o /@,{3 k



can be obtained directly from the general
solution, as demonstrated by the calcula~
tion of the combination differential reso-
nances v = w, - 2w, and v = w, -~ w, of the
gyroscopic system. The nonstationary re-~
sponses obtained for various functions of
v indicate that the nonstationary response
may shift from one stable mode to another
when the rate of variation of the fre-
quency of excitation is changed.
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