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Abstract 

In this study, modal control with various bases has been experimentally evaluated 

on an experimental Adaptive Optics (AO) testbed. In most custom-built adaptive 

optics control problems, spatial resolution and available stroke of the deformable 

mirror (DM) are assumed to be sufficient for the intended performance. In 

practice, however, there are situations where DMs of limited capability are used 

and the control system is desired to make most out of the hardware even in such 

situations. In this paper, the effect of the hardware limitations, such as the spatial 

resolution of the wavefront sensor and the deformable mirror (DM) on the 

performance of the AO system, is investigated and several control techniques are 

proposed to mitigate the problem. The derivatives of Zernike polynomials do not 

have the orthogonal property.A simple approximate orthogonalization technique 

is proposed along with the method to avoid the discrepancy of minimum error in 

the sensor output vector space and in the vector space where the control law is 

applied. An anti-windup technique is also proposed to reduce the adverse effect 

by an integral controller when saturation of the DM occurs. Effectiveness of the 

proposed techniques is demonstrated by experiments on the pseudo real-time AO 

testbed. 
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I. INTRODUCTION 

Adaptive Optics (AO) refers to an optical control system used in telescope or 

laser propagation systems where the phase aberration of the incoming beam is measured 

by a wavefront sensor (WFS) and the incoming beam, or the outgoing beam sharing the 

same optical path, is compensated by a Deformable Mirror (DM). Feedback control has 

been often used to address dynamic aberration such as atmospheric disturbance, but in 

recent years, more advanced control schemes such as optimal control and adaptive 

control have been proposed [1–4]. 

Adaptive optics is often modelled as a statically coupled Multi-Input Multi-

Output (MIMO) problem in which the dynamic coupling is ignored based on the 

assumption that the response of the deformable mirror is fast compared with the sample 

rate of the system. The plant is then represented by a matrix and pure step delays, and 

the control problem can be addressed by so-called modal control where the error is 

projected onto a basis to apply a control law in a vector space that is different from that 

of the sensor output. Any basis can be used, but they have different effects on the 

performance.  

In this paper, performances of modal control with various bases have been 

evaluated experimentally on an AO testbed, with a focus on the effect of hardware 

limitations that stem from the spatial resolution and the finite stroke of the DM. Two 

control techniques, namely, modified projection method and anti-windup control are 



proposed to mitigate the effect of the DM limitations.A simple method to orthogonalize 

Zernike derivative basis is proposed. 

For an AO system where the number of DM actuator channels is less than the 

number of WFS measurement points, the control system is over-determined and one can 

only obtain a solution that minimizes the error according to a certain definition such as 

the lest square error solution. The error by such a solution is the physical lower bound 

of the error for the given system, and the objective of the control system is to achieve 

this minimum error. However, an arbitrary basis does not necessarily produce this 

minimum error with modal control even when the basis vectors are orthogonal. The 

proposed modified projection method remedies this problem by removing the 

uncontrollable subspace components from the measured error.  

When saturation of the DM occurs due to a temporarily surge of the error, the 

state of the integral controller tends to "wind-up" and it takes a long time for the state to 

go back to the level before saturation. Even after the error level returns to the level that 

the controller does not need to cause saturation to compensate it. This problem is 

inherent in this type of controller and an application of a so-called anti-windup 

technique is proposed which can mitigate the symptom. The anti-windup controller 

computes the difference between the actual plant response and the computed plant 

response without saturation, which is the effect of the controller eliminated due to the 

saturation. By adding this estimated controller effect to the error fed to the controller, 

the anti-windup controller can avoid the overcorrection by the controller to prevent 

windup. The anti-windup control cannot prevent actuator saturation, but it can reduce 

the adverse effect of the controller when saturation occurs. 

Derivatives of Zernike polynomials evaluated at discrete points used as the basis 

for Zernike decomposition are not orthogonal. A simple method based on Singular 

Value Decomposition (SVD) is proposed which orthogonalizes the Zernike derivative 

basis while preserving the spatial characteristics of the Zernike polynomials to some 

extent at lower orders. 

The performances of the proposed methods are experimentally evaluated with a 

Proportional-Integral (PI) controller and a PI controller augmented using a single 

channel filtered-x (FX) Recursive Least Squares (RLS) adaptive filter control with three 

commonly used bases and the proposed basis, namely, the influence matrix (the pseudo 

inverse method), the Singular Value Decomposition (SVD) basis, the Zernike derivative 

basis, and the proposed orthogonal Zernike derivative basis. 

This paper is organized as follows: In the next section, modal control and 

various modal bases considered in this paper, as well as the FXRLS adaptive filter 

control, are briefly reviewed. Section III presents the proposed control techniques, and 

Section IV describes the AO testbed used for experiments and presents the experimental 

results. The conclusion and discussions are given in Section V. 

II. MODAL CONTROL OF ADAPTIVE OPTICS SYSTEM 

Figure 1 shows a model of the AO control system considered in this paper. The 

controller input )(ke  and output )(ku , which are the wavefront error and the DM 

command, respectively, are expressed as vectors. The dynamics of the DM are ignored 

and the path from )(ku  to )(ky  is represented by a constant matrix Γ  called the poke 

or influence matrix. Any delays in the system due to WFS and DM hardware operations 

are separated from the poke matrix and represented by a step delay z
-q

. The disturbance 

represented by vector   is the phase aberration measured by the WFS.  For Shack-



Hartmann (SH) WFS, the sensor output is the local slope of the phase and the number of 

the output channel is twice the number of the measurement points. Each column vector 

of the poke matrix represents the steady state response of the wavefront sensor for a unit 

input to a single channel of the DM. Since the poke matrix is usually not a diagonal 

matrix, i.e., there are static couplings of the channels, the system is a MIMO system.  
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Figure 1  AO system model 

One of the simplest approaches to design a controller for this MIMO system is 

decoupling the input and output channels, i.e., diagonalizing the poke matrix. One of the 

advantages of this approach is that a Single Input Single Output (SISO) controller can 

directly be applied whose computational cost is usually lower than that of a MIMO 

controller. One of the disadvantages is that it is not always possible to obtain a very 

accurate model of the plant and the performance and stability of the controller can suffer 

if the modelling error is large. 

When Γ  is an invertible square matrix, decoupling of the system can be done by 

multiplying the sensor output with the inverse of the poke matrix to make the matrix 

relating u(k) to e(k) an identity matrix. It is often the case, however, that Γ  is not a 

square matrix or does not have the full rank. In such a case, decoupling of each control 

channel can still be achieved by projecting the sensor output to a different vector space 

referred to here as the control space. Figure 2 shows a diagram of this type of control 

method know as modal control. The matrix F transforms the sensor output to the control 

space and the matrix G transforms it to the actuator command. 
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Figure 2 Controller structure for modal control 

 

For nmΓ  whose rank is r, there exists a pair of matrices mrF  and rnG  

that can uncouple the path from uc to ec. The matrix F can be constructed by choosing 

the row vectors from any set of linearly independent vectors in m  that spans the 

column vector space of Γ . The matrix FΓ  is then full rank and choosing  †FΓG   



will diagonalize the open loop path FΓ , where †  denotes the pseudo inverse which is 

defined as follows for a full rank matrix mrrm   ,A . 

   TT
AAAA

† 1
  (1) 

Note that the number of row vectors of F  can be reduced arbitrarily without 

affecting the decoupling of the system. This leads to the idea of modal reduction where 

the controller space is restricted to a subspace of the poke matrix column vector space in 

order to reduce the computation and increase the robustness. Once decoupling of the 

open-loop path is established, the feedback system can be treated as a set of SISO 

feedback loops and a single SISO control law can be applied independently to each 

channel. 

Modal Basis 

In this paper, three common bases are investigated as the basis for modal 

control, namely column vectors of the poke matrix, the Singular Value Decomposition 

(SVD) basis, and the Zernike derivative basis. These bases are described in this section. 

Poke Matrix 

If nmΓ  is full rank and mn  , then †
ΓF   and   IΓΓG 

††  can 

uncouple the open loop path and it is equivalent to the conventional pseudo inverse 

poke matrix approach. Here, I is an identity matrix of the appropriate dimension. In this 

case, the SISO control law C(z) is applied to the error converted by †
Γ  as follows: 
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It can be seen that it is equivalent to applying the control law to the sensor error 

projected onto the column vectors of the poke matrix and that T
ΓF  and 

1( )T G Γ Γ . 

The column vectors of the poke matrix, referred to as the poke matrix basis 

hereafter, represent the slope of the phase generated by the DM when unit input is 

applied to each channel separately. The poke matrix basis of the DM - WFS system 

used in the experiment is obtained from the measurement and the phase of the slope 

vectors (column vectors) is reconstructed by a zonal method proposed by Southwell [5] 

with a slight modification for the hexagonal geometry of the WFS. Figure 3 shows the 

first 36 basis vectors. 

 



mode 1 mode 2 mode 3 mode 4 mode 5 mode 6

mode 7 mode 8 mode 9 mode 10 mode 11 mode 12

mode 13 mode 14 mode 15 mode 16 mode 17 mode 18

mode 19 mode 20 mode 21 mode 22 mode 23 mode 24

mode 25 mode 26 mode 27 mode 28 mode 29 mode 30

mode 31 mode 32 mode 33 mode 34 mode 35 mode 36

 
Figure 3  Visualization of Poke matrix basis 

Singular Value Decomposition 

The poke matrix can be decomposed into three orthogonal matrices by the 

singular value decomposition as follows: 

 
T

VUΓ   (3) 

Here, U  and V  are orthogonal matrices whose column vectors are orthogonal and 

normalized. For nmΓ , the size of U  and V  are m × m and n × n, respectively. The 

matrix Σ  is a diagonal matrix whose diagonal components are the singular values of the 

matrix Γ . For a poke matrix whose rank is r < n < m, only the first r diagonal 

components of Σ  have non-zero values and the dimension of Σ  can be reduced to r × r  

with U  and V  also reduced to have only first r columns, which are denoted as 
rrΣ , rmU , and rnV . Control law can be applied to the error projected 

onto the column vectors of U , and the conversion to the actuator command can be 

obtained by: 

     c

T

c

T
uΣVuΓUu

1† 
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Figure 4 is the visualization of the phase reconstructed from the SVD basis 

vectors in U  for the first 36 modes. 
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Figure 4  Visualization of SVD basis 

 

Zernike Basis 

Zernike basis vectors are constructed from the Zernike polynomial by evaluating 

the Zernike polynomial at the coordinates of the sensor measurement points normalized 

by the diameter length. Zernike polynomial is a sequence of polynomials that are 

orthogonal and normal over the interior of a unit circle and commonly used in adaptive 

optics and optics in general because of its convenience for circular aperture optical 

components. 

The series of the fringe Zernike polynomials is given by 
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where m

nR  represents the radial function of a normalized radius Rr /  and R and r 

are the radius of the aperture and the radius of a point in the aperture, respectively.  The 

indices n and m are both integers with n ≥ m, n ≥ 0. There are variations of the 

polynomial for different applications, and derivations of the standard form of Zernike 

polynomials can be found in [5], [6]. The aberrations described by the lower order 

Zernike polynomials are commonly referred to by the names, such as focus, coma, 

astigmatism, and etc. Zernike polynomials can be transformed into Cartesian 

coordinates by the relationship between the polar and Cartesian coordinates.  



The coefficient of the Zernike polynomial can be obtained from the slope 

measurement of the SH WFS by the partial derivatives of Zernike polynomials as 

follows [7]: 

 
†d sc Z e

 
(7) 

where c is the Zernike coefficient, 
se  is the slope measurement, and the matrix †dZ  is 

the pseudo inverse of Zd  whose column vectors are the partial derivative polynomial 

evaluated at the coordinates points written as follows: 
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(8) 

The pseudo inverse †dZ  is defined as:  

  
1

† T Td d d d


Z Z Z Z . (9) 

The size of Zd  is 2m × n, where m is the number of sensor spots and n is the number of 

Zernike modes to be included. If †dZ Γ  is full rank, matrices †dF Z  and  
†

†dG Z Γ  

decouple the open loop .  Figure 5 is the visualization of the phase reconstructed from 

the partial derivative vectors in Zd  for the first 36 modes obtained for the WFS 

geometry considered in this paper. 
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Figure 5  Visualization of Zernike basis reconstructed from Zernike derivative 

vectors 



Adaptive Filter 

Adaptive filters are a class of adaptive control laws that have been used over the 

past several decades in the field of active noise and vibration control. Early application 

of adaptive filters to the field of adaptive optics and atmospheric turbulence 

compensation was proposed by Ellerbroek and Rhoadarmer [1] and adaptive filter has 

been actively investigated by Gibson, et al. [3], [4], [8] In this paper, a SISO filtered-x 

(FX) Recursive Least Square (RLS) algorithm with a Finite Impulse Response (FIR) 

transversal filter was applied in the control space decoupled by the bases described in 

the previous sections and the orthogonal Zernike derivative basis described in the later 

section. 

A block diagram of the adaptive filter, which augments an existing Proportional-

Integral (PI) control feedback loop, is shown in Figure 6.  
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Figure 6  Block diagram of normalized Filtered-X RLS adaptive filter augmenting 

an existing integral control feedback loop for each uncoupled channel 

The actuator and sensor delays are represented by pure time delay d1 and d2. The PI 

controller addresses the constant disturbance and the low frequency broadband 

disturbance while the adaptive filter addresses the disturbances which are outside the 

bandwidth of the PI controller. The control law of the adaptive filter loop is a FIR filter 

given by Eq. (10), whose input signal and adaptive coefficients )(kwi  called weights 

are expressed as vectors defined in Eq. (11) and Eq. (12). 

 ][][)()()(
0

kkikxkwku T
L

i

iAF xw


 (10) 

  T
Lkxkxk )(,),()(  x   (11) 

  T

L kwkwk )(,),()( 0 w  (12) 

The structure in Figure 6 is called feedback adaptive filter, where the input of the FIR 

filter called disturbance correlated signal denoted by x is estimated from the error and 

the adaptive filter output as: 
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Here, )(ˆ zS  is the transfer function from uAF(z) to ys(z) representing so-called secondary 

path dynamics, and )(zH  is the transfer function of the PI controller defined as follows 

with the integrator gain Ki and the proportional gain Kp: 

 

 

 
1

)(





z

KzKK
zH

ppi

 
(14) 

By Eq. (13), the effect of the adaptive filter output is removed from the error, leaving 

the estimate of the residual error of the existing PI feedback loop with the delay. This 

filtered error is correlated with the disturbance to be cancelled. 

Filtered-x is a technique to include the effect of the secondary path dynamics to 

improve stability of the adaptive filter.  The reference signal goes through the secondary 

plant before it is fed to the adaptive algorithm as follows: 
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The filter output uAF is added to the input of the integral controller and the filter 

adaptively modifies the frequency spectrum of x such that uAF cancels the disturbance 

observed in the error.  

In the RLS algorithm, the weight vector is updated such that the following cost 

function is minimized:  
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Here,   is called the forgetting factor which places more importance on the recent data 

and "forgets" the data from the distant past. A value of 1   implies all previous error 

history is included in the cost function, while smaller values excludes more past errors. 

A design guideline suggested for the value of   is given as follows [9], where L+1 is 

the number of weights: 
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Including the past history of the error usually provides faster convergence and smaller 

steady-state error compared with the Least Mean Square algorithm at the cost of more 

computational expense [10]. 

The update law for the weights is given by the following difference equation: 
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where the gain vector )(kK  is updated by: 
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The matrix )()( 1 kk RQ  is the inverse of the correlation matrix )(kR  of the reference 

input calculated recursively by:  

 T)]()1()[()1()( 11 kkkkk xQKQQ    . (20) 

The initial condition of Q  is a diagonal matrix whose component is determined by the 

expected variance of the measurement noise. For a uniform variance 2

m , the initial 

condition is given by: 

 IQ
2

1
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III.  CONTROLLER DESIGN FOR AO WITH HARDWARE 

LIMITATION 

Modified Projection 

For a static disturbance, the equation for the actuator command that eliminates 

the disturbance is written as follows: 
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
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For a full rank nmΓ  with mn  , the least square solution can be obtained by 

multiplying both sides by T
ΓΓΓΓ

† 1)(   as follows: 

  uΓuΓΓ
††    (23) 

The residual error for this command is given as: 

      0 I           냶
e Γu ΓΓ ΓΓ  (24) 

Since IΓΓ
†  , this residual error is not zero unless 0 , or   is in the null 

space of the matrix  †ΓΓI , which illustrates the fact that the correction of aberration 

introduced by a disturbance is limited by the property of the poke matrix. If the DM 

cannot generate the necessary mirror surface to compensate the given aberration at all 

points where the phase is measured, there will be residual error given by Eq. (24). 

In the control space, on the other hand, the exact solution can be obtained to 

eliminate the error by solving the following equation for uc: 

   0c c   e F ΓGu  (25) 



The command in control space can be obtained as: 

 ccc uuFΓFΓGuFΓF  †)( . (26) 

This solution Fu c  produces zero error in the control space but some residual error 

remains in the sensor space as follows: 
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Since    ††)( ΓΓIFFΓΓI   in general, the residual error 1e  is different from the 

least square error 0e . But 0e  is the minimum error in the least square sense, and 

therefore 1e  has to be larger than 0e , i.e., 
2

0

2

1 ee  .  

This inconvenience, however, can be fixed by replacing F with †' FΓΓF   in 

equation (26) while keeping  †FΓG  . The †
ΓΓ  term does not affect the decoupling of 

the open-loop path as shown in the following:  

 ccc '')('))(('' †††
uuFΓFΓuFΓΓΓFΓGuΓFF    (28) 

But the solution in the control space is now changed to †' FΓΓu c . 

Applying this solution to Eq. (27) produces the least square error in the sensor 

space as shown below, provided that FΓ  is square and invertible:   
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From a physical point of view, the term †
ΓΓ  removes the components of the 

disturbance that are orthogonal to the poke matrix column vector space, which is the 

subspace the deformable mirror does not have any influence. 

 

Orthogonalization of Zernike derivative basis 

 The Zernike polynomial is orthogonal and normal over the interior of a unit 

circle only for a continuous case. When it is evaluated at discrete points in the unit 

circle, the resulting vectors are not orthogonal. In addition, the derivative vectors (8) is 

not orthogonal even for a continuous case. Since an orthogonal basis is desired for 

modal control, a simple technique to obtain orthogonal Zernike derivative vectors which 

preserve the spatial characteristics of the low order modes to a certain extent can be 

investigated. The objective here is to obtain a basis that resembles Zernike and not to 

determine the true Zernike coefficients. 

Let dZ  be a matrix of Zernike derivative vectors which is sorted in ascending 

order from the left to right. Construct an arbitrary diagonal weight matrix whose 



diagonal components are ordered in an ascending manner. An example of weight is 

given as follows: 

 
)exp(/))1(exp( NkNawk 
 

(30) 

where N is the number of Zernike basis and a is some positive constant. Post-

multiplying the weight matrix to the Zernike derivative matrix and taking the singular 

value decomposition give the following three matrices: 

 }SVD{ ZWVΣU zzz d
T
  (31) 

The column vectors of 
zU  is orthogonal and the shapes of the lower order 

modes are similar to those of the original Zernike derivative vectors. The column 

vectors of 
zU  is referred to hereafter as the orthogonal Zernike derivative basis 

zd Z U . This method can also be applied to obtain an orthogonal Zernike basis by 

replacing dZ  in Eq. (31) with the discretized Zernike basis matrix Z . 

Figure 7 shows the visualization of the orthogonality of the obtained basis 

vectors for the weights shown in Figure 8. The plot on the left is the components of 
Td dZ Z  and the plot on the right shows those of Td dZ Z . Each basis vectoris normalized 

to have Euclidean norm 1. The matrix Td dZ Z  is an identity matrix indicating that the 

column vectors of dZ  are mutually orthogonal.  The product Td dZ Z , on the other 

hand, has non-zero off-diagonal components indicating that the column vectors of dZ  

are not exactly orthogonal.  

If TdZ Γ  is full rank, setting TdF Z  and  
†

TdG Z Γ  will decouple the open 

loop path observed from the control space. The coefficient of the original Zernike basis 

can be obtained from the coefficient of the orthogonal Zernike derivative basis 
T

sda Z e  as follows: 

 s z zd † †
a Z e WV Σ a  (32) 

Figure 9 is the visualization of the corresponding wavefront shapes of the first 

36 Zernike derivative basis vectors excluding piston mode. It can be seen that the spatial 

frequency characteristics are similar to the Zernike derivative shown in Figure 5 for 

lower order modes. 
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Figure 7  Orthogonality of the orthogonal Zernike and original Zernike derivative 

basis 
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Figure 9  Visualization of the phase reconstructed from the orthogonal Zernike 

derivative basis  

Anti-windup control 

When saturation of the DM occurs due to a temporarily surge of the disturbance, 

the state of the integrator in the PI controller can grow, or "wind up", and the controller 

output continues to saturate the actuator even after the disturbance surge is gone. This 

so-called windup problem is inherent in a system with integral controller, and a 

technique called anti-windup control has been developed in control engineering. Figure 

10 shows the block diagram of a simple anti-windup control applied to the control 

system considered in this paper. 
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Figure 10  PI and adaptive filter controller with anti-windup feedback signal 

 

The anti-windup control estimates the effect of the controller suppressed by the actuator 

saturation and compensates the error fed to the controller to avoid the overcorrection by 

the controller. It cannot prevent actuator saturation, but the effect of the saturation is 

now limited to the actual duration of the time when a large disturbance is present to 

cause actuator saturation. Once the disturbance surge retreats, the controller 

performance goes back the level where no saturation is involved. 

IV.  EXPERIMENTS AND RESULTS 

Adaptive Optics Testbed 

Figure 11 shows a picture of the AO testbed used for the experiment. It consists 

of a laser unit, a SH WFS, a DM, and two liquid crystal (LC) spatial light modulators 

(SLMs) to project a dynamic phase aberration. One science camera is placed to capture 

the beam image.  It is a CCD camera with a resolution of 640 x 480 pixels and an 8-bit 

frame rate of 75 fps.  The laser used in the experiment is a continuous wave Helium 

Neon Class IIIa laser with output power of 0.5 mW, operating at a wavelength of 633 

nm. 

 

 

 
Figure 11  Schematic of laboratory system 

 



Wavefront Sensor 

The SH WFS consists of 127 lenslets in a hexagonal pattern and a CMOS 

monochrome camera with a resolution of 640 x 480 pixels and an 8-bit frame rate of 60 

fps. In order to obtain the actual slopes, the measured offset of the spot centers have to 

be divided by the focal length of the lenslets. In this study, the slope error measured by 

the SH WFS is evaluated only in relative terms and the spot center deviation in the unit 

of pixel is used as the slope error.  

It is common to remove so-called tip/tilt modes by a fast steering mirror instead 

of the deformable mirror as the tip and tilt error is often much larger than the 

deformable mirror stroke. In the experiments, the tip/tilt modes are ignored by 

subtracting the mean of the x and y slopes from the error instead of forming a separate 

tip/tilt correction loop. 

Deformable Mirror 

The DM is a 37-channel micro-machined membrane deformable mirror 

(MMDM) and controlled by applying an array of voltages to electrodes on the back 

surface of the mirror. The membrane mirror is fixed on the outside rim and the applied 

voltage moves the mirror surface in one direction from a flat reference producing 

concave shapes. In order to allow bidirectional control, the mirror is initially set at a 

biased position in the middle of its range of deflection. The input signal to the DM 

normalized from -1 to 1 is converted so that the quadratic relationship between the 

voltage and the mirror surface movement is compensated and the zero command  

corresponds to the bias position. The DM saturates for input outside of -1 to 1 range. 

The poke matrix used in the control was measured by applying the input 

command to a single channel and observing the output of the WFS. For each channel, 

poke commands with various magnitudes were applied to cover the entire input range 

and a least square method was applied to obtain the mean value of the poke matrix. 

Because the DM has the fixed rim, the DM cannot produce the piston mode which 

cannot be observed by SH WFS. As a result, the poke matrix has the full rank. 

SLM and Disturbance Generation 

Only one of the SLM located in the system pupil plane conjugate to the 

wavefront sensor, the deformable mirror is used, and no aberration is applied to the 

other SLM. The resolution of the SLM is 800x600 pixels and the maximum operational 

rate is 33Hz. It consists of a diffraction grating that modulates the incoming wavefront 

by  radians.  To increase the modulation range to a full 2 , a Fourier filter in the form 

of an iris or aperture stop is placed in the beam to select either the +1 or -1 diffractive 

order. Alignment biases are applied to separate the diffractive orders enough to pass 

through the beam of the desired order.  

The SLM is driven by software developed by the Naval Research Laboratory 

(NRL) [11]. The algorithm generates the phase aberration by augmented K-L 

polynomial expansion shown in Eq. (33), which includes Tatarskii’s assumption of a 

Gaussian random distribution in phase variances due to turbulence. 
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Here, M is the number of K-L modes and 
ia  are the coefficients representing the 

weights given to each mode. The coefficients are calculated based on the specified 

parameters such as the telescope diameter, D , and the atmospheric coherence length or 

Fried parameter, 
0r ,  in addition to the Zernike-Kolmogorov residual errors measured 

experimentally by Fried [12] and calculated by Noll [13]. The Karhunen-Loève modes 

are used because they contain a statistically independent set of coefficients based on 

Zernike modes, and they are often used in turbulence simulation.  

The 
iX  is a continuous function of time generated by interpolating the Gaussian 

distribution random numbers with spline curve to obtain smooth transition between 

frames.  

The disturbance used in the experiments is generated based on the atmospheric 

profile of a telescope aperture of 1 m diameter and an atmospheric coherence length of 

0 15r   cm, representing an atmosphere of medium strength. The actual aberration 

observed by the WFS is slightly scaled down due to the optical alignments of the 

testbed. The Zernike modes contained in the aberration are 18 modes and the 

interpolation points for 
iX  are 7 or 8 intervals between the random numbers. The 

random number generation and spline curve fitting are repeated for each mode and the 

phase screen that combines all modes are applied on the SLM operating at the sample 

rate of 33Hz. 

Controller 

A desktop computer is used to control the deformable mirror, the SH WFS, and 

the science camera, and another computer is used to control the SLMs to produce the 

disturbance. The control algorithm is implemented in Matlab script and executed under  

a Microsoft Windows XP operating system. Although this system does not provide real-

time control of the hardware, an external driver program to obtain the images from the 

WFS camera sets the upper bound of the sample rate of the control loop and the sample 

rate is maintained in a usable range. 

Modified Modal Decomposition 

Figure 12 shows the RMS of the sensor space error when the conventional 

modal decomposition using F and G described in Section II was applied. The aberration 

is static and the controller is a PI controller, and all 37 modes are controlled except for 

the orthogonal Zernike derivative and Zernike derivative bases with which tip and tilt 

modes are excluded. While the poke matrix basis and SVD basis converge to a steady 

state value, the orthogonal Zernike derivative basis and regular Zernike derivative basis 

are having difficulty to settle to a constant value. Figure 13 shows the results of the 

same experiments when the modified projection is applied. The errors by all bases now 

converge to the same value which is supposed to be the minimum error that can be 

achieved with the given physical system.  
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Figure 12  RMS of the error vector components no filtering of the error is applied   
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Figure 13  RMS of the error vector components when the filtering of the error is 

applied   

Figure 14 and Figure 15 show the corresponding science camera images at 

steady state.  
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Figure 14  Image of the beam with conventional projection of the error 
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Figure 15  Image of the beam with modified projection method 



Significant improvement by the modified projection method can be observed for the 

Zernike type basis. 

Anti-Windup Controller 

The effectiveness of the anti-windup control was evaluated with a dynamic 

phase aberration whose RMS value observed by the WFS is shown in Figure 16. The 

performance of the PI and the PI with RLS adaptive filter control were obtained for the 

four different bases. All 37 modes are controlled by the poke and SVD basis, and 35 

modes without the piston, tip, and tilt modes are controlled by the orthogonal Zernike 

derivative and Zernike derivative bases. The modified projection is applied in all cases. 

Table 1 shows the parameters of the controllers which were obtained from preliminary 

trials.  

 

Table 1  Controller parameters for dynamic aberration control 

Full (37) modes Poke Basis SVD Basis Ortho-Zernike  Zernike 

PI controller 
Ki = 0.2 

Kp = 0.05 

Ki = 0.2 

Kp = 0.05 

Ki = 0.2 

Kp = 0.05 

Ki = 0.2 

Kp = 0.05 

RLS AF 

 0.9999 

2

m
4 

L 15 

 0.9999 

2

m
5 

L 15 

 0.9999 

2

m
300 

L 15 

 0.9999 

2

m
150 

L 15 

 

 

0 5 10 15 20
0

0.5

1

1.5

2

sec

R
M

S

 

 

No Controller

 
Figure 16  RMS of the sensor space error vector without applying a feedback 

controller 

Figure 17 through Figure 1920 show the sensor space error RMS by the PI 

controller with and without the anti-windup control for the poke, SVD, Zernike 

derivative and orthogonal Zernike derivative, respectively. Figure 23 through Figure 21 

show the result of PI with RLS adaptive filter control.  
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Figure 17  RMS of the sensor space error vector by the PI controller with poke 

basis 
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Figure 18  RMS of the sensor space error vector by the PI controller with SVD 

basis 
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Figure 19  RMS of the sensor space error vector by the PI controller with Zernike 

basis    
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Figure 20  RMS of the sensor space error vector by the PI controller with 

orthogonal Zernike derivative basis 
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Figure 21  RMS of the sensor space error vector by the PI and RLS adaptive filter 

controller with poke basis 
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Figure 22  RMS of the sensor space error vector by the PI and RLS adaptive filter 

controller with SVD basis 
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Figure 23  RMS of the sensor space error vector by the PI and RLS adaptive filter 

controller with Zernike basis    
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Figure 24  RMS of the sensor space error vector by the PI and RLS adaptive filter 

controller with orthogonal Zernike derivative basis 

Figure 25 and Figure 26 show the time average of the RMS of the errors shown 

in the previous figures. In both PI and PI with RLS adaptive filter cases, the error is 

reduced by the anti-windup control.  
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Figure 25  Summary of error reduction by anti-windup with PI controller 
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Figure 26  Summary of error reduction by anti-windup with PI and RLS adaptive 

filter 

More significant improvement is obtained when the RLS adaptive filter is used, and it is 

because the adaptive filter attempts to attenuate the disturbance at a wider frequency 

range than the PI controller which leads to more frequent actuator saturation. 

Analysis of the effect of mode reduction  

Figure 27 and Figure 28 show the time average RMS of the sensor space error 

vector plotted against the number of basis vectors used for the PI controller and PI with 

RLS adaptive filter, respectively. The first three modes, namely piston, tip, and tilt, are 

removed from the Orthogonal Zernike derivative basis and Zernike derivative basis 

control and 35 is the maximum number of modes addressed for these bases. The 

modified projection and anti-windup control are both applied. 
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Figure 27  Time mean of the sensor space error RMS by PI controller 
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Figure 28  Time mean of the sensor space error RMS by PI and RLS adaptive 

filter controller 

For the poke matrix basis, the error increases as the number of addressed modes 

reduces, while the curve of the SVD basis is less steep. For the orthogonal Zernike 

derivative and Zernike derivative bases, the error actually reduces as the addressed 

modes are reduced down to 20 modes before the error increases with the reduction of 

the modes. This result is further analyzed by investigating the decomposition of the 

disturbance by each basis.  

Figure 29 shows the magnitude of the error projected on each basis. The value is 

normalized by the largest magnitude for each mode. It can be seen that the error is 

concentrated in the lower order modes for the SVD and Zernike type modes, but no 

such concentration is observed for the poke matrix basis.  In poke basis, the higher 

modes are also significance in the phase error and reduction of those modes directly 

impacts the resulting error.  

For SVD, the basis vectors are ordered in terms of the "gain" of each mode, and 

ignoring the higher order modes, which is harder for the DM to control even in the full-

mode case. Also, the projection of the disturbance on the SVD basis is more 

concentrated in the lower modes, and the error increase by mode reduction is much 

smaller than that of the poke matrix. 

In this experiment, the disturbance is generated by the Karhunen-Loève 

expansion which is based on the Zernike polynomials up to 18th order, and the 

coefficients are defined in the disturbance generation to reflect the atmospheric 

aberration's spatial frequency spectrum. As a result, the concentration of the disturbance 

to the lower order modes is even stronger in the Zernike type bases than the SVD basis 

case and these bases can produce less error with less modes addressed. It was found the 

orthogonal Zernike derivative basis performs slightly better than the normal Zernike 

basis with the PI with RLS adaptive filter control. 
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Figure 29  Normalized magnitude of the error projected on each basis 

V. CONCLUSION 

In this paper, practical control techniques for modal control of AO systems 

focuses on the issues arising from the limitation of the hardware, namely, the spatial 

resolution and finite stroke of the DM are proposed and the effectiveness has been 

experimentally evaluated. An orthogonal basis approximating the Zernike derivative 

basis is also proposed and the performance has been evaluated in comparison with 

common bases found in AO control application, namely, the poke basis (pseudo inverse 

method), the SVD basis, and the discretized Zernike derivative basis. 

For a deformable mirror with less actuators than the sensor measurement points, 

there is a subspace of the sensor vector space where the actuator simply cannot have any 

influence, and the effort by the controller to address the error components in this 

subspace can lead to a performance degradation. In the proposed modified projection 

method, the error is first projected to the subspace that can be controlled by the actuator 

by the pseudo inverse matrix, and then projected back to the sensor space by applying 

the poke matrix. The procedure does not affect the decoupling of the control path but 

the error components in the uncontrollable subspace are effectively filtered out from the 

error observed by the controller, provided that the poke matrix is full rank. This method 

would not have any effect for bases that have an explicit relationship with the poke 

matrix, i.e., the geometry of the DM and the WFS, such as poke and SVD bases. 

Experimental results show that the error by the Zernike type bases converge to a 

constant minimum steady state error produced by the poke and SVD bases with the 

proposed method, while they have difficulty settling to a constant steady state error with 

the conventional method.  

In adaptive optics control, an integral controller is often used to eliminate the 

constant disturbance. In the presence of actuator saturation, however, it can cause a so-

called windup problem which results in degradation of the performance. An anti-windup 

control technique is proposed for AO systems with actuator saturation and experimental 

results showed the proposed method is effective in limiting the saturation effect, 



especially with an RLS adaptive filter which tends to saturate the DM more often due to 

a more aggressive attempt to attenuate the disturbance in a wider frequency range than 

the PI controller. 

Orthogonality is one of the desired properties for the basis used in modal control, 

but the Zernike derivative basis used for control of Zernike modes is not orthogonal. In 

the proposed orthogonalization method, the Zernike derivative basis is orthogonalized 

using SVD with a diagonal weighting matrix and the resulting basis approximates the 

spatial characteristics of the original Zernike modes. The diagonal weighting matrix 

serves as a means to control the relative accuracy of each mode.  For the logarithmically 

reducing weights, the discrepancy between the phase shapes of the orthogonalized 

Zernike modes and those of the original Zernike modes increases as the order goes 

higher. The experimental result shows that the orthogonal Zernike derivative basis 

combined with the modified projection and the anti-windup methods achieves better 

performance than other bases considered in this paper with both PI and PI with RLS 

adaptive controllers when the number of addressed modes is reduced. 

As the application of AO technology expands, more cost effective AO systems 

will be demanded which requires the controller to make most out of the given hardware 

with limited capabilities. Therefore, the study of practical control techniques such as the 

ones presented in this paper will carry more importance as the research moves from 

demonstrating the feasibility to maturing the technology for wider applications. 
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