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Abstract

This paper presents the recent development in algorithms for active
vibration isolation on spacecraft using a Stewart platform. The multiple
error least mean square (LMS) algorithm and the clear box algorithm have
been implemented on these platforms and several enhancements have been
made to the clear box algorithm. Based on experimental results, it is
concluded that the multiple error LMS algorithm is preferred for vibration
isolation when a disturbance correlated signal is available. In the absence of
such a signal, the clear box algorithm is the method of choice. Among the
implementations of the clear box algorithm, the sine/cosine method is
preferred for handling time-invariant disturbance frequencies, the adaptive
method for rapidly varying disturbance frequencies, and the
frequency-domain method for a large number of time invariant disturbance

frequencies.

1. Introduction

For an imaging spacecraft, the vibration isolation of its optical
payload has been a challenging problem. The problem will
become even more challenging on future space missions as the
increased performance requirements for the payloads require
low vibration and the vibration sources on the spacecraft are
increasing due to large flexible structures. Examples of such
devices as the vibration sources include cryo-coolers, fluid
pumps and other mechanical devices, in addition to reaction
wheels and solar array drives. The need to develop improved
techniques for vibration isolation has been recognized for
more than a decade by several organizations such as NASA
and USAF. These organizations initiated several research
programs in this area, such as Control Structure Interaction
(CSI) by the Jet Propulsion Laboratory (JPL) [1, 2], to develop
improved techniques and validate them by ground and in-orbit
experiments.

Passive isolation presents a reliable, low cost solution
that is effective for attenuating broadband high frequency
vibrations. However, it is in general not suited for low
frequency vibration isolation since the resulting mechanism is
(usually) too soft to withstand the launch environment. Since a
spacecraft has low frequency vibrations due to the excitation of
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flexible structures and the rotating devices, such as solar array
drives, cryo-pumps, and reaction wheels, active techniques for
low frequency vibration isolation are a desirable approach.

Active vibration isolation allows significant performance
enhancements over passive methods, but requires sensors,
actuators, and processors, which must be reliable and efficient
in mass and power consumption. However, with the
development of smart sensors and actuators and the availability
of powerful microprocessors, active vibration is becoming an
attractive choice for vibration isolation.

Active control techniques for rejection of disturbances are
numerous, and include classical feedback, modern feedback,
disturbance accommodating control, disturbance observers,
repetitive control, adaptive control, adaptive inverse control,
adaptive feedforward control, and neural networks [3]. In
most cases, narrowband vibrations (periodic disturbances) are
most effectively controlled through the use of feedforward
techniques.

A widely used adaptive feedforward method for noise
and vibration control is the filtered-x LMS algorithm [4] and
its multi-input multi-output (MIMO) implementation called
the multiple error LMS algorithm [5]. A drawback of these
methods is that they require a separately measured disturbance-
correlated reference signal, which is adaptively filtered to form
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Figure 1. UQP and satellite bus mockup.

(This figure is in colour only in the electronic version)

the control signal. LMS-derived methods also require prior
knowledge of the system dynamics, which may vary with
time. A new technique that addresses these issues is called
the clear box algorithm, and it approaches the control problem
from a system identification perspective [6, 7]. Using only
knowledge of the actuator inputs and disturbance-corrupted
sensor outputs, it allows the identification of both the system
dynamics and the disturbance frequencies, and then uses the
information to cancel the disturbance. Therefore this technique
has the advantage that it does not need a disturbance-correlated
signal.

At the Spacecraft Research and Design Center of Naval
Postgraduate School, there are three experimental platforms
being used in active vibration isolation research, namely, the
NPS space truss [8], the positioning hexapod [9], and the
ultra quiet platform (UQP). These platforms have one thing in
common: they all use smart struts, i.e. struts that are integrated
with actuators and sensors into units which, when incorporated
with adaptive algorithms, become ‘smart’ struts capable of
performing vibration isolation or positioning without very little
user participation.

In this paper, we present the vibration isolation techniques
developed and implemented on the Stewart platform UQP.
The hardware description of this experimental platform is
given in detail in section 2, followed by the explanation
of the theory of all implemented control algorithms in
section 3. The control algorithms include the multiple
error LMS algorithm, the time-domain clear box algorithm,
and batch-mode frequency domain clear box algorithm with
two enhancements: phase cancellation repetitive control for
improving isolation performance between repetitions and
quadratic programming for selective disturbance cancellation.
The experimental results are then shown in section 4 followed
by the conclusions in section 5.

2. Experimental platform

The ultra quiet platform (UQP), as shown in figure 1, is used
for testing control algorithms for the vibration isolation of an
imaging payload from spacecraft. It is configured similar to
a ‘cubic’ Stewart platform where the struts are arranged as if
they were on the edges of a cube, providing three orthogonal
pairs of actuators.
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Figure 2. Experiment overview.

In such arrangements, control in six degrees of freedom
is possible using linear actuators, and the coupling between
actuators is minimized. The UQP is mounted on a spacecraft
mockup, to which is mounted the disturbance source. The
entire experiment sits on 16 rubber feet attached to a 3800 1b
RS4000 Optical Table (Newport Corporation) which uses four
1-2000 Series Pneumatic Isolators (Newport Corporation) to
help further isolate the experiment from floor vibrations.

Each strut consists of a piezoceramic stack actuator and
a geophone sensor. The actuator converts control signal
voltages to physical movement of the strut. The maximum
displacement of the actuator is 50 pwm, which is sufficient
for vibration applications, but not for platform pointing or
steering. The GS-11D rotating coil geophone sensors (Geo
Space) consists of wire coils supported by soft springs under
the influence of a magnetic field, which provides a signal
proportional to velocity. The source of disturbance for the
disturbance rejection experiment, an AST-1B-4 Bass Shaker
(Aura Systems), delivers a peak force of 89 N with a resonance
frequency of around 40 Hz.

The experimental setup is shown in figure 2 above. The
experiment requires power amplification for the actuators and
signal conditioning for the geophone sensors. These are
provided via a 790A06 Six-Channel Power Amplifier (PCB
Piezotronics—peak voltage 200 V, peak current 50 mA), and
a CSA engineering active vibration control system (AVCS)
signal-conditioning unit, respectively. The control function
is performed by the combination of a DS1003 Alphacombo
DSP system (dSPACE) for real time control and a host
PC for high level supervisory control. Coding for the
control algorithms is performed in the MATLAB/SIMULINK
(Mathworks) environment using C-coded ‘S-functions’ to
perform the more specialized tasks.

3. Control algorithms

The current focus of the active vibration isolation for the
spacecraft at the SRDC of NPS is the rejection of narrowband
periodic disturbances. Adaptive feedforward algorithms, such



Algorithms for active vibration isolation on spacecraft using a Stewart platform

Disturbance Source R Disturbance, d(k)
il
Sensor

Reference

(k) FIR Filter Error,
e(k)
-C Filtered Reference,
r(k) Algorithm
FIR Filter
Model of UQP

Figure 3. Multiple error least mean square algorithm.

as the widely used multiple error least mean square algorithm
and the more recent clear box algorithm, can be used to
cancel such disturbances more effectively than the traditional
feedback control methods. Both of these algorithms were
implemented using MIMO schemes due to the nature of the
application on the experimental platforms. In this section the
theories of both algorithms are outlined and the foundation of
the two enhancements made to the clear box algorithm are laid
out.

3.1. Multiple error least mean square algorithm

The least mean square (LMS) algorithm uses an nth order
digital finite impulse response (FIR) filter to generate a
feedforward control signal y (k) and minimize the mean square
error of & (k), which represents the difference between y (k) and
the disturbance signal d (k). The algorithm requires a reference
signal x (k) that is correlated with the disturbance signal d (k)
in order for the controller to perform well. The LMS algorithm
acts to minimize ¢ (k) by directing the filter coefficients towards
the minimum point of a quadratic performance surface of (k).

The block diagram of the multiple error LMS algorithm
is shown in figure 3. We assume that there are M actuators
and L sensors. There is a reference signal x (k) which passes
through a primary plant (P;) before being sensed at the system
output as d (k). The disturbance at the /th sensor is represented
by d; (k).

The linear plant model used to filter the reference signal
is a Jth order FIR filter, C, whose coefficients c;,,; indicate
the jth coefficient (j = 1, ..., J) for the filter that models the
dynamics between the mth actuator and the /th sensor. Due to
the time-invariant nature of the UQP, a state space multiple-
input multiple-output model can be obtained offline in advance
using the system identification method OKID [10], then it
can be converted to the FIR format. The resulting filtered
signal, r(k), includes L x M elements similarly indicated by
rim (k). The M control signals in g (k) are generated by filtering
the reference signal with an /th order FIR filter W whose
coefficients are w,,;. Finally, the error signal at each of the
L sensors is indicated by ¢;(k), an expression for which is

M J—1 1
(k) = di(k)+ > > cimj Y wwi(n— jx(n—i— j). (1)
m=1 j=0 i=0

As long as each d; (k) is partially correlated with x (k) it is
possible to reduce the error at each sensor through the proper

choice of the coefficients w,,;. By defining the total error as

L
7= E{Zeﬂk)}, @
=1

it is clear that T is a quadratic function of each of the coe-
fficients w,,;, indicating that gradient descent methods allow
convergence to the global minimum of 7. The differentiation
of T with respect to one coefficient is

L
or :2E{Zs,(k)a€[(k)}. 3)

d Wi =1 d Wi
Differentiating equation (1) with respect to w,,; we obtain

de; (k)
awmi

J—1
= cmixtk —i = j). &
j=0

The above signal is the same as that obtained by filtering
the reference signal with the FIR filter, C, but delayed by i
sample times. Denoting it (this filtered and delayed reference
signal) by 7, (k — i), we have

e (k)
8u}mi

:rlm(k_i)- (5)

Adjusting each filter coefficient in w by the negative of
the gradient expression in equation (3), with expected values
in (2) and (3) approximated by their instantaneous values, and
using the expression in equation (5), we obtain

L
Wi Ok + 1) = wi (k) =21 Y &1k — i) (6)
=1

where 1 is the adaptation rate.
The maximum adaptation rate of u that can be used
without causing instability is given by

O<pu< @)

)\max
where A 1S the largest eigenvalue of the correlation matrix
of the reference signal x [11]. An alternative upper bound is
the inverse value of the trace of the correlation matrix, which
is more restrictive but easier to calculate [12].

Note that there is the assumption of time invariance in
the w,,; filter coefficients and it is equivalent, in practice,
to assuming that the filter coefficients change only slowly
compared to the timescale of the response of the system to
be controlled.

3.2. Time domain clear box algorithm

As mentioned earlier, two drawbacks of the multiple error LMS
algorithm are the need of a disturbance correlated signal and
the prior knowledge of the system to perform the disturbance
rejection. The clear box algorithm addresses both issues with
the capability of complete identification of both the system and
the unknown periodic disturbance, and then uses the obtained
information to form the adaptive feedforward disturbance
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Figure 4. System representation.

cancellation signal. For the development of the clear box
algorithm consider the system

x(k+1) = Ax(k) + Bu(k) + Byd (k)
y(k) = Cx(k)

®)

where there are m inputs, g outputs, and n states. Thus x (k) is
an n x 1 state vector, u(k) is an m x 1 input vector, and y (k)
is a ¢ x 1 output vector. Similarly the system A, B, and C
matrices have dimensions n x n, n x m, and g x n, respectively.
The system is represented in figure 4. It is assumed that
nothing is known except for the recorded system input u(k),
the disturbance-corrupted output data measurements y(k), an
upper bound on the true system order, 7, and an upper bound
on the number of frequencies, f, in the disturbance, d (k).

By a process outlined in [3], the control (or excitation)
input u (k) and disturbance-corrupted output y (k) satisfy a pth
order input—output model,

yk) =o1ytk — 1) +aytk —2) +---+a,yk — p)

+putk — 1)+ poutk —2) +-- -+ Bpuk — p) (€))
as long as p is chosen to be sufficiently large such that
+2f+1
p> 2l (10
q

where f is the number of disturbance frequencies in d(k),
and the 1 accounts for a non-zero bias in the disturbance (if
present). Notice that in this model the disturbance input d (k)
does not appear explicitly although it contributes to the data.
Its information is completely absorbed in the coefficients o
and B, which are referred to here as ‘disturbance-corrupted’
coefficients.

3.2.1. Disturbance identification through modal decomposi-
tion. To facilitate the removal of the disturbance modes it
is convenient to convert the ARX (Auto-Regressive with eX-
ogenous input) model to an equivalent state space observable
canonical form

z2(k+1) = Apz(k) + Byu(k)

(11)
y(k) = Cpz(k)
where

a 1 0 .- () 5,

o) 0 1 . 52

A = : s B = /33
P a; O 0 0 P (12)

: 1
@ 0 0 0 By
C,=[1 0 0 0]
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Conversion of this model to modal form yields the state
space equations

wk+1) = Awk) + Tuk)
y(k) = Quw(k)

(13)

where A, T, and €2 are formed via similarity transformation:

A=T"A,T, r=7"8B, Q=C,T. (14)

Typically, if p is chosen large enough, the damping ratios
of the disturbance modes will be at least one or two orders
of magnitude smaller than those of the noise modes or true
system modes, and thus (the disturbance modes) can be easily
identified. Also, the accuracy of the identified frequency
improves as p increases. Once the disturbance modes have
been identified in the modal state space model, they can be
selectively removed by eliminating the corresponding rows and
columns from A, I', and . The ‘disturbance-free’ model is
then converted to an equivalent ARX model with coefficients
[@1,@,...,&,] and [B, Ba, ..., B,]. Thus the disturbance-

corrupted output can be expressed as

yk) =a1y(k — 1) +aytk =2) +--- +a,y(k — p)
+ Btk — 1) + Pouk —2) + - - + Bouk — p) + (k)
(15)

where the right-hand side of equation (15) is driven by
disturbance corrupted outputs. The disturbance effect, n(k),
can be calculated in real time by rearranging equation (15) as

nk)y=yk) —arytk — 1) —aytk —2) —--- —a,ytk — p)
— Btk — ) =poutk —2) —--- — Byutk — p).  (16)

At this point the disturbance-free system model and the
disturbance effect are known, and from equation (16), setting
all output y(k) to zero, the feedforward control u¢(k), that
cancels steady-state disturbances, satisfies

Brus(k = 1)+ Boutr (k= 2) +- - -+ Bpug (k — p) = —n (k). (17)

3.2.2. Sine/cosine method. The clear box algorithm takes
advantage of the knowledge that the control signal, wuy(k),
needs to be made up of periodic components in order to cancel
periodic disturbances. The first option for generating such
a ug(k), as employed in [6], is to use a sine/cosine pair for
each disturbance frequency. For L identified disturbances, the
assumed form of the control signal

L
ug(k) = Z[a,- cos(w;kAt) + b; sin(w;kAt)] (18)

i=l1

is substituted into equation (17) and the resulting set of
equations (linear in the coefficients a; and b;) is solved in
real time using recursive least squares (RLS), and employing a
‘forgetting factor’ A¢ to weight recent data more heavily. The
control signal in equation (18) is thus a combination of sine
and cosine functions, whose L frequencies are estimated using
methods outlined in the previous section.
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3.2.3. Adaptive basis method. An alternative [13, 14] to
using the sine and cosine functions as the bases for synthesizing
the disturbance rejection signal, u¢(k), for the clear box
algorithm, is to use the N-sample shifted versions of the
disturbance effect signal, (k).

For this ‘adaptive basis method’, the control signal is
formed from 7 (k) as follows:

ug(k) = yunk — Ay + Yok —Az) + -+ + Yyynlk—Ay)

19)
where N > 2f + 1. The A; values (i = 1,..., N) are the
number of samples that the disturbance effect would need to
shift to generate each of the N basis functions that are then
linearly combined to form the control signal. Each A; value is
preselected by the operator, and the guidelines below should

be followed.

A >1 for all i
Aj #A; foralli, j (20)
[A; — A # |A; — Ayl for all i, j, k.

The first guideline prevents any problems with causality by
using the disturbance effect that is delayed by at least one time
sample. The second ensures that two functions do not have the
same time shift (such a pair would be identical functions). The
third introduces a random characteristic to the time shifting,
and prevents linear dependence of the basis functions for
any given disturbance frequency. The control coefficients
in equation (19), ¥;, where i = 1,..., N, are recursively
estimated in the same manner as with the sine/cosine method.

There are two basic advantages associated with the
adaptive basis approach. First, it eliminates the need to
estimate the disturbance frequencies. Second, since the
disturbance effect signal (k) is calculated in real time, it
contains the exact frequency content of the actual disturbances.
Any change in the disturbance frequencies immediately
appears in the disturbance effect signal, making the adaptive
basis approach capable of handling time-varying disturbance
frequencies.

3.3. Frequency domain clear box algorithm

The frequency domain clear box algorithm [15] parallels
the development of its time domain counterpart. It is the
analog equivalent with two enhancements. First, a phase
cancellation repetitive control algorithm [16] is added to
the process of generating a feedforward cancellation signal.
Zero tracking error, i.e. output error suppressed down to
practically the background noise level, is produced through
the integration action along with repetitions. Second, when
the situation of limited control authority is encountered, the
yes-or-no decision algorithm on deciding which disturbance
frequencies to control is replaced by a quadratic programming
algorithm, which allows partial control of certain disturbance
frequencies. Therefore actuator saturation is avoided and the
overall performance is improved. Computational efficiency is
ensured by the application of the FFT for this algorithm, but
there are added difficulties in dealing with the noisy data, the
leakage effect, and the synchronization issue of online system
identification in the presence of periodic disturbances. The
following two sections summarize the theoretical background
of the enhancements that were made.

3.3.1. Phase cancellation repetitive control. ~Consider the
input—output relationship for the following general time
invariant MIMO system:

x(k+1) = Ax(k) + Bu(k) + w(k)
y(k) = Cx(k)

2n

where x is the state vector, u is the batch mode repetitive control
input vector adding to feedback control command to correct
for repeating errors, y is the output vector, and w includes
repetitive disturbances as well as the initial command to the
feedback controller, which are both of the same period, p. The
system is assumed asymptotically stable and the magnitudes
of all eigenvalues of A are less than one.

Taking the z-transform of equation (21) and combining
terms, we obtain

Y(2) = G()U(2) + Ry(2) (22)

where
G(z) =C(zl —A)'B

Ry(z) = Czl — A 'W(2)

with I being the identity matrix with matching dimensions
and U (z) and W (z) being the z-transforms of u (k) and w(k),
respectively.

The z-transform version of the repetitive control law is

(23)

Uiz) =U;_1(2) + L(R)E;_1(2) (24)

where
Ei_1(z) =Yq(2) = Yj_1(2)

with j representing the repetition number (repetition 0
referring to the initial repetition with no modification to the
feedback command), and L(z) and Y,(z) representing the z-
transforms of the time-domain learning coefficients and the
desired output, respectively.

Applying equations (22) and (24), after manipulations,
one obtains

(25)

Yi(@) =l — L(2)G(2)]Yj-1(2) + L(2)Gc(2)Ya(2)  (26)

and
Ej(z) =1 — L(2)G:(D]E;-1(2)

which relate the output and error profiles from one repetition
to the next. Using recursive substitution in equations (26)
and (27) gives

€2))

Y;(z) = [I = L(2)G () Yo(2)+{I —[I = L(2)G ()1 }Y4(2)
(28)

and '
E;j(2) =[I — L(2)G.(2)) Ey(2)

where the subscript 0 indicates the initial trial repetition.
It is then recognized that the condition needed for
convergence to Zero error is

29

Al < 1, i=1,2,...,q (30)
where the A; are the eigenvalues of / — L(z)G.(z) and ¢ is the
number of outputs. Considering the steady-state frequency

response, and setting z = /7 where T is the sample time, the
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learning therefore produces monotonic decay of every steady-
state discrete frequency components of the error. For the case
of a SISO system, equation (30) reduces to
1 — LG ()] < 1, i=1,2,....,q9. 3D

This is a sufficient condition for convergence, and also
a condition for good transients during the repetitive control
process, producing a monotonic convergence in the steady-
state response. Thus itis a performance condition that requires
the Nyquist plot of L(el*”)G.(e/*T) to be within a unit circle
centered on the real axis at unit positive distance.

The phase cancellation repetitive control law, for the case
of a SISO system, is given as

(G (@), if |G ) < 1
LTy = /G . (elxT _ (32)
_LGE) e Gu@ Ty >
|G (elxT)]
where o = 2£, k = 0,1,....N — 1 and G(&*7) is the

frequency response of the system at the N discrete frequencies
W .

This repetitive control law actually puts all points on the
Nyquist plot of L(ei®T)G,(ei”) on the real axis between the
origin and +1. Therefore it satisfies the unit circle performance
condition (31) for all N discrete frequencies at wy.

For a MIMO system with square and diagonalizable
system frequency response function at every frequency, the
learning gain matrix is

LE*T) = VDAL @DV E)  (33)
where V and A, are the eigenvector and the eigenvalue
matrices of the transfer matrix G.(e/*7), and the eigenvalues
of the matrix A are

—[0[Ge(@T)], if A [Ge(eT)] < 1

MET) =1 G T)] .
e if M [Ge(@ D] > 1
[2i[G (el D]
(34)
where oy = ZE k =0,1,...,N —landi =0,1,...,q,

and G.(e¥T) and A;[G.(el*T)] are the frequency response of
the system and its eigenvalues at all N discrete frequencies at
Wi .

3.3.2. Intelligent error cancellation by quadratic program-
ming. In time domain clear box algorithms, the control com-
putation gives full information as to how much control effort
is required to cancel each frequency component of the error,
but only yes or no decisions were made when full cancellation
requires use of control actions that exceed the actuator lim-
its. The application of quadratic programming to the worst
case scenario of multiple disturbance frequencies allows par-
tial cancellation that prevents actuator saturation and produces
overall improvement on the tracking accuracy.

Consider a six-input, six-output system subject to the
disturbance of five frequencies with limited control authority
Umax for each input actuator. Let d;; represent the amplitude of
the disturbance frequency i on output j and ¢;; be the amplitude
of the input signal needed to cancel d;; . The maximum possible
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amplitude of the disturbance on output j is the sum of d;; over
i. It occurs when all five frequency components are at their
peak values at the same time.

Also define

d; and ¢; as column vectors of d;; and ¢;;,

«; as the fraction of input (0 < «; < 1) to cancel the

disturbance frequency i for all outputs,

Bi as complement of o; sothat 0 < 8; =1 —; < 1,

C, D, and g as column matrices of ¢;, d;, and §;,

15 and 1 as five- and six-dimensional column vectors

with all entries equal to one,

0y as six-dimensional column vectors with all

entries equal to zero,

and

Umax as the same saturation limit for all actuators.

Then the maximum disturbances vector, i.e., the worst

case when all frequency components are at their peak, is

d=d +d,+d;+d, +ds. (35)
The maximum magnitude for each input is
C=0U1C) Tl + 0303 +A4Cy + AsCs
=Cds—-p) (36)
< Umaxlg

and the maximum remaining disturbance after this fractional
cancellation is
d = 5141 + 5242 + ,8’542 + 5444 + ,8545 = Dé~ (37)

To optimize the amount of each mode to cancel, quadratic
programming is used to minimize the objective function

J=d'd=8"D"Dp (38)
with component-by-component inequality constraints
0p < Bi < 1, Vi, (39
and
— C < umaxlg — Cls. (40)

4. Experimental results

The effectiveness of the control algorithms is determined
by using them on the experimental platforms described in
section 2.

Figure 5 shows the identified modes and their associated
damping ratios determined by the clear box method. The
disturbance modes are identified by the fact that their damping
is below the damping threshold, which is set by the user based
on the knowledge of the physical system.

The three time-domain controllers, multiple error LMS
method, clear box sine/cosine method, and clear box adaptive
basis method, were tested for the vibration isolation of
a disturbance frequency at 120 Hz.  The experiments
demonstrate [14] that all three controllers work effectively,
reducing the sensor output to the level of the background noise.

Next, the three controllers were tested for a single time-
varying disturbance frequency with the profile shown in
figure 6.
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Figure 5. Clear box system identification, analysis of modes.
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Figure 6. Frequency variation profile, single disturbance.
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Figure 7. Uncontrolled response and multiple error LMS method
response, one varying frequency.

With a good source of well-correlated disturbance signal
x(k), the multiple error LMS algorithm performs quite well
over the course of the frequency variation profile, as shown in
figure 7. Note that figures 7-10 show the output voltage of the
geophone sensors, which measure the velocity of the vibration
with an intrinsic voltage sensitivity of 0.32 V. cm~! s~

The performance of the clear box sine/cosine method is
shown in figure 8. This method had significant degradation

Volts

Time [sec]

Figure 8. Uncontrolled response and clear box sine/cosine method
response, one varying frequency.

5

4 i

Volts
[
{
i

0 2 4 6 3 10 12

Time [sec]

Figure 9. Uncontrolled response and clear box adaptive basis
method response, one varying frequency.

in performance during rapid ramp-up in frequency since the
frequency estimates (when updated through batch processing
once per second) quickly become inaccurate.

The performance of the clear box adaptive method is
shown in figure 9. This method is able to maintain good
performance, reducing the sensor output to the background
noise level. Therefore, this method is effective even if the
frequency of the disturbance is varying.

Similar test cases were also run for the frequency
domain clear box algorithm implemented in batch mode.
Comparable good final level was achieved for the case of
time-invariant, single or multiple disturbance frequencies.
The algorithm is less computationally intensive than its time
domain counterparts. As shown in figure 10, it cancels
just as well a disturbance with five frequency components,
which is already beyond the computational capacity of our
control hardware for the time-domain clear box method. For
application to the vibration isolation on spacecraft, such a
computational advantage is very important as the computing
resources on spacecraft are very limited. But as in the case of
the time-domain clear box sine/cosine method, it was unable
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Figure 10. Uncontrolled response and MIMO controlled response
of five disturbance frequencies (repetition 10).

to adapt quickly to a variable frequency profile since it was
batch-implemented.

5. Conclusions

Based on these experimental results of testing all the algorithms
described in this paper on the UQP, we make the following
conclusions. The drawbacks of the multiple error LMS
algorithm are that tuning of the adaptation rate is necessary to
achieve optimal convergence and that it requires disturbance
correlated signals. When disturbance-correlated signals are
available, it is the preferred control algorithm due to its
better computational efficiency. The performance of the
clear box method, implemented in either time-domain or
frequency domain, meets or exceeds that of the multiple error
LMS algorithm without requiring a measured disturbance-
correlated signal. When there are no disturbance-correlated
signals available, as is the case with the majority of systems,
the clear box method is the method of choice. The time
domain clear box sine/cosine method is preferred when the
disturbance frequencies are time-independent or just varying
slowly, but for rapidly varying disturbance frequencies the
adaptive basis version should be used. Both of the time domain
clear box versions have, however, the drawback of requiring
significantly higher processing speed. The frequency-domain
clear box method has the drawback of its accuracy issue
regarding noisy data sets or the DFT/FFT leakage effect—
potentially longer data sets need to be taken per batch and
a frequency/amplitude/phase estimate subroutine is required
when encountering the situation of non-synchronized sampling
rate with disturbance frequencies. It is the preferred approach
to handling a large number of time-invariant disturbance
frequencies.
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