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Abstract. This paper presents the results of positive position feedback (PPF)
control and linear–quadratic Gaussian (LQG) control for vibration suppression of a
flexible structure using piezoceramics. Experiments were conducted on the US
Naval Postgraduate School’s flexible spacecraft simulator (FSS), which is
comprised of a rigid central body and a flexible appendage. The objective of this
research is to suppress the vibration of the flexible appendage. Experiments show
that both control methods have unique advantages for vibration suppression. PPF
control is effective in providing high damping for a particular mode and is easy to
implement. LQG control provides damping to all modes; however, it cannot provide
high damping for a specific mode. LQG control is very effective in meeting specific
requirements, such as minimization of tip motion of a flexible beam, but at a higher
implementation cost.

1. Introduction

The current trend of spacecraft design is to use large,
complex and light-weight space structures to achieve
increased functionality at a reduced launch cost. The
combination of large and light-weight design results in
these space structures being extremely flexible and having
low-frequency fundamental vibration modes. These modes
might be excited in a variety of tasks such as slewing,
pointing maneuvers and docking with other spacecraft.
To effectively suppress the induced vibration poses a
challenging task for spacecraft designers. One promising
method for this problem is to use embedded piezoelectric
materials as actuators (compensators) since piezoelectric
materials have advantages such as high stiffness, light
weight, low power consumption and easy implementation.

A wide range of approaches have been proposed for
using piezoelectric material to actively control vibration of
flexible structures. Positive position feedback (PPF) (Goh
and Caughey 1985, Fanson and Caughey 1990, Agrawal
and Bang 1994) was applied by feeding the structural
position coordinate directly to the compensator and the
product of the compensator and a scalar gain positively
back to the structure. PPF offers quick damping for a
particular mode provided that the modal characteristics are
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well known. PPF is also easy to implement. Linear–
quadratic Gaussian (LQG) design was also applied (Won
et al 1994, Agrawal 1996). The control input of LQG is
designed to optimize the weighted sum of the quadratic
indices of energy (control input) and performance. By
adjusting the weights, LQG design can meet a specific
requirement, for example, to minimize the tip deflection
and rotation of a flexible structure. Strain rate feedback
(SRF) control was used for active damping of a flexible
space structure (Newman 1992). In this approach, the
structural velocity coordinate is fed back to the compensator
and the compensator position coordinate multiplied by a
negative gain is fed back to the structure. SRF has a
wider active damping region and can stabilize more than
one mode given a sufficient bandwidth. Fuzzy control
was utilized to control the vibration of a flexible robot
manipulator (Zeinoun and Khorrami 1994). This method
demonstrated robust performance in the presence of large
payload variation. H∞ control was applied to flexible
structures which have uncertainty in the modal frequencies
and damping ratios (Smithet al 1994). Other methods
include model reference control (MRC) (Gopinathan and
Pajunen 1995) and phase lead control (Feuerstein 1996).

In this paper we present the application of PPF
control and LQG control to vibration suppression of
a flexible structure by using embedded piezoceramic
actuators. The flexible structure to be controlled is a
two-link armlike flexible appendage on the flexible space
simulator (FSS) at the US Naval Postgraduate School.
Since modal characteristics of the flexible appendage
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Figure 1. Flexible spacecraft simulator (FSS).

can be obtained prior to the control design via FEM
analysis and experimental testing, PPF is used to achieve
fast damping of the vibration of a particular mode.
Application of PPF to multi-mode vibration suppression
was also studied. The PPF controller was implemented
on the flexible appendage in a cantilevered configuration
utilizing piezoelectric sensor output representing structural
displacement. Control of induced vibrations was performed
by applying control signals to piezoelectric actuators. Both
numerical simulations and experimental results demonstrate
that PPF significantly increases damping for single-
mode vibration suppression and in the multiple-mode
case damping is moderately increased. Linear–quadratic
Gaussian (LQG) control is used to minimize the tip
displacement and rotation with the help of additional
hardware (LEDs and CCD camera) which detects the tip
displacement and rotation. Experiments show that the LQG
method provides high active damping in both single-mode
and multi-mode excitations but at a higher implementation
cost.

2. Experimental setup

The flexible spacecraft simulator (FSS) simulates motion
about the pitch axis of a spacecraft. As shown in figure 1
it is comprised of a rigid central body and a reflector
supported by a two-link armlike flexible appendage. The
center body represents the main body of the spacecraft
while the flexible appendage represents a flexible antenna
support structure. The flexible appendage is composed of
a base beam cantilevered to the main body and a tip beam
connected to the base beam at a right angle with a rigid
elbow joint. In this experiment, the main body is fixed
relative to the granite table. The flexible appendage is
supported by one air pad each at the elbow and tip to
minimize the friction effect.

Measurement of the motion of the flexible appendage
is accomplished by a full complement of sensors. Figure 2
shows piezoceramic patches mounted at the root of the
base beam and tip beam to measure strain in the flexible
appendage. An optical infrared sensing camera shown
in figure 3 provides position and rate information for

designated LED targets mounted on the structure. Groups
of targets are mounted on the main body in addition to the
elbow joint and tip of the flexible appendage. This camera
is mounted 1.9 meters above the granite table assembly.
The camera is connected to a 68030 microprocessor running
a real-time operating system,VxWorks. The 12-bit digital
data obtained by the camera are ported out of the 68030
via a digital-to-analog converter card at 60 Hz sampling
frequency. The camera’s resolution is nominally at the sub-
pixel level of the order of 1/20th of a pixel which leads to
a camera accuracy of approximately 0.5 mm.

Data acquisition and control of the FSS is accomplished
with a rapid design prototyping and real-time control
system—an Integrated Systems AC-100. The AC-100
consists of a VAXstation 3100 host machine and an Intel
80386 real-time control processor. The host machine and
control processor are connected via ethernet. Real-time
code is developed on the host machine using MATRIXX and
SystemBuild and is downloaded to the control processor
for implementation. Analog sensor data from the system
are directly accessed by the control processor through
on-board analog-to-digital (A/D) converters. All sensor
connections are single ended due to restrictions on hardware
functionality. Consequently, this condition will introduce
noise in all sensor measurements. Likewise, the generated
digital control data are converted to analog signals and
output to the structure actuators. All A/D and D/A inputs
are bipolar with a voltage range of±10 volts. A high-
voltage amplifier is used on the piezoceramic actuator
signals to increase the control authority by a factor of 15.
This gain on the signal significantly enhances the structural
control capabilities without running the risk of de-poling
the piezoceramic actuators.

3. System modeling

The flexible appendage is modeled using the finite-
element method. It was determined that no more than
the three lowest modes are significant in the response
of the appendage and thus would be considered in the
simulations. For the analysis, six elements were used
to characterize the structure. Elements 1 and 4 are
piezoceramic actuator elements, elements 2 and 5 are
piezoceramic sensor elements and elements 3 and 6 are
simple aluminum beam elements. Point masses were added
to the elbow joint and tip to represent the connection
brackets and air pads. Figure 4 shows the element
configuration and measurements. The basic elements
were formulated using the direct method of derivation but
were subsequently augmented with the mass and stiffness
properties of the piezoelectric patches. Table 1 gives the
material properties used in modeling the appendage and
table 2 gives piezoceramic properties.

The beam element for the finite-element model is shown
in figure 5. In addition, electro-mechanical relationships
of the piezoelectric material must be considered for
implementation in an analytical model suitable for control
design and simulation.
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Figure 2. Base joint (left) and elbow joint (right) with piezoceramic actuator and sensor patches and LED targets.

Figure 3. Flexible appendage tip with LED targets (left) and optical infrared sensing camera (right).

Figure 4. FEM configuration of the flexible appendage.

Table 1. Material properties of flexible appendage.

Property Symbol Units Value

Beam thickness tb meters 1.5875× 10−3

Beam width wb meters 2.54× 10−2

Beam density ρb kg m−3 2.800× 103

Young’s modulus Eb N m−2 1.029× 107

The general relationship for the electro-mechanical
coupling is given by{

D3

S1

}
=
[
εT3 d31

d31 sE11

]{
E3

T1

}
(3.1)

whereD is the displacement,S is the strain,E is the

Figure 5. Beam element for finite-element model.

electric field, T is the stress,s is the compliance andd
is the piezoelectric constant. The subscripts are tensor
notation where the 1- and 2-axes are arbitrary in the
plane perpendicular to the 3-axis poling direction of the
piezoelectric material. Using the fact that the elastic
constant for piezoceramic material,s, is the inverse of its
Young’s modulus,Ep, this equation can be written as

{
D3

T1

}
=
[
εT3 − d2

31Ep d31Ep
−d31Ep Ep

]{
E3

S1

}
. (3.2)
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Table 2. Material properties of piezoceramics.

Property Symbol Units Value

Lateral strain coefficient d31 m V−1 or C N−1 1.8× 10−10

Young’s modulus Ep N m−2 6.3× 1010

Poisson’s ratio ν N A−1 0.35
Absolute permittivity D F m−1 or N V−2 1.5× 10−8

The equation for the elemental potential energy is given by

−U = 1
2

∫ (−T1S1+D3E3
)

dV (3.3)

where the two terms in the integral represent mechanical
energy and electrical energy respectively. Usingwp as
the width of the piezoceramic wafer, this equation can be
rewritten as

−U = 1

2
wp

∫ h

0

∫ ζ+tp

ζ

(−T1S1+D3E3
)

dx dz

= 1

2
wp

∫ h

0

∫ ζ+tp

ζ

{
D3

T1

}T [
1 0
0 −1

]{
E3

S1

}
dx dz. (3.4)

The strain, using small-angle displacement theory,S1, can
be written as

S1 = εx = −z
(
∂2w/∂x2

)
(3.5)

where w is the bending displacement along thex-axis.
Substituting (3.2) into (3.4), we have

−U = 1
2wp

∫ h

0

∫ ζ+tp

ζ

{
E3

εx

}T [
εTe − d2

31Ep d31Ep
d31Ep −Ep

]
×
{
E3

εx

}
dx dz

= 1
2wp

∫ h

0

∫ ζ+tp

ζ

[(
εT3 − d2

31Ep

)
E2

3 + 2d31EpE3εx

− Epε2
x

]
dx dz (3.6)

then using equation (3.5) results in

−U = 1
2wp

∫ h

0

∫ ζ+tp

ζ

{(
εT3 − d2

31Ep

)
E2

3

+ 2d31EpE3z
∂2w

∂x2
− Epz2

(
∂2w

∂x2

)2]
dx dz. (3.7)

The bending displacement can be written in terms of
its modal decomposition as

w(x, t) =
4∑
i=1

8i(x)qi(t) (3.8)

where 8 ∈ R4 is the vector of interpolation functions
or ‘mode shapes’ andq ∈ R4 is the nodal displacement
vector or state vector. Substituting (3.8) into (3.7) gives
the general form of the energy equation

−U = 1
2γ e

2− qT be − 1
2q

T kpq (3.9)

where

γ = wph
(
εT3 − d2

31Ep

)/
tp e = tpE3

bi = d31Epwp
(
ζ + 1

2tp
) ∫ h

0

d28i(x)

dx2
dx

[
kp
]
ij
= wpEptp

[
ζ 2+ ζ tp + 1

3t
2
p

] ∫ d28i(x)

dx2

d28j(x)

dx2
dx

(for i = 1, . . . , 4; j = 1, . . . , 4).

Substituting the interpolation functions8 into theb vector
gives

b1 = 0 b2 = −d31Epwp
(
ζ + tp/2

)
b3 = 0 b4 = d31Epwp

(
ζ + tp/2

)
.

(3.10)

The piezoceramic elemental stiffness matrix is identical to
the general elemental stiffness matrix with the exception
that the piezoelectric stiffnessκ replaces the structural
stiffness.κ is given by

κ = wptpEp
(
ζ 2+ ζ tp + t2p/3

)
. (3.11)

By including the effect of elastic energy of the beam
element, we can write (3.9) as

−U = 1
2γ e

2− qT be − 1
2q

T kq (3.12)

wherek = kb+kp, kb is the stiffness matrix for the structure
andkp is the stiffness matrix for the piezoelectric material.

The kinetic energy for the piezoelectric material can be
written as

T = 1
2 q̇

T Mq̇ (3.13)

whereM = Mb + Mp, Mb is the mass matrix for the
structure andMp is the mass matrix for the piezoelectric
material.

The Lagrangian function,L, is given by

L = T − U = 1
2 q̇

T Mq̇ + 1
2γ e

2− qT be − 1
2q

T kq. (3.14)

Evaluation of the Lagrangian equation yields

[M]q̈ + [K]q = −Be. (3.15)

(3.15) represents the equation for the actuation. Takinge

as the generalized coordinate, the equation in terms ofe is
given as

γ e = BT q. (3.16)

For structural elements that have piezoelectric material
bonded to them, their respective mass and stiffness matrices
are the sum of the beam elemental matrices and the
piezoceramic elemental matrices.
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Table 3. Natural frequencies of flexible arm model.

Mode Frequency (Hz)

1 0.29583
2 0.87067
3 11.108
4 28.496
5 45.144
6 102.78

Figure 6. Modal shapes of first (top) and second (bottom)
mode of flexible appendage.

Solution of the eigenvalue problem using the complete
finite-element model yielded 12 modes and mode shapes.
Table 3 gives the first six frequencies of oscillation and
figure 6 shows the first two mode shapes. These two modes
are the primary carriers of energy for the structure and will
be actively controlled.

In the absence of the external input, the system
dynamics are governed by

[M]q̈ + [K]q = 0.

The desired equations of motion are of the form

[M]q̈ + [C]q̇ + [K]q = 0 (3.17)

where [C] is the damping matrix for the system in physical
coordinates.

Utilizing the linear similarity transformation

q̇ = S9 T = S−1 S = T q (3.18)

whereS is chosen so that

ST [M]S = I
ST [C]S = diag(. . . , 2ζωi, . . .) = [�]

ST [K]S = diag(. . . , ω2
i , . . .) = [3]

(3.17) can be transformed into a diagonal form in terms of
the modal coordinate vector,9

9̈ + [�]9̇ + [3]9 = 0 (3.19)

which can be rewritten in state space form{
9̇

9̈

}
= Am

{
9

9̇

}
(3.20)

where

Am =
[

0 I

−[3] −[�]

]
.

The system (3.20) can be transformed back to the physical
coordinates by utilizingS = T q,{

q̇

q̈

}
= A

{
q

q̇

}
(3.21)

where

A =
[
T 0
0 T

]−1

Am

[
T 0
0 T

]
.

Considering the external inputs, state noise and sensor
noise, we can rewrite (3.21) as

ẋ = Ax + Bu+ Fw (3.22a)

y = Cx + v (3.22b)

where x = {qT , q̇T }T ∈ R24 represents the translational
and rotational displacements and velocities at node points
of the finite-element model.u ∈ R2 denotes the control
voltages of the base and elbow actuators.y ∈ R6 is the
sensor output vector which consists of two piezoceramic
sensor output voltages and four CCD camera outputs,
representing elbow and tip displacements and rotations.
B ∈ R24×2 is the input matrix.C ∈ R6×24 is the output
matrix. v ∈ R6 represents the measurement noise.F is
the plant uncertainty matrix andw is the state noise vector.
The states are estimated using a Kalman filter.
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Figure 7. Positive position feedback block diagram.

4. Control design

4.1. Positive position feedback control

For control of the flexible appendage, the positive position
feedback (PPF) control scheme shown in figure 7 is well
suited to implementation utilizing the piezoelectric sensors
and actuators. In PPF control methods, structural position
information is fed to a compensator. The output of the
compensator, magnified by a gain, is fed directly back to
the structure. The equations describing PPF operation are
given as

ξ̈ (t)+ 2ζsωs ξ̇ (t)+ ω2
s ξ(t) = Gω2

s η

η̈(t)+ 2ζcωcη̇(t)+ ω2
cη(t) = ω2

cξ
(4.1)

where ξ is a coordinate describing displacement of the
structure,ζs is the damping ratio of the structure,ωs is
the natural frequency of the structure,G is the feedback
gain,η is the compensator coordinate,ζc is the compensator
damping ratio andωc is the frequency of the compensator.

The stability condition for the combined system in (4.1)
is given as

ζsω
3
s + ζcω3

c + 4ζsωsζ 2
c ω

2
c

(ζsωs + ζcωc)2ωsωc < g < 1.

For more interpretation of the PPF compensator, we
introduce a frequency domain analysis. Assumeξ is given
as

ξ(t) = Xeiωs t

then the output of the compensator is

η(t) = Xωs/ωc ei(ωs t−φ)√
(1− ω2

s /ω
2
c )

2+ (2ζcωs/ωc)2
where the phase angleφ is

φ = tan−1

(
2ζcωs/ωc

1− ω2
s /ω

2
c

)
.

Therefore

η

ξ
= e−iφ√

(1− ω2
s /ω

2
c )

2+ (2ζcωs/ωc)2
.

The system frequency response characteristics are
shown in figure 8. As seen in the figure, when the PPF
compensator’s frequency is in the region of the structure’s
natural frequency, the structure experiences active damping.
Additionally, whenωc is lower thanωs , active flexibility
results and whenωc is larger thanωs , active stiffness
results. Clearly, to maximize damping in the structure, the
compensator’s frequency must be closely matched toωs .

Figure 8. Frequency response of system to PPF controller.
ωs = 1 rad s−1, ζs = 0.005, G = 1.

4.2. Linear–quadratic Gaussian control

To minimize the tip movement of the flexible appendage,
the linear–quadratic Gaussian (LQG) method is used. The
control voltages for the actuators are determined by the
optimal control solution of the linear–quadratic regulator
(LQR) problem of the system described by (3.22) with
states estimated by a Kalman filter. The solution minimizes
the performance index given by

J =
∫ (
xTQx + uT Ru) dt

whereQ andR are weighting matrices for the states and
control voltages respectively. The solution to the LQR
problem seeks a compromise between minimum energy
(control input) and best performance. Since the objective in
this problem is to minimize the displacement and rotation
at the tip of the flexible appendage, the weight values
corresponding to these states are kept significantly high
and the values ofR are selected such that the control
input voltage to the actuators is within their limitations of
150 volts. The control voltage is obtained as

u = −KLQRx = −R−1BTGx

whereG is the solution to the Riccati equation

−Q− ATG−GA+GBR−1BTG = 0.

The Kalman filter is designed as

˙̂x = (A− BKLQR − L̂C)x̂ + L̂y
where the optimum observed gain̂L is given by

L̂ = P̂C ′W−1

whereP̂ is defined as

˙̂
P = AP̂ + P̂CT − P̂CTW−1CP̂ + FVFT

where the process noise covariance matricesV andW are
given by

E
{
vvT

} = V (t)δ(t − τ)
E
{
vwT

} = X(t)δ(t − τ)
E
{
wwT

} = W(t)δ(t − τ)
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Figure 9. Response to random excitation and
corresponding power spectrum density plot.

Table 4. Comparison of modal frequencies.

Mode Experiment (Hz) Model (Hz) % error

1 0.2869 0.295 83 3.11
2 0.9169 0.870 67 5.04

andX(t) is the system cross-covariance matrix, a function
of the correlation of sensor noise to plant noise, and under
most circumstances it is normally zero. The symbolE{}
denotes mathematical expectation.

5. Experimental results

5.1. Structural identification

Identification of the natural frequencies of the flexible
appendage was performed by randomly exciting the
structure and performing a discrete FFT. Figure 9 shows
the response of the appendage to the excitation along
with the corresponding power spectrum density. The
first two modal frequencies were identified as 0.287 and
0.917 Hz respectively. Table 4 shows the comparison
of experimentally obtained frequencies to those from the
finite-element model.

The damping in first two modes was experimentally
identified by employing the log decrement method given as

ζ = 1

2πn
ln
(
Ai/Af

)
(5.1)

where ζ is the damping,Ai is the initial amplitude,Af
is the final amplitude andn is the number of oscillations
between.

Each mode was individually excited by imparting
a sinusoidal input to the piezoelectric actuators at the
frequency of the mode of interest. For each mode, the
damping was identified as 0.3%.

5.2. PPF simulations and experiments

Figure 10–12 show the results of implementing a PPF
controller on the flexible appendage using piezoelectric
sensors as input and piezoelectric actuators as output. All
these figures display data taken from the piezoelectric
sensor located at the root of the base arm. Figure 10
shows the results of controlling a pure first-mode response.
Figure 10(a) and (b) are simulations using Simulink and
figure 10(c) and (d) are experimental results. For both
cases, the structure’s first mode was excited through
sinusoidal input from the piezoelectric actuators at the first
modal frequency. As seen in figure 10(a) and (c), due to the
structure’s light internal damping, the induced oscillation
takes several minutes to damp out passively. Figure 10(b)
and (d) show the actively controlled structure using a PPF
controller. For this case, the frequency of the controller was
set at the first modal frequency of the structure, the damping
ratio was 1 and the feedback gain was 1. The feedback gain
is set to maximize the control output within the±10 volt
range of the A/D output of the digital controller. This
helps maintain linear control signal output to the actuators.
The log decrement method was again employed to evaluate
the increased damping in the controlled structure. It was
determined that the damping increased from 0.4% to 3%
with PPF control, an increase of 650%.

Figure 11 shows the results of controlling a pure
second-mode response. For this case, the frequency of the
controller was set at the second modal frequency of the
structure, the damping ratio was 1, and the feedback gain
was 0.1. It was determined that the damping increase from
0.4% to 5.8% with PPF control, an increase of 1350%.

Figure 12 shows the results of controlling a combined
first- and second-mode response. The excitation was
produced by initially exciting the structure’s first mode
and then adding a second-mode excitation to the tip arm
piezoelectric actuator. Figure 12(a) shows the free response
of the structure to the excitation. Figure 12(b) shows the
implementation of the PPF controller tuned to the first mode
of vibration with a gain of 1. It shows good damping for
the first mode but residual oscillations at the second-mode
resonant frequency. Figure 12(c) shows the implementation
of a PPF controller with the base arm actuator tuned to
the first resonant frequency and the tip arm actuator tuned
to the second resonant frequency. A gain of 1 was used
for the base arm and 0.1 for the tip arm. The structure
maintains good damping characteristics for the first mode
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Figure 10. Simulation (left) and experimental (right) results of implementing a PPF controller on a first-mode excitation.

Figure 11. Simulation (left) and experimental results (right) of implementing a PPF controller on a second-mode excitation.

with a performance enhancement for the second mode.
Figure 12(d) is similar to figure 12(c) with the exception
of an increased gain on the base arm actuator to enhance
first-mode damping characteristics.

5.3. LQG experiments

The performance of the LQG controller was evaluated in
terms of the displacement of the tip of the beam, measured
by a CCD camera. This controller used two actuators, as
discussed previously. The states which were not measured

were estimated using a Kalman filter.
The values ofQ, the output weighting matrix, and

R, the control weighting matrix, were determined from
simulations as

Q =


100 0 0 0 0 0
0 100 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 9000 0
0 0 0 0 0 900 000


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Figure 12. Experimental results of implementing a PPF controller on a multiple-mode excitation.

R =
[

0.1 0
0 0.1

]
where the sensor output vector,y, contains the
piezoceramic sensors as the first two elements (volts)
and four VisionServer outputs (elbow displacement, elbow
rotation, tip displacement and tip rotation) as the last four
elements (meters and radians, respectively) of the output
vector. The two control inputs (volts) are the base actuator
and the elbow actuator, respectively. These values kept the
control inputs within their limitations of±150 volts, the
sensors within their limitations of±10 volts, minimized
the steady state error and met a 20 second settling time
constraint.

For the Kalman filter design, the plant uncertainty
matrix,F , is the identity matrix and the model uncertainty
(W ) is approximated at 5%. The sensor process noise
as taken as the squares of component rms noise values
(V matrix diagonal elements) from documentation and
previous research.

W = 0.05[I ]

V =


0.0001 0 0 0 0 0

0 0.0001 0 0 0 0
0 0 0.000 25 0 0 0
0 0 0 0.002 0 0
0 0 0 0 0.000 25 0
0 0 0 0 0 0.001

 .

Figure 13 shows the performance of the controller for a
first-mode response. Figure 14 shows the performance for
a multi-mode excitation (first and second modes). From
table 5 it is clear that LQG control is very effective in the
case of multi-mode excitation.

Figure 13. Experimental results of tip displacement of the
LQG controller on a single-mode excitation (dashed
line—no control; solid line—LQG control).

Table 5. Comparison of damping ratio.

No control LQG Increase (%)

1st mode 0.004 0.0367 817.5
2nd mode 0.004 0.0678 1595

6. Conclusions

This paper discusses techniques of active vibration suppres-
sion utilizing piezoelectric actuators. The investigations, in-
cluding both simulations and experiments, were conducted
on the Naval Postgraduate School’s flexible spacecraft sim-
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Figure 14. Experimental results of tip displacement of the
LQG controller on a multi-mode excitation (dashed line—no
control; solid line—LQG control).

ulator (FSS). The FSS simulates motion about the pitch
axis of a spacecraft and is comprised of a rigid central
body and a flexible appendage. A positive position feed-
back (PPF) controller was designed to actively damp vibra-
tion induced in the flexible appendage. The PPF controller
was implemented using piezoceramic actuators and sensors.
Both single-mode and multiple-mode oscillations were in-
duced in the flexible appendage. For a single-mode excita-
tion, damping in the appendage increased significantly with
the PPF controller tuned to this particular frequency. For
multiple-mode excitation, PPF produced limited damping
enhancement. Experimental results closely paralleled nu-
merical simulations. Furthermore, a linear–quadratic Gaus-
sian (LQG) controller was applied to minimize the tip
movement. The LQG controller was implemented using

piezoceramic actuators and sensors, and the tip displace-
ment and rotation were sensed by LEDs and an optical
infrared camera. LQG was proved experimentally an ef-
fective method to damp out multi-mode excitation of the
flexible appendage but not as effective as the PPF controller
for single-mode vibration suppression.
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