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Abstract. We re-evaluate the kernelized, multilevel secure (MLS) re-
lational database design in the context of cloud-scale distributed data
stores. The transactional properties and global integrity properties for
schema-less, cloud-scale data stores are significantly relaxed in compar-
ison to relational databases. This is a new and interesting setting for
mandatory access control policies, and has been unexplored in prior re-
search. We describe the design and implementation of a prototype MLS
column-store following the kernelized design pattern. Our prototype is
the first cloud-scale data store using an architectural approach for high-
assurance; it enforces a lattice-based mandatory information flow policy,
without any additional trusted components. We highlight several promis-
ing avenues for practical systems research in secure, distributed archi-
tectures implementing mandatory policies using Java-based untrusted
subjects.

1 Introduction

Resource sharing exists at several layers in the cloud. For example, platform-
as-a-service usually employs virtualization with shared hardware; software-as-
a-service may provide multi-tenant database services (e.g., [37]). Given this
shared resource environment, information leakage is a major concern in a multi-
customer cloud [30,26]. Further, a variety of sensitive data is being managed by
community and private clouds in governments and industries across the globe,
e.g., healthcare organizations in the U.S. and EU [12]. The U.S. government is
using a community cloud infrastructure for processing and sharing intelligence
data [25] and is planning different tactical cloud environments [6,24] for ground
and afloat operations. The output of tactical sensors to these clouds has been
dubbed a “Data Flood” problem [29]. These Big Data challenges go beyond the
need for new analytics: a leak resulting from this flood may pose grave danger
to both human intelligence sources and national security. The need to manage
sensitive and classified data in shared cloud infrastructures motivates enforc-
ing strict, mandatory policies for information flow control, through the use of
systems following the same rigor applied to a security kernel [32].
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It is in this context that we re-explore the design of high-assurance multi-
level secure database systems, adapted for cloud-scale data stores. Prior work
has considered relational database management systems (RDBMS) preserving
mandatory information flow policies (i.e., the Bell-LaPadula model). At the time,
relational databases appeared to be a multi-purpose “one size fits all” solution;
this perspective, however, has substantially waned [35]. An emerging trend is to
select the data model and query model one’s application requires, then to select
a storage back-end appropriate for the situation. Experience has begun to show
that often the resultant model is not relational, nor does the application require
ACID properties (atomicity, consistency, isolation, durability). As a result, var-
ious high-availability, massively-scalable, non-relational (“NoSQL”) databases
have found adoption in a cloud context. These new databases tend to not guar-
antee ACID properties, instead relaxing consistency in favor of availability and
network partition tolerance. The success of non-relational databases to support
a variety of cloud services has demonstrated that many natural and important
applications—e.g., content distribution, content management systems, massively
parallel data mining—are not efficiently maintained as relational models.

Our work makes the following contributions:

– We formulate the problem of multilevel security for cloud data stores—prior
work considered only MLS relational models and MLS transactional systems.

– We propose the design of a scalable data store following BigTable’s design,
capable of enforcing an MLS policy; the design uses a variant of the kernelized
architecture approach, requiring no trusted components external to the OS.

– We implement a prototype of our design using Apache HBase and HDFS,
requiring only small modification to run as MLS-aware untrusted subjects.

– We experimentally evaluate our prototype, verifying compatibility using sev-
eral popular cloud applications (e.g., Titan, Apache Storm) and assessing
performance using known cloud benchmarking tools.

We identify limitations in adapting a large class of cloud applications—i.e., those
making extensive use of in-memory data structures, employing languages like
Java—for kernelized systems. Our performance experiments call into question
the viability of the kernelized design in the context of cloud-scale systems; we
discuss these findings and suggest possible directions for future work.

Our prototype follows the Hinke-Schaefer variant of the kernelized database
architecture pattern. This design pattern allows the entire application to be exe-
cuted without privileges in an MLS environment, while supporting all allowable
access patterns, e.g., read-down. This is motivated by trusted computing base
(TCB) minimization requirements [1,23]. Untrusted applications built around
this pattern are called MLS-aware [21]. We select this MLS database architec-
ture for exploration as it is credited as best facilitating the “retrofit” of existing
code to run on high-assurance systems [15]. It is known to be inefficient when
tuple-level labels are required, as data must be divided among many different
operating system objects [17,15]; thus, our prototype only supports labels at the
coarsest (table-level) granularity. From a security perspective, the only major
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criticism of Hinke-Schaefer relates to support for transactions, which our design
avoids by adopting a weakened consistency model.

2 Related Work

The problem of information flow control has received growing attention in infra-
structure-as-a-service (IaaS) cloud service models. In particular, some projects
have explored the threat of placing co-resident VMs in shared clouds [30,5] for
side-channel attacks [39,40]. The Xenon VMM [26] is a hardened version of Xen
satisfying a separation policy appropriate for controlling these flows. Relatedly,
Wu et al. [38] design a proof-of-concept IaaS system based on Eucalyptus, im-
plementing Chinese Wall rather than a strict separation policy. Watson [36]
proposes a more general set of rules for information flow control between sets of
nodes performing a joint computation in a federated setting. Information flow
control in storage-as-a-service models, however, has not been well-explored, nor
have the lessons of MLS RDBMS research been re-evaluated in this new domain.

Some non-relational data stores support native mechanisms for access con-
trol. Apache Accumulo [2] is a column-store that extends the BigTable design to
support cell-level access control. Each cell is assigned a security label encoding
non-discretionary, attribute-based access control rules; these are not equivalent
to MLS labels, i.e. they are not used to enforce an information flow control pol-
icy. In particular, users with permissions to write a cell can modify its label, or
write this data to a new cell with less restrictive visibility (in MLS terms, ei-
ther violating tranquility or performing a downgrade). Relatedly, Apache HBase
implements access control lists (ACLs) at the table- and column-granularity. As
of v0.98, HBase features both cell-level visibilities, like Accumulo, and ACLs on
cells [3]. These application policies are orthogonal to those considered by our
approach, and could be incorporated for more expressive policies.

Roy et al. [31] present Airavat, a Hadoop-based MapReduce framework with
enhancements for controlling information flow. Airavat runs on SELinux, using
its type enforcement for domain isolation. Airavat modifies HDFS to manage its
own security labels. Using these, it implements a custom policy based on differ-
ential privacy, to minimize leakage of private data during MapReduce computa-
tions. In particular, the MapReduce framework (including Airavat) and reducer
implementations are trusted subjects. In contrast, in MLS-BTC there are no
trusted subjects external to the OS.

3 MLS Architectures Overview

Before discussing a proposed design for an MLS cloud data store, we briefly
review architectures for MLS RDBMS and cloud data stores, generally.

MLS Database Architectures. Several secure architectures have been previ-
ously identified for multilevel databases, i.e., the Woods Hole architectures [9].
Of these designs, the kernelized architecture provides the basis for our work.
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The reader is directed to existing survey work for an in-depth description of
other MLS database architectures, i.e., the trusted subject, integrity lock and
distributed architectures [28]. For a kernelized architecture, multilevel relations
are decomposed into single-level relations managed external to the TCB. Differ-
ent ways to decompose relations, and different ways of managing the resultant
single-level data, lead to variants of the kernelized design. In the Hinke-Schaefer
architecture [18], there are no trusted components outside the kernel; other vari-
ants include SeaView [13] and Lock Data Views [34]. In all variants, multiple
single-level untrusted subjects manage the (decomposed) single-level relations.

MLS Cloud Data Stores. No prior MLS database work applies to data
stores with relaxed ACID properties, to databases that do not encode relational
models, or to databases lacking fixed schemas. We find mandatory access control
(MAC) to be orthogonal to the transactional properties of relational databases,
and believe MLS non-relational stores to be a new and interesting domain.

Indeed, certain design patterns for distributed, cloud data stores seem syn-
ergistic with architectures for multilevel relational databases. For example, in
MLS systems, information flow restrictions require some data and single-level
services to be inaccessible to clients based on its level; data store designs that
accommodate partition tolerance and availability in the presence of failures seem
to accommodate adaptation to these environments.

Data store designs that employ append-only, log-structured storage managed
by the underlying TCB can be implemented using a lock-free design, possibly
allowing access to high-readers while a low-update is in progress. Such concur-
rent access comes at the expense of replacing strong consistency by eventual
consistency, which for many stores is part of the intended design. Thus, sys-
tems whose data structures use write-ahead logs (e.g., to support a crash-only
design [7]) may, in practice, enable eventually-consistent, read-down operations.

For some MLS relational databases, clients access a single database front-
end. Data sharding allows a client to independently determine the location of
nodes in the cluster holding its data, to contact each node directly. In a repli-
cated architecture—in which trusted front-end agents mediate access to un-
trusted backend databases [28]—sharding may entirely eliminate the need for
trusted front-ends, allowing single-level subjects to interact with the services
at their level, directly, to access data at or below their level.

The most common criticism of the Hinke-Schaefer architecture is the diffi-
culty of implementing transactions, due to the need for read-locks and, thus, the
possibility of flows that violate MAC policy [15]. Some NoSQL stores, however,
sacrifice transactions for scalability, foregoing read locks and, thus, this problem.

4 Kernelized MLS Column-Store

We present the design for an MLS column-store following a kernelized architec-
ture. We call this the MLS-aware BigTable Clone (MLS-BTC) design, as it is
largely applicable to any data store following the published design of Google’s
BigTable [8]. To describe MLS-BTC, we adopt basic terminology employed by
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Apache HBase, a popular open-source BigTable clone. In our design, all policy
enforcement is performed by an underlying trusted operating system; it mediates
access to all resources and enforces an MLS policy. Single-level clients interact
with MLS-aware, single-level applications running on each server, which in turn
may access resources using interfaces exposed by the trusted OS. A benefit of this
approach is that applications are not involved in MLS policy enforcement and,
thus, reside outside the TCB and do not need to be engineered to be trustworthy.

4.1 MLS-BTC Design

InMLS-BTC, each table holds timestamped data, organized by rows and columns,
and grouped by column families. Table data is partitioned into regions of contigu-
ous rows. A region server (RS) manages a set of regions, handling all operations
on its assigned regions, and splitting regions that have grown above the configured
region size. For persistence, each region is stored to a distributed file system which
is, itself, an MLS-aware service following a kernelized architecture, i.e., the under-
lying trusted OS enforces the policy for accessing stored objects.

Each MLS-BTC node holds multiple untrusted RS instances, one per level.
Each RS stores its data to a directory associated with its level, using the MLS-
aware distributed file system. There are no explicit labels in the MLS-BTC
columnar data. Rather, following the Hinke-Schaefer design, data is stored to
labeled operating system objects. This approach is known to be inefficient when
database access patterns require data to be labeled at a fine-granularity [17].
In our design, object labels are coarse (per-level tables), the table namespace is
partitioned per level, and the table’s constituent objects are stored to different
per-level file system directories. RS instances access table data at lower levels by
explicitly reading from the appropriate per-level directory.

A dedicated per-level master is responsible for management of RS instances
at its level. These duties include table creation, load-balancing regions across
RS instances, and handling RS failures. As master instances require knowledge
of tables at lower levels, each master is MLS-aware. The master instances and
RS instances coordinate through a distributed locking/synchronization system.

Fig. 1. MLS-BTC Component Relationship
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MLS-BTC follows a BigTable architecture, using three special classes of region
servers: the Root RS, Meta RS, and User RS. These servers help a client locate
the RS hosting a specific table row, using the same region lookup mechanism
used in BigTable (Fig. 1). A client locates the Root RS for its level via the
distributed synchronization service at its session level. Next, the client contacts
the Root RS to find the appropriate Meta RS for the request. The client contacts
the Meta RS to find the location of the User RS managing the region for the
requested row. Finally, the client contacts the User RS to access the row data.

Concept of Operations. In a typical MLS system, a user session must be
associated with a sensitivity level, used to limit access to resources in accordance
with MLS policy. For the MLS-BTC system, the sensitivity level of a user’s ses-
sion is associated, statically, with the level of the network interface on which
the request is received1. A client communicates with the per-level region servers
to manipulate table data (e.g., get, put, delete, multi-row scan). A single-level
client can write to tables at its session level, and read tables at or below its
session level. A client communicates with a per-level master server to issue cer-
tain administrative functions (e.g., create, list, or delete tables, add to or drop
from column families). The list-tables operation returns data for any tables at
or below the client’s session level.

Design Features. The primary design goals of the MLS-BTC system are:
(a) to defer all MLS policy enforcement to the underlying TCB; (b) to use no
trusted subjects external to the OS, avoiding extending the TCB boundary, e.g.,
no trusted proxies or trusted front-ends to communicate between processes at dif-
ferent levels; (c) re-use existing code for untrusted subjects, minimizing the mod-
ifications required to make these MLS-aware; (d) expose a familiar client API.
We ensure all MLS functionality is deferred to the underling OS by re-designing
MLS-BTC components as untrusted subjects following a Hinke-Schaefer design.
Re-using existing code for untrusted subjects with only small modification al-
lows us to leverage complex, feature-rich server behavior, and future upgrades
to that code, without extending the TCB boundary. A familiar API—such as
one compatible with an existing, column-oriented store—will allow MLS-BTC
to support legacy applications and simplify new application development.

4.2 Prototype Implementation

Each node in an MLS-BTC cluster is a platform running a trustworthy op-
erating system enforcing an MLS policy. The prototype currently implements
this component using SELinux, configured to enforce a MAC policy based on
the Bell-LaPadula confidentiality model [16]. The prototype’s untrusted sub-
jects are based on a number of existing open-source components, running either
unmodified or with small modification:

1 We admit labeling interfaces imposes some deployment inflexibility, adopting it for
simplicity; in Sect. 4.2 (Limitations), we suggest more flexible and complex designs.



92 T.D. Nguyen et al.

– MLS-aware Master & Region Servers. The prototype re-uses the Master
Server and Region Server (RS) components of HBase [14], modified to be
MLS-aware HBase (MA-HBase) components. This provides clients with a
cross-domain read-down capability, constrained by the SELinux MAC policy.

– MLS-aware Distributed File System. The prototype re-uses components of
the Hadoop Distributed File System [33] (HDFS), modified to produce an
MLS-aware HDFS (MA-HDFS) component. Details for the design and ar-
chitecture of the MA-HDFS component are reported in prior work [27].

– Per-Level Locking/Synchronization Services. The prototype re-uses compo-
nents of Zookeeper [19] to implement a distributed synchronization and lock-
ing service, available at each level. We configure and re-use these components,
wholesale, as single-level subjects on separate nodes.

Fig. 2. MLS-BTC Table Storage

Table and Directory Organization. The MA-HBase cluster jointly man-
ages a set of per-level tables (Fig. 2). As in HBase, there are three types of table:
the root table, the meta table, and the user tables; each are maintained by the
Root RS, Meta RS and User RS, respectively. The root and meta table nam-
ing conventions are unchanged. The user table namespace, however, is divided
by level (level.TableName), to signal to an RS when a read-down operation is
required to access table data at a lower level.

HBase stores all table data under a configurable root location in HDFS. The
directories under this root (e.g., /hbase) include a directory tree holding write-
ahead log (HLog) data, and a tree holding per-region table (HFile) data. The
constituent HLog and HFile objects managed by MA-HDFS are stored under a
per-level root location (e.g., /level/hbase).

For both MA-HBase tables and MA-HDFS directories, the level indicator,
used to partition the namespace and invoke read-down logic, is a human-readable
string administratively associated with an SELinux sensitivity level.
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Information Flow. The information flow between a client application (local
or remote) and an MA-HBase server process is constrained by the system’s MAC
policy (see Fig. 3). An application can only communicate with an MA-HBase
process running at its session level. When the application requires read-access
to a table at a lower level, it must request the RS running at its session level to
perform a read-down on its behalf. If the application attempts to contact an RS
running at some lower level, the underlying trusted OS prohibits this.

Fig. 3. Information Flow in MLS-BTC

The information flow between an MA-HBase RS process and an MA-HDFS
server process is similarly contained: An MA-HBase RS may only communicate
with MA-HDFS processes running at the same level. Thus, RS requests to read
HLog or HFile data at lower levels must be issued from the RS to an MA-HDFS
process at the same level, which in turn performs the read-down operations.

Read-Down Requests. Next, we explain how MLS-BTC handles write, read
and read-down requests. This involves two steps: locating the appropriate User RS
by the client, and handling the request by the User RS. In MA-HBase, we distin-
guish between two types of RS: the authoritative RS and the surrogate RS. The
authoritative RS is the “owner” of an allocated region. It runs at the sensitivity
level of the corresponding table and updates the MA-HDFS files for storing the
row data associated with its regions. The surrogate RS runs at the client’s session
level and is responsible for handling read-down requests for table data managed
by an authoritative RS at a lower level. This is required since a client cannot com-
municate directly with any lower-level authoritative RS instance. The number of
authoritative and surrogate RS instances running on a node is defined administra-
tively through MA-HBase configuration files.

When a client requests access to a row in a table at its session level, it locates
the authoritative User RS associated with the row, via the Root and Meta RS.
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When the client requests access to a row in a table at a lower level, i.e., a
read-down operation, the process is slightly different. The Meta RS recognizes
the difference between the client’s session level and table’s level, and responds
to the client with the location of an appropriate surrogate RS, rather than the
authoritative RS. In turn, when the client contacts the surrogate RS with a
request to read a row at a lower level, the surrogate RS performs a read-down
operation to the MA-HDFS resources storing the row data. Since the Meta RS
does not read-down on every meta table scan to retrieve region information at
lower levels, client-side caching of meta table data poses a problem: prior scans
of tables at its session level will not include all available lower regions. Thus, the
MA-HBase client does not cache data obtained from the Root RS and Meta RS.

In HBase, an RS process maintains a database of all active storage objects
associated with its region, called the onlineRegions database. This database is
created during initialization, expanded when a new region is allocated to the
RS, and modified when a region change is made (e.g., when a row is modified or
deleted). During a read request, an RS uses this database to locate the HDFS
resources associated with the requested row. The database is held in private
memory and is not visible to other RS processes.

In MA-HBase, each authoritative RS maintains a new data structure, the
onlineRegionsCache, to expose its region data to surrogate RS instances at higher
levels (see Fig. 4). The onlineRegions database is a complex data structure: a
map of maps of lists of complex nested objects. This structure is located in
the Java heap, and it grows and shrinks dynamically, in each of its dimensions.
To expose its contents to higher levels, some form of IPC must be employed.
Using shared memory (i.e., re-implementing it as a library using the Java Native
Interface) would be non-trivial. For example, POSIX shared memory sizes are
defined at creation time, limiting the dynamic growth of the structure. Further,
such a library would require new, custom logic for memory management; the lack
of coordination between the memory managers—i.e., Java’s garbage collection
and the management of the shared memory pool under the native library—would
be especially problematic. Instead, the data is exposed using file-based IPC.

On a write request, the RS services the request, updates the onlineRegions
database, flushes all recent modifications to MA-HDFS, then serializes the in-
memory onlineRegions database to an onlineRegionsCache file. This file is stored
to a RAM disk, accessible to surrogate RS instances at higher levels. The sur-
rogate RS can read-down to the RAM disk, to de-serialize and interpret the
data structure in response to read-down requests. Using the onlineRegionsCache
database, a surrogate RS locates the MA-HDFS objects associated with table
data at lower levels, and requests these from MA-HDFS processes running at
the surrogate’s level. Serializing the onlineRegions database required developing
a custom serialization class, as standard Java object serialization mechanisms
could not be used: the database contains inner classes with non-serializable at-
tributes. Concurrent access to the onlineRegionsCache by multiple processes is
synchronized using a lock-free, read-and-retry consistency mechanism.
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Fig. 4. Authoritative and Surrogate RS Detail

Limitations. The current MLS-BTC prototype system has a number of prac-
tical limitations, stemming from our objective to develop a functional, proof-of-
concept, non-relational data store that closely follows a kernelized architecture.
We summarize those limitations here.

Scalability. The current prototype accommodates policies with a relatively small
number of sensitivity levels. For simplicity, the client’s session level is associated
with a level assigned to the receiving NIC; thus, the number of levels available
for the system’s policy is constrained by the number of NICs supported by the
underlying trusted platform. To support more complex lattice structures, i.e.,
the “gazillion problem” in MLS design [20], MLS-BTC could be extended with
custom trusted components to associate a remote client with a session level and
to start services dynamically on behalf of those subjects. The MYSEA system
uses such an approach to implement its multilevel LAN concept [22].

Caching. Serializing objects to shared memory and maintaining a consistent
image of in-memory objects accessible to subjects at higher levels comes with a
performance penalty, discussed further in Sect. 4.3

Surrogate RS. To locate surrogate RS instances, each Meta RS uses a static
look-up table providing the authoritative-to-surrogate mappings. For a large
MLS-BTC cluster, a runtime mechanism for constructing and managing this
mapping should be introduced, allowing authoritative and surrogate servers to
enter and leave the system, dynamically.

Meta RS. The current prototype requires all Meta RS instances be co-located,
to facilitate read-down to lower meta tables. For a large MLS-BTC cluster, this
cannot be guaranteed: a low Master may elect to assign a low meta region to
alternate nodes to load-balance. The Master at higher levels could recognize this,
and migrate high meta tables in response. This workaround, however, poses a
problem when Masters at incomparable levels migrate meta regions to different
nodes, forcing higher-level Masters to make an irreconcilable choice regarding
with whom they co-locate.
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Implementation Complexity. The source lines-of-code (SLOC) metric pro-
vides an intuitive measure commonly associated with development cost and soft-
ware complexity. We compare Hbase and HDFS with their MLS-aware counter-
parts (see Table 1) using the CLOC utility2. Summing across the total lines of
source that changed, ∼3% of the untrusted codebase, and none of the untrusted
codebase (i.e., SELinux), required modification for MLS-BTC.

Table 1. SLOC Comparison

Original MLS-aware Δ % Δ

MA-HDFS [27] 89615 92263 3314 3.70%
MA-HBase

Master 8624 8736 116 1.35%
RS 17170 18829 1715 9.99%

Client 7184 7420 270 3.76%
Other 66313 66732 411 0.62%

Total 188906 193980 5826 3.08%

Compatibility. To determine that our prototype data store is functionally
compatible with legacy web-applications, while constraining these according to
MLS policy, we tested three applications: Titan, Storm and AppScale.

Titan. Titan3 is an open-source, distributed graph database designed for storing
and querying large-scale graphs. We configured Titan to use our prototype as
its storage backend. Titan’s Gremlin tool was able to manipulate sample graphs
stored in the data store: read/write graphs held in tables at the client’s level,
and read graphs held in tables at lower levels.

Storm. Storm4 is an open-source, distributed stream processing platform. Storm
does not run on Hadoop; however, using an HBase connector5, Storm can be
configured to use HBase as a storage back-end. We configured Storm to store
processed data in a table at the client’s level. Theoretically, other applications
could read this Storm-processed data, either at or below their level.

AppScale. AppScale6 is an open-source re-implementation of Google’s App En-
gine platform. AppScale supports HBase as a storage back-end, to store a vari-
ety of persistent data used by the platform (e.g., user-uploaded content, system
metadata). We modified AppScale (v1.7.0) to use our prototype as its primary
datastore, rather than the precompiled HBase distributed with AppScale. A sam-
ple GAE application, the guestbook program, was used to test AppScale’s use

2 Count Lines of Code, http://cloc.sourceforge.net
3 Titan, https://thinkaurelius.github.io/titan/
4 Storm, https://storm.incubator.apache.org/
5 https://github.com/jrkinley/storm-hbase
6 AppScale, http://www.appscale.com/

http://cloc.sourceforge.net
https://thinkaurelius.github.io/titan/
https://storm.incubator.apache.org/
https://github.com/jrkinley/storm-hbase
http://www.appscale.com/
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of the HBase API. The program could read and write to the HBase tables con-
taining user messages at the client’s level. Theoretically, the guestbook program
could be modified to perform explicit read-downs to other table data.

4.3 Prototype Evaluation

To measure the performance of the MLS-BTC prototype, we used the Per-
formance Evaluation (PE) benchmark distributed with HBase and the Yahoo!
Cloud Serving Benchmark (YCSB) suite [11].

The PE benchmark implements the same tests used to evaluate performance
for BigTable: a sequential read test (Seq-R), random read test (Rand-R), scan
test (Scan-R), sequential write test (Seq-W) and random write test (Rand-W);
see Chang et al. [8] for details. The benchmark employs a hard-coded table name
in its tests; we added an option to specify the table to use, for testing read-down.

YCSB is a benchmark framework for evaluating the performance and elas-
ticity of cloud storage systems, and has been employed to benchmark systems
like Cassandra, HBase and PNUTS. YCSB provides a set of test workloads, to
evaluate different aspects of a system’s performance. All six workloads use a
similar set of records as test data. For details on the test workloads, see Cooper
et al. [10]. We followed the recommended test order (A, B, C, F, D, E), which
keeps a consistent store size. Test data were loaded prior to running YCSB-A.
Before starting YCSB-E, all tables from previous workloads are removed and
new test data loaded. In YCSB, all workloads require writes before or during
each run; thus, no read-down operation was tested.

Each test in the PE and YCSB benchmarks is executed in one of three sce-
narios: using 100,000 rows (100K), 500,000 rows (500K) and 1 million rows (1M)
workload sizes. Before each trial, all stored HDFS/HBase data are removed, to
start each trial from a comparable initial state.

Test Environment. The test environment consists of twelve nodes evenly
distributed across four server blades in one of two racks. Each node is a virtual
machine hosted on VMware ESXi 5.0.0. One rack contains three server blades
(each, a Dell PowerEdge R710, with 8 CPUs x 2.925 GHz with hyper-threading
active, 48GB RAM and Gigabit Ethernet). The other rack holds the remaining
server blade (a Dell PowerEdge R610, with 8 CPUs x 2.26 GHz with hyper-
threading active, 24GB RAM and Gigabit Ethernet).

Results. Benchmark results for the MLS-BTC prototype are summarized in
Fig. 5. We normalize each trial by the average HBase performance—i.e., mean
of three trials under same test conditions with HBase—to obtain an “overhead
factor,” a positive multiplicand expressing performance relative to HBase. In
general, all tests experience performance degradation, which is expected. The
degree of degradation, however, varies significantly, impacted by the size and
mixture of the workload.

The PE write-tests show substantial degradation, even for the relatively small
100K-row workload. In contrast, the PE read-tests exhibit overheads associated
with both table creation and read performance. For most YCSB workloads, the
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Fig. 5. Prototype performance, normalized by HBase performance

prototype is more than 50× slower than HBase. In all write workloads, per-
formance degradation is the result of both caching the onlineRegions database
(anytime a row is created or modified) and caching the HDFS namespace (any-
time an HBase object stored in HDFS is created or modified). During read-
down, performance degradation is the result of reading the cached onlineRegions
database to handle each read-down request (see Fig. 6). During other reads, the
degradation is attributable to lack of client-side caching of server metadata. In
general, the most significant performance bottlenecks are associated with the
caching of the data structures that maintain the HDFS namespace (FSImage)
on the name node and the location of HDFS blocks (BlockMap) on the data
nodes [27].

Fig. 6. Highlight of Fig. 5, including read-down performance (blue circle)

We note that more data is required for a rigorous characterization of system
performance, but the observed data suggests a rough order-of-magnitude degra-
dation: writes are processed ∼40× slower than HBase; reads are ∼1.5–8× slower,
and mixed read/write workloads can experience ∼10–90× slowdown. In Sect. 5,
we discuss some more general outcomes and lessons learned.
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5 Discussion

We find the general approach of caching objects for Hinke-Schaefer is not appro-
priate for large, distributed systems in Java. In particular, the lack of efficient
IPC mechanisms for object sharing calls into question the viability of the ker-
nelized approach for managing MLS-aware Java applications. Most methods for
IPC in Java are bi-directional (i.e., socket-based IPC) or limited by small buffer
sizes (i.e., I/O-stream based IPC). As Java lacks an API for shared memory,
MLS-BTC re-uses file-based IPC for OS-enforced data sharing. We find this is
inefficient for sharing complex, in-memory objects across levels. We discuss some
alternatives to get more acceptable performance, based on this observation.

The kernelized approach could be explored after enhancing Java with more
flexible OS-enforced IPC interfaces. For example, Kaffe [4] is a research JVM
with a process-level abstraction, allowing different Java processes to communi-
cate via shared memory in a controlled way. Supporting HDFS/HBase on Kaffe
under SELinux may be promising for kernelized MLS designs with Java-based
systems, although Kaffe appears to no longer be maintained.

In the extreme, our experiences could be interpreted as evidence that the
Hinke-Schaefer approach should be abandoned, and others explored. For exam-
ple, using the trusted front-end variant of the kernelized architecture, a carefully-
engineered trusted proxy may significantly improve performance. In MLS-BTC,
such a trusted proxy can forward client requests at different levels to the ap-
propriate RS processes, eliminating the need to cache the onlineRegions data
structure. The challenge is to design a small, covert channel-free subject whose
responsiveness and efficiency removes significant bottlenecks; this is challenging
given that “responsive” and “channel-free” tend to be mutually exclusive.

In the integrity lock architecture—in which an untrusted DBMS stores all
multilevel objects [28]—cryptographic protection on objects prevent untrusted
subjects from processing aggregate queries. This requires the trusted front-end to
be more complex, to perform extra post-query processing. Many key-value mod-
els, however, do not support an API with queries returning aggregate objects:
simple put, get, delete semantics return individual objects. The integrity lock
architecture can be re-explored in this context, re-evaluating all prior criticisms.
In particular, the architecture’s (known) signaling channel could be bounded
with respect to some popular datastore API.

6 Conclusion

We have presented a design for an MLS-aware column-store, faithfully follow-
ing the kernelized design pattern. The resulting system, MLS-BTC, constrains
access to resources at different levels, enabling read-down without any trusted
subjects outside the TCB. Our prototype evaluation questions the practicality
of the kernelized design approach to manage MLS-aware, untrusted Java-based
applications. MLS-BTC is a distributed system based on HBase using SELinux
for MLS policy enforcement; it is the first cloud-scale data store following a
high-assurance design.
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