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1909 Founded at U.S. Naval Academy

1951 Moved to Monterey, CA
Operations Research Curriculum

 Facilities of a graduate research
university

e Faculty who work for the U.S.
Navy, with clearances

e Students with fresh operational
experience

FY2018/19:

65 M.S. and 15 Ph.D. programs

* 644 faculty

* 1459 resident students includes
(144 international / 48 countries)

e 853 distributed learning students
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We are experts in interdependent infrastructure modeling and analysis.
We support infrastructure system operations, recovery, and planning.



USVI Modeling & Analysis: Recent NPS Graduates

LCDR Brendan LCDR Jeff Good, Cpt Dominik Wille,
Bunn, PE, USN SC, USN German Army
Naval Civil Engineer Corps Naval Supply Officer
MBA, National MS EE, Universitat de

MS OR, Sept. 2018
Water-Power Models

Bundeswehr, 2012
MS OR, Dec. 2019
Power-Water Models

University, 2008
MS OR, Sept. 2019
Supply Chain STX

ENS Andrew
Borgdorff, USN

Maj Brian
Moeller, USMC

Capt Bill Wine,
USMC

USNA, June 2019
MS OR, Dec. 2020
Water on STT, STJC

MS OR, Dec. 2020
Internet on STT

MS OR, Dec. 2020
Cell Towers

LCDR Robert

Routley, SC, USN
Naval Supply Officer

. w' ; MAJ Elad Bengigi,
‘ Israel Defense
Forces

¥ MS OR, Sept. 2020

MS SE, Technion 2018 SUBply ChainsISTT ST}

MS OR, Sept 2020
Road Networks
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USVI Recovery
Operational Resilience Analysis and Capacity Building in the US Virgin Islands

Sponsor: Department of Homeland Security (DHS) Federal Emergency Management Agency (FEMA)

Project Abstract: This project builds on preliminary work to provide modeling, analysis, and subject matter expertise o the Infrastructure Systems (IS) Recovery
Support Function (RSF) and the Community Planning and Capacity Building RSF following Hurricane Irma and Hurricane Maria in the territory of the US Virgin Islands.
Specifically, this project proposes (1) ongoing modeling and analysis of interdependent infrastructure systems within the territory, with emphasis on assessing and
improving their operational resilience; (2) support for the development of a next-generation hazard mitigation and resilience plan in the teritory; and (3) capacity building
efforts via the development of an education and training pipeline for knowledgeable professionals who understand and think about hazard mitigation and operationa
resilience of the USVI in everything they do. This project explicitly supports several other complementary efforts, particularly those hosted at the University of the Virgin
Islands.

Simulation Optimization for Operational

Resilience of Interdependent Water-Power

Systems in the US Virgin Islands.

Cpt Dominik Wile, German Army | M.S Thesis in Operations Research

(Completed Dec. 2019)

This work studies the water and power distribution systems on the island of St. (
Croix (STX) to predict the outcome of interdependent water-power failure events

and recommend system hardening and protection activities. As the storms

revealed, loss of electricity on STX can also lead to loss of pumping stations that

distribute water. During these situations operators rely on water storage tanks to
serve communities until electricity and pumps retum to service. The goal of this
thesis is to model how water-power failures happen and recommend ways 10
prevent them by answering the following questions:



Partners Working to Improve Infrastructure Resilience

Federal

National Renewable
Energy Laboratory
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BERKELEY LAB

Lawrence Berkeley National Laboratory
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Our work is a “Joint” effort in partnership with a variety of organizations.
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A Story in Two Parts...

Day 1 Day 2

Where are we going?
(Risk & Resilience)

How are we doing?
(System Function & Vulnerability)

How does it ‘ What can go What do ‘ What do we

l

work? wrong? : we want? need to do?
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operations, mgmt., etc. biases, etc. . goals, etc. capabilities, etc.
Assumptions about Assumptions about . Assumptions about Assumptions about
our systems our needs . our future ourselves
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How are we doing...? Analysis of Critical Infrastructure

Key Recognition: Need an Operational View of Infrastructure

e Systems Modeling: We model system function
— Assets - Systems - Function - Capability - Mission



How are we doing...? Analysis of Critical Infrastructure

Key Recognition: Need an Operational View of Infrastructure

* Systems Modeling: We model system function
—|Assets - Systems - Function - Capability]> Mission

Modeling & Analysis

We build models to assess the capability of a system to

deliver service under different scenarios:
 How well does the system perform during normal operation?
 How well does the system perform when stressed?
e Loss of one or more assets? (e.g., from failures, hurricanes)
 Extreme demands? (e.g., during drought)
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How are we doing...? Analysis of Critical Infrastructure

Key Recognition: Need an Operational View of Infrastructure

* Systems Modeling: We model system function
—|Assets - Systems - Function - Capability‘%‘Mission‘

Modeling & Analysis Stakeholder
Values

We build models to assess the capability of a system to

deliver service under different scenarios:
 How well does the system perform during normal operation?
 How well does the system perform when stressed?
e Loss of one or more assets? (e.g., from failures, hurricanes)
 Extreme demands? (e.g., during drought)

Defining “mission success” is for stakeholders, not modelers
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Stakeholder-driven Research: Modeling & Analysis

Translate Stakeholder [ |DENTIFY KEY
Issues into Research ISSUES / ‘\
Questions QUESTIONS
COLLECT /
CURATE DATA \
DEVELOP
MODEL + TOOLS \
APPLY TOOLS
FOR ANALYSIS \

COMMUNICATE
RESULTS

Create Data, Models, and
Analysis Tools to Inform
Stakeholder Issues

Work with Stakeholders
to Turn Analysis into
Decisions

Co-Develop Research Projects with CID Faculty, Staff, and Project Stakeholders



Electric Power: STX Power Grid Hurricane Vulnerability

Q: What is the IDENTIFY KEY

Vulnerability of STX ISSUES / ‘\
Grid to Hurricanes? QUESTIONS

COLLECT /
CURATE DATA \
DEVELOP

MODEL + TOOLS \
APPLY TOOLS
FOR ANALYSIS \

COMMUNICATE
RESULTS

Worked with Sandia,
Updated STX Data Sets
from VI WAPA

Conducted STX Risk
Analysis to Predict
Impacts of Power
Infrastructure Failures

Results: Determined
Cpt Dominik Wille, Optimal Hurricane
German Army Hardening Strategy

Simulation-Optimization for
Operational Resilience of
Interdependent Water-Power

a2 " Systems in the US Virgin Islands,
Dec. 2019




Electric Power:

(JHow does it work?
JWhat can go wrong?
JWhat do we want?

(JWhat do we need to do?



Electric Power:

(JHow does it work?
JWhat can go wrong?
(JWhat do we want?

(dWhat do we need to do?

Generation =2  Transmission =  Distribution

transmission lines carry
power plant . "
g electricity | distances
generates electricity y'ong distribution lines carry

electricity to houses

transformers on poles
step down electricity
before it enters houses

transformer steps neighborhood
up voltage for transformer steps
transmission down voltage

Source: Adapted from National Energy Education Development Project (public domain)
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Electric Power:

(JHow does it work?
JWhat can go wrong?
(JWhat do we want?

(dWhat do we need to do?

Generation =2  Transmission =  Distribution

transmission lines carry

PR (Sa electricity long distances

generates electricity distribution lines carry

electricity to houses
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Electric Power:

(JHow does it work?
JWhat can go wrong?
(JWhat do we want?

(dWhat do we need to do?

Generation =2  Transmission =  Distribution

transmission lines carry
power plant oy .
o electricity long distances
generates electricity y distribution lines carry

-

|
-\\ ! ,'- ——— electricity to houses 0=
- '~ ' ‘ ! y . .
/Ql N v X \ residential
A A solar
A O . R :

\

X
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N_[=7 4 backup
‘ generator
transformers on poles

step down electricity
before it enters houses
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Source: Adapted from National Energy Education Development Project (public domain)



Electric Power:

Richmond Substation

Midland Substation 01a
06b 02a
08b 03a
09b 05a
10b 06a

Generation =2  Transmission =  Distribution
transmission lines carry

power plant gy ”
. electricity | distances
. generates electricity yee distribution lines carry
N o A electricity to houses

residential

solar
backup
generator

wind farm transmission down voltage
Source: Adapted from National Energy Education Development Project (public domain)



How Vulnerable is the STX Grid with wooden poles only?

Richmond Substation
01a

06b 02a
08b 03a
09b 05a
10b 06a

S ~

Category 2 Hurricane

Entire

Category 3 = Full Blackout .., —
Results From Hurricane Simulations: i - * I
Category 1 (74-95 mph): No Blackout No ﬁ [

Category 2 (96-110 mph): Feeder Dependentgjackout
Category 3 (111-129 mph): Full Blackout

0l1a 02a 03a 05a 06a 06b 08b 09b 10b
Entire _Category 3 Hurricane

- - - DL ' Ny ? £
Island * Y

Power Line Vulnerability Depends on Design: |
* Feeders 02a, 06a, & 10b most vulnerable

* Feeders 01a & 05a most robust No | | | | , | . . .
Blackout 012 02a 03a 052 06a 06b 08b 09 10b




How Can We Protect is the STX Grid?:

® Polein forestedarea
@® Pole in not forested area




How Can We Protect is the STX Grid?: Poles + Undergrounding

® Polein forestedarea
@® Pole in not forested area

Entire COmposite Power Poles

Results From Hurricane Simulations: Island — ;: e —
Category 3 (Poles): Good . . ;

Category 3 (Underground): Better

Category 3 (Combined): Best (No Load Shed) No
Blackout 1. 022 03a o052 o06a 06b 09 10b

Power Line Vulnerability Depends on Design: Entire Underground Feeder Lines

* Feeders 01a & 05a better with poles Island F E

« All other feeders better with * | = — -

undergrounding '

No
Blackout i, 022 03a o0sa 06a o06b o08b 09b 10b



Supply Chains: STT & STJ Access to Critical Supplies

Q: Can Communities IDENTIFY KEY
Access Supplies ISSUES / \
After Disaster? QUESTIONS

COLLECT /
CURATE DATA \

Developed Data &
Network Model for
Last Mile Supply Chain

DEVELOP
MODEL + TOOLS \

Conducted STT & STJ
Risk Analysis to
Predict Impact of

APPLY TOOLS
FOR ANALYSIS \

Flooding on Roads

Results: Identified

COMMUNICATE
RESULTS

LCDR Robert Routley, Communities that

USN .
An Operational Model of the CannOt ACCESS Supplles

Critical Supply Chain for St.
Thomas and St. John, Sept. 2020




Supply Chains: STT & STJ Access to Critical Supplies

dHow does it work?
JWhat can go wrong?
dWhat do we want?
dWhat do we need to do?



Supply Chains: STT & STJ Access to Critical Supplies

(JHow does it work?

Stores

JWhat can go wrong?

Port
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Supply Chains: STT & STJ Access to Critical Supplies

(JHow does it work?

Stores
JWhat can go wrong?

"1 - .‘t‘

% Unload %
x\

U ——— . R

Return I

Port
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Supply Chains: STT & STJ Access to Critical Supplies

(JHow does it work?

JWhat can go wrong?

S ey —— .
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Supply Chains: STT & STJ Access to Critical Supplies

JHow does it work?
Stores

a [} A !‘a I“3 | ) 7
VPR EEY e
Service Time
jm=—————=———=————Fa~—m - - ==L~
|

JWhat can go wrong?

Homes
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Supply Chains: STT & STJ Access to Critical Supplies

(JHow does it work?

JWhat can go wrong?

e e ————— . R

Port
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Supply Chains: STT & STJ Access to Critical Supplies

(JHow does it work?

Stores
JWhat can go wrong?

Port
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Supply Chains: STT & STJ Access to Critical Supplies

(JHow does it work?

Stores
JWhat can go wrong?

Congestion: Is there

Port

VVulnerable populations: Who is

most affected by long drive times?
34



Supply Chains: STT & STJ Access to Critical Supplies

(JHow does it work?

Stores
JWhat can go wrong?

Flooding: What happens when
roads are blocked?

B4

VI Consor tium
February 06, 2020

______ e . L Homes
Port .

VVulnerable populations: Who is

most affected by long drive tinges?
5




How Vulnerable is the STJ Supply Chain to Flooding?:

Normal w/ Curfew




How Vulnerable is the STJ Supply Chain to FIoodlng

Normal w/ Curfew

Supply Access?




How Vulnerable is the STT Supply Chain to Flooding?:

00 02 04 06 08 10
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How Vulnerable is the STT/STJ Supply Chain to Flooding?:

Worst-Case Flooding Impacts on
Last-Mile Supply Chain

sland Stores Unreachable for Stranded People who
Resupply by the Port cannot Access Supplies
St. John 12 (All Stores) 250 (~5%)

St. Thomas 8 (Eastern STT) 4,656 (~9%)




Water: Predicting Water Demands Pre- and Post-Hurricanes

Q: How to Predict IDENTIFY KEY

Pipe, Cistern, etc. ISSUES / \
Water Demands QUESTIONS
COLLECT /

CURATE DATA \

DEVELOP

MODEL + TOOLS \
APPLY TOOLS
FOR ANALYSIS \

COMMUNICATE
RESULTS

Integrating Customer
& Weather Data Sets

Developing Demand
Prediction Model for
All Customer Types

Results: Statistical

ENS Andrew Models to Estimate
Borgdorff, USN Pre- and Post-
A Demand and Distribution Storm Demands

Model for Potable Water
AT in the USVI; June 2020




Water: Predicting Water Demands Pre- and Post-Hurricanes

(JHow does it work?

JWhat can go wrong?
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PRODUCTION —> STORAGE —— DISTRIBUTION —
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PRODUCTION —> STORAGE —— DISTRIBUTION — STORAGE — CONSUMPTION

What can go wrong? =

rainwater
‘ Problems with potable - > Ik ﬁ
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PRODUCTION —> STORAGE —— DISTRIBUTION — STORAGE — CONSUMPTION

What can go wrong?
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PRODUCTION —> STORAGE —— DISTRIBUTION — STORAGE — CONSUMPTION

What can go wrong?

rainwater
Long-term drought

6é Can production and
distribution meet demand?
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How Well can We Predict Water Demands?:

— STJ Volume Monthly ——Fitted Values

—_— Predi
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How Well can We Predict Water Demands?: Poorly

—— STJ Volume Monthly —— Fitted Values
Predicted Values

Best-of-breed models
perform poorly in the

2 | presence of surprise.
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But...Demand for Water Trucks has Toun Volume | N
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Telecom: Robustness of the USVI Cell Phone Network

Q: Who Has Cell IDENTIFY KEY

Reception when ISSUES / \
Towers Fail? QUESTIONS
COLLECT /

CURATE DATA \

DEVELOP

MODEL + TOOLS \
APPLY TOOLS
FOR ANALYSIS \

COMMUNICATE
RESULTS

Working with Initial
Data to Understand
Cellular Service

Building Models to
Generate Cell Service
Maps during Disasters

Results:
Capt William Wine, Cell Phone Network

usmc Vulnerability Analysis

Cell Phone Network
Resilience in the US Virgin
Islands; June 2020




Telecom: Robustness of the USVI Cell Phone Network

(JHow does it work?

JWhat can go wrong?

Free Ground Diffraction Simple Multiple
Space Reflections and Foliage Diffraction Losses
Loss Loss Loss Model



Telecom: Which Cell Towers Serve Public Safety?:
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Telecom: Which Cell Towers Serve Public Safety?: 1, 17, 20, & 2

Tower | CAll | CAI2 | CAI3 | CAl4 | CAlS5 | CAle | CALT Total
STT-1 14 0 1l 12 1 50 2 90 (49.2%)
STT-6 3 0 1 3 0 8 0 15 (8.2%)
STT-9 11 | 2 6 0 24 | 45 (24.6%)
STT-15 12 2 9 5 0 60 4 92 (50.3%)
STT-17 27 2 11 12 l 80 6 139 {76.0%:)
STT-20 | 24 3 13 14 | 77 8 | 140(76.5%)
STT-24 5 0 1 0 0 10 0 16 (8.7%)
STT-33 9 0 3 3 0 18 0 33 (18.0%)
STT-34 12 2 8 4 0 50 3 T9 (43.2%)
STT-35 16 2 9 4 0 59 [§] 96 (52.5%)
STT-36 11 1 2 5 0 14 | 34 (18.6%)
STI-2 5 0 2 4 0 3 0 14 (7.7%)
5TI-3 0 0 0 0 0 | 0 1 (0.5%)
All CAls 39 3 14 23 1 a3 10 183

“Medium” [ |
None B

CAl Categories
: K-12 School
: Library

: Medical

: Public Safety
: University

: Other Gov

: Other NGO

No bk~ WN R
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Key Messages

Our work in the USVI support HMRP in multiple areas:

 Power: Hurricane Hardening

* Roads: Supply Chain Mgmt., Effects of Intersection Design + Network Upgrades
 Telecom: Wireless Vulnerability, Fiber Cuts

 Water: Water Sensing, Water Network Resilience

An operational view of infrastructure function is vital to answering key questions:
@ How does it work?

™M What can go wrong?

J What do we want? <« stakeholder values

1 What do we need to do?< manage risk, build resilience
(tomorrow’s discussion)



A Story in Two Parts...

Day 1 Day 2

Where are we going?
(Risk & Resilience)

How are we doing?
(System Function & Vulnerability)

How does it ‘ What can go What do ‘ What do we

l.

work? wrong? . we want? need to do?
: T T e T i S ZZmTTm T 1
: g i i o ]
P . - =) i | e / ‘ \ :
""""""""""" b [ ] Robustness: System |mahmmm
/ | ) 3 ﬁ’_‘ [ ] : co:tinues to function : : Learning ic k;m MMMMMM :
15 | 4 . : 1 as intended H ! e Hewm:
i = | : Extensibility: System H : 1 \ ‘ / 1
[ ] | function stretches to Fhanges to function 1 : Adapting 1
Roads, STT Flood Impacts . oot e I W i
Structure, function, Backgrounds, beliefs, Responses, actions, Processes, capacities,
operations, mgmt., etc. biases, etc. goals, etc. capabilities, etc.
Assumptions about Assumptions about Assumptions about Assumptions about
our systems our needs our future ourselves



Contact Information
e Dr. David Alderson

Director, Center for Infrastructure Defense
Naval Postgraduate School

831-656-1814, dlalders@nps.edu
http://faculty.nps.edu/dlalders

* Dr. Daniel Eisenberg
Deputy Director, Center for Infrastructure Defense
Naval Postgraduate School
831-656-2358, daniel.eisenberg@nps.edu
http://faculty.nps.edu/deisenberg

e NPS Center for Infrastructure Defense
http://www.nps.edu/cid
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USVI Recovery
Operational Resilience Analysis and Capacity Building in the US Virgin Islands

Sponsor: Department of Homeland Security (DHS) Federal Emergency Management Agency (FEMA)

Project Abstract: This project builds on preliminary work to provide modeling, analysis, and subject matter expertise 1o the Infrastructure Systems (IS) Recovery
Support Function (RSF) and the Community Planning and Capacity Building RSF following Hurricane Irma and Hurricane Maria in the territory of the US Virgin Islands.
Specifically, this project proposes (1) ongoing modeling and analysis of interdependent infrastructure systems within the territory, with emphasis on assessing and
improving their operational resilience; (2) support for the development of a next-generation hazard mitigation and resilience plan in the temritory; and (3) capacity building
efforts via the development of an education and training pipeline for knowledgeable professionals ‘hc understand and think about hazard mitigation and operationa
resilience of the USVI in everything they do. This project explicitly supports several other complementary efforts, particularly those hosted at the University of the Virgin

Islands.
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