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Abstract. We have derived an analytic form of the thickness redistribu-

tion function, Ψ, and compressive strength of sea ice using variational prin-

ciples. By using the technique of coarse-graining vertical sea ice deformation,

or ridging, in the momentum equation of the pack, we isolate frictional en-

ergy loss from potential energy gain in the collision of floes. The method ac-

counts for macroporosity of ridge rubble, φR, and by including this in the

state-space of the pack, we expand the sea ice thickness distribution, g(h),

to a bivariate distribution, g(h, φR). The effect of macroporosity is for the

first time included in the large-scale mass conservation and momentum equa-

tions of frozen oceans. We make assumptions that have simplified the prob-

lem, such as treating sea ice as a granular material in ridges, and assuming

that bending moments associated with ridging are perturbations around an

isostatic state. Regardless of these simplifications, the coarse-grained ridge

model is highly predictive of macroporosity and ridge shape. By ensuring that

vertical sea ice deformation observes a variational principle both at the scale

of individual ridges and over the pack as a whole, we can predict distribu-

tions of ridge shapes using equations that can be solved in Earth system mod-

els. Our method also offers the possibility of more accurate derivations of sea
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ice thickness from ice freeboard measured by space-borne altimeters over po-

lar oceans.

Keypoints:

• We present a framework for sea ice ridging using variational calculus.

• The new framework accounts for the macroporosity of ice ridges and the

non-conservation of energy in ridge formation.

• From the statistics of individual ridges, we derive the evolution of the

sea ice thickness distribution for the entire pack.
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Introduction

Connecting sea ice thickness changes from individual ridging events with regional ice

thickness evolution remains a problem in Earth system modeling. This is partly be-

cause sea ice mechanics is highly dissipative, and therefore not subject to the energetic

constraints of Hamiltonian systems. When sea ice deforms, most of the kinetic energy

consumed in the process is not converted to potential energy, but instead is permanently

lost from the mechanics through friction and inelastic deformation [Hopkins et al., 1991;

Hopkins , 1994, 1998]. Predicting the sea ice state, including its velocity, thickness, and

fractional ocean coverage (concentration), cannot easily be constrained using the varia-

tional principle of stationary action as stated by Hamilton [1834, 1835]. If ridging could

be constrained in this way, the associated vertical deformation would be minimized over

its drift path on the surface of the ocean. Lord Rayleigh proposed a solution for non-

conservative systems akin to pack ice [Strutt , 1871], enacted as a principle of reduced

dissipation [Virga, 2015]. However, it is difficult to apply Rayleigh’s method without

an explicit friction model for sea ice deformation that aggregates many discrete ridging

events. As a consequence, basin-scale sea ice models typically rely on an empirical fric-

tional ridging parameterization in their dynamics equations [Lipscomb et al., 2007], rather

than on a frictional relation derived from first principles.

In this paper, we derive a mathematical relationship between frictional dissipation dur-

ing individual ridging events and changes in the distribution g(h) of sea ice thickness h

over an area A of pack ice that includes many discrete ridge formations. It constrains

the vertical relief of floating morphological features within the pack, including rafts, folds,

buckles, rubble fields, ridges and hummocks. These features increase the overall draft
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and freeboard of sea ice, and we broadly refer to their construction as ridging. A revised

set of sea ice dynamics equations is derived using variational calculus that predicts the

spatial distribution of ridges, as well as their shape, porosity, strength and isostatic length

scale, providing the foundation for a multi-scale model of sea ice. We contextualize these

new developments in section 1. In section 1, we introduce the variational method as it

applies to ridging and contrast it with previous empirical approaches to ice deformation.

Sections 0.3 and 0.5.3 develop a coarse-grained morphology and frictional approximation

for individual ridges that culminates in the emergence of two-dimensional ridge statistics

that match observations. Sections 0.7.4 extends the method to large scale sea ice dynam-

ics equations in Earth system models (ESMs), which is the key point of our work. This

is our first paper in a series on modeling sea ice thickness; it deals with the theory and

equations applicable to ESMs. Planned applications to two ESMs are discussed in the

concluding sections of this manuscript.

Motivation and Aim

Vertical sea ice deformation typically occurs along closing leads because it is more ef-

ficient for colliding floes to bend, buckle, subduct or overthrust at their edges than to

compressively fracture within, unless the ice is thin or ductile [Weeks , 2010]. The hori-

zontal flexural and uniaxial tensile strength of first year floes ranges over ∼0.1−1.5MPa

and ∼0.2−0.8MPa, respectively [Kovacs , 1996; Timco and Weeks , 2010]. By compari-

son, uniaxial compressive first year ice strength is much greater (∼0.5−5MPa) [Mellor ,

1986; Moslet , 2007; Timco and Weeks , 2010]. Hence, floes seldom break internally under

compression, but instead cleave under tension or shear, dividing into smaller floes. Ridges

form along the edges of these new plates when they converge, generating blocks of edge
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rubble under flexure [Tucker et al., 1984]. Current ESMs lack information about this

floe-scale organization of ridges, including their keel depths, sail heights, ridge shapes and

spacing. Yet, that information is needed to simulate form drag from winds and currents

acting on the pack, a critical momentum exchange in sea ice models [Tsamados et al.,

2014; Martin et al., 2016].

A large fraction of kinetic energy is lost from friction within ridge rubble as part of

floe tectonics. This loss is in addition to the kinetic energy expended when colliding floes

fracture into virgin rubble. The scale of the resulting rubble blocks is correlated with

the original thickness of the parent sheet, hF , from which the debris is calved [Tucker

et al., 1984; Strub-Klein and Sudom, 2012]. Block sizes may be scale invariant up to a

limit imposed by hF [Weiss , 2001], which contributes to heterogeneous voids in the ridge

mélange, as seen for two Beaufort Sea ridges in Figure 1. However, observations are seldom

possible of the evolution of ice keels and sails riddled, respectively, with waterlogged and

aerated voids. This makes contribution of the voids to sea ice energetics difficult to

quantify in ESMs. Instead, measurements of permeable spaces within ridges are usually

quantified in terms of the bulk porosity φR of their final deformed state.

Nuclear magnetic resonance tomography indicates that the macroporosity between keel

blocks can exceed 40% [Nuber et al., 2013], as do sectional and incisional ridge surveys

[Bowen and Topham, 1996; Høyland , 2007]. These measurements typically yield a lower

bulk macroporosity for entire ridges of between ∼20−30% due to refreezing between blocks

near the waterline, otherwise known as ridge consolidation [Leppäranta and Hakala, 1992;

Timco and Burden, 1997; Johnston and Barker , 2000; Strub-Klein and Sudom, 2012].

φR often exceeds the bulk microporosity, φµ, of first-year ridge blocks caused by brine
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and air pockets within their crystal structure, where φµ typically ranges between ∼2

and 12% in mildly-frigid to near-melting conditions [Kovacs , 1997; Pringle et al., 2009].

To our knowledge, there is no prognostic model for φR applicable to ESMs, even though

it is a fundamental state variable affecting kinetic energy loss, potential energy gain, and

therefore the global momentum and mass balance of sea ice.

To address this problem, the evolution of ridge porosity must be considered in ESMs.

We accomplish this by expanding the typical sea ice thickness distribution, g(h), to a

bivariate distribution of thickness and macroporosity g(h, φR). The bulk density ρ of

intact sea ice is then more clearly defined as a function only of the microporosity of

rubble and floes, φµ, their salinity, s, and enthalpy, ε, as used in purely thermodynamic

models of saline ice [e.g. Turner and Hunke, 2015]. The sea ice density ρ=ρ(φµ, s, ε) can

then be used in conjunction with φR to determine the bulk density of an area of ridged

sea ice, ρ(1−φR), and hence its draft hd and freeboard hf in large scale models. Although

isostasy need not apply [Melling et al., 1993; Doble et al., 2011; Geiger et al., 2015], it

can be used to estimate hd and hf just as in models that only resolve g(h) as described

by Lipscomb et al. [2007]. The classic sea ice thickness distribution g(h) is then simply

an integral of g(h, φR):

g(h) =

∫ 1

0

g(h, φR) dφR. (1)

In this scenario, the variable h∈[0,∞) still defines the vertical distance from the bottom

of a column of sea ice to its upper interface, but now that column may contain gaps

between ridged ice blocks when φR∈[0, 1) is included in the state space. This bivariate

framework is thus a main component of future multi-variate sea ice state functions for
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ESMs that incorporate floe-scale effects [e.g. Horvat and Tziperman, 2015; Roach et al.,

2018].

The evolution of g(h, φR) can be used to describe mass conservation aggregated over

many simultaneous ridging events in a similar way to g(h). The aim of this paper is to

derive from first principles a method to accomplish this. Thorndike et al. [1975] introduced

a mechanical redistribution function Ψ for the evolution of g(h), which is described in

Lagrangian coordinates as:

dg

dt
= Θ + Ψ− g(∇ · ẋ). (2)

ẋ is the aggregated velocity of the material area A(x) with a sea surface path x illus-

trated in Figure 2 for time t. Θ is condensed from Hibler [1980] to describe evolution of

g(h) due to freezing and melting. Herein, we will adapt (2) to the bivariate distribution

g(h, φR) and thus derive a new expression for Ψ, first for an individual ridge, and then

for fields of developing ridges, i.e. the full sea ice surface. This effort makes available

local information about ridge shapes, spacing, and porosities to the large-scale equations

for sea ice momentum, flux exchanges and marine biogeochemistry. We set aside devel-

opment of Ψ’s bivariate thermodynamic analogue, Θ, for later work. A postscript table

of mathematical notation may be referenced while reading this paper.

Methods

0.1. The Variational Method for Sea Ice Mechanics

The redistribution function for g(h) developed by Thorndike et al. [1975] used the energy

method of Rothrock [1975] to quantify frictional energy loss in terms of the potential

energy gain of rubble ridged above and below the waterline. Rothrock’s method has

subsequently been adapted to many basin-scale sea ice models, including by Hibler [1980]
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, Flato and Hibler [1995], Bitz et al. [2001], Zhang and Rothrock [2003], Lipscomb et al.

[2007], Vancoppenolle et al. [2009] and Castro-Morales et al. [2014]. It implicitly makes

use of the principle of virtual work, and in this paper we will make explicit use of that

principle. We will first introduce important variational principles of sea ice mechanics,

and then place Rothrock’s energy method in that context. For detailed explanations of

the methods that we apply here, we refer the reader to texts by Lanczos [1970], Bedford

[1985] and Cassel [2013].

Before proceeding, we define the Lagrangian coordinates in which we will be working,

and the associated mechanics term. For a field of ice, the Lagrangian path is defined as

a function x = χ(X, t) over the material area A(x) where X is a reference coordinate to

which a moving parcel may be mapped at any time between the initial and final time of

its passage, ti to tf (Fig. 2). We should strictly write g(h) and g(h, φR) with reference

to the path, g(h,x) and g(h, φR,x), but avoid that cumbersome notation where possible.

The Cauchy internal sea ice stress tensor σ=(σmn) for m,n = 1, 2 traditionally used

with Eulerian coordinates takes the form σ̄=JσJ−T in our Lagrangian reference frame,

where J = det(J) is the Jacobian, and J = ∂x/∂X. There is little practical difference

between the strain tensor in the reference coordinate X and on the path x so that we

may universally define it as ε=(εmn), where εmn≈1
2
(um,n + un,m) for the displacement

vector u(X). Contrary to other sea ice literature, u is not drift velocity. εI = εmm is

tensile strain, εII =
√

(εI
2−4|εmn|) is shear strain, and pure compression occurs when

θ = π, given θ=arctan(εII/εI). Analogous definitions for strain rate ε̇ = (ε̇mn) apply for

divergence and rate of shear.
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By applying the variational method to sea ice, we are not only able to analyze the

passage of ice along one particular track between ti to tf , such as the solid red path in

Figure 2. We can also understand constraints on ice mechanics over an infinite number of

possible paths between the start and end points xi and xf , including the alternative dotted

paths in Figure 2. Following Lagrange, we signify a test of all possible paths between xi

and xf with the first order variational vector δx. This symbol from variational calculus is

not to be confused with the discretization ∆x of infinitesimals often used in Earth system

modeling. In our work, we need only explore variations in x to the first order, because

that is sufficient to describe the energetics of sea ice mechanics.

The change in kinetic energy of an area A of drifting sea ice results from internal work

from stress between floes, as well as external work from traction along its perimeter C

and body forces applied over x (Fig. 2). This may be expressed as a time integral for

arbitrary variations in the Lagrangian path x:∫ tf

ti

∫
A

(
−m dẋ

dt
+ Fb +∇ · σ̄

)
· δx dA dt +

∫ tf

ti

∮
C

(
Ft − σ̄N

)
· δx dS dt = 0 (3)

In the left-hand parentheses in (3), m is the mass per unit area and Fb is the body

stress acting on the continuum of sea ice within A. Inside the right-hand parentheses, the

traction stress Ft surrounding A is balanced by internal stress σ̄N normal to S, and so

the line integral in (3) vanishes. The body stress arises from sea surface tilt ∇η, wind and

ocean current stress, τa and τw, and Coriolis acceleration, given the upward unit normal

vector k and Coriolis parameter f:

Fb = τa + τw +mf k× ẋ−mĝ∇η. (4)
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ĝ is standard gravity. The left-hand parentheses in (3) encapsulates Newton’s second

law for sea ice in a Lagrangian reference frame, which must sum to zero in order for the

scalar product with the first order variation δx to vanish. This is the method by which

one derives the sea ice momentum equation based on energetics. Even though there is

frictional loss in sea ice dynamics via internal stress, a variational principle still applies.

That is, the sea ice momentum equation remains true regardless of the drift path of an

area of the pack, and therefore the sum of the terms in the left hand parentheses remains

stationary when integrated over any path, and observes a principle of least action.

In our case, we are concerned only with changes in sea ice kinetic energy due to internal

stress. We may disregard body stress, itself a non-conservative term, because significant

spatial gradients in Fb typically occur over greater horizontal scales than are relevant

to our problem. Instead we need only consider traction forces, whereafter equation (3)

reduces to a simpler form:

0 =

∫ tf

ti

∫
A

(
∇· σ̄ −m dẋ

dt

)
· δx dA dt (5)

This may be restated as Hamilton’s principle of least action for continuum mechanics

[Bedford , 1985], ∫ tf

ti

∫
A

(
δT + δW

)
dA dt = 0, (6)

where T is kinetic energy per unit area of the pack, otherwise known as kinetic energy

density, andW is equivalently the work density over A. The δ symbol refers to variations

in T and W depending on the path, for which δT = m (dẋ/dt) · δx. The term δW =

−(∇ · σ̄) · δx is called the virtual work density. Part of the virtual work performed along

an arbitrary path goes toward an increase in thickness due to ridging, and thus to a virtual

potential energy density, denoted δV . The rest is lost to friction and inelastic deformation.
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The challenge in representing ridging in ESMs has been to determine the kinetic energy

lost from the system, δW − δV , and thus to correctly model changes in sea ice thickness.

Hamilton’s principle alone does not help us with that problem.

0.2. An Empirical Approach to Modeling g(h)

Without a variational constraint on the kinetic energy lost during ridging, Rothrock

[1975] and Thorndike et al. [1975] approached the problem empirically. They simplified

the problem, and assumed ridged ice to be equally as porous as undeformed material,

giving rise to the distribution g(h). They disallowed ridge crumbling (i.e. δV ≥ 0) and

assumed isostasy everywhere, permitting an approximation for energy loss:

δW = Cf δV (7)

Here, Cf ∈ [1,∞) is a constant that accounts for dissipation [Lipscomb et al., 2007], and

(Cf−1)/Cf is the fraction of kinetic energy lost, which computer simulations suggest may

account for 90-95% of all ridging work [Hopkins , 1994, 1998]. Equation (7) is used in many

models to parameterize ridging, typically with Cf = 17, yet its accuracy is questionable

[Ungermann et al., 2017], and it is difficult to justify theoretically.

Thorndike et al. [1975] aggregated the change in potential energy over A in terms of an

initial distribution of thickness a(hi,xi) for the area of ice within g(hi) that is deforming,

which shifts to a thicker final state a(hf ,xf) over ∆t = tf− ti, using the empirical pressure

ridging mode:

ωR(h,x) = lim
∆t→0

(
a(hf ,xf)− a(hi,xi)

−
∫∞

0

(
a(hf ,xf) − a(hi,xi)

)
dh

)
. (8)

Further explanation of this term may be found in Lipscomb et al. [2007]. ωR(h,x)

conserves area (−
∫∞

0
ωR dh=1) and ice volume (

∫∞
0
hωR dh=0), and is used to estimate
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the change in potential energy density V with variations in tensile strain δεI , as dictated

by variational calculus:∫ tf

ti

δV dt ≈
∫ tf

ti

ρ∆ρ ĝ

2 ρw

(∫ ∞
0

h2 ωR(h,x) dh

)
δεI dt. (9)

ρ and ρw are ice and water density, respectively, and ∆ρ=ρw−ρ. We have limited (9)

to the purely compressive case, where it is the variational equivalent of equation 8 in

Rothrock [1975] when θ=π. The redistribution function for all θ is given by

Ψ = ε̇
¯
[
ξ(θ)ωR(h,x) +

(
ξ(θ) + cos θ

)
δ̂(h)

]
, (10)

for the strain rate magnitude ε̇
¯

=
√

( ε̇I
2+ ε̇II

2) ≥ 0, where θ= arctan(εII/εI) is synony-

mous with arctan(ε̇II/ε̇I) for infinitesimal strain. δ̂(h) is a Dirac delta function and ξ(θ)

describes the extent to which ridging occurs in conditions of combined convergence and

shear as determined by the yield criteria [Lipscomb et al., 2007]. It may be shown from (5)

and (6) that δW = Jσ : δε, so that (7) and (9) combine to give the compressive strength

P of sea ice in the form originating from Rothrock [1975],

P = Cf
ρ∆ρ ĝ

2 ρw

∫ ∞
0

h2 ωR(h,x) dh. (11)

In most representations of large-scale sea ice dynamics, P appears as a coefficient in the

constitutive relation σ = Pf given the yield criterion f = fmn(ε̇jk) and j, k = 1, 2 [see

Hunter , 1983, for further explanation of f expressed in this brief way].

Ungermann et al. [2017] demonstrated that this representation of P reduced the accu-

racy of Arctic sea ice simulations relative to simpler parameterizations that do not account

for sea ice energetics. That result may derive from several limitations of the empirical

method. First, specifying friction in (11) with a universal constant, Cf , may oversimplify

the complexity of kinetic energy loss during ridging. Second, the empirical ωR requires
©2019 American Geophysical Union. All Rights Reserved.



a priori knowledge of the initial sub-distribution a(hi,xi) and its final state a(hf ,xf).

Conservative systems may be solved using an initial and final state, but non-conservative

systems, including pack ice mechanics, must be treated strictly as initial value problems

[Galley , 2012]. Therefore, the final ridged state g(hf) should be predicted in terms of the

initial condition g(hi), the path x and velocity ẋ. Godlovitch et al. [2011] and Toppal-

adoddi and Wettlaufer [2015] have explored physical analogues for ridging that describe

the transition of g(hi) to the probable final thickness state g(hf). But the macroporous

influence on deforming ice remains to be considered, even when ridging is posed as an

initial value problem.

0.3. Modeling g(h, φR) by Coarse-Graining

In this study, we derive a constraint for δW using a variational method that results

in a redistribution function Ψ for g(h, φR). To do this, we seek a solution to the Euler-

Lagrange equation for ridging, which equates to Newton’s second law in equation (5), and

against which we test for variations over the path δx:

∂χ
∂L

∂(∂χx)
− ∂L
∂x
−Q = m

dẋ

dt
−∇· σ̄ = 0. (12)

L = T −V is the Lagrangian density, and it represents the conversion of kinetic to

potential energy during ridging, a conservative and scalar exchange. The non-conservative

internal ice force per unit area, Q, is as yet unknown, and reference between X and

the Lagrangian path x within the continuum is provided by ∂χx = ∂x/∂t + ∂x/∂X.

The advantage of solving the Euler-Lagrange equation is that we are able to describe

conservative interactions during ridging purely in terms of scalars T and V . This reduces

the problem to a single vector term, Q, the non-conservative component.
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Using a different mathematical framework to ours, Rothrock [1975] quantified Q by

deriving it in terms of pressure ridging, without horizontal shear, thereby determining

the compressive strength, P . He then expanded his solution to include shear stress by

way of the yield criterion, f . We adopt a similar method, simplifying our Euler-Lagrange

equation to a one-dimensional problem aligned in the direction x̂ of pure compressive

stress σx̂. In this context, the non-conservative force per unit area is Qx̂ and derivatives

with respect to the reference coordinate X disappear:

d

dt

∂T
∂ ˙̂x
− ∂V
∂x̂
−Qx̂ = m

d ˙̂x

dt
− ∂σx̂

∂x̂
= 0. (13)

In this context, ridging is a straightforward mechanical interaction: a decrease in kinetic

energy density T , is countered by an increase in potential energy density V , and a one-

dimensional resistive non-conservative stress Qx̂, as seen in the left-hand side of (13). Our

method departs from previous work in the way in which we quantify V and Qx̂, and in

the way we account for shear in ridge formation.

To derive an estimate for Qx̂ for the entire sub-grid-scale area A(x), we ‘coarse-grain’

ridge formation along x̂ and test our solution against the variation δx̂. Coarse-graining

is a method of reducing complex interactions between particles to a system of simplified

interactions between clusters of particles. For instance, it is used to model protein systems

by treating inter-molecular interactions distinctly from intra-molecular evolution [e.g. Noid

et al., 2008; Kmiecik et al., 2016]. This facilitates multi-scale modeling of a material, and

in our case, it allows complex ridged regions to be simplified within A(x). Each ridging

space along x̂ has a local ridge thickness distribution gR(h, φR) which can be treated

individually, and the surrounding areas may be considered as floe ice, or at least non-

deforming material. The mechanics of each ridging space is analyzed using the continuum
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approximation in (13) for which there are precedents in the literature. Once we have

established an inexpensive model of individual ridges, we then derive the related equations

and the statistics they produce for collections of ridges. This type of coarse-graining is

unrelated to the method used by Marsan et al. [2004] to understand scaling in horizontal

sea ice deformation.

The coarse-grained ridging model described next draws on mechanical descriptions of

ridging by Zubov [1945], Parmerter and Coon [1972], Mellor [1980], Hopkins et al. [1991],

Hopkins [1994, 1998], Timco et al. [2000], Heinonen [2004], and Kuuliala et al. [2017].

We also utilize statistical studies of ridges. The submarine survey of Davis and Wadhams

[1995] is particularly significant because it collates measurements from a large number of

ridges (729). In that study, cross-sectional keel profiles were sampled by HMS Superb

during May 1987 with upward-looking sonar [Wadhams , 1988], and oriented relative to

the submersible’s track using sidescan sonar. Keel shapes were obtained over six transects

∼44-49 km long, located in the vicinity of the North Pole and Lincoln Sea, and in Fram

Strait. Statistical relations of ridges from that work are corroborated by Baltic, Weddell

Sea, and Arctic Ocean aerial surveys [Lewis et al., 1993; Tan et al., 2012; Petty et al.,

2016]. We use Melling and Riedel [1995, 1996] extreme keel depth relations from profiling

sonars moored in the Beaufort Sea each winter from 1990 to 1992. Finally, sail height

distributions and ridge porosity statistics are used from in-situ ridge studies from the

1970’s to the current decade. These include the Prudhoe Bay compilation of 84 ridges by

Tucker et al. [1984], and observations of 112 and more than 300 first-year boreal ridges

by Timco and Burden [1997] and Strub-Klein and Sudom [2012], respectively.

Coarse-Grained Ridge Morphology
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0.4. Polygonal Approximation

The polygonal frame in Figure 3 represents our coarse-grained morphology of ridges.

The scaled cross-section of the keel and sail relief is oriented perpendicular to the ridge line,

or keel crest, between two floating parent sheets, designated Fa and Fb in the plan view in

Figure 4a, akin to the idealization of Ekeberg et al. [2015]. Ice and snow volumes within

ridges are formed from these level, isostatic floes, each assumed to have locally unvarying

thickness. They provide boundary conditions for the ridge, so that the minimum ridge

thickness either side of the sail peak is identical to that of the parent sheets feeding the

edges of the deforming zone, as seen in Figure 5. We assume that bending moments in

floes feeding each ridge result in fracture of the floes, as first noted by Makarov [1901], and

our ridge morphology reflects the final state of the fractured ice pile after the bounding

floes have relaxed back to their isostatic state. Following from Parmerter and Coon [1972],

this permits the assumption that the ridge structure is isostatic as a whole, and therefore

the sail and keel peaks are horizontally aligned. Columns of porous ice within the ridge

will typically violate Archimedes’ Principle, so that the isostatic length scale is quantized

at the keel half-width, LK/2. Following Zubov [1945], the ridge has a ‘coefficient of filling’

equivalent to 1− φR, where φR is the bulk macroporosity of the structure.

0.4.1. Physical Description

Horizontal shearing is a boundary condition imposed on the coarse-grained ridge by

the angle θR = arctan(εRII
/εRI

) at the ridge line dividing colliding floes, annotated in

Figure 4. This is the ridge-scale analogue of θ introduced in section 0.1 for local shear

εRII
, and expansive strain εRI

, where a pressure ridge represents the special case θR = π

(Figure 4a). Ridge building occurs when π/2<θR≤ π. We orient orthogonal coordinates
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of the ridge x̂(x̂, ŷ, ẑ) so that x̂ is parallel to the large-scale horizontal principal axis

aligned with divergence ε̇I . Therefore ridges are formed from convergent horizontal floe

velocities v̂Fa(x̂) ≥ 0 and v̂Fb
(x̂) ≤ 0 seen in Figures 4 and 5. The ŷ axis is orthogonal to

v̂Fa and v̂Fb
and aligned with the horizontal principal axis ε̇II . The coordinate ẑ is aligned

with ridge thickness and orthogonal to x̂ and ŷ and x̂(x̂, ŷ, ẑ) traces the horizontal path x

of the large scale dynamics. Whereas the idealization in Figure 4 presents straight-sided

floe edges for clarity, θR may freely vary along a ridge line.

Vertical relief in Figure 3 is described in terms of ridge half-widths in a similar manner

to Davis and Wadhams [1995]. Each half-ridge shape may be described in 10 variables:

(1) thickness of level ice below the waterline, hFd
; (2) thickness of level ice plus snow

above the waterline, hFf
; (3) mean thickness of deformed ice below the waterline not

including porous spaces, hRd
; (4) mean thickness of deformed ice plus snow above the

waterline not including porous spaces, hRf
; (5) maximum sail height, HS, shared by both

sides of the ridge; (6) cross-sectional sail half-width, LS/2; (7) maximum keel depth, HK ,

also shared by both sides of the ridge; (8) cross-sectional keel half-width, LK/2; (9) bulk

macro-porosity of the ridge, φR; and (10) the principal strain angle θR. Notation is further

explained in the postscript, where subscript F represents floe ice or parent material feeding

a ridge, subscript R denotes ridging ice, and subscripts f , d and s indicate freeboard, draft,

and snow, respectively.

0.4.2. Archimedean Approximation

A full mathematical description of the ridge morphology is provided in appendix A,

and here we summarize the physical constraints applied to the morphology. Archimedes’

principle applies across ridge halves as a whole, but individual columns of ice within the
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structure may not necessarily be isostatic. Mass and volume are conserved, leading to

expressions for both horizontal tensile strain and divergence across the ridge, εR1 and ε̇R1

(appendix A). A fraction of snow is lost to the ocean during ridging, specified by an equal

areal volume of snow on ridges as on floes (hRs = hFs). Finally, we constrain the shape of a

ridge so that the angle of repose of sails and keels are equal, αS = αK (Figure 3). We refer

to these identical angles in terms of the half-ridge angle of repose on the compressional

axis, αR, and horizontal shear, θR: cotαK = cos(π−θR) cotαR. As a consequence, we are

able to describe the horizontal and vertical extent of floating deformations, LS, LK , HS,

and HK , in terms of the parent ice and snow thickness, hF and hFs , and its tensile strain,

porosity, compressional angle of repose, and horizontal shearing angle, εRI
, φR, αR, and

θR respectively.

The floating state of each ridge is independent of floe velocities v̂Fa and v̂Fb
, stemming

from work by Parmerter and Coon [1972] and Hopkins et al. [1991], where ridge shapes

were demonstrated to mature to roughly triangular keel and sail slopes in isostatic equi-

librium. Rothrock [1975] similarly described ridges in terms of their final static states,

which allowed him to make frictional loss independent of velocity in equation (7), similar

to the approach we will use. But contrary to that study, we do not assume that the entire

pack is isostatic nor imporous, only that each ridge half as a unit is isostatic, along with

the non-deforming parts of the parent sheet.

0.5. Fundamental Properties

Before deriving equations that relate the ridge state space εRI
, φR, and αK to frictional

loss, it is important to understand the advantages and limitations of this coarse-grained

morphology for its intended application in large-scale models. This is done with the help
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of scaled orthographic sections, or ‘ridgegraphs’, that provide solutions to equations 1

to 16, and permit comparisons to be made between different ridge states. Table 1 lists

the constants used for snow, saline ice and sea water.

0.5.1. Isostatic Shape

The apparently simple coarse-grained morphology introduced in section 0.4 provides a

surprisingly general approximation of deformed rubble. Whereas real ridges have fractal

profiles [Key and Mclaren, 1991; Melling et al., 1993], such detail is not required here

because the polygonal frame is a sufficient building block for kilometer-scale ice dynam-

ics. Figure 5 illustrates this point, where randomly generated pressure ridges (gray) share

the same centroid, waterline and half-ridge volume densities (VR) as the polygonal iso-

static quanta (orange outline). The polygonal approximation integrates fine-grained ridge

roughness and acts as a metric of ridge extremities. Figure 5a demonstrates that the

extremities, HK , HS, and LK , are all functions of isostasy. This example uses boundary

conditions hF = 2.0m and hFs = 0.3m, corresponding to spring modal ice thickness and

snow cover in parts of the recent Beaufort Sea [Haas et al., 2010; Webster et al., 2014]. The

ridge is mildly strained (εRI
= −1/3) and 20% porous, with an angle of repose αK = 22◦

used by Tsamados et al. [2014] to model form drag, close to the Davis and Wadhams

[1995] observed mean (23.2◦). In this case, αK = αR because there is no horizontal shear

(θR = π).

Asymmetric ridge shapes may occur when thin ice converges against a thick floe, as

represented in the discrete element modeling of Hopkins [1994]. Figure 5b presents this

scenario for a snowless parent ice sheet 0.5m thick colliding with the baseline floe taken

from Figure 5a. Bulk porosity is identical through the ridge, as well as the angle of shear,
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because these are ridge-wide properties. The thick floe has a much smaller horizontal

ridge strain (εRI1 = −0.33), than the thin floe (εRI2 = −0.83) in order for them to share

the same keel draft and sail height. There are important limits on the ridge shape and

relative strains of the two parent sheets that we derive in section 0.5.3. Meanwhile, we

confine our ridgegraphs to symmetric cases, but the half-ridge shapes within them are

applicable to asymmetric combinations within the pack.

Spectrums of keel shapes are possible in the coarse-grained state space, and may be

compared with sonar measurements. The angle of keel repose, irrespective of shear, is

αK = arctan(2(HK − hFd
)/LK) (see equation 14). This compares with keel profiles of

Davis and Wadhams [1995], who measured αK relative to the baseline draft, hFd
, following

Wadhams and Davy [1986]. They then expressed it as a function of LK/(2HK), which is

the keel half-width-to-draft ratio. This Davis and Wadhams [1995] analysis is reproduced

in Figure 6, and our coarse-grained solution is overlaid as a solid blue line for the bounding

case HK � hFd
where the level ice draft is much less than the keel, effectively the case

of hFd
= 0. The dotted blue line is the coarse-grained case where the parent sheet draft

is half as much as the keel, and indicates the observational range of the keel-to-level-

ice draft ratio. Both the solid and dotted blue lines indicate that the analytic cotangent

relationship, LK=2 (HK−hFd
) cos(π−θR) cotαR in (14) better explains keel measurements

than an empirical exponential fit first proposed by Davis and Wadhams [1995]. The color

shading in Figures 6a and 6b presents variational solutions to ridge porosity depending

on different amounts of shear (θR), discussed later.

Simplifications made to the treatment of snow (hRs=hFs) and sail shape (αS=αK) have

little morphological impact, demonstrated in a supplement to this manuscript. By con-
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trast, ridge shapes are highly sensitive to bulk porosity (φR), compression (−εRI
) and

angle of repose (αR), as well as horizontal shear (θR). Of these, the dependence of large

scale ice mechanics on macroporosity has remained enigmatic, but the coarse-grained

morphology is able to shed light on its role.

0.5.2. Porosity and Strain

Ridge porosity transforms the sea ice thickness distribution in a similar way to strain.

This effect is best understood using the bivariate thickness distribution of individual

ridges, gR(h, φR), which is normalized over the width in the compressional direction,

L̂K=LK/ cos (π − θR), as derived in appendix B. Each ridge has a step distribution for

gR(h, φR), illustrated in Figure 7. The h-coordinate of the intermediary gR(h, φR) step

depends on the angle of sail repose relative to that of the keel, but the influence of ridge

porosity relative to strain remains the same irrespective of this constraint. Figure 7

presents four distributions corresponding to the ridgegraph in Figure 8 for our chosen

sail shape αS = αK . Pressure ridges (a) through (d) use the same baseline parent sheet

and angle of repose as in Figure 5a (hF = 2.0m, hFs = 0.3m, αR = 22◦, θR = 180◦),

and differ only by porosity and strain. Transformation of the imporous ridge in (a) by

increasing strain in (b), or increasing porosity in (c), stretches gR(h, φR) along the h-axis

and decreases the relative proportion of different thicknesses within the ridge (Figure 7).

In both cases (b) and (c), the ridge becomes deeper, higher and wider than the initial

impervious pile (Figure 8).

While strain’s influence on ridge shape is intuitive, the analogous effect of ridge porosity

may seem less obvious. By increasing strain, ice mass is added to a ridge so that all of

its extremities expand. Increasing porosity has the same morphological impact, but adds
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no extra mass to ridges, only volume. The relative amounts of expansion in the vertical

and horizontal occurs because the ice mass is floating. A potential consequence of this

is presented in Figures 7d and 8d, where the ridge has zero strain but acquires 20%

porosity from fracturing ice. Vertical relief must result, and a slender ridge appears in the

statically-stressed ice, with an associated small increase in potential energy of the pack.

In this case, there are no associated horizontal kinematics, since there is no convergence

and v̂Fa = v̂Fb
= 0. Yet, a ridge is still created, and there is an energetic cost due to

potential energy gain in addition to the work of fracture incurred by breaking ice into

rubble. We will demonstrate in section 0.5.3 that a reasonable friction model precludes

this case.

Still, the expansionary property of macroporosity has largely been overlooked in sea ice

models. For example, the Tsamados et al. [2014] and Martin et al. [2016] diagnostic form-

drag parameterization assumes that ridges are 20% porous (although they designated

macroporosity as Zubov’s coefficient of filling: 1−φR = 0.8). In these studies, φR was

applied diagnostically to imporously-ridged material generated only from strain. Using our

coarse-grained morphology, it can be seen that this effectively inflates the keel depth, sail

height and ridge widths as compared to the actual thickness distribution g(h). Figures 8a

and 8c demonstrate the effect of increasing φR from 0 to 0.2. In that case a ridge with

identical strain incurs a 78% expansion in ridge width, and 38% inflation in keel depth

relative to the ridge state represented in the ridge-wide thickness distribution, gR(h, 0).

This problem can only be fixed by ensuring physical consistency of the ridge state used

for form-drag with the Euler-Lagrange equation (13) that accounts for evolution of φR.

We will derive new mass and momentum evolution equations to achieve this.
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0.5.3. Shear and Slope

There is little precedent for the mathematical representation of shear ridges in models,

although Flato and Hibler [1995] parameterized strike-slip floe motion by increasing fric-

tional energy loss under large-scale shearing. No taxonomic separation of pressure and

shear ridges exists, but sea ice topography formed under low and high θR values is distin-

guishable by sail steepness and rubble content [Weeks , 2010]. Whereas pressure ridges are

typically composed of well-cut ice blocks, ridged rubble generated under horizontal shear

takes a mangled appearance. An example of this difference may be seen for ‘pressure’

and ‘shear’ ridges in Figures 1a and 1b, respectively. The shear ridge is steeper than

the ridge created primarily under compressional stress, common of sheared kinematic fea-

tures extending many kilometers across the pack [Weeks , 2010]. Roberts [2018a] provides

short audiovisual footage of ridging under predominant compressional and shearing con-

ditions, and demonstrates the associated differences in ridge morphology. Within our

coarse-grained model, the exact nature of rubble, mangled or not, is a fine-grained detail

unrepresented by bulk porosity. An increase in ridge steepness as θR → 90◦ naturally

occurs as part of the coarse-grained description, similar to actual ridges.

This shear-slope relationship is demonstrated in Figure 9 where the compressional an-

gle of repose, αR, and deformational angle, θR, have no impact on sail height nor keel

depth. Instead, they only affect the width of the ridge, LK . The deformational state in

Figure 9a is the same as in Figure 5a and represents a pressure ridge (θR = 180◦). By

intoducing shear in Figure 9b (θR = 125◦), the angle of keel repose increases from 22◦

to 35.2◦ via the relation αK= arccot(cos(π−θR) cotαR), even as the slope oriented along

the compressional x̂-axis (αR) is unchanged. The plan-view in Figures 4 helps explain the
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geometry associated with strike-slip deformation, in which the red-arrowed lines mark the

pressure- and shear-ridge transects in Figure 9. At all times, the compressional breadth

of the ridge L̂K along the x̂-axis remains the same, even though the cross-sectional width,

LK , decreases with increasing shear so that the keel and sail become steeper. Even when

θR is held constant and the compressional angle of repose αR is changed, neither HK nor

HS are affected. This is a natural consequence of isostasy, and means that αK has no

impact on the ridge-wide bivariate thickness distribution, gR(h, φR), as demonstrated in

appendix B. However, shear does affect g(h, φR) when applying this morphology to the

entire pack.

Coarse-Grained Ridge Mechanics

In this section, we derive Ψ from first principles for individual ridges using the polygonal

morphology established in section 0.3. To achieve this, we quantify each term in the

simplified Euler-Lagrange equation in (13) for a single ridge. Derivations of the associated

kinetic energy and potential energy densities, T and V respectively, are relatively easy and

are presented in appendix C. The friction model defining the non-conservative compressive

stress Qx̂ is less straightforward, and so it is important to clearly lay out the assumptions,

advantages and limitations of our representation of dissipative energy loss. Using the

Euler-Lagrange equation, we constrain a ridge’s state space in terms of εRI
, φR, and αR

using variational methods. This results in a continuity equation for macroporous ice that

is extensible to a redistribution function over an area of the pack with many forming ridges.

Snow cover is omitted from the proceeding derivations because its subtle morphological

influence is peripheral to our main results (see supporting material). We need only derive
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terms for symmetric ridges, because asymmetric ridges are derivable from the defined

half-ridge morphology.

0.6. Coulombic Friction Model

We require the term Qx̂ = ∂x̂σx̂ − ∂x̂V to be computationally efficient and sufficiently

accurate to solve equation (13) in ESMs. There are several established constitutive rela-

tions that express the local ridge stress tensor, σR, in terms of the horizontal strain tensor,

εR, including those reviewed by Timco et al. [2000] and Heinonen [2004]. The most ap-

propriate for our task assumes that a rubble pile fails as a Coulombic granular material,

with a bulk critical angle of friction ψR through the compressional (x̂, ẑ) plane, as demon-

strated in Figure 10. This is the model of Mellor [1980], which has subsequently been

used in several ridging studies [e.g. Hopkins et al., 1991; Kuuliala et al., 2017]. Although

we term this a friction model for brevity, we are using the approximation to represent

both generation and grinding of rubble.

0.6.1. Rankine State

Orientation of our polygonal ridges means that the local three-dimensional Cauchy stress

tensor can be diagonalized into principal horizontal compressive and shear components,

and one vertical component, following Mellor [1986] and Hopkins et al. [1991]. By defini-

tion, there is no horizontal shear on the (x̂, ẑ) plane, so that a ridge’s stress field can be

further reduced to a two-dimensional, coarse-grained tensor with respective compressive

and vertical stress components, σRx̂
and σRẑ

, integrated over the entire ridge:

σR =

[
σRx̂

0
0 σRẑ

]
(14)
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σRx̂
and σRẑ

are related by assuming that each ridge acquires a Rankine state of passive

failure, with an associated coefficient of passive stress:

Kp =
σRx̂

σRẑ

=

(
1 + sinψR
1− sinψR

)
. (15)

In the Rankine passive state, gravity and shear resist the vertically-integrated compressive

stress σRx̂
, which is minimized so that the structure reaches an equilibrium [Barnes , 2016].

We assume ice within the ridge is cohesionless. We also assume there is no friction down

the leading ridge edges nor the ridge line (Fig. 10). These assumptions make ψR constant

within each ridge half, as demonstrated for retaining walls by Lambe and Whitman [1969].

Whereas Hopkins et al. [1991] assumed ψR and αR were equal, Rankine theory does not

permit this premise within our polygonal configuration. Instead, a necessary condition

of (15) is that a critical failure plane extends from the sea surface at the ridge’s leading

edges diagonally down to the keel crest, as seen in Figure 10:

tanψR =
HK

HK − hFd

tanαR. (16)

Equation (16) conjoins the passive failure zones resulting from level ice traction against

the ridge’s submerged edge, and from brash pushing against a keel half from the opposite

side of the rubble pile. Following Mellor [1980], it is capped at the sea surface by the

weight of the sail. If the slip planes were less inclined, the keel’s passive failure zone

would extend beyond the defined ridge boundary. If the slip planes were more inclined,

an equilibrium would not exist. The failure planes are continuous, and so ψR is the same

in freeboard ice as in the submerged material (Fig. 10).

The mean vertical stress σRẑ
within a half-ridge is the weight of its floating ice, minus

the weight of the associated displaced water, integrated across its width x̂ ∈ [0, L̂K/2].
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Applying (15) provides a term for the Mellor [1980] resistive stress, which in our case

equates to σRx̂
:

σRx̂
= Kp

∫ L̂K/2

0

(∫ hf

−hd
ρ ĝ(1− φR) dẑ −

∫ 0

−hd
ρw ĝ(1− φR) dẑ

)
dx̂. (17)

Combining equations (13) to (16), noting that the term on the right hand side of (17) is a

multiple of potential energy density V in appendix C (25), and focusing on the ridge-scale

where σx̂ = σRx̂
and σRx̂

= Kp σRẑ
, a mature ridge in a static state is governed by the

functional:

0 = δ

∫ tf

ti

∫
A

Kp V dA dt (18)

Lagrange’s δ term shifts to the front of the integral, creating the functional, because

the variation δx̂ is only tested for a single term in the integrand. Equation (18) applies

individually along any path x̂ of ridging ice, but without further physical insight, it may

only be assumed to be true if the ridge is in a static state (i.e. T = 0). Further insight

comes from our source of energy loss, Qx̂.

0.6.2. Non-Conservative Force

Applying equations (13) to our coarse-grained rubble pile, and combining it with (25)

and (17) produces an equality for the non-conservative compressional force per unit ridge

area Qx̂ that applies throughout ridge evolution (T ≥ 0):

Qx̂ = ∂x̂ (σRx̂
− V) = ∂x̂ [(Kp − 1)V ] (19)

Equation (19) is made possible by the fact that m d ˙̂x/dt = d(∂ ˙̂xT )/dt in (13) and the

result σRx̂
= KpV that emerges from our chosen friction model. The non-conservative

frictional force is thus independent of time, and Qx̂ is determined solely from a conser-

vative potential. By construction, Kp is a ratio of lengths, independent of velocity, and
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is constant throughout each ridge half. Because of this, and since Qx̂ can be expressed

solely as a multiple of V , we can eliminate non-conservative terms from a Euler-Lagrange

equation for sea ice ridging, and therefore (18) ensures stationarity of the system along

individual paths x̂ for all T ≥ 0 [Galley , 2012; Galley et al., 2014]. That is, we can now

apply a least action principle to ridging because we have defined a monogenic system from

which we may gain insight into constraints on gR(h, φR).

0.7. Monogenic Ridging Equations

Just as Rothrock [1975] defined frictional loss purely in terms of potential energy, so

have we. But within our variational construct and choice of friction model, we can take

Rothrock’s method one step further, with important consequences. We can use equa-

tion (18) to constrain porosity (φR) and the angle of repose (αR) for given tensile strain

(εRI
) and boundary conditions hF and θR. This step is crucial for later calculating Ψ over

broader regions of the pack (section 0.7.4).

0.7.1. The Euler-Lagrange Equation

The functional in (18) may be rewritten in terms of σRx̂ = σRx̂(εRI
, φR, αR) for the

boundary condition hF , leading to the alternate form:

0 =

∫ tf

ti

∫
A

(
∂σRx̂
∂εRI

∂εRI

∂x̂
+
∂σRx̂
∂φR

∂φR
∂x̂

+
∂σRx̂
∂αR

∂αR
∂x̂

)
δx̂ dA dt (20)

Equation (20) reduces to δσRx̂ = 0, and a necessary and sufficient condition that station-

arity exist for σRx̂ within the state space εRI
, φR and αR is that each term within the paren-

thesis vanishes at the stationary point [Lanczos , 1970]. A further constraint is imposed

by our chosen friction model in that the system must remain in the Rankine equilibrium

state described in section 0.6.1. This means that for all possible values of εRI
and φR, the
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last term in parenthesis always vanishes by itself. Appendix D demonstrates that there is

a non-trivial solution for ∂αR
σRx̂ = 0 so that the right hand product inside the parenthesis

in (20) vanishes for an angle of repose at the extremum αR=α̂R(εRI
, φR). Therefore, ridge

states must lie within the potential energy density VR = V(εRI
, φR, α̂R, hF ). A corollary of

∂αR
σRx̂ = 0 is that the coefficient of passive failure becomes constant and takes the value

Kp = 3 (appendix D). Remarkably, this is within the range 2.4 ≤ Kp ≤ 4.6 estimated

from discrete element ridge simulations by Hopkins et al. [1991].

Figure 11 illustrates two surfaces of VR(εRI
, φR, α̂R, hF ) representing hF=0.5 and 2.0m,

color shaded to indicate the α̂R solution of ∂αR
σRx̂ = 0. As with real ridging, the

angle of repose begins at zero when there is no strain or porosity, and it increases

with either or both −εRI
and φR. In our solution, α̂R approaches a limit of 30◦

at maximum porosity and compressional strain, amounting to a keel slope zenith of

αK= arctan[sec (π−θR) tan (π/6)]. Each point in VR represents a unique ridge state as

determined by the keel depth, HK , sail height HS, compressional width, L̂K , porosity, φR,

compressional angle of repose, αR, and parent thickness, hF . Evidence of the verity of our

coarse-grained approximation exists in the close alignment of ridge states for maximum

sail height HSmax = 5.24
√
hF , and keel depth HKmax = 16

√
hFd

, using empirical estimates

from observations by Tucker et al. [1984] and Melling and Riedel [1996], respectively

(Fig. 11). Were the HSmax and HKmax tracers not closely aligned with one-another on VR

surfaces, it would indicate that the coarse-grained morphology and variational mechanics

did not mimic the observed ridge state space of mature ridges. While it seems that both

the maximum sail height and keel depth tracers are also aligned with α̂R contours in Fig-

ure 11, this apparent correlation is not present in the case of snow loading (not presented
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here). With or without snow, HKmax lies in close proximity to HSmax within VR. As a

consequence of Kp remaining constant, our Euler-Lagrange equation is:

0 = 1
3

d

dt

∂T
∂ ˙̂x
− ∂VR

∂x̂
(21)

Equation (21) is the expression of (13) after applying Qx̂ in (19) using σRx̂
= Kp V from

(17) and Kp = 3 from (32). The important point of (21) is that it isolates conversions

between kinetic energy and (conservative) potential energy.

0.7.2. Dilation of Potential Energy Density

Applying the relations leading to (21), the variational principle in (20) now takes the

familiar form of a conservative system, expressed in terms of a potential gradient:

0 =

∫ tf

ti

∫
A

(
∂VR
∂εRI

,
∂VR
∂φR

)
·
(
∂εRI

∂x̂
,
∂φR
∂x̂

)
δx̂ dA dt (22)

By variational calculus, the scalar product of the vector fields in parentheses in (22) is

zero and the fields are orthogonal. The first vector field is a potential density gradient we

define as the Dilation Field, đ = đ(đ1, đ2):

đ = ∇RVR =

(
∂VR
∂εRI

,
∂VR
∂φR

)
(23)

where ∇R = (∂εRI
, ∂φR). The Dilation Field is the rate of change of potential energy

with respect to strain and porosity in the space ζ= (εRI
, φR). đ describes the energetics

associated with the decrease in area-averaged density of ridging material. As cavities

open up within ridges, the bulk density of the ridge differs from the ice density ρ of intact

floes and rubble blocks, which impacts the rate of increase of potential energy density. đ

permits us to account for ice density changes in the sea ice momentum equation due to

ridging, which is a requirement for that equation to become scale-aware when accounting

for vertical deformation over a broad area of the pack in section 0.7.4. The second vector
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field in (22) is the covariant derivative, ζx̂, representing the change in εRI
and φR with

respect to the compressional axis:

ζx̂ =
∂ζ

∂x̂
=

(
∂εRI

∂x̂
,
∂φR
∂x̂

)
(24)

Both đ and ζ are important for defining virtual work density, δW , for which we are

afforded the simplification Kp đ = ∇R σRx̂ because Kp is constant.

The principle of virtual work equates ridging work inside the (εRI
, φR) domain with the

work at its perimeter, Cx̂, using the divergence theorem:

δW =

∫
φR

∫
εRI

(
∂P
∂εRI

+
∂Q
∂φR

)
dεRI

dφR −
∮
Cx̂

(P,Q) ·
(
∂φR
∂x̂

,−∂εRI

∂x̂

)
dx̂ (25)

where

P =
∂σRx̂
∂εRI

δx̂, Q =
∂σRx̂
∂φR

δx̂.

The vector field (P,Q) is the force applied at the boundary of the domain εRI
∈(−1, 0]

and φR∈[0, 1) under the variation δx̂, and the vector (∂x̂φR,−∂x̂εRI
) is normal to ζx̂ and

points outward from the perimeter. Given εRI
=εRI

(x̂) and φR=φR(x̂), the variation of ζ

is

δζ = (δεRI
, δφR) =

(
∂εRI

∂x̂
δx̂,

∂φR
∂x̂

δx̂

)
. (26)

Dividing (25) by Kp, then applying Hamilton’s Principle for our conservative system

defined in (21) gives:

0 =

∫
φR

∫
εRI

(
∇R · đ

)
δx̂ dεRI

dφR −
∮
Cx̂

|đ× δζ| dx̂. (27)

We can now make a key physical insight because we have restated our initial condition

problem as a boundary condition problem. There is an initial condition of zero strain

and macroporosity, which in (27) equates to the boundary condition ζ0 =(0, 0), and that
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means that |δζ|=0; there is no variation at the boundary. Consequently, the right-hand

term in (27) vanishes, and we are left with the integral:

0 =

∫
φR

∫
εRI

(
∇R · đ

)
δx̂ dεRI

dφR. (28)

This is an analogous variational case to the sea ice momentum equation example in (3),

but in this case, we are left with the continuity equation for coarse-grained ridging under

the first-order variation δx̂:

∇R · đ = 0 (29)

In practical terms, we have used the divergence theorem to eliminate the local coordinate

x̂ from our equations, thereby revealing the energetic consequence of macroporosity for

our chosen friction model, regardless of the local ridge coordinate system.

Equation (29) is our core governing equation to be applied within ESMs. Since VR is

a scalar, then ∇R × (∇RVR) = 0, and đ must be irrotational (∇R × đ = 0). Laplace’s

equation must then apply to both VR and a corresponding stream function ΥR, whereby

∇R
2 VR=0 and ∇R

2 ΥR=0, and:

đ1 =
∂VR
∂εRI

=
∂ΥR

∂φR
, đ2 =

∂VR
∂φR

= −∂ΥR

∂εRI

(30)

This means that we can predict φR and αR based purely on εRI
using the streamline

ζ = ζ̂(εRI
, φR, α̂R) that passes through the initial condition ζ0, annotated as red state-

space trajectories in VR in Figure 11, and defined by:

φR(x̂) =

εRI
(x̂)∫

0

đ2

đ1

dεRI
(31)

Equation (31) represents ridging as an initial value problem because the ridge-wide thick-

ness distribution gR(h, φR) can now be predicted purely in terms of initial conditions ζ0
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and hF , as well as strain at a later time. Conversely, equation (31) may be inverted

to determine strain from porosity and the initial condition. Either way, the state space

trajectory ζ̂ is only dependent upon initial conditions rather than boundary conditions

in time, thus addressing a limitation of existing ridging parameterizations discussed in

section 0.2.

0.7.3. State Space Trajectory ζ̂

It is important to understand what the state space trajectory ζ̂ means in relation to

the potential energy density VR. To aid understanding, we have re-rendered the hF=2 m

VR surface from Figure 11 and presented it in plan-view in Figure 12, now color shaded

for values of VR rather than for α̂R as in Figure 11. Streamlines of the dilation field đ

are superimposed on Figure 12, which are perpendicular to the VR contours. This must

be the case, because đ is by definition the gradient in (conservative) potential energy

density with respect to εRI
and φR. It is easy to see from this figure that ζ̂ is the unique

streamline that passes through initial condition ζ0 = (0, 0), and thus describes evolution

of the conservative part of the system.

Combining ∇R ·đ = 0 with the initial condition ζ0 presents a classic Dirichlet problem,

and allows us to formalize the constraint for which ridging is stationary:

0 = δ

∫
φR

∫
εRI

(
∇R đ · ∇R đ

)
dεRI

dφR (32)

The functional in (32) stems from the Laplacian ∇R
2 VR=0. Its generic proof is common

in variational texts [e.g. Wan, 1995] and is omitted here for brevity. The variational princi-

ple in (32) is naturally enacted by applying the continuity equation in (29) in conjunction

with predicting porosity φR=φR(εRI
) and ridge shape αR=α̂R(εRI

, φR) using ζ̂(εRI
, φR)
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determined from equation (31). Mass conservation laws naturally precipitate from these

equations, including the redistribution function of an individual ridge.

0.7.4. Redistribution of Ice in an Individual Ridging Event

The continuity equation ∇R · đ = 0 permits the thickness distribution aR(h, φR,x) of

an individual coarse-grained ridge to be determined purely from the boundary conditions

hF and θR, as well as strain. aR(h, φR,x) is the ridge-scale, bivariate analogue of the

pack-scale distribution of deforming ice a(h,x) in the ridging mode in (8). aR(h, φR,x)

includes the effect of macroporosity on sea ice thickness and is scaled against the thickness

distribution gR(h, φR,x) introduced in section 0.3 and derived in appendix A:

aR(h, φR, εRI
,x) = (1 + εRI

) gR(h, φR,x) (33)

Whereas gR(h, φR,x) is normalized over the deforming width of a ridge, aR(h, φR, εRI
,x)

is normalized over the material area A(x), which is non-deforming. Since the area of

deforming ice is reduced by the ratio of ridge width to its undeformed width, including in

the presence of shear, the factor LK/LF = (1 + εRI
) appears in (33). Given that all ice

is deforming in a ridge, the material derivative of aR(h, φR,x) defines ridge redistribution

in equation (2), but just for one ridge, where g(h, φR) = gR(h, φR):

Ψ =
d aR
dt

(34)

To obtain an expression for aR(h, φR,x) purely in terms of variables εRI
, φR, and hF ,

ρw, and ρ, we substitute for LK , LS and αK in the gR(h, φR,x) step function (19) using

equations (1) to (4), (9), (13) to (16) and (33). Using these steps, we can efficiently solve

for (34) from changes to the distribution g(hF , φF ) with initial parent-sheet macroporosity
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φF using the integral transform:

aR(h, φR, εRI
) =

∞∫
0

1∫
0

g(hF , φF ) γ(hF , h− hF , φ− φF , εRI
) dφF dhF (35)

since εRI
=
∫ tf
ti
ε̇RI

dt for a given strain rate ε̇RI
. γ is an impulse response function

composed of two step functions,

γ(hF , h, φ, εRI
) = Π−(hF , h, φ, εRI

) + Π+(hF , h, φ, εRI
). (36)

where Π− and Π+ derive from the successive gR(h, φR,x) steps introduced in section 0.3

and seen in Figure 7, for which the analytic form in terms of εRI
, φR, and hF is:

Π± =
1

2hF

ρw
ρ

(1 + εRI
) Γ(εRI

) δ̂(φ− φR)
[
H
(
Ξ±
)

+H
(
Ξ± − 1

)]
(37)

for the Heaviside function, H, Dirac delta function, δ̂, deformation ratio,

Γ(εRI
) = 1

2

(1 + εRI
)(1 + φR)

(φR + εRI
φR − εRI

)
, (38)

and operator

Ξ± =
h

hF

ρw Γ(εRI
)

ρ±
√

∆ρ ρ
.

The continuity equation ∇R · đ = 0 ensures that because we know ridge strain εRI
, we

also know the ridge porosity φR in Π±(hF , h, φ, εRI
) and Γ(εRI

) using equation (31), and

the ± superscript indicates the sign in the denominators of Ξ±.

Equation 35 efficiently solves for Ψ using a fast fourier transform, and we demonstrate

a simple example of its application in Figure 13. The hF = 2 m parent ice sheet in

Figure 11 has an initial local distribution g(h, φR) = δ̂(h− hF , φ), shown as a Dirac delta

function in Figure 13. This corresponds to the initial condition of its ζ̂ trajectory which

is marked with a small violet cross in Figure 11. As strain increases, the distribution of

the individual ridge, aR(h, φR, εRI
,x), represents a smaller and smaller area relative to the
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region initially covered by the parent ice, and the ridge becomes steeper, more porous,

and thicker, as seen in the ever ‘flattening’ step functions for εRI
= −0.2, −0.4 and −0.6

(Fig. 13). These respective distributions trace progression of the ridge through VR in

Figure 11, as marked. At all times, the mass density of deforming ice, m, is unchanged,

as given by

m = ρ

∞∫
0

1∫
0

aR(h, φR, εRI
,x) (1− φ) h dφ dh (39)

and mass is conserved.

Using aR(h, φR, εRI
,x) derived here for a single coarse-grained ridge, we are ready to

take the final step by applying it to redistribution over fields of ridges. We combine this

with the Euler-Lagrange equation in section 0.7.1 to determine compressive stress P of

the pack as a whole. We will demonstrate that redistribution can be approximated as a

series of step functions, built upon the impulse response function γ = Π−+ Π+ of a single

ridge.

Variational Ridging for Earth System Models

By ensuring stationarity, an important relationship emerges in the motion equation of

sea ice beyond the scale of just one ridge. That relationship determines the probability

of finding ridges of different shapes and sizes in the pack, and therein lies the main appli-

cability of variational ridging to Earth system modeling. In this section, we demonstrate

the statistical consequence of stationarity in ridging using our chosen Coulombic friction

model, and we derive momentum and mass balance equations for the pack as a whole.

0.8. Redistribution of a homogenous sea ice field

Ridge frequency statistics emerge from the stationary principle in (20) when considering

deformation over a sea ice field with an initially uniform thickness hF , no macroporosity,
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and 100% sea ice concentration. From equations (18) and (21), the principle of virtual

work for a ridge is the functional:

0 = δ

∫∫
A

VR dA (40)

We may break down the integration over A into the orthogonal x̂ and ŷ coordinates

(section 0.3), as illustrated in Figure 4 for the total length of ridged ice with a particular

strain and initial thickness, Ŵ . Stationarity is then determined by the functional:

0 = δ

Ŵ∫
0

L̂K∫
0

VR dx̂ dŷ (41)

Owing to the fact that VR and L̂K have been coarse-grained for a given εRI
and hF , the

area integral in (41) simplifies to the variation:

δ
(
Ŵ (εRI

, hF ) L̂K(εRI
, hF ) VR(εRI

, hF )
)

= 0. (42)

Hence, large ridges with considerable keel depth and cross-sectional width L̂K must occur

infrequently; their total length over A, quantified in (42) by Ŵ , shall be small relative to

an abundance of small ridges, whose total length along many floe edges will be large. Ŵ

therefore serves as a proportionality constant over A, and

UR = Ŵ (εRI
, hF ) L̂K(εRI

, hF ) VR(εRI
, hF ) (43)

is the total potential energy that is identical for all ridged areas regardless of compressional

strain and initial thickness.

Ŵ is the apparent ridge length along the compressional axis. Due to the effect of shear

between individual floes, the actual ridge length seen in aerial images of the pack for

a given ridge shape is WR = Ŵ sec(π−θR) (Fig. 4). The consequence of this is that

shear ridges (e.g. Figure 1b) can extend a long way across the pack and between floes
©2019 American Geophysical Union. All Rights Reserved.



relative to the equivalent length of pressure ridges (e.g. Figure 1a). This agrees with the

observations of long shear ridges noted by Weeks [2010]. However, we have purposely

removed θR from explicit mention in these equations, because the mathematical notation

becomes cumbersome and may cloud understanding of the results. By using Ŵ and L̂R

hencefourth, the possible presence of shear remains implicit and its significance is not lost.

Equation (42) provides the relationship between ridges of different shapes and sizes that

does not need empiricisms for us to progress to its application to the large scale. The

fraction of energy per unit Ŵ (εRI
, hF ) over all possible strains εRI

is given by

Λ(εRI
, hF ) =

0∫
−1

L̂K(εRI
, hF ) VR(εRI

, hF ) dεRI

L̂K(εRI
, hF ) VR(εRI

, hF )
(44)

The integral appears in the numerator because Ŵ is inversely proportional to L̂K VR.

Equation (44) in turn gives the probability density, bR(εRI
, hF ), of encountering a ridge

of a certain shape and size that may be formed from an undeformed ice thickness, hF ,

which exists in our bivariate thickness distribution as g(hF , φR = 0):

bR(εRI
, hF ) =

g(hF , 0) Λ(εRI
, hF )

0∫
−1

g(hF , 0) Λ(εRI
, hF ) dεRI

(45)

The result codified in (45) means that over an area A of the pack with multiple ridges,

Newton’s second law applies for an initial thickness hF if ridges are spatial separated at

a distance dictated by their compressional strain. To demonstrate why this is the case,

we make use of information in Figures 14 and 15 from our coarse-grained model. Figure

14 presents the diagram-of-state for stationary ridging action, which must sit on the ζ̂-

plane. Each point on this plane passes through the ζ̂ trajectory of a given parent sheet

with thickness hF ; the red hF = 0.5 and 2.0 m trajectories in Figure 11 are annotated in
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Figure 14 to illustrate this point. Every point on the ζ̂-plane represents a unique ridge

state with a singular VR, εRI
, φR, HK , and L̂K combination, and the local neighborhood

of each point on a ζ̂-trajectory has a quantifiable probability of occurring relative to that

of other points, illustrated for bR(εRI
, 0.5 m) and bR(εRI

, 2.0 m) in Figure 15. Ridge states

that are likely to exceed observed limits, as suggested by Tucker and Govoni [1981], are

indicated in Figure 14.

The relationship between L̂K and b(εRI
, hF ) in Figure 15 is important because it im-

poses a constraint on the spatial occurrence of ridges in the pack. Moving up the red

ζ̂ trajectories in Figure 14, all of HK (black contours), L̂K (white contours) and VR

(shaded) increase exponentially relative to εRI
, although at slightly different rates relative

to one-another. Consequently, there are close-fitting scaling relationships for probability

of compressional width, bR ∝ L̂ D
K , demonstrated for the latter in Figure 15, where D is a

fitted scaling exponent. These relationships are notable due their consistency with scaling

relations observed in horizontal sea ice divergence, shear and floe-size [e.g. Paget et al.,

2001; Weiss , 2003; Marsan et al., 2004; Stern and Lindsay , 2009; Perovich and Jones ,

2014]. The physical consequence of this quasi-scaling relationship is that an entire pack

filled with tiny ridges over A at the limit εRI
→ 0− is energetically identical to large,

sparsely spaced ridges each with a high degree of compressive strain over the same region.

The fractional area of ridged ice relative to level ice surrounding a ridge can therefore be

articulated as:

cridged(εRI
, hF ) =

bR(εRI
, hF )

lim
εRI
→0−

bR(εRI
, hF )

(46)

for a fixed initial and undeformed ice thickness hF . For this reason large pressure ridges

of the size seen in Figure 1a are seldom encountered in the pack, as was true of the region
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surrounding that ridge during the Sea Ice Experiment - Dynamic Nature of the Arctic

(SEDNA) field campaign [Hutchings et al., 2008; Doble et al., 2011; Wadhams et al., 2011].

The statistical ridging relationship that emerges from (45) is not an empiricism, but

instead a derived physical property. The power law suggested by that equation is not

comparable with the log-normal spacing of ridges commonly measured over A(x) [e.g.

Wadhams and Davis , 1994; Davis and Wadhams , 1995; Timco and Burden, 1997; Tan

et al., 2012] because bR ∝ L̂ D
K gives the spatial occurrence of ridging at an instant,

whereas observed log-normal ridge distributions are a hysteresis. Rather, one expects

at an instant that the spatial distribution of ridging will observe a power law due to

the concentration of deformation at the edge of floes, which themselves observe spatial

scaling by way of the floes size distribution [e.g. Paget et al., 2001; Perovich and Jones ,

2014]. That such a distribution emerges from our chosen quantization gives credence to

our coarse-grained methodolgy.

Matching the statistical outcomes of stationarity with observations is a delicate task,

because deformations in bR(εRI
, hF ) include, and are predominantly weighted toward, in-

finitesimal changes approaching the limit εRI
→ 0−. Small vertical displacements will

escape detection by sonar, air- and space-borne altimeters, and will amount to uninterest-

ing bumps in the cryoscape of an in-situ observer. Yet they are theoretically most likely,

reflective of the fact that most sea ice does not deform or is minimally crushed when the

pack is compressed. For the uniform field of sea ice 2.0 m thick in Figure 15, the mean

porosity is φ̄R = 0.09, and mean angle of repose ᾱR = 10.4◦ within the prescribed limit of

−0.01>εRI
>−0.99. However, if we apply a 5 m minimum cutoff to keel depth in (44), akin

to the processing applied to submarine sonar by Davis and Wadhams [1995] and Wad-

©2019 American Geophysical Union. All Rights Reserved.



hams et al. [2011], the mean values predicted by the coarse-grained model are φ̄R = 0.24

and ᾱR = 22.9◦, within close range of observational values cited in sections 1 and 0.3

(0.2 − 0.3 and 23.2◦, respectively). Further examples of this comparison are provided in

Table 2. Note, however, that Davis and Wadhams [1995] could not resolve ᾱR, but only

ᾱK , because measuring ridge shapes after they have formed does not indicate the amount

of shear during their formation. Figure 6 presents our predicted porosity values (color

shaded) for the sonar observation in pure compression (θR = 180◦) and with considerable

shear (θR = 125◦). That figure illustrates that considerably different porosities, and hence

αR, could exist in each of the submarine-measured ridges when applying our method.

0.9. The Bivariate Redistribution Function

Combining derivation of the redistribution function Ψ(h, φ) for a single ridge in sec-

tion 0.7.4 with the emergent probability of deformation bR(εRI
, hF ) of a homogeneous ice

cover in section 0.8, we can now derive the bivariate redistribution function for the pack

as a whole. In the previous case of a homogeneous undeformed ice cover, there was no

allowance nor need for varying the thickness and macroporosity of parent ice, nor for the

presence of open water. To cater for heterogeneity reflected in g(h, φR), bR(εRI
, hF ) in

(45) becomes:

b(hF , φF , εRI
) =

H(φ− φF ) Λ(hF , εRI
) g(hF , φF )

∞∫
0

1∫
0

0∫
−1

(
H(φ− φF ) Λ(hF , εRI

) g(hF , φF )
)
dεRI

dφF dhF

(47)

for an initial porosity φF , where the Heaviside function reflects the fact that Λ(hF , εRI
)

need not describe ridging for less than the original porosity of deforming ice. The presence

of open water is accommodated by evaluating Λ(hF , εRI
) at the limit hF → 0 .

©2019 American Geophysical Union. All Rights Reserved.



Using equation (47), the ridge-scale distribution aR(h, φR, εRI
) at time tf in (35) be-

comes:

a(h, φ) =

∞∫
0

1∫
0

0∫
−1

(
g(hF , φF ) γ(hF , h−hF , φ−φF , εRI

) b(h−hF , φ−φF , εRI
)
)
dεRI

dφF dhF

(48)

for the entire pack over A, thus providing a solution for redistribution in (2) as

Ψ =
d a(h, φR)

dt
(49)

where a(h, φR) is evaluated at time ti in equation (48) as the initial distribution g(hF , φF ).

The compressive stress, P , of the entire sea ice field is dictated by the fact that σx̂ =

Kp VR(hF , εRI
) at the ridge scale in the final static state. Ridges are distributed according

b(hF , φF , εRI
), and therefore, P for a heterogenous pack is given by:

P = Kp

∞∫
0

1∫
0

0∫
−1

(
VR(hF , εRI

) b(hF , φF , εRI
)
)
dεRI

dφF dhF (50)

0.10. g(h) Integrated from g(h, φR)

To conclude our theory, we return to the monovariate thickness distribution g(h) first

introduced by Thorndike et al. [1975]. In equation (1), we define g(h) as an integrated

form of g(h, φR). Using that equation, we can now demonstrate that g(h) acquires quali-

tative properties akin to those expected from repeated ridging of the pack using the new

redistribution function Ψ in (49). That is an initial value equation with boundary condi-

tions hF and εRI
, and we iteratively integrate the conservation equation (2) by calculating

a(h, φ) for successive ridging events, renormalizing g(h, φR) at the end of each iteration

to account for advection of converging ice entering the material area A. We neglect ther-

modynamics effects (Θ = 0). Figure 16 demonstrates the evolution of an initially uniform
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area of undeformed ice with thickness hF=1 m under successive strain. At the end of

the integration, a distribution is acquired with a tail qualitatively similar to that seen in

observations of g(h).

However, when judged against semilog axes (Fig. 16b), we note that the distribution

g(h) has not fully acquired a negative exponential tail typical of field measurements [e.g.

Wadhams et al., 1987; Worby et al., 1996; Haas et al., 2010]. If it had, the tail would appear

as a straight line on the semilog axes. This suggests that thick ice is over-represented in the

distribution, and points to missing physics, most probably in thermodynamics, where keels

protruding deep into the oceanic boundary layer preferentially melt relative to shallow

keels [Davis and Wadhams , 1995]. Therein lies a limitation of testing any redistribution

function destined for deployment in ESMs without the complete spectrum of wind and

ocean stress, and thermodynamic feedbacks. Therefore, in work to follow this paper,

we will test the methods presented here with a model of ridge thermodynamics inside

a fully coupled model. We will revisit the question as to whether the ridge mechanics,

in conjunction with thermodynamics, can replicate measured statistical signals of ice

thickness, and of freeboard.

For the mechanics focus of this paper, integration applied here can be performed with

a MATLAB toolbox that accompanies this manuscript called Ridgepack [Roberts , 2018b]

. Ridgepack provides a laboratory to help understand the practical implementation of

theory presented in this paper as would be implemented in an ESM. Equations solved

within the MATLAB package are referenced to specific equations in this paper, providing

a practical tool for the implementation of the methods described. The toolbox may

be used to generate most figures in this manuscript, including ridgegraphs, state-space
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trajectories, and the ζ̂ plane. A Mathematica notebook is also available within Ridgepack

to generate the step functions for individual ridges in Figure 13.

Discussion

We have used variational methods to derive the dynamics equations of sea ice in a

way that accounts for the heterogeneity of ice thickness down to the scale of individual

ridges. Whereas previous work has looked to physical analogues or empirical functions to

determine the redistribution function Ψ, we have adopted the method of coarse-graining

potential energy gain in terms of strain and the parent sheet thickness feeding individ-

ual ridges. The advantage of our method is that it reveals the statistical properties of

ridges from monogenic equations we have derived to describe them. We have adopted a

relatively simple Coulombic approximation of ridge mechanics to estimate Q in terms of

the conservative potential density V . Application of the principle of virtual work in our

coarse-grained morphology constrains the shape, extent and porosity of ridges, assuming

each ridge-half is isostatic. The end result is a set of statistical relations for redistribution

that can expand the state space of ESMs to include sea ice macroporosity.

The method of coarse-graining of ridges requires three sequential steps: !

1. Determine a morphological description of a ridge that appropriately describes its floating

state in terms of mass and volume conservation. In this paper, we chose a simple Euclidean

geometry to describe strain, porosity and angle of repose.

2. Choose an appropriate mechanics model to account for the non-conservative vector Q

in the Euler-Lagrange equation so as to permit application of a stationary principle that

constrains the porosity and shape of a ridge. We chose Rankine theory because its ap-
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plication has a precedent in ridging studies, and it readily lent itself to our variational

derivation. Future work may adopt more sophisticated descriptions of self-criticality.

3. Derive ridge frequency statistics for the broader pack that result from quantization of

ridging into coarse-grained units. Upon calculating the ridge statistics, a redistribution

function and equation of compressive stress may be determined to be applied within

Discrete Elements or Eulerian sea ice model cells.

We concede that there are limitations in this adoption of coarse-graining methods for sea

ice modeling. The morphological representation of individual ridges is simplistic, and does

not match the sophistication of many studies we have cited [e.g. Hopkins , 1998; Kuuliala

et al., 2017]. Conversely, none of these previous methods are applicable to large scale

models. Although we have quantized isostasy over half ridges, and that in itself represents

an advance over existing Earth system modeling methods, further steps could permit

entirely non-isostatic solutions to occur. We also concede that the presumed Coulombic

mechanics assumes that the rubble block sizes within our ridges are considerably smaller

than the ridge itself, which is probably false in many small-scale rubble piles, but probably

realistic for large ridges. Hopkins et al. [1991] noted differences between the Coulombic

model predictions and their Discrete Element model of ridge deformation, although they

did not explicitly apply a stationary principle, which is the advance of the current study.

Statistical relations that emerge from our approach are symptomatic of self criticality that

is consistent with scaling relationship we have cited in the sea ice literature.

There are fundamental outcomes from this work that are a product of the variational

methods we have used. First and foremost, applying a stationary principle that transcends

physical scale helps explain why scaling properties exist in sea ice. When ice ridges, it
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passes through four development phases: First the maximum sail height is reached, fol-

lowed by attainment of maximum keel depth, then outward expansion of the ridge, ending

in rearrangement of the ridged rubble field [Hopkins , 1998]. Ridging seldom makes it to

the third or fourth stage of ridging, and our results agree with this outcome of Hopkins.

We have demonstrated mathematically why this might be the case: it is simply energeti-

cally preferable to mainly form large numbers of small, underdeveloped ridges rather than

populate the surface of polar oceans solely with sparse, large ridges. Consequently, our

test case in section 0.10 reveals that heavy straining of an initially uniform sea ice field

results in the development of a distribution tail similar to that seen in measurements of ice

draft and freeboard. Whereas previous work has looked to physical analogues for ridging

to help explain this statistical feature of sea ice, our work suggests that it is an inherent

outcome of including porosity prognostically in the thickness distribution, g(h, φR).

We have not addressed in this study the close relationship between ridging and the

floe-size distribution, and we leave that aspect of this work for a future assignment. The

core motivation leading to this work was to address a problem in our own high-resolution

models, the Regional Arctic System Model (RASM) and Energy Exascale Earth System

Model (E3SM), whereby the redistribution function and compressive strength of sea ice

were not scale aware. That we happened upon a quasi-scaling relationship for ridge

evolution akin to descriptions of floe-size is perhaps more than a coincidence, and we

intend to explore this result in future work using a discrete element model of sea ice

across the Arctic basin.

Arguably the most important bi-product of our investigation is the ability to incorporate

the dynamics associated with macroporosity of sea ice into large scale models. It has been
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known for some time that this omission has stood in the way of reliable comparisons

of Earth system models’ sea ice simulations with altimetric retrievals of ice freeboard,

including from ICESat [e.g. Kwok et al., 2009] and ICESat-2 [Markus et al., 2017]. We

now have the theory required to simulate freeboard in a way that is comparable with

satellite retrievals via the equation:

h̄f =

∫ ∞
0

∫ 1

0

[
h

(
ρw − (1− φR)ρ

ρw

)
+ hs

(
ρw − (1− φR)ρs

ρw

)]
g(h, φR) dφR dh (51)

where h̄f is mean model freeboard, and it is assumed here that there is a single snow

thickness hs for each ice thickness category in g(h, φR). In our next papers that apply

the theory presented in this manuscript, we will use (51) to evaluate our newly-derived

method for modeling ice thickness in RASM, E3SM and in a new Discrete Element Model

of Sea Ice (DEMSI). This presents an opportunity to test the relationship between strain

and macroporosity predicted by the variational method applied to our Coulombic friction

model, and to extend our work to understand the impact of snow and thermodynamics

on our solution at the basin-scale.

There is a plethora of reasons as to why knowing the state-space of ridges in ESMs

is beneficial, aside from knowing macroporosity to aid model validation. Knowing a

spectrum of ridges in a model grid cell permits prediction of the roughness of the pack

for form drag. Knowing extreme keel depths is useful for modeling fast-ice, which is often

pinned by just a few deep keels in contact with continental shelves. Macroporosity provides

a mechanism for melt-pond draining unavailable in current ESMs, and is important for the

habitat of biota, including for krill in the Southern Ocean. For each of these applications,

we now have a dynamical framework for representing distributions of ridges in future
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models, and we will work to introduce tracers of ridge quantities into the CICE Consortium

model [Hunke et al., 2018] to aid development in this area.

Conclusion

This work has derived a redistribution function of sea ice from first principles in a

way that permits extension of the state space of Earth system models to simulate ice

macroporosity and ridge state statistics. Our research suggests that macroporosity has

an expansionary ridging affect akin to strain that has largely been overlooked in large-

scale sea ice dynamics. The Coulombic coarse-graining method we have used to represent

macroporous ridges is based on outcomes of a range of modeling and observational studies,

and reproduces observed values of ridge shapes through the constraints of a stationary

principle applied to our chosen Euler-Lagrange equation of ridging. Ridge statistics of

broader deforming sea ice fields naturally emerge from the variational methods used,

and explicitly determine the dependence of sea ice density in the pack as a function of

deformation scale through the dilation field, đ, that derives from a least action principle.

By adopting a variational method that reduces the degrees of freedom associated with

ridging, we have opened a potential avenue to multi-scale sea ice simulation.

*Appendices

Equations Describing the Coarse-Grained Ridge Morphology

Euclidean geometric formalisms are often used to describe ridges [e.g. Kovacs et al.,

1972; Tucker and Govoni , 1981; Lytle et al., 1998; Worby et al., 2008], and have been

adapted to simulate fast ice by Lemieux et al. [2015] and form drag by Tsamados et al.

[2014]. These diagnostic applications constrain ridge shapes to particular porosities, sail

and keel slopes using isosceles triangles. By contrast, the coarse-grained morphology
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described here is different in that it is designed to generate floating ridge state spaces

across εRI
, φR, and αK for the boundary conditions hF and hFs with a more general

polygonal description unconstrained by a model’s parameter space.

1. Archimedes’ Principle

We will analyze ridge cross-sections oriented on the compressional (x̂, ẑ) plane for con-

sistency with the ridge mechanics described in section 1. Archimedes’ Principle and the

Mean Value Theorem determine the ridge waterline independent of the shape of the rubble

pile, where L̂K = LK/ cos (π − θR):

ρw hRf
= (ρw − ρ)hR + (ρw − ρs)hRs (1)

ρw hRd
= ρ hR + ρs hRs

=
2(1− φR)

L̂K

∫ L̂K/2

0

(
ρ h(x̂, φ) + ρs hs(x̂, φ)

)
dx̂ (2)

We are interested in ridge formation, not sustenance, and ignore the possibility that

snow mass depresses the ice-snow interface below sea level because this adjustment occurs

for level ice prior to ridging. Hence hR ≥ hRd
and hRs < hRf

where hR = hRd
+ hRf

. We

assume that ridge rubble is highly permeable, and therefore water and air flows between

interlocking ridge fragments and does not affect isostasy. Microporosity within ice blocks

and snow associated with brine channels or air pockets is incorporated into their bulk den-

sities, ρ and ρs. Therefore the ice and snow thickness sections through the compressional

plane of the ridge, h and hs, are functions both of x̂ and the local columnar macroporosity,

φ(x̂). Analogous equalities to (1) and (2) give the freeboard and draft of the parent ice
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feeding the ridges, hFd and hFf , which are only subject to microporosity:

ρw hFf
= (ρw − ρ)hF + (ρw − ρs)hFs (3)

ρw hFd
= ρ hF + ρs hFs (4)

2. Conservation of Volume

As material deforms within the polygonal frame, jumbling ice blocks change the bulk

porosity of the ridge such that hRf/(1−φR) ≥ hFf
and hRd

/(1−φR) ≥ hFd
. Conservation

of volume per length of the ridge line in Figure 4, VR, is given by

VR(φR) =

∫ L̂K/2

0

(
h(x̂, φ) + hs(x̂, φ)

)
dx̂ =

L̂k
(
hRf

+ hRd

)
2(1− φR)

(5)

since hRf
and hRd

account for only the mean thickness of ice within the ridge, excluding

cavities between ridge blocks. Equation (5) is a superposition of volume conservation

above and below the waterline, which must be individually conserved via Archimedes’

Principle in (3) and (4). Therefore conservation of the respective freeboard (f) and draft

(d) volume density are given by

VRf
(φR) cos (π − θR) =

LK hRf

2(1− φR)
= 1

2
hFf

LK + 1
4

(
HS − hFf

)
LS (6)

VRd
(φR) cos (π − θR) =

LK hRd

2(1− φR)
= 1

2
hFd

LK + 1
4

(HK − hFd
)LK (7)

where the right hand equality in each line can be proven geometrically using Figure 3.

3. Conservation of Mass

It follows from (6) and (7) that ice mass is also conserved during deformation. Prior

to ridging, deformed ice has a parent sheet thickness hF and initial width LF/2 of ice to

be deformed, which is then horizontally compressed to a final ridge half-width LK/2 with
©2019 American Geophysical Union. All Rights Reserved.



non-porous mean thickness hR (Figure 3). Therefore,

hF LF = hR LK = 2(1− φR) cos(π − θR)

∫ L̂K/2

0

h(x̂, φ) dx̂ (8)

defines the horizontal Cauchy strain of each ridge half,

εRI
(tf) =

LK(tf)− LF (ti)

LF (tf)
=
hF (tf)− hR(tf)

hR(tf)
=

∫ tf

ti

ε̇RI
dt+ εRI

(ti) (9)

which may be inverted to give the non-porous ridged ice thickness hR = hF/(εRI
+ 1).

Note that in (9) it is assumed that εRI
(ti) = 0. Thus compressive strain εRI

∈ (−1, 0) is

notably independent of bulk porosity and the slopes of the sail and keel, none of which

appear in (9). By the second equality in (9), the total ridge strain may be expressed by

sampling the ridge at a single point in time, a consequence of hF being both an initial and

a boundary condition. We choose to use extensional (Cauchy) strain so as to maintain a

consistent sign convention with horizontal divergence,

ε̇RI
=

1

L̂K

∫ L̂K

0

∇ · v̂ dx̂ =
1

L̂K
(v̂Fb
− v̂Fa), (10)

where v̂(x̂, ŷ, t) is the vertically-integrated velocity field within each ridge half. Equa-

tion (10) is applicable to symmetric ridges, as in Figure 5a, but is easily expanded for

asymmetric ridges such as the one shown in Figure 5b.

Snow mass can only be conserved via ocean coupling not considered here. As jumbling

ice blocks disarrange their surface snow within a ridge, a fraction of that snow is submerged

and melts into the surrounding sea water. We impose a boundary condition on this process

to simplify ridge mechanics, whereby snow remaining on the deformed ice is given the same

thickness as snow on the parent ice sheet:

hRs = hFs . (11)
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This has a negligible impact on ridge shape (see supplemental material). The associated

snow mass per unit ridge-line length transferred to the ocean is:

Msw = ρs LK hFs

(
εRI

1 + εRI

)
. (12)

Snow mass remaining in the ridge is assumed to exist somewhere within the jumbled free-

board volume in Figures 3c, rather than as the organized surface layer seen in Figure 3a.

4. Geometric Constraints

Equations (1)–(7) provide seven equalities for ten variables. Geometric arguments pro-

vide the eighth and ninth equations. The morphology is a function of the keel and sail

angles of repose, αK and αS respectively, where 0< αK < π/2 and αS is limited by the

boundary condition 0<LS ≤LK which only mildly constrains ridge shape, and includes

the specific case of αS =αK . Varying αS over LS ∈ (0, LK ] has no effect on ridge width nor

keel depth because isostasy is determined by and quantized over the keel width LK , as fur-

ther explained in the supplementary material. Since αS has been observed to range only

over about αK ± 6◦ [Timco and Burden, 1997], we make the simplification αS =αK . This

is often assumed in morphological calculations [e.g., Tsamados et al., 2014] and simplifies

the subsequent algebra.
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Therefore the ridge extremities may be defined by a single angle of repose on the com-

pressional plane, αR, such that cotαK = cos(π−θR) cotαR:

LS = 2
(
HS − hFf

)
cos(π−θR) cotαR (13)

LK = 2 (HK − hFd
) cos(π−θR) cotαR (14)

HS = hFf
+ 2

√(
hRd

1− φR
− hFd

)(
hRf

1− φR
− hFf

)
(15)

HK =
2hRd

1− φR
− hFd

(16)

Substituting equations (9) and (11) into isostatic relations (1) and (2) further distills LS,

LK , HS, and HK to vary only with the parent ice and snow thickness, hF and hFs , and

the tensile strain, porosity, compressional angle of repose, and horizontal shearing angle,

εRI
, φR, αR, and θR respectively.

Bivariate Thickness Distribution of a Polygonal Ridge gR(h, φR)

The sectional thickness distribution gR(h, φR) of the polygonal coarse-grained ridge

introduced in section 0.3 is a function of the shortest horizontal distance x́ from the

leading edge (x́ = 0) to the central ridge line (x́ = LK/2) for the porous ice thickness h:

h(x́, φ) =


hF + x́ tanαK ; 0 ≤ x́ ≤ 1

2
(LK − LS)

hF + 2x́ tanαK − 1
2
(LK − LS) tanαK ; 1

2
(LK − LS) < x́ ≤ 1

2
LK

(17)

and x́ comes from rotation of x̂(x̂, ŷ, ẑ) by the horizontal shearing angle, θR: x́ý
ź

 =

 cos θR − sin θR 0
sin θR cos θR 0

0 0 1

 x̂ŷ
ẑ

 (18)

given that x̂ is aligned with local divergence and the sail and keel angles of repose are

equal, as defined in section 0.3.

Temporarily assuming no snow cover, treating h(x́, φ) as a distribution with respect

to x́, inverting equation 17 and employing the change-of-variable technique afforded by
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the monotonic increase of h over x́ ∈ [0, Lk/2] in equation (17),∫ HK+HS

hF

gR(h, φR) dh =
2

LK

∫ Lk
2

0

dx́(h)

gives the bivariate thickness distribution with respect to the cross section of deformed

ice that is a function of both h and φR:

gR(h, φR) =
2

LK

dx́

dh
=

ϑ

LK tanαK
(19)

for the simple step function:

ϑ =



0; h < hF

2; hF ≤ h ≤ hF + 1
2
(LK − LS) tanαK

1; hF + 1
2
(LK − LS) tanαK < h ≤ hF + 1

2
(LK + LS) tanαK

0; h > hF + 1
2
(LK + LS) tanαK

By construction, equation (19) obeys 1 =
∫∞

0
gR(h, φR) dh as required for normalized

distributions with a single bulk porosity of a ridge φR. (19) is also applicable to the case

with snow cover, since its construction is purely geometric. Substituting for LK , LS and

αK in (19) using equations (13) to (16) gives:

LS tanαR sec θR = 2[HS(φR, εRI
, hF , hFs)− hFf (hF , hFs)] (20)

LK tanαR sec θR = 2[HK(φR, εRI
, hF , hFs)− hFd(hF , hFs)] (21)

Using equations (9) and (11), the relations (20) and (21) reveal that the ridge thickness

distribution gR(h, φR) is a function of the parent ice sheet thickness and snow cover, hF

and hFs, bulk porosity φR, and strain εRI
. It is notably independent of shearing angle,

θR, and angle of repose, αR. The precise location of the intermediate step on the h-axis

changes when αS deviates from αK , but only to a minor extent within observed ranges (see
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supplemental material). Most importantly, ridge porosity affects the thickness distribution

in a similar way to strain, as demonstrated for gR plotted on the h-plane in Figure 7.

The Lagrangian Density L of a Polygonal Ridge

In this appendix we derive the Lagrangian density, L = T − V for the coarse-grained

ridge morphology introduced in section 0.3 and appendix A. The evolution of L describes

conservative exchanges between kinetic and potential energy densities, T and V , respec-

tively. We neglect the presence of snow cover due to its limited morphological influence on

ridges (see supporting material), but future inclusion of snow into the energetics of ridges

described here would be relatively easy. Without snow, T of a ridge is defined in terms

of the mass per unit area of ridging ice, m, and the velocity along the compressional axis

of the ridge relative to ice at its extremities, given by v̂=v̂Fb
−v̂Fa (Fig. 5). Combining

equations (1) to (4), (9) and (10) with relations (13) to (16) results in an equation in

terms of ice density ρ=ρ(φµ, s, ε), undeformed floe thickness hF , ridge-wide divergence ε̇R,

and the cross-sectional keel width L̂K = LK/ cos(π − θR):

T = 1
2
m v̂2 = 1

2
ρ hF ε̇R

2 L̂K
2

(22)

This equality has dimensions [MT−2] and may be expanded to give T in terms of tensile

strain εRI
, macroporosity φR and angle of repose on the compressional plane αR, as well

as the boundary conditions hF , ε̇R, and ridge-wide shear, θR.

The potential energy density V of an individual ridge forming along a path may be

quantized over polygonal ridge halves. We separate deformed ice thickness (h) into draft

(hd) and freeboard (hf ) on the compressional plane, where L̂S = LS/ cos(π− θR) for sails
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is analogous to L̂K for keels, and h(x̂, φ) = hd(x̂, φ) + hf (x̂, φ):

hd(x̂, φ) = hFd
+ x̂ tanαR (23)

hf (x̂, φ) =


hFf

; 0 ≤ x̂ ≤ 1
2
(L̂K − L̂S)

hFf
+ x̂ tanαR − 1

2
(L̂K − L̂S) tanαR; 1

2
(L̂K − L̂S) < x̂ ≤ 1

2
L̂K

(24)

Following Rothrock [1975], the potential energy density of a ridge is the weight of ice,

minus the weight of sea water displaced by the ice:

V = 2

∫ L̂K/2

0

∫ hf

−hd
ρ ĝ(1− φR) dẑ dx̂− 2

∫ L̂K/2

0

∫ 0

−hd
ρw ĝ(1− φR) dẑ dx̂. (25)

This equation may be rewritten in terms of hd(x̂, φ) and hf (x̂, φ) in (23) and (24):

V = 2

∫ L̂K/2

0

∆ρ ĝ(1− φR)hd(x̂, φ) dx̂− 2

∫ L̂K/2

0

ρ ĝ(1− φR)hf (x̂, φ) dx̂.

recalling that ∆ρ=ρw−ρ. Completing the integration results in potential energy density

with dimensions [MT−2]:

V = ∆ρ ĝ(1− φR)
(
hFd

L̂K + 1
4
L̂

2
K tanαR

)
+ ρ ĝ(1− φR)

(
hFf

L̂K + 1
4
L̂

2
S tanαR

)
. (26)

The time-integrated virtual gravitational potential energy density for a ridged ice vol-

ume is then V(tf)−V(ti), upon which we may apply L̂F=L̂K/(εRI
+ 1) from (9):

V(tf)− ĝL̂K(∆ρ hFd
+ ρ hFf

)(εRI
+ 1)−1 =

∫ tf

ti

δV dt (27)

Here, the initial potential energy density at ti is that of an undeformed parent sheet with

no macro-porosity that then feeds the ridge up to time tf . As with equation (22) for T ,

equation (27) may be further manipulated in order to state
∫ tf
ti
δV dt purely in terms of εRI

,

φR, αR, hF , and θR using the system of equations (1) to (16) in appendix A. This reveals

V to be dependent upon cotαR, similar to derivations of conservative ridge potential by
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Hopkins et al. [1991] and Kuuliala et al. [2017]. While not presented here for brevity, the

expansion of V in terms of εRI
, φR, αR, hF , and θR along individual ridging paths is used

for deriving Qx̂ in section 0.5.3. Subtracting the right hand side of equation (22) from

that of (26) gives the Lagrangian density, L.

Derivation of the Angle of Repose α̂R for Passive Failure

The angle of repose α̂R of the coarse-grained morphology is obtained by minimizing

horizontal compressive stress with respect to αR, finding εRI
and φR for:

∂σRx̂
∂αR

= 0. (28)

Drawing on equations (25) through (17) to substitute for σRx̂ = KpVR, a ridge shape

may be determined solely from the potential energy density of the keel, VRK
, because

LK ≥ LS. That is, the keel’s angle of repose determines the overall shape of the ridge.

Both VRK
and Kp may be expressed in terms of the state variables εRI

, φR, and αR and

the boundary condition hF by applying equations (1) through (16). Using equation (26),

VRK
= ĝ∆ρ(1− φR)

(
1
2
hFd L̂K + 1

8
L̂

2
K tanαR

)
= 2 ĝ∆ρ

(
ρ

ρw

)2
h
2
F

λ

(1− λ)(1 + εRI
)

cotαR (29)

where λ = (φR + φRεRI
− εRI

), εRI
∈ (−1, 0) and φR ∈ (0, 1). Using equations (15) and

(16),

Kp =

√
4λ2 cot2αR + (1 + λ)2 + (1 + λ)√
4λ2 cot2αR + (1 + λ)2 − (1 + λ)

. (30)

The roots of the polynomial expansion of ∂(Kp VRK
)/∂αR then satisfy (28) for the quartic

0 = λ2 − (5λ2+6λ+3) %2 + λ2 %4 (31)
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given %= tan(αR/2). Only the third root of (31) lies within the physical range λ∈(0, 1),

hence the angle of repose that assures a state of passive failure for ridging in (20) is

α̂R(εRI
, φR) = 2 arctan

√
(5λ2+6λ+3)−

√
(5λ2+6λ+3)2 − 4λ4

2λ2
(32)

and αR = α̂R(εRI
, φR) is a necessary condition of the modeled system. Substituting for

α̂R in (30) results in an analytic system-wide constant Kp = 3, which is within the range

2.4 ≤ Kp ≤ 4.6 estimated from discrete element modeling [Hopkins et al., 1991].

*Notation
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Table 1. Constants

Symbol Definition Value
ρ Density of floe ice 917 kg m−3

ρs Density of snow 330 kg m−3

ρw Density of sea water 1026 kg m−3

∆ρ Sea water and sea ice density difference (ρw − ρ) 109 kg m−3

ĝ Acceleration due to Earth’s gravity 9.8 m s−2
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Table 2. Apparent mean observed quantities of angle of keel repose, αKobs
and porosity φRobs

as would occur if a 5 m cutoff were applied to ridges predicted by bR in equation (45), so as

to mimic processing of sonar retrievals by Davis and Wadhams [1995]. Values are categorized

according to the deforming parent ice thickness, hF , and values highlighted in blue provide the

true mean values predicted by bR, but would only be seen in sonar processing where a keel draft

HK exceeds 5m for all ridges produced by a parent sheet.

hF (m) 0.20 0.50 1.00 2.00 5.00 HK > 5 m
αKobs

29.3◦ 28.2◦ 26.4◦ 22.9◦ 11.8◦ 10.4◦

φRobs
0.36 0.35 0.31 0.24 0.10 0.09
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a b

Figure 1. Ridges surveyed as part of the Sea Ice Experiment - Dynamic Nature of the Arctic

(SEDNA) field campaign in the Beaufort Sea [Hutchings et al., 2008, 2011]: a) A pressure ridge

photographed on April 9, 2007 UTC near 73.21◦N, 146.65◦W, and included in the autonomous

keel measurements of Wadhams and Doble [2008]; b) Shear ridge measured on April 7, 2007 UTC

near 73.34◦N, 146.11◦W. The gauge stick is 2 m high, graded at 0.1m intervals, and approximately

2m from the base of the sail. The camera position is 10m from the sail base.
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Figure 2. Schematic of a path x=χ(X, t) (solid red) and possible variations of that path

(dotted red) over an area A of the pack with perimeter C drifting and ridging between the

initial location xi and final position xf at time ti and tf , respectively. The bivariate thickness

distribution g(h, φR) evolves over the course of the drift path, and may describe an area of just

one ridging event, or an aggregation of many.
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Figure 3. Developmental cross-section of the polygonal isostatic ridge model. Imporous

metrics for ridged and adjacent level ice and snow are illustrated in (a). The associated metrics

for sea ice draft and freeboard appear in (b), which has a total cross sectional volume density

2VR(1−φR), where φR is the bulk porosity of the ridge in (c). This schematic presents the special

case of φR=0 so that the horizontal extent LK in (c) is equal to that of the imporous ridged

mass in (a) and (b). The angle of repose of the symmetric keel and sail are identical (αK=αS)

and equal to 22◦ for consistency with subsequent figures. There is no ridge shear (θR=180◦).

Each frame is to scale and has a horizontal (x̂) to vertical (ẑ) aspect ratio of 1:2, where hF=2m,

hFs=0.3m, and εRI
=− 1/3.
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Figure 4. Orthographic plan-view of the polygonal isostatic ridge model for (a) pressure

and (b) shear ridging. The x̂-axis is aligned with extensional ridge strain, εRI
, and the ŷ-axis

is aligned with horizontal shear strain (εRI
tan θR). The black dashed box in (a) and (b) is the

initial outline of two colliding floe segments with velocities v̂Fa and v̂Fb
relative to the ridge line.

Solid black lines indicate the final floe segments after ridging, where the cross-sectional ridge

profile along LK casts an angle π−θR with the x̂-axis, which is the angle between the pressure

and shear ridge lines in (a) and (b). Both frames share identical horizontal scales and a square

aspect ratio. The gray-shaded symmetric ridge extent in (a) corresponds to the cross-sections in

Figures 5a and 9a (LK=15.7m, θR=180◦). Equivalently, (b) is the plan view of the shear ridge

profile in Figure 9b (LK=9.0m, θR=125◦). εRI
=− 1/3 for both (a) and (b).©2019 American Geophysical Union. All Rights Reserved.



Figure 5. Orthographic cross-section of (a) symmetric and (b) asymmetric pressure ridges

(θR=180◦) within an isostatic polygonal frame joined along the transect connecting the level ice

boundary with the peak sail height and keel depth (orange frame). The randomly generated

ice and snow volume (gray section) has a symmetric mass either side of the centroid and has

uniform bulk porosity, φR. Half-width metrics refer to the left (Fa, Ra) and right (Fb, Rb) floes

and ridge-halves, including the horizontal parent sheet velocities, v̂Fa,b
, relative to the centroid.

The ridge in (a) is identical to that in Figure 3c, except here it is 20% porous. A plan view of (a)

can be seen in Figure 4a. Both (a) and (b) share the same scale and a square x̂:ẑ aspect ratio.

Stippling signifies the zone of macroporosity.
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Figure 6. Comparison between the coarse-grained ridge shape (blue lines) and Davis and

Wadhams [1995] sonar analysis of 729 independent keels with drafts between 5 and 29m (gray

scatter). Color shading indicates bulk macroporosity of the keel as predicted by the stationary

principle in equation (32) for (a) pressure ridging and (b) horizontal shearing of the same magni-

tude as in Figure 4b. LK/2(HK−hFd
) is the keel half-width-to-depth ratio relative to the level ice

base, and αK is the keel angle of repose, irrespective of shear, hence the blue traces and scatter

graphs are identical in both (a) and (b).
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Figure 7. The ice thickness distribution normalized over coarse-grained ridge widths, gR(h, φR),

with parent ice sheet thickness hF=2.0m and snow cover hFs=0.3m, as represented on the h-

axis. Ridge states (a) through (d) are identical in this figure as for the respective polygons of

the ridgegraph in Figure 8, and share the same color code.
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Figure 8. Ridgegraph of coarse-grained symmetric pressure ridges corresponding to the

gR(h, φR) distributions in Figure 7 for the given strain, εRI
, and bulk porosity, φR: a) Baseline

case, which is a reproduction of Figure 3c, with zero porosity and strain εRI
=−1/3; b) Identical

to the baseline except that ridge strain has increased to εRI
=−1/2; c) Identical to the baseline

except that ridge porosity has increased to φR=0.2, identical to Figure 5a; d) Strain is set to

zero, and porosity is φR=0.2, equivalent to the case of horizontally static sea ice fracture. All

ridges share the same parent floes (hFi=2m, hFs=0.3m), angle of repose (αR=22◦) and are each

pressure ridges (θR=180◦). Color coding corresponds to the step functions in Figure 7.
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Figure 9. Ridgegraph of coarse-grained symmetric relief under (a) compressional stress and (b)

a combination of shear and convergence. (a) is a reproduction of the pressure ridge in Figure 5a

(θR=180◦), with boundary conditions hFi=2m and hFs=0.3m, compressional angle of repose

αR=22◦, porosity φR=0.2 and strain εRI
=−1/3. (b) is a ridge formed under identical conditions

to (a), except with a portion of shear (θR=125◦). Respective ridges cross-sections in this figure

fall along the red transects denoted ‘LK ’ in Figure 4a and 4b plan views, and both ridges (a)

and (b) share the same gR(h, φR) distribution in Figure 7, trace (c).
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Figure 10. Coarse-grained Coulombic friction model used to determine constraints on the

shape and extent of sea ice ridges. The respective horizontal (σRx̂
) and vertical (σRẑ

) stress

terms on the compressional (x̂, ẑ) plane for a ridge half are annotated in blue. The critical angle

of friction ψR is the acute tilt of failure planes relative to the sea surface for which the ridge is

in equilibrium, annotated for the principle plane for one ridge half (red) and all failure planes

relevant to the other ridge half (white).
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Figure 11. Surfaces of the potential energy density VR=V(εRI
, φR, α̂R, hF ) for parent ice sheets

feeding a ridge with thicknesses of 0.5 and 2.0 m. Color shading indicates the angle of repose α̂R

of ridge states for which ∂αR
σRx̂=0. White and green lines are the coarse-grained ridge states

matching empirical approximations of maximum sail height and keel depth by Tucker et al. [1984]

and Melling and Riedel [1996], respectively. Red streamlines indicate the ridging trajectory ζ̂ for

which ∇R·đ=0. Color markings along the hF=2.0m solid red state-space trajectory correspond

to the locations of aR(h, φR,x) steps in Figure 13.
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Figure 12. The dilation field đ (white streamlines) of the hF=2.0 m surface of VR in Figure 11,

color shaded according to gravitational potential energy density (V). The solid red streamline is

identical to the ζ̂ state space trajectory in Figure 11 and is orthogonal to V contours. ζ̂ passes

through the initial condition ζ0(εRI
, φR)=(0, 0) for ridge strain εRI

and porosity φR.
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Figure 13. Bivariate sea ice thickness distribution aR(h, φR,x) of an individual coarse-grained

ridge formed from a parent ice sheet 2m thick under progressively greater compressive strain

(εRI
) from which porosity (φR) and angle of repose (αR) are obtained from the ζ̂ trajectory

derived in section 0.7.3. Step functions in this figure correspond to the color-marked state-space

locations along the solid red ζ̂ streamline in the VR in Figure 11. The upward arrow on the

εRI
=0 distribution indicates a Dirac delta function for hF=2m.©2019 American Geophysical Union. All Rights Reserved.



Figure 14. State space of ridged sea ice on the ζ̂-plane that passes through each ζ̂ trajectory

on the VR=V(εRI
, φR, α̂R, hF ) surfaces rendered in Figure 11. The state space is dependent only

on initial ice thickness hF and compressional strain εRI
. Color shading indicates potential energy

density VR of a ridge, for which there is a unique combination of keel width, LK , keep draft,

HK , and porosity, φR, at every point on the ζ̂-plane. There is a corresponding angle of repose,

αK , sail height, HS, and sail width, LS, for each ridge state not shown here. Vertical red dashed

and solid tracks correspond to ζ̂ trajectories in Figure 11 for hF=0.5 and 2.0 m respectively,

where colored markings on the latter correspond to aR(h, φR,x) steps in Figure 13. Translucent

shading indicates where the state space exceeds the Tucker et al. [1984] empirical HSmax threshold

discussed in section 0.8. ©2019 American Geophysical Union. All Rights Reserved.



Figure 15. Probability density bR(hF , εRI
) of ridges with cross-sectional width L̂K occurring

over an area A of uniform ice thickness hF with 100% concentration for each of the two ζ̂

trajectories illustrated for hF=0.5 and 2.0 m in Figures 14 and 11. Color shading indicates the

macroporosity for each probabilistic ridge state, and the dashed lines indicates the best linear fit

for the relationship bR∝L̂ D
K with a corresponding R2 value.
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Figure 16. Integration of the sea ice conservation equation in (2) for an initially undeformed

area of sea ice with uniform thickness hF=1 m (blue). Selected iterative steps leading to the

final distribution (purple) are shown for the integration procedure described in section 0.10. The

graph in a) presents g(h) on a linear y-axis, and b) presents the same g(h) distribution on semilog

axes so as to emphasize the near-negative exponential tail of the final distribution.
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