Evaluation of Novel Carbon Nano Tube Materials for Defeating Counter UxS Methods by Enabling EMI/RFI/ESD Shielding

Deliverables

- The experimental setups and the measurement protocols description that verify:
 - the choice of the CNT material and the engraving pattern
 - the achievable levels of RF energy attenuation as function of chosen CNT _____ engraving or composite pattern,
 - a parameterized mathematical model that designs the EMI protective shield as the function of "hostile" signal (power & frequency) and the desired characteristics of the EMI shield.
- A detailed procedure that outlines the integration steps; from raw materials to limited volume conformal shapes of UxV.
- Comparative map of the RF anechoic vs the open field experimental results.

FY20 Call for Proposals

PI Vladimir Dobrokhodov Mechanical and Aerospace Engineering vndobrok@nps.edu

Objective

- Onboard instrumentation of UxV systems across all domains suffers from lack of EMI/RFI/ESD protection. This presents 2 major vulnerabilities:
 - UxV own electromagnetic filed might adversely affect the onboard command and control (C2) links and sensitive payloads
 - The EW and counter UxV methods not only block the communication capabilities but also lead to the fatal burn out of onboard instrumentation
- The need for novel methods of protecting onboard microelectronics is urgent and can be provided by the integration of carbon-based nanomaterials.
- Traditional increase of the thickness of metal foils used in protection layers violates SWAP constraints and defeats other advances including the onboard intelligence.

Technical Approach

- Design and fabricate novel carbon nanotube (CNT) patterns to be integrated into small unmanned systems to enable EMI protection of onboard instrumentation of UxV systems.
- Explore the achievable levels of EMI protection due to novel properties of CNT fabric and various methods of its fabrication and integration onboard:
 - Design a practical guide for generating the CNT patterned structures that will act as EMI shield.
 - Experimentally verify the benefits of EMI protection. Explore achievable levels of EMI protection suitable for integration onboard of small UxV.
 - Develop a fabrication procedure that integrates CNT-based EMI shield into limited volume conformal shapes of UxV.

Co-PI Claudia C. Luhrs ccluhrs@nps.edu

Mechanical and Aerospace Engineering

Co-PI Paul Leary Department of Physics pleary@nps.edu