Robust Counter UxS Strategies Against Multi-Domain Super Swarms

Why
- Large-scale adversarial swarms are an **imminent threat**
- Future adversarial swarms will employ multiple, switching tactics
- **Defensive strategies must be robust** to uncertainty of sophisticated swarms

Objectives
- Robustness guarantees against highly uncertain threat
- Quantitative metrics for mission success/failure (risk)
- Estimation/Optimization/Analysis tools
- “**Super Swarm**” scalability, from $O(10)$ to $O(10^6)$ agents!

How
- Optimize defensive strategies for **robustness against variable swarm tactics**
 - Swarm cooperation mechanisms are a **black box** to defenders
 - Develop robustness guarantees against this uncertainty
- Analyze **thousands of counter-swarm scenarios** to quantitatively assess
 - Defender capabilities matrix, asset allocation, attacker type/priority
- Develop **universal counter UxS strategies** that
 - Don’t require **a priori knowledge** of attacker swarming algorithms
 - Ensure engagement outcomes are **robust vs. unknown swarm tactics**

What / Deliverables
- Robustness training database
 - **Scalable counter-swarm engagement database**, multiple defensive & offensive tactics, available to NPS, ONR, and DoD researchers
- New metrics for **quantifying mission risk/success** against adversarial swarms
 - e.g., # of perimeter penetrators, # of lost defenders, etc.
- **Asset Allocation Estimates** for counter UxS/swarm defense
- Fundamental research findings shared through:
 - Student theses, class projects, CRUSER reports and presentations
 - Conference and Journal publications
 - xSwarm, Counter-Swarm 2020 Workshop

FY20 Call for Proposals

Prof. Isaac Kaminer
kaminer@nps.edu, 831-656-3459
MAE Department

Research Asst. Prof. Claire Walton, MAE
Research Asst. Prof. Sean Kragelund, MAE
Prof. Wei Kang, Applied Math