

Lecture Notes in Computer Science 7539
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Radu Calinescu David Garlan (Eds.)

Large-Scale
Complex IT Systems
Development, Operation
and Management

17th Monterey Workshop 2012
Oxford, UK, March 19-21, 2012
Revised Selected Papers

13

Volume Editors

Radu Calinescu
University of York
Department of Computer Science
Deramore Lane, Heslington
York YO10 5GH, UK
E-mail: radu.calinescu@york.ac.uk

David Garlan
Carnegie Mellon University
School of Computer Science
5000 Forbes Avenue
Pittsburgh, PA, 15213, USA
E-mail: garlan@cs.cmu.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-34058-1 e-ISBN 978-3-642-34059-8
DOI 10.1007/978-3-642-34059-8
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012949191

CR Subject Classification (1998): D.2, C.2, H.4, K.6.5, C.2.4, D.3, H.3, F.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

It is a great pleasure to introduce the proceedings of the 17th Monterey Workshop,
held in Oxford, UK, during March 19–21, 2012. Attended by leading researchers
from academia and industry, the workshop explored the challenges associated with
the development, operation, and management of large-scale complex IT systems.

Large-scale complex IT systems underpin key critical applications in domains
ranging from health care and financial markets to manufacturing and defence.
Such systems are created and evolved dynamically through the integration of
independently built and controlled heterogeneous components. As a result, tra-
ditional techniques, which assume complete control over the parts of a system,
are inadequate in supporting the dependable engineering of important safety-,
security-, and business-critical requirements.

The revised and significantly extended papers included in this volume in-
corporate the insights gained from the productive and lively discussions at the
workshop, and the feedback from the post-workshop peer reviews. The volume
has three parts. Part I focuses on identifying the challenges and risks faced by the
developers, operators, and users of large-scale complex IT systems. The papers
in this part examine the current and envisaged use of such systems in domains
including cyber-physical systems, global financial markets, health care, teams of
autonomous vehicles, and air traffic control.

Part II of the volume covers the model-based engineering of different aspects
of large-scale complex IT systems. The papers included in this part explore a
broad range of approaches to addressing the uncertainty, continual change, large
scale, security concerns, and compositional and distributed nature that char-
acterize these systems. Multi-view, multi-disciplinary, domain-specific, security,
and multi-agent responsibility modelling approaches are identified as promising
in handling such hard problems, and research agendas for turning them into fully
fledged solutions are laid out by these papers.

Finally, Part III explores avenues for extending the use of formal specification,
analysis, and verification to large-scale complex IT systems. The approaches
envisaged to help achieve this ambitious objective include formal techniques that
are incremental, modular, compositional, or which exploit extreme symmetries,
quantitative steering, and independent viewpoint implementability.

We would like to thank UK’s national research and training initiative in the
science and engineering of Large-Scale Complex IT Systems (LSCITS) and its
Director, Dave Cliff, for their generous sponsorship of the workshop. We are also
grateful to the General Chairs, Luqi and Bill Roscoe, for their support in the
organization and smooth running of a very successful workshop.

July 2012 Radu Calinescu
David Garlan

Message from the Monterey Workshop

General Chairs

Oxford, in Strachey, Hoare and others, has an outstanding history in advancing
programming language semantics, program verification, and the theory of con-
current computing. It maintains its strength in these areas and newer ones such
as security and information systems, all of which made it natural to hold the
17th Monterey Workshop there between 19th and 21st March 2012.

Awareness of the importance of system integration has spread, and the econ-
omy and society of our interconnected world has become increasingly depen-
dent on complex interacting systems. Such systems may incorporate networked
multitudes of people, information services, physical components, sensors, soft-
ware controllers, and actuators that affect the physical components. Examples of
sectors relying on such systems include energy, transportation, manufacturing,
defense, and medicine.

Cyber Physical Systems (CPS) are engineered systems comprising interacting
physical and computational components [1]. Emerging CPS will be coordinated,
distributed, and connected, and must be robust and responsive [2]. Potential ap-
plications span an amazing variety of contexts, from swarms of nano quadrotors
to robotic surgery. Many of these applications impact the safety and well-being of
societies and individuals. Therefore high integrity, predictable operation, composi-
tional and iterative verification, and complex systems in the cloud are all relevant.

The need for dependable operation of systems that integrate heterogeneous
components, continuously evolve, and have decentralized ownership and control
has expanded yet again the challenges that the field of software engineering must
address, introducing connections to subjects beyond its traditional scope, such
as complexity in organizations, socio-technical engineering, and cyber-security.

VIII Message from the Monterey Workshop General Chairs

The workshop itself was held in the Randolph Hotel, the setting of numerous
episodes of Inspector Morse. It brought together a wide range of research relevant
to complex heterogeneous systems, including approaches to developing them,
securing them, verifying them, and taming their complexity. Others dealt with
design and specification of systems with respect to multiple viewpoints, and how
to combine these. It was natural that several of the papers addressed healthcare
issues since healthcare IT provides some of the most complex and important ex-
amples of cyber-physical systems and complex distributed information systems.

It was wonderful to see the interactions and integration of advances from soft-
ware engineering and many related fields coming together, following the culture
and tradition of the Monterey Workshop series. We thank the program commit-
tee chairs Radu Calinescu from York and David Garlan from CMU for putting
together a fascinating workshop program. Janos Sztipanovits initiated CPS as
the workshop topic, Fabrice Kordon produced the beautiful website and years
of collectable posters, and the Oxford hosts handled innumerable details.

The Monterey Workshop steering committee would like to thank the sponsors
for their support of the Monterey Workshops, with special thanks to the UK’s
national research and training initiative in the science and engineering of Large-
Scale Complex IT Systems (LSCITS) and its Director, Dave Cliff, for making this
17th Monterey Workshop possible. Many of the Monterey Workshop themes in
the last two decades have subsequently blossomed into major research initiatives
and widespread applications:

0th: Research Review on Formal Methods in Software Engineering: Concurrent
and Real-time Systems, Monterey, California, 1991

1st: Computer-Aided Prototyping: CAPSTAG, Monterey, California, 1992
2nd: Software Slicing, Merging and Integration, Monterey, California, 1993
3rd: Software Evolution, Monterey, California, 1994
4th: Specification Based Software Architectures, Monterey, California, 1995
5th: Requirements Targeting Software and Systems Engineering, Bernried, Ger-

many, 1997
6th: Engineering Automation for Computer Based Systems, Monterey, Cali-

fornia, 1998
7th: Modeling Software and System Structure in a Fast Moving Scenario, Santa

Margherita Ligure, Italy, 2000
8th: Engineering Automation for Software Intensive System Integration, Mon-

terey, California, 2001
9th: Radical Innovations of Software and Systems Engineering in the Future,

Venice, Italy, 2002
10th: Software Engineering for Embedded Systems: From Requirements to Im-

plementation, Chicago, Illinois, 2003
11th: Software Engineering Tools: Compatibility and Integration, Vienna, Aus-

tria, 2004
12th: Realization of Reliable Systems on Top of Unreliable Networked Plat-

forms, Irvine, California, 2005
13th: Composition of Embedded Systems: Scientific and Industrial Issues, Paris,

France, 2006

Message from the Monterey Workshop General Chairs IX

14th: Innovations for Requirement Analysis: From Stakeholders’ Needs to For-
mal Designs, Monterey, California, 2007

15th: Foundations of Computer Software, Future Trends and Techniques for
Development, Budapest, Hungary, 2008

16th: Modeling, Development and Verification of Adaptive Systems, Redmond,
Washington, 2010

17th: Development, Operation and Management of Large-Scale Complex IT
Systems, Oxford, UK, 2012

18th: Cyber Intelligence and Security, Washington DC, 2013

The coming 18th Monterey Workshop will discuss challenges associated with
the modeling, design, evaluation, and monitoring of cyber and cyber-physical sys-
tems, assess engineering techniques, and explore future research topics. Cyber-
is a prefix derived from “cybernetic,” which comes from the Greek adjective
κυβερνητικóς meaning skilled in steering or governing [3]. Cyber and cyber-
physical systems are being networked to perform critical functions and to evolve
into the global superstructure:

• Accurately modeling the cyber-social context is a prerequisite for systems
aimed at gathering, processing, storing, analyzing and using cyber data in-
telligently to support decisions.

• Document processing and data synchronization are needed to derive real-
time intelligence from ongoing events in complex networked systems.

• Secure architecture and firm technical foundations are necessary to enable
such systems to adapt to a changing world while maintaining reliable oper-
ation.

• Establishing abstractions to understand, predict, and build systems with
optimized security and real-time intelligence should facilitate security and
reliability of cyber and cyber-physical systems.

Prof. Sadie Creese, Director of the Oxford Cyber Security Center, and
Dr. Doug Lange will be the program committee chairs of the 18th Monterey
Workshop on Cyber Intelligence and Security in 2013.

July 2012 Luqi & Bill Roscoe

References

1. Sztipanovits, J., Stankovic, J., Corman, D.: Industry – Academy Collaboration in
Cyber Physical Systems Research, http://cra.org/ccc/docs/CPS-White%20Paper-
May-19-2009-GMU-v1.pdf

2. Cyber-Physical Systems, National Science Foundation, USA
3. http://en.wikipedia.org/wiki/Internet-related prefixes

Table of Contents

Part I: Challenges of Large-Scale Complex IT
Systems

Cyber-Physical Systems: Imminent Challenges . 1
Manfred Broy, Maŕıa Victoria Cengarle, and Eva Geisberger

The Global Financial Markets: An Ultra-Large-Scale Systems
Perspective . 29

Dave Cliff and Linda Northrop

What Is a Care Pathway? . 71
Justin Keen

Command and Control of Teams of Autonomous Systems 81
Douglas S. Lange, Phillip Verbancsics, Robert S. Gutzwiller,
John Reeder, and Cullen Sarles

The Risks of LSCITS: The Odds Are Stacked against Us 94
John A. McDermid

Part II: Model-Driven Engineering

Integration Architecture Synthesis for Taming Uncertainty in the
Digital Space . 118

Marco Autili, Vittorio Cortellessa, Davide Di Ruscio,
Paola Inverardi, Patrizio Pelliccione, and Massimo Tivoli

Social Networks for Importing and Exporting Security 132
Bangdao Chen and A.W. Roscoe

CScale – A Programming Model for Scalable and Reliable Distributed
Applications . 148

Jose Faleiro, Sriram Rajamani, Kaushik Rajan,
G. Ramalingam, and Kapil Vaswani

Foundations and Tools for End-User Architecting . 157
David Garlan, Vishal Dwivedi, Ivan Ruchkin, and Bradley Schmerl

Evolving Delta-Oriented Software Product Line Architectures 183
Arne Haber, Holger Rendel, Bernhard Rumpe, and Ina Schaefer

Multi-view Modeling and Pragmatics in 2020: Position Paper
on Designing Complex Cyber-Physical Systems . 209

Reinhard von Hanxleden, Edward A. Lee, Christian Motika, and
Hauke Fuhrmann

XII Table of Contents

View-Based Development of a Simulation Framework for
Multi-disciplinary Environmental Modelling . 224

Rolf Hennicker and Matthias Ludwig

Revealing Complexity through Domain-Specific Modelling and
Analysis . 251

Richard F. Paige, Phillip J. Brooke, Xiaocheng Ge,
Christopher D.S. Power, Frank R. Burton, and
Simon Poulding

Information Requirements for Enterprise Systems . 266
Ian Sommerville, Russell Lock, and Tim Storer

Part III: Formal Specification, Analysis and
Verification

A Counterexample-Based Incremental and Modular Verification
Approach . 283

Étienne André, Kais Klai, Hanen Ochi, and Laure Petrucci

Compositional Reverification of Probabilistic Safety Properties
for Large-Scale Complex IT Systems . 303

Radu Calinescu, Shinji Kikuchi, and Kenneth Johnson

Extreme Symmetries in Complex Distributed Systems:
The Bag-Oriented Approach . 330

Maximilien Colange, Lom-Messan Hillah, Fabrice Kordon, and
Pierre Parutto

Towards Communication-Based Steering of Complex Distributed
Systems . 353

Klaus Dräger and Marta Kwiatkowska

Evolution, Adaptation, and the Quest for Incrementality 369
Carlo Ghezzi

Independent Implementability of Viewpoints . 380
Thomas A. Henzinger and Dejan Ničković

Understanding Specification Languages through Their Model Theory . . . 396
Ethan K. Jackson and Wolfram Schulte

Author Index . 417

Cyber-Physical Systems: Imminent Challenges�

Manfred Broy1, María Victoria Cengarle2, and Eva Geisberger2

1 Technische Universität München
broy@in.tum.de

2 fortiss GmbH
{cengarle,geisberger}@fortiss.org

Abstract. A German project is presented which was initiated in order to analyse
the potential and risks associated with Cyber-Physical Systems. These have been
recognised as the next wave of innovation in information and communication
technology. Cyber-Physical Systems are herein understood in a very broad sense
as the integration of embedded systems with global networks such as the Inter-
net. The survey aims at deepening understanding the impact of those systems at
technological and economical level as well as at political and sociological level.
The goal of the study is to collect arguments for decision makers both in business
and politics to take actions in research, legislation and business development.

1 Introduction

The vision of Cyber-Physical System (CPS) is that of open, ubiquitous systems of coor-
dinated computing and physical elements which interactively adapt to their context, are
capable of learning, dynamically and automatically reconfigure themselves and cooper-
ate with other CPS (resulting in a compound CPS), possess an adequate man-machine
interface, and fulfil stringent safety, security and private data protection regulations.
Nowadays CPS are being conceived and chances are high that they will be widely used
in the near future. Forerunners can already be found in as dissimilar areas as automotive,
avionics, energy, health, environmentalism and consumer electronics. So for instance a
car equipped with an intelligent parking assist system combined with a navigation sys-
tem as well as the (suppositional) road traffic management is a CPS. This vision poses
extraordinary challenges particularly regarding technology, organisation and human-
system cooperation. It also entails a huge potential both for economy as well as for
tackling problems of modern society.

A first step towards CPS is given by networked embedded systems whose operations
are monitored, coordinated, controlled and integrated by a distributed computing and
communication core. CPS potentially can change the way individuals and organisations
interact with and control the physical world, and be as revolutionary as the internet
technology was and still is. The transition of economy and society seems inexorable
and disruptively leads to value-added chains and economic ecosystems spanning over
diverse domains.

� This work has been partially sponsored by the BMBF project “Integrierte Forschungsagenda
Cyber-Physical Systems” under the patronage of acatech, the National Academy of Science
and Engineering.

R. Calinescu and D. Garlan (Eds.): Monterey Workshop 2012, LNCS 7539, pp. 1–28, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 M. Broy, M.V. Cengarle, and E. Geisberger

Peculiarities, prospects and obstacles of CPS, and opportunities, risks and acceptance
factors to be raised by the envisioned systems were pinpointed in a survey which is the
outcome of a collaborative analysis carried out by experts in the related fields and work-
ing in industry and academia, including both basic and applied research; see [GBC+12].
Trends of CPS were identified and charaterised; by means of (contrived) future scenar-
ios further developments gone through; and social, economic and technical challenges
and new opening possibilities discussed.

Starting from this cognisance, a guidance can be implied for the evolution of core
technologies, exploration of user demands (be they end users or companies), inter- and
transdisciplinary research and development, economic ecosystems, social guidelines
and stipulations, participatory conformation and analysis of the techniques. Preliminary
recommendations for action can be found in [BGC+12].

In this paper we present the characteristics of the envisaged CPS, namely their capa-
bilities plus the demands they must fulfil. In the course of the project we also discussed
different issues of CPS including security as well as social acceptance and usability;
see [GBC+12]. Here we limit ourselves to highlight the challenges for the formal mod-
elling and engineering of requirements and systems, and to enumerate some issues re-
garding, on the one hand, social acceptability of CPS and, on the other, the role of CPS
in innovation as well as successful business models.

Outline. Firstly in Sec. 2 we discuss the key drivers of the incipient evolution. Then in
Sec. 3 we present the method employed to characterise CPS and single out the chal-
lenges they bear, and sum up this characterisation. Afterwards in Secs. 4 and 5 we list
some of the issues of CPS regarding technologies and society, respectively. Finally in
Sec. 6 we summarise the implications that CPS bring along.

2 Towards Cyber-Physical Systems

The information and communication technologies progress faster and faster. At a
dizzying pace circuits become even more miniaturised and speedier every day, networks
allow more rapid and reliable communication, mobile phone coverage expands, to men-
tion only a couple of examples. These technologies, at the same time, become less and
less expensive. This way, ubiquitous computing becomes a reality thanks to the prolifer-
ation of netbooks, tablet computers, smartphones, and the like. Furthermore, more and
more computing systems are embedded into physical devices, like home applicances,
vehicles, or medical devices, providing additional intelligence. Proprietary closed sys-
tems, as embedded systems and devices, increasingly become open and dynamically
linked to other systems, they are more flexible, more interactive, more networked, and
seamlessly connect the physical systems of actuator and sensor technology with virtual
software systems.

CPS are the result of further development and integrated use of two dominant areas of
innovation: systems with embedded software, on the one hand, and global data networks
like the Internet with distributed and interactive application systems on the other. There
exists a powerful infrastructure of sensors, actuators and communications networks,
employed by cooperating global companies. The following technologies and trends act
thereby as key drivers:

Cyber-Physical Systems: Imminent Challenges 3

– The use of powerful intelligent embedded systems, mobile services and ubiquitous
computing.

– The use of the Internet as business web, that is, as a platform for economic cooper-
ations, with two complementary forms:

• traditional IT management tasks are increasingly transferred to the “cloud”,
i.e., outsourced to external service providers worldwide distributed,

• especially in trade and logistics but also in application areas such as remote
support, components find use that are intelligent, networked and equipped sen-
sors, as for instance RFID technology.

– The use of the Semantic Web and of techniques of Web 2.0 as well as of interactive
design of integrated services through

• user-defined interaction and the corresponding configuration of knowledge and
communication network, and

• communities of developers typically around open source initiatives like Fire-
fox, Android and MediaWiki, but also around application distribution plat-
forms like iOS.

We envisage CPS as the convergence of those trends. These forthcomming systems
enable services and functionalities far beyond the scope of the capabilities of present-
day networked embedded systems. CPS are distributed and interactive, location-inde-
pendent as well as aware of their context of use and adaptable, capable of learning and
(semi-)autonomous.

In the next section, we presente a method which characterises CPS.

3 Characteristics of CPS

In the first place future scenarios were conceived that both reinforced the desirability
of CPS and helped identify the further course of action with the purpose of making the
vision of CPS a reality. Indeed, they allowed the reification of goals and requirements
of CPS and their engineering as well as the deduction of CPS-specific capabilities. Re-
quirements and capabilities, on the one hand, permit the detection of challenges and
implications of CPS engineering and, on the other, the derivation of essential core tech-
nologies.

Scenarios were concocted in various domains including automotive, traffic manage-
ment, health care system, mobile communications, medical technology, manufacturing,
procurement and logistics, industry and building automation, plant construction and en-
gineering, smart grid. Figs. 1 and 2 delineate two sample scenarios in the areas of health
and mobility, respectively.

The smart mobility scenario in Fig. 2 makes apparent the need for connecting CPS
of different domains: The convoy of fully autonomous cars abandons the premium track
in order to give way to an ambulance. This situation lies in the intersection of CPS spe-
cific for traffic management and CPS specific for health care system or, more precisely,
demands CPS dedicated to different domains to interact and coordinate. A similar case
is given by CPS for smart home and/or smart building in cooperation with CPS for
smart health and/or ambient assisted living. Simultaneously, CPS are open thus dynami-
cally adaptable systems and services. Therefore, according to social and spatial network
topologies, CPS operate across different nested spheres of uncertainty (see Fig. 3):

4 M. Broy, M.V. Cengarle, and E. Geisberger

Smart health
Ms Huber is 70 years old, retired and lives alone in an old farmhouse in Munich East. She
never made the driver’s license since she always used to ride with her husband. Since his death
a few years ago, Ms Huber suffers from mild depression. Although she still is able to manage
everything, her concern is to helplessly fall into a dangerous situation. Because of this reason
she acquired a smart health system. This system passively monitors her vital values, assists her
in medical matters, and calls for help in case of emergency. The passive monitoring controls
Ms Huber’s weight and reminds her of taking her medicine. These are only the basic functions,
the system can be adapted to changing needs.
After some time and with the help of sensors installed in the farmhouse, the system has recorded
Ms Huber’s habits in particular regarding how she moves around and created a profile. She no
longer perceives the small devices. The daily jump on the bathroom scales has become routine.
And the guidance as how to prepare her weekly medication has stilled her fear of confusion.
Ms Huber used to meet her friends on a regular basis, but for some time now their encounters are
less frequent. The smart health system detects weight gain. Given that this change has occurred
relatively fast, the system recommends Ms Huber to contact her family physician prior to her
next regularly scheduled visit. The system allows the arrangement of an appointment directly
with the physician’s surgery. The physician recommends Ms Huber more exercise and to also
control daily her blood pressure. Ms Huber gets on prescription a blood pressure measuring
device as well as a motion sensor, that are integrated to her smart health system. After a couple
of days Ms Huber’s situation has further deteriorated, so her family physician refers her to a
specialist who can closer examine her. For this to be possible, Ms Huber had previously granted
approval the monitoring of her data regularly in the cloud.
A couple of days later, Ms Huber suffers a slight stroke, which is quickly treated. For the smart
health system stores instructions as what is to be done in case of emergency. Not only an ambu-
lance is immediately sent to Ms Huber’s farmhouse. Ms Huber’s family members are informed
via SMS, the newspaper subscription is suspended and the alarm system of the farmhouse is
activated.

Fig. 1. Scenario “smart health” (excerpt)

1. a controlled area of closed large-scale infrastructure systems and services,
2. a defined area of cooperative, social infrastructure systems and services run by

skilled users, and
3. a demarcated area of social application systems and services, including businesses,

spanning over diverse domains, open to individual application systems and utili-
sation processes, employed in everyday life, that make use of services of the con-
trolled and of the defined areas.

CPS’ services (co-)operate across all three areas in open and unforeseen physical and
social environments.

The analysis of the scenarios resulted in a number of characteristics shown by the hy-
pothetical CPS. Those characteristics allowed the derivation of goals and requirements
of CPS as well as their capabilities, which were sorted in benefit and system abilities.
Out of these, on the one hand challenges and implications and, on the other, indispens-
able technologies and engineering skills were inferred. In sum, CPS characteristics are
portrayed in Fig. 4.

Cyber-Physical Systems: Imminent Challenges 5

Smart mobility
Ms Müller records a visit to her mother on Friday morning in her mobile device: she gives only
departure time as well as from and to locations, and a maximum cost amount for the entire route.
The mobile device is connected to various providers and makes her suggestions for the trip from
her home in Munich West to pick up her children at their school in the center of Munich and
onward to her mother in Munich East. Ms Müller decides to use public transportation to the
children’s school, as this is the most energy-efficient and least expensive alternative. There,
Ms Müller intends to continue the journey with her children to her mother with a car-sharing
vehicle (CSA). To this end, she explicitly decides in favor of a hybrid vehicle with autonomous
driving capabilities. The necessary travel documents such as public transport ticket and CSA
authorisation are transmitted to the mobile device of Ms Müller.
Prior to departure, Ms Müller is informed via her mobile device of a defective signal box and
thus significant delays of her public transport connection are to be expected. Via her mobile
device, again, she receives the suggestion to book a CSA already from her home. Ms Müller ac-
cepts the proposal, consequently and automatically her public transport ticked is cancelled and
her CSA authorisation from her home is transferred on her mobile device. Shortly thereafter,
Ms Müller is informed about the impending arrival of the CSA. Simultaneously, the children
are informed that their mother will pick them up with a CSA at the school.
During her car ride and while the CSA autonomously drives in a convoy on the highway, on
her mobile device Ms Müller answers e-mails and reads the newspaper. Meanwhile, the convoy
leaves the premium track –a fee-based fast track for fully autonomous vehicles– to give way to
an ambulance, and then joins the premium track again.
Shortly thereafter the CSA abandons the convoy, leaves the highway, and returns the control
to Ms Müller. She drives the vehicle toward her children’s school. As the CSA is networked
with a back-end infrastructure and with other vehicles, Ms Müller is supported in a high degree
during this trip. For example, the CSA automatically reduces its speed to the prescribed speed
limit. When driving past a stopped school bus with activated warning lights in the immediate
vicinity of the school, suddenly the CSA halts: a child runs from behind the school bus over the
street and in front of the CSA, which in time comes to a stop. A glance in the rearview mirror
convinces Ms Müller that the vehicles behind her were also warned in time.
Once the children get on the car and they set off to Ms Müller’s mother, the CSA is notified of
the fine dust pollution limit being exceeded and that only emission-free vehicles are allowed to
proceed. The vehicle checks whether the existing battery capacity is sufficient and switches to
electric mode.

Fig. 2. Scenario “smart mobility” (excerpt)

Capabilities associated with this characterisation can be found in Tab. 1. Essentially,
CPS are required to be

– x-aware and assimilable to their physical/social context,
– capable of learning (of evolving) and adaptable,
– transparent, equipped with predictable human-machine interaction,
– reliable, cooperative, strategic,
– subject to risk, target and quality analysis as well as quality of service (QoS) assur-

ance.

Once goals, characteristics and capabilities of the envisioned CPS were determined,
the research and development landscape in science and industry, as far as relevant

6 M. Broy, M.V. Cengarle, and E. Geisberger

Fig. 3. CPS domain structure

information is available and/or put at disposal, both at national and international level,
was examined and the abilities of today’s systems gathered. This information and the
capabilities of CPS inferred were contrasted. This way, some shortcomings could be
identified. These results were validated within workshops with experts, interviews and
polls, which where systematically iterated.

Example: Evolution of a Vehicle’s Brake System

The development stages of braking systems in vehicles illustrate the technology evolu-
tion and the increasing complexity of embedded systems, and hint at the sophisticated

Cyber-Physical Systems: Imminent Challenges 7

By CPS,

– physical and virtual, locally/globally networked systems are fused into
– systems of systems with dynamically shifting boundaries that are
– context-adaptive, partially or completely autonomous, and capable of active real-time con-

trol,
– cooperative with each other under distributed, alternating control, and
– able of comprehensive human-system cooperation.

CPS include embedded systems, logistics, coordination and management processes as well as
Internet services that, using sensors, directly capture physical data and, through actuators, act on
physical processes that are interconnected by means of digital networks, use globally available
data and services, and have multimodal human-system interfaces. CPS are open socio-technical
systems that provide a range of new functionalities, services and features which go far beyond
the current capabilities of embedded systems with controlled behaviour.

Fig. 4. CPS characteristics

requirements on the way to open CPS. The development stages are graphically repre-
sented in Fig. 5.

In order to avoid traffic accidents the automobile industry, in the development of
safety-critical functions as for instance the braking function, resorts to classical embed-
ded systems and, increasingly, to CPS. Milestones in this development are the anti-lock
braking system (ABS) introduced in 1978, the electronic stability control (ESP) intro-
duced in 1995, and the active brake assist (ABA) as extension of the adaptive cruise
control (ACC), introduced in 2003. The ABS allows the wheels on a motor vehicle
to continue interacting tractively with the road surface as directed by driver steering
inputs while braking. The ESP actively allocates a deceleration torque to individual
wheels thus preserving the steerability. An ABA may warn the driver, precharge the
brakes, among others; the Honda brake collision mitigation system uses a radar-based
system to monitor the situation ahead and automatically brakes if the driver does not
react to a warning.

These three milestones show the gradual evolution from basic (physical) funtionality
via information processing through automatic control. Associated with ABS the phys-
ical causal chains (brake pedal – hydraulic line – cylinder) is partially substituted by
causal chains supported by information technology (brake pedal – position sensor – bus
– controller – bus – actuator – cylinder). While ABS only considers wheel revolutions
and braking power, ABA additionally deals with the vehicle environment in the form
of obstacles. This evolution goes from an individual monofunctional system (braking
in the case of ABS) over cooperative, i.e., closed and networked, embedded systems
(braking and steering in the case of ESP) to a system of systems (braking, steering,
dashboard, and context via sensors in the case of ABA).

The example clearly shows the increasing demands on the ability of systems to in-
vestigate their surroundings. The requirements range from the acquisition of simple
physical data and their fusion into physical environment information such as distance,
location or speed (physical awareness), over the identification of the situational impor-
tance of this information (situation awareness), to the inclusion of extensive contextual

8 M. Broy, M.V. Cengarle, and E. Geisberger

19
78

ba
si

c
ph

ys
ic

al

m
on

of
un

ct
io

na
l

ad
ap

tiv
e

an
d

in
te

ra
ct

iv
e

m
ul

tif
un

ct
io

na
l

functionality

tim
e

fu
nt

io
na

lit
y

sy
st

em
s’

 c
oo

pe
ra

tio
n

ac
tio

n
co

nt
ro

l

in
 o

pe
n

so
ci

al
 c

on
te

xt

hu
m

an
−s

ys
te

m
co

op
er

at
io

n

co
m

pl
ex

 c
on

te
xt

an
d

do
m

ai
n

m
od

el

co
m

pr
eh

en
si

ve
 d

is
tr

ib
ut

ed
da

ta
 a

na
ly

si
s

fo
r

br
ak

in
g

su
pp

or
t

sy
st

em
 o

f s
ys

te
m

s

al
so

 b
ra

ki
ng

 r
em

ot
e−

co
nt

ro
lle

d
by

 in
fr

as
tr

uc
tu

re
 (

e.
g.

 b
y

po
lic

e

em
be

dd
ed

 s
ys

te
m

em
be

dd
ed

 s
ys

te
m

w
hi

le
 b

ra
ki

ng
is

 p
re

se
rv

ed
m

an
oe

uv
ra

bi
lit

y

an
d

co
nt

ro
lli

ng
re

ac
tiv

e
st

ee
rin

g

lo
gi

ca
l c

au
sa

l c
ha

in
s

an
d

co
nt

ro
lli

ng
ac

tiv
e

st
ee

rin
g

w
hi

le
 b

ra
ki

ng
st

ab
ili

ty
 is

 s
up

po
rt

ed

co
nt

ex
t m

od
el

si
m

pl
e

ph
ys

ic
al

ac
tiv

e
st

ee
rin

g
an

d
au

to
no

m
ou

s
co

nt
ro

l

au
to

m
at

ic
 b

ra
ki

ng
in

 c
rit

ic
al

 s
itu

at
io

ns
m

ul
tif

un
ct

io
na

l

W
ith

 e
ac

h
st

ag
e

of
 e

vo
lu

tio
n

in
cr

ea
se

d
−

us
er

−c
en

tri
c

fu
nc

tio
na

lit
y

−
ne

tw
or

ki
ng

 a
nd

 in
te

gr
at

io
n

w
ith

 th
e

co
nt

ex
t

−
co

m
pl

ex
ity

 o
f p

os
si

bl
e

ca
us

al
 c

ha
in

s
−

co
or

di
na

tio
n

of
 s

ys
te

m
s

in
vo

lv
ed

−
hu

m
an

−m
ac

hi
ne

 c
oo

pe
ra

tio
n

context

co
nt

ex
t &

 d
om

ai
n

m
od

el

HM
I

HM
I

an
d

fir
st

 r
es

po
nd

er
)

−
di

ve
rs

ity
 o

f u
se

 ri
sk

s

19
95

20
03

(u
pc

om
in

g)

Fig. 5. Evolution of the brake system in a vehicle

information for the proper assessment of the situation (context awareness) and action
control, and this in cooperation with other systems. In order to meet these complex
requirements, and in addition to physical environmental models, increasingly complex
situation and context models are required on the part of the systems.

Cyber-Physical Systems: Imminent Challenges 9

In the next sections, some topics of technical and social nature for (further) develop-
ment of CPS are presented.

4 Technological Challenges

As explained above, on the one hand, describing characteristics of the envisioned CPS
(see Fig. 4) were inferred using the future scenarios devised. On the other and as de-
tailed in Tab. 1, associated goals, requirements and capabilities were derived, which
were then arranged in a taxonomy comprising the taxa benefit, system-inherent ca-
pability, technology, and engineering competence; see [GBC+12]. Characteristics and
capabilities pose a number of challenges, require novel and/or improved technologies,
and entail a series of implications; Fig. 6 shows the approach followed by the project. In
this section, the technological challenges are addressed. In particular because of the in-
creasing openness of the systems and the capabilities listed in columns (3)–(5) of Tab. 1
(which are also reflected in the evolution of braking systems exemplarily exposed in
Sec. 3 above), the prospective demands go beyond the possibilities of current technolo-
gies. There is thus increased demand for research and development. On the basis of the
those capabilities, we reflected upon the needed apparatus, examined the state of the
art, and tried to identify both the difference or distance between available and required
technologies as well as the associated challenges.

4.1 Individual Technologies

Out of the distinctive nature and features of CPS, necessary advances in technology
were recognised that can be either individually intended for the implementation of CPS
capabilities or address engineering issues. This section focuses on the first ones.

Among individual technologies is sensor fusion, that allows physical situation aware-
ness, provided improved sensor and actuator technologies together with communication
networks are available. A step beyond sensor fusion is multi-criterial situation assess-
ment, which permits decision making even if the information at disposal is uncertain
or contradictory. Furthermore, CPS must be aware not only of their physical and situa-
tion context but also of their own situational capabilities, and adapt accordingly. They
moreover must be able to learn from, e.g., the way they have been used so far, and ac-
commodate to their user putting a comprehensive human-system interface at disposal.
And what is more, they must be able to organise themselves and evolve. These issues,
among others, are dealt with in the next section.

In what follows, we give an overview of the surveyed techniques and technologies.
Basic techniques and technologies already available –which as a matter of fact address
capabilities under (1) and (2)– that can be sophisticated include

– domain modelling, ontologies and domain-specific languages,
– sensor and actuator technology,
– communication infrastructure and communication platform,
– efficient parallel processing units, and
– distributed stable controlling;

10 M. Broy, M.V. Cengarle, and E. Geisberger

Table 1. CPS capabilities

(1
) S

en
so

r a
nd

 a
ct

ua
to

r
te

ch
no

lo
gy

, v
irt

ua
l,

lo
ca

lly
/g

lo
ba

lly
 n

et
w

or
ke

d,
 w

ith

re
al

-t
im

e
m

an
ag

em
en

t

(2
) S

ys
te

m
s o

f s
ys

te
m

s (
SO

S)
,

co
nt

ro
lle

d
ne

tw
or

k
w

ith
 d

yn
am

ic

bo
un

da
rie

s

(3
) C

on
te

xt
-a

da
pt

iv
e

an
d

(p
ar

tia
lly

) a
ut

on
om

ou
s s

ys
te

m
s

(4
) C

oo
pe

ra
tiv

e
sy

st
em

s
w

ith

di
st

rib
ut

ed
, a

lte
rn

at
in

g
co

nt
ro

l
(5

) C
om

pr
eh

en
siv

e
hu

m
an

-
sy

st
em

 c
oo

pe
ra

tio
n

Ce
nt

ra
l a

bi
lit

ie
s a

nd
 n

on
-

fu
nc

tio
na

l r
eq

ui
re

m
en

ts
, q

ua
lit

y
in

 u
se

, q
ua

lit
y

of
 s

er
vi

ce
 (Q

oS
)

 P
ar

al
le

l a
cq

ui
si

tio
n

(t
hr

ou
gh

se

ns
or

s)
, f

us
io

n ,
 p

ro
ce

ss
in

g
of

ph

ys
ic

al
 d

at
a

fr
om

 th
e

lo
ca

l/g
lo

ba
l e

nv
iro

nm
en

t i
n

re
al

 ti
m

e
(p

hy
si

ca
l a

w
ar

en
es

s)

 I
nt

er
pr

et
at

io
n

of
 th

e
si

tu
at

io
n

w
.r.

t.
th

e
go

al
 a

ch
ie

ve
m

en
t a

nd

jo
b

co
m

pl
et

io
n

of
 th

e
CP

S
 A

cq
ui

si
tio

n,
 in

te
rp

re
ta

tio
n,

de

du
ct

io
n,

 p
re

di
ct

io
n

of
 fa

ul
ts

,
ob

st
ac

le
s,

 ri
sk

s
 I
nt

er
ac

tio
n,

 in
te

gr
at

io
n,

 ru
le

s
an

d
co

nt
ro

l o
f C

PS
 c

om
po

ne
nt

s
an

d
fu

nc
tio

ns

 G
lo

ba
lly

 d
is

tr
ib

ut
ed

, n
et

w
or

ke
d

re
al

-t
im

e
co

nt
ro

l

 I
nt

er
pr

et
at

io
n

of
 d

at
a

fr
om

co

nt
ex

t a
nd

 s
itu

at
io

n
ov

er

se
ve

ra
l l

ev
el

s,
 d

ep
en

di
ng

 o
n

ap
pl

ic
at

io
n

si
tu

at
io

ns

 T
ar

ge
te

d
se

le
ct

io
n,

in

co
rp

or
at

io
n,

 c
oo

rd
in

at
io

n
an

d
us

e
of

 se
rv

ic
es
—d

ep
en

di
ng

 o
n

si
tu

at
io

n,
 lo

ca
l a

nd
 g

lo
ba

l g
oa

l,
an

d
be

ha
vi

ou
r

 S
er

vi
ce

 c
om

po
sit

io
n

an
d

in
te

gr
at

io
n,

 d
ec

en
tr

al
is

ed

co
nt

ro
l:

re
co

gn
iti

on
, a

ct
iv

e
se

ar
ch

 a
nd

 d
yn

am
ic

in

co
rp

or
at

io
n

of
 m

iss
in

g
se

rv
ic

es
, d

at
a

an
d

fu
nc

tio
ns

 E

va
lu

at
io

n
of

 c
om

po
ne

nt
s a

nd

se
rv

ic
es

 to
 b

e
in

co
rp

or
at

ed

re
ga

rd
in

g
re

qu
ire

d
us

e
an

d
qu

al
ity

 fo
r t

he
 a

pp
lic

at
io

n
(Q

oS
,

ov
er

al
l q

ua
lit

y)
 a

s
w

el
l a

s
po

ss
ib

le
 ri

sk
s

 R
el

ia
bi

lit
y

an
d

co
m

pl
ia

nc
e

w
.r.

t.
gu

ar
an

te
ed

 Q
oS

 C

on
tr

ol
le

d
ac

ce
ss

 to
 sy

st
em

’s

ow
n

da
ta

 a
nd

 se
rv

ic
es

 E
xt

en
si

ve
, c

on
tin

uo
us

 c
on

te
xt

aw

ar
en

es
s

 C
on

tin
ua

l c
ol

le
ct

io
n,

ob

se
rv

at
io

n,
 se

le
ct

io
n,

pr

oc
es

si
ng

, e
va

lu
at

io
n,

 d
ec

isi
on

m

ak
in

g,
 c

om
m

un
ic

at
io

n
of

co

nt
ex

t d
at

a,
 s

itu
at

io
n

da
ta

 a
nd

ap

pl
ic

at
io

n
da

ta
 (o

ft
en

 in
 re

al

tim
e)

 T

ar
ge

te
d

ad
ap

ta
tio

n
of

 th
e

in
te

ra
ct

io
n,

 c
oo

rd
in

at
io

n,

co
nt

ro
l w

ith
/o

f o
th

er
 sy

st
em

s
an

d
se

rv
ic

es

 R
ec

og
ni

tio
n,

 a
na

ly
si

s a
nd

in

te
rp

re
ta

tio
n

of
 p

la
ns

 a
nd

in

te
nt

io
ns

 o
f s

ys
te

m
s a

nd

pa
rt

ic
ip

at
in

g
us

er
s

 M
od

el
 c

re
at

io
n

fo
r a

pp
lic

at
io

n
fie

ld
, a

pp
lic

at
io

n
do

m
ai

n,

av
ai

la
bl

e
se

rv
ic

es
, t

as
ks

, a
nd

pa

rt
ic

ip
an

ts
 in

cl
. t

he
ir

ro
le

s,

go
al

s a
nd

 d
em

an
ds

 A

ss
es

sm
en

t o
f g

oa
ls

an
d

st
ep

s
to

 a
ch

ie
ve

 th
em

, t
ak

in
g

in
to

co

ns
id

er
at

io
n

al
te

rn
at

iv
es

co

nc
er

ni
ng

 c
os

ts
 a

nd
 ri

sk
s

 S
el

f-a
w

ar
en

es
s i

n
te

rm
s o

f
kn

ow
le

dg
e

ab
ou

t o
w

n
si

tu
at

io
n,

 s
ta

tu
s a

nd
 o

pt
io

ns
 fo

r
ac

tio
n

 L
ea

rn
in

g
of

 e
.g

. m
od

ifi
ed

 w
or

k
pr

oc
es

se
s,

 lo
gi

st
ic

s,
 h

ab
its

,
in

te
ra

ct
io

n,
 e

tc
.,

an
d

co
rr

es
po

nd
in

g
be

ha
vi

ou
r

ad
ap

tio
n

 D
is

tr
ib

ut
ed

, c
oo

pe
ra

tiv
e

an
d

in
te

ra
ct

iv
e

pe
rc

ep
tio

n
an

d
ev

al
ua

tio
n

of
 th

e
si

tu
at

io
n

 D
is

tr
ib

ut
ed

, c
oo

pe
ra

tiv
e

an
d

in
te

ra
ct

iv
e

de
te

rm
in

at
io

n
of

th

e
st

ep
s t

o
be

 c
ar

rie
d

ou
t—

de
pe

nd
in

g
on

 th
e

ev
al

ua
tio

n
of

th

e
si

tu
at

io
n,

 th
e

go
al

s o
f

in
di

vi
du

al
 p

ar
tic

ip
an

ts
 a

nd
 th

e
go

al
s o

f t
he

 c
om

m
un

ity

in
cl

ud
in

g
th

es
e

pa
rt

ic
ip

an
ts

(lo

ca
l v

s.
 g

lo
ba

l g
oa

ls)

 C
oo

rd
in

at
ed

 p
ro

ce
ss

in
g

of
 m

as
s

da
ta

 C

oo
rd

in
at

ed
 e

st
im

at
io

n
an

d
ne

go
tia

tio
n

of
 th

e
de

ci
si

on

ul
tim

at
el

y
ta

ke
n,

 i.
e.

, o
w

n
an

d
sh

ar
ed

 c
on

tr
ol

 a
nd

 d
ec

is
io

n-
m

ak
in

g
au

to
no

m
y

 D
ec

isi
on

 w
ith

 u
nc

er
ta

in

kn
ow

le
dg

e
 C

oo
pe

ra
tiv

e
le

ar
ni

ng
 a

nd

ad
ap

ta
tio

n
to

 s
itu

at
io

ns
 a

nd

ne
ed

s
 E

st
im

at
io

n
of

 th
e

qu
al

ity
 o

f
ow

n
an

d
ex

te
rn

al
 s

er
vi

ce
s a

nd

ab
ili

tie
s

 S
el

f-o
rg

an
is

at
io

n
in

 c
lu

st
er

s

 I
nt

ui
tiv

e,
 m

ul
tim

od
al

, a
ct

iv
e

an
d

pa
ss

iv
e

H
M

I s
up

po
rt

(s

im
pl

ifi
ed

 c
on

tr
ol

)
 S

up
po

rt
 o

f a
 fu

rt
he

r (
tim

e
an

d
sp

ac
e)

 a
nd

 e
nl

ar
ge

d
pe

rc
ep

tio
n,

 su
pp

or
t o

f a
n

ex
te

nd
ed

 c
ap

ac
ity

 to
 a

ct
 o

f
in

di
vi

du
al

 a
nd

 s
ev

er
al

 p
er

so
ns

(g

ro
up

s)

 R
ec

og
ni

tio
n

an
d

in
te

rp
re

ta
tio

n
of

 h
um

an
 b

eh
av

io
ur

 in
cl

ud
in

g
fe

el
in

gs
, n

ee
ds

 a
nd

 in
te

nt
io

ns

 A
cq

ui
si

tio
n

an
d

ev
al

ua
tio

n
of

st

at
e

an
d

co
nt

ex
t o

f h
um

an

an
d

sy
st

em
 (e

xt
en

si
on

 o
f

pe
rc

ep
tio

n
an

d
of

 e
va

lu
at

io
n

sk
ill

s)

 I
nt

eg
ra

te
d

an
d

in
te

ra
ct

iv
e

de
ci

sio
n

m
ak

in
g

an
d

ac
tio

n
of

sy

st
em

s a
nd

 in
di

vi
du

al
 p

er
so

ns

or
 m

ul
tit

ud
es

 A

bi
lit

y
to

 le
ar

n

“X

”
aw

ar
en

es
s

th
ro

ug
h

co
rr

ec
t

pe
rc

ep
tio

n
an

d
in

te
rp

re
ta

tio
n

of
 o
si

tu
at

io
n

an
d

co
nt

ex
t

o
se

lf,
 th

ird
 p

ar
ty

, a
nd

 h
um

an

(s
ta

te
, o

bj
ec

tiv
es

,
in

te
nt

io
ns

, a
bi

lit
y

to
 a

ct
)

 L
ea

rn
in

g
an

d
ad

ap
tio

n
(b

eh
av

io
ur

)
 S

el
f-o

rg
an

is
at

io
n

 C
oo

pe
ra

tio
n,

 n
eg

ot
ia

tio
n

an
d

de
ci

sio
n-

m
ak

in
g

(w
ith

in
 p

re
ci

se

bo
un

da
rie

s—
co

m
pl

ia
nc

e)

 D
ec

isi
on

s w
ith

 u
nc

er
ta

in

kn
ow

le
dg

e
 P

ol
ic

y-
m

ak
in

g
an

d,
 if

ap

pl
ic

ab
le

, c
om

pl
ia

nc
e

w
ith

Q

oS
 g

ua
ra

nt
ee

s
 C

om
pr

eh
en

siv
e

re
lia

bi
lit

y,

sa
fe

ty
 a

nd
 s

ec
ur

ity
 p

ol
ic

ie
s

 T
ra

ns
pa

re
nt

 H
M

I,
sh

ar
ed

co

nt
ro

l—
in

te
gr

at
ed

 si
tu

at
io

n
ev

al
ua

tio
n

an
d

as
se

ss
ab

le

be
ha

vi
ou

r
 R

is
k

m
an

ag
em

en
t

 P
ro

ac
tiv

e,
 st

ra
te

gi
c

an
d

re
lia

bl
e

ac
tio

n
 P

riv
ac

y
pr

ot
ec

tio
n

 in
cr

ea
sin

g
op

en
ne

ss
, c

om
pl

ex
ity

, a
ut

on
om

y,
 “

sm
ar

tn
es

s”
 a

nd
 e

vo
lu

tio
n

of
 th

e
sy

st
em

s (
w

ith
 d

isr
up

tiv
e

ef
fe

ct
s i

n
th

e
fie

ld
s o

f a
pp

lic
at

io
n)

Cyber-Physical Systems: Imminent Challenges 11

Goals / Requirements

Capabilities

Scenarios Characteristics

Technologies

Implications

Challenges

Fig. 6. Project plan

see, e. g., [Len97, Dmi04, RLM+06, KS03, GMA09, BHGZ09, MM06, HSMS07,
ABB+09, Arb11, CPS08]. Additional technologies to be further developed are

– for physical situation recognition: sensor fusion, pattern recognition, situational
maps (see, e. g., [Rab08, Web02, Mat03, Thi10]);

– for planning and anticipatory, partially or completely autonomous behaviour: multi-
criterial situation assessment, artificial intelligence (see, e. g., [RN09, FN71, PB03,
GMP+06]);

– for cooperation and negotiation: multi-agent systems (see, e. g., [MVK06, KNR+11,
Osb03, Wei00, Woo09]);

– for human-machine interaction and shared control: human-machine interface and
interaction modalities, intention and plan recognition, user modelling, human aware-
ness (see, e. g., [Nor96, Sad11, SS11, Hua11]);

– for learning: machine learning and data mining (see, e. g., [Bis07, BKS11, MCS11]);
– for evolution, strategies of self organisation and adaption: self organising manufac-

ture, multi-agent systems, self organising communication networks (see, e. g., [BS00,
SB01, SMS11, BCHM06, SAL+03, WS10]).

Both general and domain-specific reference architectures were already developed;
see [DoD09a, DoD09b, DoD09c, NAF07, TOG09] and [ABD+10, AUT10, Dra10,
Gif07, GP09, MLD10], respectively. Essentially, the reference architectures are struc-
tured in three abstraction levels: (a) functional, (b) logical, and (c) technical (from ab-
stract to concrete). Within SPES 2020 –a research project dedicated to a methodology
for the model-based development of embedded systems– partners from academia and

12 M. Broy, M.V. Cengarle, and E. Geisberger

industry devise a formal and semantically well-founded architecture model for embed-
ded systems on the basis of usage scenarios from the medical, avionics, automotive,
energy networks and automation domains; see, e. g., [BBB+11].

Summarising, for capabilities under (1) and (2) of Tab. 1 there are already a consid-
erable number of technologies already available, for instance physical situation recog-
nition and basic technologies. The big challenges lie in the openness of systems, their
mutual cooperation and negotiation, their required ability to learn and evolve, and the
necessarily comprehensive human-system cooperation. This has an immediate impact
in the realisability of non-functional requirements like reliability, quality in use, privacy
protection, among others, which again are essential factors for acceptability and eco-
nomic success. Furthermore, all those aspects cannot be regarded individually, rather
engineering competences are necessary that combine them in all phases: devise, re-
quirements elicitation, development, operation and maintenance/evolution of systems
and domains.

4.2 Engineering Technologies

The engineering of CPS poses modelling, architecture and engineering challenges.
These include modelling techniques integrating aspects from different disciplines, in-
teroperable infrastructures and reference architectures, interdisciplinary and integrated
engineering and evolution, enhanced non-functional requirements elicitation and pri-
vacy protection policies. A detailed analysis of these issues can be found in [GBC+12,
Secs. 5.2 and 5.3].

Integrated Models. Since CPS applications have the potential to pervade all spheres
of life, a deep analysis of the nexus between today’s and future application domains
must be conducted. This analysis needs embrace users, involved persons and participat-
ing systems as well as the human-system cooperation. Comprehensive and integrated
formal models for humans, systems and architectures are necessary. In order to inte-
grate those models, the CPS must be engineered using harmonised requirement mod-
els and architectural concepts, which are moreover structured according to abstraction
level, system design phase and functional modelling view; see e.g. [BGK+07, GBB+06,
GS07, Sch04]. This applies to the description and modelling of (statements of) prob-
lems, stakeholders’ viewpoints and objectives, and related requirements as well as to
their mapping to system design(s) and their overall integration, validation, horizontal
and vertical traceability, evolution and coordination between all stakeholders—users,
customers, business and solution engineers from different disciplines.

On the one hand, there is the need to clarify how physical (continuous) models of
the mechanical and related engineering disciplines can be integrated with digital mod-
els of the software and system engineering. Especially in the context of control theory,
classical models and modelling techniques in software and systems engineering as well
as engineering design in mechanical engineering, there is a plethora of challenges. For
example, different disciplines have made their contributions to the Smart Grid: com-
puter science, information and communication technology, but also energy networks
and devices (such as smart metering).

Cyber-Physical Systems: Imminent Challenges 13

On the other hand, it is important to investigate which models, methods, and interdis-
ciplinary research efforts are needed to understand and analyse the profound changes in
human-system interaction that are triggered by information and communication tech-
nologies, Internet, and CPS. The comprehensive social and political implications must
be investigated, so that useful and acceptable (both for users and society) CPS applica-
tions and services can be designed.

For the engineering tasks, integrated hybrid system and architectural models are re-
quired. Here, by hybridity are meant socio-technical infrastructures encompassing, e. g.,
cognition models and actor-network theory; see [Lat87]. Domains and models, on the
one hand, and systems engineering, on the other, determine and influence each other
in this integrated view procured by CPS. Fig. 7 shows an attempt to make this mutual
influence pictorially perceptible.

Human-System-Cooperation
domain

specific

domain

specific

Requirements Engineering

Core Models &
Architecture

Domain Engineering

Quality & Risk
Engineering

Application Platform &
System Management

engineering engineering
integrated models
and architectures

integrated models
and architectures

Quality Models

Society &Economics

Supply Chain & Ecosystems

INTERDISCIPLINARY ENGINEERING

INTEGRATED MODELS AND ARCHITECTURES

Fig. 7. Integrated engineering models and methods, interdisciplinary and participative develop-
ment, interactive use and evolution of CPS

Interoperable Infrastructures and Reference Architectures. A technique that obvi-
ously needs be updated is the infrastructure: CPS must be interoperable and their ser-
vices and the cooperation with each other must be reliable. Thus, appropriate platform
and middleware are indispensable, and reference architectures need be built up.

Because the scope of operation of CPS may easily extend across country boundaries,
communication and interoperability standards become absolutely necessary—on tech-
nical level as well as on semantical and user-visible levels. Interoperable and compatible

14 M. Broy, M.V. Cengarle, and E. Geisberger

CPS’ components and services with the relevant interfaces and protocols require a grad-
ual construction of standardised, flexible infrastructures and communication platforms,
as illustrated in Fig. 8. At the lowermost level the communication infrastructure with ba-
sic services as well as the middleware are located. On top of them, application-specific
platforms exchange their data via interfaces; services for targeted access are provided
on these platforms. To this end, technical interoperability is needed. Moreover, in or-
der for CPS to cooperate beyond application boundaries, information from different
applications must be consistently interpreted. Thus, a decisive factor is semantic inter-
operability, that ultimately enables the interplay of applications. The top layer shows
the application layer accessed by the users. At this level, user-visible interoperability
allows users to visualise and comprehend behaviour as well as interaction and options
of communication and cooperation of CPS and, furthermore, to interactively engage in
the utilisation process.

Fig. 8. Levels of abstraction, design, integration and interoperability of CPS

CPS are expected to be open, that is, to provide some combination of interoperabil-
ity, portability, and open software standards. Specific installations can be furthermore
configured to allow unrestricted access by people and/or other computers. An immedi-
ate aftermath are conflict as well as reconciliation handling; see [Lev95, EBJ03]. Con-
nected with these issues, a further and non-trivial one is posed by the human-system
cooperation and shared control. There are high-level requisite and expectations to be
fulfiled by CPS with respect to this matter. This question is briefly examined in the next
section.

Cyber-Physical Systems: Imminent Challenges 15

Interdisciplinary and Integrated Engineering and Evolution. Knowledge across
different domains of application must be synthetised. This calls for sophisticated do-
main and requirement engineering disciplines. A source of inspiration for this purpose
surely is to be found in product line engineering (see, e. g., [Ber07, CN08, PBvdL05a]),
system of systems engineering (see, e. g., [SC01, JSE+08]), model-based requirement
engineering (see, e. g., [BGK+07, KS98]). Also comprehensive and integrated mod-
els for humans as well as for systems and their architecture are needed. In particular,
the formal methods community is asked to contribute with well-founded approaches
that enable specification and modelling of crucial aspects of the novel characteristics of
CPS that are not addressed by conventional techniques. These characteristics include
context and environment as well as the already mentioned different levels of interoper-
ability (see Fig. 8).

In order to improve present-day engineering concepts and competences, broad ini-
tiatives in the following areas are needed:

– user-centered and participatory, virtual methods for the collection, the design and
the evaluation of requirements (see, e. g., [ABB+09, EBJ03, MOS08]),

– comprehensive and integrated human-system models (see, e. g., [FFM05, Soc07,
Soc07]),

– integrated and interoperable system architectures and domain models (see [Sch04,
TOG09, NAF07]),

– domain engineering and system management including requirements traceability
(see, e. g., [LLYL08, AZM09, PBvdL05b]),

– quality engineering at every level of development,
– living labs and controlled fields for experimentation.

Domain engineering involves the acquisition of domain-specific knowledge as a foun-
dation for the development and the evolution of systems, products and services within a
domain. This includes methods of requirements analysis and modelling, and also design
and modelling of generic architectures for product families, the conception of reusable
components, functions and services of the architecture, as well as the evolution of the
domain, of the architecture and of implementation models. Particularly significant for
the domain engineering of CPS are the definition of appropriate domain models (in-
clusive scoping), the development of interoperable architecture and composition pat-
terns, suitable tailoring and reuse principles, and the management of complex domain
and application platforms. In addition to the issue of evolution of CPS application ar-
chitectures and platforms, it is important to develop models, methods and procedures
for the engineering of autonomous, self-organising and learning systems. With regard
to the engineering of quality five approaches can be distinguished: the transcendent,
the product-based, the user-based, the manufacturing-based, and the value-based ones;
see [Gar84]. The quality of a product or a service is therefore not uniformly determined:
it is certainly the result of many comparisons and cost-benefit considerations, both in
the supply chain as well as among users. Today’s quality in use and quality of service
criteria are not aligned with the new challenges pose by the networked intelligent tech-
nology of CPS. Rather, advanced quality models and integrated methods of validation
and verification, interdisciplinary and integrated research efforts, as well as social de-
bate and interactive evolution of technology and society are necessary.

16 M. Broy, M.V. Cengarle, and E. Geisberger

Non-functional Requirements and Privacy Protection. In the following the chal-
lenges are analysed that need to be faced in order to ensure the observance of non-
functional requirements in terms of safety/security, validation/verification and privacy
protection. Those challenges are about features of systems that are relevant for the safe
use of CPS under specific conditions.

Major success factors of CPS are their usability, transparency, controllability and
dependability for users that sustain the claim of self-determination. The observation
(compliance) of non-functional requirements, like for instance trustworthiness, relia-
bility, availability, confidentiality, integrity and maintainability, constitutes an extreme
difficult task. An essential question here is raised by the dependability of CPS, which
may (help to) control delicate and complex situations, in which e.g. human lives are at
risk, while having incomplete or uncertain information; this is especially critical if the
decisions must be taken in real time. Sensible criteria must therefore be codified in fast
algorithms that make use of reliable communications. Previous works addressing these
subjects are, e. g., [CES10, ISO11]. CPS may moreover access, manage and/or transmit
sensitive data. As computer systems and networks become more capable, their security
also becomes more vulnerable. Ubiquitous distributed systems, like ad hoc networks
of handheld computers, sensor networks for directly interacting with the world, and
radio-frequency identification (RFID) tags which instantiate real-world objects with el-
ements in our virtual computer systems, face security challenges. Security properties
can be distilled to a core set, including confidentiality meaning secrecy of communi-
cation between parties, integrity in the sense that data has not been modified by an
unauthorised party, authenticity which ensures that a message originated from a known
other party, etc. Works on these matters include [ALRL04, BSI10, ABCS05, CMK+11,
HV08, MOS08, WS10].

By dependability usually a combination of classical aspects concerning safety and
security is understood, typically comprising functional safety, reliability, availability,
confidentiality, integrity, maintainability. Crucial for dependability are the aspects safety,
security and maintainability, especially significant because of the longevity of CPS. To
this end, steady mechanisms are necessary for maintenance, servicing and development
at runtime as well as integrated view of operational security and data integrity. On the
one hand, current mechanisms for the servicing, maintenance and development provide
procedures for the exchange of system components without taking a whole system out
of service (for example in telecommunications). However, in general no procedures are
provided for examining the impact on the safety and security requirements, and thus
no aspects of “safety@runtime” and “security@runtime” are addressed. Today only a
small degree of self reflection and self documentation of systems can be found, for ex-
ample in machinery and plant engineering. On the other hand, methods for guaranteeing
safety and data integrity share techniques like for instance identification of threats and
definition of protection goals and protection levels, the combination into an integrated
approach is nevertheless still missing.

Security is an issue that needs be considered during development of CPS (secure
by design) and during operation as well. This raises questions with respect not only to
systems engineering but also to systems characteristics. In this regard, efficient and
lightweight cryptographic algorithms and protocols, component protection by dedi-

Cyber-Physical Systems: Imminent Challenges 17

cated security hardware, secure execution environments, procedures for determining
the trustworthiness of other CPS, security engineering for CPS, security management,
new methods for test and analysis are indispensable.

Regarding (functional) safety, today’s technologies offering limited support for ro-
bustness and fault tolerance are multicore processors, component description and test-
ing at runtime, cross-platforms with integrated high-quality safety/security mechanisms,
advanced standards of development and of safety/security regulations, scalable security
concepts and theories.

Privacy protection is defined in [Wes67] by “the claim of individuals, groups, or in-
stitutions to determine for themselves when, how, and to what extent information about
them is communicated to others”; see also [RBB+08]. Thus, an essential security stan-
dard to be observed by CPS is personal data protection. Privacy protection observance
by CPS should be guaranteed by design (cf. [Cav09, RB11]). The protection goals iden-
tified are intervenability, unlinkability, and transparency; see [HT12]. By intervenability
it is understood that the persons concerned actually have the possibility to exercise their
rights. Data is unlinkable when it is impossible to gather information from different
sources and to infer out of this information further facts worthy of protection. A system
is transparent to the persons concerned as well as the persons who run it if its function-
ality and its effect are intelligible to a sufficient grade and, moreover, provided those
persons can retrieve the data available to the system with reasonable expenditure. Other
thoughts on these topics can be found in, e. g., [Bra00, CMPB03, Cav09, FHDH+11,
KSWK10, RBB+08, RB11, RP09, Sch07a, Wes67, WMKP10], some regulations can
be found in [Eur50, Eur95, Eur02, Eur09].

5 Social Challenges

CPS can only unfold their full benefit and be given favourable response if they can
seamlessly adapt to different contexts of use and safely integrate in these contexts, and
also address the needs of users and customers, who must experience those systems and
services as manageable and trustworthy. (It cannot be ruled out that existing regulations
concerning liability and privacy protection be revised and updated to the new facts and
circumstances.1) But it also happens that the requirements of customers and markets
are difficult to assess and subject of continuous shifts and changes due to the diversity
and dynamics of social transformation, which itself is influenced by the progress of ICT
among other factors.

One of the biggest challenges for devising useful and widely accepted CPS is the
design of a suitable human-system cooperation. This goes far beyond ordinary man-
machine interaction. There is quite a number of criteria to be fulfilled by the interface
of CPS to their users: it must be appropriate for the task the CPS has to perform and
also manageable, it must explain itself and be tailorable at the same time, it must answer

1 With respecto to liability, especially to functional safety but also to security, existing regula-
tions (including [IEC10]) do not cope with those integration capabilities, substantially limit-
ing design, implementation, commissioning, and maintenance of CPS. These approaches often
achieve dependability by limiting access to the system, and thus contract essential properties
of CPS.

18 M. Broy, M.V. Cengarle, and E. Geisberger

the user’s expectation and learn from the user’s behaviour, and it must be fault tolerant.
These features must moreover coexist with additional properties: a CPS must be aware
of and assess its context of use, its state and the user’s situation, it must be acquainted of
other CPS with which it can or even must interact and share its own control, and it must
not overstrain users who a priori show dissimilar characteristics. And as if that were
not enough, some CPS must be open and easily extendable and connectable; cf. mobile
apps’ markets.

Considerations regarding human-system cooperation are driven by the increasing
complexity of systems, and furthermore draw our attention to the so-called human fac-
tors. These are physical or cognitive properties of humans that influence functioning
of technological systems as well as human-environment equilibria. The understanding
of human capability can help the development of systems that are ergonomic, i.e., that
optimise human well-being and overall system performance. The study of human fac-
tors resorts to many disciplines including anthropometry, physiology, sociology and
psychology. Such considerations lead to the conclusion that inter- and transdisciplinary
research and development are absolutely necessary.

In addition, no special skills or specific training can be demanded of CPS users.
For instance, not every car driver can always be trained in the latest version of a route
planning service. In order to avoid any danger that can arise due to inexperienced use
of CPS, concepts for intuitive and transparent user interaction are required that ensure
a secure shared control.

Particularly critical because fatiguing for the user are systems, or more precisely
interfaces, that operate in different modes; see e.g. [LPS+97, Wey06, Sch07b]. It may
frequently happen that the user forgets what state the interface is in, performs an action
that is appropriate to a different mode, and gets an unexpected and undesired response.2

That is, reality and mental model behave diversely, and this can moreover be the case
in relation to a safety aspect. A mode error can be quite startling and disorienting as
the user copes with the sudden violation of his/her expectations. This has an impact not
only on the user experience with the interface; the violation of his/her expectations can
have drastic consequences, especially in the application of safety-critical and highly
automated systems like aircrafts. For these reasons, modes are often disfavoured.

A further topic to be considered is the fact that there surely will exist individuals that
do not want to or cannot afford the new technologies. A meaningful road traffic man-
agement, for instance, must be operable even if there are vehicles driving out there that
are not networked. It will moreover be undesirable if fellow citizen feel marginalised
because of not having access to CPS; see e.g. [CSH04].

Distributed control of systems raises some questions. For example systems, which
differ in the nature of their coordination (central and closed vs. decentralised and open)
and must cooperate, in some situations may stay in conflict to each other. Also the gov-
ernance of hybrid systems, that is, of systems distributedly handled by humans and by
machines, may face the dilemma of optimisation vs. fairness; e. g., traffic management
in cities or energy distribution and control in smart energy nets (see [CW07, KPM11,

2 A very simple example is given by caps lock key, which is a common source of mode errors.
Very annoying are modes that do not or only counter-intuitively allow to restore the old system
state.

Cyber-Physical Systems: Imminent Challenges 19

Ram03, RSS02b, Sch11]). The design of CPS and the analysis of consequences of their
use should be subject of participatory discussion.

Concerning economical ecosystems, open platform strategies with transparent ar-
chitectures, open interfaces, and experimental living labs are required—in particular,
in order to use the increased potential for innovation through interactive and partici-
patory involvement of customers, new external technology-based companies and de-
velopers communities, but also in order to bring the essential quality and acceptance
requirements of the customer off such that individual usefulness and usability are met
as well as protection and security of the systems is provided with transparent, trustwor-
thy and reliable structures. A platform strategy, as opposed to a product strategy, “[. . .]
requires an external ecosystem to generate complementary innovations and build ‘posi-
tive feedback’ between the complements and the platform” and, moreover, “the effect is
much greater potential for growth and innovation than a single firm can generate alone”;
see [Cus10].

6 Conclusions

We have presented short overview of the study that has been worked out during 2010/11.
The study takes a very comprehensive view, starting from what we can expect from
technology and the implied changes in business, society, legislation, and politics. The
result of the study is that the convergence of embedded systems, global networks, busi-
ness web and interactive CPS’ service crecation by users, will bring a new wave of
innovations and changes.3 We expect disruptive changes in business and application do-
mains. Therefore, it is of utmost significance to discuss the consequences for research
and development of ICT systems.

The smart mobility scenario describes the future of mobility of our society. Prerequi-
sites are a comprehensive ascertainment of environment and the integration of vehicles,
transportation infrastructure and individuals. This creates innovative ways to consider
both individual needs as well as socio-political aspects and here to make contributions
to, among other things, accident prevention, intelligent use of limited resources and re-
duction of environmental impact. Similar and likewise desirable consequences can be
drawn from other scenarios as e.g. smart grid.

Summarising, engineering challenges include

– human-system cooperation, usability and safety:
• shared control, transparency/controllability, integrated models for human-

machine interaction, cooperative and strategic task and action modelling, con-
flict and reconciliation handling;

– formal and integrated system and architecture models:
• integrated requirements, context, domain, system modelling,
• hybrid system and architecture: analog-digital control models, human-machine,

socio-technical interaction and network models,
• interoperable reference architectures, domains and platforms;

3 Those could constitute (or be aligned with) the much cited and discussed sixth wave of inno-
vation; see e.g. [Kle90, Mar80, SV03, Šmi10].

20 M. Broy, M.V. Cengarle, and E. Geisberger

– expanded quality modelling and engineering standards:
• models for quality in use, quality of service, compliance, technical and organi-

sational models and methods for quality assurance,
• elicitation and negotiation of acceptance requirements and corresponding sys-

tem concepts (e. g., governance and fairness).

Social challenges imply new engineering strategies, so

– acceptance, which calls for participatory analysis and design of
• systems and services that are manageable, tailorable, trustworthy, fault tolerant,

accountable,
• capable of learning from user’s behaviour,
• self-determined usable and controllable by the users,
• compatible with non-networked systems and services (as well as dropouts);

– inter-, transdisciplinary and explorative research and development, which require
integrated models and methods of virtual engineering;

– interactive innovations by means of economic ecosystems and platforms, regional
and international innovation systems, which

• integrate different life-cycles, business models and engineering cultures of CPS’
components and services,

• find complementary concepts of competition, cooperation and distributes value
creation.

The great opportunity opened by CPS for industry, business and economy in general,
cannot be missed. As stated in [HW11], “The cultural change must take place mainly
on the provider side. The willingness to make radical changes in business processes or
even new business models can only come from here. If the market forces them, then it
is usually too late.” Inter- and transdisciplinarity, value creation and innovation in cor-
porate networks and in business ecosystems are required that face the above challenges
and take a leading role.

Acknowledgement. The authors are indebted to Bernhard Schätz for his comments on
a previous version of this work and particularly for his support in the illustration of the
evolution of the braking system in the automotive domain.

References

[ABB+09] Achatz, R., Beetz, K., Broy, M., Dämbkes, H., Damm, W., Grimm, K., Ligges-
meyer, P.: Nationale Roadmap Embedded Systems. ZVEI (Zentralverband Elek-
trotechnik und Elektronikindustrie e. V.), Kompetenzzentrum Embedded Soft-
ware & Systems, Frankfurt/Main (December 2009), https://www.zvei.org/
fileadmin/user_upload/Forschung_Bildung/NRMES.pdf

[ABCS05] Anderson, R., Bond, M., Clulow, J., Skorobogatov, S.: Cryptographic processors – a
survey. Technical Report UCAM-CL-TR-641, University of Cambridge, Computer
Laboratory (August 2005),
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-641.pdf

https://www.zvei.org/fileadmin/user_upload/Forschung_Bildung/NRMES.pdf
https://www.zvei.org/fileadmin/user_upload/Forschung_Bildung/NRMES.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-641.pdf

Cyber-Physical Systems: Imminent Challenges 21

[ABD+10] Armenio, F., Barthel, H., Dietrich, P., Duker, J., Floerkemeier, C., Garrett, J.,
Harrison, M., Hogan, B., Mitsugi, J., Preishuber-Pfluegl, J., Ryaboy, O., Sarma,
S., Suen, K.K., Williams, J.: The EPCglobal Architecture Framework. In: Traub,
K. (ed.) Technical report, GS1 (2010) (final version 1.4 approved December 15,
2010), http://www.gs1.org/gsmp/kc/epcglobal/architecture/
architecture_1_4-framework-20101215.pdf

[ALRL04] Avižienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic Concepts and Taxon-
omy of Dependable and Secure Computing. IEEE Transactions on Dependable and
Secure Computing 1(1), 11–33 (2004)

[Arb11] Arbeitskreis Multicore. Relevanz eines Multicore-Ökosystems für künftige
Embedded Systems: Positionspapier zur Bedeutung, Bestandsaufnahme und
Potentialermittlung der Multicore-Technologie für den Industrie- und Forschungs-
standort Deutschland (December 2011), http://www.bicc-net.de/
workspace/uploads/subfeatures/downloads/positionspapier
_multicore_oekosys-1323952449.pdf

[AUT10] AUTOSAR – Demonstration of Integration of AUTOSAR into a MM/T/HMI ECU
V1.0.0. Technical report, AUTOSAR (AUTomotive Open System ARchitecture)
(2010), http://www.autosar.org/download/informaldocuments/
AUTOSAR_TR_IntegrationintoMMTHMIECU.pdf

[AZM09] Aziz, R.A., Zowghi, D., McBride, T.: Towards a Classification of Requirements Re-
lationships. In: 21st International Conference on Software Engineering & Knowl-
edge Engineering (SEKE 2009, Proceedings), pp. 26–32. Knowledge Systems Insti-
tute Graduate School (2009)

[BBB+11] Baumgart, A., Böde, E., Büker, M., Damm, W., Ehmen, G., Gezgin, T., Henkler,
S., Hungar, H., Josko, B., Oertel, M., Peikenkamp, T., Reinkemeier, P., Stierand, I.,
Weber, R.: Architecture modeling. Technical report, Oldenburger Forschungs- und
Entwicklungsinstitut für Informatik (OFFIS) (March 2011)

[BCHM06] Bernon, C., Chevrier, V., Hilaire, V., Marrow, P.: Applications of self-organising
multi-agent systems: An initial framework for comparison. Informatica 30(1), 73–
82 (2006)

[Ber07] Berger, T.: Softwareproduktlinien-Entwicklung – Domain Engineering: Konzepte,
Probleme und Lösungsansätze. Diplomarbeit, Universität Leipzig (April 2007)

[BGC+12] Broy, M., Geisberger, E., Cengarle, M.V., Keil, P., Niehaus, J., Thiel, C., Thönnißen-
Fries, H.-J.: Cyber-Physical Systems: Innovationsmotor für Mobilität, Gesundheit,
Energie und Produktion. acatech BEZIEHT POSITION, vol. 8. Springer, Berlin
(2012),
http://www.springer.com/computer/book/978-3-642-27566-1

[BGK+07] Broy, M., Geisberger, E., Kazmeier, J., Rudorfer, A., Beetz, K.: Ein Requirements-
Engineering-Referenzmodell. Informatik Spektrum 30(3), 127–142 (2007)

[BHGZ09] Brand, L., Hülser, T., Grimm, V., Zweck, A.: Internet der
Dinge: ”Ubersichtsstudie. Technical report, Zukünftige Technolo-
gien Consulting der VDI Technologiezentrum GmbH (March 2009),
http://www.vdi.de/fileadmin/vdi_de/redakteur/dps_bilder/
TZ/2009/Band%2080_IdD_komplett.pdf

[Bis07] Bishop, C.: Pattern Recognition and Machine Learning. Springer, New York (2007),
Corr. 2nd printing

http://www.gs1.org/gsmp/kc/epcglobal/architecture/architecture_1_4-framework-20101215.pdf
http://www.gs1.org/gsmp/kc/epcglobal/architecture/architecture_1_4-framework-20101215.pdf
http://www.bicc-net.de/workspace/uploads/subfeatures/downloads/positionspapier_multicore_oekosys-1323952449.pdf
http://www.bicc-net.de/workspace/uploads/subfeatures/downloads/positionspapier_multicore_oekosys-1323952449.pdf
http://www.bicc-net.de/workspace/uploads/subfeatures/downloads/positionspapier_multicore_oekosys-1323952449.pdf
http://www.autosar.org/download/informaldocuments/AUTOSAR_TR_IntegrationintoMMTHMIECU.pdf
http://www.autosar.org/download/informaldocuments/AUTOSAR_TR_IntegrationintoMMTHMIECU.pdf
http://www.springer.com/computer/book/978-3-642-27566-1
http://www.vdi.de/fileadmin/vdi_de/redakteur/dps_bilder/TZ/2009/Band%2080_IdD_komplett.pdf
http://www.vdi.de/fileadmin/vdi_de/redakteur/dps_bilder/TZ/2009/Band%2080_IdD_komplett.pdf

22 M. Broy, M.V. Cengarle, and E. Geisberger

[BKS11] Brecher, C., Kozielski, S., Schapp, L.: Integrative Produktionstechnik für Hochlohn-
länder, pp. 47–70. Springer, Berlin (2011),
http://www.acatech.de/fileadmin/user_upload/Baumstruktur
_upload/Baumstruktur_nach_Website/Acatech/root/de/
Publikationen/acatech_diskutiert/acatech_diskutiert
_Wertschoepfung_WEB.pdf

[Bra00] Brands, S. (ed.): Rethinking Public Key Infrastructures and Digital Certificates;
Building in Privacy. MIT Press, Cambridge (2000)

[BS00] Bussmann, S., Schild, K.: Self-Organizing Manufacturing Control: An Industrial
Application of Agent Technology. In: Fourth International Conference on Multi
Agent Systems (Proceedings), pp. 87–94 (2000)

[BSI10] Leitfaden Informationssicherheit – IT-Grundschutz kompakt. Techni-
cal Report BSI-Bro10/311, Referat 114 Sicherheitsmanagement und IT-
Grundschutz, Bundesamt für Sicherheit in der Informationstechnik (2010),
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI
/Grundschutz/Leitfaden/GS-Leitfaden_pdf.pdf?_blob=
publicationFile

[Cav09] Cavoukian, A.: Privacy by Design. Technical report, Office of the Information and
Privacy Commissioner, Ontario (2009),
http://www.privacybydesign.ca/content/uploads/2010/03/
PrivacybyDesignBook.pdf

[CES10] Definition and exemplification of RSL and RMM. Deliverable D_SP2_R2.1_M1,
Cost-efficient methods and processes for safety relevant embedded systems (CE-
SAR) (April 2010),
http://www.cesarproject.eu/fileadmin/user_upload/
CESAR_D_SP2_R2.1_M1_v1.000.pdf

[CMK+11] Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S.,
Koscher, K., Czeskis, A., Roesner, F., Kohno, T.: Comprehensive Experimental
Analyses of Automotive Attack Surfaces. In: 20th USENIX Security Symposium
(Proceedings), pp. 77–92 (2011),
http://www.autosec.org/pubs/cars-usenixsec2011.pdf

[CMPB03] Mont, M.C., Pearson, S., Bramhall, P.: Towards Accountable Management of Iden-
tity and Privacy: Sticky Policies and Enforceable Tracing Services. In: 14th Interna-
tional Workshop on Database and Expert Systems Applications (DEXA 2003, Pro-
ceedings), pp. 377–382. IEEE Computer Society (September 2003), Long version
http://www.hpl.hp.com/techreports/2003/HPL-2003-49.pdf

[CN08] Cusumano, M., Nobeoka, K.: Thinking Beyond Lean: how multi-project manage-
ment is transforming product development at Toyota and other companies. In: MIT
International Motor Vehicle Program. Free Press (May 2008)

[CPS08] Cyber-Physical Systems Summit “Holistic Approaches to Cyber-Physical Integra-
tion”. Report, CPS Week (April 2008),
http://iccps2012.cse.wustl.edu/_doc/CPS_Summit_Report
.pdf

[CSH04] Capurro, R., Scheule, R., Hausmanninger, T. (eds.): Vernetzt gespalten: Der Digital
Divide in ethischer Perspektive. Wilhelm Fink, Paderborn (2004)

[Cus10] Cusumano, M.: Staying Power: Six Enduring Principles for Managing Strategy and
Innovation in an Uncertain World. Oxford University Press, Oxford (2010)

[CW03] Christaller, T., Wehner, J. (eds.): Autonome Maschinen. Westdeutscher Verlag,
Wiesbaden (2003)

http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Publikationen/acatech_diskutiert/acatech_diskutiert_Wertschoepfung_WEB.pdf
http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Publikationen/acatech_diskutiert/acatech_diskutiert_Wertschoepfung_WEB.pdf
http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Publikationen/acatech_diskutiert/acatech_diskutiert_Wertschoepfung_WEB.pdf
http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Publikationen/acatech_diskutiert/acatech_diskutiert_Wertschoepfung_WEB.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Grundschutz/Leitfaden/GS-Leitfaden_pdf.pdf?_blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Grundschutz/Leitfaden/GS-Leitfaden_pdf.pdf?_blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Grundschutz/Leitfaden/GS-Leitfaden_pdf.pdf?_blob=publicationFile
http://www.privacybydesign.ca/content/uploads/2010/03/PrivacybyDesignBook.pdf
http://www.privacybydesign.ca/content/uploads/2010/03/PrivacybyDesignBook.pdf
http://www.cesarproject.eu/fileadmin/user_upload/CESAR_D_SP2_R2.1_M1_v1.000.pdf
http://www.cesarproject.eu/fileadmin/user_upload/CESAR_D_SP2_R2.1_M1_v1.000.pdf
http://www.autosec.org/pubs/cars-usenixsec2011.pdf
http://www.hpl.hp.com/techreports/2003/HPL-2003-49.pdf
http://iccps2012.cse.wustl.edu/_doc/CPS_Summit_Report.pdf
http://iccps2012.cse.wustl.edu/_doc/CPS_Summit_Report.pdf

Cyber-Physical Systems: Imminent Challenges 23

[CW07] Cramer, S., Weyer, J.: Interaktion, Risiko und Governance in hybriden Systemen.
In: Dolata, Werle [DW07], pp. 267–286,
http://www.techniksoziologie-dortmund.de/Mitarbeiter/
Cramer/K%C3%B6lnpdf.pdf

[Dmi04] Dmitriev, S.: Language Oriented Programming: The Next Programming Paradigm.
onBoard (November 1, 2004),
http://www.jetbrains.com/mps/docs/Language_Oriented_
Programming.pdf

[DoD09a] Department of Defense Architecture Framework Version 2.0 (DoDAF V2.0) –
Volume 1: Introduction, Overview, and Concepts – Manager’s Guide. Technical
report, Department of Defense Chief Information Officer (May 2009),
http://cio-nii.defense.gov/docs/DoDAF%20V2%20-
%20Volume%201.pdf

[DoD09b] Department of Defense Architecture Framework Version 2.0 (DoDAF V2.0) –
Volume 2: Architectural Data and Models – Architect’s Guide. Technical report,
Department of Defense Chief Information Officer (May 2009),
http://cio-nii.defense.gov/docs/DoDAF%20V2%20-%20Volume
%202.pdf

[DoD09c] Department of Defense Architecture Framework Version 2.0 (DoDAF V2.0) – Vol-
ume 3: DoDAF Meta-model, Physical Exchange Specification – Developer’s Guide.
Technical report, Department of Defense Chief Information Officer (May 2009),
http://cio-nii.defense.gov/docs/DoDAF%20V2%20-%20Volume
%203.pdf

[Dra10] Drath, R. (ed.): Datenaustausch in der Anlagenplanung mit AutomationML: Integra-
tion von CAEX, PLCopen XML und COLLADA. VDI-Buch. Springer, Heidelberg
(2010)

[DW07] Dolata, U., Werle, R. (eds.): Gesellschaft und die Macht der Technik:
Sozioökonomischer und institutioneller Wandel durch Technisierung. Schriften aus
dem Max-Planck-Institut für Gesellschaftsforschung Köln, vol. 58. Campus Verlag,
Frankfurt (2007)

[EBJ03] Endsley, M., Bolte, B., Jones, D.: Designing for Situation Awareness: An Approach
to User-Centered Design. CRC Press (July 2003)

[Eur50] European Convention on Human Rights (Convention for the Protection of Human
Rights and Fundamental Freedoms. Article 8 “Right to respect for private and
family life” (as amended by the provisions of Protocol No. 14 (CETS no. 194) as
from its entry into force on June 1, 2010 (November 4, 1950),
http://www.echr.coe.int/NR/rdonlyres/D5CC24A7-DC13-4318
-B457-5C9014916D7A/0/CONVENTION_ENG_WEB.pdf

[Eur95] European Community. Directive 95/49/DC of the European Parliament and of the
Council of 24 October 1995 on the protection of individuals with regard to the
processing of personal data and on the free movement of such data. Official Journal
of the European Communities L 281, 31–50 (1995),
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=
OJ:L:1995:281:0031:0050:EN:PDF

http://www.techniksoziologie-dortmund.de/Mitarbeiter/Cramer/K%C3%B6lnpdf.pdf
http://www.techniksoziologie-dortmund.de/Mitarbeiter/Cramer/K%C3%B6lnpdf.pdf
http://www.jetbrains.com/mps/docs/Language_Oriented_Programming.pdf
http://www.jetbrains.com/mps/docs/Language_Oriented_Programming.pdf
http://cio-nii.defense.gov/docs/DoDAF%20V2%20-%20Volume%201.pdf
http://cio-nii.defense.gov/docs/DoDAF%20V2%20-%20Volume%201.pdf
http://cio-nii.defense.gov/docs/DoDAF%20V2%20-%20Volume%202.pdf
http://cio-nii.defense.gov/docs/DoDAF%20V2%20-%20Volume%202.pdf
http://cio-nii.defense.gov/docs/DoDAF%20V2%20-%20Volume%203.pdf
http://cio-nii.defense.gov/docs/DoDAF%20V2%20-%20Volume%203.pdf
http://www.echr.coe.int/NR/rdonlyres/D5CC24A7-DC13-4318-B457-5C9014916D7A/0/CONVENTION_ENG_WEB.pdf
http://www.echr.coe.int/NR/rdonlyres/D5CC24A7-DC13-4318-B457-5C9014916D7A/0/CONVENTION_ENG_WEB.pdf
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:1995:281:0031:0050:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:1995:281:0031:0050:EN:PDF

24 M. Broy, M.V. Cengarle, and E. Geisberger

[Eur02] European Community. Directive 2002/58/EC of the European Parliament and of
the Council of 12 July 2002 concerning the processing of personal data and the
protection of privacy in the electronic communications sector (Directive on privacy
and electronic communications). Official Journal of the European Communities L
201, 37–47 (2002),
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=
OJ:L:2002:201:0037:0047:EN:PDF

[Eur09] European Union. Directive 2009/136/EC of the European Parliament and of the
Council of 25 November 2009 amending Directive 2002/22/EC on universal service
and users’ rights relating to electronic communications networks and services,
Directive 2002/58/EC concerning the processing of personal data and the protection
of privacy in the electronic communications sector and Regulation (EC) No
2006/2004 on cooperation [. . .] for the enforcement of consumer protection laws.
Official Journal of the European Union L 337, 11–36 (2009),
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=
OJ:L:2009:337:0011:0036:EN:PDF

[FFM05] Fischer, K., Florian, M., Malsch, T. (eds.): Socionics. LNCS (LNAI), vol. 3413.
Springer, Heidelberg (2005)

[FHDH+11] Fischer-Hübner, S., Duquenoy, P., Hansen, M., Leenes, R., Zhang, G. (eds.): Pri-
vacy and Identity Management for Life. IFIP AICT, vol. 352. Springer, Heidelberg
(2011)

[FN71] Fikes, R., Nilsson, N.: STRIPS: A new approach to the application of theorem prov-
ing to problem solving. Artificial Intelligence 2(3-4), 189–208 (1971)

[Gar84] Garvin, D.: What does “product quality” really mean? MIT Sloan Management Re-
view, 25–45 (1984)

[GBB+06] Geisberger, E., Broy, M., Berenbach, B., Kazmeier, J., Paulish, D., Rudorfer, A.:
Requirements Engineering Reference Model (REM). Technical Report TUM-I0618,
Technische Universität München (November 2006)

[GBC+12] Geisberger, E., Broy, M., Cengarle, M.V., Keil, P., Niehaus, J., Thiel,
C., Thönnißen-Fries, H.-J.: agendaCPS: Integrierte Forschungsagenda Cyber-
Physical Systems. Springer, Berlin (2012), http://www.fortiss.org/
fileadmin/user_upload/downloads/agendaCPS_Studie.pdf

[Gif07] Gifford, C. (ed.): The Hitchhiker’s Guide to Manufacturing Operations Manage-
ment: ISA-95 Best Practices Book 1.0. ISA (2007)

[GMA09] Roadmap “Prozess-Sensoren 2015+”. Technical report, NAMUR und VDI/VDE-
Gesellschaft Mess- und Automatisierungstechnik (GMA) (November 2009),
http://www.vdi.de/fileadmin/vdi_de/redakteur_dateien/
gma_dateien/Prozess-Sensoren_2015+.pdf

[GMP+06] Geib, C., Mourão, K., Petrick, R., Pugeault, N., Steedman, M., Krueger, N., Wörgöt-
ter, F.: Object Action Complexes as an Interface for Planning and Robot Control.
In: Humanoids 2006 Workshop Towards Cognitive Humanoid Robots, Proceedings
(2006)

[GP09] Garside, R., Pighetti, J.: Integrating modular avionics: A new role emerges.
Aerospace and Electronic Systems Magazine (IEEE) 24(3), 31–34 (2009)

[GS07] Geisberger, E., Schätz, B.: Modellbasierte Anforderungsanalyse mit AutoRAID. In-
formatik – Forschung und Entwicklung 21(3-4), 231–242 (2007)

[HSMS07] Hirvonen, J., Sallinen, M., Maula, H., Suojanen, M.: Sensor Networks Roadmap.
Research notes 2381, VTT Tiedotteita (2007),
http://www.vtt.fi/inf/pdf/tiedotteet/2007/T2381.pdf

[HT12] Hansen, M., Thiel, C.: Cyber-Physical Systems und Privatsphären-Schutz. Daten-
schutz und Datensicherheit (DuD) 36(1) (2012)

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2002:201:0037:0047:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2002:201:0037:0047:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:337:0011:0036:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:337:0011:0036:EN:PDF
http://www.fortiss.org/fileadmin/user_upload/downloads/agendaCPS_Studie.pdf
http://www.fortiss.org/fileadmin/user_upload/downloads/agendaCPS_Studie.pdf
http://www.vdi.de/fileadmin/vdi_de/redakteur_dateien/gma_dateien/Prozess-Sensoren_2015+.pdf
http://www.vdi.de/fileadmin/vdi_de/redakteur_dateien/gma_dateien/Prozess-Sensoren_2015+.pdf
http://www.vtt.fi/inf/pdf/tiedotteet/2007/T2381.pdf

Cyber-Physical Systems: Imminent Challenges 25

[Hua11] Huang, J.-D.: Kinerehab: a kinect-based system for physical rehabilitation: a pilot
study for young adults with motor disabilities. In: 13th International ACM SIGAC-
CESS Conference on Computers and Accessibility (ASSETS 2011, Proceedings),
pp. 319–320 (2011)

[HV08] Hogg, S., Vyncke, E.: IPv6 Security: Information assurance for the next-generation
Internet Protocol. Cisco Press, Indianapolis (2008)

[HW11] Heuser, L., Wahlster, W. (eds.): Internet der Dienste. acatech DISKUTIERT.
Springer, Berlin (2011), http://www.acatech.de/fileadmin/
user_upload/Baumstruktur_nach_Website/Acatech/root/de/
Publikationen/acatech_diskutiert/acatech_Diskutiert
_Internet-der-Dienste_WEB_02.pdf

[IEC10] Functional safety of electrical/electronic/programmable electronic safety-related
systems. Technical Report IEC/TR 61508 Part 0-7, International Electrotechnical
Commission (IEC) (2010)

[ISO11] Road vehicles – Functional safety – Part 1: Vocabulary. Technical Report ISO
26262-1:2011, International Organization for Standardization (ISO) (November
2011),
http://www.iso.org/iso/iso_catalogue/catalogue_tc/
catalogue_detail.htm?csnumber=43464

[JSE+08] Joordens, M., Shaneyfelt, T., Eega, S., Jaimes, A., Jamshidi, M.: Applications and
prototype for system of systems swarm robotics. In: Systems, Man and Cybernetics,
2008 (SMC 2008, Proceedings) (2008)

[Kle90] Kleinknecht, A.: Are there Schumpeterian waves of innovations? Cambridge Journal
of Economics 14(1), 81–92 (1990)

[KNR+11] Krewitt, W., Nienhaus, K., Roloff, N., Weeber, R., Reeg, M., Weimer-Jehle,
W., Wassermann, S., Fuchs, G., Kast, T., Schmidt, B., Leprich, U., Hauser, E.:
Analyse von Rahmenbedingungen für die Integration erneuerbarer Energien in
die Strommärkte auf der Basis agentenbasierter Simulation (Abschlussbericht).
Technical report, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Inter-
disziplinärer Forschungsschwerpunkt Risiko und nachhaltige Technikentwicklung
(ZIRN), Thomas Kast Simulation Solutions, Institut für ZukunftsEnergieSysteme
(IZES), gefördert mit Mitteln des Bundesministeriums für Umwelt, Naturschutz
und Reaktorsicherheit unter dem Förderkennzeichen 0325015 (February 2011),
http://www.dlr.de/Portaldata/41/Resources/dokumente/st/
AMIRIS-Pilotvorhaben.pdf

[KPM11] Koukoumidis, E., Peh, L.-S., Martonosi, M.: SignalGuru: leveraging mobile phones
for collaborative traffic signal schedule advisory, pp. 127–140. ACM (2011)

[KS98] Kotonya, G., Sommerville, I.: Requirements Engineering: Processes and Tech-
niques. Wiley (September 1998)

[KS03] Kalfoglou, Y., Schorlemmer, M.: Ontology mapping: The state of the art. The
Knowledge Engineering Review 18(1), 1–31 (2003)

[KSWK10] Könings, B., Schaub, F., Weber, M., Kargl, F.: Towards territorial privacy in smart
environments. In: Genesereth, M., Vogl, R., Williams, M.-A. (eds.) Intelligent Infor-
mation Privacy Management Symposium (AAAI Spring Symposium, Proceedings),
pp. 113–118, Technical Report SS-10-05. Stanford University (March 2010),
http://www.aaai.org/ocs/index.php/SSS/SSS10/paper/view/
1043/1496

[Lat87] Latour, B.: Science in Action: How to Follow Scientists and Engineers through So-
ciety? Open University Press (1987)

[Len97] Lenat, D.: From 2001 to 2001: Common Sense and the Mind of HAL, pp. 305–332.
MIT Press, Cambridge (1997)

http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Publikationen/acatech_diskutiert/acatech_Diskutiert_Internet-der-Dienste_WEB_02.pdf
http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Publikationen/acatech_diskutiert/acatech_Diskutiert_Internet-der-Dienste_WEB_02.pdf
http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Publikationen/acatech_diskutiert/acatech_Diskutiert_Internet-der-Dienste_WEB_02.pdf
http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Publikationen/acatech_diskutiert/acatech_Diskutiert_Internet-der-Dienste_WEB_02.pdf
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=43464
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=43464
http://www.dlr.de/Portaldata/41/Resources/dokumente/st/AMIRIS-Pilotvorhaben.pdf
http://www.dlr.de/Portaldata/41/Resources/dokumente/st/AMIRIS-Pilotvorhaben.pdf
http://www.aaai.org/ocs/index.php/SSS/SSS10/paper/view/1043/1496
http://www.aaai.org/ocs/index.php/SSS/SSS10/paper/view/1043/1496

26 M. Broy, M.V. Cengarle, and E. Geisberger

[Lev95] Leveson, N.: Safeware: System Safety and Computers. Addison-Wesley (September
1995)

[LLYL08] Li, Y., Li, J., Yang, Y., Li, M.: Requirement-Centric Traceability for Change Impact
Analysis: A Case Study. In: Wang, Q., Pfahl, D., Raffo, D.M. (eds.) ICSP 2008.
LNCS, vol. 5007, pp. 100–111. Springer, Heidelberg (2008)

[LPS+97] Leveson, N., Denise Pinnel, L., Sandys, S.D., Koga, S., Reese, J.D.: Analyz-
ing Software Specifications for Mode Confusion Potential. In: Workshop on Hu-
man Error and System Development (Proceedings), pp. 132–146 (March 1997),
http://sunnyday.mit.edu/papers/glascow.pdf

[Mar80] Marchetti, C.: Society as a Learning System: Discovery, Invention, and Innova-
tion Cycles Revisited. Technological Forecasting and Social Change 18(4), 267–282
(1980)

[Mat03] Mattern, F. (ed.): Total vernetzt: Szenarien einer informatisierten Welt (7. Berliner
Kolloquium der Gottlieb Daimler- und Karl Benz-Stiftung, Tagungsband). Xpert
Press, Springer, Heidelberg (2003)

[MCS11] International Workshop on Multiple Classifier Systems (MCS, Proceedings). LNCS.
Springer (2000-2011)

[MLD10] Mahnke, W., Leitner, S.-H., Damm, M.: OPC Unified Architecture. Springer (2010)
[MM06] Marrón, P.J., Minder, D. (eds.): Embedded WiSeNts Research Roadmap. Logos

Verlag, Berlin (2006),
ftp://ftp.informatik.uni-stuttgart.de/pub/library/
ncstrl.ustuttgart_fi/BOOK-2006-03/BOOK-2006-03.pdf

[MOS08] Pilot gaze performance in critical flight phases and during taxiing. Technical report,
Deutsches Zentrum für Luft- und Raumfahrt (DLR), Results from the Project
MOSES (More Operational Flight Security through increased Situation Awareness)
(July 2008),
http://www.dlr.de/fl/en/Portaldata/14/Resources/
dokumente/abt27/MOSES_results.pdf

[MVK06] Monostori, L., Váncza, J., Kumara, S.R.T.: Agent-Based Systems for Manufactur-
ing. CIRP Annals - Manufacturing Technology 55(2), 697–720 (2006)

[NAF07] NATO Architecture Framework Version 3.0 (NAF V2.0). Technical report, North
Atlantic Treaty Organization (NATO) (November 2007),
http://www.nhqc3s.nato.int/ARCHITECTURE/_docs/NAF_v3/
ANNEX1.pdf

[Nor96] Norman, D.: Dinge des Alltags: Gutes Design und Psychologie für Gebrauchsge-
genstände. Campus Verlag (March 1996)

[Osb03] Osborne, M.: An Introduction to Game Theory. Oxford University Press (August
2003)

[PB03] Petrick, R.P.A., Bacchus, F.: Reasoning with Conditional Plans in the Presence
of Incomplete Knowledge. In: ICAPS 2003 Workshop on Planning under Uncer-
tainty and Incomplete Information’ (Proceedings), Trento, pp. 96–102. Università di
Trento (June 2003)

[PBvdL05a] Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Foun-
dations, Principles and Techniques. Springer (August 2005)

[PBvdL05b] Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Foun-
dations, Principles and Techniques. Springer (2005)

[Rab08] Rabaey, J.: A brand new wireless day, p. 1. IEEE Computer Society Press, Los
Alamitos (2008)

[Ram03] Rammert, W.: Technik in Aktion: Verteiltes Handeln in soziotechnischen Konstella-
tionen. In: Christaller, Wehner [CW03], pp. 289–315

http://sunnyday.mit.edu/papers/glascow.pdf
ftp://ftp.informatik.uni-stuttgart.de/pub/library/ncstrl.ustuttgart_fi/BOOK-2006-03/BOOK-2006-03.pdf
ftp://ftp.informatik.uni-stuttgart.de/pub/library/ncstrl.ustuttgart_fi/BOOK-2006-03/BOOK-2006-03.pdf
http://www.dlr.de/fl/en/Portaldata/14/Resources/dokumente/abt27/MOSES_results.pdf
http://www.dlr.de/fl/en/Portaldata/14/Resources/dokumente/abt27/MOSES_results.pdf
http://www.nhqc3s.nato.int/ARCHITECTURE/_docs/NAF_v3/ANNEX1.pdf
http://www.nhqc3s.nato.int/ARCHITECTURE/_docs/NAF_v3/ANNEX1.pdf

Cyber-Physical Systems: Imminent Challenges 27

[RB11] Rost, M., Bock, K.: Privacy By Design und die Neuen Schutzziele. Datenschutz und
Datensicherheit (DuD) 35(1), 30–35 (2011)

[RBB+08] Roussopoulos, M., Beslay, L., Bowden, C., Finocchiaro, G., Hansen, M., Langhein-
rich, M., Le Grand, G., Tsakona, K.: Technology-induced challenges in Privacy &
Data Protection in Europe. Technical report, Ad Hoc Working Group on Privacy
& Technology, European Network and Information Security Agency (ENISA)
(October 2008),
http://www.enisa.europa.eu/act/rm/files/deliverables/
technology-induced-challenges-in-privacy-data-protection
-in-europe/at_download/fullReport

[RLM+06] Rubin, D., Lewis, S., Mungall, C., Misra, S., Westerfield, M., Ashburner, M., Sim,
I., Chute, C., Solbrig, H., Storey, M.-A., Smith, B., Day-Richter, J., Noy, N., Musen,
M.: National Center for Biomedical Ontology: Advancing Biomedicine through
Structured Organization of Scientific Knowledge. OMICS: A Journal of Integrative
Biology 10(2), 185–198 (2006),
http://www.liebertonline.com/doi/pdf/10.1089/omi.2006.
10.185

[RN09] Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Prentice
Hall (December 2009)

[RP09] Rost, M., Pfitzmann, A.: Datenschutz-Schutzziele – revisited. Datenschutz und
Datensicherheit (DuD) 33(6), 353–358 (2009)

[RSS02a] Rammert, W., Schulz-Schaeffer, I. (eds.): Können Maschinen handeln?: Soziolo-
gische Beiträge zum Verhältnis von Mensch und Technik. Campus Wissenschaft,
Frankfurt/Main (2002)

[RSS02b] Rammert, W., Schulz-Schaeffer, I.: Technik und Handeln – Wenn soziales Handeln
sich auf menschliches Verhalten und technische Abläufe verteilt. In: Rammert, W.,
Schulz-Schaefer, I. [RSS02a], pp. 11–64

[Sad11] Sadri, F.: Logic-Based Approaches to Intention Recognition. In: Chong, N.-Y., Mas-
trogiovanni, F. (eds.) Handbook of Research on Ambient Intelligence and Smart En-
vironments: Trends and Perspectives, pp. 346–375. IGI Global (May 2011)

[SAL+03] Stankovic, J., Abdelzaher, T., Lu, C., Sha, L., Hou, J.: Real-time communication
and coordination in embedded sensor networks. Proceedings of the IEEE Real-Time
Systems 91(7), 1002–1022 (2003)

[SB01] Sundermeyer, K., Bussmann, S.: Einführung der Agententechnologie in einem pro-
duzierenden Unternehmen – Ein Erfahrungsbericht. Wirtschaftsinformatik 43(2),
135–142 (2001)

[SC01] Sage, A., Cuppan, C.: On the Systems Engineering and Management of Systems
of Systems and Federations of Systems. Information-Knowledge-Systems Manage-
ment 2(4), 325–345 (2001)

[Sch04] Schätz, B.: AutoFocus – Mastering the Complexity. In: Kordon, F., Lemoine, M.
(eds.) Formal Methods for Embedded Distributed Systems: How to Master the Com-
plexity, ch. 7, pp. 215–257. Kluwer Academic Publishers (2004)

[Sch07a] Schaar, P.: Das Ende der Privatsphäre: Der Weg in die "Uberwachungsgesellschaft.
C. Bertelsmann (September 2007)

[Sch07b] Schulz, A.: Driving without awareness – Folgen herabgesetzter Aufmerksamkeit im
Stras̈enverkehr. VDM Verlag Dr. Müller (2007)

[Sch11] Schwan, B.: Grüne Welle dank Smartphone. Technical report, Technology Review
(Oktober 7, 2011),
http://www.heise.de/tr/artikel/Gruene-Welle-dank-
Smartphone-1353408.html

http://www.enisa.europa.eu/act/rm/files/deliverables/technology-induced-challenges-in-privacy-data-protection-in-europe/at_download/fullReport
http://www.enisa.europa.eu/act/rm/files/deliverables/technology-induced-challenges-in-privacy-data-protection-in-europe/at_download/fullReport
http://www.enisa.europa.eu/act/rm/files/deliverables/technology-induced-challenges-in-privacy-data-protection-in-europe/at_download/fullReport
http://www.liebertonline.com/doi/pdf/10.1089/omi.2006.10.185
http://www.liebertonline.com/doi/pdf/10.1089/omi.2006.10.185
http://www.heise.de/tr/artikel/Gruene-Welle-dank-Smartphone-1353408.html
http://www.heise.de/tr/artikel/Gruene-Welle-dank-Smartphone-1353408.html

28 M. Broy, M.V. Cengarle, and E. Geisberger

[Šmi10] Šmihula, D.: Waves of technological innovations and the end of the information
revolution. Journal of Economics and International Finance 2(4), 58–67 (2010)

[SMS11] Schleipen, M., Münnemann, A., Sauer, O.: Interoperabilität von Manufacturing
Execution Systems (MES): Durchgängige Kommunikation in unterschiedlichen
Dimensionen der Informationstechnik in produzierenden Unternehmen. Automa-
tisierungstechnik 59(7), 413–425 (2011),
http://www.iosb.fraunhofer.de/servlet/is/4893/
auto.2011.0936.pdf?command=downloadContent&filename=
auto.2011.0936.pdf

[Soc07] Special section: Socionics. Journal of Artificial Societies and Social Simulation
(January 2007),
http://jasss.soc.surrey.ac.uk/10/1/contents.html

[SS11] Stone, E., Skubic, M.: Evaluation of an Inexpensive Depth Camera for Passive
In-Home Fall Risk Assessment. In: 5th International Conference on Pervasive
Computing Technologies for Healthcare (PervasiveHealth 2011, Proceedings), pp.
71–77 (2011) (Best Paper Award),
http://eldertech.missouri.edu/files/Papers/StoneE/
Evaluation%20of%20an%20Inexpensive%20Depth%20Camera.pdf

[SV03] Silverberg, G., Verspagen, B.: Breaking the waves: a Poisson regression approach
to Schumpeterian clustering of basic innovations. Cambridge Journal of Eco-
nomics 27(5), 671–693 (2003)

[Thi10] Thiel, C.: Multiple classifier systems incorporating uncertainty. Verlag Dr. Hut,
München (2010)

[TOG09] TOGAF Version 9, Enterprise Edition. Technical report, The Open Group (February
2009),
https://www2.opengroup.org/ogsys/jsp/publications/
PublicationDetails.jsp?catalogno=g091

[Web02] Webb, A.: Statistical Pattern Recognition, 2nd edn. John Wiley & Sons (October
2002)

[Wei00] Weiss, G. (ed.): Multiagent Systems: A Modern Approach to Distributed Artificial
Intelligence. MIT Press (July 2000)

[Wes67] Westin, A.F.: Privacy and Freedom, 1st edn. Atheneum, New York (1967)
[Wey06] Weyer, J.: Die Zukunft des Autos – das Auto der Zukunft. Wird der Computer

den Menschen ersetzen? Soziologische Arbeitspapiere 14, Universität Dortmund
(March 2006),
http://www.wiso.tu-dortmund.de/wiso/is/Medienpool/
Arbeitspapiere/ap-soz14.pdf

[WMKP10] Wiedersheim, B., Ma, Z., Kargl, F., Papadimitratos, P.: Privacy in Inter-Vehicular
Networks: Why simple pseudonym change is not enough. In: 7th International Con-
ference on Wireless On-demand Network Systems and Services (WONS 2010, Pro-
ceedings), pp. 176–183. IEEE Computer Society Press (2010)

[Woo09] Wooldridge, M.: An Introduction to Multi Agent Systems, 2nd edn. John Wiley &
Sons (May 2009)

[WS10] Wood, A., Stankovic, J.: Security of Distributed, Ubiquitous, and Embedded Com-
puting Platforms. In: Voeller, J. (ed.) Wiley Handbook of Science and Technology
for Homeland Security, John Wiley & Sons (March 2010)

http://www.iosb.fraunhofer.de/servlet/is/4893/auto.2011.0936.pdf?command=downloadContent\&filename=auto.2011.0936.pdf
http://www.iosb.fraunhofer.de/servlet/is/4893/auto.2011.0936.pdf?command=downloadContent\&filename=auto.2011.0936.pdf
http://www.iosb.fraunhofer.de/servlet/is/4893/auto.2011.0936.pdf?command=downloadContent\&filename=auto.2011.0936.pdf
http://jasss.soc.surrey.ac.uk/10/1/contents.html
http://eldertech.missouri.edu/files/Papers/StoneE/Evaluation%20of%20an%20Inexpensive%20Depth%20Camera.pdf
http://eldertech.missouri.edu/files/Papers/StoneE/Evaluation%20of%20an%20Inexpensive%20Depth%20Camera.pdf
https://www2.opengroup.org/ogsys/jsp/publications/PublicationDetails.jsp?catalogno=g091
https://www2.opengroup.org/ogsys/jsp/publications/PublicationDetails.jsp?catalogno=g091
http://www.wiso.tu-dortmund.de/wiso/is/Medienpool/Arbeitspapiere/ap-soz14.pdf
http://www.wiso.tu-dortmund.de/wiso/is/Medienpool/Arbeitspapiere/ap-soz14.pdf

R. Calinescu and D. Garlan (Eds.): Monterey Workshop 2012, LNCS 7539, pp. 29–70, 2012.
© Springer-Verlag Berlin Heidelberg 2012

The Global Financial Markets:
An Ultra-Large-Scale Systems Perspective

Dave Cliff1 and Linda Northrop2

1 UK Large Scale Complex IT System Initiative,
Department of Computer Science, University of Bristol, Bristol BS8 1UB, U.K.

dc@cs.bris.ac.uk
2 Research, Technology, and System Solutions Program,

Software Engineering Institute, Carnegie-Mellon University, Pittsburgh PA 15213, USA
lmn@sei.cmu.edu

Abstract. We argue here that, in recent years, the world’s financial markets have
become a globally interconnected complex adaptive ultra-large-scale socio-
technical system-of-systems, and that this has important consequences for how the
financial markets should be engineered and managed in future. Major failures in
the financial markets can now occur at super-human speeds, as was witnessed in
the “Flash Crash” of May 6th 2010. Events such as the Flash Crash may become
more commonplace in future, unless lessons are learned from other fields where
complex adaptive socio-technical systems-of-systems have to be engineered for
high-integrity, safety-critical applications. In this document we review the literature
on failures in risky technology and high-integrity approaches to safety-critical SoS
engineering. We conclude with an argument that, in the specific case of the global
financial markets, there is an urgent need to develop major national strategic
modeling and predictive simulation capabilities, comparable to national-scale
meteorological monitoring and modeling capabilities. The intent here is not to
predict the price-movements of particular financial instruments or asset classes, but
rather to provide test-rigs for principled evaluation of systemic risk, estimating
probability density functions over spaces of possible outcomes, and thereby
identifying potentially high-consequence failure modes in the simulations, before
they occur in real life, by which time it is typically too late.

Keywords: Large-scale complex IT systems, ultra-large-scale systems,
financial markets, algorithmic trading, high-frequency trading, normalization of
deviance, flash crash.

1 Introduction

For what events will the date of May 6th, 2010 be remembered? In Britain, there was a
general election that day, which ousted the ruling Labour Party after 13 years and led
to the formation of the UK’s first coalition government since 1945. Nevertheless, it
seems likely that in financial circles at least, May 6th will instead long be remembered
for dramatic and unprecedented events that took place on the other side of the
Atlantic, in the US capital markets. May 6th is the date of what is now widely known
as the “Flash Crash”.

On that day, in a period lasting roughly 30 minutes from approximately 2:30pm to
3:00pm EST, the US equity markets underwent an extraordinary upheaval: a sudden

30 D. Cliff and L. Northrop

catastrophic collapse followed by an equally unprecedented meteoric rise. In the
space of only a few minutes, the Dow Jones Industrial Average dropped by over 600
points, representing the disappearance of more than 850 billion dollars of market
value. In the course of this sudden downturn, the share-prices of several blue-chip
multinational companies went haywire, with shares in companies that had previously
been trading at a few tens of dollars plummeting to $0.01 in some instances, and
rocketing to values of $100,000 in others. Seeing prices quoted by some major
exchanges suddenly going crazy, other major exchange-operators declared “self-help”
(that is, they invoked a regulation allowing them to no longer treat the price-feeds
from the other exchanges as valid), thereby decoupling the trading on multiple venues
that had previously been unified by the real-time exchange of reference price data.

Then as suddenly as this downturn occurred it reversed, and over the course of
another few minutes most of the 600-point loss in the Dow was recovered, and share
prices returned to levels within a few percentage points of the values they had held
before the crash. That recovery took less than twenty minutes.

Two weeks after the Flash Crash, the US Securities and Exchange Commission
(SEC) and the US Commodity Futures Trading Commission (CFTC) jointly released
an interim report into the events of May 6th (CFTC&SEC, 2010a) that established
very little, other than dispelling rumours of the flash crash having been caused by a
“fat-finger” error (where a trader mis-keys an order) or terrorist action. After that, for
more than four months there was open speculation on the cause of the Flash Crash,
and senior figures in the markets voiced their growing exasperation at the lack of a
straightforward explanation. Identifying the cause of the crash was made difficult by
the “fragmentation of liquidity” (trading taking place simultaneously on a number of
independent but interconnected exchange-venues); by the lack of a single unifying
“consolidated audit trail” showing synchronized timestamps for all events in all the
markets with identifiers of the originators of those events; and by the widespread use
of algorithmic trading systems: autonomous adaptive software systems that automate
trading jobs previously performed by human traders, many operating at super-human
speeds. Various theories were discussed in the five months that it took the SEC and
CFTC to produce their joint final report on the events of May 6th. Many speculated on
the role of high-frequency trading (HFT) by investment banks and hedge funds, where
algorithmic traders buy and sell blocks of financial instruments on very short
timescales, sometimes holding a position for only a few seconds or less.

When the SEC/CFTC final report on the Flash Crash was eventually published on
September 30th, nearly five months after the event, (CFTC&SEC, 2010b), it made no
mention of a “bug” anywhere in the system being a causal factor. Instead, the story it
told was that the trigger-event for the crash was a single block-sale of $4.1bn worth of
futures contracts, executed with uncommon urgency on behalf of a traditional fund-
management company. It was argued that the consequences of that trigger event
interacting with HFT systems rippled out to cause the system-level failures just
described. The SEC/CFTC report was met with very mixed responses. Many readers
concluded that it left more questions unanswered than resolved, and a subsequent
much more detailed analysis of the time-series “tapes” of market event data
conducted by Nanex Corp.1 offered an alternative story that many market

1 See www.nanex.net

 The Global Financial Markets: An Ultra-Large-Scale Systems Perspective 31

practitioners found more plausible: see Meerman et al. (2010) and Easley et al. (2011)
for further details of the extent to which the CFTC/SEC version of events is disputed.

Ten months after the event, in February 2011, a specially convened panel of
regulators and economists, the Joint CFTC-SEC Advisory Committee on Emerging
Regulatory Issues, released a report (CFTC&SEC, 2011) urging a number of rule
changes, some of them fundamental and potentially far-reaching. At the time of
writing this Foresight review, the extent to which the report’s recommendations will
be acted upon is unclear (see, e.g., Demos, 2011a, 2011b, 2011c).

Now the fact that there was such a rapid recovery immediately after the down-spike
meant that, by the close of business on May 6th the overall inter-day price change on the
previous day was nothing particularly dramatic. To someone focused only on daily
market-close prices, this may look like just another day of a downward-trending market
in a time of significant political and economic uncertainty: on that day, the Greek
national debt crisis was threatening to destabilize the entire Euro-zone single-currency
economic union; and the indeterminate outcome of the UK general election was a
further distraction. For sure, the intra-day dynamics on May 6th were unlike anything
ever seen before, but the market pulled back, so what is there to worry about?

We contend that there are two significant reasons to be worried by the Flash Crash.
The first worry is that at the micro-level there was a clear market failure: whether a
trader was richer or poorer by the end of that disorderly day was in many cases not
much more than a lottery. The second worry is the macro-level observation that, with
only a very slight change in the sequence of events, the global financial markets could
plausibly have gone into meltdown, with May 7th 2010 (i.e, the next day) becoming
the date of a global collapse that dwarfed any previous stock-market crash. We’ll
expand on these two worries in the next two paragraphs.

The first worry, on the micro-level, is that while some equity spot and derivatives
trades that took place at the height of the mayhem were subsequently “busted”
(declared to be invalid on the basis that they were clearly made on the basis of
erroneous data) by the exchanges, the means by which trades were selected for
busting was argued by many to be arbitrary, after-the-fact rule-making. Some traders
who had lost large amounts of money did not have their trades busted; some who had
made handsome profits found their gains taken away. The flash-crash chaos had
rippled beyond the equity markets into the foreign exchange (FX) markets where
certain currency exchange rates swung wildly on the afternoon of May 6th as the
markets attempted to hedge the huge volatility and risk that they were suddenly seeing
explode in equities. There is no provision to retrospectively bust trades in FX, and so
those deals were left to stand. Sizeable fortunes were made, and sizeable fortunes
were lost, by those caught in the storm; the issue of who lost and who gained was in
too many cases almost random.

The second worry is a much more significant concern: the Flash Crash could have
occurred any time that day. Certainly the specific time-period during which the Flash
Crash occurred, roughly 2:30pm to 3:00pm, was not cited as a causal factor in the
official CFTC/SEC report on the events of May 6th, nor in the much more detailed
analysis performed by Nanex Corp. This is a point recently explored in public
statements by Bart Chilton, head of the CFTC, who said the following in a public
lecture given in March 2011: “…Think about it. There are stocks and futures, which
are arbitraged internationally. If the Flash Crash had taken place in the morning on

32 D. Cliff and L. Northrop

May 6th, when E.U. markets were open, it could have instigated a global economic
event. Since it took place in the mid-afternoon, it was primarily limited to U.S.
markets…” (Chilton, 2011). Although we respect Commissioner Chilton’s view, we
think that in fact the much, much bigger worry is not what would have happened if
the Flash Crash had occurred in the morning of May 6th, but instead what would have
happened if it had occurred a couple of hours or so later that day. Specifically, we
think that the true nightmare scenario would have been if the crash’s 600-point down-
spike, the trillion-dollar write-off, had occurred immediately before market close: that
is, if the markets had closed just after the steep drop, before the equally fast recovery
had a chance to start. Faced with New York showing its biggest ever one-day drop in
the final 15 minutes before close of business on May 6th, and in the absence of any
plausible public-domain reason for that happening, combined with the growing
nervousness that the Greek government would default on its sovereign debt and throw
the entire Euro-zone economic union into chaos, traders in Tokyo would have had
only one rational reaction: sell. The likelihood is that Tokyo would have seen one of
its biggest ever one-day losses. Following this, as the mainland European bourses and
the London markets opened on the morning of May 7th, seeing the unprecedented sell-
offs that had afflicted first New York and then Tokyo, European markets would have
followed into precipitous freefall. None of this would have been particularly useful in
strengthening confidence in the Greek debt crisis or the future of the Euro, either.
And, as far as we can tell, the only reason that this sequence of events was not
triggered was down to mere lucky timing. Put simply, on the afternoon of May 6th
2010, the world’s financial system dodged a bullet.

Although the Flash Crash was a particularly extreme event, similar phenomena
have been witnessed in various markets in the period since May 2010. Some notable
examples are listed here, but this is by no means an exhaustive list:

• On 28th September 2010, share-prices of major technology stocks Apple,
Dell, Hewlett-Packard, IBM, Microsoft, and Oracle all experienced sudden severe
spike-transitions before returning to normal price ranges.2

• On May 2nd, 2011, the market price of gold spiked sharply downwards by
$20 and then immediately recovered more than $15 of that loss. The graph of price
against time for this event is strongly reminiscent of the graph of the Dow Jones
Industrial Index during the Flash Crash. Unlike the Flash Crash, which unfolded
over a period of roughly 30 minutes, this down-spike and recovery in the price of
gold took less than 10 minutes.3

• The next day, on May 3rd, 2011, the price of silver dropped dramatically in
after-hours trading, an event that was again attributed to algorithmic trading
systems.4

• On June 8th 2011 the price of natural gas in the USA commodity markets had
been trending flat (i.e. showing neither a rise or a fall for the day) over a period of

2 http://ftalphaville.ft.com/blog/2010/09/28/355081/market-on-
edge-after-apple-drops-like-a-stone/

3 See http://www.zerohedge.com/article/golden-flash-crash
4 See http://www.zerohedge.com/article/and-now-todays-mini-silver-
flash-crash-same-time-same-place

 The Global Financial Markets: An Ultra-Large-Scale Systems Perspective 33

several hours, when the price suddenly started to oscillate in a pattern strongly
reminiscent of a smooth sine-wave, with the amplitude of the oscillations (the
height of the peaks and the depths of the troughs) growing steadily in a short space
of time, and then the price crashed dramatically. This event was also attributed to an
erroneously programmed algorithmic trading system.5

• On July 7th 2011, there were sizeable swings in the price of crude oil futures
on the New York Mercantile Exchange (one of the world’s primary exchanges for
trading of commodities and commodity derivatives). According to the analysis
published by Nanex Corp, these swings appear to have been the result of a “massive
arbitrage algorithm” running at a significant speed advantage for a period of around
five seconds.6

• On March 23rd 2012, the initial public offering (IPO) of shares in the
company BATS Global Markets was marred by an astonishingly fast collapse in its
share price. BATS (an acronym for “Better Alternative Trading Systems”) was
founded in 2005 and is the owner and operator of popular electronic trading venues
in major economies such as the USA and UK, that are alternatives to the traditional,
longer-established stock exchanges. At 11:14 am on the day of the IPO, BATS’
shares commenced trading at a price of $15.25. Within 0.9 seconds of the start of
trading, the price had dropped to $0.2848; and at +1.5 seconds, the price was
$0.0002. A total of 567 orders had been executed by the time trading in BATS was
halted, and BATS subsequently cancelled its IPO, thereby depriving the company
of the capital that would otherwise have been raised by the sale of its shares that
day. Subsequent reports in the financial media quoted BATS as blaming this
collapse on “problems” and “bugs” in their own exchange software,7 but analysis
of market data subsequently released by Nanex Corp8 indicated that the collapse in
BATS’ share price had been driven primarily by so-called intermarket sweep orders
originating from a trader or traders operating on the Nasdaq exchange. Nanex’s
analysis also demonstrated that the collapse in BATS’ price traced an almost-
perfect logarithmic decay curve, strong evidence that a computerized system was
driving the price down by a fixed percentage with each successive trade. In the days
that followed, there was open speculation that BATS’ crash had been caused by a
rogue trading system, and that perhaps someone had deliberately programmed a
system to inflict this grief on BATS.

In each of these cases, there is evidence to suggest that computer-based trading
systems were involved in the transactions that played causal roles in these events, but
unlike the events of May 6th 2010, there have been no official investigations launched
by regulatory bodies such as the CFTC and the SEC. There is frequent open
discussion among market practitioners (especially on the anonymously-sourced but
very well-informed website www.zerohedge.com) that current markets are too often

5 See http://www.zerohedge.com/article/story-berserk-nat-gas-algo-
just-got-really-strange and for the supporting data analysis see http://www.
nanex.net/StrangeDays/06082011.html

6 See http://www.nanex.net/StrangeDays/07072011.html
7 See T. Demos (2012), “IPO Software Behind BATS’ Failure”, The Financial Times, March

26th 2012.
8 See http://www.nanex.net/aqck/2970.html

34 D. Cliff and L. Northrop

showing price movements for which the only plausible explanation is that a
computerised system is operating in an unexpected or unanticipated fashion, giving
market dynamics that deviate from expectations based on experience of markets
populated by human traders, or from rational economic argument.

We argue here that market disorder such as the May 6th 2010 Flash Crash, and the
mini-flash-crashes that have been recorded since then in various markets, are deviant
events that are best understood as evidence of “normal failure” in an ultra-large-
scale complex adaptive socio-technical system-of-systems.

Unpacking that assertion requires some care, so in the following sections we’ll
start first with a discussion of notable technology failures, then bring the conversation
back to discussion of failures of the financial markets.

Systems, such as the financial markets, that are themselves composed of
constituent stand-alone systems that are each operationally and managerially
independent, are very often the result of incremental, sporadic, organic growth and
unplanned accretion rather than clean-sheet engineering design. They thereby involve
or acquire significant degrees of variability in components and heterogeneity of
constituent systems, and their make-up changes dynamically over multiple timescales.
For this reason traditional engineering techniques, which are predicated on very
different assumptions, cannot necessarily be trusted to deliver acceptable solutions.
And, therefore, new approaches are required: new engineering tools and techniques,
new management perspectives and practices.

In the main text and the appendices of this review, we survey some recently
developed approaches that look likely to grow into promising new engineering
techniques in the coming decade and beyond, better suited to current and future
systems than our traditional engineering practices, which owe more to the mid-
twentieth-century than they can offer the early-twenty-first.

2 Background: Failures in Risky Technology

The global financial markets are not the only area in which the application of new
technologies has led to failures. Although operator error can be attributed to many
failures, as technological systems grow in complexity the prospect of failure-modes
being inadvertently designed-in also grows. Take, for example, bridge building. As an
engineering activity this is something that dates at least as far back as ancient Rome
(c.150BC) and so probably doesn’t figure as a risky technology for many people.

Yet for decades, engineering students have been taught the story of the Tacoma
Narrows suspension bridge, opened in July 1940, which collapsed four months later,
where the designers did not anticipate the prospect of wind-flows over the bridge deck
reinforcing the deck’s natural mode of vibrations, leading to the bridge shaking itself
apart. Presumably, current and future students will also be taught the story of the
London Millennium Bridge, which opened in June 2000 and two days later was
closed for two years to remedy destabilizing swaying motions induced when groups
of people walked over it. A significant difference between Tacoma Narrows and
London Millennium is that in the latter case, it was the interaction of people, the
users, with the engineered system that caused the problem. The Millennium Bridge on
its own, as a piece of engineering, was a fine and stable structure; but when we

 The Global Financial Markets: An Ultra-Large-Scale Systems Perspective 35

consider the interaction dynamics of the larger system made up of the bridge and its
many simultaneous users, there were serious unforeseen problems in those dynamics
that only came to light when it was too late.

As engineered systems become more complex, it becomes more reasonable to
argue that no one person or group of users is responsible for failures, but rather that
the failures are inherent, latent, in the system; this seems especially so in the case of
socio-technical systems, i.e. systems (like the Millennium Bridge, when in use) whose
dynamics and behaviour can only be properly understood by including human agents
(such as operators and/or users) within the system boundary.9

This is perhaps most clear in some of the more famous technology failures of the
past 40 years. The oxygen-tank explosion that crippled the Apollo 13 Lunar Service
Module as it was en route to the moon in 1970, and subsequent safe return of her
crew, has been rightly popularized as a major triumph of bravery, skill, teamwork,
and engineering ingenuity. Nevertheless, the fact remains that NASA very nearly
suffered the loss of Apollo 13 and her crew, due to the compounding effect of several
independent small failures of process rather than malign intent or major error from
one or more individuals. The successful return of Apollo 13’s crew owed an awful lot
to the availability of accurate simulation models, physical replicas on the ground of
key components of the spacecraft, where emergency procedures could be invented
and rehearsed and refined before being relayed to the astronauts. The value of
simulation models is something that we will return to in depth, later in this paper.

While loss of a space vehicle is undoubtedly a tragedy for those concerned, the
number of fatalities is small in comparison to the potential losses in other high-
consequence systems, such as petrochemical plants and nuclear power stations. The
release of toxic gas at the Union Carbide plant in Bhopal in December 1984
immediately killed over 2,000 people, with estimates of the subsequent delayed
fatalities running at 6,000-8,000. The partial meltdown at the Three Mile Island
nuclear plant in 1979 was successfully contained, but the reactor-core fire at
Chernobyl in 1986 was not, and estimates of the number of deaths resulting from that
event range from many hundreds to several thousand.

High-risk technology failures including Apollo 13 and Three Mile Island were the
subject of serious scholarly analysis in Charles Perrow’s seminal work Normal
Accidents (Perrow, 1984). Perrow argued that in tightly-coupled systems with
sufficiently complex internal interactions, accidents and failures, including
catastrophic disasters of high-risk systems with the potential to end or threaten many
lives, are essentially inevitable – such accidents are, in that sense, to be expected as
“normal”, regardless of whether they are common or rare.

In Perrow’s terms, the losses of the NASA space shuttles Challenger in January
1986 and Columbia in February 2003 were also normal accidents. However, the
sociologist Diane Vaughan argued for a more sophisticated analysis in her classic
study The Challenger Launch Decision (1997), in which she presented a detailed
analysis of transcripts, covering the hours immediately preceding Challenger’s
launch, of interactions between NASA staff and the staff of Morton Thiokol,
manufacturers of the shuttle’s solid-fuel rocket booster (SRB) that failed leading to
loss of the vehicle and her crew.

9
 For an early, but very insightful, discussion of the dynamics of socio-technical systems, see
Bonen (1979).

36 D. Cliff and L. Northrop

The transcripts had been released as part of the official Presidential Commission on
the Space Shuttle Challenger Accident, led by William Rogers. A shocking finding of
the Rogers investigation was that the specific failure-mode (burn-through of rubber
O-ring seals in a critical joint on the SRB) had been known since 1977 and the
consequent potential for catastrophic loss of the vehicle had been discussed at length
by NASA and Thiokol, but the shuttle had not been grounded. Vaughan concluded
that while the proximal cause of disaster was the SRB O-ring failure, the ultimate
cause was a social process that Vaughan named normalization of deviance.

 Put simply, normalization of deviance occurs when the safe-operating envelope of
a complex system is not completely known in advance, and where events that were a
priori thought to be outside the envelope, but which do not then result in failures, are
taken after the fact as evidence that the safe envelope should be extended to include
those events. In this way, deviant events become normalized: the absence of a
catastrophe thus far is taken as evidence that in future catastrophes are less likely than
had previously been thought. The flaw in this line of reasoning is starkly revealed
when a catastrophe then ensues. In Vaughan’s analysis, the loss of Challenger was
not a purely technical issue but rather was an organizational failure in the socio-
technical system comprised of the (technical) shuttle hardware systems and the
(social) human individuals, teams, and organizations that had to interact appropriately
to ensure safe launch and return of the shuttle.

Vaughan’s analysis of the Challenger accident came more than a decade after the
official inquiry into that 1986 event. In contrast, because of her work on Challenger,
following the loss of Columbia in 2003 Vaughan was immediately invited onto the
Columbia Accident Investigation Board (CAIB) and subsequently authored a chapter
of the CAIB official report. It was argued that once again an organizational failure at
NASA had resulted in loss of a vehicle, once again via a long-standing process of
normalization of deviance.

For Columbia, the proximal cause of disaster was a lump of insulating foam that
broke away from the external fuel tank and struck the leading edge of the orbiter’s left
wing, damaging its thermal insulation: on re-entry, this damage allowed atmospheric
gases, compressed in the bow-wave at the wing edge and hence heated to more than
1,500 degrees Celsius, to penetrate the wing; and the vehicle then broke up at high
speed. But the ultimate cause was an organizational culture that had once again
engaged in normalization of deviance, despite the warnings from Vaughan’s analysis
of the Challenger disaster.

Prior to the loss of Columbia, sixty-four previous missions had suffered strikes
from insulating material breaking away during launch and hitting the orbiter, and yet
each such strike was technically a violation of the shuttle’s design requirements: the
shuttle had simply not been designed to withstand impacts from breakaway insulating
material. Most notably, in 1988 on mission STS-27, insulation broke away from an
SRB during launch and damaged 700 of the heat-insulating tiles on shuttle Atlantis,
and the crew on board believed they would very likely be killed on re-entry;
nevertheless, they weren’t, and post-mission repairs to the shuttle’s damage from
insulation strikes became increasingly seen as nothing more than a routine
maintenance issue (Mullane, 2006).

Vaughan discussed the similarities between the Challenger and Columbia losses in
a book chapter (Vaughan, 2005) and has documented her experience on the CAIB and

 The Global Financial Markets: An Ultra-Large-Scale Systems Perspective 37

her subsequent interactions with NASA in a 40-page journal article (Vaughan, 2006).
The CAIB report is probably the first major US government accident investigation
that explicitly states the cause of the disaster to be a socio-technical system failure.

The approaches exemplified by the writings of Perrow and Vaughan are not the
only ones. Studies of what are known technically as High-Reliability Organizations
(such as emergency rooms in hospitals, firefighter teams, and the flight-deck
operations crews on aircraft carriers) have revealed that there are social and
organizational, as well as technical, solutions to creating resilient socio-technical
systems: see, for example, Roberts (1990); Weick & Sutcliffe (2007); and Reason
(2008). The results from these studies indicate that there is no traditional, “pure”
engineering approach that is suitable for ultra-large-scale systems. Multi-disciplinary
approaches, that integrate the social with the technical, need to be developed: so-
called socio-technical systems engineering.

But what does this academic literature on the study of technology failures offer to
teach us about the events of May 6th, 2010?

Of course, the Flash Crash was by no means the first failure in a major financial
market. As anyone reading this paper must surely be aware, in July 2007 the
investment bank Bear Stearns was the first in what turned out to be a sequence of
major financial institutions to signal that it had suffered significant losses on subprime
hedge funds, triggering a sudden dramatic reassessment of counterparty risk in most
major financial institutions around the world which led, inter alia, to the UK’s
Northern Rock consumer bank being the first to suffer a full-scale public bank run in
150 years; and to the US government bailing out insurance giant AIG, mortgage
providers Freddie Mac and Fannie Mae, and yet famously not extending a lifeline to
Lehman Brothers, which turned out not to be too big to fail, and duly went bust.

Taking a longer historical perspective, the crisis of 2007-08 was just one in a
sequence that stretches back through the collapse of the LTCM hedge-fund in 1998;
the “black Monday” crash of October 1987; the US savings-and-loan crisis of the
mid-1980’s; the Wall Street Crash of October 1929; the South-Sea Bubble of the
1720s; and the Tulip Mania of the 1630s.

This history of financial crises has been documented in a popular text by
Kindleberger (2001), and with more academic rigour by Gorton (2010). The events of
2007-08 have been recounted from a number of journalistic perspectives, of which
Lewis’s (2010) and Tett’s (2009) are notably thorough and well written. Tett’s
perspective is particularly insightful: she is a senior executive journalist for the
Financial Times but has a PhD in social anthropology, and this clearly influences her
analysis. Tett was one of the few journalists to warn of the impending crisis before it
came to pass, and notes various events that are clear instances of normalization of
deviance. Lewis’s brilliant book tells the story of the few individuals who recognized
that deviance, and bet on the markets failing. For more scholarly, academic, studies of
the sociology of the financial markets, see the works of Edinburgh sociologist Donald
MacKenzie and his colleagues (MacKenzie 2008a, 2008b; MacKenzie et al. 2008),
although all of those pre-date the turmoil of the subprime crisis.

One significant difference between previous financial crises and the Flash Crash is
the speed at which they played out. In the past quarter of a century, financial-market

38 D. Cliff and L. Northrop

trading has shifted from being a largely human, face-to-face activity, to being phone-
and-screen-based rather than face-to-face, but still largely requiring a human at each
end of the phone or screen. But within the past decade a fundamental technology-led
shift has occurred. Increasingly, the counterparties at either end of the trade, at each
end of the telecoms cable, are pieces of software rather than humans. Algorithmic
trading systems are increasingly trusted to do trading jobs that were previously done
by human traders, and to do jobs that would require super-human data-integration
abilities in a person.10 As was seen on May 6th, the system-wide interaction between
multiple independently-engineered, independently operated, and independently
managed automated trading systems had at least one unknown catastrophic failure
mode. A major proportion of traders in the markets are still human, but to understand
today’s markets it is necessary to study the interaction of these human traders with
their automated counterparts; that is, we need to study the socio-technical system.

The danger that normalization of deviance posed in high-frequency automated
trading systems in the global financial markets, and the possibility of major
catastrophe happening within very short time-scales, was discussed in a strategic
briefing paper written by one of us for the UK Government’s Office of Science, first
draft of which was submitted in January 2010 and the final version of which (Cliff,
2010) was submitted to the government nine days before the Flash Crash. Similarly,
in the US at least one academic was repeatedly warning the SEC of the likelihood of a
Flash Crash type of event in the year running up to May 6th 2010 (Angel, 2009a,
2009b, 2009c; Angel et al., 2010; Angel 2010a, 2010b).

We think it is reasonable to argue that the Flash Crash was, at least in part, a result of
normalization of deviance. For many years, long before May 6th 2010, concerns about
systemic effects of rapid increases in the price volatility of various instruments had led
several exchanges to implement “circuit breaker” rules, requiring that trading in a
security be suspended for some period of time if the price of that security moved by
more than some percentage within a sufficiently short time-period. For instance, the
London Stock Exchange first adopted circuit-breakers, now known there as Automated
Execution Suspension Periods (AESPs) and Price Monitoring Extensions (PMEs),
shortly after the 1987 Black Monday crash; and Chi-X Europe enforces “order-entry
controls” that prevent orders being entered that are more than 20% away from the
current price (Flinders, 2007; Grant, 2010). In response to the Flash Crash, the USA’s
SEC has now enforced similar mechanisms in the US markets with the aim of
preventing such an event re-occuring. In fact the move toward introducing circuit-
breakers in the US pre-dates the Flash Crash by more than two years: it had been
proposed in an influential report on the sub-prime crisis from the Institute of
International Finance (IIF, 2008) but seems to have been actively resisted until the
events of May 2010. Thus, it seems plausible to argue that before the Flash Crash
occurred there had been some significant degree of normalization of deviance: high-
speed changes in the prices of equities had been observed, market participants were well
aware that that could lead to a high speed crash, but these warning signals were ignored
and the introduction of safety measures that could have prevented them was resisted.

10 The history of the spread of technology innovations in the financial markets, and some likely

future developments, are discussed in a recent review by Cliff, Brown, & Treleaven (2011).

 The Global Financial Markets: An Ultra-Large-Scale Systems Perspective 39

Moreover, it could plausibly be argued that normalization of deviance has
continued to take place in the markets since the Flash Crash. The SEC’s introduction
of circuit breakers seems to have been offered, and largely accepted, as the one
necessary solution for preventing another similar event; and (so the story goes) all is
now well. We are told that adding circuit breakers firmly shuts the stable door.
Admittedly, this was done only after the Flash Crash horse had bolted, but at least the
door is now shut.

Now, for sure, the introduction of circuit breakers means that the US markets today
are not the same markets as they were on May 6th 2010. With circuit breakers added,
those markets, and the other markets around the world that they are coupled to (i.e., the
entire global financial market system) should be in a new dynamic regime – that is, their
market dynamics are different now. But the new dynamics are still not entirely known,
and so the new regime is certainly not yet guaranteed to be safe. Despite the circuit
breakers, the next Flash Crash could be lurking just around the corner.

There are anecdotal stories that the speed of price fluctuations occurring within the
limits of circuit breaker thresholds seems to be increasing in some markets (See, e.g.,
Blas, 2011); and there is evidence to suggest that another Flash Crash was “dodged”
on September 1st 2010, in a similarly bizarre period when quote volumes exceeded
even those seen at peak activity on May 6th 2010 (Steiner, 2010), but no official
investigation was commissioned to understand that latter event. Furthermore, the
circuit-breaker mechanisms in each of the world’s major trading hubs are not
harmonized, exposing arbitrage opportunities for exploiting differences; computer and
telecoms systems can still fail, or be taken down by enemies of the system, and the
systemic effects of those failures may not have been fully thought through.

Of course, the next Flash Crash won’t be exactly the same as the last one, the SEC’s
circuit breakers will probably see to that. But there are no guarantees that another event,
just as unprecedented, just as severe, and just as fast (or faster) than the Flash Crash
cannot happen in future. Normalization of deviance can be a very deep-running,
pernicious process. After Challenger, NASA addressed the issue with the SRB O-ring
seals, and believed the Shuttle to be safe. That was no help to the crew of Columbia.

Reassurances from regulators that all is now well are likely to sound somewhat
hollow for as long as people can remember the near-total failure of the regulatory
bodies to have anything useful to say about the subprime crisis until shortly after its
severity was clear to even the most casual of observers. Light-touch regulation and its
consequence for financial markets in the UK were discussed in the 2009 Turner
Review11, and the parallel systemic failure of the economics profession is discussed at
length by Colander et al. (2009) and by Bootle (2009). The next market failure may
well be a failure of risky technology that, like the Flash Crash, has no clear precedent.

The global financial markets, considered as a single ultra-large-scale super-system, is
made up of components, of constituent systems. These constitutents include the human
traders and their trading procedures; the various electronic exchanges; the automated
trading systems operated by the various investment banks and hedge funds; and their
associated clearing, settlement and risk-management systems. All of these constituent
systems have been developed, procured, operated and managed independently, although
for some of them the development and procurement processes were informal, organic

11 http://www.fsa.gov.uk/pubs/other/turner_review.pdf

40 D. Cliff and L. Northrop

growth rather than pre-specified projects. That is, the current global financial markets
are, from a technology perspective, systems of systems (SoS). We explore the definition
of “system of systems” in some detail in Appendix A.2.

A key issue with SoS is that the effects of failure in one or more of the constituents
may be contained, or may ripple out in a domino-effect chain reaction, analogous to
the crowd-psychology of contagion. Furthermore, SoS are often used in unanticipated
circumstances and by unanticipated users. In such situations, the response of the
constituent systems may not result in local failure but rather the combined local
responses can trigger a global failure: this seems to be what happened in the Flash
Crash. In this very definite sense, the global financial markets have become high-
consequence socio-technical systems of systems, and with that comes the risk of
problems occurring that are simply not anticipated until they occur, by which time it
is typically too late, and in which minor crises can escalate to become major
catastrophes at timescales too fast for humans to be able to deal with them. The extent
to which the SEC/CFTC report attributes cause to a single rushed block-sale as a
$4.1bn hedge as the trigger-event in the Flash Crash seems comparable to the way in
which the Challenger accident investigation report identified failed SRB O-rings:
there is a wider socio-technical perspective that should not be ignored, and which was
already being pointed to by some authors prior to the events of May 6th 2010
(Haldane, 2009; Cliff, 2010).

That the global financial markets have become ultra-large-scale complex IT-centric
socio-technical systems is perhaps no surprise, given the wider context that IT
systems have moved from back-office support (for payroll processing, say) firmly
onto the critical path for very many enterprises and organizations, to the point where
failure of the IT system can incapacitate an organization. For example, ten years ago a
failure of the IT servers in a hospital would not have a major negative effect; whereas
in the near future, once all data is digitized at the point of capture and integrated with
patient’s historical data before delivery in an appropriate form to a healthcare
practitioner, then when a hospital’s servers go down it will cease to be a functioning
hospital and instead be a big building full of sick people, with highly trained
professionals frantically tapping the touch screens on their PDAs/tablet-computers,
wondering where the data went. Similar stories can be told, or are already plausibly
foreseeable, in very many private-sector, public-sector, and defence organizations in
most industrialized economies.

Most notably, such issues have for some time been a growing, major concern in
those areas of systems engineering where system failures can result in hundreds or
thousands of fatalities or where, in the limit, system failures pose existential threats to
entire nations: the engineering research literature in aerospace, nuclear, and defence
systems may well be a source of experiences and new tools and techniques that could
be applicable to the financial markets, although it is doubtful that any techniques yet
exist that address the unique characteristics of ultra-large-scale systems. The
manifestly dire consequences of failure in aerospace, nuclear, and defence systems,
and also of course in automotive systems, has led to the development of engineering
teaching and practices specific to the development and maintenance of safety-critical,
high-integrity systems: a field known as high-integrity systems engineering (HISE),
which we briefly review in Appendix A.1 of this document.

 The Global Financial Markets: An Ultra-Large-Scale Systems Perspective 41

So, the concerns expressed here about modern computer-based trading in the global
financial markets are really just a detailed instance of a more general story: it seems
likely, or at least plausible, that major advanced economies are becoming increasingly
reliant on large-scale complex IT systems (LSCITS): the complexity of these LSCITS is
increasing rapidly; their socio-economic criticality is also increasing rapidly; our ability
to manage them, and to predict their failures before it is too late, may not be keeping up.
That is, we may be becoming critically dependent on LSCITS that we simply do not
understand and hence are simply not capable of managing. This is something that we
illustrate, purely notionally, as a single three-line graph, shown in Figure 1.

We, the authors of this review, each work for major national strategic initiatives
intended to address these issues. In the UK, the National Research and Training
Initiative in the Science and Engineering of LSCITS was started in 2007 as a strategic
investment with the primary aim being to foster the formation of a new community of
researchers and practitioners with the training and experience appropriate for dealing
with future software-intensive systems engineering dominated by LSCITS issues
(Cliff et al. 2006). At pretty much exactly the same time as the UK LSCITS Initiative
was being planned and set up, entirely independently, in the USA the US Army

Fig. 1. The Complexity Crossover Crisis. The complexity of information and communications
technology (ICT) socio-technical systems of systems (SoS) has increased dramatically since
ICT was first commercialized in the 1950s, and in recent years the socio-economic criticality of
ICT SoS has also sharply increased, as very many enterprises and organizations in advanced
economies have become dependent on the availability of ICT functionality as a key component
on the critical paths of their operations. Over the same period, there is increasing concern (and
growing evidence) that our ability to manage and predict the behavior of these critical ICT SoS
is not increasing at the same pace, and so at some point in time there is the potential for crisis,
where major socio-economic systems are critically dependent on ICT SoS whose complexity is
beyond that which we can manage. We are deliberately non-committal on the precise timing of
this crossover point: for some companies or industrial sectors it could be a decade or more
away, for others it could have happened already.

42 D. Cliff and L. Northrop

commissioned a team of world-class researchers led by the Software Engineering
Institute (SEI) at Carnegie Mellon University to conduct a study of ultra-large-scale
systems software. The study resulted in a major report that argued the necessity for
the USA to invest in ultra-large-scale systems engineering research, to safeguard its
international dominance in information systems; this authoritative report marked the
first major output from the SEI Ultra-Large-Scale (ULS) Systems Project (Northrop et
al., 2006). For a brief overview of the ULS Systems project, the UK LSCITS
Initiative, and other related projects, see Goth (2008).

3 Where Next for the Financial Markets?

One criticism that is sometimes leveled at the academic study of technology failures is
that there is perhaps a tendency to be wise after the event. That is, a large amount of
the work is descriptive (saying what happened) but not sufficiently predictive (saying
what could happen next) or prescriptive (saying what should be done differently in
future, to predict or prevent such failures from re-occurring).

One possible approach, which side-steps the need for specific predictions, is to accept
that technology failures are simply to be expected every now and again as part of the
Darwinian arms-race dynamics at the leading edge of technology-dependent institutions,
comparable to natural “failures” such as the species-extinctions that occur relatively
routinely in biological ecosystems, when viewed over evolutionary timescales, and
which also seem to follow a power-law distribution (small failures being common, big
failures being rare: see e.g. Ormerod, 2006). Such a perspective may be well-aligned
with the new schools of thought in economics and the study of technology innovation
that are influenced by complexity science and autopoeisis (e.g. Ormerod, 1998; Blume
& Durlaf, 2005; Beinhocker, 2007; Arthur, 2009), but taking a Darwinian, laissez-faire,
“stuff happens” approach isn’t particularly helpful in the quest for new engineering
practices, for predictive and preventative tools and techniques.

Recently, there has been growing recognition within the engineering community
that the engineering of systems in which failures are expected, and where the systems
are resilient to those failures, may require a fundamental reassessment of established
engineering teaching (see, e.g., Hollnagel et al. 2006). Similar views have also been
expressed, earlier, in the business administration literature dealing with the
management of large-scale technology-driven projects (Collingridge, 1992). It seems
reasonable to suggest that changes are necessary both in engineering practices, and in
the coordination, incentivization, and management of projects, for all LSCITS
including those underlying the global financial markets. But such changes are likely
to take time, and while we wait for them to take effect it would be good to have a
viable near-term strategy, one that would potentially offer major payoff within five to
seven years (seven years is long enough to achieve quite a lot, given enough
resources: the US Apollo programme took seven years, from John F. Kennedy’s
famous speech to Neil Armstrong’s famous small step.) In the following pages, we
outline one such strategy. It will require national-scale investment, to create a
national-scale strategic resource (or, perhaps, international collaboration to create a
shared multinational resource, rather like the CERN Large Hadron Collider or the
European Space Agency’s Arianne space rocket).

 The Global Financial Markets: An Ultra-Large-Scale Systems Perspective 43

The proposed strategy is simple enough to state: build a predictive computer
simulation of the global financial markets, as a national-scale or multinational-scale
resource for assessing systemic risk. Use this simulation to explore the “operational
envelope” of the current state of the markets, as a hypothesis generator, searching for
scenarios and failure modes such as those witnessed in the Flash Crash, identifying
the potential risks before they become reality. Such a simulator could also be used to
address issues of regulation and certification. Doing this well will not be easy and will
certainly not be cheap, but the significant expense involved can be a help to the
project rather than a hindrance.

Explaining and justifying all that was written in that last paragraph will take up the
next several pages.

For most engineering and scientific domains, in recent years it has become
increasingly commonplace to rely on high-precision computer simulation as a means
of studying real-world systems. Such simulations offer the possibility of evaluating
the performance of proposed systems that have not yet been physically constructed,
and of exploring the response of existing real-world systems to different operating-
environment conditions, and to alterations of the system itself, allowing “test-to-
destruction” without actually destroying anything. Engineers interested in
aerodynamic flows over aeroplanes and cars, or around buildings, or hydrodynamic
flows around a ship’s hull, can routinely call upon highly accurate computational fluid
dynamics (CFD) models to evaluate these flows in simulation, rather than building
physical models to test in wind-tunnels or test-tanks. Almost all silicon chip designs
are evaluated in microelectronics circuit-simulators such as SPICE (e.g. Tuinenga,
1988) before the chip-producers make the final (and most expensive) step of
committing their design to fabrication. Fissile nuclear reactions can be simulated with
sufficient accuracy that designs for nuclear power stations, and for nuclear weapons,
can be evaluated in simulation without splitting a single atom. In most advanced
economies, weather forecasts are produced by national agencies on the basis of
detailed sensor readings, and advanced computer simulations, that allow for accurate
short-term and medium-term predictions of the future. Similar stories can be told in
computational drug design, computational systems biology, and so on. Advocates of
the use of predictive computer simulations in science and engineering have argued
that this approach now represents a well-established third paradigm within science, in
addition to the two long-established paradigms of empirical observation and
theoretical modeling/generalization (see e.g. Gray, 2009, p.xviii).12

It’s important to be clear about the nature of the predictive simulation models that we
are advocating here. Meteorological simulations are predictive in the sense that they
make weather-forecasts, specific projections about the likely future state or states that the
real-world weather system may find itself in; that is, they say what is about to happen, or
what would be likely to happen under specific circumstances. This is the most familiar
practical use of simulation modeling. But there is a second use to which simulation
modeling can be put: simulating a model of some system allows the model itself to be
explored; in this sense, the model is an embodiment, an implementation in computer-
code, of a theory of how the thing being modeled works. This second type of simulation

12 The use of predictive simulations in engineering safety-critical complex systems-of-systems

is discussed further in Appendix A.4.

44 D. Cliff and L. Northrop

modeling often starts out as essentially exploratory, with the intention of delivering
explanatory insights that would otherwise have been difficult or impossible to come by.

One illustrative example of this kind of simulation-as-explanation is Schelling’s
(1971) model of racial segregation, where a very simple iterative process (i.e., an
algorithm) operating on black or white markers positioned on a grid of square cells
arranged chessboard-like over a two-dimensional space (i.e., an abstract model of the
real world) was used to explore and explain how groups of people expressing only very
weak preferences for wanting to live near to neighbours of the same race could lead
over time to total segregation with large spatial clusters all of one race or the other. That
is, the Schelling model, when simulated, showed in its dynamics an emergent behavior
at the system-level that was unexpected and difficult to predict from mere inspection of
the set of rules that the simulated people (the “agents” in the model) were specified to
follow; Schelling was subsequently awarded the 2005 Nobel Memorial Prize in
Economic Sciences. For a recent collection surveying such exploratory and explanatory
simulation modeling in social sciences research, an approach now widely known as
agent-based modeling, see Epstein (2007); and for a review of foundational work in
agent-based computational finance, see LeBaron (2000).

Of course, computational simulations are currently also routinely used by financial
institutions: Monte-Carlo techniques are used to solve and explore options-pricing
models, to evaluate value at risk, to back-test trading algorithms on historical data,
and to perform stress-tests on individual financial instruments or on portfolios of such
instruments. But historically it has been much less commonplace to simulate entire
markets at a fine-grained level to study issues in overall system behaviour in an
exploratory fashion.

In an excellent book, Darley & Outkin (1997) give a detailed description of how
they used complex adaptive systems (CAS)13 agent-based simulation-modeling
techniques to explore the consequences of the Nasdaq exchange’s move from quoting
prices expressed as multiples of sixteenths of a dollar to fully decimalized prices,
expressed as multiples of one hundredth of a dollar (i.e., as dollars and cents). In the
language of the markets, this was exploring the effects of a reduction in the Nasdaq
“tick size” from $0.0625 to $0.01. Nasdaq had previously changed its tick-size from
$1/8th to $1/16th in 1997, and there was evidence to suggest that at the same time there
had been a change of strategies among the market participants trading on Nasdaq.
Nasdaq commissioned Darley & Outkin to construct a detailed simulation model to
evaluate possible effects of changing the tick-size to $0.01, in advance of the actual
decimalization which was completed in April 2001; that is, Darley & Outkin
were dealing in predictions, not postdictions. Darley & Outkin’s book recounting
this predictive-simulation CAS work was published several years later. In it, they
state:

“While building the simulated model of the market, we interacted

extensively with many market participants: market-makers, brokers,
traders, large investors, etc. We found this interaction invaluable – as a
source of information in particular on often subtle details of market
operations, as a venue for verifying our assumptions and simulations

 13 The definition of a “complex adaptive system” is explored in more depth in Appendix A.3.

 The Global Financial Markets: An Ultra-Large-Scale Systems Perspective 45

results, and at times as a source of constructive criticism. One
conversation with a market maker still stays clear in our minds. He was
supportive, but skeptical. The core of his skepticism lay in this question:
how one can model the fear and greed often ruling the market behavior?
This is a valid point: while fear and greed affect markets immensely, as
has been time and again demonstrated by numerous booms and busts,
understanding of underlying individual and mass psychology is lacking.

“In our approach we address this problem by explicitly modeling
strategies of individual market participants, by allowing those strategies to
evolve over time due to individual learning or evolutionary selection, and
by allowing to [sic] investigate various what-if scenarios by using user-
defined strategies.”
(Darley & Outkin, 1997, pp.5-6)

Darley & Outkin report that the results from their CAS simulations led them to make
six substantive predictions before decimalization was enacted, and that events
subsequent to the actual decimalization largely supported all of those predictions,
except one (concerning the upper bound on the increase in trading volume, which had
not yet been reached by the time that Darley & Outkin published their book).

Darley & Outkin’s book describes a simulation model of one specific real-world
exchange, and was the first to do so in such detail. For other studies of using CAS
simulation-modeling techniques to explore how the collective behaviour of individual
trader-agents can give rise to certain market-level phenomena, see e.g. Palmer et al.,
1994; Cliff & Bruten, 1999; LeBaron, 1999; Levy et al., 2000; and Tesfatsion & Judd,
2006.

Given the success of Darley & Outkin’s work, which is now over a decade old, it
seems entirely plausible to propose that a similar complex-adaptive-systems,
evolutionary agent-based, predictive simulation model could be constructed to assess
the dynamics and behavior of individual financial markets, or indeed of the entire
global financial market system. Obviously, it would be a major endeavour to create
such a model, requiring national-scale levels of investment and ongoing funding to
provide appropriate resources of human capital and computing power.

Nevertheless, there is an obvious precedent in most advanced economies: very
many countries fund, as a national utility, a meteorological agency such as the UK’s
Met Office14. Combining real-time sensor data from satellites and ground-based
observation stations with historical data and advanced, highly compute-intensive,
predictive simulation models, the Met Office is able to give accurate near-term
weather forecasts with a high spatial precision.

The famously chaotic nature of weather systems (Lorenz, 1963) means that accurate
longer-term predictions remain more problematic, and the same is very likely to be true
of long-term predictive models of the financial markets, but there is a well-established
technique used in meteorological forecasting that should also be of use modeling the
markets: so-called ensemble forecasting, where the same model is re-run many
hundreds or thousands of times, with each fresh run having minor variations in the
initial conditions, and/or a different sequence of random numbers generated in the
modeling of stochastic factors (see, e.g., Smith, 1995, 2002). From a thousand runs

14 http://www.metoffice.gov.uk

46 D. Cliff and L. Northrop

(say) of a model aimed at predicting the weather 48 hours into the future, it may be that
243 of the simulations show snowfall on a particular area, 429 show rain, and the rest
predict no precipitation; with these results, the forecast for two day’s time would be a
24% chance of snow, a 43% chance of rain, and a 33% chance of it staying dry. In this
sense then, the forecast is a probability function over the space of possible outcomes.
Here we have only three mutually exclusive outcomes; a more sophisticated model
might give a probability density function (PDF) over the space of possible precipitation
levels measured to the nearest millimeter per unit of area, and also a separate PDF over
the space of possible ambient temperatures, measured to the nearest degree Celsius;
taken together, the two PDFs would form a prediction of whether water would fall from
the sky, and whether it would fall as rain or as snow.

So, the chaotic nature of financial markets is not necessarily an impediment to the
development of predictive simulation models, so long as sufficient computing
resources are made available to allow for ensemble forecasting. In fact, it is likely that
the real value of the ensemble forecasting work would be in running very many
simulations (perhaps tens or hundreds of thousands or more) in the search for those
extremely rare but devastatingly problematic combinations of circumstances that have
become widely known as Black Swan events (Taleb, 2007). It seems reasonable to
describe the May 6th Flash Crash as a Black Swan event, and maybe the likelihood of
such an event could have been predicted in advance, if a suitably detailed simulation
model had been available beforehand. Of course the simulation would not have
predicted that the crash would occur on May 6th, and would probably not have
identified the precise trigger event. But it does seem entirely reasonable to argue that
an appropriate model may have identified in advance the existence of a nonzero
probability that if a certain type of order is executed in sufficiently large volume with
certain (lack of) constraints on its execution pattern, that order could interact with the
existing population of traders (both human and machine) to cause a “hot-potato”
dynamic leading to a sudden, largely irrational, mass sell-off, exposing stub-quote
values as reference prices, and leading major exchange-operators to declare self-help
against each other, which is the current official story (CFTC & SEC, 2010a,b).

The possibility of such a sequence of events does not seem to have been much
discussed prior to May 6th; perhaps if an appropriate national-level or international-
level modeling facility had been operational, people would have been aware of the
latent risk. Central government treasury departments in most economies have for
many years (since before the advent of electronic computers) run large-scale macro-
economic models for forecasting, but as far as we are aware there are no mature
models used to understand and predict issues of systemic risk in the financial markets.
Such a systemic-risk market simulator system could also be used for training market
practitioners and regulators in dealing with rare but extreme situations, in much the
same way as civil and combat aeroplane pilots are trained to deal with various rare but
serious aircraft system failures by flying many hours of simulator practice, so that in
the unlikely event of such a failure occurring on a real flight, the pilot can rely on her
lessons learned and experience gained in the simulator. The rescue of Apollo 13 owed
an awful lot to the availability of accurate simulation models (physical electro-
mechanical ones rather than purely virtual computer simulations) at NASA Mission
Control. The simulators had been developed to train the astronauts in dealing with
various mid-mission failure situations, including using the Lunar Excursion Module

 The Global Financial Markets: An Ultra-Large-Scale Systems Perspective 47

as a “lifeboat”, as was necessary on Apollo 13; after the explosion on Apollo 13 the
simulators also became the test-bed for evaluating novel procedures necessary to keep
the crew safe and the crippled ship on its return course.

Simulation models used in complex systems engineering are typically not intended
for training humans within the socio-technical system being simulated; rather, any
human agents within the real system are also simulated in the model of that system.
Nevertheless, the use of simulation models as scientific evaluation and training tools
for humans dealing with unusual complex situations has a long history: see, e.g.,
Sloan (1981) and Dorner (1990, 1997), yet there is currently very little in the way of
comparable use of personnel training/evaluation simulators in the financial markets.
Trainee traders typically learn the ropes by running “dummy” accounts, keeping a
record of trades that they would have made, but did not actually execute, so that any
losses are merely on paper; this can be done using live market data, and trading
strategies can also be back-tested on historical data. A notably more sophisticated
simulator, integrating real-time price feeds, was developed in a collaboration between
the University of Pennsylvania and Lehman Brothers, the Penn-Lehman Automated
Trading project, described by Kearns & Ortiz (2003).

While techniques such as these work well as training for situations where the trader’s
activity has no immediate effect on the prices of the securities being traded, they cannot
readily model market impact, where the mere act of revealing the intent to buy or sell a
large quantity of a security means that other traders in that security (potential
counterparties to the trade) alter their prices before the transaction occurs, in anticipation
of the change in price that would otherwise result after the transaction has executed.
Furthermore, simulators based on regurgitating historical data offer essentially nothing
toward understanding the current or future overall system-level dynamics of the system:
they can tell you what happened, but not what might happen next, nor what might have
happened instead. Simulators for evaluating trading strategies on historical data are
sometimes referred to as financial-market “wind-tunnels” (e.g. Galas et al., 2010). A
financial-market wind-tunnel is certainly useful in refining the dynamics of an
individual trading strategy, in much the same way as a traditional engineer’s wind
tunnel is useful in refining the aerodynamics of a new aeroplane or car. But financial-
market wind-tunnel simulators are of zero help in understanding systemic issues such as
financial stability, for much the same reason that an aerodynamicist’s wind tunnel can
tell you nothing about system-level phenomena such as traffic congestion in a city’s
street, nor air safety in a nation’s skies.

More fancifully, it may also be worth exploring the use of advanced simulation
facilities to allow regulatory bodies to act as “certification authorities”, running new
trading algorithms in the system-simulator to assess their likely impact on overall
systemic behavior before allowing the owner/developer of the algorithm to run it
“live” in the real-world markets. Certification by regulatory authorities is routine in
certain industries, such as nuclear power or aeronautical engineering. We currently
have certification processes for aircraft in an attempt to prevent air-crashes, and for
automobiles in an attempt to ensure that road-safety standards and air-pollution
constraints are met, but we have no trading-technology certification processes aimed
at preventing financial crashes. In the future, this may come to seem curious.

48 D. Cliff and L. Northrop

We’re not arguing here that predictive simulation models are a “silver bullet”, an
easily achievable panacea to the problem of assessing systemic risk and identifying
black-swan failure modes: developing and maintaining such models would be
difficult, and would require a major research investment. It seems very likely that
quantitative analytical techniques such as probabilistic risk assessment (see e.g.
Stamatelatos et al., 2002a, 2002b; Dezfuli et al., 2009; Hubbard, 2009) and
probabilistic model-checking (e.g. Calinescu & Kwiatkowska, 2010; Calinescu,
Kikuchi, & Kwiatkowska, 2010) would also need to be involved, in sufficiently
extended forms, to help constrain the (otherwise impossibly vast) space of possible
situations and interactions that would need to be explored by the simulations.

While there is no shortage of challenges in simulating the technical entities in
socio-technical systems, simulating the social entities is almost always even more
problematic, and this is something that doesn’t have to be addressed by
meteorological forecasting systems. Whether individual human agents, or groups of
humans operating and interacting as teams or large organizations, the social entities in
a socio-technical system are frequently present in virtue of the fact that they are
needed to perform roles and discharge responsibilities with levels of flexibility,
adaptability, and subtleness that are beyond the capability of automated systems.
Modelling those kind of issues certainly presents a large number of deep technical
challenges, and it is fair to say that the representations of social entities in many HISE
models are often quite primitive: simple probabilistic models of humans switching
from “safe” to “error” status are not uncommon. More sophisticated nondeterministic
behavioural models such those based on Markov chains (e.g. Haccou & Meels, 1994;
Benveniste et al., 2003), and computational implementations of models of behaviour
and motivation from the ethology literature (such as Lorenz’s well-known hydraulic
model explained in his 1966 book On Aggression) have all been explored in the
research field that studies mechanisms for the generation or simulation of adaptive
behaviour in animals (including humans) and synthetic agents, including those that
are needed to model human ingenuity and adaptivity in predictive simulation models.
One of the biggest drivers for this research is the need for creating believable
synthetic agents in virtual environments such as computer games, yet the work
presents deep challenges and is also directly relevant to simulations of real-world
scenarios for training and evaluation purposes (so-called “serious games”)15: see, e.g.,
Blumberg, 1996; Ivanov, 2002; Tomlinson & Blumberg, 2002; Horswill 2009. In
some limited domains, for instance the modeling of emergency egress by crowds of
humans from stricken structures (such as burning buildings or sinking ships), where
there is reasonable data for how humans do behave in such circumstances, such

15 See, for example, the Serious Games Institute at http://www.seriousgamesinsti

tute.co.uk, the Serious Games Initiative at http://www.seriousgames.org/, and
the various research outputs from FutureLab on Games and Learning, Serious Games in
Education, Game-Based Experience in Learning, and Teaching with Games, all available at
http://www.futurelab.org.uk/projects/. An extensive report on the use of
serious games in military education and training was produced by Caspian Learning for the
UK Ministry of Defence:http://www.caspianlearning.co.uk/MoD_Defence_
Academy_Serious_games_Report_04.11.08.pdf.

 The Global Financial Markets: An Ultra-Large-Scale Systems Perspective 49

models have proven to be genuinely insightful (see, e.g., Johnson, 2005, 2006, 2008;
Johnson & Nilsen-Nygaard, 2008)16.

The significant cost of constructing and operating such a simulation facility could
possibly be met from the public purse via general taxation, or could perhaps be
funded by direct contributions from the major financial corporations (banks, fund-
management companies, exchange operators, insurers, etc.) operating in a particular
country or group of countries. If funded as a public-sector project, it would of course
be necessary to recognize that in addition to the significant technical challenges, the
establishment of such a simulator facility also present significant budgetary
challenges and the entire endeavour would need to stand up to a thorough cost-benefit
analysis: this is an issue expanded upon by Bullock (2011).

However, it is not the case that the only way of building or running such a
simulation facility is via public-sector financing. It is possible that a group of
financial institutions could collaborate on, and co-fund, the necessary capital
expenditure at start-up and ongoing operational costs. A UK precedent for this, albeit
in a different industry sector, is the independent non-profit company CFMS Ltd17

 that
is jointly owned and operated by founding partners Airbus, BAE Systems, Frazer-
Nash Consultancy, MBDA UK, Rolls-Royce, and Williams Formula 1 Engineering.
CFMS exists to advance the theory and practice of simulation-based design processes,
and has invested in its own high-performance computing facilities available in its
Advanced Simulation Research Centre (ASRC). Given the importance of
aerodynamics to many of the founding partners, there is a focus on computational
fluid dynamics modeling in CFMS/ASRC, which is of no direct relevance to the
world of finance. Nevertheless, the success of CFMS and ASRC shows that
independent companies can indeed come together to co-found and co-run shared
facilities as an investment in pre-competitive research and development capability.

If a major simulation facility was constructed, revenue could be generated from
levying charges for anyone wanting access to it, and also possibly from using it as a
training or certification facility. The potentially massive cost involved is not
necessarily a disincentive: if the simulator was constructed on a minimal budget of
(say) several hundred thousand pounds, it would be reasonably easy for financial
corporations such as a hedge funds or investment banks to fund their own rival
internal projects, probably much better-resourced, which would then detract from the
public-good shared-utility nature of what is proposed here.

But, if the national-level simulator was funded by tens or hundreds of millions of
pounds (and assuming that these pounds were spent wisely) then it is plausible that it
would be so well resourced, and hence so much more detailed and/or accurate, that no
private corporation could reasonably hope to compete with it, then all private
corporations reliant on its results would have an incentive to contribute to the running
costs, and the intellectual content, of the simulator facility as a common good. The
facility would then be a pre-competitive shared resource: all contributing corporations
would have access to details of its design and construction, and all would have access
to its facilities for running experiments. Corporations would nevertheless be free to

16

 See also http://www.massivesoftware.com/real-world-simulation-
gallery/.

17 See www.cfms.org.uk

50 D. Cliff and L. Northrop

compete on the basis of what questions they ask of the simulator (details of each
corporation’s specific experiments could be kept confidential), and in how they then
use the results from their experiments.

Of course the counterargument to developing a single utility facility is that this
would concentrate risk: if the one national simulator is wrong, and everyone is using
results from that simulator, then everyone’s expectations or predictions are wrong at
the same time. This is also manifestly true of national weather-system simulator
facilities, and there is no shortage of examples of entire nations being taken by
surprise when their state-funded monopoly weather-forecasting services got it
wrong.18

One approach to mitigating this risk may be to enforce so-called “n-plex
redundancy”, as is common in the design of controllers for aerospace and defence
systems, where the same control-system functionality is implemented by n multiple
parallel systems, each designed and implemented by different independent suppliers,
often constrained to not use the same core technologies (such as particular processor
chips, programming languages and compilers, third-party suppliers, etc). The
rationale for such an approach is that, while each of the n redundant systems may
have one or more failure modes, the likelihood of all n systems having the same (or
overlapping) vulnerabilities is greatly reduced by the active prevention of them
sharing common components and/or development paths. Thus, so the argument goes,
while one or more of the individual systems may fail from time to time, the remaining
parallel redundant systems will most probably remain operational, and thereby
coherent control will be maintained. So, maybe the best approach is for a national
agency to commission some small number n of competing predictive simulation
models, adopting or guided by the principle of n-plex redundancy, in the hope that the
collective indications from the suite of n independent simulations can be trusted more
than the lone voice of a single model.

A more thorny issue is the effect of the feedback loop from the model(s) back to
the market systems being modeled. Results from a predictive simulation model of the
weather do not actually alter the weather, but results from a market simulation may
have a significant effect on the subsequent behavior of agents within the real-world
markets that the simulator is a model of. There is prior evidence of self-fulfilling
prophecies driving market dynamics, such as the theory that market activity is
somehow affected by the number of sunspots. There is no a priori causal mechanistic
explanation for why sunspots might affect market activity, but someone once
proposed that there was at least a correlation between sunspot numbers and markets
rising or falling; all that was then required was for enough people to believe in the
correlation and to allow that belief to alter their trading activity in the markets. This

18 On October 15th, 1987, a UK Met Office forecaster reassured viewers on the BBC prime-time

evening weather broadcast that there was not a hurricane coming, in an attempt to quell
earlier speculation. Later that night the south of England was hit by the worst hurricane-force
windstorm for over 250 years, with speeds gusting to 120mph for several hours, causing huge
amounts of damage and unprecedented levels of disruption for days afterwards. Other
nations’ meteorological forecasting services on mainland Europe, using different monitoring
and prediction models, had given more accurate forecasts of the windy weather that night.

 The Global Financial Markets: An Ultra-Large-Scale Systems Perspective 51

shared belief then became the causal link: if enough people are counting sunspots and
using that to drive their market behaviour, then an increase in the number of sunspots
will indeed affect the market in the manner that was “predicted” by their belief,
thereby reinforcing the conviction of those who already hold the belief and helping to
convert non-believers. The causal feedback loop from predictive simulations back to
the real-world markets is something that will need to be handled well, but it is not
necessarily a problem: the feedback could have a positive effect, dampening
unwelcome dynamics.

To conclude, we observe that there is an old saying: “if it ain’t broke, don’t fix it”.
This is certainly wise guidance in very many situations. But it is important to remember
that for some systems, when they do actually break, they go so catastrophically wrong
so superhumanly fast that the safest option for such a system really is to fix it while it
ain’t broke, because that is the only decent chance you’ll get. This is the case for many
large-scale complex IT systems (LSCITS). Ensemble forecasting via n-plex redundant
predictive simulation models is not cheap, is not easy, and is certainly far from perfect,
but it may just be the best option currently available.19

The novelty of this proposal can perhaps be judged by the fact that the most recent

comprehensive UK industry-focused review examining mechanisms for achieving
supervisory control of systemic risk (Bonisch & Di Giammarino, 2010) mentions
predictive simulation modeling only obliquely, in passing; but that same report also
mentions the Flash Crash only once, in passing, too, as if such a manifestly deviant
event was already normalized.

Nevertheless, we are certainly not the only people to be making such proposals:
see, e.g. (Farmer & Foley 2009; Economist, 2010; Harford, 2011; Salmon, 2011), and
the UK Government Office for Science’s recent Foresight project exploring the future
of computer trading in the financial markets has commissioned two excellent reviews
that discuss aspects of the idea in more detail: see Bullock (2011) and Farmer &
Skouras (2011). The UK already has significant investments in university research
centres that could make valuable contributions to this approach.20

In his April 2009 speech Rethinking the Financial Sector, Andy Haldane, Executive
Director for Financial Stability at the Bank of England, argued that three steps were
necessary to safeguard against another series of events like the 2007/08 subprime crisis:
all three steps deal with the global network of interacting financial institutions.
Haldane’s argument was that we should work first to map that network; then take steps
to better manage and regulate the existing network; and then explore useful ways in
which the network could be restructured or otherwise modified. We contend that all
three of these steps (map, manage, & modify) could, and in fact should, be performed

19 In the interests of balance, for recent counterarguments to the use of simulation models, see

Turkle (2009).
20 Major UK academic research centres that could be involved include: the Bristol Centre for

Complexity Science (http://bccs.bristol.ac.uk); the Bristol/Bath Systems
Engineering Centre (www.bristol.ac.uk/eng-systems-centre/); the
Southampton Institute for Complex Systems Simulation (www.icss.soton.ac.uk); the
UCL PhD Centre for Financial Computing (http://fc.cs.ucl.ac.uk/phd-
centre); the York Centre for Complex Systems Analysis (www.yccsa.org); and the
UK Large-Scale Complex IT Systems Initiative (www.lscits.org).

52 D. Cliff and L. Northrop

via an appropriate simulation-model-based engineering approach: creating and
maintaining the model would be Haldane’s mapping exercise; once operational, the
effects of different regulatory actions, and any potential restructuring of the financial
network could be explored and evaluated in the model too.

4 Summary

The Flash Crash of May 6th 2010 was a sudden and dramatic failure in a ultra-large-scale
software-intensive socio-technical system (the US financial markets) with prices running
wild at a speed and magnitude of volatility that were without historical precedent. The
fact that there was not major lasting damage to the global financial markets is perhaps
more due to luck than judgement: if the down-spike in the Flash Crash had occurred five
minutes before market close in New York, it’s plausible that could have triggered a
contagious global sell-off that then went on to wrap around the world.

Yet from a broader perspective it is clear that the Flash Crash was just one more in
a sequence of failures of risky technology, and quite plausibly such an event was
made more likely via a prior process of financial-market practitioners becoming
increasingly tolerant of unexpected events, previously thought to be unacceptable, not
resulting in disasters: that is, via a process of normalization of deviance.

The problems posed by attempting to engineer and manage reliable ultra-large-
scale complex adaptive socio-technical systems of systems are becoming ever more
clear, but further research is needed to develop appropriate tools and techniques.
System-of-systems issues of scaling, normal failure, heterogeneity via organic
growth, and emergent behavior all have to be addressed. Parallel running of multiple
redundant predictive simulation models is one approach that may now be applicable
for assessing and controlling systemic risk in the financial markets.

The engineering of LSCITS and ULS socio-technical ecosystem system-of-systems
is in its infancy: it has significant differences from traditional engineering of smaller-
scale systems, and developing rigorous trusted approaches may turn out to be a long
haul. The UK’s LSCITS Initiative and the USA’s Ultra-Large-Scale (ULS) Systems
Initiative are each articulations of national strategic concerns. Both represent a
sizeable step toward developing a new community of practitioners and researchers
who are conversant with all the necessary subfields that can contribute to addressing
issues in the science and engineering of such systems, forming those communities of
practice will take several years of sustained investment. Without doubt this is not
merely responding to a national need but an international one. We, the authors of this
report, welcome any researchers, practitioners, regulators, policy-makers or sponsors
who would like to become involved in the LSCITS and/or the ULS Systems
initiatives. The intellectual challenges are significant, but not insurmountable; the
potential societal savings are massive, and the scale is truly global.

Acknowledgements. This chapter is slightly revised and extended/updated from a
report that we co-authored in early 2011 for the UK Government Office for Science’s
Foresight project on the future of computer trading in the financial markets. We thank
the following people for valuable conversations and/or for their comments on previous
versions of this document: Prof. Philip Bond, University of Bristol and University of

 The Global Financial Markets: An Ultra-Large-Scale Systems Perspective 53

Oxford; Prof. Seth Bullock, University of Southampton; Andy Haldane, Bank of
England; Kevin Houston, FIX Protocol Ltd; Prof. David Parkes, Harvard University;
Lucas Pedace, UK Government Office for Science; Dr. John Rooksby, University of St
Andrews; Tim Rowe and his colleagues at the UK Financial Services Authority; Prof.
Ian Sommerville, University of St Andrews; Dr. Gillian Tett, The Financial Times; and
Nigel Walker, UK Financial Services Knowledge Transfer Network.

Appendix: High-Integrity Large-Scale Complex Ecosystems

In this Appendix we take a quick tour through the concepts and approaches from
current systems engineering that are relevant to the discussion just presented, but for
which going into detailed explanation or definition would have been a distracting
diversion from the flow of our argument. In sequence, here we briefly review high-
integrity approaches to systems engineering (Appendix A.1); the definitions of
Systems-of-Systems (A.2) and Complex Adaptive Systems (A.3); and then selected
current leading-edge approaches to the high-integrity engineering of complex
adaptive systems-of-systems (A.4).

A.1 High-Integrity Systems Engineering

High-integrity engineering techniques for safety-critical systems have a long heritage,
and it’s simply beyond the scope of this document to provide a comprehensive review
of all the relevant background literature; for detailed surveys, see the review chapters
in the recent PhD theses by Alexander (2007, pp.29-55), Despotou (2007, pp.41-76),
and Hall-May (2007, pp.33-72).

It is commonplace in real-world engineering situations to be dealing with systems
that simply cannot be guaranteed to be absolutely safe because key components in the
system are known not to be absolutely reliable. If one of the key components is
known to be 99.99999% reliable, that is an admission that there is a 0.00001% chance
of failure; if failure of that component compromises the safety of the overall system,
then there is a risk (small, but nonzero) that the system will become unsafe. Safety
engineering has developed techniques for estimating the causal chains of events
leading to failure, the attendant risks of failure, the effects of failure, and for reducing
those risks and limiting their effects; in this sense then, risk and reliability are two
sides of the same coin.

One of the earliest forms of risk and reliability assessment method, developed in
the 1960’s US aerospace and missile programs, is fault-tree analysis (FTA). FTA
operates by the engineer first identifying “basic events” such as a fuse blowing or a
relay-switch failing to open. Significant combinations of these basic events are then
aggregated into a graph structure much like a family tree: compound events are
formed via “gate” nodes that link basic events. It may be that basic events E1 and E2
and E3 all have to occur for a particular output fault F1 to occur: on the graph the
event nodes E1, E2, and E3 would be shown as “daughters” of F1, with F1 denoted as
an “and” gate. Other types of gate include: “or” (any one or more of the daughters
triggers the compound fault);“combination” (the compound fault is triggered by any n

54 D. Cliff and L. Northrop

or more of the daughters occurring, for n>1); “exclusive or” (exactly one daughter
will act as the trigger); “priority and” (the daughter events have to all occur in a
specific sequence); and “inhibit” (the daughter event occurs as the same time as some
enabling condition). The daughter nodes of a compound event are not required to be
basic events: they can be other compound events, and so it is possible to construct
deep trees showing how basic events, combinations of basic events, and combinations
of those combinations, can each combine to contribute to particular faults or failures
in the system under analysis. Fault-tree analysis distinguishes between failure effects
(such as a switch failing to make contact), failure modes (such as the switch’s contacts
being broken, or the contacts having a very high resistance), and failure mechanisms
by which those modes may come about (such as high resistance on the switch
contacts being caused by corrosion of the contact surfaces, or by an insulating coating
having been spilled onto them); this well-known safety-critical engineering practice is
known as Failure Modes and Effects Analysis (FMEA). For further details, see e.g.
Stamatelatos et al. (2002b).

FMEA and FTA, as just described, are essentially qualitative, deterministic,
approaches. In recent years, there has been a concerted move toward developing
quantitative approaches where numeric values represent measures of risk. An
obvious, intuitive, risk metric is the probability of failure, and so the field is widely
known as probabilistic risk assessment (PRA).21

 Over much the same period, the field
of mathematical statistics has undergone something of a revolution in the rapid
adoption of the so-called Bayesian approach as an alternative to the long-established,
traditional, frequentist approach, and this has been reflected in the PRA literature. For
instance, in 2002 NASA published a 323-page guide to PRA procedures for its
managers and practitioners (Stamatelatos et al., 2002a) based on traditional
frequentist statistics, but then in 2009 it published a new 275-page guide to PRA
using Bayesian methods (Dezfuli et al., 2009). Some authors, most notably Hubbard
(2009), have argued forcefully that PRA should be the only game in town, but PRA is
not without its critics and detractors: see, for example: Parry (1996); Slovik (1999);
and Apostolakis (2004).

The opening page of NASA’s 2002 guide to PRA neatly summarises the history of
its adoption in that organization:

“Legend has it that early in the Apollo project the question was asked
about the probability of successfully sending astronauts to the moon and
returning them safely to Earth. A risk, or reliability, calculation of some sort
was performed and the result was a very low success probability value. So
disappointing was this result that NASA became discouraged from further
performing quantitative analyses of risk or reliability until after the
Challenger mishap in 1986. Instead, NASA decided to rely on the Failure
Modes and Effects Analysis (FMEA) method for system safety assessments.
To date, FMEA continues to be required by NASA in all its safety-related
projects.

21 Some authors (e.g. Apostolakis, 2004) instead refer to Quantitative Risk Assessment, to

cover the possibility that the numerical values being manipulated are not strictly
interpretable as probabilities.

 The Global Financial Markets: An Ultra-Large-Scale Systems Perspective 55

“In the meantime, the nuclear industry picked up PRA to assess safety
almost as a last resort in defense of its very existence. This analytical method
was gradually improved and expanded by experts in the field and has gained
momentum and credibility over the past two decades, not only in the nuclear
industry, but also in other industries like petrochemical, offshore platforms,
and defense. By the time the Challenger accident occurred, PRA had become
a useful and respected tool for safety assessment. Because of its logical,
systematic, and comprehensive approach, PRA has repeatedly proven
capable of uncovering design and operation weaknesses that had escaped
even some of the best deterministic safety and engineering experts. This
methodology showed that it was very important to examine not only low-
probability and high-consequence individual mishap events, but also high-
consequence scenarios which can emerge as a result of occurrence of
multiple high-probability and nearly benign events. Contrary to common
perception, the latter is oftentimes more detrimental to safety than the
former.“ (Stamatelatos et al., 2002a, p.1)

NASA’s series of public-domain guides on FTA, frequentist PRA, and Bayesian PRA
(Stamatelatos et al., 2002a; Stamatelatos et al., 2002b; Dezfuli et al., 2009,
respectively) talk in terms of estimating and assuring system safety/reliability: they do
not involve themselves in the distinction between systems, and systems-of-systems
(SoS), which was informally introduced earlier. However, for the discussion that
follows, we need to take a brief diversion into a more precise definition of what
precisely we mean here by “SoS”.

A.2 Systems-of-Systems: Directed, Collaborative, Coalition, and Ecosystem

Probably the most-cited paper in the SoS literature is Maier’s “Architecting Principles
for Systems of Systems” (1998), and we will use Maier’s careful definition of a SoS
here. Maier proposed two primary characteristics that distinguish a SoS: a system that
did not exhibit these two characteristics was, in his terms, not to be considered as a SoS
“…regardless of the complexity or geographic distribution of its components.” (Maier
1998, p.271, original emphasis). Maier’s definition reads as follows:

“A system-of-systems is an assemblage of components which individually
may be regarded as systems, and which possess two additional properties:

“Operational Independence of the Components: If the system-of-systems
is disassembled into its component systems the component systems
must be able to usefully operate independently. That is, the
components fulfill customer-operator purposes on their own.

“Managerial Independence of the Components: The component systems
not only can operate independently, they do operate independently.
The component systems are separately acquired and integrated but
maintain a continuing operational existence independent of the
system-of-systems.”

(Maier, 1998, p.271, original emphasis)

56 D. Cliff and L. Northrop

A strict interpretation of Maier’s definition of SoS would argue that the US Space
Shuttle, even at one second before launch, is not a system of systems. The Orbiter, its
external fuel tank, its left and right SRBs, and the launch-pad and support-tower that
they all lift off from, do not have immediate operational independence: that is, they
were all intimately designed to work with each other. It might perhaps be argued that
with a little tinkering the SRBs could be re-engineered to usefully operate
independently (as warhead-carrying long-range missiles, perhaps), but that would be
clutching at straws: even if that were true, there is no real sense in which any of the
Shuttle’s component systems exhibit Maier’s second property, of managerial
independence, and on that basis the Shuttle at launch is simply not an SoS. At launch,
each of the shuttle’s component systems is under the collective, coordinated,
combined command of NASA (the precise nexus of that command is something that
is constructed by the interaction of, and shifts dynamically between, Mission Control
on the ground, and the astronauts onboard the Shuttle).

Precisely because of Maier’s definition, earlier in Section 2 of this paper we were
careful not to describe the Shuttle as a SoS. Nevertheless, it is clear that the global
financial markets network, or even “just” the financial markets operational in one of
the major global hubs such as London or New York, satisfy both the operational
independence and managerial independence criteria. Maier goes on to note that SoS
can be classified as Directed (built and managed to fulfill specific purposes), or
Collaborative, or Virtual. His definition of collaborative SoS reads as follows:

“Collaborative systems-of-systems are distinct from directed systems in that
the central management organization does not have coercive power to run
the system. The component systems must, more or less, voluntarily
collaborate to fulfill the agreed upon central purposes.”
(Maier, 1998, p.278).

In Maier’s terms, a virtual SoS is then a SoS that is neither directed nor collaborative,
i.e. it is one for which there is no central management authority, and also no agreed
upon central purposes. Maier is explicit that he considers national economies to be
virtual SoS; and it seems obvious that in Maier’s terms the global financial markets
are also virtual SoS. But classifying the markets as a virtual SoS simply because of
their absence of central management and centrally agreed purpose glosses over some
important richness in the network of interacting institutions within the financial
markets. The markets involve varying numbers of various types of institution (e.g.,
investment banks, hedge funds, exchange operators, insurers, technology providers).
The organizations that participate in the markets (and those that regulate them too)
serve different purposes; some of them are in direct competition with other
institutions (sometimes in zero-sum terms), others are in collaborative relationships
with one or more other institutions; and such institutions come and go over time.
Sommerville et al. (2012) have recently coined the term “Coalition of Systems” to
describe this class of SoS; before that, Valerdi et al. (2008) referred to “No Single
Owner SoS”, and Northrop et al. (2006) coined the term socio-technical ecosystems,
to capture the same notion that these SoS can be represented as a web of interacting
constituents: in some cases the interactions are collaborative, in others they are
competitive, all within the one SoS. It seems unarguable that the technology-enabled
global financial markets of today, and in the future, are ecosystem-SoS.

 The Global Financial Markets: An Ultra-Large-Scale Systems Perspective 57

The development of techniques for maintaining and managing high-integrity large-
scale ecosystem-SoS is a new and significantly under-researched field. Fewer than
five years ago, eight authors from industry and academia co-authored a paper (De
Laurentis et al., 2007) calling for an international consortium on SoS engineering to
be established, to better understand the problems and solution strategies associated
with SoS, yet their conception of a SoS was phrased in terms of “…heterogeneous
independently operable systems to achieve a unique purpose” (p.68) – that is, they
concentrated on a conception of SoS that is better suited to Maier’s
directed/collaborative SoS than the ecosystem-SoS of Northrop et al. Books and
research papers exploring how to engineer robustly scalable socio-technical systems
are currently few and far between (but see Abbot & Fisher, 2009; Rooksby,
Rouncefield, & Sommerville, 2009; Baxter & Sommerville 2010).

The primary reason for that is because the development of reliable practices, and
engineering teaching, for ensuring or assuring the integrity or safety of a SoS is a
current research challenge; one that is being actively pursued by the world’s leading
research groups in high-integrity systems engineering, and even those leading
researchers would admit that it is not yet a solved problem. In contrast to traditional
engineering teaching, with its emphasis on designing “from scratch”, starting
(metaphorically at least) with a clean sheet of paper, most SoS instead arise from
organic processes of aggregation and accretion, where pre-existing systems are
integrated as constituents into the SoS. In almost all large-scale SoS, there is significant
heterogeneity (which itself changes over time) because different constituents in the SoS
were added at different stages in the development of the SoS and arrived via differing
design and implementation paths. In their 2008 book Eating the IT Elephant: Moving
from Greenfield Development to Brownfield, senior IBM staff Richard Hopkins and
Kevin Jenkins made the analogy between the greenfield/brownfield distinction in civil
engineering, and modern-day large-scale complex IT projects. A greenfield engineering
project is one in which construction takes place on a previously undeveloped site,
allowing a “clean-sheet” approach at the design stage, with relatively little preparatory
work required on-site before construction, and with relatively few constraints on the
construction process. A brownfield project is one in which the site has previously been
built on and hence may require significant clearing operation before construction, with
the possibility of the added complexity from the requirement that existing structures
must be retained and their viability maintained during the construction phase (Hopkins
& Jenkins, 2008).

Even if a large-scale SoS was the product of a clean-sheet engineering design
process and was initially constructed from homogeneous constituents, sheer
largeness-of-scale implies that at any one time it is almost definite that some of those
constituents will have failed and be needing replacement (so-called normal failure).
Those replacement constituents may not be exactly identical to the originals, and so
the SoS becomes a heterogeneous, brownfield engineering problem.

The challenge of determining the safety of a SoS is neatly summarized by
Alexander, Kazakov, & Kelly (2006):

“In a conventional system, …the system boundary is well defined and the
components within that boundary can be enumerated. When a safety analyst
postulates some failure of a component, the effect of that failure can be
propagated through the system to reveal whether or not the failure results in a

58 D. Cliff and L. Northrop

hazard. This is not always easy, because of the complexity of possible
interactions and variability of system state, hence the need for systematic
analysis techniques, automated analysis tools and system designs that
minimize possible interactions. To make the task more tractable, most
existing hazard analysis techniques…. deal with only a single failure at a
time; coincident failures are rarely considered.

“In an SoS, this problem is considerably worse. The system boundary is
not well defined, and the set of entities within that boundary can vary over
time, either as part of normal operations… or as part of evolutionary
development… Conventional tactics to minimize interactions may be
ineffective, because the system consists of component entities that are
individually mobile. In some cases… the entities may be designed to form
ad-hoc groupings amongst themselves. Conventional techniques may be
inadequate for determining whether or not some failure in some entity is
hazardous in the context of the SoS as a whole.”

The prospect of component entities being “individually mobile” was relevant to
Alexander et al. because their work concentrated on SoS in defence applications, where
the constituent entities in the SoS are often individual battlefield units (e.g., troops, tanks,
unmanned vehicles, etc). While there is no direct physical correlate of spatial mobility in
the computerized global financial markets, there is a reasonable equivalent in the virtual
space defined by the network of current interactions between agents in the markets: just
as a tank might physically move from one location to another on a battlefield in order to
engage with the enemy or withdraw to a position of safety, so a trading agent (human or
machine) might establish a connection with a potential counterparty, or terminate an
existing connection. In both the tank battle and the trading scenario, the key factor that is
altered is the network of links from the node in question (the tank, the trader), to other
nodes in the network (enemy units, other traders) with which that node might have
meaningful interactions (exchange of fire, exchange of bids/offers).

But this “mobility” issue of the network of meaningful interactions changing
dynamically is not the only issue that confuses the task of understanding or managing an
ecosystem SoS. Each of the nodes in the network, i.e. each of the constituent entities, is
likely to be both nonlinear and adaptive. For the sake of the argument here, we’ll
simply define “nonlinearity” as a meaning that the entity’s “outputs” (i.e., its responses
or behavior) are not a simple linear function of its “inputs” (i.e., readings from its
sensors, say); and we’ll adopt a similarly simple definition of “adaptive”: the entity is
adaptive if its “outputs” may change over time, in consequence of the particular time-
sequence of “inputs” that the entity is exposed to. Readers familiar with the
mathematical economics literature will recognize this notion of adaptation as similar to
“path-dependency”; colloquially we can think of the entity “learning from experience”
or “evolving its response over time”. In recent decades, a new set of scientific tools
and techniques has been developed to study systems composed of networks of
interacting nonlinear adaptive entities. That field is known as Complexity Science, and
the networked nonlinear adaptive systems are known as Complex Adaptive
Systems.

 The Global Financial Markets: An Ultra-Large-Scale Systems Perspective 59

A.3 Complex Adaptive Systems

In complexity science, complex systems are commonly defined as systems that are
composed from large numbers of components, where each component interacts with
some number of other components, and where there are nonlinearities in the nature of
the component interactions and/or in the responses of the components themselves,
which compound across the entire system in such a way that the overall system-level
behaviour is difficult or perhaps impossible to predict accurately, even when one is
given complete or near-complete information about the individual components and
their interactions. The system-level behaviour is said to emerge from the network of
interacting components and their constituent behaviours, forming a whole that is in
some reasonable sense more than the sum of its parts. Substituting the word
“constituent” for “component” in that description and it is clear that for very many
SoS of practical importance, the SoS is manifestly a complex system. In addition to
exhibiting emergent behaviour, many complex systems of significant interest are
adaptive (in the sense informally introduced in the previous paragraph), and this also
is surely true of many constituents in SoS, hence many SoS are instances of Complex
Adaptive Systems (CAS). Since the late 1980’s a growing number of scientists have
been attempting to understand the financial markets as CAS, and have been exploring
the links between the financial markets and other CAS, both naturally-occurring and
engineered artefacts. There is growing evidence that the emergent behaviour, phase
changes, instabilities, and hysteresis seen in many other complex systems are also to
be found in the financial markets: see, for example: Anderson, Arrow, & Pines
(1989); Arthur, Morrison, et al. (1997); Johnson, Jefferies, & Hui (2003); Challet,
Marsili, & Zhang (2004); and Blume & Durlaf (2005).

A small but growing number of researchers in the (systems-of-) systems engineering
community have, in recent years, turned their attention to whether tools and techniques
from complexity science can help in the brownfield engineering of robust, scalable,
large-scale, systems: that is, they are exploring the consequences of taking a CAS
approach to the creation and management of such large-scale systems and SoS: see, for
example, Bar-Yam (2005); Braha et al. (2006); Sheard, & Mostashari (2008); Polacek,
& Verma, (2009); and Sillitto (2010). Thus far, only a small amount of this work has
addressed issues directly relevant to the financial markets but some notable work has
been produced; see, e.g.: Harman & Bar-Yam, 2008; and the Nasdaq study by Darley &
Oatkin (1997), which was discussed in more detail in Section 4.

Very often, such approaches involve exploring the system using so-called Multi-
Agent Simulation (MAS) models, where a computer simultaneously models each of
the constituents (or “agents”) in the network of interacting adaptive nonlinear entities,
resolving the consequence of each entity’s interaction with its environment (which in
most cases will include one or more other such entities), often using fine time-slicing
or discrete-event simulation techniques. The agents in the simulation may adapt their
responses over time either by implementing machine-learning techniques (for learning
“within the lifetime” of the agent) and/or by implementing a process inspired by
Darwinian evolution, a so-called genetic algorithm (a simulated population of agents,
adapting to its niche over successive generations via a process of random variation
and “survival of the fittest” directed selection: each agent’s behaviour or performance
at the task at hand being determined at least in part by “genes” that can be passed on
to successor agents: see e.g. Goldberg, 1987). Very often, the reliance on computer
simulation models is a consequence of the mathematical nonlinearities in the system

60 D. Cliff and L. Northrop

being analytically intractable: that is, they are sufficiently complicated and complex
that the tools for expressing them as a set of equations and then deriving formal
proofs of certain statements about the system, via manipulation of the equations, is
simply not possible.

For introductions to the use of CAS/MAS models in understanding social,
economic, and socio-technical systems, see the texts by Epstein & Axtell (1996) and
Axelrod & Cohen (2000). For examples of early machine-learning adaptive trading
agents, see Cliff (1997) & Gjerstad & Dickhaut (1998), for the story of how those
agents beat human traders, see Das et al. (2001). With regard to the application of
evolutionary approaches, there has been heavy use of “replicator dynamics” (a
technique pioneered in the theoretical study of evolution in biological systems) for
exploring the interactions between different types of trading strategies, and
identifying stable equilibria in the interaction dynamics (e.g., Walsh et al., 2002;
Vytelingum, Cliff, & Jennings 2008); and also various researchers have used genetic
algorithms to create trading agents, and the market-mechanisms they operate in, co-
adapted to each other by evolution (e.g., Phelps et al., 2002; Cliff, 2003; Byde, 2003;
Cliff, 2009; Phelps et al., 2010). Evolutionary adaptation and co-adaptation in
biological systems has served as a productive metaphor for economic dynamics at
various levels for several decades (see, e.g., Nelson & Winter, 1982; Hodgson, 1993;
Ormerod, 2006; Stephens & Waelbroeck, 2009); and there are other aspects of
biological systems, such as the interconnected web of dependencies in natural
ecosystems, that can offer fruitful insights into the functioning of financial systems
(see, e.g., May et al., 2008; Haldane & May, 2011; also Johnson, 2011). Sources of
inspiration are not limited to biological systems: studies of the complex dynamics and
size-vs-frequency distributions of earthquakes also offer insights for students of
markets crashes: see Sornette (2002).

CAS and MAS approaches are not limited to the exploration of economic and
financial systems: the approach is now pretty-much a standard item in the toolboxes
of biologists, urban planners, military strategists, movie animators, safety architects,
and practitioners of many more application areas in science and engineering. Several
research teams have worked on developing general-purpose simulators (with
associated visualization and analysis tools) for exploring CAS and MAS: for details
of an example generic simulator and reviews of related work see Polack, Andrews, &
Sampson (2009); and Polack et al. (2010).

In the course of this section’s discussion thus far, we’ve briefly surveyed high
integrity systems engineering, and the definitions of systems of systems (SoS) and of
complex adaptive system. Now we draw those three strands together and explore the
current state, and future prospects for, high-integrity safety-critical engineering of
complex adaptive ecosystem SoS.22

22 We recognize that this is a long and cumbersome phrase. A shorter alternative might be

“wicked systems”, first coined as a technical term in information systems engineering by
Metcalf (2005) in direct reference to Rittel & Webber’s (1973) notion of “wicked
problems”. But, given the current widespread disaffection in the media and general public
with the banking sector, it seems prudent to avoid the potential confusion between the
technical sense of “wicked” and the morally judgmental one, confusion that might arise in
talking about trying to develop new engineering approaches for dealing with the “wicked
systems of the financial markets”.

 The Global Financial Markets: An Ultra-Large-Scale Systems Perspective 61

A.4 Engineering High-Integrity Complex Adaptive Ecosystem System-of-
Systems

All approaches to risk assessment and safety-critical engineering involve the notion of
a model. Rather than attempting to observe and manipulate the real physical system in
its real operating environment, the model is instead an abstract representation of those
aspects of the system that the engineers believe to be necessary and sufficient to
reason about in order to achieve the task at hand. So, in this sense, a fault-tree
diagram for some system is a model of that system. The fault-tree can be reasoned
about, argued over, and altered to make it a better or worse representation of the real
system, and the fault-tree can be manipulated to arrive at specific answers to specific
questions, without having to touch the real system. The fault-tree is an explicit,
diagrammatic, model of the system, suitable for risk assessment. But, as we have
seen, the same system’s risk assessment could instead be approached via Bayesian
PRA, in which case the model will be a set of coupled equations and the associated
prior probabilities.

In high integrity systems engineering, it is recognized that all models are
developed iteratively, that they pass through a lifecycle: after an initial model is
proposed, experience with the real system may reveal that the model needs refinement
and improvement, the model is altered appropriately, but subsequent experience may
again reveal the need for additional alterations. Eventually, it is hoped, the model will
stabilize as more is known of the system. Of course, if the system itself is changing
over time (as is almost definite in a socio-technical ecosystem SoS), the safety-
engineer’s model is forever playing catch-up; there will always be a strong likelihood
that some aspect of the SoS is not yet known, not yet captured in the safety model.

Recognizing this, in recent years many researchers and practitioners involved in
the engineering of high-integrity systems of systems have turned to predictive
computer simulation models as a way of exploring “what if” scenarios. Such
simulations are typically highly compute-intensive, and it is only with the ongoing
Moore’s-Law reductions in the real costs of computer power that such approaches
have become practicable. In a predictive simulation, the model is expressed as
interacting processes within the computer: such simulations may involve
manipulating numeric values according to given equations (as in PRA); and they may
also represent the model, or its outputs, via explicit diagrammatic visualizations (as in
fault-tree analysis). Computer simulations offer the advantage of taking exhaustive
“brute force” approaches to exploring system safety: for some systems, it is feasible
to simulate the system in every possible combination of values for all variables of
interest – the entire “state-space” of the system (that is, the space of all possible states
it could ever find itself in) can be explored by the computer, given enough time. If the
entire state-space is explored, and no unanticipated failures are discovered in the
model, then (so long as the model is an accurate representation of the real system) the
system’s reliability is known completely. This technique of brute-force simulation has
been particularly successful in the microelectronics industry, where the responses of
new designs for silicon chips are explored exhaustively in simulation before the chip
is fabricated for real: mistakes discovered at the simulation stage are much cheaper to
fix than if the error is discovered only after the chip has been manufactured.

62 D. Cliff and L. Northrop

However, for many real-world systems, the state-space is sufficiently large that
brute-force exhaustive searching is simply not possible. The combinatorics of state-
spaces often involve exponentials-of-exponentials: equations of the form v=w-to-the-
power-(x-to-the-power-(y-to-the-power-z))), and numbers such as v can grow
astronomically huge, much larger than the number of atoms in the known universe,
for only moderate values of w, x, y, and z. Attempting exhaustive search of such vast
state-spaces is possible in theory, but the sun will burn out long before the search is
over. So, for many real systems, sophisticated techniques are required to cleverly
sample only selected points or areas in the system’s state-space. Developing such
techniques is a current research issue, even in microelectronics where the state-spaces
of current chips have now grown to routinely be beyond the size where exhaustive
search is practicable (see, e.g. Hsueh & Eder, 2006).

Researchers concerned with risk assessment and safety assurance in SoS have
developed increasingly sophisticated simulation modelling techniques (see, e.g., De
Laurentis & Han, 2006; Parisi et al., 2008; Clymer, 2009; Kewley & Tolk, 2009), and
researchers interested in developing generic simulation tools for the study of complex
adaptive systems have learnt from the methods developed in high-integrity systems
engineering (Polack, Andrews, & Sampson, 2009). Some recent work has explored
the possibility of feeding the outputs of simulation models directly into machine
learning (ML) algorithms, so that the ML system can discover or learn rules and
regularities that can neatly summarise the behavior of the system (see, e.g., Eder,
Flach, & Hsueh, 2006; Alexander, 2007). Nevertheless, researchers remain cautiously
aware that the model is only that: only a model, an abstraction. The models are used
to explore possible circumstances and situations that may be very rare, and/or
disastrous, in the real system. Alexander et al. (2006) comment that this approach is
one that Dewar et al. (1996) refers to as “weak prediction”:

“[Dewar et al., 1996] note that “subjective judgement is unavoidable in
assessing credibility” and that when such a simulation produces an
unexpected result “it has created an interesting hypothesis that can (and
must) be tested by other means”. In other words, when a simulation reveals a
plausible system hazard, other, more conventional analyses must be carried
out to determine whether it is credible in the real system. Therefore, the role
of the simulation analysis is to narrow down a huge analysis space into one
that is manually tractable.” (Alexander et al., 2006)

One of the biggest challenges at present concerns modeling the social elements in
socio-technical SoS: people and groups of people can be surprisingly sophisticated
(and surprisingly stupid), and representing their relevant nonlinear, adaptive,
nondeterministic behavior in a simulation model is certainly not easy.

Although it is undoubtedly difficult to capture human ingenuity and adaptivity,
there are well-developed techniques in the CAS literature that can serve as good
proxies: most notable of these is the use of co-evolution as a process for driving
stochastic search through a space of possible designs or strategies, giving rise to what
can appear to be a form of “artificial creativity”.

The seminal example of this approach was described in a paper by Hillis (1990):
Hillis used simulated evolution, a genetic algorithm (GA), to automatically design
algorithms for sorting lists of numbers into numeric order; each “individual” in his

 The Global Financial Markets: An Ultra-Large-Scale Systems Perspective 63

GA’s population was a particular algorithm, and the sequence of steps in each
individual’s algorithm were specified by its “genes” (each step involved comparing a
pair of numbers, and if necessary swapping their places in the list to make them be in
the right numeric order); each individual’s probability of reproduction (i.e., its fitness)
was determined by how many test-lists it sorted successfully.

Initially, Hillis worked with a set-up where the test-lists were fixed in advance:
when he did this, his GA could reliably evolve individual algorithms that did well at
sorting the specific lists in the test set, but did poorly when presented with a novel list,
one that was not in the test set. To counteract this, Hillis re-worked his system so that
the test-lists were also an evolving population: the test-set was a population of lists,
the particular numbers in each list were specified via its “genes” and the “fitness” of
each list was determined by how “difficult” it was, i.e., by how many of the sorting
algorithms failed to sort it. Thus the population of sorting algorithms, and the
population of test-lists, made up a competitive co-evolutionary system, much like a
predator-prey or parasite-host dynamic: the fitness of each sorter-algorithm depended
on how many lists it could sort; the fitness of each list depended on how many sorter-
algorithms it could defeat; and the two populations co-evolved over time. The co-
evolutionary system was much more productive, and readily discovered sorting
algorithms that rivalled the best-known human-designed ones.

Since Hillis’ paper, several CAS researchers have demonstrated the power of co-
evolution as a force for generating novel solutions and designs (see, e.g. Sims, 1994;
Funes & Pollack 1999; Cartlidge & Bullock, 2004; Cliff & Miller 2006; Stuermer et
al. 2009), it seems entirely plausible that co-evolutionary processes could be used to
approximate the effects of human ingenuity and creativity in socio-technical systems.
Perhaps more importantly, co-evolutionary processes could also be used to explore
the state-space of simulated ecosystems SoS, in the search for conditions that reveal
unanticipated failure modes, in much the same way as Hillis’s population of test-lists
searched for methods of “failing” his population of sorting algorithms. This would
allow semi-automated generation of hypotheses about how the real system might fail.

References

1. Abbot, M., Fisher, M.: The Art of Scalability: Scalable Web Architecture, Processes,
and Organizations for the Modern Enterprise. Addison-Wesley (2009)

2. Alexander, R., Kazakov, D., Kelly, T.: System of Systems Hazard Analysis Using
Simulation and Machine Learning. In: Górski, J. (ed.) SAFECOMP 2006. LNCS,
vol. 4166, pp. 1–14. Springer, Heidelberg (2006)

3. Alexander, R.: Using Simulation for Systems of Systems Hazard Analysis. PhD Thesis,
Department of Computer Science, University of York, UK (2007)

4. Anderson, P., Arrow, K., Pines, D. (eds.): The Economy as an Evolving Complex
System. Addison-Wesley (1989)

5. Angel, J.: Opening Remarks at SEC Roundtable on Shortselling (May 5, 2009a),
http://www.sec.gov/comments/4-581/4581-2.pdf

6. Angel, J.: Letter to the Securities and Exchange Commission (June 19, 2009b),
http://www.sec.gov/comments/s7-08-09/s70809-3758.pdf

7. Angel, J.: Letter to the Securities and Exchange Commission (September 21, 2009c),
http://www.sec.gov/comments/s7-08-09/s70809-4658.pdf

8. Angel, J., Harris, L., Spratt, C.: Trading in the 21st Century (2010) (unpublished
manuscript), http://www.sec.gov/comments/s7-02-10/s70210-54.pdf

64 D. Cliff and L. Northrop

9. Angel, J.: Letter to the Securities and Exchange Commission (April 30, 2010a),
http://www.sec.gov/comments/s7-02-10/s70210-172.pdf

10. Angel, J.: Testimony to the US Senate (December 8, 2010b),
http://msb.georgetown.edu/story/1242666871500.html

11. Apostolakis, G.: How Useful is Quantitative Risk Analysis? Risk Analysis 24(3), 515–
520 (2004)

12. Arthur, B.: The Nature of Technology: What it is and how it evolves. Allen Lane (2009)
13. Arthur, B., Morrison, V., Durlauf, S., Lane, D. (eds.): The Economy as an Evolving

Complex System II. Addison Wesley (1997)
14. Axelrod, R., Cohen, M.: Harnessing Complexity: Organizational Implications of a

Scientific Frontier. Free Press (2000)
15. Bar-Yam, Y.: Making Things Work: Solving Complex Problems in a Complex World.

Knowledge Press (2005)
16. Baxter, G., Sommerville, I.: Socio-technical Systems: From design methods to systems

engineering. Interacting with Computers 23(1), 4–17 (2010)
17. Benveniste, A., Fabre, E., Haar, S.: Markov Nets: Probabilistic Models for Distributed

and Concurrent Systems. IEEE Transactions on Automatic Control 48(11), 1936–1950
(2003)

18. Beinhocker, E.: The Origin of Wealth: Evolution, Complexity, and the Radical
Remaking of Economics. Harvard Business School Press (2007)

19. Blas, J.: High-speed trading blamed for sugar rises. The Financial Times (February 8,
2011), http://www.ft.com/cms/s/0/05ba0b60-33d8-11e0-b1ed-
00144feabdc0.html#axzz1JIx0tWXK

20. Blumberg, B.: Old Tricks, New Dogs: Ethology and Interactive Creatures. Ph.D.
Thesis, MIT Media Lab. (1996)

21. Blume, L., Durlaf, S.: The Economy as an Evolving Complex System, III. Addison-
Wesley (2005)

22. Bonen, Z.: Evolutionary Behavior of Complex Socio-Technical Systems. Working
Paper #1056-79. Alfred P. Sloan School of Management, MIT (1979)

23. Bonisch, P., Di Giammarino, P.J.: Achieving Supervisory Control of Systemic Risk.
Report jointly produced by UK Financial Services Knowledge Transfer Network, JWG,
and Paradigm Risk (October 2010), http://www.jwg-
it.eu/library.php?typeId=11

24. Bootle, R.: The Trouble with Markets: Saving Capitalism from Itself. Nicholas Brealey
Publishing (2009)

25. Braha, D., Minai, A., Bar-Yam, Y.: Complex Engineered Systems: Science Meets
Technology. Springer (2006)

26. Bullock, S.: Prospects for Large-Scale Financial Systems Simulation. Driver Review
DR14, Foresight Project on the Future of Computer Trading in the Financial Markets.
UK Government Office for Science (2011), http://www.bis.gov.uk/assets/
foresight/docs/computer-trading/11-1233-dr14-prospects-
for-large-scale-financial-systems-simulation.pdf

27. Byde, A.: Applying Evolutionary Game Theory to Auction Mechanism Design. In:
Proceedings of the 2003 ACM Conference on E-Commerce, pp. 192–193 (2003)

28. Calinescu, R., Kwiatkowska, M.: Software Engineering Techniques for the
Development of Systems of Systems. In: Choppy, C., Sokolsky, O. (eds.) Monterey
Workshop 2008. LNCS, vol. 6028, pp. 59–82. Springer, Heidelberg (2010)

29. Calinescu, R., Kikuchi, S., Kwiatkowska, M.: Formal Methods for the Development
and Verification of Autonomic IT Systems. In: Cong-Vinh, P. (ed.) Formal and
Practical Aspects of Autonomic Computing and Networking: Specification,
Development and Verification. IGI Global (2010) (to appear)

30. Cartlidge, J., Bullock, S.: Combating Coevolutionary Disengagement by Reducing
Parasite Virulence. Evolutionary Computation 12(2), 193–222 (2004)

 The Global Financial Markets: An Ultra-Large-Scale Systems Perspective 65

31. CFTC & SEC. Preliminary Findings Regarding the Market Events of May 6, 2010.
Report of the staffs of the CFTC and SEC to the Joint Advisory Committee on
Emerging Regulatory issues (May 18, 2010a), http://www.sec.gov/sec-
cftc-prelimreport.pdf

32. CFTC & SEC. Findings Regarding the Market Events of May 6, 2010. Report of the
staffs of the CFTC and SEC to the Joint Advisory Committee on Emerging Regulatory
issues (September 30, 2010b), http://www.sec.gov/news/studies/2010/
marketevents-report.pdf

33. CFTC & SEC. Recommendations Regarding Regulatory Responses to the Market
Events of May 6, 2010. Summary Report of the Joint CFTC and SEC Advisory
Committee on Emerging Regulatory issues (February 18, 2011)

34. Challet, D., Marsili, M., Zhang, Y. (eds.): Minority Games: Interacting agents in
financial markets. OUP (2004)

35. Chilton, B.: Stopping Stammering: Overcoming Obstacles in Financial Regulatory
Reform. In: Speech of Commissioner Bart Chilton to the Goldman Sachs Global
Commodity Conference, London (2011), http://www.cftc.gov/pressroom/
speechestestimony/opachilton-43.html

36. Cliff, D., Keen, J., Kwiatkowska, M., McDermid, J., Sommerville, I.: Large Scale
Complex IT Systems (LSCITS) Research Programme. Research proposal to the UK
Engineering and Physical Sciences Research Council (2006),
http://lscits.cs.bris.ac.uk/docs/LSCITSproposalRP1.pdf
(submitted December 2006, commenced April 2007)

37. Cliff, D.: Minimal-intelligence agents for bargaining behaviors in market- based
environments. Technical Report HPL-97-91, Hewlett Packard Labs (1997)

38. Cliff, D., Bruten, J.: Animat Market-Trading Interactions as Collective Social Adaptive
Behavior. Adaptive Behavior 7(3&4), 385–414 (1999)

39. Cliff, D.: Explorations in evolutionary design of online auction market mechanisms.
Journal of Electronic Commerce Research and Applications 2(2), 162–175 (2003)

40. Cliff, D., Miller, G.: Visualising Coevolution with CIAO plots. Artificial Life 12(2),
199–202 (2006)

41. Cliff, D.: ZIP60: Further Explorations in the Evolutionary Design of Trader Agents and
Online Auction-Market Mechanisms. IEEE Transactions on Evolutionary
Computation 13(1), 3–18 (2009)

42. Cliff, D.: Networked Governance in the Financial Markets. Foresight strategic briefing
paper, for UK Government Office of Science & Technology, Department of Business,
Innovation, and Skills (2010), http://www.cs.bris.ac.uk/home/dc/
Foresight_NetGov_v2a.pdf

43. Cliff, D., Brown, D., Treleaven, P.: Technology Trends in the Financial Markets: A
2020 Vision. Driver Review DR3, Foresight Project on the Future of Computer Trading
in the Financial Markets. UK Government Office for Science (2011),
http://www.bis.gov.uk/assets/foresight/docs/computer-
trading/11-1222-dr3-technology-trends-in-financial-
markets.pdf

44. Clymer, J.: Simulation-Based Engineering of Complex Systems, 2nd edn. Wiley-
Blackwell (2009)

45. Colander, D., Föllmer, H., Haas, A., Goldberg, M., Juselius, K., Kirman, A., Lux, T.,
Sloth, B.: The Financial Crisis and the Systemic Failure of Academic Economics. Kiel
Working Paper 1489, Kiel Institute for the World Economy (2009)

46. Collingridge, D.: The Management of Scale: Big Organizations, Big Decisions, Big
Mistakes. Routeledge (1992)

47. Darley, V., Outkin, A.: A NASDAQ Market Simulation: Insights on a Major Market
from the Science of Complex Adaptive Systems. World Scientific (2007)

66 D. Cliff and L. Northrop

48. Das, R., Hanson, J., Kephart, J., Tesauro, G.: Agent-Human Interactions in the
Continuous Double Auction. In: Proceedings IJCAI 2001 (2001)

49. De Laurentis, D., Dickerson, C., DiMario, M., Gartz, P., Jamshidi, M., Nahavandi, S.,
Sage, A., Sloane, E., Walker, D.: A Case for an International Consortium on System-of-
Systems Engineering. IEEE Systems Journal 1(1), 68–73 (2007)

50. De Laurentis, D., Han, E.: System-of-Systems Simulation for Analyzing the Evolution
of Air Transportation. In: Proceedings of the 25th International Congress of the
Aeronautical Sciences, pp. 1–10 (2006)

51. Demos, T.: US panel on flash crash urges rule changes. The Financial Times (February
18, 2011a), http://www.ft.com/cms/s/0/417134ea-3b84-11e0-9970-
00144feabdc0.html#axzz1EOx4E4Gg

52. Demos, T.: Quick View: Blown away by the flash crash report. The Financial Times
(February 19, 2011b), http://www.ft.com/cms/s/0/bf6017b0-3baa-
11e0-a96d-00144feabdc0.html#axzz1EOx4E4Gg

53. Demos, T.: Plans to avert ‘flash crash” draw opposition. The Financial Times (March
22, 2011c), http://www.ft.com/cms/s/0/3a3e52a0-54a9-11e0-b1ed-
00144feab49a.html#axzz1Ht6fUrUu

54. Despotou, G.: Managing the Evolution of Dependability Cases for Systems of Systems.
PhD Thesis, Department of Computer Science, University of York, UK (2007)

55. Dewar, J., Bankes, S., Hodges, J., Lucas, T., Saunders-Newton, D., Vye, P.: Credible
Uses of the Distributed Interactive Simulation (DIS) System. Technical Report MR-
607-A, RAND (1996)

56. Dezfuli, H., et al.: Bayesian Inference for NASA Probabilistic Risk and Reliability
Analysis. NASA SP-2009-569 (2009), http://www.hq.nasa.gov/office/
codeq/doctree/SP2009569.pdf

57. Dorner, D.: The logic of failure. Philosophical Transactions of the Royal Society of
London, Series B 327(1241), 463–473 (1990)

58. Dorner, D.: The Logic of Failure: Recognizing and Avoiding Error in Complex
Situations. Perseus (1997)

59. Easley, D., Lopez de Prado, M., O’Hara, M.: The Microstructure of the Flash Crash:
Flow Toxicity, Liquidity Crashes and the Probability of Informed Trading. The Journal
of Portfolio Management 37(2), 118–128 (2011)

60. Economist. Agents of Change. The Economist 396(8692), 76 (2010) (Note that The
Economist has a standard policy of not showing author bylines for articles written by
regular staff journalists)

61. Eder, K., Flach, P.A., Hsueh, H.-W.: Towards Automating Simulation-Based Design
Verification Using ILP. In: Muggleton, S., Otero, R., Tamaddoni-Nezhad, A. (eds.) ILP
2006. LNCS (LNAI), vol. 4455, pp. 154–168. Springer, Heidelberg (2007)

62. Epstein, J., Axtell, R.: Growing Artificial Societies: Social Science from the Bottom
Up. MIT Press (1996)

63. Epstein, J.: Generative Social Science: Studies in Agent-Based Computational
Modelling. Princeton University Press (2007)

64. Farmer, D., Foley, D.: The economy needs agent-based modeling. Nature 460, 685–686
(2009)

65. Farmer, D., Skouras, S.: An ecological perspective on the future of computer trading.
Driver Review DR6, Foresight Project on the Future of Computer Trading in the
Financial Markets. UK Government Office for Science (2011),
http://www.bis.gov.uk/assets/foresight/docs/computer-
trading/11-1225-dr6-ecological-perspective-on-future-of-
computer-trading.pdf

66. Flinders, K.: The Evolution of Stock Market Technology. Computer Weekly
(November 2, 2007), http://www.computerweekly.com/Articles/2007/
11/02/227883/The-evolution-of-stock-market-technology.htm

 The Global Financial Markets: An Ultra-Large-Scale Systems Perspective 67

67. Funes, P., Pollack, J.: Computer Evolution of Buildable Objects. In: Bentley, P. (ed.)
Evolutionary Design by Computers, ch. 17. Morgan Kauffman (1999)

68. Galas, M., Brown, D., Treleaven, P.: ATRADE Platform: Algorithmic Trading & Risk
Analytics Development Environment. Unpublished manuscript, Department of
Computer Science, University College London (2010), http://fc.cs.ucl.ac.
uk/mscfc/virtual-trading-floor

69. Gjerstad, S., Dickhaut, J.: Price Formation in Double Auctions. Games and Economic
Behavior 22, 1–29 (1998)

70. Grant, J.: Quick View: US looks at European-style circuit breakers. The Financial
Times (May 19, 2010), http://cachef.ft.com/cms/s/0/139ddd44-
6325-11df-99a5-00144feab49a.html#axzz1Ij5j9zds

71. Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley (1987)

72. Gorton, G.: Slapped by the Invisible Hand: The Panic of 2007. OUP (2010)
73. Goth, G.: Ultralarge Systems: Redefining Software Engineering? IEEE Software 25(3),

91 (2008)
74. Gray, J.: On eScience: A Transformed Scientific Method. In: Hey, T., Tansley, S.,

Tolle, K. (eds.) The Fourth Paradigm: Data-Intensive Scientific Discovery, pp. xvii–
xxxi. Microsoft Press (2009)

75. Haccou, P., Meelis, E.: Statistical Analysis of Behavioral Data: An Approach Based on
Time-Structured Models. Oxford University Press (1994)

76. Haldane, A.: Rethinking the Financial Network. Text of a speech given at the Financial
Student Association, Amsterdam (April 2009), http://www.bankofengland.
co.uk/publications/speeches/2009/speech386.pdf

77. Haldane, A., May, R.: Systemic risk in banking ecosystems. Nature 469, 351–355
(2011)

78. Hall-May, M.: Ensuring Safety of Systems of Systems. PhD Thesis, Department of
Computer Science, University of York, UK (2007)

79. Harford, T.: What we can learn from a nuclear reactor? The Financial Times (January
14, 2011), http://www.ft.com/cms/s/2/cea7b256-1def-11e0-badd-
00144feab49a.html#axzz1DN62IXnB

80. Harman, D., Bar-Yam, Y.: Technical Report on SEC Uptick Repeal Pilot. NECSI
Technical Report 2008-11, New England Complex Systems Initiative (2008)

81. Hillis, D.: Co-evolving parasites improve simulated evolution as an optimization
procedure. Physica D 42, 228–234 (1990)

82. Hodgson, G.: Economics and Evolution: Bringing life back into economics. Polity
Press (1993)

83. Hollnagel, E., Woods, D., Leveson, N. (eds.): Resilience Engineering: Concepts and
Precepts. Ashcroft (2006)

84. Hopkins, R., Jenkins, K.: Eating the IT Elephant: Moving from Greenfield
Development to Brownfield. IBM Press (2008)

85. Horswill, I.: Very Fast Action Selection for Parameterized Behaviors. In: Proceedings
of the Fifth International Conference on Foundations of Digital Games (FDG 2009),
Orlando (2009)

86. Hsueh, H., Eder, K.: Test Directive Generation for Functional Coverage Closure Using
Inductive Logic Programming. In: Proc. IEEE International High Level Design
Validation and Test Workshop (HLDVT), pp. 11–18 (2006)

87. Hubbard, D.: The Failure of Risk Management. Why It’s Broken and How to Fix It.
John Wiley (2009)

88. Institute for International Finance. Interim Report of the IIF Committee on Market Best
Practices (April 2008),
http://www.iif.com/download.php?id=SDzcEc8juCI=://

68 D. Cliff and L. Northrop

89. Ivanov, Y.: State Discovery for Autonomous Learning. Ph.D. Thesis, MIT Media Lab.
(2002)

90. Johnson, C.: Lessons from the Evacuation of the World Trade Center, September 11,
2001, for the Future Development of Computer Simulations. Cognition, Technology, &
Work 7, 214–240 (2005)

91. Johnson, C.: Using Evacuation Simulations to Ensure the Safety and Security of the
2012 Olympic Venues. Safety Science 46(2), 302–322 (2008)

92. Johnson, C., Nilsen-Nygaard, L.: Extending the Use of Evacuation Simulators to Support
Counter-Terrorism: Using Models of Human Behaviour to Coordinate Emergency
Responses to Improvised Explosive Devices. In: Simmons, R., Mohan, D., Mullane, M.
(eds.) Proceedings of the 26th International Conference on Systems Safety (2008)

93. Johnson, C.: The Application of Computational Models for the Simulation of Large-
Scale Evacuations Following Infrastructure Failures and Terrorist Incidents. In:
Proceedings of NATO Research Workshop on Computational Models of Risk to
Infrastructure, May 9-13. NATO (2006)

94. Johnson, N., Jefferies, P., Hui, P. (eds.): Financial Market Complexity. OUP (2003)
95. Johnson, N.: Proposing Policy by Analogy is Risky. Nature 469, 302 (2011)
96. Kearns, M., Ortiz, L.: The Penn-Lehman Automated Trading Project. IEEE Intelligent

Systems, 22–31 (November/December 2003)
97. Kewley, R., Tolk, A.: A Systems Engineering Process for Development of Federated

Simulations. In: SpringSim 2009: Proceedings of the 2009 Spring Simulation
Multiconference. Society for Computer Simulation International (2009)

98. Kindleberger, C.: Manias, Panics, and Crises: A History of Financial Crises. John
Wiley (2001)

99. LeBaron, B.: Agent Based Computational Finance: Suggested Readings and Early
Research. Journal of Economic Dynamics and Control 24, 679–702 (2000)

100. LeBaron, B., Arthur, B., Palmer, R.: The Time Series Properties of an Artificial Stock
Market. Journal of Economic Dynamics and Control 23, 1487–1516 (1999)

101. Levy, M., Levy, H., Solomon, S.: Microscopic Simulation of the Financial Markets:
From Investor Behavior to Market Phenomena. Academic Press (2000)

102. Lewis, M.: The Big Short: Inside the Doomsday Machine. Allen Lane (2010)
103. Lorenz, E.: Deterministic Nonperiodic Flow. Journal of Atmospheric Science 20, 130–

141 (1963)
104. Lorenz, K.: On Aggression. Routledge Classics (1966/2002)
105. MacKenzie, D.: An Engine, Not a Camera: How Financial Models Shape Markets. MIT

Press (2008a)
106. MacKenzie, D.: Material Markets: How Economic Agents are Constructed. Oxford

University Press (2008b)
107. MacKenzie, D., et al. (eds.): Do Economists Make Markets? On the Performativity of

Economics. Princeton University Press (2008)
108. Maier, M.: Architecting Principles for Systems of Systems. Systems Engineering 1(4),

267–284 (1998)
109. May, R., Levin, S., Sugihara, G.: Ecology for Bankers. Nature 451, 893–895 (2008)
110. Meerman, M., et al.: Money and Speed: Inside the Black Box. Documentary produced

by VPRO (Dutch public broadcaster) (2011), available as an iPad application
http://itunes.apple.com/us/app/money-speed-inside-black-
box/id424796908?mt=8&ls=1#

111. Metcalfe, M.: Strategic knowledge sharing: a small-worlds perspective. In: Hart, D.,
Gregor, S. (eds.) Information System Foundations: Constructing and Criticizing,
Australian National University Press (2005)

112. Mitchell, M.: Complexity: A Guided Tour. OUP (2009)
113. Mullane, R.: Riding Rockets: The Outrageous Tales of a Space-Shuttle Astronaut.

Simon & Schuster (2006)

 The Global Financial Markets: An Ultra-Large-Scale Systems Perspective 69

114. Nelson, R., Winter, S.: An Evolutionary Theory of Economic Change. Harvard
University Press (1982)

115. Northrop, L., et al.: Ultra-Large-Scale Systems: The Software Challenge of the Future.
Technical Report. Carnegie Mellon University Software Engineering Institute (2006)

116. Ormerod, P.: Butterfly Economics: A New General Theory of Economic and Social
Behaviour. Faber (1998)

117. Ormerod, P.: Why Most Things Fail: Evolution, Extinction, & Economics. Faber (2006)
118. Palmer, R., Arthur, B., Holland, J., LeBaron, B., Tayler, P.: Artificial economic life: a

simple model of a stockmarket. Physica D: Nonlinear Phenomena 75(1-3), 264–274 (1994)
119. Parry, G.: The Characterization of Uncertainty in Probabilistic Risk Assessments of

Complex Systems. Reliability Engineering and System Safety 54, 119–126 (1996)
120. Parisi, C., Sahin, F., Jamshidi, M.: A discrete event XML based system of systems

simulation for robust threat detection and integration. In: Proc. 2008 IEEE International
Conference on System of Systems Engineering (2008)

121. Perrow, C.: Normal Accidents: Living with High-Risk Technologies. Basic Books,
New York (1984)

122. Phelps, S., McBurney, P., Parsons, S., Sklar, E.: Co-evolutionary Auction Mechanism
Design: A Preliminary Report. In: Padget, J., Shehory, O., Parkes, D., Sadeh, N.,
Walsh, W.E. (eds.) AMEC 2002. LNCS (LNAI), vol. 2531, pp. 123–142. Springer,
Heidelberg (2002)

123. Phelps, S., McBurney, P., Parsons, S.: Evolutionary Mechanism Design: A Review.
Autonomous Agents and Multi-Agent Systems 21(2), 237–264 (2010)

124. Polack, F., Andrews, P., Sampson, A.: The Engineering of Concurrent Simulations of
Complex Systems. In: Proc. 2009 IEEE Congress on Evolutionary Computation, pp.
217–224 (2009)

125. Polack, F., Andrews, P., Ghetiu, T., Read, M., Stepney, S., Timmis, J., Sampson, A.:
Reflections on the Simulation of Complex Systems for Science. In: Proc. International
Conference on Engineering of Complex Computer Systems (ICECCS 2010), pp. 276–
285. IEEE Press (2010)

126. Polacek, G., Verma, D.: Requirements Engineering for Complex Systems: Principles
vs. Rules. In: Proceedings of the Seventh Annual Conference on Systems Engineering
Research, CSER 2009 (2009)

127. Reason, J.: The Human Contribution: Unsafe Acts, Accidents, and Heroic Recoveries.
Ashgate (2008)

128. Rittel, H., Webber, M.: Dilemmas in a General Theory of Planning. Policy Sciences 4,
155–169 (1973)

129. Roberts, K.: Some Characteristics of One Type of High Reliability Organization.
Organization Science 1(2), 160–176 (1990)

130. Rooksby, J., Rouncefield, M., Sommerville, I.: Testing in the Wild: The Social and
Organisational Dimensions of Real-World Practice. Journal of Computer Supported
Cooperative Work 18(5-6), 559–580 (2009)

131. Salmon, F.: Algorithmic trading and market-structure tail risks. Reuters (January 13,
2011), http://blogs.reuters.com/felix-salmon/2011/01/13/
algorithmic-trading-and-market-structure-tail-risks/

132. Schelling, T.: Dynamic Models of Segregation. Journal of Mathematical Sociology 1,
143–186 (1971)

133. Sheard, S., Mostashari, A.: Principles of Complex Systems for Systems Engineering.
Systems Engineering 12(4), 295–311 (2008)

134. Sillitto, H.: Design Principles for Ultra-Large-Scale Systems (2010) (unpublished draft
manuscript)

135. Sims, K.: Evolving 3D Morphology and Behavior by Competition. In: Brooks, R.,
Maes, P. (eds.) Artificial Life IV Proceedings, pp. 28–39. MIT Press (1994)

136. Sloan, S.: Simulating Terrorism. University of Oklahoma Press (1981)

70 D. Cliff and L. Northrop

137. Slovik, P.: Trust, Emotion, Sex, Politics, and Science: Surveying the Risk-Assessment
Battlefield. Risk Analysis 19(4), 689–701 (1999)

138. Smith, L.: Accountability and Error in Ensemble Forecasting (1995) (manuscript),
http://people.maths.ox.ac.uk/lenny/ecmwf96.pdf

139. Smith, L.: What might we learn from climate forecasts? Proceedings of the National
Academy of Sciences of the United States of America 99, 2487–2492 (2002)

140. Stamatelatos, M., et al.: Probabilistic Risk Assessment Procedures Guide for NASA
Managers and Practitioners. V1.1 (2002a), http://www.hq.nasa.gov/
office/codeq/doctree/praguide.pdf

141. Stamatelatos, M., et al.: Fault Tree Handbook with Aerospace Applications. Version 1.1.
(2002b), http://www.hq.nasa.gov/office/codeq/doctree/fthb.pdf

142. Sommerville, I., Cliff, D., Calinescu, R., Keen, J., Kelly, T., Kwiatkowska, M.,
McDermid, J., Paige, R.: Large-Scale Complex IT Systems. Communications of the
ACM (July 2012)

143. Sornette, D.: Why Stock Markets Crash: Critical Events in Complex Financial Systems.
Princeton University Press (2002)

144. Steiner, C.: Did We Dodge Another Flash Crash on September 1? (2010) Forbes blog,
http://blogs.forbes.com/christophersteiner/2010/09/02/did-
we-just-dodge-another-flash-crash-yesterday/

145. Stephens, C., Waelbroeck, H.: Algorithm Switching: Co-Adaptation in the Market
Ecology. Journal of Trading, 1–15 (Summer 2009)

146. Stuermer, P., Bucci, A., Branke, J., Funes, P., Popovici, E.: Analysis of coevolution for
worst-case optimization. In: Proceedings GECCO 2009, the 11th Annual Conference on
Genetic and Evolutionary Computation (2009)

147. Taleb, N.: The Black Swan: The Impact of the Highly Improbable. Allen Lane (2007)
148. Tesfatsion, L., Judd, K. (eds.): The Handbook of Computational Economics. Agent-

Based Computational Economics, vol. 2. North-Holland (2006)
149. Tett, G.: Fool’s Gold: How Unrestrained Greed Corrupted a Dream, Shattered Global

Markets, and Unleashed a Catastrophe. Little, Brown (2009)
150. Tomlinson, B., Blumberg, B.: Social Synthetic Characters. Computer Graphics 26(2)

(2002)
151. Tuinenga, P.: SPICE: A Guide to Circuit Simulation and Analysis Using PSpice.

Prentice Hall (1988)
152. Turkle, S.: Simulation and its Discontents. MIT Press (2009)
153. Valerdi, R., Axelband, E., Baehren, T., Boehm, B., Dorenbos, D., Jackson, S., Madni, A.,

Nadler, G., Robitaille, P., Settles, S.: A research agenda for systems of systems
architecting. International Journal of System of Systems Engineering 1(1&2), 171–188
(2008)

154. Vaughan, D.: The Challenger Launch Decision: Risky Technology, Culture and
Deviance at NASA. University of Chicago Press (1997)

155. Vaughan, D.: On Slippery Slopes, Repeating Negative Patterns, and Learning from
Mistakes. In: Starbuck, W., Farjoun, M. (eds.) Organization at the Limit: Lessons from
the Columbia Disaster, pp. 262–275. Wiley Blackwell (2005)

156. Vaughan, D.: NASA Revisited: Theory, Analogy and Public Sociology. American
Journal of Sociology 112(2), 353–393 (2006)

157. Vytelingum, K., Cliff, D., Jennings, N.: Strategic bidding in continuous double
auctions. Artificial Intelligence 172(13), 1700–1729 (2008)

158. Waldrop, M.: Complexity: The Emerging Science at the Edge of Order and Chaos.
Simon & Schuster (1992)

159. Walsh, W., Das, R., Tesauro, G., Kephart, J.: Analyzing Complex Strategic Interactions
in Multi-Agent Games. In: Proceedings of AAAI 2002 Game Theoretic and Decision
Theoretic Agents Workshop, Edmonton, Canada (2002)

160. Weick, K., Sutcliffe, K.: Managing the Unexpected. Jossey Bass (2007)

R. Calinescu and D. Garlan (Eds.): Monterey Workshop 2012, LNCS 7539, pp. 71–80, 2012.
© Springer-Verlag Berlin Heidelberg 2012

What Is a Care Pathway?

Justin Keen

Leeds Institute of Health Sciences, University of Leeds, England
j.keen@leeds.ac.uk

Abstract. This paper argues that it is possible to develop useful generic
representations of care pathways, drawing on evidence and argument about
clinical teams, about the ability of teams to cope with radical uncertainty and
about the influence of institutional arrangements on the journeys that patients
take through health systems. The arguments are used to identify a mismatch
between current practices in the design of large scale digital systems and
doctors’ and other health professionals’ needs for information about patients’
risks and outcomes to support their work.

Keywords: health care, care pathways, requirements.

1 Introduction

The rate of innovation and diffusion of digital services in health care is low, relative to
other sectors, in developed countries. There are many reasons for this, but one stems
from our poor understanding of the fundamental processes in health care, variously
termed patient journeys or care pathways, which are broadly equivalent to industrial
and commercial production processes.

While some have argued that we are now in a world where requirements are no
longer needed – in part because users can configure their own services – this cannot be
the case in health care. There is clear evidence that poor requirement and specification
processes are still leading to failures in procurement, design and implementation. [1,2]
Further, legacy systems in primary and hospital settings will not, at present, allow
users to tailor services to their own needs.

This chapter argues that it is possible to identify flaws in the prevailing assumptions
about the role of IT systems in health care, to develop useful generic representations of
care pathways, and to use those representations to chart a more productive direction of
travel. It is concluded that problems with the design and use of systems are due, at
least in part, to a combination of the flawed thinking and lack of attention to
identification of hardware and software requirements.

2 Two Ideas

The author Victor Hugo observed that there is nothing as powerful as an idea whose
time has come. In the last decade or so, health systems around the world have been
exposed to two such ideas. The first is that service delivery is becoming ever more

72 J. Keen

complex, in the sense that it requires more intensive and more frequent co-ordination
between different professionals, or across a number of organisations, or both. We
need to find ways of managing this complexity, and in practice this means finding
new ways for clinicians, managers and others to collaborate with one another. It has
always been difficult to link inputs, outputs and outcomes in health care, and the
complexity – reflected in highly modularised, but poorly co-ordinated, care – only
makes the task harder. In practice professionals have to be involved in the
identification and implementation of strategies for designing services that reconcile
them, and thus achieving better control of resources. Similarly, safety improvements
are most likely to be effective when clinicians work collaboratively, co-ordinating
their work with one another.

The second idea is that health systems need to manage risks pro-actively. The
argument, in a nutshell, is that no country can afford to run reactive illness services
any longer, cost pressures are increasing all the time, and all countries must find ways
of managing costs more effectively. In England, for example, 30% of the population
has one or more chronic health problems, and consumes about 70% of the budget.

Historically, health services have been reactive, responding to people as they
became ill. Today people still get ill, but the policy focus now is on preventing, or at
least delaying, the problems associated with getting older, or with poor lifestyle
choices (smoking, lack of exercise, consuming too much salt or refined sugar). This
has two notable consequences, namely that health systems have to identify effective
strategies for managing risks, and that those risks often arise outside health care
systems – lifestyle choices occur out in civil society.

3 The Challenges

These two ideas have major implications for the organisation of health care. Health
systems have traditionally been organised along functional lines, with family doctors,
community services and hospital departments operating separately from one another.
This made sense, at a time when the over-riding need was to ensure that each of these
services was as efficient as possible. This organisational model served us reasonably
well for a long time, when many problems could be solved by visiting one or two
services, when the co-ordination challenge was relatively modest.

It has become clear, though, that traditional organisational forms cannot deliver the
co-ordination needed in the new environment. Many people need support from
several services, often over months and years. Many of them are older people, and
people with chronic health problems such as heart disease, stroke, diabetes, asthma
and some cancers. Maximising the efficiency of each service is no longer the primary
task. Rather, there is a need to manage patients’ clinical risks, arising from their own
problems and from the complexity of modern health systems.

Similarly, traditional organisations are not set up to manage demand, and hence
control costs – that is, control organisational risks. The idea, the belief, is that this
can be achieved by identifying problems early, or before they occur, either by
encouraging healthier lifestyles or by screening populations and identifying
individuals at risk of developing preventable problems (eg stopping smoking reduces
the probability of lung cancer).

 What Is a Care Pathway? 73

The need to respond to the two new ideas prompts a question about IT systems.
How are health care IT managers, suppliers and policy makers responding to them?
The answer seems to be – barely at all. This point will be discussed once care
pathways have been examined.

4 Care Pathways

A single idea, the care pathway, appears to make sense of the challenges set out in the
last section. A care pathway is really an idea, a high level representation, of the
journeys that people take through health systems. People should be encouraged to
avoid getting too far down any pathway (through health promotion and prevention).
They should take responsibility for decisions about their own care where possible, and
make others in consultation with professionals. Professionals need to co-ordinate
effectively with one another to ensure that the journey goes smoothly from a clinical
perspective. Note here that the focus is on patients – a major shift from the focus on
services in traditional models.

In formal guidance, and in the research literature, care pathways are typically
represented as sequences of discrete decisions and actions, where recommendations
are based on the best available evidence from experimental studies. [3,4] Sometimes
flow diagrams are included in guidance, which show how assessments, diagnostic
tests and decisions should be linked chronologically. This focus on decisions and
actions, and on patients ‘flowing’ between decision-makers, will seem intuitively
reasonable to many software engineers.

This said, an obvious question arises: how are the many discrete events actually
linked to one another? The short answer is: we don’t know. Leading commentators
point out that we are in the early stages of understanding care pathways. [5-7] We
know that dynamics of patient journeys are clearly different from industrial
production processes such as car assembly or bottling plants [8]. Patients do not
travel down pre-determined ‘assembly lines’. There is, rather, substantial
unexplained variation in access to, and utilisation of, health care in all countries. The
flow diagrams in official guidance are ideals, and do not represent actual processes on
the ground. One important consequence is that clinicians and managers are not in a
position to help software engineers to identify requirements that will improve the
quality and safety of patients’ journeys.

Further, it is at best unclear how to include patients into thinking about pathways.
Prevention and health promotion cannot be imposed – people cannot be ordered to
change their lifestyles - and citizens have to be properly involved in decisions about
their lives. So, rather than being consumers, citizens need to be active collaborators
in their health and health care.

We can make some progress, though, and start by identifying two important
problems. The first, which could be called the process problem, stems from the point
just made. We need to work out how patients actually move through health systems,
and why. The second problem concerns governance – what management
infrastructure will help to improve co-ordination along pathways. Even short
journeys involve co-ordination between teams, and there is good evidence that the
organisation of services can affect both the quality and the outcomes of care.

74 J. Keen

5 Teams That Expect the Unexpected

In many areas of a health system, specialist knowledge is concentrated in teams –
general practice teams, emergency department teams, community-based mental health
teams and so on. This starting point – the clinical team - resonates with the thinking
behind total quality management, where each team involved in a production process
manages its own affairs, co-ordinates its work with other teams locally, and is subject
to ‘light touch’ regulation by a senior management team.[9] It is also reminiscent of
Piore and Sabel’s concept of flexible specialisation, where teams work relatively
independently of one another, each specialising in a particular activity, and building
up a deep understanding of that activity over time.[10] This arrangement has
important long-run advantages for organisations, because individual teams can change
the way they work without significantly disrupting the work of other teams. At the
same time, the specialised nature of a team’s work can make it difficult for outsiders –
often managers, in practice – to intervene or to co-ordinate the activities of different
teams with one another.

One of the keys to understanding patient journeys lies in appreciating the capacity
of clinical teams to cope with uncertainty. This is what distinguishes health care from
car production and processing insurance claims. Let us consider an example of an
elderly woman, Mrs B., who is living in her own home, who feels unwell and makes
an emergency call. An ambulance is dispatched, the paramedics assess her, and drive
her to the emergency department at the local hospital. The process can be
conceptualised as occurring in discrete phases, with different teams taking primary
responsibility at different points in time. It turns out that there is nothing that needs
immediate attention, but the episode has taken place in the context of her on-going
health problems, including some heart problems and a recent history of falls. Hospital
doctors recommend assessments when Mrs B. gets home.

Analyses of this (relatively simple) sequence of events, and others like it, typically
focus on strategies for reducing clinical uncertainty – on arriving at a diagnosis and
making decisions about the appropriate course of treatment. But it seems more
realistic to argue that there are two distinct types of team, with the difference between
the two highlighted by their responses to uncertainty.

There are two distinct types of uncertainty in any patient journey. First, there is
task uncertainty – uncertainty about the appropriate course of action for the patient.
Second, there is environmental uncertainty.[11] This occurs, in part, because teams
are specialized – they do not know, in any detail, how other teams do what they do.
More generally, teams cannot anticipate developments in their wider environments,
which in the case of health care might include epidemics or a major incident leading
to many injuries. Suppose, for the sake of making the arguments clear, that
uncertainty can be either high or low, so that there are four possible combinations of
high and low task and environmental uncertainty. In the first case there is high
certainty about both the specific clinical actions and the best way of co-ordinating
them over the next few days or weeks. This is found, for example, in care following
the diagnosis of some cancers, or following a suspected heart attack. It may be that
our elderly patient, Mrs B., is able to go home the same day, with no need to change
any of the support she receives in her own home. The main co-ordination challenge is
to get her home safely.

 What Is a Care Pathway? 75

Second, there can be certainty about the treatment that is needed now, but not
about the environment that a patient will have to cope with later on in a journey. Mrs
B. might be able to go home, but it may not be clear to hospital staff whether she will
be able to cope without additional help when she gets there. Third, there can be low
certainty about the necessary treatment, but high certainty about the general
environment. This situation might occur with many of us, where there is clearly
something wrong, but it is difficult to pin down what it is. While we and our doctors
are working out what is wrong, though, at least we know we have our friends and
family to support us. Fourth and finally, there are many circumstances where both
task and environmental uncertainty are high. It is necessary to rely on local discretion
– of both clinicians and patients - about the combinations of clinical inputs needed to
help navigate care journeys. In this context it may well be appropriate for individuals
with similar medical needs, but who differ in other respects (such as the extent of
family support), to receive different services.[12] This diversity should not be
confused with the unwarranted variations observed in studies of practice
variations.[13] Finally, there is a fourth combination, of high task uncertainty and
low environmental uncertainty.

Drawing on these arguments, we can sketch out two theoretical ideals, one based
on teams optimizing efficiency and the other on them maximizing the capacity to
respond flexibly – to expect the unexpected. The first is, in essence, total quality
management. Total quality thinking is based on the relative certainty of industrial
production, where there are always major challenges, not least in continuously
reducing costs and improving quality, and in ensuring that quality improvements in
one part of a process do not disrupt processes elsewhere. This type of thinking is
entirely appropriate in many services, where there is high certainty about most
patients and there are well established routines, for example in maternity services or
high volume elective surgery.

The second ideal is based on a capacity to expect the unexpected, and on having
knowledge of the referral options available for each patient. When Mrs B. arrives at the
emergency department, the clinicians do not know what is wrong with her. They should
be able to assess her and take the appropriate actions, whatever is wrong with her –
whether she has a nasty cold coming on, or needs cardiac surgery in the next few hours.
That is, the emergency team should be able to mobilize whatever resources they need.
These will vary from patient to patient, so that the system as a whole needs to be
designed to provide resources in different combinations at any one point in time. The
emergency team should, further, be able to ensure that Mrs B. is referred to the right
teams – in her case, back to her GP, nursing and therapist teams near her home.

More generally, we can say that this second type of team exhibits, (i) the ability to
respond to each patient individually, mobilizing different combinations of services for
each one as necessary, and, (ii) an ability to refer patients to the right team or teams,
which requires knowledge of the options that are available, and an ability to make the
right decision even when it is not clear what the problem is. This is qualitatively
different from total quality initiatives, and from the concept of flexible specialization
described earlier. The second model is not concerned with continuous improvement,
or at least with continuous improvement alone. Rather, the key qualities are
flexibility of response and robustness – teams can cope with a very wide range of
problems that come through their doors.

76 J. Keen

6 Institutions Shape Journeys

We have some useful sketches, but they are only part of our story. During Mrs B’s
hospital visit, her care needed to be co-ordinated. The ambulance needed to arrive
quickly, and warn the emergency department about Mrs B’s problems. Doctors in the
emergency department needed to order tests and get results in a reasonable period of
time. And so on.

Many researchers, including those working in the field of computer supported co-
operative work (CSCW), would focus quite properly on the role of communication in
the co-ordination of Mrs B’s care. But sociologists and political scientists point out
that institutional arrangements substantially influence the decisions and actions of
clinicians working in any given environment. These arrangements have been
established over years, or even decades. Individuals within teams have established
ways of working with one another, and also established ways of managing their
relationships with other teams, so that those teams are able to co-ordinate their work
with one another. Much of the time, teams do not need to communicate with one
another directly, or can communicate using brief messages – a referral form, a brief
telephone conversation. That is, these norms can help to increase efficiency.

The point here is that institutional relationships shape patient journeys. That is,
patient journeys are not simply sequences of rational decisions, taken in the face of
greater or lesser uncertainty. Decisions taken by both clinicians and patients are
influenced by the prevailing institutional arrangements. In the context of our
arguments here, there are two useful indicators of the importance of this point, and
key weaknesses in many health systems around the world, namely the extent to which
patient journeys are the journeys that patients want and need to take, and the safety of
patients in the course of their journeys.

Taking the patterns of patient journeys first we can say, on the positive side, that
there is good evidence that patients are often satisfied or very satisfied with the
services they receive. The level of satisfaction varies from country to country, and
over time, but it seems reasonable to infer that many patients receive the services they
need. Their expectations are met and their health problems are successfully
addressed. Less positively, as noted earlier, there is evidence of systematic variation
in many areas of health care, for example in referrals by family doctors to hospitals, in
prescribing practices and in access to mental health, physiotherapy and other services.
There is also evidence that people with multiple problems – typical of many older
people – receive fragmented and incomplete services.[14] The variation can be
attributed, at least in part, to differences between professionals. If some GPs refer
more than others, and issue more prescriptions than others, then it is likely that their
own behavioural norms are influencing the services that patients receive.

The second indicator is the safety of patients. Adverse events are a reasonable, if
general, indicator of the integrity of a health system, covering both events that occur
within teams and between them. The Institute of Medicine’s report, To Err Is Human,
stressed the importance of designing safe systems of care – or safe patient journeys in
the context of this discussion.[15] There have been very substantial efforts, in many
countries, to improve the safety of services since the publication of that report, and other

 What Is a Care Pathway? 77

reports conveying similar alarming messages. There have undoubtedly been
improvements in many services. Consider the following passage by Leape and
colleagues:

“Too many healthcare organisations fit James Reason’s definition of the ‘‘sick
system syndrome.’’ They are hierarchical and deficient in mutual respect, teamwork
and transparency. Blame is still a mainstay solution. Mechanisms for ensuring
accountability are weak and ambiguous. Few have the capacity to learn and change
that is characteristic of the so-called high reliability industries. Most do not recognise
that safety should be a precondition, not a priority… Many physicians do not know
how to be team players and regard other health workers as assistants … Too many
practitioners—doctors, nurses, pharmacists, therapists, technicians—function in
‘‘silos,’’ focusing on their own performance and communicating with others in
fragmented and inefficient ways that inhibit teamwork. Patients are seldom included
in organisational planning or in the analysis of adverse events that have harmed
them.” [16]

The ‘safety movement’ in health care has grown substantially in the last ten years,
but there is clearly still a long way to go. The main implication, for this paper, is that
improving patients’ journeys requires the proactive management of those journeys,
taking into account their preferences, so that they go on appropriate journeys. This
point is reinforced by another trend, around the world, away from the provision of
reactive illness services to the management of long-term conditions (such as asthma,
diabetes or neurological conditions such as Parkinson’s Disease). There is also a
trend towards the management of a range of known risks, such as the risk of
developing pressure ulcers, of experiencing a fall (and breaking a hip or other bone),
or of a heart attack or stroke if one smokes, has a poor diet or fails to exercise. In
short, when patient journeys are inherently uncertain – or open-ended - in nature, and
there are concerns about the governance of services, the best strategy is to proactively
manage those journeys.

7 Implications for IT Systems

Current IT design practice tends to focus on the collection of detailed activity
information. This is reasonable. The recording of clinical information has a long
history, stretching back into antiquity. Counting, and aggregating, information for
managing services and for accountability to governments or insurers has a shorter
history, but it has had a major influence of thinking about information in the last 30 or
so years. Data collection on the ground has long had to include data required by
others, who are not directly involved in treatment and care. Indeed, in many countries
this ‘machine bureaucracy’ thinking dominates thinking about the design of digital
services. The result is that digital services have long been designed and used
principally for recording and counting purposes.

In the last decade or so, there have been two significant trends. One involves the
progressive linking together of formerly separate IT systems – family doctor systems
to hospital systems, hospital systems to one another, and so on. The other is the
‘colonisation’ of people’s personal lives, under the banner of so-called telehealth
applications. Most of these applications are designed to gather data from individuals,

78 J. Keen

living in their own homes, purportedly to monitor their health status remotely. It has
to be said that there is little evidence that such applications are effective, still less
cost-effective. It is also striking that the ethical implications of these two trends have
barely been explored. Linking systems together, by its nature, raises concerns about
privacy and confidentiality. Colonisation raises questions about the relationship
between health care providers and individuals going about their private business. But
governments around the world are enthusiastic about telehealth, and suppliers are
happy to provide technical solutions.

The important point here is that there is a mismatch between most current practices
in designing and implementing digital services and important trends in the
management of patient journeys. The implication of the arguments set out in this
chapter is that it is difficult to turn ‘machine bureaucracy’ information, that has been
collected in silos, into information that can be used to actively manage patient
journeys. Indeed, managing risks in the course of patient journeys will often require
quite different types of information. The information that helps nurses to monitor
Mrs B’s risk of a fall or of developing a pressure ulcer is different in kind to the
information that is routinely collected on a ward or in a community setting in most
countries.

There is some evidence about this mismatch. One person who has thought hard
about this problem is Dr. Aksel Tjora, a Norwegian emergency physician and
researcher.[17] He makes a straightforward observation: in his hospital, he has access
to a number of departmental systems at a single terminal. And yet, even though he
has access to far more information than he used to, it does not help him very much
with the management of processes of care.

8 Concluding Comments

We can put the arguments set out in this chapter together. They point to the need to
develop information systems for managing clinical and organisational risks. Thinking
and practice in this area is still in its infancy. But there are signs that thinking is
changing. There has, for example, recently been a great deal of interest in the use of
checklists for managing both known risks and to encourage clinical teams to ‘expect
the unexpected’, for example by checking that procedures are in place should
anything go wrong (conceptually, the equivalent of having fire extinguishers in place
in the unlikely, but plausible, event of fire). There has, similarly, been substantial
interest in capturing patients’ assessments of the outcomes of the services they
receive. By and large the tools and procedures for monitoring risk and outcomes have
not been automated: but the existence of valuable research and practice suggests that
automation is now possible.

Thinking about the systems that will enable patients – and their carers – to become
actively involved in their journeys is for the future. One obvious move is to ensure
that patients can access their own records – and this is already possible in several
countries. The problem here, of course, is that existing systems are not focused on
patients’ risks – on the extent to which they, or their clinicians, are successfully
managing risks, as opposed to treating them reactively.

 What Is a Care Pathway? 79

From a patient perspective, there is also an argument for implementing systems to
ensure that risks and outcomes are being routinely monitored, and signs of problems
acted upon. That is, there are arguments for ensuring that systems are designed in
patients’ interests – not just that they are engaged in their own journeys. If patients
cannot trust the institutions looking after them, then they need assurance processes to
be built in. The results would look very different from much current practice,
emphasizing risks and outcomes rather than the recording and counting of activity.

This chapter has argued that it is possible to identify a generic approach to
representing health care pathways. The approach is based on three building blocks,
namely clinical teams (as opposed to decision-makers or idealized patient ‘flows’),
the ability of teams to cope with radical uncertainty, and taking into account the ways
in which institutional arrangements influence the journeys that patients take through
health systems. In practice, few suppliers in the sector have begun to incorporate
checklists and other risk management tools into their systems. There is, then, a
mismatch between much current requirements and design practice and the need on the
ground, for information systems that are oriented towards the pro-active management
of clinical and organizational risks.

Acknowledgment. This paper reports on research funded by the UK Engineering and
Physical Sciences Research Council, the Large Scale Complex IT Systems
Programme, EP/F001096/1.

References

1. Office of the National Coordinator for Health Information Technology. Update on the
adoption of health information technology and related efforts to facilitate the electronic use
and exchange of health information. A Report to Congress (January 2012)

2. National Audit Office. The National Programme for IT in the NHS: an update on the
delivery of detailed care records systems. HC 888, Session 2010-12. The Stationery
Office, London (2010)

3. Pearse, R., Holt, P., Grocott, M.: Managing peri-operative risk in patients undergoing
elective non-cardiac surgery. BMJ 343, d5759 (2011)

4. Davis, M., Rogers, S., Rudolf, M., Hughes, M., Lip, G.: Patient care pathway,
implementation and audit criteria for patients with atrial fibrillation. Heart 93, 48–52
(2007), doi:10.1136/hrt.2006.099937

5. Wachter, R.: Patient Safety At Ten: Unmistakeable Progress, Troubling Gaps. Health
Affairs 29, 165–173 (2010), doi:10.1377/hlthaff.2009.0785

6. Morton, A., Cornwell, J.: What’s the difference between a hospital and a bottling factory?
BMJ 339 (2009), doi:10.1136/bmj.b2727

7. Leape, L., Berwick, D.: Five years after ‘To Err Is Human’, what have we learned?
JAMA 293, 2384–2390 (2005), doi:10.1001/jama.293.19.2384

8. Stevens, D.: Safe healthcare: we’re running out of excuses. Qual. Saf. Health Care 18, 418
(2009), doi:10.1136/qshc.2009.038778

9. Anderson, J.: The Evolution of the health care quality journey. Journal of Legal
Medicine 31, 59–72, doi:10.1080/01947641003598252

10. Piore, M., Sabel, C.: The Second Industrial Divide. Basic, London (1984)

80 J. Keen

11. Helper, S., MacDuffie, J., Sabel, C.: Pragmatic Collaborations: Advancing Knowledge
While Controlling Opportunism. Industrial and Corporate Change 9, 443–488 (2000)

12. Keen, J., Moore, J., West, R.: Pathways, networks and choice in health care. International
Journal of Health Care Quality Assurance 19, 316–327 (2006)

13. Wennberg, J.: Unwarranted variations in healthcare delivery: implications for Academic
Medical Centres. BMJ 325, 961–964 (2002), doi:10.1136/bmj.325.7370.961

14. Boult, C., Wieland, G.: Comprehensive primary care for older patients with multiple
chronic conditions. JAMA 304, 1936–1943 (2010), doi:10.1001/jama.2010.1623

15. Kohn, L., Corrigan, J., Donaldson, M.: To Err Is Human. Institute of Medicine,
Washington DC (1999)

16. Leape, L., Berwick, D., et al.: Transforming healthcare: a safety imperative. Qual. Saf.
Health Care 18, 424–428 (2009), doi:10.1136/qshc.2009.036954

17. Tjora, A., Scambler, G.: Square pegs in round holes: Information systems, hospitals and
the significance of contextual awareness. Socl. Sci. Med. 68, 519–525 (2009)

R. Calinescu and D. Garlan (Eds.): Monterey Workshop 2012, LNCS 7539, pp. 81–93, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Command and Control of Teams of Autonomous Systems

Douglas S. Lange*, Phillip Verbancsics, Robert S. Gutzwiller,
John Reeder, and Cullen Sarles

Space and Naval Warfare Systems Center Pacific
San Diego, CA 92152

doug.lange@navy.mil

Abstract. The command and control of teams of autonomous vehicles provides a
strong model of the control of cyber-physical systems in general. Using the
definition of command and control for military systems, we can recognize the
requirements for the operational control of many systems and see some of the
problems that must be resolved. Among these problems are the need to distinguish
between aberrant behaviors and optimal but quirky behaviors so that the human
commander can determine if the behaviors conform to standards and align with
mission goals. Similarly the commander must able to recognize when goals will
not be met in order to reapportion assets available to the system. Robustness in the
face of a highly variable environment can be met through machine learning, but
must be done in a way that the tactics employed are recognizable as correct.
Finally, because cyber-physical systems will involve decisions that must be made
at great speed, we consider the use of the Rainbow framework for autonomics to
provide rapid but robust command and control at pace.

Keywords: cyber-physical, command and control, autonomic, machine
learning.

1 Introduction

Teams that include heterogeneous autonomous unmanned systems (AUS) are good
generalizations of complex cyber-physical systems. They contain autonomous units
connected by a network, involving distributed computation, and to further complicate
matters may have cooperative intelligent behavior among changing subsets of the
systems components. As the elements of these networked systems exist in and interact
with the physical environment, the physical nature of AUS is obvious. Even the
network can be influenced by the environment given the use of wireless
communications.

Controlling such a complex system requires several critical capabilities. First, the
goals and constraints for the AUS team must be communicated to the various decision
making nodes. This may include all of the AUS, as they all may possess sufficient
autonomous capability to decide how to act under many situations given the goals. A
central controller, or more generally several distributed controllers, must have

* Corresponding author.

82 D.S. Lange et al.

confidence (particularly if human operated) that the goals and constraints have been
received and correctly interpreted by the autonomous units. Second, the control units
must have sufficient situational awareness of the environment and the behaviors of
the team members in order to decide if changes to orders are required. The control
must have the ability to determine if any error conditions are present and must be able
to distinguish between aberrant behavior and what may be a plausible but unpredicted
solution. Finally, team strategies must be selected to accomplish goals, and these
strategies may need to be altered as the environment changes.

This paper explores the control of complex cyber-physical systems. In particular
we look at the requirement for human controllers to influence the operation of these
systems as well as addressing the need for autonomic control in situations where time
constraints do not allow human decision making. This combination of requirements
poses interesting demands on how cyber-physical systems are constructed and how
they incorporate adaptation.

2 Control of Complex Systems

The control exercised by a military commander over forces is described as “…guiding
the operation” [1]. The presumption is that there is a mission statement, a set of assets
with which to perform the mission, and an environment to operate in that may include
an opposing force. There are several ways in which a commander guides an operation.

Maintain alignment: The commander must ensure that all decisions remain aligned
with the operation’s mission and the commander’s intent.

Provide situational awareness: The commander must assess the status of plan
execution constantly, utilizing a common operational picture (COP).

Advance the plan: The commander must monitor the status of plan execution
against the plan’s timeline.

Comply with procedure: The commander oversees compliance with warfighting
procedures to avoid mistakes (e.g., friendly fire engagements or collateral damage)
and achieve efficiencies.

Counter the enemy: The commander must be responsive to emerging intelligence,
surveillance, and reconnaissance information that differ significantly from
expectations.

Adjust apportionment: Changes to asset availability or changes to requirements and
priorities may require reapportionment of assets.

Military organizations are essentially complex cyber-physical systems. The end –
nodes may be aircraft with pilots, or aircraft without pilots. These units whether
manned or unmanned can be viewed as autonomous systems that cooperate to achieve
a mission under the command of a human commander.

The tasks of the military commander are also clearly analogous to what would be
required in many non-military systems. The only difference may be that no enemy
exists, but the environment is nevertheless capable of surprising, therefore emerging
information that alters assumptions is still possible. Units may become inoperable just
as in military operations, and adjustments to plans must often be made.

As the complexity of the system increases, the commander must work at higher,
more abstract levels. The units of the system must also exhibit higher levels of

 Command and Control of Teams of Autonomous Systems 83

autonomy so that decision making is moved further down and is more immediate [2].
Based on the level of autonomy exhibited by the units, we can model the size of an
operation that a single person can manage, provided the situation can be adequately
described to the commander.

3 Control of Systems by Humans

Automation can easily be called ubiquitous. We interface with it daily, even if we do
not immediately recognize it. In years past for example, elevators required human
operators, but now we simply press a button to reach our floor. Even highly complex
systems integrate automation; commercially flown airplanes have autopilots that are
capable of landing the plane, and some models of cars have automated systems which
bypass the driver if safety is in doubt (i.e., automatic braking systems, vehicle
headway monitoring). These systems integrate automation, but still rely heavily on a
human component for routine performance and supervision. While automation is
becoming more common, and more reliable, it rarely replaces or removes a human
with experience from the overall task [3].

Automation has also been shown to result in phenomena such as complacency
which results in operators failing to detect failures of automated systems [4,5,6] and
automation bias, which results in operators blindly following automation
recommendations or failing to act unless the automation requests the human action in
decision making systems [7,8,9,10,11].

Leli and Filskov [12] suggest that it is specifically the integration that plays a large
role in determining the effectiveness of a system outcome. In their work, automated
diagnostic systems consistently outperformed clinicians when in isolation; however
decision accuracy decreased as a direct result of integrated clinician use of the aid to
diagnose psychological conditions. This suggests that perhaps the most critical aspect
of automation is not the engineering behind the automation itself, but the interaction
between any automation and the operator who is expected to work together with it.

Parasuraman and Wickens [3] also identified issues related to the ability of human
operators to understand the actions of the automation. The operators trust and ability
to evaluate the performance of autonomous systems comes, in part, from an ability to
recognize behaviors as correct or incorrect. AUS that have been programmed to
perform in a particular fashion may or may not exhibit behaviors that are recognizably
correct while optimal for the given situation. Knowing that such situations can exist
may also push an operator to show complacency when observing odd behaviors
because they can be explained as possibly correct if not humanlike.

4 The Roles for Learning

4.1 Developing Team Tactics

A common approach to the design of autonomous systems is to design the entire
system to be scripted. That is, a human decides on the action the autonomy takes for

84 D.S. Lange et al.

any given state the system is in. Such systems face many challenges. The first is the
significant investment in human resources in the design because every part of the
autonomy must be thought out and scripted. Furthermore, the autonomous capability
is dependent upon the incorporated knowledge. Therefore, the investment of human
resources necessarily includes subject matter experts in the task the autonomy is
addressing. Another difficulty is that scripted autonomy is brittle, e.g. unexpected
situations can cause the autonomy to not work. This lack of robustness is due to the
expansive state space that exists in the real world. Human designers will not be able
to test or even anticipate every situation the autonomous system will be exposed to,
resulting in a number of states that will not be addressed by the autonomy or be
addressed with limited effectiveness. For example, consider a scripted autonomous
system designed to deter piracy that assumes there exists only a single pirate threat at
any given time. Once such autonomy encounters a situation where there exists more
than one pirate, the script will degrade in effectiveness because the situation was not
anticipated. Furthermore, once the autonomous system is introduced, pirates can adapt
their tactics to counter the system and render ineffective the specific design of the
autonomy. Finally, scripted systems often lack scalability. In particular, the designs
will be tied to a particular number of autonomous agents, or a particular autonomous
system, meaning each time the number of types of unmanned vehicles change, the
autonomy for the system must be redesigned.

In a proof of concept experiment, such a scripted system was compared to a cutting
edge multiagent learning method, Multiagent HyperNEAT. Multiagent HyperNEAT
approaches the problem of multiagent learning by focusing on the geometric
relationships among agent policies [13]. The policy geometry is the relationship
among policies located at particular positions and the team behavior. Because
multiagent HyperNEAT is built upon HyperNEAT, it can exploit the same patterns
that HyperNEAT is able, such as regularities. Furthermore, because HyperNEAT can
encode repetition with variation, it can encode agent policies that share skills and vary
in significant ways. Conventional multiagent learning cannot capture such regularities
to enable sharing of skills and variation of policy. For a full description of how
multiagent HyperNEAT encodes a team of policies see [13,14]. The main idea is to
place a whole set of policies within a team geometry and compute their individual
policies as a function of their location within the team.

Moving from simulated domains to real robots will mean that situations may occur
where the number of agents varies, such as malfunctions or replacements and
therefore ideally team size should be dynamically adjustable. The multiagent
HyperNEAT approach allows such scaling because it represents team policies
indirectly as a function of team geometry. Thus new agents can be added by simply
generating the policy for their assigned team position.

The results of the proof of concept experiment are illustrated in the figure below.

 Command and Control of Teams of Autonomous Systems 85

Fig. 1. Performance of Scripted Search versus Learned Policy

Overall, the results show that policies created by multiagent learning approaches
are more robust to change. The scripted parallel search and learned multiagent
HyperNEAT policies are compared on three variations of a threat detection task. In
each of the variations, the policies are tested over 100 evaluations and the results
averaged. The learned policy tested is trained solely on the first variation. The first
variation is the training task for multiagent HyperNEAT, in which there are seven
simulated unmanned vehicles patrolling and the threats can randomly appear along
any of the four edges of the operational area. In this task, the learned policy has
statistically the same performance as the scripted policy, resulting in the patrols
missing 2.37 threats, and the learned patrol policy missing 2.47.

In the second variation, the tactics employed by the threats are altered such that
they now appear from two of the four sides at random, thus increasing the density of
the attacks along that vector and testing the robustness of the approaches. The learned
policy missed 3.94 threats, significantly (p < 0.001) outperforming the scripted policy,
which decreased significantly in performance to 7.98 threats missed.

In the third variation, threats can appear along all four edges, but the number of
simulated unmanned vehicles in the team is increased from seven to eleven. The
learned policy exploits the increased number of vehicles, decreasing the missed
threats to 0. However, the scripted policy is unable to take advantage of the new
vehicles and only insignificantly decreased missed threats to 2.32. These results
demonstrate that learning can produce more robust and scalable policies.

86 D.S. Lange et al.

4.2 Recognizing Correct Tactical Behavior

Using HyperNEAT to develop team tactics will create more robust and scalable
policies and behaviors. However, we must also be concerned with whether or not the
human controller will recognize the behaviors as being safe and correct. As the
HyperNEAT approach produces Artificial Neural Nets (ANN), we can only look at
the team tactics as black boxes, and even within the proof of concept experiment, it
took a fair amount of observation of the units to interpret (essentially guess) why they
were behaving as they did. A human controller in such a system however, must be
able to decide if the tactics being employed are aligned to the mission and whether or
not they are properly countering the enemy or handling arising complications in the
environment.

One of the primary draw backs to learning behaviors is that in the search for
optimal actions the agents can behave in ways that seem foreign and unintelligible to
the human operators. It is most likely the case, and something that should be tested,
that agents that behave in a more humanlike fashion are more easily trusted by human
observers. The development of humanlike agents is possible through hand coding and
expert systems, but it is a tedious and complicated process. It is, however possible to
learn humanlike behaviors through observation. FALCONET is such a system
designed to create high performance humanlike agents through human observation.

Humans learn through several different processes. Learning through observation
entails watching the process as performed by some other individual or agent. Learning
through experience involves repetitive practice of the process with feedback on
performance. Learning can and does occur under each process individually, but it is
the combination of observation and experience that generally leads to the highest
levels of performance. For instance when learning a new sport humans typically
observe others already proficient in the activity before beginning to practice
themselves. Observation bootstraps the learning process of experience enabling faster
learning speed and higher peak performance.

There is a long history in Machine learning of borrowing from biological systems.
Examples include knowledge representations like neural networks, optimization
algorithms such as genetic algorithms and ant colony optimization, and learning
paradigms like reinforcement learning. In the particular method discussed below the
observational-experiential learning cycle is replicated in machine learning to achieve
the same goals for simulated learning that are achieved in biological learning.

FALCONET is a method of agent training that follows the biologically inspired
cycle of observation and experiential learning. It was designed to enable the creation
of high performing, humanlike agents for real time reactionary control systems [15].
Typically, the building of humanlike agents involves the complicated process of
interviewing knowledge experts and then codifying that knowledge into a format that
is machine readable. This process is complicated and time consuming and has led to
the slow adoption of this technique in real world systems, despite the success that can
be achieved. This problem is known as the “knowledge engineering bottleneck” [16].
FALCONET was designed to automate the agent creation process from human
observation thereby sidestepping the bottleneck.

 Command and Control of Teams of Autonomous Systems 87

Previous work has been done using observational data alone to train agents,
stopping once an acceptable level of performance is reached on training and
validation sets [17,18,19,20,21]. While this might produce humanlike agents, it
ignores the possibility that the observational agents will perform poorly in situations
not covered in the observational data. The agents when presented with novel
situations could perform in unpredictable and unintelligent ways. The experiential
phase can fill in these gaps by providing feedback on the agent’s performance in
novel situations.

The training in FALCONET follows a two phase training approach. First a
supervised observational phase, followed by an unsupervised experiential phase.
During the observational phase the objective of the learning is to be similar to the
actions of a human trainer. Human trainers run through the selected tasks starting
from many different scenarios to generate the observational training set. The agents
are then trained on this data set while being graded on how closely they mimic the
decisions of the human. In the experiential phase the agents are trained further using a
measure of performance on the task. In FALCONET all training is done by a hybrid
genetic algorithm (GA) particle swarm optimization (PSO) algorithm called
PIDGION-alternate. This is an ANN optimization technique that generates efficient
ANN controls from simple environmental feedback. FALCONET has been tested
showing that it can produce agents that perform as well or better than experiential
training alone while incorporating humanlike behaviors. The results from
FALCONET also state that unique human operator traits can be incorporated and
evident in the final highest performance controls, that is to say that agents sourced
from different trainers have slightly different behavioral quirks.

As part of the validation of the FALCONET method experiments were conducted
using only the experiential learning phase. High performance controls were created in
this manner, but they showed several “improper” quirks, that while more optimal in
the performance metric, seem foreign to human operators. These quirks, like driving
backward or slamming the controls left and right very quickly, can be programmed
out by a human designer, but it requires the a priori knowledge of all “improper”
behaviors that would be undesirable. The FALCONET method bypasses this need by
bootstrapping the process with human training.

5 Autonomic Control

So far, we have discussed the basic needs that will allow a human commander/controller
to exercise command and control over a network of autonomous units that include
highly autonomous unmanned systems (AUS). We have recognized that the controller
must be able to develop adequate situational awareness of the environment, any
enemies, and the behaviors and status of assets available. This SA requires the
commander to recognize the behaviors being displayed as aligned with the mission,
commander’s intent, and applicable procedures. It also requires that these behaviors be
robust to the variation found in the environment.

We have also recognized that the human controller is subject to many difficulties
inherent to managing automation. Humans are prone to complacency and

88 D.S. Lange et al.

automation bias. They also can only work at human speeds and can only handle a
finite level of complex information. Abstraction and supervisory control are therefore
essential to success if many rapid decisions will need to be made in controlling the
network.

We are beginning to model AUS teams utilizing the Rainbow Framework [22]
from Carnegie Mellon University. Rainbow groups commands into tactics and
strategies and directs the system with those instead of individual actions. This
approach allows an automated controller to move the system out of local maximums
that it may encounter in utility functions. Additionally, the grouping of actions into
tactics and strategies allows for the system to leverage learning techniques and
previous human experience in dealing with situations.

Rainbow will provide an autonomic command and control in the sense that it
assists with the same set of six tasks, only faster.

Maintain alignment: The mission goals and the commander’s intent will be
modeled as a set of utility functions within Rainbow. Rainbow evaluates current
readings from probes and gauges as well as tactics for changing the resource
allocations against these utility functions to select an action.

Provide situational awareness: Rainbow’s framework of probes and gauges provides
situational awareness into how well the current plan is meeting mission goals.

Advance the plan: The autonomic systems is continuously evaluating the readings
from the probes and gauges against the plan and makes changes to adjust in the event
that desired goals are not being met.

Comply with procedure: Procedural guidelines can be coded in the tactics
employed by Rainbow in the stitch language. It is our intention to also link tactical
procedures to learned behaviors.

Counter the enemy: As the environment or enemy actions impinge on success of
the goal, Rainbow adjusts the operation based on evaluating tactics against the
likelihood of success. The evaluation processes will need to be robust enough to
estimate how the changes will effect operations.

Adjust apportionment: The basic types of tactics employed in Rainbow to date
have been apportionment decisions. In [22] experiments were done on video
teleconferencing services where additional servers were brought online to solve
problems that occurred during operations.

In the application of Rainbow, AUS teams are represented in a similar fashion as a
network of servers would be. However, we include probes into the physical world
providing information both on the AUS and on the environment. Many of these
probes relate directly to the sensors that are onboard typical AUS. Strategy decisions
involving costs include physical costs of fuel as well as risks found only in systems
that interact with the physical world. Likewise, rewards are based on the ability of the
AUS to effect a positive change on the environment, often in the form of achieving a
probability of detection of other physical entities in a portion of the environment.

We have developed an initial proof of concept in autonomic control of unmanned
systems by applying the Rainbow Framework to a simulated domain. In this domain,
a number of AUS must maximize the probability of detection, P(d), in an
environment by maximizing sensor coverage across the area. In this case, P(d) is a

 Command and Control of Teams of Autonomous Systems 89

simple metric defined as the fraction of horizontal and vertical paths across the space
that do not have sensor coverage across them, i.e. straight paths that can be traversed
without detection. Thus each AUS has a location (x,y-coordinate) and sensor range
along with other parameters. Because AUS are conceptually similar to computational
services (e.g. servers), they can be similarly modeled in the Acme architecture model
language that defines a system architecture in the Rainbow Framework. A simple
AUS architecture definition is as follows:

Component Type AUST extends ArchElementT with {

 Property x : float << default : float = 0.0; >> ;

 Property y : float << default : float = 0.0; >> ;

 Property fuel : float << default : float = 1.0; >> ;

 Property fuelExpendRate : float << default : float = 1.0E-4; >> ;

 Property speed : float << default : float = 0.01; >> ;

 Property sensorRadius : float << default = 0.1; >> ;

 Property cost : float << default : float = 1.0; >> ;

}

Properties, such as the geographic location and fuel state, represent values that are
probed from the (simulated) world. Such values inform the Rainbow model manger,
allowing it to accurately reflect and gauge the real system within the Rainbow defined
model.

A key feature of Rainbow is the definition of constraints that the system must
follow. For example, a web business may desire the minimization of response time
for its customers and define a constraint that the response time experienced by any
customer if below some threshold. In turn, Rainbow would probe these response time
values from the real system and then evaluate the model for constraint violations. If a
constraint is violated, Rainbow adapts the model through predefined strategies and
then executes these strategies on the real system through effectors. In this proof of
concept, the constraint is that the value P(d) must be above a given threshold of 0.8.
To satisfy this constraint, Rainbow implements a simple strategy.

strategy BruteDetection

[styleApplies && cViolation] {

 t0: (overlapExists) -> move(){

 t0a: (default) -> done;

 }

 t1: (cViolation && ! overlapExists) -> enlistAUS() {

 t1a: (overlapExists) -> move();

 }

In brief, the strategy states that if an overlap in sensor coverage exists, move the
active AUS to minimize the overlapping coverage. If there is no overlap, but the
constraint is still violated, then add a new AUS to the domain. This strategy
implements two tactics that we described in stitch: move and enlistAUS. As an
example of how these tactics are defined, enlistAUS is as follows:

90 D.S. Lange et al.

tactic enlistAUS () {
 condition {
 // Probability of detection is below a threshold
 ModelAlt.probabilityDetection(M.components) <M.MIN_PDETECT;
 // there should be enough available AUS
 ModelAlt.availableServices(T.AUST) >= 1;
 }
 action {
 set aus = Set.randomSubset(ModelAlt.findServices(T.AUST), 1);
 for (T.AUST freeAUS : aus) {
 S.activateAUS(freeAUS);
 }
 }
 effect {
 // Probability of detection rising should result
 ModelAlt.probabilityDetection(M.components) >= M.PDETECT;
 }
}

In the enlistAUS tactic, the condition first checks whether the constraint is violated
and then if there are any AUS not currently active. If both these conditions are
satisfied, a random free AUS is chosen and activated. The effect being that the
addition of the new AUS increases the sensor coverage, thus improving P(d) over the
current levels.

In the domain, the AUS exist in a two-dimensional plane with coordinate values in
the range [0,1]. Initially, no AUS are active, thus the constraint is violated at the start.
This compels Rainbow to adapt the system with the above strategies and tactics to
achieve the pre-determined desired P(d) level. When each AUS is activated, they are
placed at location (0,0) and then move from there. Each AUS moves at the same
fixed speed of 0.01, have a sensor range of 0.1, and begin with 100% fuel.

Results demonstrate that Rainbow can be implemented to effectively control such
systems. Figure 2 shows that the system begins at a low P(d), indicative of the initial
state of the system. However, by time step 150, Rainbow has successfully adapted
the system to achieve the desired P(d) value.

Fig. 2. Probability of Detection in Proof-of-Concept Experiment

 Command and Control of Teams of Autonomous Systems 91

Not only is the result interesting, but the behavior of the system is as well. Figure 3
shows the final configuration of the system, when it achieves the P(d) threshold
required. Each circle represents an AUS sensor coverage.

Fig. 3. Final AUS Positions with Sensor Radii

Through the composition of simple strategies and tactics, organization emerges that
effectively minimizes the probability of anyone passing through the region undetected.
In this simulation, utility of the system is equal to the probability of detection.
However, Rainbow includes the capability to calculate system utility as a function of
multiple variables. For example, maintaining sensor coverage may be only one
important aspect; another may be reducing fuel consumption or minimizing the AUS
required. Rainbow weights each of these contributions of utility to determine the
overall utility of the system. Through these relative weightings, different aspects can be
emphasized. A suite of strategies to address these differing concerns may be required,
forming a pareto-front of performance depending on particular user needs.

The ability of Rainbow to automatically and quickly implement strategies frees up
the controller to focus on macro level concerns, such as overall probability of
detection, fuel levels, and costs, rather than micro-managing individual AUS. Thus
the controller can make decisions about required detection levels versus preferred fuel
levels and leave it up to Rainbow and its strategies to implement the decisions. Many
avenues remain for exploration in the Rainbow Framework including, but not limited
to, performance with “human-in-the-loop” changing the system constraints and goals,
integrating machine learning into tactics and strategies, extending Rainbow to be able
to dynamically acquire system architecture, and evaluating robustness to failures in
the system, such as an AUS malfunctioning, being destroyed, running out of fuel, or
being reassigned.

92 D.S. Lange et al.

6 Conclusions

We have both found and produced, proof-of-concept level experiments that
demonstrate possible solutions to some of the challenges we perceive for the
successful command and control of teams that include AUS. Our goal is to continue
to pursue these possible solutions.

The command and control of teams requires that commanders be able to work at a
suitable level of abstraction. Commanders must be able to recognize when changes to
a plan are required and must have the ability to affect such a change. The dynamic
nature of the military environment indicates the need for robust adaptable capabilities
for decision making in the individual AUS, but also the ability for their actions to be
recognizable to human controllers. Autonomic capabilities are a likely approach to
allow commanders to handle very large teams that may require rapid decision making,
but the autonomic strategies must also be made more adaptable and in doing so also
maintain the property of being recognizable by a commander.

References

1. Willard, R.F.: Rediscovering the Art of Command & Control. Proceedings of the US
Naval Institute (2002)

2. Rodas, M.O., Szatkowski, C.X., Veronda, M.C.: Modeling Operator Cognitive Capacity in
Complex C2 Environments. In: 16th International Command and Control Research and
Technology Symposium (2011)

3. Parasuraman, R., Wickens, C.D.: Humans: Still vital after all these years of automation.
Human Factors 50(3), 511–520 (2008)

4. Parasuraman, R., Molly, R., Singh, I.L.: Performance consequences of automation induced
“complacency”. The International Journal of Aviation Psychology 3(1), 1–23 (1993)

5. Wiener, E.L.: Cockpit automation. In: Wiener, E.L., Nagel, D.C. (eds.) Human Factors in
Aviation, pp. 433–461. Academic, San Diego (1988)

6. Parsasuraman, R., Manzey, D.H.: Complacency and Bias in Human Use of Automation:
An Attentional Integration. Human Factors 52, 381–410 (2010)

7. 32nd Army Air and Missile Defense Command: Patriot Missile Defense Operations during
Operation Iraqi Freedom, Washington, DC (2003)

8. Chen, T.L., Pritchett, A.R.: Development and evaluation of a cockpit decision-aid for
emergency trajectory generation. Journal of Aircraft 38, 935–943 (2001)

9. Johnson, K., Ren, L., Kuchar, J., Oman, C.: Interaction of automation and time pressure in
a route replanning task. In: International Conference on Human-Computer Interaction in
Aeronautics, pp. 132–137 (2002)

10. Layton, C., Smith, P.J., McCoy, E.: Design of a cooperative problem-solving system for
en-route flight planning: An empirical evaluation. Human Factors 36, 94–119 (1994)

11. Mosier, K.L., Skitka, L.J., Dunbar, M., McDonnell, L.: Aircrews and automation bias: The
advantages of teamwork? The International Journal of Aviation Psychology 11(1), 1–14
(2001)

12. Leli, D., Filskov, S.: Clinical detection of intellectual deterioration associated with brain
damage. Journal of Clinical Psychology 40(6), 1435–1441 (1984)

13. D’Ambrosio, D.B., Stanley, K.O.: Generative encoding for multiagent learning. In:
Proceedings of the Genetic and Evolutionary Computation Conference (2008)

 Command and Control of Teams of Autonomous Systems 93

14. D’Ambrosio, D.B., Lehman, J., Risi, S., Stanley, K.O.: Evolving policy geometry for
scalable multiagent learning. In: Proceedings of the Ninth International Conference on
Autonomous Agents and Multiagent Systems (2010)

15. Stein, G.: FALCONET: Force-feedback approach for learning from coaching and
observation using natural and experiential training. Ph.D. Thesis, University of Central
Florida (2009)

16. Feigenbaum, E.A.: Knowledge Engineering: The Applied Side of Artificial Intelligence.
Annals of the New York Academy of Sciences 426(1 Computer Culture: The Scientific,
Intellectual, and Social Impact of the Computer), 91–107 (1984)

17. Dejong, G., Mooney, R.: Explanation-based learning: An alternative view. Machine
Learning 1(2), 145–176 (1986)

18. Lee, S., Shimoji, S.: Machine acquisition of skills by neural networks. In: IEEE
International Joint Conference on Neural Networks, vol. II, pp. 781–788 (1991)

19. Sammut, C., Hurst, S., Kedzier, D., Michie, D.: Learning to fly. In: Proceedings of the
Ninth International Workshop on Machine Learning, pp. 385–393 (1992)

20. Henninger, A.E., Gonzalez, A.J., Georgipoulos, M., DeMara, R.F.: The limitations of
static performance metrics for dynamic tasks learned through observation. Ann
Arbor 1001, 43031 (2001)

21. Fernlund, H.K.G., Gonzalez, A.J., Georgiopoulos, M., DeMara, R.F.: Learning tactical
human behavior through observation of human performance. IEEE Systems, Man, and
Cybernetics, Part B: Cybernetics 36(1), 128–140 (2006)

22. Garlan, D., Cheng, S., Huang, A., Schmerl, B., Steenkiste, P.: Rainbow: Architecture-
Based Self Adaptation with Reusable Infrastructure. Computer 37(10), 46–54 (2004)

R. Calinescu and D. Garlan (Eds.): Monterey Workshop 2012, LNCS 7539, pp. 94–117, 2012.
© Springer-Verlag Berlin Heidelberg 2012

The Risks of LSCITS:
The Odds Are Stacked against Us

John A. McDermid

Department of Computer Science, University of York,
Deramore Lane, York, YO10 5GH

Abstract. Complex IT Systems are often used in applications which can pose a
risk to their owners or to the public. Many of these are subject to extensive risk
assessment before they are deployed and operated yet, despite this, undesired
events do arise, leading to financial loss or loss of life. This paper investigates
the role of existing risk assessment methods and draws the conclusion that they
do not effectively predict the causes of actual loss events. The paper then
suggests an alternative approach, which has the potential to offer a unified
approach to risk assessment across a number of domains, and across different
system properties, e.g. safety and financial risk. It concludes with observations
on similar methods and research results, especially from accident analysis, and
makes suggestions for future research directions.

Keywords: Large Scale Complex IT Systems, Risks, Safety, Security.

1 Introduction

Many Large-Scale Complex IT Systems (LSCITS) are used in roles where
organisations depend on them for a key aspect of their business. As a consequence,
these systems may be safety, security or mission (business) critical. It is common to
assess such systems in terms of the risks they pose – whether to the organisation that
owns them or to third parties – but different approaches to risk analysis are used in
different domains. This paper analyses some “loss events” associated with a range of
LSCITS (and one comparatively simple system) then uses the “signatures” of these
events both to question current approaches to risk analysis and as a source of ideas
and inspiration for an alternative model.

Serious failures of the more “critical” LSCITS are relatively rare, and that might
suggest that “all is well” in terms of our ability to design and assess such systems.
However a cursory assessment of a range of “loss events”, e.g. accidents or financial
losses, suggests that the current approaches to risk assessment do not throw much
light on the actual causes of the loss events. The paper considers a range of “loss
events” which illustrate safety, financial and availability issues. It shows that the risk
assessment methods used, explicitly or implicitly, in these different domains do not
provide a good basis for gaining an understanding of these events.

This analysis also shows that the events studied have remarkably similar “signatures”
in the sense that the “confluence of events” which leads to the loss are very similar in

 The Risks of LSCITS: The Odds Are Stacked against Us 95

nature, although they are in different technologies, systems and domains. As LSCITS
are increasingly depended on for multiple critical properties, e.g. safety and security, the
availability of a “unified” approach to risk assessment has the potential to be valuable in
the design and assessment of future generations of LSCITS.

It should be noted that these initial findings are tentative, and need further and
more rigorous study. Observations on methodological issues are presented in the next
section, followed by a brief, textual, analysis of five loss events. The “signature” of
each loss event is discussed, and some observations are made which are intended to
help in developing a methodological approach to assessing LSCITS risk. This is
followed by a discussion of risk analysis. This discussion first outlines the risk
analysis processes typically used in several different domains, and then discusses how
well these processes reflect the signatures of the loss events described previously.
Next, the paper outlines an alternative perspective on risk analysis, believed to be
suitable for assessing LSCITS. The paper then considers related research, before
drawing conclusions and proposing directions for future work.

2 Methodological Remarks

It is not possible to do an exhaustive, scientific, analysis of LSCITS and their risks. In
some domains the allowable failure/loss rates are so low that the expectation would be
that there would no failures in the operational life of the system – and that is many
decades. Further, there are far too many systems, and the numbers deployed are
increasing at a rate that defies analysis.

Thus our approach reflects an approach developed in social and management
sciences, e.g. by Van der Ven [1], which provides a framework for observing,
modelling and (ultimately) intervening in real-world applications. This approach is
outlined in Fig. 1 overleaf.

The framework can be “entered” anywhere but, for our purposes, it is easiest to
think of it starting with observations of reality (the bottom of Fig. 1) to produce a
problem formulation. From the problem formulation and the observations, it is then
possible to develop theories and models which provide explanations of the observed
phenomena (which are better than current theories in this regard). The framework
then proceeds to build a “research design” enabling an intervention – changing reality
– which can then be re-assessed to seek to confirm or refine the theory and model. At
this stage in our work, we are firmly in the (early) stages of theory and model
building.

Van der Ven also uses the nature of the research, and the degree of engagement, to
refine his research framework; this is outlined in Fig. 2 overleaf. In terms of this
model, we are working in the “describe/explain” part of the framework, and within
that mainly in the “detached/outside” research perspective (although one of our
examples below is in the “attached/inside” quadrant, as it is a personal experience).

Thus, at this stage, the criteria for assessing the theory and model are relevance and
validity; we would also say that they should give greater explanatory power than
current models of risk.

96 J.A. McDermid

Fig. 1. Model Of Engaged Scholarship (from Van der Ven [1])

Fig. 2. Types Of Research (from Van der Ven [1])

This work is undertaken as part of the LSCITS programme [2]. The original
LSCITS proposal divided the space of concern for LSCITS into four layers in a
“stack”, viz:

 The Risks of LSCITS: The Odds Are Stacked against Us 97

• PSS – Predictable Software Systems – the development and application of the
most advanced scientific principles to large-scale computing problems;

• HISE – High Integrity Systems Engineering – rigorous approaches to dealing
with the design and assessment of systems beyond the reach of the PSS
methods, including Systems of Systems (SoS);

• STSE – Socio-Technical Systems Engineering – the analysis of systems and
their failures where the causes of the difficulties arise in the interaction
between technology and users, both individuals and organisations;

• CiO – Complexity in Organisations – focusing on the problems of large-scale
organisations, and how they influence system success.

Also, the LSCITS programme includes orthogonal work on non-standard
computational approaches to complex problems, and work on the cloud.

To help understand the risks of LSCITS, it would be possible to classify the
example loss events in terms of the LSCITS stack. However, it is sometimes hard to
make distinctions between the four different concerns, and as several of the loss
events studied have complex causal factors, it has been decided instead classify the
events on a “scale”, viz:

• Pure technical – there is a clear technical cause of the loss event, and the
interaction with, and behaviour of, the organisation is much as intended;

• Socio-technical – the causes of the event include erroneous interaction
between the system and users, and may also include individual human errors or
technical failures;

• Pure organisational – there is a clear organisational cause of the event, e.g.
failure to implement separation of duty, and the system behaved according to
intent (and requests from users).

This is intended to be a “sliding scale” not a hard categorisation, and it is used to
“locate” the primary causal factors in each loss event on the technical-organisational
axis.

In analysing loss events there is always a risk of hindsight bias – looking for
evidence to prove the author’s hypothesis. In part we have sought to address this risk
through consideration of events which span the range from highly technical causes to
those whose origins are largely organisational. Further we are seeking to build a
theory and model, not to prove one. However there is always a risk of such biases,
and we return to this concern in the discussion.

3 An Analysis of Some Loss Events

In order to shed light on the issues of risk assessment we consider five “loss events”.
Four are documented in the literature, to varying degrees; one is a personal
experience. Many more examples could be chosen, but the rationale here has been to
choose events which span the range from technical to organisational, and cover
safety, financial risk and availability (integrity) of private data. Of course there would

98 J.A. McDermid

always be benefit in considering more loss events; see the conclusions for a
discussion of future work.

It would be possible to analyse the events using methods such as Why-Because
Analysis (WBA) or Why-Because Graphs (WBG) [3]. We have chosen not to do so
here, partly for brevity, partly so that we can emphasise what we perceive to be key
points, and partly as there is not a body of work to draw on showing how to apply the
techniques outside the safety domain. However if this work is to be taken further, then
it will be necessary for the analysis of these individual events to be put on a more
rigorous footing (although this might require extensions to techniques such as WBA).

In each case, the description contains a brief overview of the event, primarily to set
context. This is followed by a descriptive analysis of the event(s) leading to the loss,
and ends with an assessment of the “signature” of the event. Following the discussion
of these five loss events, some observations are presented, followed by the problem
formulation, as suggested by Van der Ven’s framework [1].

3.1 A Syringe Pump

This example relates to a syringe pump, that is a medical device which delivers liquid
drugs on hospital wards, or anaesthetics in operating theatres. A desired delivery rate
is set by a nurse, or an anaesthetist, then an electric motor drives the syringe plunger
to deliver the fluid at the set rate. The flow rates set may be very low.

For safety, the initial design had diverse mechanisms for measuring movement of
the plunger: a linear interference grating directly measuring plunger movement and a
quadrature system measuring the rotation of the motor shaft. In initial use, the device
suffered a lot of “spurious trips” where the pump stopped because the linear grating
system detected inappropriate movement. Investigation showed that this was spurious,
and was due to backlash in a gearbox, which was significant given the low rates at
which the pump was meant to operate.

It was decided that the device should be modified so that the linear grating was not
enabled until the quadrature system had confirmed that the syringe plunger was
moving. Two patients were killed when the plunger emptied the syringe at high speed
(it emptied a 250ml syringe in a matter of seconds). A more detailed analysis of the
control loop is presented in [4], but the reference does not describe the context of use
which was deemed to be sensitive at the time.

Note that this is a simple example, and can not be considered to be an LSCITS, but
it is included as it is possible to give quite a detailed technical exposition of what
happened, and it also shows the problems of change – which are a causal factor in
many accidents and incidents.

Description of the Event. The quadrature system had a reference square wave signal
(Fig. 3 a). A sensor on the motor shaft generated a square wave signal; if the rising
edge from the sensor was before the rising edge on the reference signal that indicated
movement in one direction (Fig. 3 b); movement in the opposite direction was
indicated by the edges being in the other order (Fig. 3 c).

 The Risks of LSCITS: The Odds Are Stacked against Us 99

Fig. 3. Critical Waveforms (adapted from [4])

The signal coming from the sensor was not “clean” and was “squared up” by
means of a Schmitt trigger. Schmitt triggers vary in performance; most produce a
signal which is close to square (with a mark-space ratio of 1), but some produce
signals with a much higher mark-space ratio. For some devices at the limit of the
manufacturing variability, the resultant signal was very distorted and the complete
positive pulse was within the positive part of the reference signal (Fig. 3 d).

The logic in the software was designed on the basis that the complete overlap of
signals shown at Fig. 3 d) was impossible; unfortunately rather than flagging this as
an error and stopping the motor, the software looped, kept power on the motor, read
the next set of inputs, and kept going waiting for a “valid” input showing that the
motor was moving. Following the change, the motor control software did not enable
the linear grating until it had a “valid” input, so the protection system did not stop the
motor either.

Signature: The key causal factors in the loss event are:

• Intrinsic flaw (software “bug”) exposed by the circumstances;
• The protection system was disabled due to a single point failure (the Schmitt

trigger at the limit of tolerances); thus it was a common cause failure;
• Opportunities for further protection, i.e. detecting invalid inputs and/or

stopping the device after a time had elapsed without detecting a “valid” input,
were missed.

100 J.A. McDermid

This is viewed as largely a technical loss event as there was a “bug” in the software
(incomplete coverage of possible inputs) and an electronic device which was at the
limit of manufacturing variability. However there was a socio-technical element – the
change to improve availability – however this change only uncovered a basic design
flaw, rather than contributing directly to the accident.

3.2 The Cloud

This example is a personal experience which is largely an integrity problem, but also
shows problems of loss of service availability. Cloud systems can be viewed as
LSCITS in themselves – although the particular application which caused the problem
is quite simple (it certainly wouldn’t be viewed as complex by today’s standards).

Description of the Event. I was one of the early adopters of cheaply available cloud
services, and decided to migrate my diary and contacts database to the cloud so that
they could be updated by certain colleagues, and viewed by many more. For a few
months this worked well, and the cloud diary became the master copy (my “back up”
was no longer updated). Then I started to have problems in updating the diary (I could
make changes, but they were only transient, and they did not update the stored diary).

After a period of time on email and interactive chat with the cloud service provider
it was concluded that the data had been corrupted, and that it was not practicable to
“fix” the problem (they had no tools which could repair the data). The support team
agreed that they would “package up” my diary and email it back to me (so I could
import it into another diary/calendar tool). Again, after an extended exchange with the
cloud service provider it became clear that this “resolution” wouldn’t work either –
the corruption which prevented update also prevented an export being produced!

Fortunately, the diary could still be displayed and printed, thus it was possible to
print out my diary (about a year and a half ahead) and to type it all back in. In total the
process took 2-3 weeks during which my diary was not up to date, and it cost a
significant amount of time in discussion with the service provider and in retyping the
diary. (Contacts had changed very little, so there was a minimal amount of effort
needed to restore them.)

Signature: The key causal factors in the loss event are:

• Intrinsic flaws (software “bug”) exposed by the circumstances;
• A single point failure (the data corruption) disabled both the primary function

(diary update) and the protection system (the ability to export data);
• Other protection systems, e.g. the replication of the data in the cloud, were

rendered worthless as the data was corrupted not “lost”.

Overall this is largely a technical failure, and clearly a detailed software design (data
dependency) issue. There was a socio-technical element – the point at which the
service provider decided they would stop trying to solve the problem – but as the
annual charge for the system was under $100, this was understandable (they will have
made a loss on my account given the amount of time they spent in helping me).

 The Risks of LSCITS: The Odds Are Stacked against Us 101

3.3 The “Flash Crash”

On May 6th 2010, there were a number of significant anomalies in the financial
markets both in New York and in Chicago. Perhaps the most significant event was the
drop in the Dow Jones Industrial Average by almost 10%. Unlike some accidents
leading to loss of life, e.g. in the aerospace sector, the problem is not well-described
in the literature, and the description here draws heavily on [5] and contemporaneous
press reports, e.g. [6].

Current financial markets are operated through a mixture of highly autonomous
algorithmic trading systems, referred to as algo traders, and human traders. As well as
trading directly, the humans set parameters for the algo traders. The changes in the
way markets work have been rapid and significant. In 2003 the human traders on the
New York Stock Exchange (NYSE) handled about 80% of trading volume of stocks
listed on the exchange. By the end of 2009, the proportion being traded “manually”
had fallen to 25% with much of the trading moving to electronic-trading platforms,
such as Direct Edge and BATS, which execute trades in milliseconds.

Further, markets are linked and some of the trading is done on “spot differences”
between markets, e.g. between New York and Chicago. This sort of trading tends to
be automatic (algo) as the computer systems have the speed (the millisecond trades)
to capitalise on small differences in prices, by trading huge volumes of shares or other
commodities.

Description of the Event. On May 6th 2010 the Dow Jones Industrial Average
plunged by nearly 1,000 points, with most of the losses occurring between 2.40pm
and 3.00pm, see Fig. 4. It was the largest single day decline in the market’s history.
Some well-known stocks, such as Accenture, briefly traded for as little as a cent. The
market later rebounded, to close down by 348 points, although it was “off” by 9.2%,
and over $800 billion, at worst.

There has been considerable speculation about the cause or trigger of the “Flash
Crash”, and it seems that what happened was a combination of general nervousness
(about the state of the Greek economy and the UK general election results) and some
specific trading actions. Automated systems certainly played a very big role in the
rapidity at which events occurred, but human traders also influenced the markets.

First, there is evidence to suggest that human traders were active and significant
participants in the market during the big drop. Also, it seems that some human traders
were experiencing serious delays in their data feeds caused by the huge volume of
trades being executed, so they issued orders in good faith but on the basis of bad
(stale) data, and that just made things worse.

Second, humans had “rigged” their algo trading systems to get around some
regulations without actually breaking the law. The regulations require that traders
always offer two prices: one to buy and one to sell shares. If the traders don’t want to
take business, then they would offer to buy at $0.01 (1 cent) and to sell at $99,999
(the allowed limits). Whilst the human traders may not have used these prices
directly, they were encoded in the algo traders, and these prices were used during the
event.

102 J.A. McDermid

Fig. 4. The Change in the Dow Jones Industrial Average during the “Flash Crash”

In setting these values, the trading houses didn't consider that in a big panic like the
“Flash Crash”, that many of the traders would get out of the market, cancelling their
existing (sensibly-priced) bids and offers, and so the extreme prices would then be left
exposed as the best offer and bid prices in the market. At that point, other algo traders
transacted at these prices because they had been programmed to automatically deal
with the best bid or offer price, regardless of its absolute value (and whether or not it
was sensible). Thus the “Flash Crash” is what can be viewed as an emergent property
of a complex set of interacting “systems” (an SoS) – both human and automated.

Several companies such as Tradeworx, a hedge fund with a high-frequency trading
business, shut off their systems. Manoj Narang, the CEO of Tradeworx said he did
this when he “noticed the prices were erroneous”, because he knew exchanges would
cancel those trades. Many of the trades were cancelled, and the share values returned
to near normal, however many companies suffered sustained losses as the trades went
through before “limits” were reached where the trades were later cancelled.

Signature: The key causal factors in the loss event are:

• Intrinsic flaw (algorithmic trading at the “best price” regardless of the actual
price) exposed by the circumstances;

• Protection (requirement to set buy and sell prices) rendered ineffective by
setting of extreme values;

• Other protection systems (cancelling of trades) did at least partially rectify the
problems, but some traders did suffer lasting damage (losses on trades which
were upheld, as the prices were not deemed “erroneous”).

Although much of the “damage” was done by automated trading systems this is a
socio-technical issue, as human traders were still operating during the drop, and they
set the algo parameters which so significantly contributed to the event.

 The Risks of LSCITS: The Odds Are Stacked against Us 103

3.4 Überlingen

In July 2002, two aircraft collided near Überlingen over the Bodensee (Lake
Constance) [7]; the description here draws heavily on [8]. One aircraft was owned by
DHL and was carrying freight; the other was a commercial aircraft carrying
passengers, and operated by Bashkirian Airlines.

One of the roles of air traffic control (ATC) is to monitor flights and to offer
guidance or instructions to aircraft so they maintain safe separation. In this case the
primary control centre was Zurich. Many aircraft are also fitted with a Terminal
Collision Avoidance System (TCAS) which is a “last resort” system which gives
pilots “advisories” if it detects that there is another aircraft on a collision course. The
TCAS systems coordinate their advisories so the two aircraft take diverging paths.
Both aircraft were fitted with TCAS.

Description of the Event. In July 2002, a DHL-owned Boeing 757 aircraft collided
with a Tupolev 154 operated by Bashkirian Airlines. All passengers and crew were
killed. The trajectories are shown in Fig. 5, where the Bashkirian Airlines aircraft is
moving South West, and the DHL aircraft is moving almost due South.

Fig. 5. Überlingen Accident

The two aircraft were initially on a collision course at 36,000 feet, and were first
made aware of each other when their TCAS systems issued a traffic warning. Soon
afterwards both aircraft received collision-avoidance instructions from TCAS — the
B757 was to descend and the Tu-154 was to climb. Shortly after, the Tu-154 received
an instruction from Zurich ATC to descend to avoid traffic. According to the cockpit
voice recorder on the Tu-154, the pilot originally chose to follow the instruction from

104 J.A. McDermid

TCAS. However, his co-pilot, a senior company executive who was on board in order
to assess the pilot’s performance, overruled him, and the aircraft began to descend;
this was in accordance with company procedures and the Tu-154 operations manual.

At no point did Zurich ATC give any instructions to the Boeing 757 pilot, although
the pilot did tell the ATC that he was descending, shortly before the collision. The
two aircraft descended to 35,400 feet where they collided.

The entire accident, from the first TCAS traffic warning to the collision, took
slightly less than a minute. Neither pilot was aware of the precise location of the other
aircraft until a few seconds before the collision. Zurich ATC was not operating at full
effectiveness on the night of the incident. Only a single controller was working, rather
than the usual two, and he had to cover two frequencies and two radarscopes. In
addition, upgrade work on the Zurich radar processing system meant that the system’s
performance was severely impaired. In particular, the STCA (Short Term Conflict
Alert) function was not available. Further work on the ATC telephone network meant
that it was unavailable. There was a backup line, but it was effectively useless due to
technical problems.

The impending collision was noticed by a number of ATC centres in neighbouring
regions, but they were unable to contact Zurich because of the telephone problems.

Signature: The key causal factors in the loss event are:

• Intrinsic flaw in that one airline took ATC as primary and the other took TCAS
as primary, exposed by the circumstances;

• Protection systems (TCAS and ATC) rendered ineffective by the intrinsic flaw,
and by reduced staffing and equipment problems in the Zurich ATC;

• Other protection systems, e.g. STCA and communications, rendered
ineffective by the technical status of equipment at the Zurich ATC centre.

There are technical, socio-technical and organisational elements to this accident. It
can be viewed as further along the spectrum towards an organisational accident, by
comparison with the “Flash Crash” for at least two reasons. If DHL and Bashkirian
Airlines had treated TCAS as primary, then the accident would have been averted.
Further, Zurich ATC operating under such constrained conditions – low staffing,
inoperative equipment – can be seen as an organisational failing.

3.5 Société Générale

In January 2008 Société Générale (SocGen) discovered that one of their agents,
Jérôme Kerviel (JK), had been building up fraudulent trading positions over a number
of years. The positions built up by JK amounted to about €50 Billion. These were
“unwound” by SocGen resulting in a net loss of €4.9 Billion for the bank [9]. The
actions taken by JK led to a court case and his being given a custodial sentence.

Description of the Event. The root of the problem came from “massive directional
positions” [9], i.e. transactions assuming a massive movement of an asset’s price in
one direction (without any hedging); JK’s activities went on over a number of years,

 The Risks of LSCITS: The Odds Are Stacked against Us 105

and it was only towards the end that these positions became “massive”. JK used a
number of methods for hiding these positions, including a significant number (nearly
1000) of fictitious trades which both hid his fraudulent positions, and altered various
parameters which were monitored by the bank to detect excessive risk-taking. JK also
used intra-monthly provisions (adjusting information at month end) which hid his
position. There appears to have been some collusion with a trading assistant (who
would normally make such intra-monthly provisions) although this does not seem to
have been proven in the Court.

The positions went undetected partly due to JK’s activities to conceal them, but
also apparently due to poor supervision (although the decision by the Court could be
seen as exonerating SocGen in this regard). For example, in 2007 JK was without an
immediate superior for about two-and-a-half months, and no effective provisions for
monitoring his activities were put in place during this period. Also, the new manager
coming into post in April 2007 was weak [9], and the new manager was not given
much support in taking on his new role.

A further factor, related to weak supervision, is the failure to act on the numerous
alerts generated by systems which monitor positions and trades, for undesirable/
suspicious activity. For example, in January 2007, an unusually high number of trades
were marked as pending or with no counterparty; these were in fact fictitious, so the
alert was a clear sign of the issue. In many cases the alerts were direct evidence of the
fraudulent activity; it seems that they were followed up, but explanations from JK
were accepted, and issues not escalated to superiors. The internal investigation [9]
showed some 64 alerts which were directly linked to the fraudulent behaviour (and
several more which were indirect).

A number of other factors, e.g. monitoring the growth in JK’s share of the trades
and profits in his division, and running a number of computer-based monitoring tools,
could have helped to detect the problem. Also, it would have been possible to design
the system so that JK could not make some of the trades, and his assistant would have
had to, but this only increases the personal risk which would have been taken through
collusion, rather than preventing the loss.

Signature: The key causal factors in the loss event are:

• Fraudulent behaviour, together with fictitious transactions which (to a
degree) hid the inappropriate transactions;

• Failure of supervision, meaning that many of the systems put in place to
detect such anomalous activity were either inoperative or not acted upon;

• Failure to investigate adequately alerts which indicated that fraudulent
activity was taking place.

This is the closest to a “pure organisational” problem of the five examples reviewed
here. Although there were technical systems which could have been used to help
detect the fraud at an earlier stage than actually occurred these all appeared to work, if
not perfectly, at least well enough to provide alerts and hence warnings of problems.
The underlying “weakness” is that these systems were not used, for several reasons,
including leaving JK without an immediate supervisor for a period of time, or because
the warnings were not adequately handled.

106 J.A. McDermid

3.6 Observations

The description of the signature of the above loss events is focused on protection, or
barriers to accidents or other loss events (in the SocGen case, the supervision and
alerts act as protection or barriers). One of the reasons for starting with two very
simple examples is that the role (and inadequacy) of the barriers is reasonably obvious
and unequivocal. Inevitably, for the more complex events, the choice of key factors is
rather more selective (subjective) as there are many causal factors. Thus there is a risk
of hindsight bias – but protection/barriers are introduced for a purpose, and it is thus
worthwhile at least as part of our investigation considering why they were not
effective, in these cases. There are some other factors that support the focus on
barriers.

First, in some domains, e.g. nuclear, there are very clear design principles, e.g.
[10], which are based around the idea of layers of protection. Here, the notion of
protective layers and “defence in depth” seems to be fundamental to system design
and risk control.

Second, even where the standards are not so explicit about protection, e.g. aviation,
analysis of real system designs [11] indicates that the degree (number of levels) of
protection varies with criticality. Thus it seems that design engineers “naturally” seek
to introduce layered protection systems, even where this is not formally required.

Third, financial regulation also supports the idea of layers of protection, with
measures both intended to reduce the likelihood of a loss event occurring, and to
ameliorate a problem if it does arise [12].

Fourth, as is hopefully obvious from these examples, the notion of barriers is quite
general and can apply to technical systems, to the interaction between technical
systems and people (i.e. in the socio-technical space) and in organisations. Thus it
seems to be a useful unifying concept.

We would thus argue that the focus on barriers is both relevant and valid as the
basis for a “theory” and model of risk and loss in LSCITS (see below).

However, there is an apparently contradictory or countervailing issue which arises
from standards and regulations – that is the requirement to evaluate risk, usually
quantitatively. For example there are numerical targets for aircraft of 10-9 per flight
hour for catastrophic events, and of 1.55 x 10-8 per flight hour for ATC induced
accidents (e.g. mid air collisions). In other domains, e.g. financial markets, the notion
of risk targets is less explicit, but there is still an expectation that risk is evaluated
quantitatively (see below).

To simplify the issue, we can state that designers are often required to quantify
risks “before the event”. However it is less clear how useful this quantification is
“after the event” (here we are thinking about it as an explanatory mechanism; it is
clearly not meaningful to talk about the probability of an event arising after it has
occurred).

Thus this initial assessment of these loss events leads us to a problem formulation
(in the sense meant by van der Ven [1]): what is an appropriate risk assessment
method for LSCITS?

 The Risks of LSCITS: The Odds Are Stacked against Us 107

4 Risk Analysis

The term risk is used in many different ways, but with broadly similar meanings – the
chance of harm or loss. We briefly set out some of the key principles of risk analysis
below then use these principles in considering risk in the five loss events described in
section 3. This approach is adopted in order to throw light on the problem formulation
set out above. This then leads on to the suggestion of a theory for risk in LSCITS –
the next step in Van der Ven’s model (see Fig. 1) to help us to reach the point where
we might define models which can be evaluated via experiments and interventions.

4.1 Risk Analysis Principles

In its simplest form, risk is normally represented as follows:

Risk = likelihood x severity

Where the likelihood is the probability of the loss event, or the frequency of the event,
and the severity is the extent of the loss. This allows the risk of different events to be
compared. For example, consider two risks, A and B, where:

Risk A = 10-7 per hour x 10 deaths
 Risk B = 10-6 per hour x 1 death

Both have the same risk – an expectation of one fatality in a million hours, on
average. Similar calculations can be done in terms of financial risk, e.g. expected loss
of $10M pa.

Some models of risk don’t quantify severity, but rank it qualitatively, e.g.:
catastrophic, major, minor, and then risk is evaluated in terms of the probability in
each risk class. In some cases, the probabilities are grouped into classes as well; when
this is done, risk is evaluated via a matrix, see for example MilStd 882D [13].

In some circumstances, other factors are introduced, e.g. exposure to the risk, or
the controllability of the risk by the operators. It is not uncommon for the exposure to
be used to modify the probabilities, and factors such as controllability to be used in
determining risk categories. Although there are many variations on a theme, the
notion that risk is fundamentally a combination of probability and severity of loss is
fairly universal, and that will be the focus in our analysis.

Finally, it should be noted that we are always interested in predicting or estimating
risk to answer questions such as “is this system safe enough to deploy?” Even when
making post-hoc decisions, e.g. “is this system now too insecure to continue using?”,
we are making predictions of future behaviour based on knowledge of the past.

4.2 Risk Analysis of Loss Events

As may be apparent from the loss event descriptions above, it is not always easy to
evaluate risk. The approach taken here is to seek to identify, in broad terms, what
would need to be done (or known) to evaluate risk quantitatively in each case. An
assessment is made of what risk might have been estimated before the events, and

108 J.A. McDermid

what might have been estimated with hindsight. This analysis is then used to inform a
discussion of an approach to risk assessment for LSCITS.

Syringe Pump: The safety risk of a device such as the syringe pump would normally
be evaluated using a tool such as fault trees [14] which enable accident probabilities
to be evaluated based on data about the failure probability and failure modes of basic
components, e.g. motors. To the author’s knowledge this wasn’t done, but a rough
estimate of risk can still be made. The intent was that there was triple redundancy: the
motor control, primary protection (quadrature system) and secondary protection
(linear grating) would all need to fail for the device to fail in a hazardous manner. A
failure rate of 10-3 per hour for each element is not unreasonable (a “rough” figure for
commercial electronics); thus the accident probability might have been estimated at
circa 10-9 per hour. With 10,000 devices in operation, this suggests 100,000 hours, or
about 11 years between accidents.

However this estimate was not appropriate, in the circumstances. Two critical
factors in the syringe pump accidents were the software which ignored “impossible”
inputs rather than detecting them and taking safe actions, and the Schmitt triggers
which could produce “impossible” inputs, at the extreme of their manufacturing
tolerances.

To estimate the likelihood of any syringe pump containing a Schmitt trigger with
the undesirable behaviour requires a model of the manufacturing distribution, and
hence what proportion of the production would have the “dangerous” behaviour.
Based on informal data on the system and the accident, this is about 100-1000 ppm
(parts per million), or one in 10,000 to one in 1,000.

The likelihood that this erroneous behaviour would give rise to the accident was:

• ~0 prior to the modification to the code which disabled the start of the linear
grating checking for movement, until it was detected by the control
subsystem

• 1 after this modification

Note that the post-modification probability could also have been made 0, with
defensive design of the software. However, without that design change between one
in 1,000 and one in 10,000 of the devices would have been flawed, giving rise to an
accident rate of one-ten per annum. Assuming that the Schmitt triggers “reliably”
produced poor signals, then the accidents would occur early in operational life, and
the actual accident rate per operating hour would be many orders worse than the
estimate of 10-9 per hour.

The optimism in the estimated risk arises because the model used for risk
estimation did not adequately reflect the way in which the devices (syringe pump
software and the Schmitt triggers) worked (and failed).

The Cloud: In the case of using the cloud to store calendars, a very informal risk
evaluation was undertaken. In essence a view was taken that cloud services were
highly resilient (gave good availability) and if the service proved poor, the diary could
be “repatriated” to a PC without too much difficulty. Also, an informal view of
security was taken – that the calendar data wasn’t too sensitive (although it would
allow someone to determine travel arrangements) thus password protection was

 The Risks of LSCITS: The Odds Are Stacked against Us 109

sufficient. However the terms of service say “you assume all risks and costs …” , so it
should have been apparent that there were risks! Further, the terms of service do say
“does not guarantee or warrant that any content you may store or access through the
service will not be subject to inadvertent damage, corruption or loss”. However this
was viewed (perhaps naively) as an “escape clause”, not a “real warning” so,
informally, the view was that the risk of unauthorised access to data was low, and the
risk of “losing” the data was effectively nil.

As was the case in the syringe pump example, the model used for risk estimation
was inappropriate. As it turned out, the real cost of the failure was in the time to
retype the calendar into a different tool (and this wasn’t even identified as an issue)
and the failure mechanism, i.e. inability to re-export the calendar, was not considered
either although, arguably, the wording of the terms of service should have sensitised
me to this possibility.

Flash Crash. Financial markets have long understood the concept of “market risk”, see
for example [15], and related concepts such as credit risk. These ideas are also at the
basis of bank regulation; under the “Basel 2” arrangements banks have to hold reserves
based on the notion of the “Value-at-Risk” (VaR). At its simplest, the requirements are
for banks to maintain a level of capital which covers VaR at the 99.9th percentile
confidence interval [16]. Whilst the details are complex, as many of the traders
involved in the “Flash Crash” will have used hedging techniques (buying options to
enable adverse movements in the price of assets to be offset), the majority if not all of
the organisations involved will have undertaken some form of market risk analysis.

However what happened in the “Flash Crash” was not a market risk, but a systemic
risk (or, perhaps better, the systemic issues meant that the market risk analysis was
not accurate). The concept of systemic risk in financial markets is not new. In 2008
Long-Term Capital Management (LTCM), a US hedge fund, lost about 90% of its
capital in about 9 months, for example losing $1.8 Billion in August 2008 alone. It
was “rescued” as there was a concern that it could collapse and cause significant
consequential business failures [17]. The root cause of the “Flash Crash” was not the
same as with LTCM – instead it was a socio-technical problem caused by a
combination of the use of algo trading and the way certain trading parameters were
set. However the critical point here is that the classical market risk analyses were not
good predictors of events – again the underlying model of risk was inappropriate.

Überlingen. The safety of air traffic management in Europe is subject to Eurocontrol
regulations, specifically ESARR 4 [18]. ESARR 4 sets a quantitative target for
catastrophic accidents, which includes mid-air collisions, in European controlled
airspace of 1.55 x 10-8 per flight hour (the figure is derived from historical
achievement). It also requires “use of a quantitative risk based-approach in Air Traffic
Management when introducing and/or planning changes to the ATM System” (section
1.1). In other words, providers of ATM services are required to provide a quantified
risk assessment which shows that the risk of accidents, such as that at Überlingen, are
less than 1.55 x 10-8 per flight hour.

Due to the way regulation is carried out, the services at Zurich will either have
been subject to this regulation, or evaluated based on similar regulations which
require a quantitative risk assessment. Thus there was a belief, prior to the accident,

110 J.A. McDermid

that the risk per aircraft was of the order of 10-8 per flight hour. As there are many
accumulated flight hours in Europe, the occurrence of this one accident does not mean
that this average accident rate has been exceeded, however it is very unlikely that the
models on which the risk assessment was carried out will have reflected the
circumstances which arose at Überlingen.

In particular, the risk assessment models would have assumed proper staffing,
working telephones, working STCA, etc. – or perhaps more accurately, the models
would have assumed that where there were such deficiencies appropriate means
would have been taken to mitigate risks, e.g. calling on neighbouring centres. TCAS
is viewed as an aircraft system, not part of ATM, so it is unlikely that the ATM risk
analysis would have considered TCAS. Further, it seems very improbable that the risk
analysis would have considered the fact that ATM might have, in effect, rendered
TCAS ineffective by giving instructions which over-rode this “last line of defence”.
So, once more, the model (which almost certainly would have been) used for the risk
calculations was not representative of the situation that arose.

Société Générale. SocGen will have carried out market risk analysis but, as with the
“Flash Crash”, what happened was “outside” the models used to assess risk. However,
what occurred at SocGen would generally be classified as operational risk, rather than
systemic risk. There are, nonetheless, similarities with the “Flash Crash”. The type of
problem seen was not unprecedented; for example work by the Federal Reserve Bank
of Boston [19] states that the “capital charge for operational risk will often exceed the
charge for market risk”. Put another way, the VaR for operational issues may well be
greater than that due to the market.

As the causes of the SocGen issues were largely organisational, an effective risk
model would have to address these issues. Some work has been done in this area, e.g.
using Bayesian approaches to modelling operational risk including fraud in insurance
[20], but this remains a little explored area, to the author’s knowledge.

4.3 Risk Analysis for LSCITS

The examples given above show that “classical” analyses of risk do not shed much
light on the causes of the loss events. Implicitly, system safety engineering methods
(which apply to the syringe pump and Überlingen) assume that physical failure
mechanisms reflect aleatoric or aleatory uncertainty, i.e. “randomness”, which can be
characterized by a stochastic model. Further, we implicitly assume ergodicity – i.e.
that past failure behaviours are good predictors of the future. Based on these
assumptions we can use probability density functions (PDFs) and often we
approximate those functions by point probabilities, e.g. the mean of the PDF, in
evaluating risk. Such approaches are good ways of modelling processes such as the
tossing of coins, and the failure of simple components, e.g. resistors. They underlie
the most common quantitative models of system safety, e.g. the calculations
supporting fault tree analysis. Similar assumptions underlie the processes of
modelling market risk (and in some approaches to software safety [21]).

However, in many cases we face epistemic uncertainty, i.e. limited knowledge of
the system model or of the stochastic model. In other words we do not know the shape
of the PDF, nor can we estimate its mean. In the cases above, whether sophisticated

 The Risks of LSCITS: The Odds Are Stacked against Us 111

risk analysis was carried out, or it was very informal, as in the cloud example, the loss
events are much better explained in terms of epistemic uncertainty – or to put it
simple, the wrong model was used.

There is a further factor in some cases – that the models need to change (or be
changed). In other words even if the right model was used in the initial assessment of
risk, the system structure and thus the model which is used for assessing risk changes
as the system operates and evolves. As markets and trading systems evolve rapidly, it
is almost inevitable that, in situations typified by the “Flash Crash”, any analysis done
before introducing a new trading system would rapidly become inaccurate. Further, in
the SocGen case, the risk controls assumed a model of the organisation with people
filling key roles – the risks were very different when JK’s superior left and was not
replaced for over two months.

Returning to Van der Ven’s framework, we can propose an explanatory theory:
risks and loss events in LSCITS are better explained via analysis of epistemic
uncertainty than aleatory uncertainty.

Note that this is not to say that the techniques based on aleatory uncertainty are
worthless – indeed it can be argued it is because they are so effective that the
epistemic factors dominate in actual loss events. However, even if it is accepted that
this is a plausible explanatory theory, it does not really help us towards a model which
can be used to analyse LSCITS, so we now consider some aspects of the LSCITS
“stack” and consider how we might use this to build a generative theory, as a step
towards a model (in Van der Ven’s terms).

In an analysis of Australian defence avionics systems [11] it became clear that
there are “layers of protection” against systematic (design) faults in systems, which
vary with criticality – the worse the outcome the more the layers of protection.
Further the “innermost” layer of protection was concerned with either avoiding or
containing any systematic causes of hazards, at source, and the outer layers were
concerned with detection and mitigation (of hazard causes). Barriers can be seen in all
the five examples discussed above; in some cases these are technological, and in
several of the cases they are organisational. This leads us back to the LSCITS “stack”
– or something like it.

We can think of “barriers” in the following ways:

• Prevention of problems, at source, or managing them to a low and controlled
probability of occurrence – the province of PSS, and other techniques, e.g. Six
Sigma, where the processes are human and organisational, not technical;

• Detection and mitigation of technical problems – (in part) the province of
HISE, especially considering the interaction of peer components (in a system
or SoS);

• Prevention of socio-technical problems, and detection and mitigation of
problems through socio-technical means – the province of STSE which is both
concerned with good socio-technical system design, and with handling errors
arising at this level;

• Prevention of organisational problems, and detection and mitigation of
problems through organisational means – the province of CiO which is both
concerned with good organisational design, and with handling errors arising at
this level.

112 J.A. McDermid

In general the “barriers” can be characterised in the following ways:

• Their detection and handing of failures (undesirable behaviours) which arise
from lower levels;

• Their detection and handing of failures (undesirable behaviours) which arise
from peer systems;

• Internally generated failures (undesirable behaviours);
• Failures (undesirable behaviours) “exported” to higher levels.

If this is an appropriate way of looking at LSCITS, in this context, then a means of
evaluating risks is needed. We briefly discuss this below, but first set out a further
“theory” in the sense of Van der Ven’s framework. We propose a generative theory:
risks and loss events in LSCITS are best controlled (and risks estimated) via the
design and analysis of barriers.

In order to proceed from the above theory towards a model, in Van der Ven’s
terms, we need to produce means of identifying the need for barriers, for “designing”
them, and for evaluating risk. For brevity, we assume here that barrier identification is
possible, e.g. by using adaptations of current methods, which do identify barriers in
both technical systems and organisations, and focus on risk evaluation. There are at
least three possible approaches:

• Qualitative approaches, e.g. the use of tabular ways of expressing the “depth of
defence” against particular potential causes of loss events – these can then be
evaluated based on loss event severity, to assess the adequacy of risk controls
(this is essentially a generalisation of the approach used for safety in MilStd
882D [13]);

• Quantitative approaches, perhaps by extending the Fault Propagation and
Transformation Analysis (FPTA) method [22] developed in part through the
LSCITS programme, to consider fault propagation between barriers;

• Quantitative approaches, building on Bayesian approaches such as those
proposed for operational risk [20].

It may be practical to combine these approaches in particular ways, or to learn from
them, e.g. using the scenario testing approach proposed in [20] to validate FPTA
models. In practice, it might be that the quantitative approaches are best thought of as
means of ranking designs (sets of barriers), than evaluating risk in the aleatory sense,
or in the sense of loss per unit time, which is the underlying measure in safety and in
financial risk. In practice, the idea of scenario testing may prove to be vital, as the
only practicable way of handling system complexity.

Several of the examples discussed above, e.g. the financial ones and Überlingen
can be viewed as SoS. A characteristic of an SoS is that the constituent systems – its
configuration – changes over time, and typically faster than individual systems can be
redesigned. If any change violates assumptions made about the SoS then there can be
undesired behaviour – such changes can be thought of as inflection points [23]. No
SoS or system design can be robust against all potential changes, but perhaps it might
prove possible to use scenario testing on barrier models to demonstrate robustness
against epistemic uncertainty – or at least to identify what classes of change bring

 The Risks of LSCITS: The Odds Are Stacked against Us 113

about undesirable inflection points. Of course, this will only be as good as the
underlying models.

5 Discussion

There has been work, particularly in the safety community, focused on the modelling
and analysis of accidents. We review this work here, and draw some distinctions with
the approach which we have outlined above. We then make a few further observations
about the difficulties of quantification of risk for high criticality systems.

Peter Ladkin in Bielefeld has developed Why-Because Analysis (WBA) [3] as a
“rigorous technique for causally analysing the behaviour of complex technical and
socio-technical systems”. Whilst it is also intended to assist in analysing safety
requirements, to the author’s knowledge it has found greatest utility in accident
analysis, where its flexibility enables it to be used to address relevant causal factors.
Our experience with WBA, for example [8] which analyses the Überlingen accident,
and our as yet unpublished work on the Wenzhou train crash, shows its utility. Indeed,
one possible step for making the ideas set out above more rigorous would be to
analyse all the loss events using WBA. However our work on Wehzhou suggests that
WBA is not good at dealing with influences, rather than causes, thus there may be
merit in seeking to extend WBA before analysing all the above loss events.

Further, we are not aware of cases where WBA has been used proactively to drive
designs and we do not see how it would help in identifying barriers, although we note
that [3] refers to the use of WBA to identify requirements. As we understand it, WBA
does not help to evaluate risk (at least quantitatively) although again one can envisage
ways of extending the method to do this.

Nancy Leveson at MIT has developed STAMP [24] as a means of analysing both
socio-technical and organisational causes of accidents – thus it gives a framework for
analysing the type of loss events discussed earlier. One of the great attractions about
STAMP is that it gives a generic model of factors in accident causation from low-
level technical issues through organisations, up to political institutions. A number of
examples using STAMP have been published. However our experience, to date, has
been that it is hard to apply, and that the guidewords in the method for assessing
deviation from intent do not seem to be sufficiently comprehensive. For example, one
of the issues in the Wenzhou accident is that the Ministry of Railways (MoR) was
both the operator of the trains and the regulator; although the STAMP model
identifies operators and regulators there is no obvious way to reflect the conflict of
interest (potential single point of failure) due to MoR’s dual role, in that framework.
As one of the key factors in some of the five loss events discussed above was single
point failures which undermined multiple protective barriers, this at present seems to
be a limitation of STAMP (this must be viewed as a tentative assessment as our work
on Wenzhou is ongoing).

Like WBA, we have yet to see STAMP used proactively in system design although
there is nothing intrinsic in the method which should prevent this. Again, like WBA,
STAMP does not appear to provide a basis for evaluating risk in the sense
investigated here although, again, extensions might be possible.

114 J.A. McDermid

Recent work on resilience engineering [25] has a stronger influence on the ideas set
out herein. Both in his publications on resilience engineering, and in prior work,
Hollnagel emphasises the importance of designing barriers, and the need to assess
human behaviour and cognitive processes, in designing systems and barriers. As we
develop the ideas set out above we need to draw on the insights from resilience
engineering, but note that the scope of our endeavour is broader – seeking to take a
unified view of critical systems, rather than the focus on safety in Hollnagel’s work.

Other work in LSCITS is addressing issues relevant to the approach outlined here,
for example the use of responsibility modelling as an aid to risk analysis in socio-
technical systems [26]. As currently defined, this work would most naturally form
part of the qualitative risk analysis approach identified above (indeed we have used it
this way in our Wenzhou analysis).

There is some literature, for example [27], which is casting doubt on the validity of
quantitative risk assessment. This can be read two ways: as supporting our analysis
here, by confirming that real-world risk assessments are often flawed, or contradicting
it by implying that trying to quantify risk is impractical. We hope, in time, to be able
to support a third view; that taking an approach, informed by quantitative analysis,
can lead to more robust designs (e.g. better and better-placed barriers) and more
resilience to changes in models, than achieved by current approaches. Separately, we
are working on approaches to assessing whether or not risk predictions are valid, or
trustworthy.

As indicated earlier, there is a risk of hindsight bias, including finding examples
which confirm the author’s hypothesis. Also identifying “root causes” of a loss event
is always judgemental – in other words, when do you stop looking for prior causes of
events? In the cases considered, several are the subject of existing public domain
analyses, so this helps avoid hindsight bias. Further, barriers are intended to stop the
propagation of faults and errors – so it is not biased to observe that they weren’t
effective, once a loss event has occurred.

Further, the author’s “foresight bias” was that the loss events would be explained by
change – in the technical system, in usage, etc. In some of the examples, e.g. the syringe
pump (technical) and Überlingen (organisational) there are clear changes (if only
temporary in the case of Überlingen) which have a causal influence on the loss event,
but the other cases are less clear-cut. Arguably, they all involve change – with the
“cloud” example it was moving a calendar, with the “Flash Crash” and SocGen there
were changes in behaviour. However these can be viewed as changes in usage within
design parameters, not a change in the intended usage. Partly for this reason, and also
because change can be thought of as one of the possible reasons why the models used
for analysis do not reflect the system (in the broadest sense) as used, it was decided to
treat epistemic uncertainty as the primary factor in the explanatory theory. Whilst we
cannot prove that there is no hindsight bias, the fact that this is an explanatory theory,
and it is not used directly to produce the generative theory and any solutions, makes the
problem of hindsight bias less of a concern than it might otherwise be.

Finally, we believe that the observation we have made about the limitations of risk
analysis because the causation of loss events is based more on epistemic than aleatory
uncertainty to be a distinctive, if not unique viewpoint. There are, for example,
criticisms of ESARR 4, e.g. [27], which challenge the underlying safety models in
ATM (especially for setting targets), but this, and all the other examples we know,

 The Risks of LSCITS: The Odds Are Stacked against Us 115

focus on a particular system or scenario. However, if nothing else, this analysis of
ESARR 4 serves to show how important it is to analyse the models behind standards,
as well as systems designs, to ensure that they are effective in their role.

6 Conclusions

There are growing numbers of LSCITS in operation, many of which are critical, e.g.
those supporting ATM and the financial markets. Also more “classical” safety-critical
applications are becoming more extensively networked. The failure or misbehaviour
of such LSCITS could lead to harm, be it in terms of loss of life or financial impact.
This paper has sought to demonstrate, by means of examples, that classical
approaches to assessing risks of critical systems have severe limitations in practice,
and do not seem to be effective for LSCITS. In general this is because the basis on
which the risk assessment is done is not representative of the causal mechanisms in
actual loss events.

Our approach in this paper has been influenced by Van der Ven’s approach to
research in social sciences, building research problems and theories from empirical
observations. Although this is perhaps unusual, it seems justified in that the social
sciences deals with very complex situations where experimentation (in the classical
scientific sense) is not possible – and the same problems exist in assessing the
effectiveness and risks of LSCITS. It is our intent to take this on further, to build
models from which we can then plan and conduct experiments to help refine our
ideas. To do this requires at least three areas of exploration:

• Assessment of the signatures of a larger set of loss events;
• More rigorous assessment of the causal structures and signatures of a number

of loss events, e.g. using WBA;
• Construction of a prospective model for system risk analysis and design

refinement, perhaps based on work on FPTA and Bayesian approaches to risk
analysis (to rank risks, if not to evaluate them accurately).

An underlying assumption in the approach we have sketched here is that the concept
of barriers is a useful abstraction in LSCITS. It has several merits:

• The concept is already used in technical systems, e.g. aviation and nuclear, and
in organisations, e.g. the financial sector, and is one of the underlying
principles in resilience engineering;

• The concept applies independent of implementation technology;
• It offers a significant abstraction away from the detail of an LSCITS;
• Analysis of “integrity of barriers” may give a way of assessing the continued

robustness and resilience of a system (or SoS) following change.

In extending this work, one of the key challenges will be to demonstrate that the
concepts are effective in the presence of change, especially in SoS, as this is central to
the challenges of constructing and assuring LSCITS.

Finally, the LSCITS principals have recently set out their views on the engineering
of LSCITS [29], and identified several challenges. It is hoped that the work set out

116 J.A. McDermid

here will contribute to providing solutions to two of these challenges: 5 (“how can
systems be designed to recover from failure?”) and 6 (“how can we mange complex,
dynamically changing system configurations?”). If we can do this, then we will have
made a significant contribution to the understanding of how to design and assess
LSCITS for critical applications.

Acknowledgements. In producing this paper I have been influenced by the work of
colleagues in York and in the LSCITS partner Universities, and by discussions with
other collaborators.

I am grateful for input made by my LSCITS colleagues, especially Dave Cliff and
Ian Somerville. In York I have benefited from discussions and contributions from Rob
Alexander, Georgios Despotou, Giaocheng Xe, Tim Kelly, Andrew Rae, Derek
Reinhardt and Niu Ru.

I have also had some useful and stimulating discussions with Mark Connelly and
Mark Rodbert of Neural Insights, and Maurice Perks of IBM. I am particularly
grateful to Mark Connelly for identifying some relevant literature on practices in the
financial sector. Further, I am grateful for the brief but helpful discussions with
Robert Cowell of City University, the lead author of [20], during a visit to York.

Finally, I should like to acknowledge the support to this work by the EPSRC
through the LSCITS programme, ref. EP/F001096/1.

References

1. Van der Ven, A.H.: Engaged Scholarship: A Guide for Organizational and Social
Research. Oxford University Press (2007)

2. LSCITS research programme (last accessed February 3, 2012),
http://lscits.cs.bris.ac.uk/research.html

3. Ladkin, P.B.: Why-Because Analysis (last accessed February 4, 2012),
http://www.rvs.uni-bielefeld.de/research/WBA/

4. Clarke, S.J., Coombes, A., McDermid, J.A.: The Analysis of Safety Arguments in the
Specification of a Motor Speed Control Loop, YCS 136, Department of Computer Science,
University of York (1990)

5. Cliff, D.: Private Communication (January 2012)
6. The Economist (on-line edition), A Few Minutes of Mayhem (May 13, 2010)
7. Bundesstelle für Flugunfalluntersuchung (BFU: German Federal Bureau of Aircraft

Accidents Investigation), Accident on 1 July 2002, Near Überlingen/Lake Constance,
Germany Involving Boeing B757-200 and Tupolev TU154M, Investigation Report
AX001-1-2/02 (May 2004)

8. Alexander, R., Hall-May, M.: Modelling and Analysis of System of Systems Accidents,
DARP/TN/2003/19, University of York (February 2004)

9. Société Générale, General Inspection Department, Mission Green, Summary Report (May
20, 2008) (English version, translated from the French)

10. Health and Safety Executive, Safety Assessment Principles for Nuclear Facilities, Revision
1 (2006)

11. Reinhardt, D.W., McDermid, J.A.: Assuring against Systematic Faults using Architecture
and Fault Tolerance in Aviation Systems. In: Proc. Improving Systems and Safety
Engineering, Brisbane, Australia (August 2010)

 The Risks of LSCITS: The Odds Are Stacked against Us 117

12. The Basel Committee on Banking Supervision of the Bank for International Settlements
(last accessed February 4, 2012), http://www.bis.org/bcbs/about.htm

13. US DoD, MilStd 882D Standard Practice for System Safety (2002)
14. Roberts, N.H., Vesely, W.E., Haasl, D.F., Goldberg, F.F.: Fault Tree Handbook, Systems

and Reliability Research Office of U.S. Nuclear Regulatory Commission, Washington,
DC, 20555 (1981)

15. Alexander, C.: Market Risk Analysis, vol. I-IV. Wiley, New York (2008)
16. Basel Committee on Banking Supervision, International Convergence of Capital

Management and Capital Standards (Basel II), Bank for International Settlements (2004)
17. US General Accounting Office, Long-term Capital Management: Regulators Need to

Focus Greater Attention on Systemic Risk, GAO/GDD-00-3 (October 1999)
18. Eurocontrol Safety Regulatory Requirement (ESARR) 4, Risk Assessment and Mitigation

in ATM. Eurocontrol (2001)
19. de Fontnouvell, P., DeJesus-Reuff, V., Jordan, J., Rosengren, E.: Using Loss Data to

Quantify Operational Risk. Federal Reserve Bank of Boston (April 2003)
20. Cowell, R.G., Verrall, R.J., Yoon, Y.K.: Modelling Operational Risk with Bayesian

Networks. Journal of Risk and Insurance 74(4), 795–827 (2007)
21. McDermid, J.A.: Risk, Uncertainty and Software Safety. In: Proc 28th International

System Safety Conference. International System Safety Society, Vancouver (2008)
22. Ge, X., Paige, R.F., McDermid, J.A.: Probabilistic Failure Propagation and Transformation

Analysis. In: Buth, B., Rabe, G., Seyfarth, T. (eds.) SAFECOMP 2009. LNCS, vol. 5775,
pp. 215–228. Springer, Heidelberg (2009)

23. Perks, M.: Private Communication (February 2012)
24. Leveson, N.G.: A New Accident Model for Engineering Safer Systems. Safety

Science 42(4), 237–270 (2004)
25. Hollnagel, E., Woods, D.D., Leveson, N.G.: Resilience Engineering: Concepts and

Precepts. Ashgate Publishing (2006)
26. Sommerville, I., Lock, R., Storer, T.: Responsibility Modeling for Risk Analysis. In: Proc.

ESREL 2009, Prague (September 2009)
27. Hansson, S.O.: Seven Myths of Risk. Risk Management 7(2), 7–17 (2005)
28. Brooker, P.: Air Traffic Management Accident Risk, Part 2: Repairing the Deficiencies of

ESARR 4. Cranfield Research report PB/5/05 (May 2005)
29. Sommerville, I., Cliff, D., Calinescu, R., Keen, J., Kelly, T.P., Kwiatkowska, M.,

McDermid, J.A., Paige, R.F.: Large-Scale Complex IT Systems. Communications of the
ACM 55(7), 71–77 (2012)

Integration Architecture Synthesis

for Taming Uncertainty in the Digital Space

Marco Autili, Vittorio Cortellessa, Davide Di Ruscio, Paola Inverardi,
Patrizio Pelliccione, and Massimo Tivoli

Università dell’Aquila
Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica

L’Aquila, Italy
{marco.autili,vittorio.cortellessa,davide.diruscio,paola.inverardi,

patrizio.pelliccione,massimo.tivoli}@univaq.it

Abstract. The abundance of software that will be more and more avail-
able will promote the production of appropriate integration means (archi-
tectures, connectors, integration patterns). The produced software will
need to be able to evolve, react and adapt quickly to a continuously
changing environment, while guaranteeing dependability through (on-
the-fly) validation. The strongest adversary to this view is the lack of in-
formation about the software, notably about its structure, behavior, and
execution context. Despite the possibility to extract observational mod-
els from existing software, a producer will always operate with software
artifacts that exhibit a degree of uncertainty in terms of their functional
and non functional characteristics. Uncertainty can only be controlled by
making it explicit and by using it to drive the production process itself.
This calls for a production process that explores available software and
assesses its degree of uncertainty in relation to the opportunistic goal
G, assists the producer in creating the appropriate integration means
towards G, and validates the quality of the integrated system with re-
spect to the goal G and the current context. In this paper we discuss
how goal-oriented software systems can be opportunistically created by
integrating under uncertainty existing pieces of software.

1 Introduction

Increasingly, software applicationswill be produced following a production process
paradigm that will be based on the reuse of non-proprietary software, often black-
box and on software integrator systems that will ease the collaboration of existing
software for the realization of new functionalities. The produced software will be
inherently dynamic since it needs to operate in a continuously changing environ-
ment and must be able to quickly react and adapt to different types of changes,
even unanticipated, while guaranteeing the dependability today’s users expect.

This evidence promotes the use of an experimental approach, as opposed to
a creationistic one, to the production of dependable1 software. In fact, software

1 We refer to the general notion of dependability, as defined by IFIP Working Group
10.4: “the trustworthiness of a computing system which allows reliance to be justifi-
ably placed on the service it delivers”.

R. Calinescu and D. Garlan (Eds.): Monterey Workshop 2012, LNCS 7539, pp. 118–131, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Integration Architecture Synthesis for Taming Uncertainty 119

development has been so far biased towards a creationist view : a producer is
the owner of the artifact, and with the right tools she can supply any piece of
information (interfaces, behaviors, contracts, etc.). The Digital Space promotes
a different experimental view : the knowledge of a software artifact is limited to
what can be observed of it. The more the observations will be powerful and
costly the more the knowledge will be deep, but always with a certain degree
of uncertainty. Indeed, there is a theoretical barrier that limits, in general, the
power and the extent of observations.

The big challenge underlying this scenario is therefore to accept that this im-
mense software resources availability corresponds to a lack of information about
the software, notably about its behavior and on its execution context. A software
producer will less and less know the precise behavior of a third party software
service, nevertheless she will use it to build her own application. This means
that the producer will operate in an environment in which the available services,
and hence their related software artifacts (e.g., behavioral models, interface de-
scriptions), exhibit a degree of uncertainty in terms of their functional and non
functional characteristics (e.g., approximated behavioral models, incomplete in-
terfaces, inaccuracy of performance parameters). We borrow Galbraith’s defini-
tion of uncertainty, as taken from [35]: it “defines uncertainty as the difference
between the amount of information required to perform a task and the amount of
information already possessed”. Indeed, in the software domain we see a flour-
ishing of tools and methods to elicit approximated behavioral models of running
systems. This problem recognized in the software engineering domain [23] is
faced in many other computer science domain, e.g., exploratory search [45] and
search computing [15], as well as software risk management [12], economics and
other social domains [35]. In order to face this problem and provide a producer
with a supporting framework to engineer the future software applications we
envision a process that implements a radically new perspective.

In this paper we move some steps in the definition of Eagle [4], an integrated
model-based framework of theories, models, model-driven techniques, and tools
to support the perpetual explore-integrate-validate production process of de-
pendable software in the digital space, i.e., goal-oriented software systems that
are opportunistically created by integrating under uncertainty existing software
and that are dynamically evolving within a perpetually changing context. Specif-
ically, we focus on the integration synthesis phase that aims at producing inte-
gration means to compose the explored software together in order to produce
an application that satisfies the goal and that is able to tames uncertainty. The
idea is that the integration solution compensates the lack of knowledge of the
composed software by adding integration logic like connectors, mediators and
adapters.

The paper is structured as follows: Section 2 presents the state of the art and
motivates the work. Section 3 recalls the Eagle approach while Section 4 ex-
plains the integration synthesis promoted by Eagle. Final remarks are discussed
in Section 5, while the paper concludes in Section 6.

120 M. Autili et al.

2 State-of-the-Art Overview

Eagle calls for uncertainty-aware and partial models. Uncertainty here corre-
sponds to a measure, in a given metric system, of the incompleteness and inaccu-
racy of the models with respect to the goal G, which is due to the nature of the
elicitation technique, its cost, and the operative context of the software system.
Eagle systems opportunistically integrate pieces of software as available in a
non-ideal world: this leads to accept incomplete information, hence accepting
systems that represent the strictly necessary solution for satisfying the specified
goal, possibly also in face of risks identification and prioritization. Thus, goal-
oriented validation is another key aspect for Eagle. As discussed below, there
exist many methods and techniques to account for uncertainty while develop-
ing software systems. All of them operate within different domains and consider
uncertainty at different abstraction levels by also exploiting different software
models. In this direction, one of the aims of Eagle is to combine/extend existing
techniques and methods into a unified uncertainty-aware framework. Therefore,
our state-of-the art overview is organized in several parts: Section 2.1 discusses
approaches addressing the problem of deriving partial models from implemented
systems. Section 2.2 presents the models@runtime approach and Section 2.3
concentrates on automatic connector synthesis to support software integration
and coordination. Finally, Section 2.4 focuses on functional and non-functional
Verification and Validation (V&V) under uncertainty.

2.1 Derivation of Partial Models

Many reverse engineering techniques have been applied to recover software archi-
tectural information from software systems. These techniques result in different
structural models that describe approximations of the system internal struc-
ture [42]. Several approaches have recently addressed the problem of deriving
partial behavioral models from implemented systems. In [8] we propose a method
that combines synthesis and testing techniques in order to automatically derive
the behavior protocol of a web-service out of its WSDL interface. In [22] the
authors propose an approach to construct partial models for representing sets
of alternatives and to use those alternatives for reasoning. In [44] the authors
propose a synthesis technique that constructs partial behavioral models in the
form of Model Transition Systems (MTS), a combination of safety properties
and scenarios. In [32] the authors describe a technique to automatically gener-
ate behavioral models from (object-oriented) system execution traces. The work
described in [25] aims to infer a formal specification of stateful black-box com-
ponents that behave as data abstractions by observing their run-time behavior.
In [18] the authors propose tools and techniques to automatically derive models
from running open source software systems in order to enable the simulation of
their upgrades and to detect possible configuration inconsistencies.

Integration Architecture Synthesis for Taming Uncertainty 121

2.2 Models@runtime

The models@runtime approach [9] seeks to extend the applicability of models
produced in Model Driven Development (MDD) [39] approaches to the run-time
environment. An example of design models application at run-time has been
proposed by the PLASTIC project2. The PLASTIC development process [3,2]
relies on model-based solutions to build adaptable context-aware service-oriented
applications. It encompasses methodologies and software tools to generate QoS
models and adaptable application code from UML-based specifications. In this
setting, opportunistic reuse of heterogeneous pieces of software, context aware-
ness, run-time evolution, adaptiveness and uncertainty represent challenges that
can be addressed by adopting a models@runtime approach [9]. Modeling tech-
niques coupled with MDD capabilities, such as model transformation and code
generation, provide viable means to enable system monitoring, model analysis
and adaptation at run-time [27]. In [16] variability models are reused at run-time
to support self-reconfiguration of systems when triggered by changes in the en-
vironment. In [34] run-time models of a system are used to reduce the number of
configuration and reconfigurations to be considered when planning adaptations
of the application. In [24] the use of configuration graphs is investigated as a
means for monitoring and recording information about the system adaptations.
As discussed in [31], meta-models allowing the definition of models where design-
and run-time concepts are combined represent another key aspect for the cre-
ation and exploitation of effective run-time models. In the context of free and
open source software systems, we use models@runtime to manage the upgrade
of system configurations [18]. These approaches recognize the need to produce,
manage and maintain software models all along the software’s life time in order
to assist the realization and validation of system’s adaptations while the system
is in execution.

2.3 Automatic Connector Synthesis to Support Software
Integration and Coordination

The first approaches to connector synthesis appeared in the 90s in the control
theory domain [38] and, thereafter, they have been revised to fit the domain of
software (embedded) systems [1,5]. The aim of these approaches is to automati-
cally synthesize a controller that restricts the system behavior so as to satisfy a
given specification. In [14,37] LTSs are used to model the I/O behavior of com-
ponents and automatically synthesize a set of constraints on the components’
environment that allow deadlock avoidance. In [43] we show how to automati-
cally derive either a centralized or distributed connector from a specification of
the components’ interaction and of the requirements that the composed system
must fulfill. However, these approaches do not take into account both possible
run-time changes in the environment and non-functional requirements of the
system to be integrated. The CONNECT project3 overcomes these limitations

2 FP6 IST EU PLASTIC, http://www.ist-plastic.org/
3 FP7 FET EU CONNECT, http://connect-forever.eu/

http://www.ist-plastic.org/
http://connect-forever.eu/

122 M. Autili et al.

promoting the development of automatic connector synthesis approaches that
can be efficiently performed at run-time [29]. Eagle aims at tackling the prob-
lem of automatically synthesizing integrators at run-time under uncertainty.

2.4 Functional and Non-functional Verification and Validation
under Uncertainty

The idea of moving V&V activities at run-time [6] has been often realized by
introducing monitoring activities both for functional and non-functional proper-
ties, and more recently by moving testing to on-line [7]. Uncertainty in Ea-

gle calls for compositional V&V techniques that permit to perform partial
V&V (based on the information currently available) and to instrument the sys-
tem so to be able to support on-line V&V. Many works have been proposed
in compositional verification and, in particular, in assume-guarantee reason-
ing [17,26,19]. Bayesian models (such as Bayesian Networks [36]) can be con-
sidered as the stochastic counterpart of the assume-guarantee paradigm. In this
direction, an example of bayesian approach for modeling the reliability of a
software component-based system, given the reliability of its components, has
been presented in [40]. More sophisticated stochastic models can be used to take
into account uncertainty in non-functional validation processes. Hidden Markov
Models (HMM) [20] are typically used to model systems that have Markovian
characteristics in their behavior, but that also have some states (and transi-
tions) for which only limited knowledge is available. Finally, theories [28] and
techniques [10] for compositional approaches to testing have been investigated.

3 The EAGLE Approach

The Eagle approach promotes a novel production process (see Figure 1) that
builds around three iterative phases explore-integrate-validate as follows [4]:

(i) Explore: explore available software services with the aim of extracting mod-
els as much complete as possible with respect to an opportunistic goal G.
This means that, within the proposed software production process, we ad-
mit to deal with models that may exhibit a high degree of incompleteness,
provided that they are accurate enough to satisfy user needs and prefer-
ences. For sake of validation, we will consider behavioral models annotated
with quantitative non-functional parameters (e.g., Probabilistic Automata,
UML+MARTE models, Queueing Networks, etc.);

(ii) Integrate: assist the producer in creating the appropriate integration means
to compose the explored software together in order to produce an applica-
tion that satisfies G (e.g., from specific architectural integration patterns to
solutions enforcing suitable architectural constraints). The integration solu-
tion can indeed compensate the lack of knowledge of the composed software
by also adding integration logic like connectors, mediators and adapters.

Integration Architecture Synthesis for Taming Uncertainty 123

Fig. 1. Explore, Integrate, and Validate cycle

(iii) Validate: dynamically validate the integrated system to assess its quality
with respect to the goal G and the current context. This also requires to
check whether a change in the goal or in the context occurs, so to seamlessly
re-enact the explore-integrate-validate process to adapt to the change(s).

Feedbacks coming from validation and goal monitoring activities (see Figure 1)
will instruct the process on whether proposing a new integration architecture
(e.g., with the aim to act on the integration means, such as connectors, to avoid
interactions that prevent the achievement of the goal), or reiterating the entire
process to incrementally elicit more accurate software models (a specific lack
of information in the considered models may lead to a meaningless validation).
The explore-integrate-validate iteration is terminated once the validation step
shows that the goal is achieved. Indeed, whenever changes in the monitored
environment occur, the reiteration of the entire cycle might also be triggered (as
new context may invalidate the goal).

In more details, according to Figure 1, if S1,· · ·,Sk are (with respect to the
goal G) the candidate pieces of software that are being elicited by an explo-
rative technique i, the result of an explorative phase, elicitationi(S1,G),. . .,
elicitationi(Sk,G), is a set of models M={M1

i ,. . .,M
k
i }. Each model shall have

associated its own accuracy, and hence its own metric for measuring the degree
of uncertainty uMj

i
. Moreover, each elicited model M j

i has a cost cMj
i
that repre-

sents a quantitative measure of the effort to elicit M j
i with an uncertainty degree

uMj
i
. The Explore box of Figure 1 shows a curve for the explorative technique i,

that is able to elicit the model M1
i with different costs and uncertainty degree

(along the curve). In general, a piece of software can have associated different
models, as derived from different observations performed by different elicitation
techniques. That is, the Explore box has a certain multiplicity (as represented
by the dashed box boundaries) given by the multiplicity of the pieces of soft-
ware under observation and of the explorative techniques. Similarly, different
models of context C={C1,. . .,Cn} can be elicited and analogous definitions of
uncertainty and cost metrics can be introduced for them.

124 M. Autili et al.

4 Integration Synthesis for Taming Uncertainty

As previouslymentioned, we are primarily interested in extracting behavioral quan-
titative models of the software interaction protocols, and in modeling contexts
together with their evolution. The elicited models can be incomplete and/or in-
accurate with respect to the related software and the goal that the system has to
achieve. The first refers to the behavioral modeling, i.e., less and/or more traces,
the latter to the quantitative modeling, i.e., inaccurate probabilities and/or quan-
titative indices [33]. As anticipated in Section 2, in this context uncertainty cor-
responds to a measure, in a given metric system, of the incompleteness and inac-
curacy of the models with respect to the goal G, which is due to the nature of the
elicitation technique, its cost, and the operative context of the software system.
Analogously to testing where the notion of coverage is pivotal to any metrics to
assess the effectiveness of testing, reasoning about the quality of the elicited obser-
vational models needs similar notions. Indeed, in theEagle scenario we are inter-
ested in developing systems by opportunistically integrating pieces of software and
in assessing costs subsequent to choices, as in the “value-based” paradigm [11], so
to achieve the goal most effectively. For the elicitation techniques, it shall there-
fore be possible to: (i) establish what portion of the goal specification can be ful-
filled by the system under exploration, possibly under some assumptions on the
environment; and (ii) select the suitable exploration techniques and establish a
convenient strategy for their usage according to the cost of the elicitation process,
as specified by the user preferences and needs.

To better explain how the integration synthesis promoted by Eagle tames
uncertainty, let us introduce a hypothetical scenario of Eagle at work. Let us
consider an e-commerce web service, EcommerceWS, with the aim of eliciting
a behavioral model of it. The goal G is a combination of functional and non-
functional properties, that can be informally expressed as follows: (i) to achieve
a successful interaction among EcommerceWS and a client of it, i.e., to ensure
that the client always progresses on buying items, (ii) to achieve a certain level of
reliability of the whole system, where this attribute is given by the combination
of the client and the web service reliabilities.

The explore step might use different techniques to elicit behavioral models
of the software under exploration, e.g., from standard analysis techniques com-
plemented with statistical inference to machine learning techniques [21,13]. An
elicited model M has a degree of uncertainty with respect to the system S and
the goal G. In general, different models, each with its own degree of uncertainty,
may exist. This is shown in the Explore box of Figure 1, where S can have
associated different models obtained through elicitation techniques with differ-
ent costs and uncertainty degrees. Similarly, different models of context can be
elicited and analogous definitions of uncertainty and cost metrics can be intro-
duced for them. As a possible technique to be used in the explore step, we
consider a version of the StrawBerry tool [8] that, for the EAGLE purposes, is
enhanced to deal with the uncertainty degree of the elicited models.

Coming back to the example, clients of EcommerceWS can open a session, add
a product to a shopping cart and buy items added to the cart. When an item is

Integration Architecture Synthesis for Taming Uncertainty 125

Fig. 2. EcommerceWS sample: explore and integration

bought, it is removed from the cart. The operation used to buy a product, named
buyProduct, is successfully concluded only if the shopping cart connected to the
current session is not empty, an error will be raised otherwise. By taking as input
the WSDL of EcommerceWS, the current version of StrawBerry produces a finite
state automaton modeling the interaction protocol that a client has to follow in
order to correctly interact with EcommerceWS. For the sake of the scenario, the
enhanced version of StrawBerry shall produce the probabilistic automaton [41]
for EcommerceWS in Figure 2.a. This automaton is potentially incomplete and
the probabilities represent the uncertainty of the elicitation technique. Indeed,
the operation buyProduct has a probability 0.6 to happen and to loop on state 3
(e.g., the case of successfully buying an item). The incompleteness of the model
concerns the remaining cases in which buyProduct happens with a probability 0.4.
In these cases, the model does not express what the behaviour of EcommerceWS
may be, i.e., which states may be reached (e.g., when trying to buy an item from
an empty cart). For instance, there might be other two buyProduct transitions
from state 3, both with probability 0.2, going to state 1 and 2 respectively. The
reason for this incompleteness of the model may depend on limits to the cost of
the elicitation process as specified by user preferences and needs. Uncertainty on
the behavior can also affect the estimate of reliability for sake of goal satisfaction,
along with the uncertainty on the values of fundamental reliability parameters,
such as the probability of failure of the buyProduct operation.

The integration step shall support the producer in creating the most effec-
tive (to the goal G) integration means that takes into account the uncertainty
degree, and the associated cost, of each single elicited model. During the inte-
gration step, by reasoning on their elicited models and further accounting for
the tradeoff between uncertainty degree and cost, the candidate pieces of soft-
ware are selected. Then, an integration architecture IA is synthesized, possibly
automatically (see the Integrate box of Figure 1). IA is synthesized by mak-
ing assumptions on the uncertain behavior of the selected pieces of software,
as well as on the uncertain reliability parameter values, in order to achieve the
goal G. That is, the integrated system satisfies G only if the assumptions hold.
As detailed later, the validation step is responsible to check such assumptions.
Thus, IA plays a crucial role in influencing the overall uncertainty degree of the
final integrated system S, as different IAs may result in different uncertainty
degrees for S. By continuing our example, EcommerceWS and Client are the

126 M. Autili et al.

components that have been selected to build the integrated system. Actions de-
noted with the overbar in Figures 2 and 3 correspond to output actions, all the
others correspond to inputs. The goal to be considered while producing the IA
is that the integrated system, i.e., the one composed of EcommerceWS, Client,
and the synthesized IA, always progresses on buying items with the required
level of reliability. For instance, in Linear-time Temporal Logic, the functional
part of goal G can be formally expressed as follows:

G =!(<> [](buyProduct))

whereas the non-functional one (in a simplified formulation) as follows:

Rel(Client) ∗Rel(EcommerceWS) >= targetrel

where targetrel is the required level of reliability. In this example, IA assumes
the form of a mediator (see Figure 2.c), which is an additional software entity
that can be synthesized4 [30]. It suitably mediates the interaction between Ecom-
merceWS and Client in order to achieve G provided that some assumptions on
the incomplete behavior and the reliability parameters of EcommerceWS hold.
By referring to Figure 2.c, Mediator assumes that EcommerceWS reaches state
2 after a failure occurred while buying items. The transitions of the mediator
model are labeled according to the following template:

<Client operation>.<EcommerceWS operation>,<probability to happen>

The mediator copes with the inherent uncertainty of the EcommerceWS model
that concerns the case(s) in which buyProduct happens with a probability of
0.4. To this aim, Mediator assumes that EcommerceWS reaches state 2 af-
ter performing buyProduct,0.4. This assumption is reflected by the transition
labeled buyProduct.buyProduct,0.4 in Figure 2.c. This transition is added dur-
ing mediator synthesis to enforce the integrated system to perform addProduct
once buyProduct has been executed with an empty shopping cart. For the non-
functional part of the goal, assumptions are made on the reliabilities of service
components, under a certain level of uncertainty.

A validation step shall then assess the quality of the integrated system with
respect to the assumptions made by IA. If the final assessment is not satisfying
then the process shall iterate either to select different pieces of software, or to
reduce the uncertainty degree of models (some already in place), or to mod-
ify the overall IA. For instance, back to the example, a new iteration of the
explore-integrate-validate process is required when, upon validation, the above
behavioral assumption made by Mediator does not hold. The new explore step
will incrementally refine the elicited model by exploiting the feedbacks of the
validation phase and the results of the previous explore step. In particular,

4 The CONNECT project (http://connect-forever.eu/, Grant agreement no.
231167) concerns the definition of theories and techniques to drop interoperabil-
ity barriers by synthesizing on the fly the connectors via which networked systems
communicate.

http://connect-forever.eu/

Integration Architecture Synthesis for Taming Uncertainty 127

Fig. 3. EcommerceWS sample: validation

the EcommerceWS model, of Figure 2.a, is refined by adding the transition
buyProduct,0.4 from state 3 to 1. Consequently, a new mediator needs to be
synthesized as shown in Figure 3. In general, although still incomplete with re-
spect to the modeled software, the refined models might be accurate enough to
achieve the functional part of G. In particular, the new mediator detects the
failure of buyProduct and, by exploiting authentication information previously
stored, simulates an access of Client to EcommerceWS by performing openS-
ession. The non-functional validation of the integrated system can also report
an uncertain result, such as “the system reliability is within an interval of 10%
around targetrel”, for example due to incomplete information about the relia-
bility of some software components. In this case, either the process is reiterated,
or (if feasible) the goal can be loosened and the integration acceptable.

5 Discussion

In this section we discuss some aspects that merit to be further investigated.

– Metrics to quantify/qualify the uncertainty - The metrics adopted
to reason on uncertainty should be different depending on the sources of
uncertainty they refer to. Furthermore, in some cases uncertainty cannot be
quantified due to the source domain it stems from, thus it has to be qualified
in non-ambiguous terms. Hence, uncertainty can be quantified/qualified in
different ways. In the following we propose some examples:

1. The uncertainty can be originated by a set of available alternatives (such
as static, dynamic, or deployment alternatives) when more than one
alternative can be suitable with respect to the goal G. In this case the
uncertainty can be quantified (i) either with a probability assigned to
each suitable alternative, when knowledge is sufficient to generate a set
of values that sum up to 1, (ii) or with a non-stochastic metric that
represents the level of preference/priority associated to each suitable
alternative.

2. When uncertainty stems from functional or non-functional parameters of
the model (e.g., maximum multiplicity of a component, resource demand

128 M. Autili et al.

of a service) the uncertainty can be quantified with intervals that bind
the suitable values of these parameters.

3. In some other cases, e.g., in the case of a macro-component with an
internal structure not completely known, uncertainty can be qualified
through elements of the design. In these cases it could be appropriate to
define/use partial specification modalities.

Since different metrics can be used to measure the uncertainty of a piece
of software, each one related to a specific aspect (e.g., behavior, reliability,
performance, etc.), they have to co-exist in a coherent metric system. There-
fore, such system should also contain relations and dependencies among these
different metrics.

– Tradeoffs between different metrics - As anticipated, the uncertainty
of a system is measured by means of a metric system. Then, this calls for
tradeoffs between the different functional or non-functional aspects to be
considered, each related to a suitable metric of uncertainty. In other words,
within a suitable space of solutions determined by all uncertainties still in
place, often a designer has to take decisions that decrease uncertainty in one
direction whereas increase uncertainty in other directions. For example, in
order to increase the reliability a higher number of (replicated and differently
designed) components are put in place, whereas this choice, at the same time,
increases the uncertainty about the resource demand of this system because
many more components’ demands have to be estimated.

– Uncertainty estimation - The explore phase of Eagle produces a model
of a software artifact specialized to represent some aspects. Quite often this
model is defined under uncertainty that is associated to one or more metrics.
Now a question raises, that is: how to estimate the value of uncertainty
metrics? Referring to the example in Section 4, StrawBerry makes use of
testing to extract the model, thus in this case the metric of uncertainty can
be estimated by considering the number of positive and negative tests that
have been performed. The knowledge of the designer can help during the
explore phase since she can be aware, for instance, that a piece of software
requires an amount of CPU that is in the range of [x, y], with x and y
belonging to the real numbers, event though no exact value is known.

– Uncertainty of composed systems - While building a system composed
of several components or subsystems, the uncertainty metric system might
be derived out of the uncertainty metric systems of the single components
or subsystems. This calls for mechanisms to create a new metric system
out of existing ones. Thus, relations and dependencies of the component
metric systems have to be exploited, and/or new relations and dependencies
among metrics must be inferred. Let us now focus on a single metric. The
measure of uncertainty related to this metric for a composed system can
be calculated by suitably combining the metrics of uncertainty associated
to the single components or subsystems. Thus, a suitable operator must be
aptly adopted. In the example described in Section 4, the composition is
simply performed by multiplying the probabilities associated to Client and
ECommerceWS.

Integration Architecture Synthesis for Taming Uncertainty 129

6 Conclusion

Eagle proposes a model-based framework for supporting the perpetual explore-
integrate-validate cycle that will be realized by exploiting model-driven tech-
niques. This integrated framework will support the engineering of goal-oriented
software systems that are opportunistically created by integrating, under uncer-
tainty, existing software and that are dynamically evolving within a perpetually
changing context.

Reaching this goal requires to put at work different expertises and skills to-
gether, hence asking for a multi-domain research and development work on func-
tional and non functional system modeling, verification and validation,
model-driven development, context-awareprogramming, connector synthesis, and
techniques for run-time monitoring and reconfiguration. As a by-product of this
approach we expect that Eagle results should be exploitable in a multitude of
contexts both research-wise and industrial-wise.

Acknowledgment. This work is supported by the European Community’s Sev-
enth Framework Programme FP7/2007-2013 under grant agreements: number
257178 (project CHOReOS - Large Scale Choreographies for the Future Inter-
net - www.choreos.eu), and number 231167 (project CONNECT - Emergent
Connectors for Eternal Software Intensive Networked Systems -
http://connect-forever.eu/).

References

1. Asarin, E., Maler, O., Pnueli, A.: Symbolic Controller Synthesis for Discrete and
Timed Systems. In: Antsaklis, P., Kohn, W., Nerode, A., Sastry, S. (eds.) HS 1994.
LNCS, vol. 999, pp. 1–20. Springer, Heidelberg (1995)

2. Autili, M., Di Benedetto, P., Inverardi, P.: Context-Aware Adaptive Services: The
PLASTIC Approach. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS,
vol. 5503, pp. 124–139. Springer, Heidelberg (2009)

3. Autili, M., Berardinelli, L., Cortellessa, V., Di Marco, A., Di Ruscio, D., Inverardi,
P., Tivoli, M.: A Development Process for Self-adapting Service Oriented Appli-
cations. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS,
vol. 4749, pp. 442–448. Springer, Heidelberg (2007)

4. Autili, M., Cortellessa, V., Di Ruscio, D., Inverardi, P., Pelliccione, P., Tivoli,
M.: Eagle: engineering software in the ubiquitous globe by leveraging uncertainty.
In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European
Conference on Foundations of Software Engineering, ESEC/FSE 2011, pp. 488–
491. ACM, New York (2011)

5. Baier, C., Größer, M., Leucker, M., Bollig, B., Ciesinski, F.: Controller synthesis
for probabilistic systems (extended abstract). In: IFIP TCS 2004, vol. 155 (2004)

6. Bertolino, A., De Angelis, G., Frantzen, L., Polini, A.: The PLASTIC Framework
and Tools for Testing Service-Oriented Applications. In: De Lucia, A., Ferrucci, F.
(eds.) ISSSE 2006-2008. LNCS, vol. 5413, pp. 106–139. Springer, Heidelberg (2009)

7. Bertolino, A., De Angelis, G., Polini, A.: (role)CAST: A Framework for On-line
Service Testing. In: Proc. of WEBIST 2011 (2011)

www.choreos.eu
http://connect-forever.eu/

130 M. Autili et al.

8. Bertolino, A., Inverardi, P., Pelliccione, P., Tivoli, M.: Automatic synthesis of be-
havior protocols for composable web-services. In: Proc. of ESEC/FSE 2009 (2009)

9. Blair, G., Bencomo, N., France, R.B.: Models@run.time. Computer 42, 22–27
(2009)

10. Blundell, C., Giannakopoulou, D., Pǎsǎreanu, C.S.: Assume-guarantee testing.
Softw. Eng. Notes 31 (2005)

11. Boehm, B.: Value-based software engineering: reinventing. SIGSOFT Softw. Eng.
Notes 28, 3 (2003)

12. Boehm, B.W.: Software risk management: Principles and practices. IEEE Softw. 8,
32–41 (1991)

13. Calinescu, R., Johnson, K., Rafiq, Y.: Using observation ageing to improve marko-
vian model learning in qos engineering. In: ICPE, pp. 505–510 (2011)

14. Canal, C., Poizat, P., Salaün, G.: Synchronizing Behavioural Mismatch in Soft-
ware Composition. In: Gorrieri, R., Wehrheim, H. (eds.) FMOODS 2006. LNCS,
vol. 4037, pp. 63–77. Springer, Heidelberg (2006)

15. Ceri, S., Braga, D., Corcoglioniti, F., Grossniklaus, M., Vadacca, S.: Search Com-
puting Challenges and Directions. In: Dearle, A., Zicari, R.V. (eds.) ICOODB 2010.
LNCS, vol. 6348, pp. 1–5. Springer, Heidelberg (2010)

16. Cetina, C., Giner, P., Fons, J., Pelechano, V.: Autonomic computing through reuse
of variability models at runtime: The case of smart homes. Computer 42, 37–43
(2009)

17. Cobleigh, J.M., Giannakopoulou, D., Păsăreanu, C.S.: Learning Assumptions for
Compositional Verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 331–346. Springer, Heidelberg (2003)

18. Di Cosmo, R., Di Ruscio, D., Pelliccione, P., Pierantonio, A., Zacchiroli, S.: Sup-
porting Software Evolution in Component-Based FOSS Systems. Science of Com-
puter Programming 76(12) (2011)

19. Dingel, J.: Computer-Assisted Assume/Guarantee Reasoning with VeriSoft. In:
Proc. of ICSE 2003 (2003)

20. Ephraim, Y., Merhav, N.: Hidden markov processes. IEEE Transactions on Infor-
mation Theory 48, 1518–1569

21. Ernst, M.D., Perkins, J.H.: Learning from executions: Dynamic analysis for soft-
ware engineering and program understanding. Tutorial at ASE 2005 (2005)

22. Famelis, M., Salay, R., Chechik, M.: Partial models: Towards modeling and rea-
soning with uncertainty. In: Proceedings of the 34th International Conference on
Software Engineering, ICSE (2012)

23. Garlan, D.: Software engineering in an uncertain world. In: Proc. of FSE/SDP
2010, pp. 125–128 (2010)

24. Georgas, J.C., van der Hoek, A., Taylor, R.N.: Using architectural models to man-
age and visualize runtime adaptation. Computer 42, 52–60 (2009)

25. Ghezzi, C., Mocci, A., Monga, M.: Synthesizing intensional behavior models by
graph transformation. In: Proc. of ICSE 2009, pp. 430–440 (2009)

26. Giannakopoulou, D., Pasareanu, C.S., Barringer, H.: Component verification with
automatically generated assumptions. ASE Journal 12(3), 297–320 (2005)

27. Goldsby, H.J., Cheng, B.H.C.: Automatically Generating Behavioral Models of
Adaptive Systems to Address Uncertainty. In: Czarnecki, K., Ober, I., Bruel, J.-
M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 568–583.
Springer, Heidelberg (2008)

28. Hamlet, D.: Composing Software Components: A Software-testing Perspective, 1st
edn. Springer Publishing Company, Incorporated (2010)

Integration Architecture Synthesis for Taming Uncertainty 131

29. Inverardi, P., Issarny, V., Spalazzese, R.: A Theory of Mediators for Eternal Con-
nectors. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010, Part II. LNCS, vol. 6416,
pp. 236–250. Springer, Heidelberg (2010)

30. Inverardi, P., Spalazzese, R., Tivoli, M.: Application-Layer Connector Synthesis.
In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 148–190.
Springer, Heidelberg (2011)

31. Lehmann, G., Blumendorf, M., Trollmann, F., Albayrak, S.: Meta-modeling Run-
time Models. In: Dingel, J., Solberg, A. (eds.) MODELS 2010. LNCS, vol. 6627,
pp. 209–223. Springer, Heidelberg (2011)

32. Lorenzoli, D., Mariani, L., Pezzè, M.: Automatic generation of software behavioral
models. In: Proc. of ICSE 2008, pp. 501–510 (2008)

33. Mishra, K., Trivedi, K.: Uncertainty propagation through software dependability
models. In: 2011 IEEE 22nd International Symposium on Software Reliability En-
gineering (ISSRE), November 29-December 2, pp. 80–89 (2011)

34. Morin, B., Barais, O., Jezequel, J.-M., Fleurey, F., Solberg, A.: Models@ run.time
to support dynamic adaptation. Computer 42, 44–51 (2009)

35. Mula, J., Poler, R., Garcia-Sabater, J., Lario, F.: Models for production planning
under uncertainty: A review. IJPE 103(1), 271–285 (2006)

36. Neil, M., Fenton, N., Tailor, M.: Using bayesian networks to model expected and
unexpected operational losses. Risk Analysis 25(4), 963–972 (2005)

37. Passerone, R., de Alfaro, L., Henzinger, T.A., Sangiovanni-Vincentelli, A.L.: Con-
vertibility verification and converter synthesis: two faces of the same coin. In: Proc.
of ICCAD 2002, pp. 132–139 (2002)

38. Ramadge, P., Wonham, W.: The control of discrete event systems. Proceedings of
the IEEE 77(1), 81–98 (1989)

39. Schmidt, D.C.: Guest Editor’s Introduction: Model-Driven Engineering. Com-
puter 39(2), 25–31 (2006)

40. Singh, H., Cortellessa, V., Cukic, B., Gunel, E., Bharadwaj, V.: A bayesian ap-
proach to reliability prediction and assessment of component based systems. In:
Proc. of ISSRE 2001 (2001)

41. Stoelinga, M.: An introduction to probabilistic automata. Bulletin of the European
Association for Theoretical Computer Science 78, 176–198 (2002)

42. Stringfellow, C., Amory, C.D., Potnuri, D., Andrews, A., Georg, M.: Comparison
of software architecture reverse engineering methods. Information and Software
Technology 48(7), 484–497 (2006)

43. Tivoli, M., Inverardi, P.: Failure-free coordinators synthesis for component-based
architectures. Sci. Comput. Program. 71(3), 181–212 (2008)

44. Uchitel, S., Brunet, G., Chechik, M.: Synthesis of partial behavior models from
properties and scenarios. IEEE Trans. Softw. Eng. 35, 384–406 (2009)

45. White, R.W., Roth, R.A.: Exploratory Search: Beyond the Query-Response
Paradigm. Synthesis Lect. on ICRS. Morgan & Claypool Publishers (2009)

Social Networks

for Importing and Exporting Security

Bangdao Chen and A.W. Roscoe

Oxford University Computer Science Department
James Martin Institute for the Future of Computing

{Bangdao.Chen,Bill.Roscoe}@cs.ox.ac.uk

Abstract. Online social networks are rapidly changing our lives. Their
growing pervasiveness and the trust that we develop in online identities
provide us with a new platform for security applications. Additionally,
the integration of various sensors and mobile devices on social networks
has shortened the separation between one’s physical and virtual (i.e.
web) presences. We envisage that social networks will serve as the portal
between the physical world and the digital world. However, challenges
arise when using social networks in security applications; for example,
how can one prove to a friend (or Friend) that your Facebook page
belongs to you and not a man in the middle? Once you have proved
this, how can you use it to create a secure channel between any device
belonging to you and one belonging to your friend? We show how human
interactive security protocols (HISPs) can greatly assist in both these
areas and in general create a decentralised and user-oriented model of
security. And we demonstrate that by using this security model we can
quickly and efficiently bootstrap security for sharing information within
a large group.

1 Introduction

Online social networks (OSNs), such as Facebook, Google+, Foursquare, Twit-
ter, and LinkedIn, have enjoyed phenomenal growth in recent years. The authors
of [13] analysed relationships and communication on Twitter, and pointed out
that Twitter also plays the role of a social medium: information can spread widely
and quickly. For example, in less than 12 hours after the first tweet of Osama Bin
Laden being killed, there were 2.2 million tweets related to this event [3]. OSNs
therefore not only help to create and maintain a large amount of relationships
between humans, they also provide efficient and convenient platforms for sharing
and spreading data amongst a large audience.

The future of OSNs is changing with the growing pervasiveness of device
connections. For example, the CEO of Ericsson [2] has forecast that there will
be 50 billion device connections by 2020, which will create a “connected society”.
Sensors are often used to make data about physical objects available online, for
example, to display the sensory data on OSNs. An IBM researcher connected his

R. Calinescu and D. Garlan (Eds.): Monterey Workshop 2012, LNCS 7539, pp. 132–147, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Social Networks for Importing and Exporting Security 133

house with Twitter1: a set of sensors are used to generate tweets about power
consumption, water usage and the temperature of the house. We also notice that
there are plenty of body-monitoring sensors [1] with mobile connectivity in the
market today.

The integration of OSNs on mobile devices has further shortened the sepa-
ration between our virtual presences on the web and our physical existence. By
using a mobile device, OSNs have the opportunity to collect more private data;
for example, location data or medical data from on-body medical sensors. There
is already a clear need for a solid security model for social networking, and the
more we use them for, the more we need them to be secured.

Given that the social network providers are increasingly making their appli-
cations available as secure web sites, there remain two primary concerns:

A How can we know that a given OSN page belongs to a given user: the iden-
tification, or authentication problem? In general such knowledge may be
absolute or come with some identified confidence level.

B The provision of appropriate security models for collecting, using and sharing
data from the local user and his or her devices including sensors.

In this paper we concentrate on A, and furthermore show how security devel-
oped for social networking can be used to conveniently bootstrap other secure
connections.

We imagine that in general solutions to A might involve any one, or combina-
tions of (i) pre-existing security infrastructures such as PKIs, (ii) reputational
models based on trust ratings by other network users, and (iii) bootstrapping
security by person-to-person contact by interaction outside the social network.
In this paper we concentrate on (iii) and show how Human-Interactive Security
Protocols (HISPs) can be used to do this efficiently when there is a means for
getting a small amount of information from the owner of the page that is to
be authenticated to the person who wants to authenticate it. This transmis-
sion might be via personal contact or using a second medium that is trusted as
authentic.

In this paper we make the following contributions:

1. We propose a security model that exploits the trust on social networks by
using HISPs. This model can be used to authenticate online identities and
create secure connections between devices.

2. We demonstrate these by implementing a prototype system. It can efficiently
bootstrap security for a large group. It shows the practicability of using our
security model in future mobile computing.

2 Using a HISP

A typical HISP relies on the assumption that there is an empirical channel
in a specific application, in which one or more humans can compare a short

1 http://stanford-clark.com/andy_house.html

http://stanford-clark.com/andy_house.html

134 B. Chen and A.W. Roscoe

authentication string (SAS) received from the empirical channel. An empiri-
cal channel is a human-based, non-fakeable channel, for example, face-to-face
conversations, video calls or voice calls. The best of these protocols, for exam-
ple those of [14,15,16,17,18,19,20,22,23], enable assurance to these humans that
there is no attack that would allow an intruder to get the system into an inse-
cure state (where the connections established are other than what the humans
believe), with probability meaningfully greater than 2−b, where b is the number
of bits in the check-string. In addition, to have such a chance, the attacker will
have a 1 − 2−b chance of his presence being revealed by the difference between
the strings.

HISPs can be thought of as tools that enable one (perhaps informal) authentic
channel to efficiently authenticate, and then secure another one. This means that
they have two complementary potential uses in social networking.

1. We can use a HISP to authenticate online identities by using existing con-
nections (typically personal or telephone conversations between the humans
involved). In this case, we import security from existing social relationships
to social networks.

2. We can use a HISP to create secure connections between devices, in this
case, we can use authenticated social network accounts as proxies to display
SASs. This can significantly improve the usability of HISPs. We therefore
export security from social networks to other applications. This also pro-
vides a new channel of sharing information directly between devices, which
is useful especially when the OSN providers cannot guarantee the privacy of
information posted online.

In the following sections we will introduce two HISPs that we use in our imple-
mentation.

2.1 Pair-Wise HISP

Below is the pair-wise HISP we use:

1. A −→ B : hash(0 : hkA), hash(k), InfoA,
2. B −→ A : hash(1 : hkB), pk, InfoB,

Each party creates a hash, or digest key: we call these hkA and hkB. These are
needed to randomise the final check-string. A creates a session key k. B either
creates freshly, or re-uses, an asymmetric key pair (pk, sk). There is no need
for the “public” key pk to be certified. The length of these keys will depend on
the desired level of security2, the amount of available computing power, and the
crypto-system in use.

In the first pair of steps of the protocol, A and B both commit each other
without knowledge to values of hkB or hkA. The only one of the four parameters

2 The key certainly needs to be strong enough so that there is no realistic chance of
it being broken during the life of the session being established. Further strength is
required to ensure that the contents of that session remain secret after it ends.

Social Networks for Importing and Exporting Security 135

hkA, hkB , pk and k communicated openly is B’s public key pk. InfoA and InfoB
are the information A and B wants to authenticate. In our example, when Alice
wants to verify Bob’s OSN account, InfoB contains Bob’s social network account
profile; similarly, InfoA contains Alice’s social network account profile when Bob
wants to verify Alice’s OSN account.

The protocol now proceeds:

3. A −→ B : hkA, {k}pk
4. B −→ A : hkB

The second part of Message 3 is to tell B the actual value of the session key,
which is now checked against the hash. It is the transmission of the unencrypted
keys hkA and hkB at this stage that represents the core of the protocol. Firstly,
of course, the participants must check that these are the same values that were
represented in Messages 1 and 2. If not, the run is abandoned. Secondly, they
(and anyone else who has been listening in) can compute a value for

digest(hkA ⊕ hkB , (pk, hash(k), InfoA, InfoB))

where ⊕ is bit-wise exclusive or and (X,Y) is an ordered pair. The protocol
completes successfully if A (or A and B) are convinced that their two versions of
the value – the check-string of this protocol – are equal: in becoming convinced
they must not use a channel which can be “spoofed” by an intruder. Typically
one will read their value to the other, or A will read B’s value directly and
compare it with her own. Whichever knows that the two values are equal can
conclude that the link is authenticated. Typically this is either A or both of
them. It is this comparison that makes it a HISP.

Naturally, if the protocol has proceeded uninterfered with, A’s and B’s values
will be equal. If, however, an intruder has imposed his own values onto the
receivers of Messages 1–4, A and B will not agree on all four parameters. For
security, what is important is that they agree on pk and hash(k), so we will
concentrate on what happens if the intruder interferes with these.

The digest function [17,18] is designed so that, as hk varies, the probability
that digest(hk,X) = digest(hk, Y) for X �= Y is less than ε, where typically ε
is very close to the theoretically optimal value of 2−b for b the number of bits in
the output of digest. It must also have the property that for any fixed value d,
the chance that digest(hk,X) = d as hk varies is less than ε also. More details of
this protocol can be found in [9]. Formal verification of this protocol is presented
in [21].

An important quality a HISP must have is that it protects the SAS that
the users compare from combinatorial searching by potential attackers: analysis
must be able to show that no matter what conceivable amount of computing an
attacker uses, he has no better chance of getting lucky and persuading the users
to agree on an SAS in inappropriate circumstances than if it had made a single
guess. All the HISPs we see in this paper have that property.

136 B. Chen and A.W. Roscoe

2.2 Group HISP

The Symmetric HCBK (SHCBK) protocol [18] is used in our implementation.
This, the general description, connects an arbitrary-sized group. Good examples
of group authentication using HISPs are GAnGs [7] and SPATE [24].

1. ∀A −→N ∀A′ : A, INFOA, hash(A, hkA)
2. ∀A −→N ∀A′ : hkA
3. users compare digest(hk∗, {INFO’A|A ∈ G}), where hk∗ is the XOR of all

hkA’s for A ∈ G

SHCBK has each node “publish” its name and a collection of information that
it wishes to be authentically connected with that name. It also sends a hash3 of
a randomly generated key hkA coupled with the name. Once it has received that
information from all nodes, and therefore become committed to the set of iden-
tities, INFO and hashed keys it will use, it publishes its previously secret hkA.
The point is that by the time of this last publication, it was in fact committed to
all the data used in the above protocol, even though it does not yet know all the
hkAs. HCBK stands for Hash Commitment Before Knowledge. A careful security
analysis of this protocol (see [18], for example) demonstrates that any attacker
is unable to profit from combinatorial analysis aimed at getting the SASs (i.e.
digests) to agree even though nodes have different views of the authenticated
information. Good HISPs such as SHCBK therefore offer maximum security for
a given amount of human effort.

We can reduce the number of human interactions if there is a trustworthy
Initiator I, consider the rest of the group as G′, then the above protocol can
be modified as following: in the process of comparing digest values, I compares
digest value published by ∀A (A ∈ G′), ∀A compares the digest value published
by I; I then publishes the final result of digest comparison, ∀A checks this result.
We call it Semi-SHCBK protocol. Therefore the total number of messages to be
exchanged via empirical channels changes from N(N − 1)/2 to 3N − 3. If there
is a trustworthy Initiator, when N > 6, Semi-SHCBK protocol is more efficient
than SHCBK protocol.

The key generation is simple: we include a copy of an uncertified Diffie-
Hellman public key in INFOA, then after a successful run of SHCBK or Semi-
SHCBK protocol, each user generates N − 1 shared pair-wise secret keys sk. For
example, skαβ means a shared secret key between user α and user β. To generate
a group key skG, the following group key protocol is used (−→S means sending
encrypted information using a corresponding pair-wise secret key):

1. ∀A −→S ∀A′ : NonceA
2. skG = Nonce∗, where Nonce∗ is the XOR of all NonceA’s for A ∈ G

Each member also generates an anonymous ID. It can be used to publish infor-
mation anonymously on OSNs. The anonymous ID is created by hash(NonceA,

3 Hash means a standard cryptographic hash function that has two main properties:
collision resistance, and inversion resistance.

Social Networks for Importing and Exporting Security 137

A’s social network ID) mod 1015. This will generate a 15-digit4 ID for each group
member.

2.3 Improving the Usability and Security of HISPs

The practicability of using HISPs is in inverse proportion to the cost of human
effort. For example, factors that determine the practicability are: the availability
of empirical channels; the length of information to be compared; and the times
of comparison required in one run.

In order to reduce the amount of human effort without compromising security,
one solution is to allow automated comparison of SASs online. For example, when
OSN pages are being used to display SASs in HISPs there is clearly also the the
option for these same pages to compare the SASs provided they are connected
securely to the local device that is participating in the HISP.

If all participants have this property we could use a longer SAS, but in general
we assume that there is likely to be some human participant creating the link in
person. The primary motivation for using HISPs is, after all, allowing this.

3 Proving Online Identities

In order to use OSNs as empirical channels we must answer the following ques-
tion: “how do I know that what I am seeing on the page comes from the person
or other entity that I think it does”. To better analyse this problem, we divide it
into two sub-questions: how do I know the (e.g. Facebook) page I am seeing is
authentic within the OSN? and how do I know it belongs to the person I think
it does? The first of these questions can be solved by conventional computer
security, for example, the https service on OSNs. It is therefore assumed that all
relevant interactions with the OSNs are via their https interfaces.

The second question can be converted into the following one: “is this an es-
tablished Friend for which you are certain of the link between page and person?”
If the answer is yes, then secure access to that page is clearly a good empiri-
cal channel. This is the most common way of authentication in our daily life.
For example, one may have experiences in interacting with a social network ac-
count, one may authenticate a social network account by the number of common
Friends, or one can authenticate a social network account by viewing its profile,
Friends list, photos, history of participated events and other context information.

If we can not make our decision based on past experiences, we may use tele-
phony or physical interactions to accomplish this task. A HISP can therefore be
used to authenticate OSN accounts. For example, Alice wants to know that the
social network account of Bob is authentic; if Alice has a phone number of Bob
and she is certain of the authenticity of this phone number, she then runs a HISP
with Bob to verify his account by using telephony as the empirical channel.

4 We use the same length of digits as Facebook ID.

138 B. Chen and A.W. Roscoe

Note that the availability of HISPs provides us with the flexibility to boot-
strap security from any existing authentic connection, whether one derived from
physical proximity or other means such as telephony.

And there are other alternatives of authenticating online identities in practice,
for example:

1. Centralised authentication. For example, Twitter provides authentication
service. The verified account will display a special indicator (a small icon
or a “badge”). However this service is limited to celebrities on Twitter. A
similar situation can be found in other OSNs.

2. Introducing decentralised authorities. For example, we can publish OSN ac-
counts of a group on a company’s https web-page. In this case, the company
acts as an authority which authenticates a group. Similarly, a trusted or-
ganisation or a trusted individual can also play the role of an authority.
For example, a community leader may only keep Friends that belong to the
community, therefore his or her Friend-list can be used to help authenticate
the community members. This can be used to replace the human effort of
authenticating group members and can greatly improve the application in
authenticating a group when its size is large. In our implementation, when
prompting users to verify the member-list of a group, we provide an op-
tion for users to use a trusted authority (in the form of an https web-page).
Details of this approach are presented in Section 5.

3. Introducing trust ratings. Rating by trust is a common practice in OSN re-
search, for example, [12] describes a semantic web-based OSN, and they de-
veloped algorithms to rate the inferred reputation of a node. Another distinct
example is PGP. It exploits ratings to determine the level of authenticity of
downloaded public keys. A rating scale of 1 to 4 is used: full (complete trust),
marginal (partial trust), untrustworthy and don’t know. The most distinct
advantage of this method is that it provides pervasive automated authenti-
cation. We have implemented a demonstration rating system by using the
same ratings introduced in PGP (see Section 5).

4. Blackballing. Blackballing5 is a voting method used in many gentleman’s
clubs: members have a large number of white and black balls and each mem-
ber casts a single ball into the ballot box to vote for a proposition, if there are
one or more black balls in the ballot box, everyone will immediately know this
proposition has been vetoed. In our implementation, each member checks the
list objects one-by-one, if one object is “vetoed” by one member, then list L
is “vetoed”. This is also a form of utilising “crowd knowledge” which effec-
tively reduces the security mistakes when members manually authenticate
each other.

4 Bootstrapping a Large Group by Using OSNs

An important assumption has to be made before bootstrapping security for a
group: members of a group are capable of verifying the legitimacy of each other

5 http://en.wikipedia.org/wiki/Blackballing

http://en.wikipedia.org/wiki/Blackballing

Social Networks for Importing and Exporting Security 139

within the group. This is supported by the methods introduced in Section 3.
It allows us to start our discussion of how to bootstrap a large group by using
OSNs. The insecure state we will address is where one trustworthy user believes
he has an authenticated connection to another but is in fact connected to a third
party (e.g. the attacker).

In some cases when bootstrapping a HISP group the identities (however de-
fined) of those participating will be obvious. Perhaps this will be because all
know each other well and have agreed to connect, or perhaps it will be because
they are together is some easily identifiable context such as sitting around a
table. In these cases all that is necessary for them to start the protocol is the
number of them. For small groups this will be obvious; for large ones they might
either organise a count themselves or build up a list to which they agree.

In other cases – for example where some members of the group do not have
a direct link – it will certainly be necessary to establish the list of participants
in advance. In this case the names on the list will need to be authenticated.
Each intended party can check if his/her name is on the list, but it may be more
difficult to establish that no undesirables are on it.

The correctness of bootstrapping a group can be defined as follows: all mem-
bers acknowledge a list L, which contains details of all members; the resulting
group G contains exactly the same number of members recorded in L and no
one, except for the members included in L, can be allowed to join G. To fulfill
this task, we need to identify and overcome the following challenges:

– Collecting group information. This is to create list L. [7] presents two solu-
tions for collecting information from group members when they are in the
same room: the first solution is to use an untrusted projector as a central
node by displaying its Bluetooth address as a 2D barcode; all members con-
nect their mobile phones to the projector by reading this barcode and send
their details to this projector which then broadcasts list L to the group. The
second solution is to create a tree structure of collecting member’s infor-
mation one-by-one by reading 2D barcodes of Bluetooth addresses. These
methods are too cumbersome and inconvenient when the size of the group
is large. In remote scenarios, collecting group information becomes more
difficult since group information is often discrete and inconsistent.

– Counting and authentication. Counting is to check whether the size of group
G matches with the size of list L. Authentication is to check whether mem-
bers included in list L are legitimate. In general, there are two types of
attacks: (i) man-in-the-middle (MITM) or outsider attacks; (ii) Sybil [10] or
insider attacks. Counting and authentication is to detect attacks of (i) and
(ii). Normally, if authentication is prudent, authentication alone can detect
attacks of (i). However, an insider may be capable of providing multiple fake
identities6 to get access to more resources, therefore counting is necessary to
detect attacks of (ii). Depending on physical interactions to perform counting
and authentication has many limitations. For example, members of a group

6 The fake identities can be different copies of the insider’s identity or fake identities
of others.

140 B. Chen and A.W. Roscoe

may be distributed and remote, and physical interactions may be unavail-
able; humans can be lazy and careless, for instance, they may not correctly
count a group, or they may not correctly perform actions of authentication.

To simplify our discussion, we assume group formations are presented in the
form of events; for example, the Department of Computer Science creates a list
of their staff and students in order to share their project data; they arrange an
event (e.g. a Facebook event) by informing all members within the department
via emails or by posting a notice to the public. We generalise these events of
group formation into the following two events:

A. Pre-emptive event: group members know each other and they all trust the
Initiator before the event runs, therefore, the Semi-SHCBK protocol is used.

B. Non-pre-emptive event: except for the Initiator, the rest of the group does
not know of the event in advance and they may not know each other. The
Initiator sends out invitations to ask for participation. Those who accept
it join the event. Members may not all trust the Initiator and the SHCBK
protocol is used.

In our solution, all functions are achieved and performed by using a mobile
application installed on users’ mobile phones.

4.1 Collecting Group Information

OSNs provide two functions that make collecting group information convenient
and efficient: (i) information on OSNs is rich and well formatted which is con-
venient for exporting information to other applications; (ii) OSN accounts are
managed according to social relationships; for example, we can create and man-
age different groups7, and we can create an event (e.g. a Facebook event or a
Google+ page) and invite Friends to join.

In Event A, we can assume that group members are already Friends of the
Initiator on OSNs, therefore the Initiator can simply create a group by selecting
accounts from his/her Friend list, and then export the group information to
our mobile application. In Event B, we assume that group members may not
be Friends with each other. The Initiator can simply create an event and then
notify all others. For example, the Initiator can introduce this event by sending
emails or by publishing it on posters. Others can easily identify and join this
event on OSNs. In the end we can export group information from this event.

This process can also be made via physical interactions, for example, one can
display an event’s OSN page address as a 2D barcode and others can read this
barcode to join this event. Therefore by using OSNs, we can support group for-
mation when group members are collocated, remote to each other, or a mixture
of the former two situations.

7 On Google+ a group is presented as a “circle”.

Social Networks for Importing and Exporting Security 141

4.2 Counting and Authenticating Members

Counting, if made by humans, has limitations. For example, one may make mis-
takes when the size of the group is large. [7] assumes humans can accurately
count less than ten individuals via physical interactions. They randomly divide
a large group into small subgroups in order to allow humans to count and verify
members correctly. This action provides greater usability but leads to weaker
security: there may be the chance that attackers are allocated to the same sub-
group. The probability of attack detection [7] is less than the value of 1 − 2−b

assumed by the HISP (b is the bit-length of the SAS). In addition, subgrouping
can be laborious and inconvenient since it has to be randomised.

Authentication normally requires more human efforts. For example, in [7] they
use visual channels (created by mobile phone display screens and cameras) to
check the presence of identities. Since visual channels of reading 2D barcodes
on mobile phones are normally unidirectional, a symmetric authentication of a
group of size N requires N(N − 1)/2 interactions. This number increases quickly
when the size of the group increases.

When using OSNs as empirical channels, we can first divide the authentication
process into the following two steps:

1. Authenticate OSN accounts included in list L are legitimate. We call it the
authentication of online identities.

2. Read and compare digest values displayed on members’ OSN pages. We call
it the authentication of connections.

Step 1 is to ensure that we can use OSN accounts as proxies of our physical
presences. Step 2 is to test the presence of MITM attackers by using a HISP,
which is to authenticate that the electronic connection is correctly connected to
the intended device represented by the OSN account. This strategy can remove
the requirement for physical interactions in Step 2.

In [7], counting is important because an insider can create multiple fake iden-
tities and then perform physical interactions of authentication multiple times. In
our solution, the only chance of successful insider attacks is to add fake identities
in list L and pass the authentication in Step 1. In Section 3 we have discussed
various techniques of proving online identities. These allow humans to conve-
niently and efficiently adapt their authentication strategy according to different
scenarios. In addition, we can conveniently run a program to automatically count
and check whether the number of responsive8 (or active) OSN accounts is equal
to the number of accounts included in list L. We therefore conclude that count-
ing is unnecessary in our solution and there is no need of subgrouping. This
improves both security and usability.

More importantly, once we have authenticated that OSN accounts included
in list L are legitimate, Step 2 can be made automatically since we use OSN
accounts as proxies of our physical presences. This is a significant improvement
which provides more capacity for large groups, for example, groups with size

8 Those who display the digest value.

142 B. Chen and A.W. Roscoe

over 100. In addition, we can display long digest values without increasing the
cost of human efforts.

It is worth noticing that on OSNs, the cost of Sybil attacks of creating mul-
tiple fake accounts are higher because OSN providers, for example, Facebook9,
Google+, require unique identifiers (email addresses or mobile phone numbers)
to register, and they keep records of online interactions which can be used as
indicators of authenticity. We also notice that by reducing physical interactions,
we can reduce impacts from other uncontrolled factors; for example, the lumi-
nous intensity, the physical distances, the quality of mobile phone cameras or
display screens, and most importantly, the human complacency.

Another significant improvement in usability may be that we can allow de-
layed running of HISPs. Experiments of relying on physical interactions to run
HISPs have one implicit assumption that all members have to finish the process
of authentication within a short period of time. And it is the reason that re-
ducing time is critical for improving usability. However, in practice, the cost of
coordination can be high and humans may not necessarily be available of carry-
ing out the same physical action at the same time. This problem can be more
significant10 when humans are remote to each other. By using OSN accounts as
proxies of our physical presences, we can divide the authentication process into
two separate steps discussed earlier in this section. Because Step 2 of reading
and comparing digest values can be automatically completed by using a pro-
gram, and Step 1 of authenticating the legitimacy of OSN accounts in list L can
be carried out asynchronously, the running of HISPs can be delayed until the
last member completes the authentication in Step 1.

This allows more useful security applications. For example, a department
sends out notifications of bootstrapping a secure network for internal commu-
nication to its employees. Some employees are traveling abroad and they are
not responding immediately. By using our solution, the program keeps waiting
until the last employee responds which triggers the authentication process. After
the authentication process has been finished, the program displays results to all
employees.

5 Demonstration Implementation

We have implemented a secure location sharing service to demonstrate the use
of our security model. We have developed three versions of mobile applications:
RIM (Blackberry), Android, and iOS (iPhone, iPad and iTouch). One server SO
is used as the coordination server. All devices are connected to SO. After they
have successfully bootstrapped security for the group, they start to share their
locations with each other.

9 In our investigation, we discover that Facebook normally requires at least one mobile
phone number to register; and accounts registered by email addresses will later be
required to be authenticated via a mobile phone number.

10 Our experiment shows evidence of high cost of coordination.

Social Networks for Importing and Exporting Security 143

The mobile phone application first checks the ratings; if there are accounts
which fail to pass the rating check, it will prompt the user with a dialogue calling
for authentication resource (from a decentralised authority), it will automatically
remove the authenticated objects from the stack of the member list; the objects
that are left on the stack will be verified by empirical authentication, for example,
by using a HISP. Figure 1 shows the flow chart of the authentication process.

Note that while the current practices of implementing a rating system are
mostly experimental, we observe that the presence of a decentralised authority is
strong in scenarios with security demands. For example, in a conference scenario,
the organiser can manage the “guest list” of the conference’s Facebook event. He
or she can either remove those illegal “guests” or set this event to be visible only
to the “guests” on a given “guest list”. In an online community, the community
leader can manage the legitimate list of community members on his or her social
web-page (for example, he or she keeps the list as a group in the Friends-list).

Fig. 1. The flow chart of the authentication process

If the entire member list has been verified, the protocol starts to run. The user
will start to share his or her data of locations on Facebook (or directly between
devices) if the protocol has been finished successfully. Figure 2 shows the screen
shots of the application on Android.

We use Bouncy Castle Crypto Java API on RIM and Android; and OpenSSL
C Library for iOS. We use 1024-bit Diffie-Hellman public keys to generate shared
secret keys; 128-bit AES is used to encrypt data.

144 B. Chen and A.W. Roscoe

Fig. 2. Screen shots of the mobile application

6 Performance Analysis

We have tested the mobile applications on Blackberry Bold 9000 (BB9000) (4
devices), Blackberry Storm 9500 (BB9500) (1 device), HTC Wildfire (HTC) (1
device), Dell Streak (Dell) (1 device), iPhone 3 (1 device), iPad 1 (2 devices). 10
volunteers joined this test. They were located at different addresses. Coordina-
tion was made via phone calls, sending SMSs, and messaging on OSNs. Note in
order to simplify our test, the member-list was imported from a Facebook event.
We assumed there was a trustworthy leader. Therefore, the semi-SHCBK pro-
tocol was used. A total of 20 messages are exchanged. The size of the data sent
by one device is about 18 KBytes. Compared with using traditional public key
certificates, our method allows binding of contextual data (e.g. photos, voices or
videos) to the uncertified public key we use in addition to names. We call these
secondary security information which can be used to improve security as well as
usability. Figure 3 shows the time consumption of bootstrapping a group of all
the devices we have. The total time cost is around 193 seconds.

We can see the cost of coordination is high in group formation because of
many uncontrolled random factors. However, the verification and comparison is
efficient and only takes a small fraction of the total time.

Table 1. Facts and statistics

Device Time Ratio Speed1 Speed2
BB9000 3.69s 99% 1.72kb/s 4.32kb/s
BB9500 4.49s 99% 1.35kb/s 3.75kb/s
HTC 3.74s 99% 1.56kb/s 4.80kb/s
Dell 0.85s 99% 2.42kb/s 7.15kb/s

iPhone 0.11s 99% 4.38kb/s 8.74kb/s
iPad 0.08s 99% 4.06kb/s 13.7kb/s

Fig. 3. Time consumption

Social Networks for Importing and Exporting Security 145

Table 1 shows the facts and statistics of different devices. The second column
is the time of computing DH secret; the third column is the ratio of the time of
computing DH secret against the time of total on-device computing (excluding
communication); the fourth column is the speed of connection between the device
and the coordination server; the last column is the speed of the connection
between the device and the Facebook server. We can see the time of on-device
computation mostly originates from the DH secret computation.

According to the above analysis, we can identify two challenges for the future:
(A) providing more convenient methods for large ad hoc group formation; (B)
increasing the speed of mobile connections to allow including more contextual
data in the protocol. Challenge A requires research on both security and usability.
For example, should a group be formed using a single initiator, a tree structure,
broadcasting over a fully connected graph, or some other topology? Challenge
B is less significant since there are continuous developments in improving the
speed of mobile connections; for example, the deployment of 4G network.

7 Related Research

WhozThat [4] is a system making use of OSN IDs among mobile phones: two
users exchange their OSN IDs using Bluetooth, and it then introduces social
context into the local context; for example, one may play the favourite music
of the other. This is similar to our solution of binding OSN IDs with mobile
devices while our intention is to facilitate identification and connection rather
than interaction between humans. CenceMe [11] is a more advanced mobile OSN
system which detects users’ social activities by analysing sensory data on mobile
phones. It demonstrates a well designed integration of OSNs on mobile phones:
automated input of social information (deducted from sensory data) replaces
traditional manual input. This is similar to our vision for future OSNs; for ex-
ample, sensor networks like on-body sensor networks can be exploited by OSNs
to automatically generate and display social patterns.

In [8] the authors presented a concrete implementation of Cloud Computing
Service (for storage) on Facebook. However, there is no description as to actually
utilise the Cloud after creation. Our solution gives a clear data flow between
different interfaces and it can be put in use instantly.

Security is a key enabling factor for the above practices. In [5] the authors
suggested OSN operators should not be trusted and data should be encrypted
before posting online. They provided an example of creating a peer-to-peer sys-
tem by using a pair-wise HISP to distribute public keys. A similar example was
discussed in [6], which proposed a completely decentralised peer-to-peer system
by storing data on user devices.

We notice that although there is much research on creating decentralised
systems to improve security, practices without using a PKI or existing security
infrastructures can be difficult. And such peer-to-peer systems are not efficient
when the scale of sharing increases. Practices introduced in [7,24] reveal the high
complexity of group HISPs when using physical interactions to collect group

146 B. Chen and A.W. Roscoe

information and authenticate members, therefore they are not practical when
bootstrapping a large ad hoc group.

8 Conclusions

We have revealed the challenges of authenticating online identities and boot-
strapping security for a large ad hoc group. The model of social networks for
importing and exporting security we have presented can be used to (i) exploit
existing social relationships to authenticate online identities and (ii) exploit ex-
isting online relationships to efficiently bootstrap security for a large ad hoc
group. This provides a way of incorporating social context into security which
can be used to deal with changing security requirements emerging from new
applications. The secure location sharing service we have implemented demon-
strates these features of this model.

The security of social networks remains an interesting problem on which more
work is required. Its attack models based on technology are likely to be similar to
those of other online services, but there is also a social/psychological dimension
to investigate. We believe that in the future the growing investment in security
by social network companies will make our solution more secure when export-
ing security to other applications, and the development of computing power on
mobile devices will make it more efficient in supporting security services.

References

1. Body-monitoring sensors, http://store.runkeeper.com/
2. CEO to shareholders: 50 billion connections 2020,

http://www.ericsson.com/thecompany/press/releases/2010/04/1403231

3. How Fast the News Spreads Through Social Media, http://blog.sysomos.com/
2011/05/02/how-fast-the-news-spreads-through-social-media/

4. Beach, A., et al.: Whozthat? evolving an ecosystem for context-aware mobile social
networks. IEEE Network 22(4), 50–55 (2008)

5. Anderson, J., Diaz, C., Bonneau, J., Stajano, F.: Privacy-enabling social network-
ing over untrusted networks. In: Proc. WOSN 2009 (2009)

6. Buchegger, S., Datta, A.: A Case for P2P Infrastructure for Social Networks -
Opportunities & Challenges. In: Proc. WONS 2009 (2009)

7. Chen, C.-H.O., et al.: GAnGS: gather, authenticate ’n group securely. In: The 14th
ACM International Conference on Mobile Computing and Networking (2008)

8. Chard, K., Caton, S., Rana, O., Bubendorfer, K.: Social cloud: Cloud computing
in social networks. In: Proc. IEEE CLOUD 2010 (2010)

9. Chen, B., Nguyen, L., Roscoe, A.W.: Reverse authentication in financial transac-
tions and identity management. To appear in Wireless Networks, Mobile Networks
and Applications (2012)

10. Douceur, J.: The Sybil Attack. In: Druschel, P., Kaashoek, M.F., Rowstron, A.
(eds.) IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002)

11. Miluzzo, E., et al.: Sensing meets mobile social networks: the design, implemen-
tation and evaluation of the cenceme application. In: Proc. ACM SenSys 2008
(2008)

http://store.runkeeper.com/
http://www.ericsson.com/thecompany/press/releases/2010/04/1403231
http://blog.sysomos.com/2011/05/02/how-fast-the-news-spreads-through-social-media/
http://blog.sysomos.com/2011/05/02/how-fast-the-news-spreads-through-social-media/

Social Networks for Importing and Exporting Security 147

12. Golbeck, J., Hendler, J.: Accuracy of metrics for inferring trust and reputation. In:
14th Int’l Conf. on Knowledge Engineering and Knowledge Management (2004)

13. Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news
media? In: Proc. the 19th Int’l Conf. on World Wide Web (2010)

14. Laur, S., Nyberg, K.: Efficient Mutual Data Authentication Using Manually Au-
thenticated Strings. In: Pointcheval, D., Mu, Y., Chen, K. (eds.) CANS 2006.
LNCS, vol. 4301, pp. 90–107. Springer, Heidelberg (2006)

15. Lindell, A.: Comparison-Based Key Exchange and the Security of the Numeric
Comparison Mode in Bluetooth v2.1. In: RSA Conference (2009)

16. Nguyen, L. (ed.): Part 6: Mechanisms using manual data transfer
17. Nguyen, L., Roscoe, A.: Efficient group authentication protocol based on human

interaction. In: Proc. FCS-ARSPA 2006, pp. 9–31 (2006)
18. Nguyen, L., Roscoe, A.: Authenticating ad hoc networks by comparison of short

digests. Information and Computation 206, 250–271 (2008)
19. Nguyen, L., Roscoe, A.: Separating two roles of hashing in one-way message au-

thentication. In: FCS-ARSPA-WITS (2008)
20. Nguyen, L., Roscoe, A.: Authentication protocols based on low-bandwidth un-

spoofable channels: a comparative survey. Computer Security 19(1), 139–201 (2011)
21. Roscoe, A., Smyth, T., Nguyen, L.: Model checking cryptographic protocols subject

to combinatorial attack, http://www.cs.ox.ac.uk/files/4157/guess.pdf
22. Roscoe, A.W.: Human-centred computer security (2006) (unpublished draft)
23. Vaudenay, S.: Secure Communications over Insecure Channels Based on Short Au-

thenticated Strings. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp.
309–326. Springer, Heidelberg (2005)

24. Lin, Y.-H., et al.: SPATE: Small-Group PKI-Less Authenticated Trust Establish-
ment. IEEE Transactions on Mobile Computing 9(12), 1666–1681 (2010)

http://www.cs.ox.ac.uk/files/4157/guess.pdf

CScale – A Programming Model
for Scalable and Reliable Distributed Applications

Jose Faleiro, Sriram Rajamani, Kaushik Rajan, G. Ramalingam, and Kapil Vaswani

Microsoft Research India
{t-josfal,sriram,krajan,grama,kapilv}@microsoft.com

Abstract. Today’s connected world demands applications that are responsive,
always available, and can service a large number of users. However, the task
of writing such applications is daunting, even for experienced developers. We
propose CScale, a programming model that attempts to simplify this task. The
objective of CScale is to let programmers specify their application’s core logic
declaratively without explicitly managing distribution. CScale applications have
simple semantics that simplify reasoning about correctness and enable testing
and debugging on the single machine. In turn, the CScale runtime manages all
aspects of execution of a CScale application on large clusters, including deploy-
ment, state management (replication and data partitioning) and fault tolerance.
CScale ensures high availability by using distributed wait-free data structures to
manage state. CScale does impose some constraints on the kind of operations
clients can perform. However, we find that many real-world web applications can
be naturally expressed using CScale.

1 Introduction

Today’s connected world demands applications that are responsive, always available,
and can service a large number of users. In the last few years, cloud based platforms
such as Azure, EC2 and Google App Engine have democratized the infrastructure
needed to host such applications, allowing anyone with internet access to deploy ap-
plications on a large cluster of machines. At the same time, these platforms expose
programmers to pitfalls of distribution, such as process and network failures, imperfect
messaging, and shared mutable distributed state. Writing applications that can effec-
tively utilize these platforms and still meet user expectations is an extremely challeng-
ing problem.

In conventional web applications, the task of dealing with pitfalls of distribution is
typically delegated to (distributed) databases. Databases allow shared state and integrity
constraints between parts of state to be declaratively specified and support consistent ac-
cess to state via transactions. However, this convenience often comes at a cost. In con-
ventional distributed databases, transactions are built using primitives such as 2-phase
commit, which introduce blocking and reduce availability, especially under network
failures.

Modern distributed databases such as Dynamo, Cassandra and Azure tables (more
popularly dubbed as NoSQL databases) have emerged as viable alternatives to con-
ventional databases. These databases use replication and data partitioning for improved

R. Calinescu and D. Garlan (Eds.): Monterey Workshop 2012, LNCS 7539, pp. 148–156, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

CScale – A Programming Model for Scalable and Reliable Distributed Applications 149

availability and throughput but do not necessarily guarantee consistent access to data. In
general, the trade-off between consistency, availability and the ability to deal with net-
work failures often permeates through entire software stack, including business logic
and increases programming complexity.

In the past, the problem of increased programming complexity is often addressed
using programming models and application platforms. Application platforms incorpo-
rate best practices in dealing with generic concerns such as scalability, reliability and
security and allow developers to focus on application-specific logic. MapReduce and
DryadLINQ are examples of programming models that have significantly simplified
the task of developing distributed batch processing applications. There is an urgent
need for similar programming models to manage complex consistency, availability and
partition-tolerance trade-off in real time web applications.

In this paper, we describe CScale, a declarative programming model for building
scalable distributed web applications. The objective of CScale is to allow programmers
to specify their application’s core logic declaratively without explicitly managing distri-
bution. As we describe later, CScale applications have simple semantics (serializability)
that simplify reasoning about correctness and enables testing and debugging on the sin-
gle machine (using an emulator). In turn, the CScale runtime manages all aspects of
execution of a CScale application on clusters, including deployment, state management
(including replication and data partitioning), dealing with node and network failures,
message delays etc. CScale ensures high availability by using distributed wait-free al-
gorithms to manage state. The use of wait-free algorithms guarantees that a CScale
application continues to service requests even if parts of the underlying systems fail.
CScale does impose some constraints on the kind of operations clients can perform.
However, as we show, many real-world web applications can be naturally expressed
using CScale.

2 Programming Model

2.1 Language

The CScale programming language is a variant of Datalog (a logic programming lan-
guage) and closely related to SQL. State in a CScale application is modelled as a set of
relations. Relations fall into two categories, base and derived (as shown in Figure 1).
Base relations are collection of base tuples and derived relations are functions of one
or more base relations defined using relational operators (select, project, join, aggre-
gation), negation and recursion. Consider a simple CScale program representing an
auction application (Figure 2).

In this application, Items and Bids are base relations whereas ValidBids, Highest-
BidAmounts and HigestBidders are derived relations. As defined in line 6, a tuple<bidId,
userId, itemId, bidAmount> belongs to ValidBids if there exists an item with the iden-
tifier itemId in the Items relation and a bid in the Bids relation such that the bid was
placed before the auction end time of the item. In line 7, the relation HigestBidAmounts
is computed by grouping valid bids by item, then selecting the maximum. Finally in
line 8, the relation HigestBidders is derived from HigestBidAmounts and ValidBids a

150 J. Faleiro et al.

Fig. 1. CScale Programming Model

tuple <bidId, userId, itemId, bidAmount> exists in HigestBidders if the bidAmount is
highest among all bids and the bid was placed by a user userId.

While we have adopted a language similar to Datalog, it is also possible to express
CScale applications in other langauges such as LINQ. Unlike batch processing frame-
works like MapReduce and DryadLINQ, CScale applications are reactive. CScale rela-
tions are persistent. The lifetime of a CScale application extends from the point at which
it is deployed on a cluster to the time it is removed. Clients can interact with a CScale ap-
plication either by updating one or more base relations (with some constraints defined
later) or by querying one or more relations (base and derived). A CScale application
performs computation to update derived relations when base relations are modified. In
some sense, this computation resembles view maintenance in conventional databases.
In the auction application, the relation Items is updated when a new item is added or
removed and the relation Bids is updated when a new bid is placed.

CScale relations are exposed as a RESTful WCF data service. Therefore, clients may
interact with a CScale application directly via HTTP or using the OData protocol.

2.2 Semantics

CScale applications are designed to receive and process concurrent updates from a large
number of clients. Furthermore, CScale relations may be partitioned or replicated for
throughput and availability, potentially across different geographical locations. In spite
of the concurrency and distribution, CScale guarantees serializability. In other words,

CScale – A Programming Model for Scalable and Reliable Distributed Applications 151

1. decl Items(itemId, itemName, itemDescription, auctionEndDateTime)
2. decl Bids(bidId, userId, itemId, bidAmount, bidDateTime)
3. decl ValidBids(bidId, userId, itemId, bidAmount)
4. decl HighestBidAmounts(itemId, bidAmount)
5. decl HighestBidders(bidId, userId, itemId, bidAmount)

6. ValidBids(bidId, userId, itemId, bidAmount) :-
Items(itemId, itemName, ItemDescription, auctionEndDateTime),
Bids(bidId, userId, itemId, bidAmount, bidDateTime),
bidDateTime < auctionEndDate

7. HighestBidAmounts(itemId, highestBidAmount) :-
GroupBy(ValidBids(bidId, userId, itemId, bidAmount),

[itemId], highestBidAmount = max(bidAmount))

8. HighestBidders(bidId, userId, itemId, bidAmount) :-
HigestBidAmounts(itemId, bidAmount),
ValidBids(bidId, userId, itemId, bidAmount)

Fig. 2. Online auctions application expressed in CScale

an update to a base relation (and the computation triggered to re-compute derived re-
lations) appears to occur atomically and in isolation from other reads and updates. In
the auction application, serializability ensures that clients do not observe state where
a bid appears in the Bids relation but does not reflect in the highest bids (if indeed it
was the highest valid bid). Constraints As described before, CScale relations may be
replicated and/or partitioned for availability and throughput. Achieving serializability
and availability in the presence of network and node failures is a hard problem. How-
ever, CScale is able to meet these requirements by restricting the class of applications
that can be expressed in the model. Specifically, CScale restricts the kinds of requests
clients may issue. Clients may add or remove tuples from base relations. A set of ad-
d/remove requests to base relations may be submitted as a batch. All requests in a batch
appear to occur together (though not necessarily in isolation). Clients may also specify
temporal dependencies between add/remove requests and reads. However, CScale does
not support arbitrary transactions composed of reads and writes to one or more rela-
tions. For example, a transaction that performs a read-modify-write on a base tuple is
not supported. Note: In SQL terms, a CScale program defines views over base relations.
Views have transactional semantics. However, arbitrary transactions on base relations
are not permitted.

2.3 Target Applications

The CScale programming model is naturally suited for a rich class of web applications.
These include ad serving, real time search, financial data processing, real time web
analytics (vulnerability and fraud detection), blogs and social networking applications,
auctions and online shopping, relaxed variants of resource allocation applications such
as banking and ticketing etc.

152 J. Faleiro et al.

Fig. 3. A replicated set that only supports add operations

3 Implementation

An important feature of applications expressed within the CScale model is that they
can be implemented with strong consistency and availability guarantees, even in the
presence of network and process failures. CScale achieves this using novel distributed
wait-free algorithms.

3.1 Wait-Free Data Types

CScale uses a set of distributed wait-free data types as fundamental building blocks
of CScale applications - CScale relations are implemented using these data types. A
key feature of these data types is that they are carefully hand-crafted to permit asyn-
chronous, wait-free replication and still guarantee serializability. As an example, let us
consider how the set data type can be implemented in this fashion. First, consider a set
that only supports Add operations. Since all add operations commute, it is easy to see
that if such a set were to be asynchronously replicated (i.e. operations performed on one
replica are broadcast to all other replicas asynchronously), all replicas will eventually
reach the same state.

Figure 3 illustrates this design. Let us assume that each replica starts with an empty
state. As long as operations performed on one replica are broadcast to and applied at
other replicas (in arbitrary order), all replicas are guaranteed to reach the same state
(at quiescence). Hence, this set is eventually consistent. Furthermore, it can be shown
that the result of all membership tests and state at quiescence can be obtained by some
sequential ordering of all the add operations. Let us now try and extend this set with
Remove operations. Unfortunately, Add and Remove operations on the same element
do not commute. Hence, a nave implementation of the set does not satisfy the properties
mentioned above because the state of the set depends on the order in which the Add and
Remove operations are applied. However, in this case, these operations can be carefully
designed to ensure that any two concurrent Add and Remove operations on the same
element appear to occur in the same order on all replicas, irrespective of the order
in which are actually applied. Figure 4 describes one such algorithm (known as the
Observed Remove (OR) set) [5].

CScale – A Programming Model for Scalable and Reliable Distributed Applications 153

void Add(e) {
S = S ∪ {e, g}
Broadcast Add(e, g) to other replicas

}

void Remove(e) {
G = { g | (e, g) ∈ S }
S = S - {(e, g) | g ∈ G}
Broadcast Remove(e, G) to other replicas

}

Fig. 4. Add and remove operations on a single replica in the Observed Removed set

Fig. 5. An example illustrating replication in OR set

The Add operation of the OR set associates a globally unique identifier with every
operation and broadcasts this identifier along with the elements. Replicas which receive
the Add operation update their copy of the set in similar fashion. The Remove operation
identifies the set of globally unique identifiers associated with the element (also known
as the observed set) at the source replica (where it is first received from a client). It
broadcasts the observed set along with the element. Replicas which receive this opera-
tion only remove tuples corresponding to the identifiers in the observed set.

Figure 5 illustrates how the OR set operates. The Remove operation on the second
replica observes the identifier a associated with element 1 but does not observe the
concurrent Add (associated with identifier b). The modified remove has the same effect
(i.e. appears to occur before any concurrent adds) on all replicas, irrespective of the
order in which it is applied. Note: Several other data types such as key-value tables and
sequences can be designed to guarantee eventually consistency along the same lines as
the OR set. Refer to [5] for more details.

3.2 Consistent Queries via Lattice Agreement

The set implementation described above is eventually consistent. However, intermediate
queries against the set are not serializable. The example in Figure 6 shows a scenario
where queries may return inconsistent values. Starting with an empty set, if queries are

154 J. Faleiro et al.

serviced by multiple replicas as shown, the queries may return a sequence of values
{}, {1}, {2}, {1, 2}, which cannot be obtained by any interleaving queries with any
sequential ordering of the two Add operations.

Conventional replicated databases solve this problem by requiring replicas to agree
on the order in which (non-commuting) operations are processed. This is achieved using
protocols such as 2PC or Paxos [4], or even pessimistic locking. However, agreement
in an asynchronous distributed system in the presence of failures has been shown to be
impossible [3]. This reflects in choices made in these protocols. The Paxos protocol [4],
for instance, preserves safety in the presence of failures but does not guarantee progress.
Furthermore, most replication protocols essentially reduce to a form of primary master
replication where all operations are first sent to a special replica known as the primary,
which is responsible for ensuring that all replicas process non-commuting operations in
the same order. This has significant performance implications.

In CScale our goal is to support asynchronous, multi-master replication. This form of
replication permits each replica to receive and process operations independently, which
can result in better scalability and performance. Our implementation is based on the ob-
servation that the problem of ensuring consistent reads under conditions where update
operations commute can be reduced to generalized lattice agreement. In this problem,
each process proposes a sequence of values from an infinite lattice, and the goal is to
learn a sequence of values that form a chain. Since all update operations (adds and re-
moves) commute, they form a lattice with set inclusion as the ordering. We can achieve
consistent reads by requiring that replicas propose the set of operations they receive,
and service reads from set of operations learnt via generalized lattice agreement. Since
the sets of values learnt form a chain, serializability follows.

In the running example, the operations Add(1) and Add(2) form the following lattice.
The use of generalized lattice agreement ensures that the values replicas learn from a
chain in this lattice. Thus any sequence of reads will observe only serializable values.

Recently, we have proposed a wait-free algorithm for solving generalized lattice
agreement [2]. The algorithm can tolerate process failures as long as a majority of the
processes survive at any point in time. The algorithm has a complexity of O(N) mes-
sage delays, where N is the number of replicas. In the absence of failures, the algorithm
ensures that new operations can be learnt in 2 message delays.

3.3 Incremental Evaluation and View Maintenance

In CScale updates to base relations trigger computation to update derived relations.
Since changes to base relations at any given moment in time are likely to be small, it is
possible to re-compute derived relations more efficiently by incrementally propagating
changes. Incremental evaluation is challenging for several reasons. First, operators like
negation and recursion require complex algorithms for detecting changes incrementally.
Furthermore, if relations are partitioned and distributed, incremental evaluation must
be performed without the use of primitives such as distributed transactions [6]. Many
existing systems decide to offer weak consistency for derived relations [1] for better
performance, which significantly complicates reasoning.

CScale – A Programming Model for Scalable and Reliable Distributed Applications 155

The CScale runtime guarantees strong consistency of derived relations using a novel
incremental evaluation protocol based on lattice agreement. In this protocol, base re-
lations participate in an agreement protocol to order all operations on base relations.
Derived relations then update state according to this order. The details of this protocol
are beyond the scope of this paper.

The CScale runtime also supports a query optimizer that analyzes a CScale applica-
tion and generates an optimized plan for incremental evaluation. Some of the supported
optimizations include early aggregation and index maintenance.

4 Current Status and Experience

CScale proposes a fundamentally different way of building distributed applications. Ap-
plications written in CScale are declarative and hide low level implementation details
such as messaging, failures etc. At the same time, CScale imposes some restrictions
on how clients can interact with applications and does not (yet) provide primitives to
escape the model. Therefore, our first step was to evaluate if the CScale model is expres-
sive enough for real world distributed applications and if the model improves program-
mer productivity. We built a prototype implementation of the CScale system (without a
distributed backend) and then re-wrote a few applications (including applications from
the Windows Azure patterns and practices team such as an online survey application
and an online auctions application) in CScale.

Our initial experiences with CScale are very encouraging. We were able to replace
the existing storage layer and most of the application logic in these applications with
a simple CScale program significantly smaller in the number of lines of code (from a
few thousand to few 10s of lines of code). Furthermore, the application expressed in
CScale was much more understandable and maintainable as compared to the original
implementation, where the application logic was spread across multiple projects (and
Azure roles) and aspects of distribution such as messaging, fault tolerance etc. was
handled explicitly in code. However, we recognize that much work needs to be done to
fully ascertain the shortcomings and benefits of this programming model.

A distributed implementation of CScale consists of many pieces a programming
environment (including testing and debugging support), a compiler, a runtime system
(that implements replication and partitioning on a cluster and performs query evalua-
tion), a scalable storage layer, a platform layer that supports efficient communication
and provides primitives such as network and node failure detection, a query optimizer
and client side interfaces amongst others. We are in the process of building these com-
ponents. We would also like to ensure that CScale applications can be easily deployed
on cloud platforms such as Azure. Finally, we are in the process of building a suite of
sample applications that illustrate the best patterns and practices for building scalable
and reliable CScale applications.

References

1. Agrawal, P., Silberstein, A., Cooper, B.F., Srivastava, U., Ramakrishnan, R.: Asynchronous
view maintenance for vlsd databases. In: SIGMOD 2009, Stanford InfoLab (June 2009)

2. Faleiro, J., Rajamani, S., Rajan, K., Ramalingam, G., Vaswani, K.: Generalized lattice agree-
ment. In: Principles of Distributed Computing (PODC) (July 2012)

156 J. Faleiro et al.

3. Fischer, M.J., Lynch, N., Paterson, M.S.: Impossibility of distributed consensus with one faulty
process. Journal of the ACM 32(2), 374–382 (1985)

4. Lamport, L.: The part-time parliament. ACM Transactions on Computer Systems 16, 133–169
(1998)

5. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Convergent and commutative repli-
cated data types. Bulletin of the European Association for Theoretical Computer Science
(EATCS) (104), 67–88 (2011)

6. Zhuge, Y., Garcia-molina, H., Wiener, J.L.: The strobe algorithms for multi-source warehouse
consistency. In: International Conference on Parallel and Distributed Information Systems, pp.
146–157 (1996)

Foundations and Tools for End-User Architecting

David Garlan, Vishal Dwivedi, Ivan Ruchkin, and Bradley Schmerl

School of Computer Science
Carnegie Mellon University

Pittsburgh, USA
{garlan,vdwivedi,iruchkin,schmerl}@cs.cmu.edu

Abstract. Within an increasing number of domains an important emerging need
is the ability for technically naı̈ve users to compose computational elements into
novel configurations. Examples include astronomers who create new analysis
pipelines to process telescopic data, intelligence analysts who must process di-
verse sources of unstructured text to discover socio-technical trends, and medical
researchers who have to process brain image data in new ways to understand
disease pathways. Creating such compositions today typically requires low-level
technical expertise, limiting the use of computational methods and increasing the
cost of using them. In this paper we describe an approach — which we term
end-user architecting — that exploits the similarity between such compositional
activities and those of software architects. Drawing on the rich heritage of soft-
ware architecture languages, methods, and tools, we show how those techniques
can be adapted to support end users in composing rich computational systems
through domain-specific compositional paradigms and component repositories,
without requiring that they have knowledge of the low-level implementation de-
tails of the components or the compositional infrastructure. Further, we outline a
set of open research challenges that the area of end-user architecting raises.

Keywords: end-user architecture, end-user architecting, software architecture,
end-user programming, software composition, software development tools.

1 Introduction

Increasingly users rely on computation to support their professional activities. In some
cases turnkey applications and services are sufficient to carry out computational tasks.
However, in many situations users must adapt computing to their specific needs. These
adaptations can take many forms: from setting preferences in applications, to “program-
ming” spreadsheets, to creating orchestrations of services in support of some business
process. This situation has given rise to an interest in end-user programming [41], and,
more generally, end-user software engineering [28] or end-user computing [23]. This
emerging field attempts to find ways to better support users who, unlike professional
programmers, do not have deep technical knowledge, but must somehow find ways to
harness the power of computation to support their tasks.

One important subclass of end-user computation arises in domains where users must
compose existing computational elements into novel configurations. Examples include
e-science (e.g., astronomers who create new analysis pipelines to process telescopic

R. Calinescu and D. Garlan (Eds.): Monterey Workshop 2012, LNCS 7539, pp. 157–182, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

158 D. Garlan et al.

data), intelligence analysis (e.g., policy planners who process diverse sources of un-
structured text to discover socio-technical trends), and medicine (e.g., researchers who
process repositories of brain imaging data to discover new disease pathways).

In these domains professionals typically have access to a large number of existing
applications and data sets, which must be composed in novel ways to gain insight, carry
out “what if” experiments, generate reports and research findings, etc. For example, in
the field of brain imaging, scientists study samples of brain images and neural activity
to diagnose disease patterns. Innovative research in this domain requires that scientists
compose a large number of tools and apply them to brain-imaging data sets to diagnose
problems, such as malformations and structural or functional deformities. There also
exist dozens (if not hundreds) of brain image processing tools for image recognition,
image alignment, filtering, volumetric analytics, mapping, etc. Figure 1 illustrates a
popular neuroscience tool suite, called FSL, that is used to create scripts for analyzing
FMRI [44] data.

A large script file
that contains
program calls

Fig. 1. Compositions in the neuroscience domain

Unfortunately, assembling such elements into coherent compositions is a non-trivial
matter. In many cases users must have detailed low-level knowledge of things like ap-
plication parameter settings, application invocation idiosyncrasies, file locations and
naming conventions, data formats and encodings, ordering restrictions, and scripting
languages. In Figure 1, for example, users must create and execute detailed scripts il-
lustrated at the bottom of the figure.

Further, it may be difficult for end users to determine whether a set of components
can be composed at all, and, if not, what to do about it. For example, differences in data
encodings may make direct component composition infeasible without the inclusion
of one or more format converters. Even when a legal composition can be achieved, it

End-User Architecting 159

may not have the performance (or other quality attributes) critical to the needs of the
end user. And, even when a suitably performing composition can be created, it may be
difficult to share it with peers or reuse it in similar but different settings.

In this paper we advocate an approach to these problems that exploits the similar-
ity between such compositions and software architecture, and attempts to leverage the
considerable advances made within that field over the past two decades. The key idea
is to view the activities of these end users as engaging in architectural design within
a domain-specific style and to represent those architectures explicitly. As we will see,
such explicit representation allows one to raise the level of abstraction for composition,
provide criteria for evaluating the soundness and quality of a composition, support reuse
and parametrization, and establish a platform for a host of task-enhancing services such
as program synthesis, analysis, compilation, execution, and debugging.

By approaching the problem in this way we identify a new field of concern, which
we term end-user architecting. Similar to end-user programming [41], it recognizes up
front that the key issue is bridging the gap between available computational resources
and the skill set of the users who must harness them — users who typically have weak
or non-existent programming skills. But unlike end-user programming, it seeks to find
higher-level abstractions that leverage the considerable advances in software architec-
ture languages, methods, and tools to support component composition, analysis and
execution.

In Section 2 we revisit the problem, highlighting the cross-cutting similarities in
computing needs for composition-based domains such as those mentioned above, and
we outline the challenges for solving the problems of users in these domains. Section 3
makes the case for taking an architectural perspective on the problem, and outlines an
approach in which software architecture tools and techniques can be incorporated into
environments that support end-user architecting. Section 4 illustrates how this approach
can be applied by considering three case studies. Section 5 considers related work, and
Section 6 explores some of the open research challenges in this area.

2 The Problem

As noted above, an increasing number of domains are evolving to depend on composing
existing components to support their tasks. Table 1 lists examples of these domains,
including e-science, business processing, social science research, and electronic music
synthesis.

While very different in their specific tasks and goals, the use of computation within
these communities shares a number of common properties. First, it relies on compo-
sitions of existing components to accomplish computational tasks. For example, there
exist large repositories of reusable components such as BioCatalogue [55] for life sci-
ence web services, the BIRN Data Repository [4] for neuroscience data and analysis
tools, and myExperiment [40] for scientific workflows.

Second, in many cases those compositions are complex, involving dozens of com-
ponents, possibly running on many hosts. Thus, creating new compositions becomes a
non-trivial task, often taking weeks to develop, test, and execute.

Third, quality attributes matter. While the specific quality attributes of concern vary
from domain to domain, they typically include things like performance (time to

160 D. Garlan et al.

Table 1. Domains involving end user compositions

Type Compositions

Astronomy electromagnetic image processing tasks [11]
Bioinformatics biological data-analysis services [30]
Digital music production audio sequencing and editing [33]
Environmental Science spatio-temporal experiments [57]
Geospatial Analysis interactive visualization of geographical data [38]
Home Automation home devices and services [29]
Neuroscience brain-image processing libraries [12]
Scientific computing transformational workflows [49]
Socio-technical Analysis dynamic network creation, analysis, reporting and simulation [48]

complete a task), resource requirements (numbers of processors, storage requirements),
availability (likelihood of crashing), privacy and security (protection of data). For ex-
ample, a brain imaging composition may be of little use to a neuroscience researcher if
it takes a week to execute, fails frequently, or compromises the privacy of the data.

Fourth, the socio-technical ecosystem within which these computations are used is
complex, involving many roles and incentives [25]. For example, researchers care that
their compositions produce credible outputs and that they can share their computations
with their peers; component providers care that they are given credit for the use of
their components; regulators and funders care that the provenance of all results is fully
documented.

Today these end-user communities are not well served by existing technology and
development platforms. In particular, we can identify five critical barriers.

1. Excessive Technical Detail: Creating compositions today often requires knowl-
edge of myriad low-level technical details, such as data formats, parameter settings,
file locations, ordering constraints, execution conventions, scripting languages, etc.
As Figure 1 illustrates, brain imaging research using FSL tools requires a user to
understand and create detailed execution scripts that specify how to configure each
of the constituent tools, which may have dozens of configuration parameters. As
another example, in the domain of intelligence analysis (cf. Section 4) a typical
composition that involves two logical steps, but is executed in the context of a
service-oriented architecture (SOA), requires the end user to specify a Business Pro-
cessing Event Language (BPEL) script shown in Figure 2 [48]. The script requires
the user to explicitly specify low-level details that handle control flow, variable as-
signment, exception handling, and other programming constructs.

2. Inappropriate Computational Models: The computational models provided by
typical execution platforms, such as SOA, may require end users to map their tasks
into a computational vocabulary that is quite different from the natural way of de-
composing the task in that domain. For example, tasks that are logically repre-
sented in the end user’s mind as a workflow may have to be translated into the
very-different vocabulary of service invocations executing on a SOA, as illustrated
in Figure 2.

End-User Architecting 161

3. Inability to Analyze Compositions: There may be many restrictions on legal ways
to combine elements, dictated by things like format compatibility, domain-specific
processing requirements, ordering constraints, and access rights to data and ap-
plications. Today, discovering whether a composition satisfies these restrictions is
largely a matter of trial and error, since there are few tools to automate such checks.
Moreover, even when a composition does satisfy the composition constraints, its
extra-functional properties — or quality attributes — may be uncertain. For exam-
ple, determining how long a given computation will take to produce results on a
given data set can often be determined only by time-consuming experimentation.

4. Lack of Support for Reuse: An important requirement in many communities is the
ability for professionals to share their compositions with others in those communi-
ties. For instance, brain researchers may want to replicate the analyses of others, or to
adapt an existing analysis to a different setting (e.g., executed on different data sets).
Packaging such compositions in a reusable and adaptable form is difficult, given the
low-level nature of their encodings, and the brittleness of the specifications.

5. Impoverished Support for Execution. The execution environment for composi-
tions is often impoverished. Compared to the capabilities of modern programming
environments, end users have relatively few tools for things like compilation into
efficient deployments, interactive testing and debugging (e.g., setting breakpoints,
monitoring intermediate results, etc.), history tracking, and graceful handling of
run-time errors. This follows in part from the fact that in many cases compositions
are executed in a distributed environment using middleware that is not geared to-
wards interactive use and exploration by technically naive users.

...

Assign

While

Sequence

Wait

Invoke

Catch

Throw

Sequence

Assign

Assign

Invoke

Reply

Sequence

Invoke

Invoke

Fig. 2. A segment of BPEL orchestration of a socio-cultural analysis workflow

This gap between the needs of end users and today’s technology has a number of se-
rious consequences. The cost of producing effective compositions is excessive because
end users must become experts in implementation details not relevant to their primary
task. The quality is low because compositions tend to be brittle and in many cases fail
to meet their extra-functional requirements. Compositions are difficult to reuse, modify,
and maintain, leading to gratuitous reinvention.

162 D. Garlan et al.

Recognizing these problems, a number of research- and practitioner-based efforts
have produced platforms that provide end-user tools for composition, reuse and
execution within specific domains. As described in more detail in Section 5, this is typ-
ically done through the creation of component repositories, and composition environ-
ments that support computational models appropriate to the domain, such as workflow
execution, widget composition, data exploration or music synthesis and composition.
Examples include Taverna for life sciences, the Ozone Widget Framework (OWF) for
geospatial analysis, VisTrails for data exploration and visualization, Steinberg’s Virtual
Studio Technology (VST) for composing music effects, etc.

While many of these platforms have been quite successful, and several are in wide-
spread use, they are typically handcrafted for specific communities and domains —
often at great cost in development time and effort. What is needed, we would argue, is
a foundational understanding of the problem and a general approach to a solution that
gets at the heart of the mismatch between end user needs and technologies that must be
exploited. Such foundations would ideally lead to a systematic approach to developing
tools that surmount the barriers outlined earlier. In the next section we outline such an
approach.

3 End-User Architecture

The key to solving the problems outlined above is to recognize that the computational
design activities performed by those communities are fundamentally architectural in
nature. Recognizing that, one can then explore how modern techniques and tools in
support of software architecture can be applied to this new area of end-user architecting.

Software architecture emerged as a subfield of software engineering in the 1990s as
a way to tackle the increasing complexity of software systems design. While there are
many definitions of software architecture, a typical one is [8]:

The software architecture of a computing system is the set of structures
needed to reason about the system, which comprises software elements, rela-
tionships among them, and properties of both.

Definitions aside, the principle idea behind software architecture is to allow software
engineers to treat system design at a high-level of abstraction, representing a system
as a composition of interacting components. Properties of those components and their
compositions can then be specified in a way that allows designers to analyze systemic
quality attributes and tradeoffs, such as performance, reliability, security, availability,
maintainability, and so on [50].

Since its emergence there has been substantial development of foundations,
tools, and techniques to aid software architects. These include formal and semi-formal
architecture description languages (ADLs) [34], architecture-based analyses [19], ar-
chitecture reconstruction tools [47], architecture evaluation methods [9], architecture
handbooks [6], architecture style definition and enforcement [17], and many others.

With respect to the theme of this paper, a number of salient features of software
architecture are particularly important:

End-User Architecting 163

– Component Composition: Software architecture represents a system as a compo-
sition of components, supporting a high-level view of the system and bringing to the
forefront issues of assignment of function to components, component compatibil-
ity, protocols of interaction between components, and ways to package component
compositions for reuse.

– Domain-Specific Computation Models: Software architecture allows developers
to represent a system using compositional models that are not restricted by the
implementation platform or programming language, but can be chosen to match
the intuition of designers. Specifically, software architecture allows one to define
architectural styles, where each style denotes a family of systems that shares a
common vocabulary of composition, conforms to rules for combining components,
and identifies analyses that can be applied to systems in that family [50]. Styles
may represent generic computational models such as publish-subscribe, pipe-filter,
and client-server. Or, they may be specialized for particular domains [35,36].

– Analysis: Software architecture allows developers to perform analysis of quality
attributes at a systems level. This is typically done by exposing key properties of
the components and their interactions, and then using those properties in support
of calculations to determine expected component compatibility, performance, reli-
ability, security, and so on [19]. This in turn allows developers to make engineering
tradeoffs, for example balancing attributes like fidelity, performance, and cost of
deployment to match the particular business context. Additionally, in some cases
it is possible to build analytic tools that not only detect problems, but also suggest
possible solutions [52].

– Reuse: Software architecture supports several kinds of reuse. First, architectural
styles provide a basis for sharing components that fit within that style [35,36].
Modern examples of this include platforms like JEE and frameworks like Eclipse.
Second, software architectures permit the definition of reusable patterns that can be
used to solve specific problems [2,6]. Third, most architectural models support hi-
erarchical description, whereby a component can be treated as a primitive building
block at one level of composition, but refined to reveal its own sub-architecture.

– Execution Support: For some architectural styles tools can generate implemen-
tations. Typically this is done by using a repository of components that conform
to the style, and then compiling the system description into executable code [18].
Additionally, software architectures can be used for run-time monitoring and de-
bugging [58].

These properties suggest that if applied appropriately, software architecture principles,
tools, and practices could directly address the five challenges outlined in Section 2.
Specifically:

1. Excessive Technical Detail: Architectural models provide a way to develop, ana-
lyze, and execute compositional models at a high level of abstraction, suppressing
details of implementation.

2. Inappropriate Computational Models: Architectural models can define domain-
specific compositional styles to match the computational intuition of end users.

164 D. Garlan et al.

3. Inability to Analyze Compositions: Architectural models, suitably represented
and formalized, can be analyzed by tools to gain insight into a system’s expected
quality attributes and to evaluate tradeoffs between alternative designs based on
their support for relevant qualities.

4. Lack of Support for Reuse: Architectural models support reuse of components,
patterns, styles, and encapsulated subsystems.

5. Impoverished Support for Execution. Architectures can, in principle, be used as
a basis for compilation, deployment, execution, and debugging.

How can these potential benefits be realized? We would argue that the key to doing this
is to use an approach in which there is an explicit architectural representation of the
compositions created by end users. For a given domain the architectures that could be
created would be associated with a domain-specific architectural style corresponding
to natural computational models for the domain (such as some variant on workflow,
publish-subscribe, or data-centric styles). Further, associated with the style and corre-
sponding infrastructure, there would be a set of architecture services that could support
analysis, execution, etc. Finally, all of these features would be made available to users
through a graphical front end that supports access to component repositories, architec-
ture construction, system execution, and various additional support services.

This leads to a general framework of system organization in support of end-user
architecting, as illustrated in Figure 3. Part (a) of the figure shows the current state
of affairs: users must translate their tasks into the computational model of the execu-
tion platform, and become familiar with the low-level details of that platform and the
primitive computational elements (applications, services, files, etc.) — leading to the
problems outlined in Section 2. Part (b) illustrates the new approach. Here, end-user
architectures are explicitly represented as architectural models defined in a domain-
specific architectural style. These models and the supporting infrastructure can then
support a host of auxiliary services, including checking for style conformance, qual-
ity attribute analysis, compilation into efficient deployments, execution and debugging
mechanisms, and automated repair — as shown in part (c).

(a)

UI
Execution Platform

Primitives
Architecture

Style Conformance Analysis

Execution Compilation Repair

(b) (c)

Architecture
Execution Platform

Primitives

UI

Fig. 3. End-user Architecting Approach

4 Case Studies

To investigate the potential of this approach we instantiated the general framework
described above in three domains: dynamic network analysis, brain imaging, and geospa-
tial analysis. For each we describe the nature of the domain and the forms of composi-
tion that are required within the community of use. We then consider how we adapted

End-User Architecting 165

the end-user architecting framework to this domain in terms of (a) architecture rep-
resentation, (b) architecture style, (c) architectural analysis, (d) execution support, (e)
additional services, (f) reuse, and (g) user interface.

4.1 Dynamic Network Analysis

Dynamic Network Analysis (DNA) is a domain of computation that focuses on the
analysis of network models, which represent entities, relations, and their properties.
DNA is increasingly being used in a variety of fields, including anthropology, sociology,
business planning, law enforcement, and national security, where networks capture the
relationships between people, knowledge, tasks, locations, etc. [7].

End users in these fields are typically analysts who extract entities and relations from
unstructured text (such as web sites, blogs, twitter feeds, email, etc.) to create network
models, and who then use those models to gain insight into social, organizational, and
cultural phenomena through analysis and simulation.

For example, an analyst interested in understanding disaster relief after the Haiti
earthquake in 2010 [59] might build a network from open source news data provided
through a source such as LexisNexis [31]. This unstructured textual data needs to be
processed into a usable form, or “cleaned,” to filter out headers, remove noise, and
normalize concepts. From this processed data a dynamic network can be generated rep-
resenting associations between people, places, resources, knowledge, tasks, and events.
Using network analysis algorithms, insights can then be gained. For example, analysis
can determine things like the primary organizations and people involved in the relief ef-
fort, how information about food and medical supplies propagated through the network,
and how these evolved over time.

Similar kinds of analyses are routinely carried out in law enforcement (where ana-
lysts use crime reports and statistics to determine drug-related gang activities), health-
care and disease control (where analysts use medical reports from hospitals and phar-
macies to understand disease vectors), and anthropology (where social scientists can
understand belief systems and how they relate to demographics).

Within this broad domain of dynamic network analysis, analysts typically engage in
a process of composing a variety of existing tools to extract networks, analyze them, and
display results. Figure 4 illustrates a typical toolset used for such analyses consisting of
the following: AutoMap for extracting networks from natural language texts, ORA for
analyzing and visualizing networks, and Construct for “what-if” reasoning about the
networks using simulation [48].

Conceptually the computations that analysts create can be viewed as workflows,
where each step in the workflow requires the invocation of some data transformation
step that consumes the data from previous steps and produces results for the next step.
However, traditionally, to achieve this kind of composition analysts would need to un-
derstand the idiosyncracies of each of tool, manually invoke them on data stored in
various file locations using a variety of file naming schemes and data formats, and pre-
serve the results of the analysis in some location that they would have to keep track of,
before invoking another tool to carry out the next step.

More recently coarse-grained tools like AutoMap, ORA, and Construct have been
reengineered to expose a set of services that can be composed within a SOA

166 D. Garlan et al.

Fig. 4. Typical tools for socio-cultural analysis

framework. While the use of services reduces the burden of learning to use specific
tools, and opens up the possibility of novel compositions, unfortunately the use of SOA
requires end users to translate their workflow intuitions into the low-level encodings and
scripting required by SOA orchestration languages such as BPEL. Figure 2 illustrated
the resulting complexity of such encodings.

To apply the proposed end-user architecting approach to this domain, we adapted
the end-user architecting framework of Figure 3 by creating an environment, called
SORASCS (Service ORiented Architecture for Socio-Cultural Systems), for dynamic
network analysis [16,48], and illustrated in Figure 5. Key features of this environment
are as follows:

a. Architecture Representation: Architectures are explicitly represented in a sys-
tem layer, called the socio-cultural analysis layer. This layer stores compositions as
workflows. It also provides a repository of data transformers, which act as compo-
nent building blocks for creation of new workflows.

b. Architecture Style: Compositions are defined using a formal workflow architec-
tural style, which specifies the vocabulary of element types and constraints on com-
positions [12]. Element types include data transformers, data sources, and data
sinks. Constraints of the workflow style prohibit the introduction of cycles, dan-
gling connectors, unattached interfaces, and mismatched communication channels
(where the data produced by one component is incompatible with the data con-
sumed by a successor component).

c. Analysis: The SORASCS workflow style supports a number of analyses including
(a) data privacy analysis, which identifies potential privacy issues in the informa-
tion flows, (b) ordering analysis, which uses machine-learning to evaluate whether
the ordering of transformation steps is consistent with previously constructed work-
flows, and (c) performance analysis, which estimates the amount of time that will
be taken to complete an analysis of a specified data set.

End-User Architecting 167

Wrappers

Tools

Legend

Tools

Services
Layer

Socio-
cultural
analysis
Layer

User-
Interface

Layer

SWIFT

Data
Transformers

SORASCS
Workflows

History Intelligence
Data Services

Registry Orchestration Engine Data
Services

Bridging Component

SORASCS Invocation API

Component Interface

Local Call

Webservice Call

Data Call

Configuration Port

Fig. 5. SORASCS Organization

d. Execution Support: Workflows are compiled into BPEL scripts, which are run
within the Services Layer using standard SOA infrastructure. The compilation pro-
cess attempts to optimize performance by parallelizing workflow execution. Addi-
tionally, there is execution support for long-duration transformations and graceful
error handling — typically not provided by baseline SOA infrastructure. Further, it
is possible for a user to set breakpoints, execute the workflow one transformation
at a time, and preserve intermediate data for later inspection.

e. Services: The SORASCS platform provides services for examining history and
for repeating previously executed activities in the history list. The platform also
provides data services for organizing data into projects and categories, and catego-
rizing the data in ways that are informative to analysts. Access control is provided
to check that users have appropriate rights to use data sets and transformations.

f. Reuse: Workflows can be encapsulated as parameterized components for later reuse
and adaptation. These are stored in a repository of available data transformers,
which may be used as primitives, or “opened” to reveal their substructure and pos-
sibly edited for new usage contexts.

168 D. Garlan et al.

g. User Interface: A web-based graphical interface, called SWiFT [20], is provided
for workflow construction, analysis, and execution. Further, the interface provides
access to the set of available data transformers, organized hierarchically according
to community-based ontologies.

To illustrate how SORASCS works, Figure 6 shows a workflow that analyzes a user’s
emails to generate a social network of his/her contacts. Table 2 lists the computational
elements that are used for this workflow. The Mail Extractor workflow step ac-
quires security credentials to connect to a remote mail server in order to gain access
to the user’s emails. The composition then transmits the user’s email data to Filter
Text, followed by Delete, which in combination remove irrelevant words and sym-
bols. This data is then passed to Generate Meta-Network, which generates a
social-network of the people and concepts referred to in the email text. HotTopics
then creates a report listing important keywords in this social network. The workflow
also uses two data sources that provide the inputs to the text processing steps.

Fig. 6. A DNA Workflow with a Security Flaw

When a security analysis is run on this workflow, SORASCS detects a security prob-
lem. In this case, data security requirements mandate the use of ‘token-based authenti-
cation’ by all services. However the above workflow includes the Mail Extractor
service, which uses ‘password-based authentication’ — indicating a security violation.
The analysis flags this as a problematic workflow by highlighting the inappropriate ser-
vice in red.

Once analysis is complete and the errors have been corrected, the user can compile
the workflow into the BPEL script illustrated in Figure 6, which can then be executed.
Although not illustrated here, as execution proceeds, the user is given feedback through
the SORASCS user interface to show which workflow step is currently being executed.

4.2 Neuroscience

Functional magnetic resonance imaging (fMRI) is a common form of analysis per-
formed by neuroscientists in the brain-imaging domain to understand the behavior of
the human brain [44]. A typical fMRI analysis consists of sequences of computations
over brain image data to support hypotheses or interpretations, such as assessing the

End-User Architecting 169

Table 2. DNA operations used in the workflow of Figure 6

Operation Description

Mail
Extractor

Extracts email from a server to a text file

Filter Text Removes undesirable information from text files
Delete Removes a set of common keywords using a stan-

dard dictionary (such as: a, an, the, etc) from a text
file

Generate
Meta-Network

Creates a dynamic network based on the informa-
tion in the text file

Hot Topics Creates a report about important keywords in a so-
cial network

evolution of cognitive deficits in neurodegenerative diseases [13]. Figure 7 illustrates a
typical image translation process.

Neuroscientists have at their disposal large repositories of brain imaging data, such as
the BIRN Data Repository [4] and the Portuguese Brain Imaging Network Project [54].
Neuroscientists also have access to a large variety of processing tools, which perform
functions such as those listed in Table 3.

Fig. 7. Brain image data viewed after individual pre-processing steps

Professional neuroscientists can easily identify the steps required for processing
brain imaging data, but because of a proliferation of possible tool implementations for
each step and their idiosyncratic parameterization requirements, they find it difficult to
choose and assemble tools to implement these steps. Furthermore, while these experts
can debug a processing script by examining the outputs, novices are typically unable to
do this. As an example of the complexity introduced by tool parameterization, Figure 1
illustrates a part of a typical script in which a single logical processing step requires the
specification of 9 parameters1.

Additional complexity arises because of implicit sequencing constraints. For exam-
ple, a mandatory step in fMRI analysis is to perform pre-processing operations on brain
image data to remove or control some aspects that can affect the overall analysis [53]
(such as aligning one brain volume to another using linear transformations operations

1 In practice, the number of parameters ranges from 5 to 25.

170 D. Garlan et al.

Table 3. Some tools for brain-imaging processing

Operation Description Tool name

Align Alignment of an fMRI sequence based on a refer-
ence volume (i.e. motion correction, direction cor-
rectness)

fslmaths,
fslroi,
mcflirt

Segmentation Segmentation of a brain mask from the fMRI se-
quence

bet2,
fslmaths,
fslstats

Spatial Filtering Compute spatial density estimates for neuroscience
images, and filter the volumes accordingly

fslmaths,
susan

Temporal Filtering Blur the moving parts of images, while leaving the
static parts.

fslmaths

Normalize Translating, rotating, scaling, and may be wrapping
the image to match a standard image template

flirt

Register Align one brain volume to another using linear
transformation operations (such as rotation, trans-
lations, etc.) or non-linear transformations (such as
warping, local distortions, etc.)

flirt, fnirt

like rotation, translation, etc.). While experts may learn these constraints through trial
and error, there are no tools to guide less-expert end users.

There are many possible ways to encode image data and analysis results, and neu-
roscientists must ensure that encodings match between steps. This further complicates
composition because neuroscientists must be aware of these formats and carefully select
compatible steps or manually locate transducers that can bridge mismatches.

flirt ref standard in ${2} out $
{input_in_standard} omat ${input2standard}.mat$

cost corratio dof 12 searchrx 90 90
searchry 90 90 searchrz 90 90 interp
trilinear

hp=‘echo "scale=10;100/${3}" | bc‘
lp=‘echo "scale=10;3/${3}" | bc‘
fslmath ${2} bptf ${lp} 1 mas mask ${6}

fslmath ${2} kernel gauss ${sigma} fmean ${5}

bet2 ${2} ${4} f ${3} n m

Service Implementation

Fig. 8. A problematic neuroscience workflow that misses ‘alignment’ of data before ‘temporal
filtering’

End-User Architecting 171

To address these problems we adapted the end-user architecting framework to this
domain as follows:

a. Architecture Representation: Similar to dynamic network analysis, architectures
are explicitly represented in a system layer that stores compositions as workflows
and provides a repository of processing steps and transducers. The main compo-
nents made available in this prototype were derived from the FSL tool suite (e.g.,
bet2, fslmath, flirt) [14].

b. Architecture Style: Compositions are defined using a formal workflow architec-
tural style, which is similar to the one used for dynamic network analysis.2 The
neuroscience style differs in two respects: (a) it defines computational elements
specific to the neuroscience domain, and (b) it provides additional properties and
domain-specific constraints (such as checking ports for different data encodings and
other content of brain-image data) that allow the correct construction of workflows
within the neuroscience domain.

c. Analysis: Similar to dynamic network analysis, the properties of the style elements
are used for designing various domain-specific analyses for the brain imaging do-
main. An example is data mismatch analysis to support the detection of data mis-
matches in the neuroscience compositions and to suggest repairs that can resolve
these mismatches based on an end user’s quality of service requirements [56].

d. Execution Support: Workflows are compiled into BPEL scripts, which are exe-
cuted on a service-oriented platform, identical to SORASCS, providing the similar
feedback and debugging facilities.

e. Services: Similar to dynamic network analysis, the brain imaging platform pro-
vides services to end users tracking the history of operations performed and access
to brain imaging data sets.

f. Reuse: Like dynamic network analysis, workflows can be encapsulated as param-
eterized components for later reuse and adaptation.

g. User Interface: A web-based graphical interface is provided for workflow con-
struction, analysis, and execution.

Figure 8 illustrates a typical application that analyzes brain image data using some of
the transformation operations listed in Table 3. To the right of the workflow the figure
indicates the invocation and parameter settings that are used to invoke individual tools.

In this example analysis reveals an error in the workflow located in the Temporal
Filtering component and its corresponding interface. The error occurs because be-
fore doing temporal filtering on brain-imaging data, it is necessary to align it. There-
fore any workflow is required to have the Align component before the Temporal
Filtering component. This is an example of a typical semantic problem that cannot
be easily identified from scripts or BPEL-like compositions.

2 In fact, using the formal architectural description language of Acme[37], we have defined
a common root style for both the dynamic network analysis domain and the neuroscience
domain [12].

172 D. Garlan et al.

4.3 Geospatial Analysis

Geospatial analysis tools allow analysts to explore location-based data using graphi-
cal representations such as maps and charts [51]. Examples of such data include data
about infrastructure (e.g., an electrical grid), population distribution (e.g., census data),
or dynamic network data that has location information associated with it (e.g., crime
activities associated with a criminal network derived from police reports). End users in
this field typically want to display information on one or more maps, drill down into
more detail in certain views, and receive updates when information changes. In contrast
to dynamic network analysis and neuroscience analysis, which is largely sequential
and transformational, end users doing geospacial analysis typically explore information
through a set of concurrent tools that exchange dynamically-changing data to update
multiple concurrent views.

The Ozone Widget Framework (OWF) [45] – or just Ozone – is a web platform
for integrating web-based tools in this domain. Web applications are represented as
lightweight visual applications, called widgets, and OWF allows end users to open and
compose a set of widgets through a web “dashboard” in their browser. Users interact
with widgets, which communicate among each other using the OWF framework.

An example of an Ozone dashboard is shown in Figure 9. The right-most window
is the launch menu from which end users can add widgets to their dashboard. There
are four widgets displayed on the dashboard, displaying information of different types,
some in chart form, others (in the background) on maps. These widgets may pass in-
formation between each other to ensure that they are focused on the same map region,
for example, or to display updated information as it becomes available from a database
or data stream. This dashboard and the arrangement of widgets can be shared between
developers by exchanging textual configuration files.

Ozone widgets interact in a publish-subscribe style [8]: widgets can publish events
to channels and subscribe to channels to receive events.3 All widgets that have sub-
scribed to a channel receive data published to that channel by any other widget. Widget
developers who wish to integrate with other developers must agree on the names of
channels to publish to, and the format of the data that is published. To offer additional
control over communication, Ozone also allows end users to restrict potential commu-
nication between widgets by indicating pairs that are allowed to communicate, thereby
implicitly restricting other widgets from participating in those communications.

While end users are free to choose which widgets appear in their dashboard, consid-
erable care must be taken to ensure sensible configurations. In particular, it is important
to make sure that widgets both publish and subscribe to the appropriate channels, and
that the type of data published is consistent with that expected by subscribers.

Unfortunately, today it is difficult to do this because the interconnection topology is
largely implicit. Specifically, to determine the interconnection structure between wid-
gets an end user needs to either examine widget source code, or perform experiments.
This problem is compounded by the use of restriction lines, because they can radically
change the communication topology indicated in the code by prohibiting interactions
that would otherwise be allowed.

3 Events in Ozone are plain-text strings or JSON objects.

End-User Architecting 173

Fig. 9. An Ozone dashboard example from [24]

The existence of complex interconnection rules and behavior lead naturally to the
use of architectural modeling of widget compositions, which could support the end-
user architecting process through automated constraint checking. For example, a widget
topology can be checked to conform to a privacy constraint that widgets containing
private data do not communicate it to third-party untrusted widgets. Another application
is widget topology generation: a user would specify what pairs of widgets should and
should not interact, and a set of topologies would be generated.

Key features of our end-user architecting approach to this domain are:

a. Architecture Representation: Ozone widget configurations are represented as ex-
plicit architectural models, that indicate which widgets are involved in a composi-
tion and the communication topology.

b. Architectural Style: Compositions are defined using a variant of a publish-subscribe
style that takes into account the idea of restrictions. Element types include Widgets,
which have publish and subscribe interfaces, and two types of connectors represent-
ing public channels and private (restricted) channels.

c. Analysis: We are building analyses to provide insight into the widget compositions,
such as which widgets are communicating, whether there are data mismatches over
publish-subscribe channels, how to restrict communication to minimize event mes-
saging, whether information is lost (e.g., because there is no widget subscribed to
information on a particular channel).

174 D. Garlan et al.

d. Reuse: Dashboard setups (i.e., configurations) can already be shared between ana-
lysts as textual configuration files. Embellishing this with architectural representa-
tions allows end users to check whether adaptations to existing compositions retain
prior communication channels, and whether it is feasible to substitute one widget
for another.

e. Services: Similar to dynamic network analysis,we expect to be able to provide
automated data mismatch detection and repair.

f. Execution support: We are building support for debugging in the form of channel
monitoring and execution histories.

g. User interface: An explicit architectural model enhances the current Ozone user
interface by providing information to the end user about which widgets are sharing
information with other widgets, which widgets are restricted from communicating,
and so on.

5 Related Work

Three primary areas of related research have influenced the formulation and direction
of this work: (a) end-user software engineering, (b) software architecture design, and
(c) tools and frameworks for end users.

End-User Software Engineering

End-user software engineering is a research area at the intersection of computer science
and human-computer interaction. It aims to empower users who do not have deep tech-
nical expertise to harness the power of computers in support of tasks within their profes-
sion [28]. Although such users do not have (or want to have) the skills of professional
software developers, often they face many of the same software engineering challenges:
understanding requirements, carrying out design activities, supporting reuse, quality as-
surance, etc. In fact, studies have shown that across many domains, such end users spend
about 40% of their time doing programming-related activities [25], but employ few of
the tools and techniques used by modern software engineering. As as result, creating
computations often leads to systems that are brittle, contain numerous bugs, have poor
performance, cannot be easily reused or shared, and lead to a proliferation of idiosyn-
cratic solutions to similar problems within a domain [5].

To date, most of the research in end-user software engineering has focused on
end-user programming, where novel forms of programming languages have been devel-
oped for enhanced usability within a domain. These include visual programming lan-
guages [39], programming-by-demonstration [10], direct manipulation programming
languages [26], and domain-specific languages [15].

In contrast, this paper focuses on domains in which component composition is the
primary form of end-user system construction, an activity that we have termed end-user
architecting. For such domains, we have argued, it makes sense to explore ways to adapt
the tools and techniques of software architecture, rather than software programming.

End-User Architecting 175

Software Architecture

As we discussed in Section 3, there exists a large body of foundational work on software
architecture that has paved the way for architecture to be used as a model to reason about
a software system. In this paper we build directly on that heritage. Key influences have
been architecture description languages [34], the use of architectural styles [50,37], and
architecture-based analyses [19].

In this paper we have argued that these techniques have direct relevance and can
be effective in solving many of the problems of end-user architecting. However, as we
elaborate in Section 6, there also remain a number of gaps and challenges that require
additional research and adaptation of those techniques to the needs of end users.

Tools and Frameworks for End-User Composition

The primary motivation for this paper is the fact that a large number of domains require
technically-naive users to compose computational elements into novel configurations,
such as workflows and scripts for experiments and analyses. Such users often form large
communities that share a common set of tasks, vocabulary, and computational needs.
These communities include astronomy [11], bioinformatics [30], environmental sci-
ences [57], intelligence analysis [48], neuroscience [42], and scientific computing [49].
In such communities simple turnkey or parameterized implementations are inadequate,
since it is impossible to anticipate all possible configurations — hence the need for tools
that can help users in creating, executing, and sharing compositions.

As a consequence, a number of powerful composition environments have been cre-
ated for particular problem domains. Examples include: Loni-pipeline [46] for brain-
imaging compositions; Galaxy [21] for genomics; and Vistrails [3] for data-exploration
and visualization for scientific applications. Other more generic composition environ-
ments, such as Taverna [43], Kepler [32], WINGS [22], and Ozone [38], can be used
across several domains, but typically only support a specific computation model — such
as workflow or publish-subscribe.

In contrast to these efforts, this paper attempts to lay the foundation for viewing
this class of tools and frameworks as supporting architecture design, and argues that
there are considerable benefits in taking this point of view. Among those benefits are
the ability to formally define and reason about compositional models as instances of
domain-specific architectural styles, create cross-domain analyses, provide systematic
support for reuse and adaptation, support powerful auxiliary services (e.g., mismatch
repair), and support execution, testing, and debugging.

6 Discussion

Having described an approach to end-user architecting and illustrated it through three
case studies, we now consider some of the aspects of that approach in more detail and
outline some of the challenges and open problems.

The centerpiece of an end-user architecting approach is the explicit representation
of a composition of computational elements as an architecture, expressed within an ap-
propriate architectural style for the domain at hand. In the case of dynamic network

176 D. Garlan et al.

analysis and neuroscience we used variations on a dataflow style. In the case of geospa-
tial analysis we used a publish-subscribe style.

But where does that style come from? In our own experience, we have found that
it is often non-trivial to determine this. For example, in the case of dynamic network
analysis we found that in some compositions, users wanted to include interactive tools
as components in their workflows, in addition to data transformers. This led to a hybrid
style that was not purely transformational (as would be the case for a pure dataflow
style), but rather permitted a user to interrupt a data transformation workflow, and inter-
actively explore data using applications running on the desktop, before continuing with
successive data transformation. Formally, we had to introduce into the style a new type
of component — an interactive tool component — and create execution infrastructure
to permit those components to work smoothly with data transformation executing on a
SOA (see [48] for details).

Similarly, we were initially unsure how to model the communication restrictions
present in the Ozone Widget Framework. After exploring a number of options we
eventually decided on a variant of a publish-subscribe style that includes two publish-
subscribe connector types: public and private pub-sub channels.

The problem of defining an appropriate end-user architecting style is further com-
plicated by the fact that end users may have different compositional needs at different
times. For instance, in many analytical domains (including all three domains that we
studied), it is the case that in early stages of development end users want to do ex-
ploratory investigation using highly interactive, manually-controlled tools. But once it
is clear what kinds of computation need to be done, a more streamlined composition
can be constructed that provides better performance and is easier for others to use as a
packaged computation. This suggests that end users may have several modes of com-
position, with different architectural modeling needs.

Thankfully, today there are a number of tools that allow one to experiment with
different styles. For instance, in our own work we used Acme and its supporting Acme
Studio toolset [17]. Acme supports rapid design and experimentation with styles. In
particular, styles can be defined using a declarative language, which can then be directly
compiled into an environment for constructing systems in that style and for checking
conformance with the constraints of the style. Acme Studio also provides an analysis
plug-in framework that allows one to rapidly develop analyses appropriate for a given
style [19].

Moreover, Acme has a rich set of base styles (client-server, publish-subscribe, etc.),
which can be used as a starting point defining domain-specific styles for end-user archi-
tecting communities. For instance, both the dynamic network analysis style and neuro-
science style were developed by specializing a common inherited dataflow style. Fur-
ther, since Acme styles are formally defined they may also be formally analyzed as
specifications in their own right to determine, for example, whether a style has the
properties that one expects, or to detect inconsistencies when multiple styles are com-
bined [27].

Another technique that helps address this problem is construction of support ser-
vices that bridge the gap between different modes of composition. In SORASCS, for
example, we provided tools to transition between interactive exploration and workflow.

End-User Architecting 177

Specifically, an end user can manually and interactively invoke operations on data sets.
SORASCS keeps track of the history of these invocations. Once users are happy with
the results, they can use the history to generate a workflow that captures the overall
transformation that they want to package as a workflow.

A second concern that must be addressed when pursuing an end-user architecting ap-
proach is the issue of managing large component repositories. As we indicated earlier,
for many domains there may be hundreds of possible elements that can be combined
to produce compositions. In SORASCS, for example, there are over 100 data transfor-
mations that are available for dynamic network creation, analysis, visualization, sim-
ulation, and report generation. Thus any effective tool for end-user architecting will
need to provide scalable ways to search repositories. We have experimented with sev-
eral schemes for this. For example, we can use community-based ontologies to organize
services into categories familiar to end users. We can provide a set of standard filters
that can be used to extract components with appropriate properties along several dimen-
sions. We can also use machine learning to recommend possible component selections,
based on prior compositions. However, this remains an open problem, as few software
architecture tools have addressed the problem of rich component repositories.

A third concern is whether we have raised the level of abstraction sufficiently high.
While end-user architecting is a huge improvement over today’s programming-based
systems, it still requires end users to consider carefully how their computations are
composed from the available components. For some users — particularly novice users,
or users who are simply reusing existing compositions — this may still require too
much expertise.

This suggests that in many cases it may make sense to provide another level above
that of architecture representation that more directly supports user tasks. For instance,
there might be simple domain-specific languages that can be used to define some com-
putation task. Or, there may be simplified interfaces that automatically construct the
architectures through various menus or “wizards”. For example, with SORASCS we
demonstrated the ability to do this by connecting it to a front-end tool, called VIBES [1],
that provides a specialized interface for constructing belief network analyses.

More generally, the presence of an intermediate level of architecture simplifies the
problem of providing task assistance to end users, since the gap between a task and
an architecture that supports it is usually much smaller than the gap between a task
and its executable. However, task-level support for end users seems a particularly rich
area for future research, and many questions remain open. For example, is it possible to
learn compositions by watching experts solve certain tasks? Can automated synthesis
be used to achieve a computational goal based on a high-level description of the inputs
and desired outputs?

A fourth concern is the engineering cost for creating end-user architecting environ-
ments. Ideally it should be possible to generate large parts of the N-tiered framework
that we illustrated in Figure 3. This remains an open and active area of research.

Finally, as we noted in Section 2, one of the common elements of end-user architect-
ing communities is that they often involve complex ecosystems. In this paper we have
primarily addressed only one role within these ecosystems – the end-user architect. But

178 D. Garlan et al.

there are also other roles, such as component developers, data set providers, regulatory
bodies, funding agencies, etc.

We have found that when following the end-user architecting approach advocated
in this paper, it is also critical that these other roles be considered. For instance, what
incentives are there for people to contribute reusable components to an end-user archi-
tecting platform? If none are in place, it is unlikely that there will be a sufficiently large
base of parts for end users to assemble. Has the platform been constructed in such a
way that it can be certified for use in deployment environments where there may be
significant privacy or security requirements? If not, the end-user architecting tools may
not be usable in the target context. How can an analyst who has created a composition
get credit for that design if it is used by others? In many communities people are re-
luctant to make their tools available or share their analyses unless they receive some
professional recognition for doing this.

While the approach we have advocated above does not by itself address the entire
ecosystem, it can, however, help address some of the concerns such as those mentioned.
For instance, analytical outputs of some computation can be formally linked to the com-
position that produced those results, providing a way to acknowledge the developers of
the individual components and the composition itself. Additionally, as we have indi-
cated, style-based analyses can guarantee certain properties of a composition — such
as security or privacy. Tools can enforce that such analyses are successfully completed
before permitting execution of a composition. Further, the decoupling of the architec-
ture from the execution infrastructure on which it runs allows one to select an execution
platform that satisfies regulatory concerns.4 That said, the understanding of ecosystems
for end-user architecting communities remains a largely unexplored area, and a rich
subject for future research.

7 Conclusion

We have argued that the computational activities of end users in many domains are
analogous to that of software architects, and that rather than forcing end users to be-
come programmers, we should instead provide architecture-based tools and techniques
to support their tasks.

To make this concrete, we outlined six elements of an approach: (a) explicit represen-
tation of compositions as architectures, (b) use of domain-specific architectural styles
to provide appropriate computational models, (c) the ability to analyze end-user archi-
tectures for properties such as performance, reliability, security, etc., (d) support for
execution and debugging, (e) support for reuse, and (f) possibly additional services that
leverage the architectural representation. We then illustrated how this approach can be
used in three end-user architecting domains: dynamic network analysis, neuroscience,
and geospatial analysis.

We believe that the recognition of the value of architectural modeling for end users
in certain domains is an important first step towards improving the ability for myriad
disciplines to leverage the power of computation without requiring its participants to

4 For instance, there are certain pre-approved infrastructures for the US military. By using these,
one limits the amount of certification that must be done to the parts that are built on top of it.

End-User Architecting 179

become programmers. However, we also acknowledge that there is much more to be
done to make this a reality, and we outlined some of the possible future directions in
Section 6.

Acknowledgments. This work was supported in part by the Office of Naval Research
grant ONR-N000140811223, and the Center for Computational Analysis of Social and
Organizational Systems (CASOS). The views and conclusions contained herein are
those of the authors and should not be interpreted as representing the official policies,
either expressed or implied, of the Office of Naval Research, or the U.S. government.
The authors would like to thank Perla Velasco Elizondo, Jose Maria Fernandes, Diego
Estrada Jimenez, Aparup Banerjee, Laura Gledenning, Mai Nakayama, Nina Patel, and
Hector Rosas for their contributions to various aspects of this work.

References

1. Alion MA&D Operation. VIBES: Visualization of Belief Systems (May 2012),
http://www.maad.com/index.pl/visualization_of_belief_systems

2. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn. Addison
Wesley (2007) ISBN 0-201-19930-0

3. Bavoil, L., Callahan, S.P., Scheidegger, C.E., Vo, H.T., Crossno, P., Silva, C.T., Freire, J.:
Vistrails: Enabling interactive multiple-view visualizations. In: IEEE Visualization, vol. 18
(2005)

4. Biomedical Informatics Research Network. (BIRN),
http://www.birncommunity.org

5. Brandt, J., Guo, P.J., Lewenstein, J., Dontcheva, M., Klemmer, S.R.: Two studies of oppor-
tunistic programming: interleaving web foraging, learning, and writing code. In: CHI, pp.
1589–1598 (2009)

6. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern Oriented Software
Architecture: A System of Patterns. John Wiley & Sons (1996)

7. Carley, K.M.: A dynamic network approach to the assessment of terrorist groups and the
impact of alternative courses of action. In: Visualizing Network Information Meeting, RTO-
MP-IST 2006, France (2006)

8. Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Merson, P., Nord, R.,
Stafford, J.: Documenting Software Architectures: Views and Beyond, 2nd edn. Addison-
Wesley Professional (October 2010)

9. Clements, P., Kazman, R., Klein, M.: Evaluating Software Architectures: Methods and Case
Studies. Addison Wesley (2001)

10. Cypher, A. (ed.): Watch What I Do – Programming by Demonstration. MIT Press, Cambridge
(1993)

11. Deelman, E., Singh, G., Su, M.-H., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Vahi,
K., Bruce Berriman, G., Good, J., Laity, A.C., Jacob, J.C., Katz, D.S.: Pegasus: A frame-
work for mapping complex scientific workflows onto distributed systems. Scientific Pro-
gramming 13(3), 219–237 (2005)

12. Dwivedi, V., Velasco-Elizondo, P., Maria Fernandes, J., Garlan, D., Schmerl, B.: An Archi-
tectural Approach to End User Orchestrations. In: Crnkovic, I., Gruhn, V., Book, M. (eds.)
ECSA 2011. LNCS, vol. 6903, pp. 370–378. Springer, Heidelberg (2011)

13. Eidelberg, D.: Metabolic brain networks in neurodegenerative disorders: A functional imag-
ing approach. Trends Neurosci. 32, 548–557 (2009)

http://www.maad.com/index.pl/visualization_of_belief_systems
http://www.birncommunity.org

180 D. Garlan et al.

14. FMRIB Software Library (fsl), http://www.fmrib.ox.ac.uk/fsl/
15. Fowler, M.J.: Domain-Specific Languages. Addison-Wesley (2011)
16. Garlan, D., Carley, K.M., Schmerl, B., Bigrigg, M., Celiku, O.: Using service-oriented ar-

chitectures for socio-cultural analysis. In: Proceedings of the 21st International Conference
on Software Engineering and Knowledge Engineering (SEKE 2009), Boston, USA, July 1-3
(2009)

17. Garlan, D., Monroe, R.T., Wile, D.: Acme: Architectural description of component-based
systems. In: Leavens, G.T., Sitaraman, M. (eds.) Foundations of Component-Based Systems,
p. 47. Cambridge University Press (2000)

18. Garlan, D., Reinholtz, W.K., Schmerl, B., Sherman, N., Tseng, T.: Bridging the gap between
systems design and space systems software. In: Proceedings of the 29th Annual IEEE/NASA
Software Engineering Workshop (SEW-29), Greenbelt, MD, April 6-7 (2005)

19. Garlan, D., Schmerl, B.: Architecture-driven modelling and analysis. In: Cant, T. (ed.) Pro-
ceedings of the 11th Australian Workshop on Safety Related Programmable Systems (SCS
2006), Melbourne, Australia. Conferences in Research and Practice in Information Technol-
ogy, vol. 69 (2006)

20. Garlan, D., Schmerl, B., Dwivedi, V., Banerjee, A., Glendenning, L., Nakayama, M., Pa-
tel, N.: Swift: A tool for constructing workflows for dynamic network analysis (2011),
http://acme.able.cs.cmu.edu/pubs/show.php?id=333

21. Giardine, B., Riemer, C., Hardison, R.C., Burhans, R., Elnitski, L., Shah, P., Zhang, Y.,
Blankenberg, D., Albert, I., Taylor, J., Miller, W., Kent, W.J., Nekrutenko, A.: Galaxy: a plat-
form for interactive large-scale genome analysis. Genome Res. 15(10), 1451–1455 (2005)

22. Gil, Y., Ratnakar, V., Deelman, E., Mehta, G., Kim, J.: Wings for Pegasus: Creating large-
scale scientific applications using semantic representations of computational workflows. In:
AAAI, pp. 1767–1774 (2007)

23. Goodell, H.: End-user computing. In: CHI 1997 Extended Abstracts on Human Factors in
Computing Systems: Looking to the Future, CHI EA 1997, pp. 132–132. ACM, New York
(1997)

24. Hellar, D.B., Vega, L.C.: The Ozone Widget Framework: towards modularity for C2 human
interfaces. In: Proceedings of SPIE Conference on Defense Transformation and Net-Centric
Systems, Baltimore, Maryland (2012)

25. Howison, J., Herbsleb, J.D.: Scientific software production: incentives and collaboration. In:
CSCW, pp. 513–522 (2011)

26. Hutchins, E.L., Hollan, J.D., Norman, D.A.: Direct manipulation interfaces. Human Com-
puter Interaction 1(4), 311–338 (1985)

27. Kim, J.S., Garlan, D.: Analyzing architectural styles. Journal of Software and Systems 83(7),
1216–1235 (2010)

28. Ko, A.J., Abraham, R., Beckwith, L., Blackwell, A.F., Burnett, M.M., Erwig, M., Scaffidi, C.,
Lawrance, J., Lieberman, H., Myers, B.A., Rosson, M.B., Rothermel, G., Shaw, M., Wieden-
beck, S.: The state of the art in end-user software engineering. ACM Comput. Surv. 43(3),
21 (2011)

29. Lee, C., Nordstedt, D., Helal, S.: Enabling smart spaces with osgi. IEEE Pervasive Comput-
ing 2, 89–94 (2003)

30. Letondal, C.: Participatory programming: Developing programmable bioinformatics tools
for end-users. In: Lieberman, H., Paterno, F., Wulf, V. (eds.) End-User Development, pp.
207–242 (2005)

31. LexisNexis, http://www.lexisnexis.net
32. Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M.B., Lee, E.A., Tao,

J., Zhao, Y.: Scientific workflow management and the Kepler system. Concurrency and Com-
putation: Practice and Experience 18(10), 1039–1065 (2006)

http://www.fmrib.ox.ac.uk/fsl/
http://acme.able.cs.cmu.edu/pubs/show.php?id=333
http://www.lexisnexis.net

End-User Architecting 181

33. McConahy, A.L., Herbsleb, J.D.: Platform design strategies: Contrasting case studies of two
audio production systems. In: FutureCSD Workshop at CSCW (2011)

34. Medvidovic, N., Taylor, R.N.: A framework for classifying and comparing architecture de-
scription languages. In: ESEC / SIGSOFT FSE, pp. 60–76 (1997)

35. Monroe, R.T.: Rapid Develpomentof Custom Software Design Environments. PhD thesis,
Carnegie Mellon University, School of Computer Science (July 1999)

36. Monroe, R.T., Garlan, D.: Style-based reuse for software architectures. In: Proceedings of
the Fourth International Conference on Software Reuse (April 1996)

37. Monroe, R.T., Kompanek, A., Melton, R.E., Garlan, D.: Architectural styles, design patterns,
and objects. IEEE Software 14(1), 43–52 (1997)

38. Moore, D.M., Crowe, P., Cloutier, R.: Driving major change: The balance between methods
and people. Software Technology Support Center Hill AFB UT (2011)

39. Myers, B.A.: Taxonomies of visual programming and program visualization. J. Vis. Lang.
Comput. 1(1), 97–123 (1990)

40. myExperiment, http://www.myexperiment.org/
41. Nardi, B.A.: A small matter of programming: perspectives on end user computing. MIT Press

(1993)
42. neuGRID CNRS. N4u - neugrid for you, http://neugrid4you.eu
43. Oinn, T.M., Mark Greenwood, R., Addis, M., Nedim Alpdemir, M., Ferris, J., Glover, K.,

Goble, C.A., Goderis, A., Hull, D., Marvin, D., Li, P., Lord, P.W., Pocock, M.R., Senger, M.,
Stevens, R., Wipat, A., Wroe, C.: Taverna: lessons in creating a workflow environment for
the life sciences. Concurrency and Computation: Practice and Experience 18(10), 1067–1100
(2006)

44. Pekar, J.J.: A brief introduction to functional MRI. IEEE Engineering in Medicine and Biol-
ogy Magazine 25(2), 24–26 (2006)

45. Potomac Fusion. Ozone/Synapse download portal (2012),
http://widget.potomacfusion.com/main/home

46. Rex, D.E., Ma, J.Q., Toga, A.W.: The LONI Pipeline Processing Environment. Neuroim-
age 19, 1033–1048 (2003)

47. Schmerl, B., Aldrich, J., Garlan, D., Kazman, R., Yan, H.: Discovering architectures from
running systems. IEEE Transactions on Software Engineering 32(7) (July 2006); also avail-
able from IEEE. Appendix A, Appendix B

48. Schmerl, B.R., Garlan, D., Dwivedi, V., Bigrigg, M.W., Carley, K.M.: SORASCS: a case
study in SOA-based platform design for socio-cultural analysis

49. Segal, J.: Some problems of professional end user developers. In: VL/HCC, pp. 111–118
(2007)

50. Shaw, M., Garlan, D.: Software architecture - perspectives on an emerging discipline. Pren-
tice Hall (1996)

51. de Smith, M.J., Goodchild, M.F., Longley, P.A.: Geospatial Analysis: A Comprehensive
Guide to Principles, Techniques and Software Tools, 2nd edn. Troubador Publishing Ltd.
(December 2007)

52. Spitznagel, B., Garlan, D.: A compositional formalization of connector wrappers. In: The
2003 International Conference on Software Engineering, ICSE 2003 (2003)

53. Strother, S.C.: Evaluating fMRI preprocessing pipelines. IEEE Engineering in Medicine and
Biology Magazine 25(2), 27–41 (2006)

54. The Portuguese Brain Imaging Network Grid - IEETA. (BING),
http://www.brainimaging.pt

55. The University of Manchester and the European Bioinformatics Institute (EMBL-EBI). Bio-
Catalogue. The Life Science Web Services Registry,
http://www.biocatalogue.org/

http://www.myexperiment.org/
http://neugrid4you.eu
http://widget.potomacfusion.com/main/home
http://www.brainimaging.pt
http://www.biocatalogue.org/

182 D. Garlan et al.

56. Elizondo, P.V., Dwivedi, V., Garlan, D., Schmerl, B., Fernandes, J.M.: Resolving data mis-
matches in end-user compositions (submitted for publication, 2012)

57. Villa, F., Athanasiadis, I.N., Rizzoli, A.E.: Modelling with knowledge: A review of emerg-
ing semantic approaches to environmental modelling. Environmental Modelling and Soft-
ware 24(5), 577–587 (2009)

58. Yan, H., Garlan, D., Schmerl, B., Aldrich, J., Kazman, R.: DiscoTect: A system for discover-
ing architectures from running systems. In: Proceedings of the 26th International Conference
on Software Engineering, Edinburgh, Scotland, May 23-28 (2004)

59. Zhao, Y., Gallup, S.P., MacKinnon, D.J.: Lexical link analysis for the haiti earthquake relief
operation using open data sources. In: International Command and Control, Research and
Technology Symposium, Québec City, Canada, June 21-23 (2011)

Evolving Delta-Oriented Software

Product Line Architectures

Arne Haber1, Holger Rendel1,
Bernhard Rumpe1, and Ina Schaefer2

1 Software Engineering, RWTH Aachen University, Germany
2 Institute for Software Systems Engineering, TU Braunschweig, Germany

Abstract. Diversity is prevalent in modern software systems. Several
system variants exist at the same time in order to adapt to changing
user requirements. Additionally, software systems evolve over time in
order to adjust to unanticipated changes in their application environ-
ment. In modern software development, software architecture modeling
is an important means to deal with system complexity by architectural
decomposition. This leads to the need of architectural description lan-
guages that can represent spatial and temporal variability. In this paper,
we present delta modeling of software architectures as a uniform model-
ing formalism for architectural variability in space and in time. In order
to avoid degeneration of the product line model under system evolution,
we present refactoring techniques to maintain and improve the quality
of the variability model. Using a running example from the automotive
domain, we evaluate our approach by carrying out a case study that
compares delta modeling with annotative variability modeling.

1 Introduction

Modern software systems simultaneously exist in many different variants in or-
der to adapt to changing user requirements or application contexts. Software
product line engineering [32] aims at developing a family of systems by managed
reuse in order to decrease time to market and to improve quality. In addition
to this variability in space, software systems are extremely long-lived and have
to evolve over time in order to maintain, improve or update their functionality.
This unanticipated variability in time [26] changes the system design, structure,
and behavior in an unexpected manner, e.g., for adapting it to new customer
requirements or technological conditions. Evolution of software systems needs to
be managed, and gets particularly difficult if a family of systems is considered.

The design of the software architecture plays an essential role in software
development [27,25]. The architecture allows decomposing a complex system
into smaller hierarchically structured components. These can be developed in-
dependently. The change frequency of architectural descriptions is lower than
the changes on the implementation level, where often bugs etc. need to be fixed.
However, changes in the architecture have a wide range impact on the overall

R. Calinescu and D. Garlan (Eds.): Monterey Workshop 2012, LNCS 7539, pp. 183–208, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

184 A. Haber et al.

system such that architectural changes have to be planned, modeled and ana-
lyzed to ensure that the system quality is maintained despite of the changes.
This is particularly complex for software product line architectures.

Most current ADLs [25] do not support the explicit representation of archi-
tectural change. The predominantly used approaches for architectural variability
modeling use annotations to assign model elements to different variants. These
annotative variability modeling approaches mostly use a so called 150%-percent
model of the system architecture incorporating all possible variability in which
specific elements are annotated to belong to specific product variants. The mono-
lithic 150%-percent architecture description gets easily very complex for large
product families and is hard to manage in case of evolutionary changes. Intro-
ducing a new variant will most likely require changes of the whole model, as
modular development and implementation of variable parts is not possible. To
counter this problem, ADLs should support variability modeling by representing
changes to the architecture in space and in time as explicit first-class entities.
The variability description in the ADL should be modular to facilitate trac-
ing changes to particular functions, components, or features. Furthermore, the
description should be readable, easy to comprehend, to evolve, and to maintain.

In this paper, we present Δ-MontiArc, an ADL with native support for archi-
tectural variability modeling in space and in time that allows defining variants
of interactive distributed and Cyber-Physical systems in a modular manner. Δ-
MontiArc is based on the concept of delta modeling software product lines [6]. A
product line of architectures is described by a core architecture and a set of ar-
chitectural deltas that encapsulate changes to the core architecture. In order to
obtain a particular product variant, a set of suitable deltas defined in a product
configuration is applied to the core. As variable parts of a model, e.g. functional-
ity for new product variants, are encapsulated in deltas, this approach overcomes
the aforementioned problems of annotative variability modeling. As complexity
of models is decreased and modular modeling of variability is possible, delta
models are easier to comprehend and to evolve. In previous work [16,14], Δ-
MontiArc was used to represent spatial variability only. In this paper, we extend
it to capture temporal variability with the same linguistic means. If new prod-
ucts should be included in a product family, new deltas can easily be added to a
delta model to generate new variants. If a product variant is no longer supported,
its product configuration and redundant deltas may be removed. Modifications
to certain product functionalities, e.g., for bug fixing, can be realized by replac-
ing a particular delta by another version. In order to avoid degeneration of a
delta model after some evolution steps, it can be refactored to improve its struc-
ture without changing the generated products. The evolution of architectures
as considered in this paper reflects the evolution of the features contained in a
software product line. However, the presented approach solely works on the level
of the product line artifacts modeling solution space variability [8], in contrast
to problem space variability that is typically captured with product features on
the requirements level.

Evolving Delta-Oriented Software Product Line Architectures 185

In order to evaluate Δ-MontiArc, we carried out a case study to gain experi-
ence in spatial and temporal evolution of delta oriented product lines. This case
study has been also modeled using a common annotative variability modeling
approach to compare it with our approach. The case study describes a braking
controller system which exists in variants for cars and motorcycles and allows
the inclusion of several assistance system, like an anti-lock braking system or
an electronic stability control. By considering several evolution and refactoring
scenarios, we demonstrate that delta modeling is particularly well suited for
representing architectural variability and architectural evolution.

The paper is structured as follows. Sect. 2 introduces Δ-MontiArc for repre-
senting spatial architectural variability. Sect. 3 demonstrates how Δ-MontiArc
captures temporal architectural variability. Sect. 4 shows three refactoring strate-
gies for delta models. Sect. 5 contains a qualitative and quantitative comparison
of Δ-MontiArc and an annotative variability modeling approach based on the
preformed case study. Related work is discussed in Sect 6. Sect. 7 concludes the
paper and outlines future work.

2 Spatial Variability

Delta modeling [6,36] is a language-independent approach for modular modeling
of variability in the solution space [8] and can be applied to different mod-
eling and programing languages like, e.g., class diagrams [35] or Java [34,36].
In [16,14], the concept of delta modeling is applied to software architectures in
order to obtain an ADL with native support for architectural variability in space.
A Δ-MontiArc product line is specified by a designated core architecture that
represents the architecture of a valid product variant, and a set of deltas that add,
remove, or modify architectural elements to derive further product variants. An
architectural variant is definied by a variant configuration that contains a set of
application-specific deltas that are used in order to generate the variant. There-
fore, the operations of these deltas are stepwise applied in a calculated order
to transform the core to the architectural variant. After a variant is generated,
its correctness is checked using mechanisms of the base language. To with an
application order constraint (AOC) that determines which deltas must or must
not be applied before. If, for example, a delta A modifies a model element, that
has been introduced by another delta B and is not part of the core, the AOC of
A has to claim that it must be applied after B. Hence, the application order of
the deltas contained in a variant configuration is calculated by interpreting the
attached AOCs. If more then one application order is valid for a product variant,
all application orders are expected to generate the same product, not regarding
the order of the model elements in the resulting variant. This is the case, if for
example two or more deltas of a configuration do not have an attached AOC
and their position in the application order may be arbitrary switched without
influencing the generated product. However, it is yet unchecked, if several valid
application orders really result in the sematically same product. Therefore the
correctness of AOCs is assumed. According to [34] it is also possible to define

186 A. Haber et al.

product lines based on more than one valid core architecture. Then, however,
the core model that is to be modified must be explicitly referenced in product
configurations.

1 component BrakingSystem {
2 autoconnect port;
3

4 port
5 in BrakeCommand brake,
6 out BrakePressure wheelpressure1,
7 out BrakePressure wheelpressure2,
8 out BrakePressure wheelpressure3,
9 out BrakePressure wheelpressure4;

10

11 component PressureCalculator brakefunction;
12 }

Listing 1. Core architecture of BrakingSystem

Δ-MontiArc is based on the textual architectural description language (ADL)
MontiArc [18] that allows modeling and simulation of interactive distributed and
Cyber-Physical systems. Therefore it provides modeling elements to describe
component type definitions that contain an interface description, an internal
structure given by subcomponents, and the communication between subcompo-
nents and the components interface. An example of a MontiArc architecture is
given in Lst. 1. It depicts the definition of component type BrakingSystem
that calculates the brake pressure for all four wheels of a car. MontiArc compo-
nents communicate with their environment using their interface. The interface
definition of component BrakingSystem is given by an incoming port brake
with type BrakeCommand (l. 5) and four outgoing ports to emit the calculated
brake pressure for each wheel (ll. 6–9). The BrakingSystem component con-
tains a subcomponent brakefunction that is an instance of component type
PressureCalculator (l. 11). The connections between the outer ports and
the interface of the brakefunction subcomponent are created automatically
using MontiArc’s autoconnect statement (l. 2). Parametrized with keyword
port, it automatically creates connections between all yet unconnected type-
compatible ports with the same name.

Δ-MontiArc extends the MontiArc ADL with the concepts of delta model-
ing. Therefore it defines a language that allows modifications of component type
definitions by adding or removing model elements like ports, subcomponents, or
connections. Lst. 2 shows delta DTractionControl specified in Δ-MontiArc
that adds a traction control functionality to component BrakingSystem by
modifying the BrakingSystem component (c.f. ll. 3 ff). The delta adds an ad-
ditional port accel to receive accelerate commands (l. 4). This port is implicitly
connected to the added subcomponent stabilizer (l. 5). The aforementioned
connections between the interface of component BrakingSystem and its sub-
component brakefunction are now explicitly redirected to the newly added

Evolving Delta-Oriented Software Product Line Architectures 187

1 delta DTractionControl after
2 DAntiLockBrakingSystem && !DTwoWheel {
3 modify component BrakingSystem {
4 add port in AccelerateCommand accel;
5 add component TC stabilizer;
6

7 connect brakefunction.wheelpressure1 ->
8 stabilizer.fromabs1;
9 connect brakefunction.wheelpressure2 ->

10 stabilizer.fromabs2;
11 connect brakefunction.wheelpressure3 ->
12 stabilizer.fromabs3;
13 connect brakefunction.wheelpressure4 ->
14 stabilizer.fromabs4;
15 }
16 }

Listing 2. Delta adding traction control

subcomponent that itself is implicitly connected to the outer interface (c.f. ll. 7–
14). In the example, the AOC given by keyword after in ll. 1 f defines that delta
DTractionControl has to be applied after delta DAntiLockBrakingSys-
tem (see Lst. 3) and not before delta DTwoWheel. To efficiently check the appli-
cability of deltas and the consistency of the application order constraints during
product generation, a family-based analysis of delta-oriented product lines is
presented in [15].

Concrete product variants are defined in Δ-MontiArc by a product configu-
ration that specifies which deltas have to be applied to the core architecture to
generate a product variant. Lst. 4 shows product configuration CarWithTC for
a braking system variant that contains an anti-lock braking system (added by
delta DAntiLockBrakingSystem, see Lst. 3) and a traction control (added
by delta DTractionControl, see Lst. 2) beside the basic brake functionality
introduced by the core architecture which is depicted in Lst. 1.

1 delta DAntiLockBrakingSystem {
2 modify component BrakingSystem {
3 add port in WheelSensor wheelspeed1,
4 in WheelSensor wheelspeed2,
5 in WheelSensor wheelspeed3,
6 in WheelSensor wheelspeed4;
7 replace component brakefunction
8 with component ABS brakefunction;
9 }

10 }

Listing 3. Delta adding anti-lock braking system

188 A. Haber et al.

1 deltaconfig CarWithTC {
2 DAntiLockBrakingSystem,
3 DTractionControl
4 }

Listing 4. Product configuration CarWithTC

Fig. 5. Initial product line structure

As running example throughout this paper, we consider a product line of
braking system controllers. In Fig. 5, the delta model of this controller product
line is shown. The core architecture BrakingSystem (see Lst. 1) is depicted
at the very top of the figure. Below, we see all deltas denoted by ellipses. The
solid arrows show the possible application orders of the deltas according to the
application order constraints in the after clauses. The supported product vari-
ants are shown in dashed boxes. The product line contains a braking system
for cars without an anti-lock braking system (CarWithoutABS) as core archi-
tecture. By applying the delta DAntiLockBrakingSystem (short: DABS),
a product variant CarWithABS can be obtained. Using the delta DTwoWheel
(short: DTW), a braking system for motorbikes with only two wheels is generated
(BikeWithoutABS). Using the delta DABS, a braking system for motorbikes
with ABS is derived (BikeWithABS). For cars, a traction control can be added

Evolving Delta-Oriented Software Product Line Architectures 189

by delta DTractionControl (short: DTC), and afterwards an electronic sta-
bility control can be added by delta DElectronicStabilityControl (short:
DESC). Finally, the architecture can be tailored to work with an adaptive cruise
control system by applying delta DAdaptiveCruiseControl (short: DACC)
or alternatively by a four wheel drive using delta DFourWheelDrive (short:
D4WD). The initial product line of braking systems realized in Δ-MontiArc
supports eight product variants with six deltas.

3 Temporal Variability

The difference between temporal and spatial variability is that spatial variability
is anticipated and, thus, can be planned ahead while temporal variability is
unanticipated and has to be integrated into the product line after its initial
design. However, variability in time can be presented by the same means as
variability in space using the concepts of delta modeling [6].

The evolution of a product line can be completely classified into three dif-
ferent scenarios: first, new product variants are added; second, product variants
are removed; third, existing product variants are modified. In the following, we
illustrate how these three evolution scenarios can be represented with Δ-Mon-
tiArc without re-engineering the delta models from scratch, but by evolving it
via modular and local changes to deltas and product configurations.

Add Variants. A delta model in Δ-MontiArc consists of a designated core archi-
tecture, a set of architectural deltas and the set of supported product configura-
tions which are selected subsets of the available deltas. When new architectural
variants are added, this amounts to adding the respective deltas and product
configurations that are required to generate the new product variants which are
not yet contained in the delta model.

In our running example, we can add a new product variant to the brak-
ing system controller product line that includes support for a reduction gear.
This variant is only for driving offroad and, thus, requires that four wheel driv-
ing is included in the product as well. To capture this change, a new delta
DReductionGear (short: DRG) shown in Lst. 6 is added to the delta model.
A new configuration CarWithRG (see Lst. 7) defines the new product variant.

Remove Variants. When product variants are removed, since they are now longer
supported or maintained, the respective product configurations can simply be
removed from the set of product configurations. If deltas are no longer required
for product generation, because all product configurations using them have been
removed, also the redundant deltas can be removed. The removal of deltas can
require a modification of application order constraints of other remaining deltas.
This can only be the case, if the removed delta is mentioned in the after clause
as a conflicting delta that may not be applied together with this delta. Hence,
constraints on removed deltas can be deleted without changing the remaining
product variants.

190 A. Haber et al.

1 delta DReductionGear after DFourWheelDrive {
2 modify component BrakingSystem {
3 add component BrakeAmplifier;
4 connect stabilizer.wheelpressure1
5 -> BrakeAmplifier.wheelpressurefromesp1;
6 connect stabilizer.wheelpressure2
7 -> BrakeAmplifier.wheelpressurefromesp2;
8 connect stabilizer.wheelpressure3
9 -> BrakeAmplifier.wheelpressurefromesp3;

10 connect stabilizer.wheelpressure4
11 -> BrakeAmplifier.wheelpressurefromesp4;
12 }
13 }

Listing 6. Delta for adding reduction gear

1 deltaconfig CarWithRG {
2 DAntiLockBrakingSystem,
3 DTractionControl,
4 DElectronicStabilityControl,
5 DFourWheelDrive,
6 DReductionGear
7 }

Listing 7. Configuration for product variant with reduction gear

In our running example, assume that the variants CarWithoutABS and
CarWithTC should not be supported anymore, since all cars should now contain
either ABS or ESC right away. These configurations can be removed from the
product line without changing any delta, since all deltas are still required to gen-
erate the remaining variants. Now we assume, that the product portfolio should
be consolidated such that only control units for cars are produced and motor-
bikes are not supported anymore. Hence, the variants BikeWithoutABS and
BikeWithABS are removed and also delta DTwoWheel is removed since it is no
longer required for generating a product variant. In delta DTractionControl,
the negated reference to delta DTwoWheel is also deleted.

Modify Variants. The modification of existing product variants requires to
change the implementation of one or more existing deltas. A reason for a mod-
ification of an existing delta may, for instance, be a bug fix or an improvement
of performance by new component realizations.

In our running example, assume that the existing delta DAdaptiveCruise-
Control (see Lst. 8) has to be modified by adding a new input port for a
rainsensor which is necessary for its correct functioning. The new version of delta
DAdaptiveCruiseControl is depicted in Lst. 9. As only the implementation
inside this delta is changed, the general structure of the product line does not

Evolving Delta-Oriented Software Product Line Architectures 191

change. From now on, the new delta is used when generating product variants,
such that the new corrected functionality of the adaptive cruise control system
is contained in any newly generated product variant. Fig. 10 shows the structure
of the product line after applying all three scenarios. Type safety of all deltas
of a product line may be assured using a family-based analysis depending on
MontiArcs checking facilities as described in [15] or by designing a constraint-
based type system similar to the one presented in [33].

1 delta DAdaptiveCruiseControl after
2 DElectronicStabilityControl && !DFourWheelDrive {
3 modify component BrakingSystem {
4 add port in AccelerateCommand accelfromacc,
5 in BrakeCommand brakefromacc;
6 add component SignalHandler;
7 connect accel -> SignalHandler.accelfromdriver;
8 connect brake -> SignalHandler.brakefromdriver;
9 }

10 }

Listing 8. Original delta for adding adaptive cruise control

1 delta DAdaptiveCruiseControl after
2 DElectronicStabilityControl && !DFourWheelDrive {
3 modify component BrakingSystem {
4 add port in AccelerateCommand accelfromacc,
5 in BrakeCommand brakefromacc,
6 in RainIntensity rainsensor;
7 add component SignalHandler;
8 connect accel -> SignalHandler.accelfromdriver;
9 connect brake -> SignalHandler.brakefromdriver;

10 }
11 }

Listing 9. Modified delta for adaptive cruise control system

4 Refactoring Delta-oriented Product Lines

As we can observe in the previous section, evolving a delta-oriented product
line includes the addition and removal of deltas and the addition and removal
of product configurations. This may lead to a degeneration of the product line
structure, e.g., deltas are factually separated, but always applied together, or
sequences of deltas are always applied to the core without generating individ-
ual products. While this is not a problem for the generated product variants
themselves, it unnecessarily complicates the product line structure and hinders
further evolution and maintenance.

192 A. Haber et al.

Fig. 10. Brake controller product line structure after evolution

Refactoring [11] is a well-known technique on the programming language level
to improve the structure of code without changing its semantical meaning. The
same idea can also be applied to product lines realized with Δ-MontiArc. Pro-
duct line refactorings aim at reducing the overall complexity of the product line
structure and at the same time increasing its comprehensibility. This is achieved
by carefully changing the structure of a product line, but preserving the set of
products that can be generated. Changes of the structure are accomplished by
modifications of

1. the set of available deltas,
2. the content of existing deltas,
3. the application order constraints attached to deltas, and
4. the set of variant configurations.

In this section, we propose exemplary refactoring strategies to maintain the
quality of the product line structure after product line evolution. In particular,
we consider the Compose-Deltas-Refactoring where deltas that are always ap-
plied together are merged, the Merge-With-Core-Refactoring where deltas are
integrated in the core to form a new core and Merge-With-Core-Refactoring
With Inverse Deltas that extends the possibilities of the former refactoring.

Evolving Delta-Oriented Software Product Line Architectures 193

This set of refactorings is not complete. Depending on the structure of a product
line, more refactoring strategies might be possible.

Compose Deltas-Refactoring. The Compose-Deltas-Refactoring merges the con-
tent of a sequence of deltas and forms a new delta that contains the combined
modifications of the delta sequence.

Situation: The precondition for this refactoring is that we have a sequence of
deltas that are always applied together and where the intermediate products
after applying any prefix of the sequence do not correspond to a supported
product variant.

Mechanics: The Compose Deltas-Refactoring is carried out as follows:

1. Identify a sequence of deltas D1, ..., Dn satisfying the above conditions.
2. Construct a new delta Dn containing the modifications of the delta sequence:

(a) Merge the modification operations of the composed deltas into Dn by
putting all delta operations in sequence, starting from D1 and ending
with Dn. Delta operations targeting the same architectural element can
be composed to a single operation. For example, if a component is first
added, then removed in a subsequent delta, and finally added again, the
three operations can be replaced by a single add operation.

(b) Compute the new application order constraint AOCn of Dn which is the
union of the application order constraints of the merged deltas
AOC1, . . . , AOCn where references to the deltas D1, ..., Dn are removed.

3. Adjust all supported product configurations that include the delta sequence
D1, ..., Dn to only include Dn.

4. Remove D1, ..., Dn−1 from the delta model, since they are no longer used to
generate any product variant.

Effect: By the Compose-Deltas-Refactoring, product generation is simplified as
only one delta instead of a sequence of deltas has to be applied. Additionally, the
complexity of the product line decreases since deltas that are no longer required
after the refactoring can be removed.

1 delta DElectronicStabilityControl after
2 DTractionControl && !DFourWheelDrive {
3 modify component BrakingSystem {
4 add port in LateralAcceleration lateralaccel;
5 replace component stabilizer with component ESC

stabilizer;
6 }
7 }

Listing 11. Delta for adding an electronic stability control system

Example: In our running example, the deltas DTractionControl (set Lst. 2)
and DElectronicStabilityControl (see Lst. 11) are always used together

194 A. Haber et al.

1 delta DElectronicStabilityControl after
2 DAntiLockBrakingSystem && !DFourWheelDrive{
3 modify component BrakingSystem {
4 add port in AccelerateCommand accel,
5 in LateralAcceleration lateralaccel;
6 add component ESC stabilizer;
7

8 connect brakefunction.wheelpressure1 ->
9 stabilizer.fromabs1;

10 connect brakefunction.wheelpressure2 ->
11 stabilizer.fromabs2;
12 connect brakefunction.wheelpressure3 ->
13 stabilizer.fromabs3;
14 connect brakefunction.wheelpressure4 ->
15 stabilizer.fromabs4;
16 }
17 }

Listing 12. Delta composed from DTractionControl and
DElectronicStabilityControl

and the intermediate product after applying delta DTractionControl is not
a supported product variant (see Fig. 10). To simplify the structure, these two
deltas may be composed to a single delta which is again called DElectro-
nicStabilityControl and shown in Lst. 12. It contains the delta opera-
tions of the two original deltas for adding the ports accel and lateralaccel
and the respective connections. For the component stabilizer, there is only
one delta operation adding the version of the component introduced by delta
DElectronicStabilityControl. Delta DTractionControl adds sub-
component stabilizer to BrakingSystem (l. 5) that is replaced subse-
quently in the original delta DElectronicStabilityControl by another
subcomponent (l. 4). Hence, in the composed delta it suffices to add the new
version of the component, such that redundant delta operations can be removed.
The new application order constraint of the delta DElectronicStability-
Control is (DAntiLockBrakingSystem && !DFourWheelDrive), since a refer-
ence to delta DTractionControl is no longer required. Afterwards, all product
configurations containing the delta DTractionControl are adapted to only
include the new version of delta DElectronicStabilityControl and delta
DTractionControl is removed.

Merge-With-Core-Refactoring. The Merge-With-Core-Refactoring merges the
core of a product line with the content of deltas to create a new core model.

Situation: After product line evolution, it can happen that the core itself is not
a valid product anymore. All product variant configurations contain the same
subset of deltas that transform the outdated core to a valid product variant.

Mechanics: The Merge-With-Core-Refactoring is carried out as follows:

Evolving Delta-Oriented Software Product Line Architectures 195

1. If the core itself is no supported product variant, identify a delta sequence
D1, ..., Dn that is directly applied to the core such that the intermediate prod-
ucts are also no supported product variants.

2. Apply the deltas D1, ..., Dn to the core to create a new core for the product
line.

3. Adjust supported product variants by removing the deltas D1, ..., Dn.
4. Adjust application conditions of remaining deltas by removing the deltas

D1, ..., Dn.
5. Remove the deltas D1, ..., Dn that are now integrated into the core from the

product line.

Effect: After applying this refactoring, the core is valid product again. By re-
ducing the amount of available deltas, comprehensibility of the product line has
been increased while decreasing overall complexity.

1 component BrakingSystem {
2 autoconnect port;
3

4 port
5 in BrakeCommand brake,
6 out BrakePressure wheelpressure1,
7 out BrakePressure wheelpressure2,
8 out BrakePressure wheelpressure3,
9 out BrakePressure wheelpressure4,

10 in WheelSensor wheelspeed1,
11 in WheelSensor wheelspeed2,
12 in WheelSensor wheelspeed3,
13 in WheelSensor wheelspeed4;
14

15 component ABS brakefunction;
16 }

Listing 13. Core containing delta DAntiLockBrakingSystem

Example: In our case example (see Fig. 10), the core does not represent a
supported product variant any more. Delta DAntiLockBrakingSystem has
to be applied to the core before we obtain the product variant CarWithABS.
Hence, the delta DAntiLockBrakingSystem can be integrated into the core.
Fig. 14 shows the structure of the product line after applying the Merge-With-
Core-Refactoring and the previous Compose-Deltas-Refactoring. The new core
architecture is shown in Lst. 13.

Merge-With-Core-Refactoring with Inverse Deltas. In some cases, it can be useful
to integrate a sequence of deltas into the core, although there is a product variant
that is represented by the existing core.

Situation: A reason for this scenario may be that in the future the new core
will become the basis for product development, but the old core should still

196 A. Haber et al.

Fig. 14. Deltas and configurations after two refactorings

be maintained for a transitional period of time. After this time, it should be
possible to easily remove the old core from the product line. The respective
sequence of deltas can already be integrated into the new core, if the old core is
reconstructable as long as necessary.

Mechanics: This transformation of the product line can be achieved using in-
verse deltas. An inverse delta [15] is a delta which reverts modifications carried
out by another delta. An inverse delta of some existing delta is created by chang-
ing add operations to remove operations and vice versa. Modification operations
have to be handled separately depending on the structure they alter. In [15], we
show that for every delta in Δ-MontiArc a corresponding inverse delta exists.

A Merge-With-Core-Refactoring with Inverse Deltas is performed as follows
(where the first 4 steps perform a Merge-With-Core-Refactoring):

1. Identify a delta sequence D1, ..., Dn which should be integrated into the core.
The core represents an existing product, while there are no intermediate
products generated by the delta sequence that correspond to supported pro-
duct variants.

2. Apply the deltas D1, ..., Dn to the core to create a new core for the product
line.

3. Update the remaining product configurations and the application order con-
straints of the remaining deltas by removing any references to the deltas
D1, ..., Dn.

4. Remove the deltas D1, ..., Dn from the product line.

Evolving Delta-Oriented Software Product Line Architectures 197

5. Create an inverse delta for the sequence of deltas D1, ..., Dn by inverting the
delta operations of the delta that is obtained by composing the sequence
of deltas D1, ..., Dn (as described in the Compose-Deltas-Refactoring). The
application order constraint of the inverse delta is the negation of all other
deltas such that the inverse delta is always applied first in any product
configuration. This delta transforms the new core to the old core. Although
the application order constraint for the delta is not needed for this particular
scenario, it is useful for further evolution steps.

6. Add a product configuration for obtaining the old core which only contains
the inverse delta.

Effect: The refactoring merges a set of mostly used deltas with the core. For
products that do not contain these deltas, the old core may be reconstructed by
applying the created inverse delta. It is usefull, if the refactored deltas are part
of the majority of product variants and the other products will be removed from
the product line anytime soon. This way, development of new product variants
is eased, as they may be build up on a richer core model.

1 delta DInverse after !DAdaptiveCruiseControl
2 && !DFourWheelDrive && !DReductionGear {
3 modify component BrakingSystem {
4 remove port accel;
5 remove port lateralaccel;
6 remove component stabilizer;
7

8 disconnect brakefunction.wheelpressure1 ->
9 stabilizer.fromabs1;

10 disconnect brakefunction.wheelpressure2 ->
11 stabilizer.fromabs2;
12 disconnect brakefunction.wheelpressure3 ->
13 stabilizer.fromabs3;
14 disconnect brakefunction.wheelpressure4 ->
15 stabilizer.fromabs4;
16 }
17 }

Listing 15. Inverse delta for delta DElectronicStabilityControl

Example: Assume that the variant CarWithESC should become the new core
since every new car in the near future should be equipped with an electronic
stability control. Hence, delta DElectronicStabilityControl shown in
Lst. 12 can be integrated into the core. The new core shown in Lst. 13 is
now serving as basis for all product variant generation. All product variants
that previously used delta DElectronicStabiliyControl are adjusted as
well as the application order constraints of the remaining deltas. The delta
DElectronicStabiliyControl is removed from the product line. However,

198 A. Haber et al.

Fig. 16. Deltas and configurations after refactoring with inverse deltas

variant CarWithABS should still be supported for a transitional period of time.
Hence, an inverse delta is required that reverts the modifications of delta DElec-
tronicStabilityControl. This new delta DInverse is shown in Lst. 15.
It is added to the product line, and a new product configuration for the product
variant CarWithABS is added that applies the inverse delta to the new core.
The resulting product line is depicted in Fig. 16.

The concept of inverse deltas is very flexible. Hence, it is possible to always
include features into the core architecture and add inverse deltas to the product
line to remove these features in order to generate specific product variants not
containing these features. This is particularly advantageous if the core architec-
ture is one of the main products of the product line since it can be thoroughly
validated and verified using standard single application engineering techniques.

5 Comparison to Annotative Variability Modeling

The predominantly used approach in industrial applications for modeling archi-
tectural variability is annotative variability modeling [39]. Our experience shows
that annotative variability modeling is the easiest way to add variability informa-
tion to an existing software product. However, a subsequent change to another
variability modeling method is mostly not realized since this is often very time
consuming. Annotative variability modeling is based on a 150%-model captur-
ing all possible variability and annotating specific elements with the variant(s) in
which they are included. Elements of the core architecture have no annotations.
In order to derive a particular variant, all elements annotated with only different
variants are removed.

In order to compare Δ-MontiArc and its capabilities to capture product line
evolution with annotative variability modeling, we realized all scenarios in Sec. 3
and Sec. 4 with Δ-MontiArc and also with annotative variability modeling.

Evolving Delta-Oriented Software Product Line Architectures 199

We decided to compare Δ-MontiArc with an annotative modeling approach for
MontiArc, since annotative variability modeling is the main variability model-
ing approach used current industrial practice. An annotative MontiArc dialect
offers a good comparability to Δ-MontiArc, as both langauges are based on the
same syntax and exclusively differ in its variability modeling technique. For our
comparison, we do not consider compositional variability modeling approaches,
such based on aspect-oriented implementation techniques [1,10], since these ap-
proaches do not natively support extractive product line development and the
removal of modeling elements. The ability to explicitly represent removals is,
however, essential for the direct representation of product line evolution with-
out considering additional changes in the model structure, e.g., by refactorings
before the evolution is carried out. Tool support for both modeling approaches,
annotative and delta-based, is provided by the MontiCore framework for devel-
oping domain-specific languages [13] by extending the existing implementation
of MontiArc [18].

Annotative Variability Modeling in MontiArc. For realizing annotative variabil-
ity modeling in MontiArc, each architectural element is annotated by a stereo-
type denoting the variant(s) in which it is included. Variable parts of an archi-
tecture are ports, subcomponents, and connectors. Hence, these elements may
be annotated to assign them to variants. The excerpt of an annotated MontiArc
model in Lst. 17 shows an example of these stereotype annotations for archi-
tectural elements. Line 2 contains an incoming port without any annotation
indicating that this element is part of the core architecture. The incoming port
in l. 4 is only needed for bikes. The corresponding annotation in l. 3 states that
this incoming port is only used in the variant BikeWithABS.

1 port
2 in BrakeCommand brake,
3 <<variant = "BikeWithABS">>
4 in BrakeCommand brakerear;

Listing 17. Example of model element annotation

In annotative variability modeling, adding a product variant to the product
line means to add new architectural elements to the 150%-model and to annotate
these and already existing architectural elements with the newly added variant.
This can require to change the 150%-model in several places and might become
fairly complex not to miss necessary additions. In delta modeling, simply new
deltas and product configurations can be added that locally encapsulate the
necessary modifications.

Removing variants in the annotative approach amounts to removing the re-
spective variant annotations and also the architectural elements that are no
longer required by any other variant. Here, again changes all over the variability
model may be necessary. Also, it has to be taken care that architectural elements

200 A. Haber et al.

belonging to the core without annotations are not accidentally removed and that
architectural elements of removed variants are not silently added to the core. In
delta modeling, variants are removed locally by changing the respective product
configurations and deleting redundant deltas.

The modification of existing variants in the annotative approach can have
an impact on several architectural elements. New elements are added and an-
notated with the specific variant and redundant elements are removed. This is
particularly difficult, since variants which are not affected by the modification
should not be changed. In delta modeling, only the content of specific deltas has
to be changed while the application order constraints, the other deltas and the
product configurations remain unchanged.

The refactorings presented in Sec. 4 are specifically tailored to Δ-Monti-
Arc. In particular, the Compose-Deltas-Refactoring and the Merge-With-Core-
Refactoring with Inverse Deltas can only be applied in delta modeling. However,
also in annotative variability modeling, it is possible to move certain variants
to the core. This requires to determine all architectural elements which should
belong to the core in the future. In a subsequent step, all annotations referring
to these variants can be removed. This again might be a fairly complex and
error-prone task, since it requires modifications in all parts of the variability
model where architectural elements belonging to the considered variants occur.
In delta modeling, only the deltas which should be included in the core have
to be integrated, and application conditions of other deltas and specific product
configurations can be changed locally.

Comparison with Δ-MontiArc. The modeling of the product line evolution sce-
narios in the annotative approach is very time consuming and error-prone since
changes to product variants or the core architecture potentially require changes
in all parts of the product line model. For every architectural modeling element,
it has to be decided in which specific variants it appears. In delta modeling,
changes are encapsulated modularly in deltas and can be performed locally.
While in the annotative variability modeling approach, variability modeling is
mixed with modeling of the functional architecture, in delta modeling, variabil-
ity is a first-class entity. Deltas only focus on the representation of variability
and are, thus, easier to comprehend and to evolve.

In order to quantitatively compare Δ-MontiArc with annotative modeling,
we consider all implementations which are modeled in out case study. In total,
we look at seven different product line scenarios: the base scenario is the initial
product line depicted in Fig. 5; the first scenario is the product line after adding
the product variant CarWithRG; the second scenario corresponds to the product
line after removing variants which is depicted in Fig. 10 (p. 192); the third
scenario is the product line after modification of variant CarWithACC. Scenarios
4 to 6 correspond to the three different refactoring strategies: the fourth scenario
is the product line after the Compose-Deltas-Refactoring; the fifth scenario is
the product line after also applying the Merge-With-Core-Refactoring as it is
depicted in Fig. 14 (p. 196); the sixth scenario is the product line after the
Merge-With-Core-Refactoring With Inverse Deltas depicted in Fig. 16 (p. 198).

Evolving Delta-Oriented Software Product Line Architectures 201

Table 18. Quantitative comparisson of Δ-MontiArc and annotative modeling for tem-
poral variability

base scenario 1 scenario 2 scenario 3
Δ 150% Δ 150% Δ 150% Δ 150%

#components 6 7 6 5

#ports 67 75 56 55

#connections 6 10 10 10

#variants 8 9 5 5

#chars 4209 4156 5048 5111 3887 4056 3803 3956

#varchars 2437 1591 2954 1916 2238 1472 2264 1456

rel. variant inf. 57% 38% 58% 37% 57% 36% 59% 36%

#files 20 6 23 7 17 6 16 5

#maxchars 474 2087 474 2660 438 2284 438 2334

avg. chars p. file 210 692 219 730 228 676 237 791

Table 19. Quantitative comparisson of Δ-MontiArc and annotative modeling for refac-
toring scenarios

scenario 4 scenario 5 scenario 6
Δ 150% Δ 150% Δ 150%

#components 5 5 5

#ports 55 55 55

#connections 10 10 10

#variants 5 5 5

#chars 3586 3956 3273 3219 3448 3219

#varchars 2047 1456 1649 719 1514 719

rel. variant inf. 57% 36% 50% 22% 43% 22%

#files 15 5 14 5 14 5

#maxchars 448 2334 438 1865 645 1865

avg. chars p. file 239 791 233 643 246 643

Tab. 18 and 19 show the results of our evaluation. For the overall sizes of the
product lines in the different scenarios, we counted the total number of com-
ponents (#components), ports (#ports), explicit connections (#connections),
and supported product variants (#variants). Implicit connections created by
the autoconnect statements are not counted. In the table, we see that all
examples are mid-sized with 5 to 7 components and 5 to 9 supported product
variants.

For quantitatively comparing the way variability is encoded in delta modeling
and annotative variability modeling, we measured the overall sizes of the models,
the total amount of variability information required to express all product vari-
ants, and the relative amount of variability information compared to the infor-
mation necessary for encoding of functionality. We computed the overall model
sizes by counting each visible character (except for comments) in the product
line model (#chars). Since MontiArc allows many different formatting styles,
visible characters give a more accurate measure of the model size than lines of

202 A. Haber et al.

Fig. 20. Number of characters for model and variability representation

code. Also for the variability information, we counted the number of characters
(#varchars) used for specifying deltas in Δ-MontiArc-models and the characters
used for annotations in the annotative variability model. To compare the ratio
between variability and functional parts of the models, the relative amount of
variant information is calculated (rel. variant inf.) by dividing the number of
characters used for encoding variability by the total number of characters used
in the overall model. These metrics are suitable, as both languages use the same
syntax and exclusively differ in modeling variability.

Fig. 20 visualizes the overall number of characters used for representing the
product line architectures in the different scenarios and the number of characters
used to specify variability, both for delta modeling and annotative variability
modeling. Roughly, we can say that the sizes of both models are the same for both
variability modeling approaches. Adding product variants in the first scenario
increases the size of the model and also the amount of variability information
in both approaches. Removing variants decreases the size of the model and the
variability information. Modification of an existing product variant only changes
the size of the model and the amount of variability information slightly. In the
fourth scenario, which is the first refactoring scenario, we see the advantage
for delta modeling if deltas are combined. The overall size of the model after
refactoring is lower than for the annotative variability model. Since the Compose-
Deltas-Refactoring and the Merge-With-Core-Refactoring with Inverse Deltas
are not applicable for annotative variability modeling, the figures do not change
from the third to the fourth scenario and from the fifth to the sixth scenario.
The Merge-With-Core-Refactoring in the fifth scenario reduces the size of the
model and also the amount of variability information for both approaches such
that the model size is almost equal again. In scenario 6, after the Merge-With-
Core-Refactoring with Inverse Deltas the size of the delta model is larger since
the inverse delta is added to the product line model.

Evolving Delta-Oriented Software Product Line Architectures 203

Fig. 21. Relative amount of variability information

The ratios of variability information compared to the overall model size stay
roughly the same for both approaches independent of the evolution scenario for
the base and the first four scenarios as it is visualized in Fig. 21. Only, when
variants are merged into the core the ratio drops. The reason for this is that by
merging deltas with the core or removing annotations variability information is
removed while the overall size of the model stays the same. In general, the ratio of
variability information is higher for delta modeling than for annotative variability
modeling. From the figures, delta modeling seems to be very similar to annotative
variability modeling when comparing the mere model size and its changes for the
different evolution scenarios. However, when looking at the ratio of variability
information, we can see that in annotative variability modeling roughly one third
of all characters are used for expressing variability by annotations. If we now
consider that in the annotative variability modeling approach we only have one
150%-model of all possible variability and that variability information is spread
all over the model, having a third of all characters used for annotations renders
the model very complex and difficult to comprehend and evolve. In contrast, in
delta modeling, variability information is encapsulated in deltas which can be
evolved locally.

To further analyze understandability and maintainability, we measured the
average sizes of the files which make up the product line models for the single
scenarios (see Tab. 18 and 19). A product line model is distributed over sev-
eral files (#files) where each file defines a component, a delta or parts of it. In
general, large files are harder to understand, to change and to maintain. Hence,
we measured the maximum (#maxchars) and average characters per file (avg.
chars p. file). We can see that in delta modeling the number of files is generally
higher which results from the fact that each delta and the contained components
are stored in separate files while in annotative variability modeling only each
component has a separate file. Overall, the size of a file in annotative variability

204 A. Haber et al.

modeling is three times larger than in delta modeling. Thus, the evaluation of the
scenarios yields that delta modeling improves the readability and understand-
ability of product line architectures and eases their evolution and maintenance
by modularizing variability in small encapsulated entities.

6 Related Work

Most modeling approaches for architectural variability only consider one di-
mension of variability. For spatial variability, we can distinguish three main
approaches: annotative, compositional and transformational variability model-
ing. Annotative approaches use variant annotations, e.g., UML stereotypes in
UML models [40,12] or presence conditions [7], to define which architectural el-
ements belong to specific product variants. In the orthogonal variability model
(OVM) [32], a separate variability representation with links to the architecture
model replaces direct annotations. While annotative variability modeling allows
fine-grained modifications, it relies on a monolithic product line representation.

Compositional approaches for modeling architectural variability [39] capture
architectural variation by selecting specific component variants. In [10], Plas-
tic partial components [31] model component variability by extending partially
defined components with variation points and associated variants. Hierarchical
variability modeling for software product lines [17] aims at combining component
variability with the component hierarchy to foster component-based development
of diverse systems during architectural design. Compositional variability model-
ing allows a modular description of variability, but limits the impact of changes
to the applied composition technique.

Transformational approaches, such as delta modeling [6], represent variability
by transformation of a base architectural model. In the common variability lan-
guage (CVL) [19], elements of the base model are substituted according to a set
of pre-defined rules. In [21], graph transformation rules capture the variability of
a single kernel model comprising the commonalities of all systems. In [20], archi-
tectural variability is represented by change sets containing additions, removals
or modifications of components and component connections that are applied to
a base line architecture. All these approaches are only consider variability in
space as the previous versions of Δ-MontiArc [16,14].

Temporal variability is usually specified with two mechanisms [29]: logical as-
sertions or graph transformations. In the assertion-based approaches, e.g., [30,38],
a transformation is characterized by a pre-condition defining when a transfor-
mation can be applied and a post-conditions specifying the properties that are
ensured by the transformation. In graph transformation-based approaches, the
product variants are represented by graphs. System evolution is specified by a
graph transformation rule, see e.g. [28]. These approaches, however, represent
temporal variability on a meta-level.

In order to be able to reason about architectural evolution, it has to be cap-
tured as first-class entity [27]. One approach towards this goal [24] defines new
components by explicitly expressing the differences to the old component by

Evolving Delta-Oriented Software Product Line Architectures 205

adding, deleting, renaming or replacing elements. This is very similar to delta
modeling where a delta encapsulates the differences from one product variant to
the other. Aspect-oriented composition is also applied to model software archi-
tecture evolution [3] expressing variability by weaving selected aspects into a core
architecture. However, these approaches only consider architectural evolution.

Refactorings of feature-oriented programming (FOP) product lines are pre-
sented in [37]. These refactorings that move fields or types between feature mod-
ules are mostly based on classical code refactorings like, e.g., pulling up fields or
methods to parent types. In alignment with our approach, the authors suggest
refactorings of a product line to be variant-preserving. Hence, such a refactoring
only changes the structure of the product line, but not contained variants. How-
ever, the presented approach aims at the implementation of a software product
line and not at its architecture.

In contrast to the above approaches, product line evolution [9] considers the
combination of variability in space and variability in time. Extractive product
line engineering [22] develops a product line from a set of legacy applications; the
proactive approach aims at evolving an initial product line if new user require-
ments arise. In the PuLSE product line engineering methodology [4], product
line evolution is defined as designated development phase. However, these ap-
proaches only focus on terminological issues and development processes. There is
some work on feature model evolution [5] and evolution of feature-oriented [2] or
aspect-oriented software product line implementations [1,10]. However, evolution
in feature-oriented modeling and programming approaches is treated with differ-
ent linguistic means than spatial variability, mostly due to the fact that features
cannot remove model or program entities which is essential for capturing unex-
pected changes caused by evolution. Hence, a uniform modeling framework for
architectural variability in space and in time is missing despite techniques, such
as aspect-oriented composition and model transformations, that can factually
express both dimensions of variability. Δ-MontiArc fills this gap by representing
variability in space and in time as a first-class entity with the same linguistic
means.

7 Conclusion

We have proposed Δ-MontiArc, an ADL with native support for variability
based on delta modeling. Δ-MontiArc allows expressing architectural variability
in space and in time in modular and easily maintainable manner as we demon-
strated by a quantitative and qualitative comparison with annotative variability
modeling. We presented exemplary refactorings that help cleaning up a degen-
erated product line. Variability by using delta modeling can also be applied
to other modeling languages and is not restricted to modeling software architec-
tures. Behavioral variability within the architectural descriptions can be realized
by using deltas on state machines [23] or Java source code [34,36].

206 A. Haber et al.

For future work, we aim at defining further refactorings that merge deltas with
identical modification operations but different application order constraints and
vice versa. Scalability and applicability has to be checked based on a more com-
plex industrial-scale examples. We also plan to extend the conceptual ideas of
Δ-MontiArc into a seamless software engineering process for software product
lines that allows dealing with variability in space and in time by the same tech-
niques.

References

1. Alves, V., Matos Jr., P., Cole, L., Vasconcelos, A., Borba, P., Ramalho, G.: Ex-
tracting and Evolving Code in Product Lines with Aspect-Oriented Programming.
In: Rashid, A., Aksit, M. (eds.) Transactions on AOSD IV. LNCS, vol. 4640, pp.
117–142. Springer, Heidelberg (2007)

2. Apel, S., Leich, T., Rosenmüller, M., Saake, G.: Combining feature-oriented and
aspect-oriented programming to support software evolution. In: RAM-SE, pp. 3–16
(2005)

3. Barais, O., Meur, A.F., Duchien, L., Lawall, J.: Software architecture evolution.
In: Software Evolution. Springer (2008)

4. Bayer, J., et al.: PuLSE: a Methodology to Develop Software Product Lines. In:
Symposium on Software Reusability (SSR), pp. 122–131 (1999)

5. Botterweck, G., Pleuss, A., Dhungana, D., Polzer, A., Kowalewski, S.: EvoFM:
Feature-driven Planning of Product-line Evolution. In: 1st International Workshop
on Product Line Approaches in Software Engineering, PLEASE 2010 (2010)

6. Clarke, D., Helvensteijn, M., Schaefer, I.: Abstract Delta Modeling. In: GPCE.
Springer (2010)

7. Czarnecki, K., Pietroszek, K.: Verifying Feature-based Model Templates against
Well-formedness OCL Constraints. In: Generative Programming and Component
Engineering, GPCE (2006)

8. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and
Applications. Addison-Wesley (2000)

9. Elsner, C., Botterweck, G., Lohmann, D., Schröder-Preikschat, W.: Variability in
time - product line variability and evolution revisited. In: VaMoS, pp. 131–137
(2010)

10. Figueiredo, E., Cacho, N., Sant’Anna, C., Monteiro, M., Kulesza, U., Garcia, A.,
Soares, S., Ferrari, F., Khan, S., Filho, F.C., Dantas, F.: Evolving software pro-
duct lines with aspects: an empirical study on design stability. In: International
Conference on Software engineering (ICSE), pp. 261–270. ACM (2008)

11. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving
the Design of Existing Code. Addison-Wesley Professional (1999)

12. Gomaa, H.: Designing Software Product Lines with UML. Addison Wesley (2004)
13. Grönniger, H., Krahn, H., Rumpe, B., Schindler, M., Völkel, S.: MontiCore: a

Framework for the Development of Textual Domain Specific Languages. In: 30th
International Conference on Software Engineering (ICSE 2008), Leipzig, Germany,
May 10-18, Companion Volume (2008)

14. Haber, A., Kutz, T., Rendel, H., Rumpe, B., Schaefer, I.: Delta-oriented Architec-
tural Variability Using MontiCore. In: ECSA 2011 5th European Conference on
Software Architecture: Companion Volume. ACM, New York (2011)

Evolving Delta-Oriented Software Product Line Architectures 207

15. Haber, A., Kutz, T., Rendel, H., Rumpe, B., Schaefer, I.: Towards a Family-based
Analysis of Applicability Conditions in Architectural Delta Models. In: Variability
for You Proceedings of VARY International Workshop affiliated with ACM/IEEE
14th International Conference on Model Driven Engineering Languages and Sys-
tems (MODELS 2011). IT University Technical Report Series TR-2011-144, pp.
43–52. IT University of Copenhagen (October 2011)

16. Haber, A., Rendel, H., Rumpe, B., Schaefer, I.: Delta Modeling for Software Ar-
chitectures. In: Tagungsband des Dagstuhl-Workshop MBEES: Modellbasierte En-
twicklung eingebetteterSysteme VII, pp. 1–10. Fortiss GmbH, Munich (2011)

17. Haber, A., Rendel, H., Rumpe, B., Schaefer, I., van der Linden, F.: Hierarchical
Variability Modeling for Software Architectures. In: Proceedings of International
Software Product Lines Conference (SPLC 2011). IEEE Computer Society (August
2011)

18. Haber, A., Ringert, J.O., Rumpe, B.: MontiArc - Architectural Modeling of Inter-
active Distributed and Cyber-Physical Systems. Tech. Rep. AIB-2012-03, RWTH
Aachen (February 2012),
http://aib.informatik.rwth-aachen.de/2012/2012-03.pdf

19. Haugen, Ø., Møller-Pedersen, B., Oldevik, J., Olsen, G., Svendsen, A.: Adding
Standardized Variability to Domain Specific Languages. In: SPLC (2008)

20. Hendrickson, S.A., van der Hoek, A.: Modeling Product Line Architectures through
Change Sets and Relationships. In: ICSE (2007)

21. Jayaraman, P., Whittle, J., Elkhodary, A.M., Gomaa, H.: Model Composition in
Product Lines and Feature Interaction Detection Using Critical Pair Analysis. In:
Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS,
vol. 4735, pp. 151–165. Springer, Heidelberg (2007)

22. Krueger, C.: Eliminating the Adoption Barrier. IEEE Software 19(4), 29–31 (2002)
23. Lochau, M., Schaefer, I., Kamischke, J., Lity, S.: Incremental Model-Based Testing

of Delta-Oriented Software Product Lines. In: Brucker, A.D., Julliand, J. (eds.)
TAP 2012. LNCS, vol. 7305, pp. 67–82. Springer, Heidelberg (2012)

24. McVeigh, A., Kramer, J., Magee, J.: Using resemblance to support component
reuse and evolution. In: SAVCBS, pp. 49–56 (2006)

25. Medvidovic, N., Taylor, R.: A Classification and Comparison Framework for Soft-
ware Architecture Description Languages. IEEE Transactions on Software Engi-
neering (2000)

26. Mens, T., Demeyer, S. (eds.): Software Evolution. Springer (2008)
27. Mens, T., Magee, J., Rumpe, B.: Evolving software architecture descriptions of

critical systems. IEEE Computer 43(5), 42–48 (2010)
28. Mens, T., Taentzer, G., Runge, O.: Analysing refactoring dependencies using graph

transformation. Software and System Modeling 6(3), 269–285 (2007)
29. Mens, T., Tourwé, T.: A survey of software refactoring. IEEE Trans. Software

Eng. 30(2), 126–139 (2004)
30. Opdyke, W.: Refactoring: A Programm Restructuring Aid in Designing Object-

Oriented Application Frameworks. Ph.D. thesis, Univ. of Illinois at Urbana-
Champaign (1992)

31. Pérez, J., Dı́az, J., Soria, C.C., Garbajosa, J.: Plastic Partial Components: A solu-
tion to support variability in architectural components. In: WICSA/ECSA (2009)

32. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering -
Foundations, Principles, and Techniques. Springer, Heidelberg (2005)

33. Schaefer, I., Bettini, L., Damiani, F.: Compositional type-checking for delta-
oriented programming. In: Intl. Conference on Aspect-oriented Software Devel-
opment (AOSD 2011). ACM Press (2011)

http://aib.informatik.rwth-aachen.de/2012/2012-03.pdf

208 A. Haber et al.

34. Schaefer, I., Damiani, F.: Pure delta-oriented programming. In: Second Interna-
tional Workshop on Feature-oriented Software Development (FOSD 2010) (2010)

35. Schaefer, I.: Variability Modelling for Model-Driven Development of Software Pro-
duct Lines. In: VaMoS (2010)

36. Schaefer, I., Bettini, L., Bono, V., Damiani, F., Tanzarella, N.: Delta-Oriented
Programming of Software Product Lines. In: Bosch, J., Lee, J. (eds.) SPLC 2010.
LNCS, vol. 6287, pp. 77–91. Springer, Heidelberg (2010)

37. Schulze, S., Thüm, T., Kuhlemann, M., Saake, G.: Variant-preserving refactoring
in feature-oriented software product lines. In: VaMoS, pp. 73–81 (2012)

38. Tichelaar, S., Ducasse, S., Demeyer, S., Nierstrasz, O.: A meta-model for language-
independent refactoring. In: Proc. of Principles of Software Evolution, pp. 154–164
(2000)

39. Völter, M., Groher, I.: Product Line Implementation using Aspect-Oriented and
Model-Driven Software Development. In: SPLC (2007)

40. Ziadi, T., Hëlouët, L., Jézéquel, J.-M.: Towards a UML Profile for Software Product
Lines. In: van der Linden, F.J. (ed.) PFE 2003. LNCS, vol. 3014, pp. 129–139.
Springer, Heidelberg (2004)

Multi-view Modeling and Pragmatics in 2020�

Position Paper on Designing
Complex Cyber-Physical Systems

Reinhard von Hanxleden1, Edward A. Lee2,
Christian Motika1, and Hauke Fuhrmann3

1 Christian-Albrechts-Universität zu Kiel, Department of Computer Science
Olshausenstraße 40, 24118 Kiel, Germany
{rvh,cmot}@informatik.uni-kiel.de

2 University of California at Berkeley, EECS Department
545Q Cory Hall, University of California, Berkeley CA 94720-1770

eal@eecs.berkeley.edu
3 Funkwerk Information Technologies GmbH

Edisonstraße 3, 24145 Kiel, Germany
Hauke.Fuhrmann@funkwerk-it.com

Abstract. Multi-view modeling refers to a system designer constructing
distinct and separate models of the same system to model different (se-
mantic) aspects of a system. Modeling pragmatics also entails construct-
ing different views of a system, but here the focus is on syntactic/prag-
matic aspects, with an emphasis on designer productivity, and the views
are constructed automatically by filtering and drawing algorithms.

In this paper, we argue that both approaches will have growing in-
fluence on model-based design, in particular for complex cyber-physical
systems, and we identify a number of general developments that seem
likely to contribute to this until 2020. This includes notably the trend
towards domain-specific modeling and agile development, novel input
devices, and the move to the cloud. We also report on preliminary prac-
tical results in this area with two modeling environments, Ptolemy and
KIELER, and the lessons learned from their combined usage.

1 Introduction

A question prominently asked in computer science in model-based design is what
kind of model (of computation) is particularly suitable for a given design prob-
lem. We here instead focus on the question of what view of a model might be
best for a given task. When a designer creates two different models of the same
system, e. g., one model for functional validation and another for deployment,
this is referred to this as multi-view modeling. In this paper, we take a broader
look at multi-view modeling than that traditional interpretation, and try to ex-
trapolate recent developments, including existing products, into the mid-term

� This work was funded in part by the Program for the Future Economy of Schleswig-
Holstein and the European Regional Development Fund (ERDF).

R. Calinescu and D. Garlan (Eds.): Monterey Workshop 2012, LNCS 7539, pp. 209–223, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

210 R. von Hanxleden et al.

future. We target the year 2020 as a time frame when not only the basic tech-
nologies are in place (in fact, much of these technologies are in place already
today, as this paper aims to illustrate), but also have found their way into main-
stream modeling tools and practices. We do so with particular consideration of
modeling pragmatics, which refers to the practical aspects of handling graphical
system models of complex systems, encompassing a range of activities such as
editing, browsing or simulating models [8].

Contributions and Outline. We advocate in this paper to expand multi-view
modeling to constructing different model views even if they refer to the same
semantic aspects. We will argue in the following that this approach meshes well
with current trends towards agile, domain-adapted modeling, and propose to
employ usage-specific views and hybrid views. These do not only consider the
domain of an application, but also the current design activity a modeler is pur-
suing (Sec. 3). This approach has an immediate benefit for designer productivity,
and thus supports “pragmatics-aware modeling.” We also investigate what con-
sequences the trend towards “post-PC devices” and their novel user interfaces
might have on today’s modeling activities, and propose touch-based editing and
browsing to increase designer productivity (Sec. 4). Furthermore, in the context
of the increasingly pervasive “move to the cloud,” we propose an actor-oriented,
distributed tooling approach (Sec. 5). This tooling approach should foster syn-
ergies and could also support agility as addressed in Sec. 3. We conclude in
Sec. 6.

2 Background and Related Work

A graphical model is a model that can have a graphical representation, like a
Unified Modeling Language (UML) class model. A view onto the model is a
concrete drawing of the model, sometimes also diagram or notation model, e. g.,
a UML class diagram. The abstract structure of the model leaving all graphical
information behind is the semantical or domain model, or just model in short.
E. g., a class model can also be serialized as an XML tree. Hence, the model
conforms to the abstract syntax, while the view conforms to the concrete syntax.
Fig. 1 shows three different views of the same class model.

Model-Driven Engineering (MDE), or alternatively Model Driven Software De-
velopment (MDSD), denotes software development processes where models are
central artifacts that represent software entities at a high abstraction level [5].
Multimodeling is the act of combining diverse models, to model, e. g., different
parts of a software system or physical systems [6]. One form of multimodeling is
multi-view modeling, as exemplified in Model-Integrated Computing (MIC) [21].

Multimodeling is also closely related to the single vs. multiple model princi-
ple discussed by Paige and Ostroff [19]. The ISO/IEC/IEEE 42010:2011 stan-
dard [12], which is the latest edition of the original IEEE Std 1471:2000, Rec-
ommended Practice for Architectural Description of Software-intensive Systems,
also defines architecture views (or simply, views) to address one or more of the

Multi-view Modeling and Pragmatics in 2020 211

[Res tau ran t |Name; S t y l e]
[Res tau ran t]
++−∗>wa i t e r s [Wai ter]
[Res tau ran t]
++−1>ch e f [Chef]
[Res tau ran t]
+−∗>[Customer]
[Wai ter] s e r v e s
−>servedBy [Customer]
[Wai ter] w a i t e r s
<∗−1>ch e f [Chef]

Fig. 1. Different Representations of a Class Model: Diagram, Text and Tree View
(created with yUML (http://yuml.me) and Eclipse)

concerns held by the system’s stakeholders, as no single view adequately cap-
tures all stakeholder concerns. Multimodeling is also related to aspect-oriented
modeling [22], which focusses on identifying cross-cutting concerns; a central con-
cept here are join points, which represent a concern element, i.e., an identifiable
element of the language used to capture a concern. Brooks et al. [2] have also ad-
vocated the usage of multimodeling to separate concerns during a model-based
design flow, e. g., to separate functional aspects from deployment and verifica-
tion. This is particularly relevant in the real of cyber-physical systems, which
have to consider physical deployment domains as well as the embedded control,
and whose growing complexity necessitates a clean separation of concerns. The
designer should be able to specify different aspects of the same system indepen-
dently, to allow a clean separation of concerns while keeping a model consistent.
However, multi-view modeling can be applied at different levels and in very dif-
ferent ways. For example, it can refer to the animation of a model during a
simulation, or to the alternation between graphical and textual representations,
or indeed also to the alternation between a monolithic Statechart model and an
explicitly hierarchical syntax, as discussed in this paper.

However, Brooks et al. concluded: At this point, it is still largely up to the
modeler to construct different views of the same system. How best to harness a
modeling system to assist the user with this task still seems to be a largely open
problem. While this problem still is certainly not completely solved yet, we here
argue that modeling tools in 2020 should have made significant progress towards
that goal. In fact, already today there are significant steps in that direction. To
illustrate that point, we re-use in Sec. 3 the traffic light example from Brooks
et al. [2], and present different views that are automatically synthesized.

http://yuml.me

212 R. von Hanxleden et al.

3 Trend 1: Agile, Domain-Specific Development
Processes

The processes in software development change from static monolithic one-way
methods, which lead from an abstract specification to a concrete design, to more
agile and iterative approaches. Agile development is accompanied by a move
away from big, one-size-fits-all frameworks and languages or language families
toward Domain-Specific Languages (DSLs). E. g., the UML has evolved into such
a multitude of languages that by now, most designs and designers employ only a
subset of the UML languages or variations tailored towards specific domains, and
it is a challenge for tool providers to adequately support all languages. However,
an iterative process requires not only to go from abstract to concrete. Devel-
opers jump arbitrarily between abstraction levels, and change either abstract
specifications if they have to adapt the general system concept or details in the
implementation if one iteration’s prototype milestone needs to be finished. This
round-trip engineering does not mesh very well with today’s modeling tools.

3.1 2020 Vision: Usage-Specific Views

Agile processes require agile and lean tool support and languages that are not
only tailored towards particular domains, but also towards particular design
activities. This meshes with the concept of DSLs, which are also called “task-
specific” languages [16], even if this interpretation is less common than the “(ap-
plication) domain-specific” interpretation. Note that this does not necessarily
require the invention of a host of new languages, but rather expresses that we
want to be able to switch model views according to different model usages, and
that these different views may employ different (graphical or textual) languages.
We refer to this concept as usage-specific views.

To illustrate, consider the traffic light control example presented in Fig. 2,
adapted from Brooks et al. [2]. The example is shown in three variants, which
at first sight look quite different and employ different visual languages. The first
variant, shown in Fig. 2a, employs a SyncCharts [1] model, developed in the Kiel
Integrated Environment for Layout Eclipse Rich Client (KIELER)1 modeling
environment, to describe the behavior of the traffic light. As can be seen, there
are two modes of operation, Normal and Error, and for each mode the behavior
of the car light and the pedestrian light is specified. This behavioral view might
be appropriate for a first specification of the traffic light. Fig. 2c now uses a very
different language, or rather set of languages, namely a hierarchical combination
of synchronous data flow with state machines, shown in the Ptolemy II2 tool.
This structural view (or deployment view) emphasizes what components the
traffic light consists of, namely the car light and the pedestrian light, and through
which signals they interact with the environment and with each other. However,
even though these two views use different languages that have different semantics

1 http://www.informatik.uni-kiel.de/rtsys/kieler/
2 http://ptolemy.eecs.berkeley.edu/

http://www.informatik.uni-kiel.de/rtsys/kieler/
http://ptolemy.eecs.berkeley.edu/

Multi-view Modeling and Pragmatics in 2020 213

and may be considered different models of a traffic light, they do express the
same behavior, i. e., the semantics of these two models coincide. In fact, in this
case the Ptolemy model that underlies the structural view has been synthesized
automatically from the SyncChart model that underlies the behavioral view,
with the original purpose of simulating the SyncChart model [17]. So, one may
say that the model shown in Fig. 2c enhances the model from Fig. 2a in at least
two ways, namely with a simulation capability and by illustrating to the user
the structure of the traffic light.

A common criticism of SyncCharts (and Statecharts in general) is that they,
due to their signal broadcast semantics, have only implied, hidden signal commu-
nication links. One possible answer to this is the structural view just presented.
However, we also want to propose another, third alternative, which we will re-
fer to as hybrid view. To that end, we now examine another means to better
understand the references in a graphical model. The graphical representation
depicts the main model objects as nodes, where the containment relations can
be reflected by hierarchy in the model and containment of graphical symbols like
rectangles. Therefore, the diagram exhibits intrinsic properties, and these prop-
erties directly correspond to properties in the represented domain [10]. Explicit
connections display some other relations between the model objects. However,
there is typically a set of model attributes that is hidden in simple property
dialogs or simply represented by a label in the graphical representation. Rela-
tions between those attributes are usually not visible, such as the signal-based,
name-bound broadcast communication in a Statechart.

3.2 Dual Modeling

We propose a dynamic extension of the graphical representation by its dual
model, i. e., a graphical representation of the relations between referenced ob-
jects where this reference is not yet visualized. This dual model then results in a
hybrid view, which emphasizes multiple semantic aspects of a model at once. The
hybrid view in Fig. 2b reveals the rather simple communication of the traffic light
example. The Error state has no inter-communication, hence focus&context [20]
automatically collapses it. The structural view in Fig. 2c also shows this commu-
nication explicitly, however, the simplicity is more obvious in the hybrid view;
this may also be due to the visible hierarchy there.

The dual model methodology should not only be helpful for Statecharts, but
applies to very different types of models. References to other model parts are
quite common where an explicit graphical representation is omitted for the sake
of clarity in the original model. Two examples are:

Class Diagrams. The attributes of a class are presented more or less textually
including the type of the field. However, the type may also reference another
class or a data type definition node in the model. The dual model of a class
diagram would reveal the data type usages of the classes and their attributes.

Ptolemy II. In Ptolemy one can define arbitrary parameters of actors. They
are represented by an unconnected node only showing the key and the

214 R. von Hanxleden et al.

(a) Behavioral view (SyncChart) (b) Hybrid view, revealing the communica-
tion via signals (SyncChart with dual mod-
eling and focus&context filtering).

(c) Structural view (hierarchical data-flow + automata, from Motika et al. [17])

Fig. 2. Traffic light example, usage-specific views

value of the parameter. Then they get referenced by arbitrary expressions
in Ptolemy’s expression language, which is just text. They are often used to
map parameters of lower-level actors to the top-level actor. The dual model
could explicitly show which objects use which parameters. An example mon-
tage is shown in Fig. 3. Technically this would work best if the editor would
use visible hierarchy, which the Ptolemy editor Vergil does not.

Multi-view Modeling and Pragmatics in 2020 215

Fig. 3. A dual model for Ptolemy could show where parameters of an actor are used
(from Fuhrmann [7])

Note that the structural view in Fig. 2c is also a kind of hybrid view that com-
bines drawings of individual model components with an overall drawing (using
gray lines) of how these components are related to each other. As of today, cre-
ating such drawings is again a manual, rather laborious process, which severely
compromises designer productivity and thus goes against pragmatics-awaremod-
eling. To do so automatically in a well-readable, compact fashion is an interesting
layout problem that we are currently investigating, which leads to the concept
of automatic layout also addressed in the next section.

4 Trend 2: Novel Input Devices

If we may believe innovation-leading companies in the field of ergonomic human-
machine interaction, we are in the decade of “post-PC devices” [13]. Improve-
ments in touch-display technology foster the success of smartphones and even
new device categories like tablet computers that convince users with intuitive
interaction paradigms. In professional environments such handheld devices or
also bigger devices like computerized white boards may assist collaboration in
team meetings and ease both the group access to data and capturing group
results. Nonetheless the modeling community maintains traditional interaction
paradigms for creating, navigating and maintaining models, notably What-You-
See-Is-What-You-Get (WYSIWYG) Drag-and-Drop (DND) freehand editing that
requires a precise instrument like the mouse.

216 R. von Hanxleden et al.

4.1 2020 Vision: Touch-Based Editing and Browsing

To take advantage of these novel input devices and to increase designer produc-
tivity, we propose to adapt novel design entry and browsing mechanisms that are
less dependent on precise pointing devices. As a first enabling step, this requires
to enhance today’s modeling tools with reliable, high-quality automatic layout
capabilities that can arrange diagram elements in a compact, well-readable fash-
ion. As of today, visual models are traditionally drawn manually. However many
modeling tools have some auto-layout capabilities already, and the insight that
designers should be freed from the burden of doing manual place-and-route work
as part of their modeling activity slowly seems to gain acceptance. E. g., one of
the advertised new features for IBM’s Rational Software Architect includes a va-
riety of automated layout algorithms. To quote from their announcement: These
automated layouts also make it easier to understand complex models and to build
abstractions by viewing the model in a well-laid-out way. Most importantly, they
should reduce the overall amount of time you need to spend on hand-formatting
diagrams, thereby increasing your productivity and freeing more of your time for
higher-value activity.3

Note that when providing an automatic layout capability, one must also ensure
that automatic layout does not destroy the mental map of a user when editing a
model; for example, morphing mechanisms can help here significantly. We also
acknowledge that designers, when confronted with the idea of automatic layout,
are often at first reluctant to defer the drawing of a model to some algorithm that
does not have any understanding of the application. As a compromise, there is
also option of performing only incremental automatic layout, or to provide some
intentional layout capability that allows the modeler to guide the automatic
layout algorithm in certain ways. However, it is our experience that after getting
used to a tool with high-quality automatic layout capabilities, designers are
quite happy to make use of this capability, and become frustrated whenever they
have to use a modeling tool without such a capability. This pattern is common
whenever designers are asked to give up control of certain design aspects, and
indeed it is often advisable to provide some escape mechanism. An analogy in
the programming world is the capability of embedding assembler in a high-level
language. However, carrying this analogy further, we also observe that today,
most programmers appear to be glad to have been mostly freed from the task of
manual assembler programmer, and are happy with the results that a compiler
generates for them.

Note that the automated diagram drawing is by no means trivial, as many
rather unusable auto-layout buttons can attest to, and there is an active re-
search community that works on improving the state of the field [3]. However,
the challenge here lies not only in the fundamental drawing problem, but also in
smoothly integrating layout capabilities into the modeling tool. Here, the actor-
oriented tooling approach outlined in Sec. 5 might also help. With automatic
layout capabilities, it is possible to post-process imprecise drawing commands

3 http://www.ibm.com/developerworks/rational/library/10/

whats-new-in-rational-software-architect-8/index.html

http://www.ibm.com/developerworks/rational/library/10/whats-new-in-rational-software-architect-8/index.html
http://www.ibm.com/developerworks/rational/library/10/whats-new-in-rational-software-architect-8/index.html

Multi-view Modeling and Pragmatics in 2020 217

into high-quality diagram drawings. For a nice illustration of this approach, con-
sider the Instaviz “pocket whiteboard,”4 which uses advanced shape-recognition
(Recog) and automatic drawing (GraphViz) capabilities. From the product de-
scription: Sketch some rough shapes and lines, and Instaviz magically turns them
into beautifully laid-out diagrams. We are not aware of hard experimental data
on the productivity of this software, but the subjective impression is that with
this approach, working with a phone-size touch-sensitive display, one is faster
to create a usable diagram than with a traditional model editor without layout
capabilities installed on a full-size PC. This is not to advocate smart phones for
productive system design, but the technologies developed there might very well
be helpful. Multi-touch displays might allow more efficient and intuitive model
manipulation and navigation than traditional pointing devices. For example,
one might borrow from the effective navigation techniques that allow to browse
photo libraries or web pages with very little screen real estate. Other examples
of such inspiring innovations are dictionary-based predictive text entry (T9) or
motion-based text entry (Swype).

4.2 Structure-Based Editing

Next, given a modeling platform that provides automated drawing capabilities,
we can raise the abstraction level of editing activities to work on the structure of
the model itself, rather than working on its representation. This structure-based
editing [9] does not require precise pointing any more, so for example it does not
require shape recognition. Instead, it suffices to select existing model elements
and to specify the operation to apply to it, such as “add a successor state” or
“invert transition direction”.

Such higher level, semantically oriented editing capabilities could also en-
hance traditional editing paradigms. For an example, consider the copy&paste
operation, which originally was made possible by computer-based editing, but
remains rather primitive until today. In a usual freehand editing environment,
copy&paste requires numerous enabling steps. The user has to 1. select all ob-
jects to copy, 2. call the copy operation, 3. choose a target space, 4. free space
at the target location, 5. select the target place (however, selecting an empty lo-
cation usually is not possible in most tools), 6. call the paste operation, 7. move
the pasted set of objects to the new empty space and finally 8. rearrange the
surroundings such that the new objects seamlessly integrate. Especially steps
4, 7 and 8 may be arbitrarily effort-prone, and step 7 may be frustrating when
the pasted objects do not appear at the target space of step 3 and the tool
does not state explicitly about its target space policy. However, structure-based
editing employing automatic layout can improve the situation considerably [7].
The editing steps would boil down to 1. select all objects to copy, 2. call the
copy operation, 3. select a target object, and 4. call the paste operation. With
automatic layout, the user should not specify any target location, but only a
target object where the contents should be pasted. A generic transformation

4 http://instaviz.com/

http://instaviz.com/

218 R. von Hanxleden et al.

Fig. 4. Examples for copy&paste operations on a Statechart diagram. Each operation
is illustrated with a sequence of three states: 1) the Copy state with a selected source
to copy (e. g., state S), 2) the Paste state with the selected target (e. g., state T) into
which the source should be pasted, and 3) the Result into which Paste gets transformed.

description should then specify how the elements are pasted into the target
object and the automatic layout would do the rest.

To illustrate, Fig. 4 presents some possible copy&paste operations for State-
charts. Each transformation rule has to consider the copy sources (labeled “S” in
Fig. 4), i. e., the selected elements which get copied, and the copy targets (“T”).
For Statecharts these objects may be states, regions, and transitions, and each
set may be of arbitrary size. A good example is “copy multiple states to one tran-
sition”. In a usual freehand editor, this is not possible and would do nothing. As
implemented in KIELER, the transformation 1. cuts the target transition into
two transitions, 2. adds a new state in-between both transitions, and 3. adds the
selected nodes into a new region of the new state. Other similar transformations
are possible, which the toolsmith would have to define according to experience
in the context of the given DSL. Selecting multiple target objects is a fast way
to replicate objects multiple times.

As a word of caution, these copy&paste effects go considerably beyond what
designers are familiar with today. Also, some of these effects are probably needed

Multi-view Modeling and Pragmatics in 2020 219

only rarely, such as the “copy transitions to transitions”. Still, extending the
copy&paste paradigm in this fashion may significantly increase productivity,
and is yet another example of the possibilities for harnessing automatic layout
towards pragmatics-aware modeling.

5 Trend 3: The Move to the Cloud

Activities traditionally done locally become increasingly distributed and are
moved to “the cloud.” For example, to generate the class diagram drawing in
Fig. 1, we did not install a UML tool, but visited a web page and pasted the tex-
tual description of the diagram into a text box. Not having to undergo lengthy
installation procedures and always having a current tool version at one’s disposal
is appealing. We believe that this applies in particular to the world of MDE with
its typically quite complex tool environments, and this also applies to other
cloud-benefits such ease of design sharing (leading to model mashups) and de-
signer mobility (consider google docs etc. that are already commonly integrated
into mobile OSs such as Android). As another example, National Instruments’
LabVIEW Web UI Builder is a cloud-based Rich Internet Application (RIA),
which is hosted by Amazon Web Services and is basically a light-weight version
of LabVIEW that allows to interface with hardware and/or web services. Simi-
larly, NI offers a cloud version of a compiler that deploys LabVIEW models onto
an FPGA. This application can be very compute-intensive, and there is a large
variety of possible compilation targets; both factors make it attractive to move
away from the local desktop into the cloud.

There already exist standards for web service interfaces, e. g., the Web Ser-
vices Business Process Execution Language (WS-BPEL) [18] to describe business
process activities as web services. However, such (mostly syntactic) standards
are not enough, as they still exhibit semantic ambiguities that hamper tool com-
patibility. And, as Lapadula et al. state, the design of WS-BPEL applications is
difficult and error-prone also due to the presence of such intricate features as
concurrency and race conditions, forced termination, [etc.] [14].

5.1 2020 Vision: Actor-Oriented, Cloud-Based Modeling Tools

The idea of actor-oriented modeling is to break down complexity by decompos-
ing a system into actors that communicate through well-defined interfaces [4].
The components interact not via control flow (such as a method-call in object-
oriented design), but via data. This approach sidesteps many difficulties in the
design of complex systems and supports the clean handling of concurrency [15].

We here claim that many of the arguments for actor-oriented design also
apply to the modeling tools, and that this aligns well with the cloud-computing
infrastructure already in place. This would not only make modeling tools more
robust and versatile, but would also allow toolsmiths to focus on particular
services, such as simulation or visualization, and not on having to re-develop
everything else that is needed for a complete design environment. This would

220 R. von Hanxleden et al.

also go hand in hand with the trend towards more agile, customized design
processes described earlier.

An interesting initiative in this regard is the ModelBus [11], which is built
upon Web Services and follows a Service Oriented Architectures (SOA) ap-
proach. ModelBus provides an interaction pattern in order to enable model
sharing in a distributed and heterogeneous model-driven development process.
In comparison, actor-oriented design of modeling tool does not necessarily entail
model sharing, but model sharing could be combined with the actor-oriented
approach advocated here.

5.2 Example of a Service: Simulation

For example, as explained in Sec. 3, the KIELER modeling environment leverages
Ptolemy as simulation engine. This is currently implemented by first transform-
ing a KIELER model into a Ptolemy model. Then a Ptolemy instance is run
in the background that processes simulation requests coming from KIELER and
communicates simulation data back for proper visualization in KIELER.

One might as well move this simulation capability to a server that communi-
cates through a standardized interface, e. g., based on XML. A non-trivial ques-
tion here is what kind of information should be communicated. Traditionally,
one is interested in the input/output behavior of the simulated component, and
this is what most APIs (if tools have APIs for this purpose at all) offer. How-
ever, when using such a simulation service from within a modeling tool, one
typically would like to know about the internal states of the simulated system
as well. For example, the Ptolemy-SyncChart does communicate to KIELER the
current state of the simulation; however, a modeler would typically also like to
know which transition was taken to get to that state, which is not communi-
cated. KIELER does remember the previous state, which can help to deduce the
taken transition—but not if there are multiple transitions between the previous
state and the current state. Conversely, one may not want to execute complete,
externally visible reaction steps at once, but would like finer control over the
simulation.

The lesson to be learned from there is that modeling frameworks should have
open simulation interfaces, both for exporting and for importing simulations.
These interfaces should not be limited to the externally visible behavior of the
system under development (SUD), but should also include internal information
that might be of interest to the modeler.

5.3 Example of a Service: Automatic Layout

As another example of a possible service to be provided in the cloud, KIELER

provides layout capabilities to Ptolemy. A non-trivial issue there was to find a
suitable user interface to access the auto-layout capabilities. E. g., initially, the
user interface consisted of five buttons of different functionality. This proved
too complicated to handle for the uninitiated. The current interface has just
one button, which lead to much better user acceptance. The deeper reason for
the initially too complicated user interface for the automatic layout was that,

Multi-view Modeling and Pragmatics in 2020 221

as is customary for today’s editors, Ptolemy’s graphical Vergil editor was not
developed with externally provided automatic layout in mind. E. g., after the
modeler has placed the nodes of a model, Vergil uses some heuristic to automat-
ically route edges. This is a certain help to the human layouter, but conflicts with
automatic layout, which needs control of both the node and the edge placement.
The solution was to enhance Vergil to consider layout-annotations added by the
KIELER layouter to the Ptolemy model.

Another issue turned out to be hyper edges. The Ptolemy way of connecting
more than two actors is to add a relation node to the model, and adding a
connection from each of the to-be-connected actor to the relation node. From
the perspective of a generic layout algorithm, however, the relations look just
like another actor. This typically leads to less compact layouts than would result
from hyper edges that would directly connect the actors.

The lesson to be learned there is that editors should be developed with auto-
matic layout in mind, and should provide simple interfaces to these. As a notable
example in this direction, one of the five stated objectives of the Eclipse Graphiti
project proposal was to provide the ability to use any existing layout algorithms
for auto layouting a diagram5. There are further issues not discussed here, such
as hyper edges, the handling of comments, and the efficient incorporation of lay-
out results into a model (as it turns out, this is often more time consuming than
the actual layout computation) [7].

A further issue was the handling of comments. Traditionally, comments are
text boxes placed (manually, like everything else) at some convenient location
in the visual model. These comments might refer to the whole diagram, e. g., to
provide a general description or to identify the author. Often, however, comments
refer to specific model elements. This reference is usually not anchored in the
model itself, but only implicit in the spatial proximity of the comment to the
referenced model element. This proximity usually gets lost when applying an
automatic layout to the diagram. The lesson learned there was that comments
should be anchored to model elements. This is already possible e. g. in Eclipse
GEF.

6 Conclusions and Outlook

MDE, or software and systems engineering in general, keeps to be challenged by
increasingly complex and powerful applications. In the past, this has fostered the
development of similarly complex and powerful modeling tools and processes,
often with little regard for the practical needs and limitations of the human
developer.

We here advocate an approach that focuses on the different, concrete design
activities of the developer and provides practical support for these activities.
This proposal is driven mostly by the authors’ experience in the design of cyber-
physical systems, but we expect that much of this is of relevance beyond CPS
design as well. Key aspects here are the tool-supported creation of different views

5 http://www.eclipse.org/proposals/graphiti/

http://www.eclipse.org/proposals/graphiti/

222 R. von Hanxleden et al.

for these different activities, and pragmatic-aware model interaction paradigms.
We sketched a vision, or at least fragments thereof, of how this approach might
benefit from and provide support for a selection of current technological trends,
and where this approach might lead to until the end of this decade. As it turns
out, we here drew less from the established MDE community and more from
other communities and from industry trends. So, a general conclusion might be
that there is much innovation out there from which the MDE community could
and should benefit from in the near future.

Acknowledgement. We thank the participants of the workshop and the re-
viewers for their very valuable comments.

References

1. André, C.: Computing SyncCharts reactions. Electronic Notes in Theoretical Com-
puter Science 88, 3–19 (2004)

2. Brooks, C., Cheng, C.H.P., Feng, T.H., Lee, E.A., von Hanxleden, R.: Model en-
gineering using multimodeling. In: Proceedings of the 1st International Workshop
on Model Co-Evolution and Consistency Management (MCCM 2008), a Workshop
at MODELS 2008, Toulouse (September 2008)

3. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Algorithms for drawing
graphs: An annotated bibliography. Computational Geometry: Theory and Ap-
plications 4, 235–282 (1994)

4. Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S.,
Sachs, S., Xiong, Y.: Taming heterogeneity—the Ptolemy approach. Proceedings
of the IEEE 91(1), 127–144 (2003)

5. Estefan, J.: Survey of model-based systems engineering (MBSE) methodologies,
Rev. B. Technical report, INCOSE MBSE Focus Group (May 2008)

6. Fishwick, P.A., Zeigler, B.P.: A multimodel methodology for qualitative model
engineering. ACM Trans. Model. Comput. Simul. 2, 52–81 (1992)

7. Fuhrmann, H.: On the Pragmatics of Graphical Modeling. Dissertation, Christian-
Albrechts-Universität zu Kiel, Faculty of Engineering, Kiel (2011)

8. Fuhrmann, H., von Hanxleden, R.: On the Pragmatics of Model-Based Design. In:
Choppy, C., Sokolsky, O. (eds.) Monterey Workshop 2008. LNCS, vol. 6028, pp.
116–140. Springer, Heidelberg (2010)

9. Fuhrmann, H., von Hanxleden, R.: Taming Graphical Modeling. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394, pp.
196–210. Springer, Heidelberg (2010)

10. Gurr, C.A.: Effective diagrammatic communication: Syntactic, semantic and prag-
matic issues. Journal of Visual Languages & Computing 10(4), 317–342 (1999)

11. Hein, C., Ritter, T., Wagner, M.: Model-driven tool integration with ModelBus.
In: Workshop Future Trends of Model-Driven Development (2009)

12. ISO/IEC JTC 1/SC 7: Systems and software engineering architecture descrip-
tion. ISO/IEC FDIS 42010, working document ISO/IEC JTC 1/SC 7 N (2011),
http://www.iso-architecture.org/

13. Jobs, S.: Apple special event, keynote speech (March 2011)
14. Lapadula, A., Pugliese, R., Tiezzi, F.: A Formal Account of WS-BPEL. In: Lea,

D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 199–215.
Springer, Heidelberg (2008)

http://www.iso-architecture.org/

Multi-view Modeling and Pragmatics in 2020 223

15. Lee, E.A.: The problem with threads. IEEE Computer 39(5), 33–42 (2006)
16. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific

languages. ACM Computing Surveys 37(4), 316–344 (2005)
17. Motika, C., Fuhrmann, H., von Hanxleden, R., Lee, E.A.: Executing domain-

specific models in Eclipse (in preparation)
18. OASIS WSBPEL TC: Web Services Business Process Execution Language Version

2.0. (April 2007),
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

19. Paige, R., Ostroff, J.: The single model principle. Journal of Object Oriented Tech-
nology 1 (2002)

20. Prochnow, S., von Hanxleden, R.: Statechart Development Beyond WYSIWYG.
In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS,
vol. 4735, pp. 635–649. Springer, Heidelberg (2007)

21. Sztipanovits, J., Karsai, G.: Model-integrated computing. Computer 30(4), 110–
111 (1997)

22. Wimmer, M., Schauerhuber, A., Kappel, G., Retschitzegger, W., Schwinger, W.,
Kapsammer, E.: A survey on UML-based aspect-oriented design modeling. ACM
Comput. Surv. 43(4), 28:1–28:33 (2011),
http://doi.acm.org/10.1145/1978802.1978807

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://doi.acm.org/10.1145/1978802.1978807

View-Based Development
of a Simulation Framework

for Multi-disciplinary Environmental Modelling�

Rolf Hennicker and Matthias Ludwig

Institut für Informatik, Ludwig-Maximilians-Universität München
{hennicker,mludwig}@pst.ifi.lmu.de

Abstract. We report on the development of a large-scale simulation
framework for environmental modelling. The framework allows to cou-
ple various simulation models from natural and social science disciplines
to perform integrative simulations. It has been constructed following a
development methodology based on the identification of different func-
tional views, which are concerned with data exchange, simulation space
and coordination of distributed simulation models with respect to (logi-
cal) simulation time. On all levels of the development we have rigorously
applied modelling and specification techniques including the last step, in
which the different views are integrated into a component model of the
full framework. The requirements for the correct coordination of simula-
tion models have been formally specified in terms of the process algebra
FSP and the design model has been model checked against the coordina-
tion requirements. Within the GLOWA-Danube project the framework
has been successfully instantiated to construct the distributed simula-
tion system Danubia which integrates up to 15 simulation models from
various disciplines to model the consequences of global climate change
for the water household on regional scales.

1 Introduction

Global climate change has an increasing impact on our natural and social envi-
ronment. Therefore it is important to understand better the complex, mutually
dependent processes occurring in nature and in socio-economic systems which
calls for interdisciplinary research. Computer-based simulations have emerged
as an appropriate means for studying possible scenarios for the future and to
support the management of adaptation and/or prevention strategies. While in
the past simulation models often were developed as monolithic applications by
a particular discipline to provide specialised answers, nowadays the need for
interdisciplinary modellling and integrative simulation has been recognized.

� This research has been partially supported by the GLOWA-Danube project
01LW0602A2 sponsored by the German Federal Ministry of Education and Research
and by the EU project ASCENS, 257414.

R. Calinescu and D. Garlan (Eds.): Monterey Workshop 2012, LNCS 7539, pp. 224–250, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

View-Based Development of a Simulation Framework 225

In an integrative simulation system several simulation models are coupled in
order to analyse dependencies and transdisciplinary effects of the simulated pro-
cesses. Following [20] and [8] environmental simulation models can be classified
with respect to their basic modelling approach (process-, data- or agent-based
modelling), treatment of simulation space (spatially distributed or lumped) and
treatment of simulation time (discrete or continuous)1. Moreover, in a network
of coupled simulation models one can distinguish whether the models are se-
quentially executed one after the other (possibly with iterations), whether they
are concurrently executed and whether they are dependent from each other.

Coupling of simulation models from various disciplines is a non-trivial task,
both conceptually and also from the implementation point of view. One has to
cope, among others, with different simulation paradigms, different resolutions of
space, and different local time scales to represent simulation time. For instance,
in natural sciences often a process-based simulation approach is preferred, models
typically use grid-based resolutions of space, and the time scale typically ranges
from minutes to hours. In social sciences, however, an agent-based approach is
most likely, space is often distributed into political units, and the time scale is
usually more coarse ranging from months to years.

In this paper, we focus on process-based models which simulate spatially
distributed processes and work on discrete time scales. We consider concur-
rently running simulation models which are dependent and exchange data at
runtime. In this context, we report on the development of a generic framework
for computer-based environmental modelling which has been constructed within
the project GLOWA-Danube, cf. [22,26], which is part of a program on the con-
sequences of climate change set up by the German Ministry of Education and
Research. The framework is generic in the sense that it is, in principle, applicable
to any kind of model which supports distributed geographical units of arbitrary
size and arbitrary discrete time scales.

The development of the simulation framework has been guided by conceptual
and architectural requirements. Conceptually, we have identified three major
issues. The framework should support:

1. Data exchange between concurrently running simulation models.
2. Consistent treatment of simulation space for all models.
3. Coordination of simulation models with respect to simulation time.

From the architectural perspective, two logical layers are required, a framework
core and a developer interface as indicated in Fig. 1. The framework core com-
prises all features that can be handled by the framework itself like, e.g., building
simulation configurations and coordination of simulation models. Hence, it serves
as a runtime environment for coupled simulations. The developer interface is in-
tended to facilitate the implementation of single simulation models. It provides
a programming interface, where particular elements exhibit so-called plug-points
1 Our notion of simulation time does not refer to real time but to the specific date for

which a simulation model actually computes data; e.g. the simulated temperature
at 5 p.m. on July 5th, 2035.

226 R. Hennicker and M. Ludwig

(in the sense of [7]), which have to be filled with appropriate plug-ins in order to
obtain an executable system. The plug-ins are provided by concrete simulation
models, say M1, . . . , M4, as indicated in Fig. 1. Hence, the simulation models
instantiate the generic framework to a complete, coupled simulation system. The
framework core is transparent for the model developer. Thus the developer of
a simulation model is not concerned with administrative issues, like, e.g. model
linking. On the other hand, all simulation models must adjust to general rules
for common structure and behaviour which are implemented in the framework.

Developer Interface

M1 M2 M3 M4

Developer Interface

M1 M2 M3 M4

Framework Core
Framework Core

Fig. 1. Framework layers

For the development of the framework we have applied a rigorous method-
ology based on different functional views (or aspects) and on different abstrac-
tion levels. The view-based approach supports separation of concerns which is
mandatory to understand the various tasks, in which an integrative simulation
framework is involved. In our context, we have identified three views related to
the three requirements from above: data exchange, simulation space and simu-
lation time. These views are founded on a common base view which deals with
basic properties of integrative simulations. We propose three abstraction levels
for each view, dealing with requirements, with design and with the construction
of a component architecture. Finally, on the component level, the single system
views are integrated into an overall component model of the simulation frame-
work. Fig. 2 gives an overview of our methodology which shows that the base
view is extended on each abstraction level. As indicated in the picture, the dia-
grams must commute, i.e. extensions (denoted by ↪→) and refinements (denoted
by �) must be compatible with each other.

For the representation of each view we use the Unified Modeling Language
UML [15] as a graphical notation and the Object Constraint Language OCL [27]
for specifying constraints. We have restricted the use of UML to an excerpt for
which we have defined refinement relations between models on different abstrac-
tion levels, extension relations between models on the same abstraction level as
well as a construction for model integration. We use structural models in the
form of class and component diagrams and behavioural models in the form of
sequence diagrams. For the most critical part of the framework, concerning the

View-Based Development of a Simulation Framework 227

base

data space time

integration

req � des � cmp

req � des � cmp req � des � cmp req � des � cmp

cmp

Fig. 2. View-based development

coordination of the simulation models w.r.t. simulation time, formal specifica-
tions in terms of the process algebra FSP [23] have been provided and the design
model (using a timecontroller) has been model checked against the coordination
requirements.

The framework implementation is systematically derived from the integrated
component model by a pattern transforming components into Java packages
which contain component managers to instantiate interfaces between compo-
nents. The framework has been implemented as a distributed system relying
on Java’s Remote Method Invocation interface. Within the GLOWA-Danube
project, the framework has been successfully applied to construct the distributed
simulation system Danubia which integrates up to 15 simulation models from
various disciplines, like meteorology, hydrology, plant physiology, glaciology, econ-
omy, agriculture, tourism, and environmental psychology. Actually, Danubia is
already in use as a tool for decision makers to support the sustainable planning
of the future of water resources in the Upper Danube basin.

A number of other frameworks and interfaces supporting integrated environ-
mental modelling emerged since the GLOWA-Danube project started in 2001;
for an overview see [16]. There are, e.g., the Object Modelling System OMS [18],
ModCom [13], The Invisible Modelling Environment TIME [24], and the Open
Modelling Interface OpenMI [9]. While TIME is a platform for the development
of stand-alone modelling tools, OMS, ModCom, and OpenMI are frameworks
which support the independent development of models and allow for execution
of coupled simulations. In particular, OpenMI is designed to extend existing
stand-alone models by standard interfaces for data exchange. In contrast to our
approach, OpenMI allows only for sequential execution of dependent models.
OMS supports also parallel execution, as long as models are independent from
each other. ModCom and TIME are both not designed for distributed execution.
Distributed simulations of dependent models are supported by the High Level
Architecture HLA [6] which was set up in the nineties to define a structural ba-
sis for simulation interoperability. A formal model for the architecture of HLA

228 R. Hennicker and M. Ludwig

has been provided in [2] on the basis of the architectural description language
Wright [1]. HLA provides a general purpose architecture while our approach is
tailored to environmental simulations fixing particular rules for this kind of ap-
plication. For instance, the life cycle and the coordination of simulation models
are already implemented in the framework core. As a consequence, the devel-
oper of a simulation model has only to implement the plug points provided by
our developer interface while in HLA a simulation model (called federate there)
must take care of calling the services of the HLA runtime infrastructure, e.g.
to publish state updates or to request advance of logical time, in accordance
with the type of simulation. Thus even real-time players can be integrated in
HLA architectures which was not the intention of our environmental modelling
approach.

After this introduction we proceed by illustrating in more detail the applica-
tion of our development methodology for (parts of) the base and the time view
of the simulation framework in Sects. 2 and 3. In Sect. 4 we describe briefly the
requirements models for the data exchange and the simulation space view. We
do not consider in detail the component models of the single views, but we give
an overview of the final result of their integration in Sect. 5. Then we discuss
the application of our framework to obtain the Danubia simulation system in
Sect. 6 and we finish with some concluding remarks in Sect. 7.

2 Base View Development

2.1 Base View Requirements

Requirements analysis concerns the identification and modelling of concepts
which are crucial for the envisaged system. To model the concept of an inte-
grative simulation we use the class Simulation shown in Fig. 3. Any (integrative)
simulation has a (non-empty) set of participating simulation models represented
by instances of the class Model. We require that simulations and models can be
identified by a unique simulationId and modelId, resp., expressed by the property
{key}, which is a shorthand notation for a corresponding OCL invariant defined
in an obvious way.

<<requirements>>
overview^basecd

−simulationId{key}

Simulation Model

−modelId{key}
−sim
1

−models
*

Fig. 3. Base view requirements: static model

Concerning basic dynamic behaviour of integrative simulations, the sequence
diagram in Fig. 4 shows a minimal set of actions that are expected, when an
integrative simulation is performed. By means of an appropriate user interface,

View-Based Development of a Simulation Framework 229

which is not in the scope of the simulation framework and therefore is modelled
as an actor, a Simulation object is created and started. Then instances of all
participating models must be created and executed (as indicated in the loop
fragment). When a model has finished its simulation run the Simulation object
is notified by the message finished. If this notification has arrived from all par-
ticipating models the end of the simulation is signalled to the UserInterface. All
messages in the sequence diagram are asynchronous (indicated by an open ar-
rowhead). Hence the single simulation models are executed in parallel after they
have been started within the loop. Obviously, the static and the dynamic model
are consistent, since all lifelines in the sequence diagram correspond to roles and
types of the static model.

sim:Simulation

loop

new()

new()
m:Model

finished()

finished()

sd executeSimulation^base

UserInterface

start()

run()

<<requirements>>

[forAll m in sim.models]

Fig. 4. Base view requirements: dynamic model

2.2 Base View Design

Design modelling concerns the development of solutions in order to realise the
abstract concepts. In our case we discriminate active entities for controlling and
descriptive objects that carry information. An overview of the structural design
model of the base view is depicted in Fig. 5.

The class Simulation of the requirements model is split into the two classes
SimulationAdmin and SimulationConfiguration. While a SimulationAdmin instance
is supposed to act as a management entity for an integrative simulation and is
therefore designed as an active class (indicated by a vertical double line on the
border of the UML class box), the class SimulationConfiguration holds descriptive
information about the simulation (indicated by the stereotype «data type»).

230 R. Hennicker and M. Ludwig

−sim

−models

−base

1

1

*

1

1

0..1
0..1

1

−mmd

0..1

−mmd

1

−participatingModels
0..1

*

−sc

1

−sc 0..1−sc 0..1

−modelId:String{key}
−modelClass:String

+isValid():Boolean{query}
+getModelId():String{query}
+getModelClass():String{query}
...

<<data type>>
ModelMetadata

+isValid():Boolean{query}
+getSimulationId():String{query}
+getParticipatingModels():ModelMetadata[*]{query}
...

AbstractModel
<<base class>>

−simulationId:String{key}
SimulationConfiguration

<<data type>>

SimulationAdmin

+start()
+finished()...

+run()
...

ModelCore

Model

−modelId{key}

<<requirements>>
overview^basecd

1

−simulationId{key}

Simulation

−sim

−models *

overview^basecd
<<design>>

Fig. 5. Base view design: static model

The requirement class Model has been split into the three design classes Mod-
elCore, AbstractModel and ModelMetadata. While ModelMetadata is a class for
storing meta data of a simulation model, the classes ModelCore and Abstract-
Model represent a simulation model itself. This partition follows the framework
principle explained in Sect. 1: while ModelCore belongs to the framework core
(indicated by the dark colour) to implement the general life cycle of a simulation
model within the method run (and therefore is again an active class), the class
AbstractModel is part of the developer interface of the framework. It constitutes
a base class (depicted by the corresponding stereotype) for the development of
an individual simulation model by (object-oriented) extension. In contrast to the
requirements model, the static design model shows operations which are either
derived from the messages of the dynamic requirements model (see Fig. 4) or
identified during the design phase, like isValid. The latter operation occurs in the
classes SimulationConfiguration and ModelMetadata, to determine the validity of
simulation configurations and the validity of model meta data resp. In each case
it is a query specified by OCL pre- and postconditions as expected.

contex t S imu l a t i o nCon f i g u r a t i o n : : i s V a l i d ()
pre : t r u e
post : r e s u l t = s e l f . s i m u l a t i o n I d <> ""

and s e l f . p a r t i c i p a t i n gMod e l s <> n u l l
and s e l f . p a r t i c i p a t i n gMod e l s−>f o r A l l (m | m. i s V a l i d ())

contex t ModelMetadata : : i s V a l i d ()
pre : t r u e
post : r e s u l t = s e l f . mode l Id <> "" and s e l f . mode lC la s s <> ""

View-Based Development of a Simulation Framework 231

There is also a refinement of the dynamic requirements model of Fig. 4 taking into
account the new classes, see Fig. 6. The sequence diagram depicts preconditions
that must be satisfied before an object is created and postconditions that must
be valid after creation. It also contains a reference to a nested sequence diagram
not shown here.

sc:SimulationConfiguration

sim:SimulationAdmin

{post:self.simulationId=simId and
self.participatingModels=pModels}

new(simId, pModels)

new(sc)
{pre:sc.isVaild()}

sd executeSimulation^base

UserInterface

<<design>>

start()

finished()

{post: self.sc=sc}

runSimulation^base
ref

Fig. 6. Base view design: dynamic model

Refinement Rules. We have defined general rules for refinement which allow
us to split requirement classes into sets of design classes and to rename and add
model elements and behaviours. The rules are defined for class diagrams and
sequence diagrams by taking into account their syntactic structure. Semantic
refinement relations between sequence diagrams can be found, e.g., in [5], or in
the STAIRS approach [11,10].

Structural Model. A structural model SM 2 is a refinement of a structural model
SM 1, denoted by SM 1 � SM 2, if

– for each class A in SM 1 there exists a non-empty set CorA of corresponding
refining classes in SM 2,

– for each attribute of a class in SM 1 there is a corresponding attribute in one
of the refining classes of that class,

– for each association in SM 1 between two classes A and B there exists an
association in SM 2 between two classes in CorA and CorB resp. such that
multiplicities are respected, and

– for each invariant Inv occurring in SM 1 there exists an invariant Inv ′ in
SM 2 such that Inv ′ ⇒ Inv .

232 R. Hennicker and M. Ludwig

Dynamic Model. Let SD1 and SD2 be sequence diagrams with corresponding
structural models SM 1 and SM 2 resp. such that SM 1 � SM 2. Then SD2 is a
refinement of SD1, denoted by SD1 � SD2, if

– for each lifeline L in SD1 with type A ∈ SM 1 there is a non-empty set CorL

of corresponding lifelines in SD2 where the type of each L′ ∈ CorL is in
CorA , and

– for each interaction fragment in SD1 there is a corresponding interaction
fragment in SD2 such that the (partial) order of the interaction fragments
in SD1 is reflected by the (partial) order of the corresponding interaction
fragments in SD2.

2.3 Base View Components

The goal of our component model is to group the classes, identified in the struc-
tural design model, into components following the general principles of high
cohesion and low coupling. Components themselves are connected via (provided
and required) interfaces and they can be organised hierarchically. We say that
a component model is a refinement of a design model if each class of the design
model occurs in one of the components and if each association of the design model
is either preserved, if the associated classes belong to the same component, or
otherwise, it is resolved by connections via interfaces. We use components solely
for structuring purposes; they are not instantiable and hence behaviours are
implemented by the classes inside a component. (In particular, this allows a
straightforward implementation in object-oriented languages.) Hence the tran-
sition from design to components concerns only the static aspects while the
dynamic model of the design remains still valid on the component level.

The UML component diagram in Figure 7 shows the component model for
the base view. We use two components, Simulation and Model, containing the
respective classes for simulations and for models occuring in the static design
model in Fig. 5. The associations between simulation and model classes and the
interactions between their instances have lead to the interfaces ModelAccess and
ExceptionHandler which are implemented (depicted by the ball notation) and
used (depicted by the socket notation) by the appropriate classes of the compo-
nents. (The multiplicity * indicates that at runtime arbitrary many instances of
model classes can interact with a simulation.) The interfaces SimulationAccess
and UserInterface show the open connections to the user interface not being part
of the framework.

3 Simulation Time and Coordination

A central role in integrative environmental simulations is played by the notion
of time and by the coordination of the simulation models. As already mentioned
in the introduction, our notion of time expresses logical simulation time and
does not refer to execution time. In this section we show how the models of

View-Based Development of a Simulation Framework 233

<<component>>

<<component>>

cmp architecture^base
<<components>>

Simulation

Model

ModelAccess

SimulationAccess

+finished()
+error()

+setSimulationConfiguration(sc:SimulationConfiguration)
+start()

+setSimulationConfiguration(sc:SimulationConfiguration)
+run()

+setModelMetadata(mmd:ModelMetadata)

+exception()

ExceptionHandlerUserInterface

ModelAccess ExceptionHandler

SimulationAccess UserInterface

**

Fig. 7. Base view: component model

the time view are constructed by extensions of the corresponding levels of the
base view. Fig. 8 gives an overview of the single extensions and refinements to
be considered. The single steps are performed in the following order: Steps 1
and 2 concern the refinement from requirements to design and from design to
components in the base case which have already been carried out in Sect. 2. In
step 3, the requirements model of the time view is constructed as an extension
of the requirements model of the base view. This requirements model is then
refined, in step 4, into a design model of the time view. This leads to the proof
obligation (*) that the resulting design model of the time view is an extension of
the design model of the base view, i.e. the lefthand diagram commutes. Finally,
in step 5, the design model of the time view is refined into a component model.
This leads to the proof obligation (**) that the resulting component model of
the time view is an extension of the component model of the base view, i.e. the
righthand diagram commutes.

In our approach extension relations are defined by precise (syntactic) rules on
the basis of an excerpt of the UML metamodel for class and sequence diagrams.
In principle, an extension relation is a particular case of a refinement relation
such that renaming of model elements and splitting of classes and lifelines is not
allowed. For details see [21].

234 R. Hennicker and M. Ludwig

base

time

req
(Fig. 3&4)

�
1

des
(Fig. 5&6)

�
2

cmp
(Fig. 7)

req
(Fig. 9&10)

�
4

des
(Fig. 12&13)

�
5

cmp
(Fig. 14)

3 ∗ ∗∗

Fig. 8. Base and time view development

3.1 Time View Requirements

A simulation model simulates a (physical or social) process for a certain period
of time. In an integrative simulation all models must agree on a common time
period which is determined by the overall simulation2. Hence, the class Simulation
of the base view requirements in Fig. 3 is extended by two attributes storing the
begin and the end of a simulation. On the other hand, since we are considering
discrete time, each model has an individual time step, which is represented by
an additional attribute of the class Model shown in Fig. 9.

Model

−modelId{key}
−timeStep

<<requirements>>
cd

Simulation

−simulationId{key}
−begin
−end

−models−sim
1 *

overview^time

Fig. 9. Time view requirements: static model

Much more involved are the behavioural requirements concerning simulation
time and coordination. In contrast to stand-alone simulation models, a coupled
simulation model not only computes data, but has to perform activities concern-
ing data exchange in accordance with the simulation time. The general life cycle
a coupled simulation model must follow is described as follows.

– initialise model with basic data (e.g. about the simulation area)
– provide exported data at the model’s export interfaces3
– while not at simulation end

• get data from the model’s import interfaces
2 For instance, in the GLOWA-Danube project the common simulation time spans

typically 50 years starting from the actual date.
3 Which is necessary for other models to start their computation.

View-Based Development of a Simulation Framework 235

• compute new data for the next time step
• provide newly computed data at the model’s export interfaces

– finalise the simulation (e.g. closing of open files or database connections)

This general life cycle of any simulation model is integrated into the sequence
diagram of the base view (Fig. 4) resulting in the sequence diagram for the dy-
namic time view requirements shown in Fig. 10, which is an obvious behavioural
extension of the former one.

provide(sim.begin)

getData(t)

compute(t+timeStep)

provide(t+timeStep)

sim:Simulation

loop

loop

new()

new()
m:Model

finished()

finished()

sd

UserInterface

start()

run()

<<requirements>>

init()

finalize()

executeSimulation^time

[forAll m in sim.models]

[for t=sim.begin .. sim.end step m.timeStep]

Fig. 10. Time view requirements: dynamic model

The sequence diagram in Fig. 10 models the parallel execution of all simula-
tion models participating in an integrative simulation. But it allows much more
(parallel) executions than desired since the single models are by no means coordi-
nated w.r.t. simulation time yet. For instance, Fig. 10 would allow an execution
where the first simulation model has already finished its getData - compute -
provide loop, while some other model, whose exported data is needed by the

236 R. Hennicker and M. Ludwig

first one, has not even provided data yet or has only provided data which is
obsolete for the first model. Hence, we are faced with a non-trivial coordination
problem which cannot be specified in UML. Our solution is to switch from the
UML requirements model to a formal specification of the coordination problem.
For this purpose we use the process algebra FSP (Finite State Processes FSP)
introduced by Magee and Kramer [23] which allows us to formalise the coordi-
nation requirements in terms of so-called property processes4. Then we develop
an FSP design model and check that the design model satisfies the coordination
constraints. Finally, we move back to UML and obtain a UML design model
which is a refinement of the original UML requirements model for the time view.
Our procedure is depicted in Fig. 11. We start with the specification of the
coordination problem.

UML
Requirements Model

UML
Design Model

FSP
Requirements Spec.

FSP
Design Model

model checking

Fig. 11. From UML to FSP and back

The Coordination Problem. When several simulation models are executed in
parallel, it is essential that only valid data is exchanged, i.e. data that fits to
the local model time of the participating models. To specify this requirement we
consider only two simulation models at a time, one, say U , acting as a user of
data, and the other one, say P , acting as a data provider. From the user’s point
of view we obtain the coordination condition (U), from the provider’s point of
view the coordination condition (P).

(U) U gets data expected to be valid at time tU only if the following holds:
The next data that P provides is valid at time tP with tU < tP .

(P) P provides data valid at time tP only if the following holds:
The next data that U gets is expected to be valid at time tU with tU ≥ tP .

Condition (U) ensures that the user does not get obsolete data while condition
(P) guarantees that data, available at the provider’s interface, will not be over-
written if it is not yet considered by the user model. If one can show that all
(pairwise) combinations of all models participating in an integrative simulation
considered in both roles, as user and as provider of data, satisfy the two co-
ordination requirements, then the whole integrative simulation is coordinated
correctly.

To specify the coordination conditions, we first formalise the general life cycle
of a simulation model in terms of the following FSP process MODEL, which is
4 An alternative formalisation of the coordination problem using purely mathematical

notations is given in [3].

View-Based Development of a Simulation Framework 237

parameterised with respect to the model’s time step. The actual simulation time,
when a certain action happens, is modelled by an action index. The sequence
of actions in line 5, getData[t] -> compute[t+Step] -> provide[t+Step], is
iteratively performed with increasing time t and thus formalises the inner loop
of the sequence diagram in Fig. 10. Let us remark that the computation of new
data for time t+Step relies on data obtained for time t. This time difference
avoids deadlocks of concurrently running models (in the case of feedback loops)
but it may also lead to imprecisions whose relevance must be analysed in concrete
cases and, if necessary, can be resolved by using smaller time steps.

− − −

− −
−

− −

A particular simulation model with modelId m and time step sm is then formalised
by the labelled FSP process [m]:MODEL(sm). In this process all actions are pre-
fixed by the model identificator m, i.e. the actions are of the form [m].run,
[m].init, [m].provide[t], m.get[t] etc.

On this basis we can formalise the coordination conditions in terms of the
following FSP property process VALIDDATA. The first alternative of the pro-
cess VALIDDATA formalises condition (U) from above such that the index vari-
able nextUser corresponds to tU , nextProv corresponds to tP and therefore
nextProv-StepProv corresponds to lastP . The second alternative formalises
condition (P) from above.

−

−

For a system of coupled simulation models all requirements concerning the valid-
ity of data are now obtained by pairwise instantiations of the generic property
process VALIDDATA such that, in different instantiations, the same simulation
model occurs once in the role of a user and once in the role of a provider of
data. To validate the property processes we have used the FSP-tool LTSA (La-
belled Transition System Analyser) which translates FSP processes into labelled
transition systems and visualises the transition systems if the property process
is instantiated (by small parameters).

238 R. Hennicker and M. Ludwig

3.2 Time View Design

The formal specification of the coordination requirements is highly non-construc-
tive. The basic idea of the formal design model is to introduce a global con-
trol process that coordinates appropriately all simulation models participating
in an integrative simulation. In [12] we have constructed an explicit coordi-
nation process with FSP, called TIMECONTROLLER, which has actions of the
form m.enterGet[t], m.exitGet[t], m.enterProv[t], m.exitProv[t] for
all model identificators m and time steps t within the range of the simulation
time. The enter actions are guarded by appropriate coordination conditions
like, in the case of three simulation models to be coordinated,

when (t<nextProv1 & t<nextProv2 & t<nextProv3)
[1 . . 3] . en t e rGe t [t] −> . . .

| when (nextGet1>=t & nextGet2>=t & nextGet3>=t)
[1 . . 3] . en t e rP rov [t] −> . . .

The exit actions are not guarded but change the value of the nextGet and
nextProv variables accordingly.

Moreover, the FSP process MODEL of the requirements model is extended such
that any provide and get action is surrounded by appropriate enter and exit
actions which are shared with the timecontroller. Since shared actions can only
be executed together, the timecontroller process now monitors when a simulation
model can execute its get and provide actions in the parallel composition

([1]:MODEL(s1)||...||[n]:MODEL(sn)||TIMECONTROLLER)

We have verified with LTSA that the FSP design model indeed satisfies the
coordination conditions formalised by (instantiations of) the property processes
of the FSP requirements model; see [12] for more details.

The formal FSP design model suggests a particular architecture of a design
model on the UML level which introduces the class Timecontroller shown in the
static UML design model in Fig. 12. Obviously, this model is a refinement of
the static time view requirements model in Fig. 9 and also an extension of the
static base view design model in Fig. 5, as required by the proof obligation (*)
in Fig. 8.

During an integrative simulation run there is exactly one instance of the class
Timecontroller which acts as a monitor that must be called by the simulation
models (more precisely, by the ModelCore instances) before data delivery and
data access can be performed. This is pointed out in Fig. 13 which shows an ex-
cerpt of the dynamic UML design model for the time view. In particular one can
see in Fig. 13 that any enter message called on the timecontroller is equipped
with an “enable” constraint which expresses a coordination condition derived
from the FSP guards in the timecontroller process. We have introduced enable
constraints, though not part of the OCL standard, to model situations in which

View-Based Development of a Simulation Framework 239

a calling object will be blocked if the condition is not valid and then waits until
the constraint becomes true. Let us remark that enable conditions are method-
ologically (and also from the implementation point of view) quite different from
OCL preconditions, since preconditions are expected to hold when an operation
is called. Indeed, when we use preconditions in our models, we express a require-
ment for the caller and our reference implementation will raise an exception if
the precondition is not satisfied upon operation call. In contrast, if an operation
call is constrained by an enable condition, say cond, then the operation, say op,
will be implemented in Java by a synchronized method applying the following
general pattern proposed in [23]:

public synchronized void op() throws InterruptedException {
while (!cond) wait();
... // monitor state = nextState
notifyAll();

}

If the condition cond is not satisfied, the calling thread will be blocked by wait.
If the condition is satisfied the thread may enter the critical region and change
the monitor state. After that it releases, if necessary, all waiting threads by
notifyAll. The while loop ensures that the condition is checked again after a
thread has been released which is necessary since Java follows the “signal and
continue” principle.

The sequence diagram in Fig. 13 shows also that, after a simulation model
has entered the monitor, the concrete execution of getting data and providing
data is delegated to an instance of the class AbstractModel and similarly for
computing new data. How the operations getData, provide and compute will
finally be implemented is due to the developer of a concrete simulation model
who has to extend the abstract model class. Therefore getData, provide and
compute are declared as plug points in the class AbstractModel as indicated in
Fig. 12.

As already mentioned, Fig. 13 shows only an excerpt of the dynamic design
model for the time view. The full model is a hierarchically organised sequence
diagram presented in all details in [21]. It is a refinement of the dynamic time
view requirements model in Fig. 10 and also an extension of the dynamic base
view design model in Fig. 6 (as required by the proof obligation (*) in Fig. 8).

3.3 Time View Components

The component model for the time view encapsulates the Timecontroller class in
the component TimeCoordination, which is connected to the two components of
the base view by appropriate interfaces, one to access the timecontroller moni-
tor from a model and the other one to pass a simulation configuration from the
simulation administrator. This corresponds to the refinement step 5 in Fig. 8.

240 R. Hennicker and M. Ludwig

−begin:Date
−end:Date

+getBegin():Date{query}
+getEnd():Date{query}

−timeStep:TimeStep

+getTimeStep():TimeStep

−tc−tc

−sc

11

−models*

−sim 1

11

−participatingModels*

1
−sc

0..1

−sc1
1

−sc1

0..1

0..1

1

−mmd

0..1 *1

−base1

−mmd

0..1

0..1

SimulationAdmin

+start()
+finished()...

+run()
...

ModelCore

−simulationId:String{key}

+isValid():Boolean{query}
+getSimulationId():String{query}
+getParticipatingModels():ModelMetadata[*]{query}

...

SimulationConfiguration
<<data type>>

−modelId:String{key}
−modelClass:String

+isValid():Boolean{query}
+getModelId():String{query}
+getModelClass():String{query}

...

<<data type>>
ModelMetadata

+enterGet(modelId:String, t:Date)
+exitGet(modelId:String, t:Date)
+enterProv(modelId:String, t:Date)
+exitProv(modelId:String, t:Date)
...

Timecontroller

<<plug−point>>
<<plug−point>>
<<plug−point>>
<<plug−point>>
<<plug−point>> finalize()

provide(t:Date)
compute(t:Date)
getData(t:Date)
init()

<<base class>>
AbstractModel

...
0..1

Model

−modelId{key}
−timeStep

cd
<<design>>

<<requirements>>
cd

Simulation

−simulationId{key}
−begin
−end

−models *

−sim 1

overview^time

overview^time

Fig. 12. Time view design: static model

View-Based Development of a Simulation Framework 241

loop

models[id]:ModelCore base:AbstractModeltc:Timecontroller

finalize()

sd runModel^time(mmd:ModelMetadata, sc:SimulationConfiguration)
<<design>>

enterProv(modelId=id, t=sc.begin)

exitProv(modelId=id, t=sc.begin)

enterGet(modelId=id, t=self.currentModelTime)

exitGet(modelId=id, t=self.currentModelTime)

exitProv(modelId=id, t=self.currentModelTime)

enterProv(modelId=id, t=self.currentModelTime)

[currentModelTime.getNextDate(timeStep).isAfter(sc.end)]

{enable: self.nextGet−>forAll(d:Date|not d.isBefore(t))}

{post: self.nextProv[modelId]=t.getNextDate(timeStep)}

{enable: self.nextProv−>forAll(d|t.isBefore(d)}

{post: self.nextGet[modelId]=t.getNextDate(timeStep)}

{enable: self.nextGet−>forAll(d|not d.isBefore(t))}

{post: self.nsextProv[modelId]=t.getNextDate(timeStep)}

{post: self.currentModelTime=self.currentModelTime@pre.getNextdate(timeStep)}

{self.currentModelTime=sc.begin}

provide(t=self.currentModelTime)

incModelTime()

getData(t=self.currentModelTime)

compute(t=self.currentModelTime)

provide(t=self.currentModelTime)

init()

timeStep=mmd.timeStep
id=mmd.modelId

Fig. 13. Time view design: Excerpt of the dynamic model

242 R. Hennicker and M. Ludwig

Fig. 14 shows the component model of the time view. It extends the base view
component model in Fig. 7 by the component TimeCoordination and by the
two interfaces TimecontrollerMonitor and TimeCoordinationAccess together with
their associated relationships for usage and implementation. Hence, the proof
obligation (**) of Fig. 8 is satisfied.

<<component>>

<<component>>

<<component>>

cmp
<<components>>
architecture^time

Simulation

Model

+exception()

ExceptionHandler +exitProv(modelId:String, t:Date)
+enterProv(modelId:String, t:Date)
+exitGet(modelId:String, t:Date)
+enterGet(modelId:String, t:Date)

TimecontrollerMonitor

TimeCoordinationAccess

+setSimulationConfiguration(sc:SimulationConfiguration)

ModelAccess

+setSimulationConfiguration(sc:SimulationConfiguration)
+run()

+setModelMetadata(mmd:ModelMetadata)

SimulationAccess

+setSimulationConfiguration(sc:SimulationConfiguration)
+start()

*

ExceptionHandler
TimeCoordination

+finished()
+error()

UserInterface

UserInterface

*

SimulationAccess

TimeCoordinationAccess

TimecontrollerMonitor
*

ModelAccess

Fig. 14. Time view: component model

4 Data Exchange and Simulation Space

This section gives a short overview on the remaining system views concerning
data exchange and simulation space. We only present the static requirements
models as extensions of the base view to get an idea of the relevant concepts in
these cases. For the complete development of the data exchange and simulation
space aspects we refer to [21].

View-Based Development of a Simulation Framework 243

4.1 Data Exchange: Requirements

In a coupled simulation, the single simulation models exchange data at runtime.
We require that for data exchange they use data interfaces. For each simulation
model the interfaces appear in two different roles. First, a model must have a set
of export interfaces to provide computed data for other models. Secondly, a model
imports data that it needs for its own computations from other models. For this
purpose it uses import interfaces (which at the same time are export interfaces
of a providing model). Statically, we extend the requirements model of the base
view (cf. Fig. 3) by the type DataInterface associated with the conceptual class
Model by two directed associations, one for the exported and one for the imported
interfaces of a simulation model, as shown in Fig. 15. A concrete example of an
exported and imported interface of a groundwater simulation model is given
later when we illustrate the framework instantiation in Fig. 19.

DataInterface

*

Model

−modelId{key}

<<requirements>>
cd

−simulationId{key}

Simulation

overview^data

−sim −models
1 * imports

exports

*

Fig. 15. Data exchange requirements: static model

The class diagram in Fig. 15 is enhanced by a consistency condition for in-
tegrative simulations which requires that for any model participating in a sim-
ulation and for each interface imported by the model there must exist exactly
one simulation model which exports that interface. The following OCL invariant
expresses this requirement.

contex t S imu l a t i on i n v :
s e l f . models . f o r A l l (m |

m. import s−>f o r A l l (i |
s e l f . models−>one (n |

n . expo r t s−>i n c l u d e s (i))))

The dynamic requirements model for data exchange is a simple extension of
the basic one (Fig. 4), which integrates an activity to link models via their
corresponding import/export data interfaces.

4.2 Simulation Space: Requirements

Any environmental simulation model operates on some simulation space. For
integrative simulations we assume that all models use the same simulation space
which consists of a set of so-called proxels. The term proxel (cf. [25]) stems from

244 R. Hennicker and M. Ludwig

process pixel and suggests that a proxel does not only model a structural element
of the simulation space, but it shows also dynamic behaviour by simulating the
environmental processes on this particular geographical unit. The entire simu-
lation area is then modelled by a set of (non-overlapping) proxels. The spatial
requirements of an integrative simulation are described by the UML class dia-
gram in Fig. 16. It says that a simulation concerns always exactly one simulation
area which, in turn, consists of a set of proxels. The class Proxel requires that
each proxel has a unique identifier pid and a number of properties which must be
common to all simulation models (like, e.g., geographical coordinates, elevation,
etc.). On the other hand, each simulation model has a set of proxels, on which
it operates. These proxels must belong to the simulation area of the simulation,
in which a model participates. This requirement is again expresses by an OCL
invariant not shown here. Obviously, the static requirements model in Fig. 16 is
an extension of the basic one in Fig. 3.

*

1

−proxels

1

SimulationArea

−area1

...

−pid {key}
−property1
−property2

Proxel−area −proxels

*1

−simulationId{key}

Simulation Model

−modelId{key}
−sim
1

−models
*

−sim

<<requirements>>
cd overview^space

Fig. 16. Simulation space requirements: static model

5 Integration

In the last step of our development methodology the component models of the
single views are integrated into an overall component model which is an exten-
sion of each view, as indicated in Fig. 17. Though we have not considered the
component levels of the data exchange and space views, we still want to give an
overview of the component architecture of the full simulation framework shown
in Fig. 18. One can see that it extends the time view component model of Fig. 14
by the component ModelLinking, which stems from the data exchange component
model, and by the two components Basedata and Proxel, both stemming from
the simulation space view. The latter has been introduced as a subcomponent of
the Model component. As indicated in the picture, all components are connected
via appropriate provided and required interfaces.

Our integration follows a general integration procedure for static and dynamic
models which produces a unique result up to renaming, similarly to a push-
out construction, and which is independent of the order of the integration (up

View-Based Development of a Simulation Framework 245

data space time

integration

req � des � cmp req � des � cmp req � des � cmp

cmp

Fig. 17. Integration

<<component>>

<<component>><<component>> <<component>>

<<component>>

<<component>>

cmp
<<components>>
architecture^integration

Simulation

BasedataModelLinking TimeCoordination

Proxel

Model

*

SimulationAccess UserInterface

*

*

ExceptionHandler

BasedataAccess

*

LinkHandler

ModelLinkingAccess

*

TimeCoordinationAccess

TimecontrollerMonitor

ExceptionHandler

ModelAccess

BasedataQuery

Fig. 18. Integrated component model: Overview

to renaming) in the case of more than two diagrams. For static models, our
procedure works on an excerpt of the UML metamodel for class and component
diagrams; it is widely adopted from the UML package merge construction as
explained, e.g., in [14].

But we have also to consider the integration of dynamic models in the form
of sequence diagrams, which we have used in the dynamic design models of each
view and which are still valid in the single component models. The task is to
describe how two sequence diagrams extending a common base sequence dia-
gram are integrated. For this purpose we have defined general rules which work
on an excerpt of the UML metamodel for sequence diagrams. An integrated se-
quence diagram comprises the lifelines, messages and interaction fragments of
its constituent parts. During the integration process the interaction fragments
of the base diagram act as synchronisation points whereas the other interaction

246 R. Hennicker and M. Ludwig

fragments of the extended diagrams can be arbitrarily interleaved. Hence, in
the integrated sequence diagram they are arranged, between the synchronisa-
tion points, in separate operands of the UML par construct to express parallel
executions. Our construction ensures that the partial order of interactions of
each single sequence diagram is preserved by the integration. In general, it may
however happen, that the resulting set of interaction fragments is not partially
ordered, i.e. the result is not necessarily a well-formed sequence diagram; cf. [17].
Thus our integration construction for dynamic models defines in fact a partial
function. Concerning our simulation framework the integration of the sequence
diagrams of the single views is rather involved and presented in detail in [21].

An integration process similar to ours, but without using a common base
defining the synchronisation points, is presented in [4]. The approach is based
on a categorical construction using labelled prime event structures [28]: the syn-
chronisation points of two sequence diagrams are calculated as a pull-back, and
the integration as a push-out.

Finally, let us still emphasise that all models of the simulation framework
are programming language independent. The integrated component model is,
however, sufficiently detailed such that it can be directly transformed into a
concrete implementation. We have constructed a reference implementation of
the framework in Java following a client/server architecture such that network
communication is performed by means of Java’s Remote Method Invocation in-
terface RMI. Since Java does not support the concept of components we have
developed a transformation pattern such that UML components are mapped
to Java packages, each package containing a (public) manager class that is re-
sponsible for generating objects that implement the provided interfaces of the
components in accordance with the component model.

6 Application of the Framework

Within the GLOWA-Danube project [22,26] our simulation framework has been
instantiated to construct the integrative simulation system Danubia which in-
tegrates up to 15 simulation models for natural processes (like hydrology, plant
physiology, groundwater, glaciology etc.) as well as socio-economic models. The
latter have been developed to model the behaviour of the involved actors in
the areas of agriculture, economy, water supply, private households, and tourism
based on the structure of societies and their interests. The ultimate purpose of
Danubia is to serve as a tool for decision makers from policy, economy, and ad-
ministration for the sustainable planning of water resources in the Upper Danube
basin under global change conditions. Danubia was validated with comprehen-
sive data sets of the years 1970 to 2005. It is actually in use to run and evaluate
coupled simulations which are driven by climatic as well as societal scenarios for
the next 50 years.

How a concrete simulation model is integrated into the framework is shown
in Fig. 19 in terms of a groundwater model. The upper layer indicates (part of)
the framework core and the middle layer (part of) the developer interface as

View-Based Development of a Simulation Framework 247

discussed in Sect. 1. One can see that all model classes (and interfaces) of the
groundwater model extend the base classes (the base interface DataInterface
resp.) of the developer interface by certain domain-specific properties, like the
proxel attributes gwWithdrawal, gwLevel etc., and by providing implementa-
tions for the plug-in operations like, e.g., compute and computeProxel. Thereby
the framework’s core functionality concerning runtime coordination, manage-
ment tasks and the like is completely hidden from model developers.

<<base interface>>
DataInterface

<<base class>>
AbstractProxel

TimeController ModelCore ProxelTable

<<interface>>
WatersupplyToGroundwater
getGroundwaterWithdrawal():
WaterFluxTable

getGroundwaterLevel():LengthTable
getInExFiltration():WaterFluxTable

GroundwaterToWatersupply
<<interface>>

Groundwater GroundwaterProxel

gwWithdrawal:Real
gwLevel:Real
inExFiltration:Real

<<plug−in>>computeProxel()...

...

<<base class>>
AbstractModel

timestep:TimeStep...
<<plug−point>> getData(t:Date)
<<plug−point>>
<<plug−point>>
<<query>>

compute(t:Date)
provide(t:Date)

proxel(pid:Integer):
AbstractProxel...

name:String

1 *

1 11*

getGroundwaterLevel()
...

<<plug−in>>provide(t:Date)
<<plug−in>>compute(t:Date)
<<plug−in>>getData(t:Date)
...

northing:Real
easting:Real
area:Real

...
<<plug−point>> computeProxel()
<<query>> getPid():Integer
<<query>> getElevation():Real...

elevation:Real
id:Integer

name = groundwater
timestep = DAY

...

Framework Core

1

1 1

*

<<extends>><<extends>><<extends>>
<<extends>>

Groundwater Model

Developer Interface

Fig. 19. Instantiation of the framework

While the framework is primarily intended for the development of new simu-
lation models, legacy models can yet be integrated into the framework as long
as their computation steps are controllable from the outside. In this case the
legacy model is surrounded by a wrapper which must implement the (plug-in)
operations like any other model. The concrete computation steps of the legacy
model can then be initiated by using the Java Native Interface.

Of course, the performace of a coupled simulation run depends strongly on
the number and type of the participating simulation models. For instance, a sim-
ulation that couples only socio-economic models (together with a groundwater
model needed to interact with the water supplier model) runs actually between
three and four days for a simulation period of 50 years. In this case the smallest
local time step is one day. If, however, all 15 models participate in a simulation
run, then for the same simulation period of 50 years the simulation execution
takes approximately 70 days. Hence, performance is still an issue and the obvi-
ous approach to improve efficiency would be to figure out further parallelisation

248 R. Hennicker and M. Ludwig

possibilities which may concern the framework as well as the implementations
of the single simulation models. For instance, the coordination could be made
more liberal if in addition to the local time steps individual dependencies and
independencies of simulation models would be taken into account. The models
themselves may also identify further parallelisable parts, though we have already
provided templates for parallel computations of different proxels.

7 Conclusion

We have described the development of a generic framework for integrative envi-
ronmental modelling and simulation. The framework supports the development
and the coupling of simulation models from various disciplines. It allows us to
construct in a flexible way networks of distributed, dependent simulation models
which are concurrently executed. The framework has been successfully applied
to construct the integrative simulation system Danubia which integrates 15
simulation models for natural and socio-economic processes.

For the development of the framework we have investigated a view-based
methodology which, we believe, can be useful for the development of other com-
plex software systems as well under the following assumptions: First, a partition
of the functionality into several prominent views must be meaningful, secondly it
should be possible to identify a common base view such that the other views are
othogonal extensions of the base, and, for applying our refinement and extension
relations, the static, dynamic and component models must conform to the ex-
cerpt of the UML metamodel used in our approach. Actually, we are looking for
further case studies to apply our methodology which finally should be supported
by tools for various tasks. For instance, to manage views, check refinements and
extensions, and to compute integrations and reference implementations.

We have applied formal specification techniques to specify and check the tem-
poral coordination being the heart of integrative simulations with dependable
models. We are not aware of any other system of comparable complexity which
has been completely modelled and specified in such a rigorous manner up to the
last step, in which a full, implementation language independent model of the
whole system is constructed. The models and specifications serve at the same
time as a complete documentation for maintenance, furher developments and
adaptations of the framework. The framework as well as the simulation models
developed in the GLOWA-Danube project have been published under the name
OpenDanubia under an Open Source Licence. Thus the framework is accessible
for model developers for instantiation and also for framework developers, who
may want to add further features (e.g., to support dynamic changes of simulation
configurations). More information about OpenDanubia and a comprehensive
list of publications discussing the application of the framework for particular
scenarions and simulation results from various perspectives can be found at the
GLOWA-Danube web page [26].

Acknowledgement. We would like to thank the anonymous reviewers of this
paper for their careful reading and for their useful suggestions for improvement.

View-Based Development of a Simulation Framework 249

References

1. Allen, R., Garlan, D.: A formal basis for architectural connection. ACM Trans.
Softw. Eng. Methodol. 6(3), 213–249 (1997)

2. Allen, R., Garlan, D., Ivers, J.: Formal modeling and analysis of the HLA compo-
nent integration standard. In: Proceedings of the 6th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (SIGSOFT 1998/FSE-6), pp.
70–79 (1998)

3. Barth, M., Knapp, A.: A coordination architecture for time-dependent compo-
nents. In: Proc. 22nd Int. Multi-Conf. Applied Informatics. Software Engineering
(IASTED SE 2004), pp. 6–11 (2004)

4. Bowles, J.K.F., Bordbar, B.: A Formal Model for Integrating Multiple Views. In:
International Conference on Application of Concurrency to System Design, pp.
71–79 (2007)

5. Cengarle, M.V., Knapp, A., Mühlberger, H.: Interactions. In: Lano [19], ch. 9, pp.
205–248

6. Dahmann, J.S., Fujimoto, R., Weatherly, R.M.: The department of defense high
level architecture. In: Winter Simulation Conference, pp. 142–149 (1997)

7. D’Souza, D., Wills, A.: Objects, Components and Frameworks with UML – The
Catalysis Approach. Addison-Wesley, Reading (1999)

8. Giupponi, C., Jakeman, A.J., Karssenberg, D., Hare, M.P. (eds.): Sustainable Man-
agement of Water Resources – An Integrated Approach. Edward Elgar Publishing,
Cheltenham (2006)

9. Gregersen, J.B., Gijsbers, P.J.A., Westen, S.J.P.: OpenMI: Open modelling inter-
face. Journal of Hydroinformatics 9(3), 175–191 (2007)

10. Haugen, Ø., Husa, K., Runde, R., Stølen, K.: STAIRS towards formal design
with sequence diagrams. Software and Systems Modeling 4, 355–357 (2005),
10.1007/s10270-005-0087-0

11. Haugen, Ø., Stølen, K.: STAIRS – Steps To Analyze Interactions with Refine-
ment Semantics. In: Stevens, P., Whittle, J., Booch, G. (eds.) UML 2003. LNCS,
vol. 2863, pp. 388–402. Springer, Heidelberg (2003)

12. Hennicker, R., Ludwig, M.: Property-Driven Development of a Coordination Model
for Distributed Simulations. In: Steffen, M., Zavattaro, G. (eds.) FMOODS 2005.
LNCS, vol. 3535, pp. 290–305. Springer, Heidelberg (2005)

13. Hillyer, C., Bolte, J., van Evert, F., Lamaker, A.: The ModCom modular simulation
system. European Journal of Agronomy 18(3), 333–343(11) (2003)

14. Hitz, M., Kappel, G., Kapsamer, E., Retschnitzegger, W.: UML@Work – Objekto-
rientierte Modellierung mit UML 2 (3. Auflage). dpunkt.verlag, Heidelberg (2005)

15. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Modeling Language User
Guide, 2nd edn. The Addison-Wesley Object Technology Series. Addison-Wesley
(2005)

16. Jagers, H.R.A.: Linking Data, Models and Tools: An Overview. In: Swayne, D.A.,
Yang, W., Voinov, A.A., Rizzoli, A., Filatova, T. (eds.) Proceedings of the iEMSs
Fifth Biennial Meeting: International Congress on Environmental Modelling and
Software (iEMSs 2010), Ottawa, Canada. International Environmental Modelling
and Software Society (July 2010)

17. Klein, J., Caillaud, B., Hélouet, L.: Merging Scenarios. In: 9th International Work-
shop on Formal Methods for Industrial Critical Systems (FMICS), Linz, Austria,
pp. 209–226 (September 2004)

250 R. Hennicker and M. Ludwig

18. Kralisch, S., Krause, P., David, O.: Using the Object Modeling System for hy-
drological model development and application. Advances in Geosciences 4, 75–81
(2005)

19. Lano, K. (ed.): UML 2 Semantics and Applications. John Wiley & Sons (2009)
20. Letcher, R.A., Bromley, J.: Typology of Models and Methods of Integration. In:

Giupponi, et al. [8], vol. 11, pp. 287–323
21. Ludwig, M.: Modelling and Architecture of a Generic Framework for Integrative

Environmental Simulations. Berichte aus der Informatik. Shaker, Aachen (2011)
22. Ludwig, R., Mauser, W., Niemeyer, S., Colgan, A., Stolz, R., Escher-Vetter, H.,

Kuhn, M., Reichstein, M., Tenhunen, J., Kraus, A., Ludwig, M., Barth, M., Hen-
nicker, R.: Web-based Modeling of Water, Energy and Matter Fluxes to Sup-
port Decision Making in Mesoscale Catchments – the Integrative Perspective of
GLOWA-Danube. Physics and Chemistry of the Earth 28, 621–634 (2003)

23. Magee, J., Kramer, J.: Concurrency: state models & Java programming, 2nd edn.
Wiley, Chichester (2006)

24. Rahman, J.M., Seaton, S.P., Perraud, J.-M., Hotham, H., Verrelli, D.I., Coleman,
J.R.: It’s TIME for a New Environmental Modelling Framework. In: Proceedings of
MODSIM 2003 International Congress on Modelling and Simulation, Townsville,
Australia, vol. 4. Modelling and Simulation Society of Australia and New Zealand
Inc. (July 2003)

25. Tenhunen, J.D., Kabat, P. (eds.): Integrating Hydrology, Ecosystem Dynamics,
and Biogeochemistry in Complex Landscapes. Wiley, Chichester (1999)

26. GLOWA-Danube Project Website, http://www.glowa-danube.de (last visited
May 10, 2011)

27. Warmer, J., Kleppe, A.: The Object Constraint Language, 2nd edn. Addison-
Wesley (2003)

28. Winskel, G., Nielsen, M.: Models for concurrency. In: Abramsky, S., Gabbay, D.M.,
Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, vol. 4, pp. 1–148.
Oxford University Press, Oxford (1995)

http://www.glowa-danube.de

Revealing Complexity

through Domain-Specific Modelling and Analysis

Richard F. Paige1, Phillip J. Brooke2, Xiaocheng Ge1,
Christopher D.S. Power1, Frank R. Burton1, and Simon Poulding1

1 Department of Computer Science, University of York, York, YO10 5GH, UK
{paige,xchge,cpower,frank,smp}@york.ac.uk

2 School of Computing, Teesside University, Middlesbrough, TS1 3BA, UK
pjb@scm.tees.ac.uk

Abstract. Complex systems exhibit emergent behaviour. The explana-
tions for this explicit emergent behaviour are often difficult to identify,
and usually require understanding of significant parts of system struc-
ture and component behaviour to interpret. We present ongoing work on
a set of techniques, based on Model-Driven Engineering principles and
practices, for helping to reveal explanations for system complexity. We
outline the techniques abstractly, and then illustrate parts of them with
three examples from the health care, system security and Through-Life
Capability Management domains.

1 Introduction

Complex systems exhibit behaviour that is not directly predictable or traceable
from the behaviour of their constituent components. For large-scale complex
IT systems (LSCITS), complexity arises due to combinations of attributes: in-
creasing system size; increasing rates of changing requirements that must be
addressed; increasing numbers and types of stakeholders. The roots of complex-
ity are typically hidden, and often these do not become apparent during the
system engineering phase. When tested or deployed, emergent behaviour readily
becomes apparent, as illustrated by some recent failures, e.g., the Mars Polar
Lander.

The LSCITS initiative1 has argued that existing reductionist approaches to
engineering complex systems do not address essential complexity. Instead, new
approaches, which allow engineers to understand and control complexity, are
needed.

Model-Driven Engineering (MDE) is a systems engineering approach that
promotes models —abstract descriptions of phenomena of interest— to first-
class engineering artefacts. The ‘engineering’ in MDE focuses on constructing,
analysing and manipulating models in rigorous ways, particularly with auto-
mated tools that support required tasks. MDE requires organisations to invest
substantial effort into constructing models and supporting the modelling process.

1 www.lscits.org

R. Calinescu and D. Garlan (Eds.): Monterey Workshop 2012, LNCS 7539, pp. 251–265, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

www.lscits.org

252 R.F. Paige et al.

Models range from design artefacts (e.g., in UML, SysML, or bespoke domain-
specific languages), to requirements, to documentation and reports, to what-if
models, and beyond. The tasks that are typically applied to models in MDE
include calculations (e.g., calculating a representative response time based on a
model of a network), transformations (e.g., transforming a system model into
a detailed design model), comparisons (e.g., comparing two versions of a model
to identify the changes made during a configuration management process) and
more. Numerous tools now exist to support MDE tasks, and MDE is now prac-
ticed in industry, and on very large complex systems engineering projects and
problems.

MDE, as its name suggests, is most typically used for engineering complex
systems. It is used less frequently for understanding systems, explaining systems,
and revealing inherent complexity in systems. It is the latter that is the focus of
this paper.

We contribute towards an approach for modelling complex systems, designed
to help engineers better understand — and ultimately control — complexity. The
approach, based on MDE principles, practices and tools, focuses on domain mod-
elling and use of bespoke simulation and analysis of said models. The analyses
and simulations are designed to help disentangle relationships – both structural
and behavioural – between entities and components of complex systems. They
are not intended to hide complexity but to reveal just enough detail for engineers
to understand specific interactions between components. This, in turn, may help
engineers understand (1) the impact of engineering decisions on overall system
complexity; and (2) how to better manage and control complexity in a deployed
system. The analyses and simulations are produced via use of MDE transforma-
tions, which, as a side-effect, produce traceability information that can be used
to connect the results of analysis/simulation back to the models that capture
essential characteristics of the problem domain. This “closing of the loop” can
thus help to support evolution and change of models, as a deeper understanding
of complexity develops.

The rest of the paper is structured as follows. We start with an abstract
overview of the general approach for modelling complex systems (Section 2),
which is inspired by approaches to domain-specific language design. Then, in
Section 3, we present three modelling examples that focus on revealing differ-
ent kinds of complexity. The examples are all related to LSCITS socio-technical
problems and concepts; while not all LSCITS must exhibit socio-technical char-
acteristics, many do, and in turn the complexity of such systems is significant (in
part because of the increased number of events and nondeterminism that arises
with humans and organisations involved). In Section 4 we provide pointers and
concrete ideas for future work.

2 Domain-Specific Modelling Approach

The approach we take to modelling complex systems is inspired by domain-
specific language approaches to MDE. The general strategy is to model domain

Revealing Complexity through Domain-Specific Modelling and Analysis 253

concepts of interest (e.g., components, behaviours, requirements) in a language
specifically developed for the domain. As such, the semantic gap between the do-
main and the language used for expressing that domain should be reduced (and
therefore the complexity of the problem domain is the focus of the modelling
problem and the engineers). After constructing a suitable domain-specific lan-
guage (with supporting tools for manipulating models), task-specific simulations
and analyses are specified and developed. These analyses, which are designed to
make explicit views on the behaviour and structures of the complex system,
are developed and encoded using MDE operations (e.g., the transformations or
comparisons mentioned earlier). The analyses can then be used to ask questions
of the complex system model, e.g., what is the source of a set of events, how do
events get transformed through parts of the system, what is the cost associated
with processing particular types of events. In some cases, these questions may
generate a view on the original system model; in other cases, it may elaborate
part of the system model that was previously left abstract or obscured from an
engineer. It is, ultimately, the engineer’s responsibility to decide how to make use
of the elaborated system models that are produced as a result of applying the
analyses. Importantly, by using MDE operations (particularly model-to-model
transformations or model-to-text transformations) to implement the analyses
and simulations, we obtain full traceability (via a trace model) to original (do-
main) models. As such, when an analysis is executed, its results (e.g., model
checking counter-examples, simulation outputs) can be traced back to impor-
tant modelling elements, thus helping to explain the output – and complexity –
in a more precise and analytic way. The traceability information can also be used
to elaborate or refine the source models to take into account any improvements
that may be needed as a result of the analysis or simulation.

In summary, the general modelling approach is as follows.

1. Identify domain concepts and relationships of interest; this in turn identifies
and clarifies the scope of the DSL to be used, and of the modelling that is
to take place.

2. Encode domain concepts and relationships in a domain-specific language,
including the language’s abstract and concrete syntax. Ideally, provide an
editor for the language; the tool support will help to reduce errors and in-
crease trust in the models.

3. Encode analyses of interest, by transforming (via model transformations of
different kinds) domain-specific models into models amenable to analysis.
The transformations should effectively produce views or elaborations of the
original model, e.g., by simulating algorithms or calculating values.

4. Present the results of analysis to engineers, ideally in a perspective similar
to the original editor (where feasible). Exploit the traceability information
generated from running the transformations to enable this (e.g., following
the approach of [6]).

5. Exploit the same traceability information to refactor and evolve the domain-
specific language, where needed.

We now illustrate parts of this approach with several small examples.

254 R.F. Paige et al.

3 Illustrations

Our illustrations focus on constructing and analysing domain-specific languages,
and thereafter models of complex systems, to help to reveal explanations for their
emergent behaviour. We present three examples.

1. A process modelling example wherein complex behaviours (particularly ex-
ceptional behaviours) are revealed through the modelling approach;

2. A secure systems example wherein complex inter-relationships between ac-
tors are revealed through the modelling approach; and

3. A Through-Life Capability Management class of problem, wherein LSCITS
must be obtained to satisfy disparate goals, where there are multiple (opti-
mal) ways in which the goals can be satisfied.

3.1 Failures in Healthcare Processes

Healthcare is a complex system [1, 15, 16]. Here we use term ‘system’ gener-
ically, to indicate a conceptual entity whose components interact in rich and
fine-grained ways because they continually affect each other and operate towards
a common sense of purpose. There are many factors which may contribute to
the complexity of healthcare systems; the focus of our example is the struc-
tures of healthcare systems, and the patterns created by the interaction of their
components. To describe these, a business process model can be constructed.

A business process [7] is a collection of tasks designed to produce a specific
output (e.g., a product or service). A business process model defines a specific
ordering of tasks across time and space. A business process may have a hierar-
chical structure, i.e., tasks may include or trigger further business processes. As
such, they may also be recursive, i.e., a business process may invoke itself. A
task is normally made up of activities (carried out by actors), resources (which
support activities) and constraints.

A business process consists of a normal set of tasks and constraints, as well as
exceptional tasks and constraints, designed to deal with situations outside the
norm. Exceptions in business processes have been widely studied, including work
on both identifying exceptions as well as exception handling. The traditional
approach is to anticipate beforehand, and ideally exhaustively, all exceptional
conditions that may arise, and augment business process models with the ad-
ditional conditional elements that represent exception handling activities. This,
however, makes business process models more complicated, and introduces com-
plexity through interactions between normal conditions and so-called exceptional
conditions, which model exceptional behaviour. This complexity is normally hid-
den from the modeller, until the process model is reviewed and validated. Even
then, for large business process models, it is easy to overlook or misunderstand
the complex interactions between normal tasks and exceptional tasks.

We applied the approach from Section 2 to the problem of understanding ex-
ceptional behaviour in complex business process models. The key concept that
we chose to focus on in developing a DSL (according to the process of Section 2)

Revealing Complexity through Domain-Specific Modelling and Analysis 255

was that of exceptional conditions. We chose to treat exceptional conditions (and
hence, tasks that were executed following exceptional conditions) as failures, and
carry out a failure propagation analysis on a business process model. This in turn
would illustrate (a) the impact of an exception on the overall business process
model; and (b) the sensitivity of the business process model to exceptional con-
ditions (namely, by illustrating the types of exception that tended to consolidate
in specific parts of the business process model). In a nutshell, our DSL would
include many familiar concepts for business modelling, but would be targeted at
modelling of exceptional behaviour.

In terms of the approach of Section 2, we commenced by producing a small
DSL for modelling business processes; this was effectively a subset of the Busi-
ness Process Description Metamodel (BPDM), tailored for the example we were
planning to use for experiments. However, the subset of BPDM was extended to
include concepts for modelling the possible failure modes of the business process.
This requires elaboration, because it is non-trivial and also because it is the key
modelling challenge associated with this problem.

The problem we are interested in solving is identifying the failure modes of a
business process. Our claim is that most process faults have a direct association
with a task in the process — i.e., we assume that in the majority of cases the
failure of a business process is initiated by a failure in a task of the process, and
the failures introduced by individual tasks propagate through the process until
the process delivers failure behaviour. So, to start analysing the behaviour of a
business process in the presence of exceptions, we must first identify the possible
failure modes of each task in the business process.

Let us illustrate this with a small healthcare system example. Consider Fig-
ure 1, which shows parts of a prototypical healthcare (business) process. We
focus particularly Task 15 (Investigations); this task consists of one activity.
Briefly, this task is as follows.

“Patients who have had a suspected stroke should have specialist assess-
ment and investigation within 24 hours of onset of symptoms and be
transferred to the acute stroke unit.”

The activity associated with this task is to investigate the condition of the sus-
pected stroke patient. Resources available include acute stroke/TIA specialists,
required medical documents (e.g., results of early assessment, patient medical
history), and the availability of an acute stroke unit. There is also a constraint
to carry out this activity within 24 hours of the onset of symptoms.

Given the activities, resources and constraints, we can now identify failure
modes, i.e., the ways in which the business process fails to deliver its service. In
effect, failure modes identify mismatches between expected outcomes and desired
qualities. Based on an analysis of the literature [8, 9, 14] and a domain analysis
of health care [2, 5], we argue that the qualities of a business process have the
following five dimensions:

– completeness, whether the outcome of the process is complete;
– validity, whether the outcome of the process meets its requirements;

256 R.F. Paige et al.

Acute stroke and/or
transient ischaemic
attack (TIA) -
suspected (secondary
care)

Clinical presentation

Consider differential
diagnoses

Brain imagingBlood tests Vascular investigations

Review investigation
findings

Imaging reveals
haemorrhagic stroke

Imaging reveals
ischaemic stroke or
transient ischaemic
attack (TIA)

Go to management of
ischaemic stroke

Go to intracerebral
haemorrhage

Imaging reveals
abnormalities other
than stroke or transient
ischaemic attack (TIA)

Manage according to
likely diagnosis

Investigations

History and
examination

Consider urgent
thrombolysis within 3
hours of symptoms

Consider need for
basic life support

Go to adult basic life
support

Perform in parallel

Perform standardised
assessment

Immediate brain
imaging

Consider time since
symptom onset

More than 3 hours
since symptom onset

Less than 3 hours
since symptom onset

Basic investigations

History and
examination

Fig. 1. Acute Stroke/TIA - suspected (secondary care) (derived from [13])

Revealing Complexity through Domain-Specific Modelling and Analysis 257

– consistency, whether the outcome of the process is consistent whenever the
process is executed;

– timeliness, whether the outcome of the process is generated on time; and
– adequacy, whether the outcome of the process is fit-for-purpose.

In each quality dimension, we can determine the possible failure modes of each
activity, resource and constraint of a task. For example, considering the human
resources of Task 15, the possible failure modes might be:

– incomplete, the human resources assigned to the task are insufficient. For
instance, the task requests a specialist and a nurse to assist the investigation,
but in reality, there is no nurse available when the task is performed.

– Late, the team of specialists are late in carrying out the task.
– Inadequate, the task should be performed by a stroke specialist, but in reality,

it is done by a different specialist.

Process models expressed in our DSL can be annotated with tokens indicating
the type of potential failure for each kind of activity, resource or constraint.
Importantly, this failure modelling is carried out on the domain model, in the
vocabulary of process models. Additionally, these failures can then be elaborated
to capture the propagation and transformation behaviour of activities, resources
and constraints. For example, an activity may receive faulty outcomes from pre-
ceding activities. The new activity may compound the failure (by transforming
it into a new failure), may simply propagate the failure, or may mitigate the
failure in an appropriate way. Our modelling approach includes mechanisms for
modelling such failure behaviours.

However, the (annotated) process model constructed as above only captures
the component failure behaviour; it says nothing about the whole-system (emer-
gent) failure behaviour. To understand and reveal this, we transform the anno-
tated process model to a new model amenable to failure propagation analysis.
The details of this are outside the scope of this paper, but the overall approach
used is consistent with what was presented in Section 2: a model transformation
maps the annotated process model into an interval timed coloured Petri Net,
which can then be simulated to reveal the overall business process model failure
behaviour. The overall algorithms used for simulation are inspired by those in
the Failure Propagation and Transformation Calculus [17]. The transformation
itself is not particularly complicated, requiring only several hundred lines of code
(written in a specialised model transformation language); in part, the transfor-
mation is straightforward because of some similar structures arising in both the
DSL for process modelling, and in the dialect of Petri nets.

We applied this approach to the health care example illustrated in Figure 1.
This process includes sixteen key activities2 We focused on one particular failure

2 Excluding the final activity —i.e., determining whether the patient has experienced
an acute stroke, TIA, haemorrhagic stroke, or other attack— because we are inter-
ested in analysing this example to identify key potential failures leading to incorrect
judgement.

258 R.F. Paige et al.

that was identified during the modelling stages: incorrect judgement after activ-
ities related to reviewing the investigating results (activity A19 in Figure 1). As
a result of elaborating the business process model via transformation to a failure
propagation model, we identified a number of reasons that could lead to this par-
ticular failure. Perhaps more importantly, we identified a number of ‘vulnerable’
activities that may be the ultimate cause of such a failure. These include A5
(judgement of application of urgent thrombolysis within 3 hours), A9 (clinical
presentation), A10/11 (review history of health care and examinations) and A17
(brain imaging). During the analysis, the conclusion was that the quality of the
services provided by these activities rely substantially on the skills of the person-
nel carrying them out. Thus, we can argue that to better mitigate such a failure,
improvements should be concentrated on improving the skills and experience
of the personnel carrying out these critical activities. These ‘critical’ activities
were identified by expert analysis, assisted and supported by the traceability
information derived from the model transformation mapping the process model
into Petri nets. The results of the Petri net analysis was (manually) traced back,
via the underlying trace model, to the activities of the process model. In this
particular situation, the reflection of analysis results on the original model was
not done automatically, but expert analysis was assisted by automated tools.

The modelling and analysis approach helped in this example to reveal inherent
complexity due to failure behaviour. In turn, the analysis helped us identify
critical parts of business processes, and how these parts contribute to overall
failures and exceptional conditions.

Our second example uses a similar approach to modelling, but for different
effect: to understand the complex inter-relationships that exist between actors.

3.2 Secure Transaction Problem

The recently cancelled UK National ID card programme was intended to in-
troduce new large-scale complex IT systems, with particularly significant socio-
technical concerns; similar (though not as controversial and pervasive) ID card
systems exist in other countries world-wide. The intention for the UK ID card
programme was to use a unified ID card, with secure transactions, to support
many identification scenarios now currently supported by a collection of mech-
anisms (e.g., non-biometric cards). Many of the intended scenarios, and secure
transactions, involve both network and cryptographic protocols and the inter-
actions of different humans participants in a real-world environment. Modelling
these scenarios is complex, in part due to the fuzziness of some of the properties
involved. In this illustration, we use our modelling approach to unveil complex-
ity in these scenarios, and by doing so address two other key contributors to
complexity: nondeterminism and unpredictability.

Consider the following concrete example.

Alice has an identification card issued by her national government. She
applies, in person, for a tax certificate for her car. The clerk takes Alice’s
identification card and tests it for various properties, related to Alice’s

Revealing Complexity through Domain-Specific Modelling and Analysis 259

identifying features (name, photograph, biometrics, address), which are
needed to ensure that a tax certificate is properly issued to the person
who should hold it. Specifically, the clerk at the tax office uses the iden-
tification card as a means of verifying any claims that Alice makes about
herself (e.g., related to name and age).

Such scenarios occur widely. They appear to be simple (i.e., can Alice be is-
sued a tax certificate for her car?) yet have significant inherent complexity. This
complexity arises for at least two reasons.

1. decisions taken within the scenario are not based purely on boolean values
(i.e., they are taken or not taken). Nor are they taken based on a probability
(e.g., 75% of the time the certificate is issued, 25% of the time it is not3).
Instead, decisions are taken based on probability distributions. A seemingly
binary decision (e.g., can Alice acquire a tax certificate?) is underpinned
by a number of fuzzy decisions (e.g., how accurately does the ID card pre-
sented identify Alice? To what extent does the clerk believe that the ID card
represents Alice?).

2. the scenarios are inherently generic and must be configured to be fully
analysable. For example, different mechanisms of different quality can be
used within the scenario to support Alice demonstrating that she is at least
18. Such instantiations must take into account the scenario context (e.g., how
effective will biometric scanners be in this particular building during these
particular hours), and must be taken into account in any analysis process.

At different steps of the scenario (e.g., when Alice enters the tax office, when
the clerk first observes Alice), decisions are taken (e.g., Alice is over 18, Alice’s
ID is valid). A simplistic view would be that these decisions are binary, and one
branch of the decision structure (e.g., Alice is over 18) is taken with probability
p, and the other (e.g., Alice is not over 18) taken with probability 1− p. Such a
structure would naturally lend itself to state exploration and property checking
using a probabilistic model checker, e.g., PRISM [10] or a probabilistic process
algebra, e.g., pCSP [11]. A different view is that decisions are taken based on
probability distributions. When Alice enters the office, the clerk forms a belief
about Alice’s age; conceptually, this belief is not that Alice is or is not 18, but
that it can be represented as a distribution around Alice’s age and represents
the clerk’s ability to perceive a person’s age. Similarly, when Alice presents an
ID card, there is a probability distribution associated with the clerk’s perception
of this ID card (e.g., does the photo accurately depict Alice; does it appear that
the card has been tampered with). This distribution is in turn dependent on the
clerk’s ability to perceive if a card has been tampered with. Later distributions
may depend on an earlier perception, such as the ability of a third party to forge
or modify a card.

Modelling scenarios like these as a set of binary decisions with real-valued
probabilities hides much of the complexity of how decisions are made. By hiding

3 Though post facto analysis of many instances of the scenario could lead to sufficient
data about the probability of a decision being made.

260 R.F. Paige et al.

this complexity, we make it difficult to understand the impact of changes in
the scenario, e.g., the use of ID cards that are claimed to provide fewer false
positives. This in turn makes it more difficult to analyse scenarios and carry out
what-if analyses, particularly to establish the benefit of improvements in the
mechanisms used in specific configurations of scenarios.

We have applied the modelling approach of Section 2 to scenarios like the tax
certificate one above. In [3] we identified the concepts for and the abstract syntax
of a domain-specific language for modelling configurable scenarios. The DSL in-
cludes concepts for modelling actors (e.g., agents, subjects, cheats), mechanisms
(e.g., cards, card readers), locations, and events (e.g., test a card, validate a
transaction). As a result, the DSL contains slots for carrying out configurations,
for example, to introduce particular cards or particular events.

Transformations have then been defined to map models written in the DSL to
input to a probabilistic state exploration tool. This would allow the use of prob-
abilistic model checkers such as PRISM, or state exploration tools like Casper,
FDR2, or ProBE to do exhaustive runs of specific scenarios, or to work in an in-
teractive mode. These would support probability distributions related to events,
but it would not allow the manipulation of those distributions. In order to pro-
vide support such manipulations, we transform models to to serve as input into
a bespoke state exploration tool. This tool allows us to exhaustively explore
scenario instances, and as result obtain a better understanding of the inherent
complexity of such scenarios. The transformation – in this case, a model-to-text
transformation – is, like the previous example, not particularly complex. Much
of the complexity arises with supporting the configuration of the scenario, e.g.,
to introduce cards with particular capabilities. In this particular case, because
the number of configurations we needed to work with was relatively small – just
a few different types of cards and around 10 different events – we configured
the models interactively. In other words, we asked the end-user to select which
configurations they wanted to execute (as the model-to-text transformation was
running). For larger configurations we would likely re-implement the transfor-
mation to take two models as input – one for the scenario model, the other
encoding configuration parameters. It is worth noting that the transformation
tools we used support transformations involving multiple input models.

What does the elaboration of complex scenario models actually provide to
us? For one, it allows us to determine the impact of mechanisms on outcome.
For example, we might ask: what, truly, is the impact of biometric ID cards
on identification scenarios such as this? Before biometric ID cards, successful
completion of the scenario (i.e., offering Alice a tax certificate when she was
legitimately entitled to one; and refusing when she shouldn’t receive one) de-
pended predominantly on the beliefs formed by the clerk. Do biometric ID cards
offer any improvement? The work in [3] included a number of instances of similar
scenarios and as a result made the following observations:

– use of biometric ID cards led to small, though noticeable increases in true
positives and small, but noticeable reductions in false negatives (when com-
pared with using no cards at all);

Revealing Complexity through Domain-Specific Modelling and Analysis 261

– when compared with alternative mechanisms (e.g., non-biometric ID cards),
biometric ID cards made very small improvements (on the order of 1%).

While many more scenarios and experiments would need to be carried out to
better bound the overall impact, it is arguable whether more expensive bio-
metric ID cards add value when compared with less sophisticated, less accurate
mechanisms of identification.

With this example, we were able to use modelling and overall approach to
make explicit the relationships between actors in a scenario, and to tease out
the semantics underpinning these relationships — i.e., that they were based
on belief models instead of discrete probabilities. In constructing our domain-
specific language and our analysis tools, we have configured the approach in
a way that allows experiment with different semantics. For example, we could
experiment with Bayesian models underpinning the belief systems set up in the
scenarios, without having to change the overall DSL or the modelling approach—
only the back-end state exploration or modelling tool would need to be changed.

3.3 Through-Life Capability Management

Large organisations typically manage LSCITS projects in terms of procuring
the equipment, facilities, personnel and software that they require. Procurement
exercises are invariably large and complex, requiring different entities (e.g., com-
puters, lifeboats) to be compared in different ways.

It has been recognised by numerous government departments and large or-
ganisations that management of projects in terms of capability could potentially
offer increased efficiencies. In classical procurement, an organisation may have
defined a problem in terms of a requirement for a piece of equipment (e.g., a
lifeboat); said equipment would then be acquired. In capability-based manage-
ment, the problem would be defined in terms of a capability of rescuing people
and equipment at sea, and a range of possible solutions could be considered. In
effect, capability-based management means moving from defining problems in
terms of concrete solutions, to defining problems in terms of abstract needs.

The challenge associated with capability-based management is that it opens
up the solution space: a problem is now specified in terms of abstract needs,
which can be met in a number of ways. Each potential solution must be iden-
tified and costed. Moreover, potential solutions are themselves capabilities, and
are associated with their own individual requirements. To put it another way,
solutions come with new problems, and as such understanding how solutions
interact is difficult. Modelling – particularly with domain-specific languages –
can help provide engineers with means to manage the solution space.

Through-Life Capability Management (TLCM) [12] is a specific instance of
capability-based management, which also takes into account long-lived capabili-
ties, e.g., logistics, personnel, training, deployment and decommissioning. It is of
particular interest to military organisations (e.g., the UK Ministry of Defense).
An example of a TLCM problem arises with acquisition of long-lived assets such
as aircraft carriers: not only must the equipment (the carrier) be acquired, but

262 R.F. Paige et al.

so must airplanes, personnel, and fixtures and fittings. Moreover, personnel must
be trained (at the right time) so that the aircraft carrier can be deployed on-time
and on-budget. Furthermore, personnel and other equipment must be moved off
the aircraft carrier in time for it to be decommissioned. There are, of course,
multiple ways in which acquisition of these various assets can be implemented.
In general, TLCM problems exhibit the following characteristics:

– They exhibit multiple objectives (e.g., protect a country, minimise costs).
– To solve them requires heterogeneous tradeoffs (e.g., between training and

equipment). This is sometimes called the ‘Apples and Wednesdays’ problem,
as it requires comparing and deciding between very different things.

– Different solutions may be optimal or near-optimal at different times.
– There may be multiple solutions, and understanding how each solution con-

tributes to solving the overall problem may be difficult.

We applied the approach in Section 2 in a number of experiments that con-
structed DSLs for modelling TLCM problems. At the same time, we developed
MDE techniques for calculating optimal and near-optimal solutions to these
problems. The full details of our approach to calculating optimal solutions (based
on search-based software engineering techniques) have recently been presented
in [4], including a small example. We give a concise overview of our modelling
approach here.

There are two basic modelling problems associated with TLCM.

1. Modelling TLCM problems in a domain-specific way, which reveals the com-
plexity of the problem but says nothing about potential solutions. In this
manner, we use abstraction and domain-specific concepts to allow us to fo-
cus on the challenges of understanding the problem, instead of concerning
ourselves with characteristics of the solution space.

2. Modelling components, which are artefacts that can be used to (partially or
fully) satisfy the goals inherent in a TLCM problem. In effect, the compo-
nents are the basic building blocks of the solution space, and when compo-
nents are – perhaps in combination or aggregation – used to satisfy goals, a
solution to the overall TLCM problem is derived.

To support this, we used the approach in Section 2 and designed and imple-
mented two domain-specific languages: one for modelling TLCM goals, and the
other for modelling components. In the first DSL, goals can be decomposed fur-
ther; moreover, each goal is itself associated with an arbitrary number of ways
in which its satisfaction can be determined. For example, some goals may be
satisfied in a probabilistic way (e.g., 100%, 75%); others may be satisfied in a
measurable but discrete way (e.g., best, worst). The overall abstract syntax of
the problem/goal DSL is illustrated in Fig. 2. We use UML’s concrete syntax
to represent the abstract syntax; in practice, we usually implement the abstract
syntax using Ecore and the Eclipse Modelling Framework (EMF)4. For reasons of
compliance with TLCM vocabulary, a goal is called a Capability in this diagram.

4 www.eclipse.org/emf

www.eclipse.org/emf

Revealing Complexity through Domain-Specific Modelling and Analysis 263

Fig. 2. Capability and goal DSL

The second DSL is used for modelling components that can be used to satisfy
goals (capabilities). Components are associated with a particular cost, as well as
a description of the capabilities they provide, and the capabilities they require
(it is typical of TLCM problems that acquired capabilities require other assets
to also be acquired). This is illustrated in Fig. 3

The first DSL is used by the TLCM expert who wishes to model and under-
stand a TLCM problem; the second DSL may be used by a procurement expert
who understands what assets are available, what they may cost, and what is re-
quired to acquire and deploy them. Models expressed in the two DSLs are then
input in to an optimisation algorithm (implemented using the Epsilon model
management framework5, which will automatically calculate optimal ways in
which the components can be configured to satisfy the overall TLCM objectives.
The details of this algorithm can be found in [4]. Effectively, the implementa-
tion of the algorithm uses a chain of different kinds of model transformations to
calculate optimal solutions. The chain of transformations maintains traceabil-
ity between source models (scenarios and components) and optimal solutions;
the chain is itself very complex, involving around 5K lines of transformation
code. However, the traceability information is not specifically needed to trace
the results from solution back to source models, because the way in which the
transformations produce results, both solutions and relevant source models are
presented to the end-user (in other words, the traceability information is cap-
tured explicitly in the output). Explicitly representing traceability information
in this specific case is necessary to allow the end-user to consider the tradeoffs
between solutions that are available.

5 http://www.eclipse.org/epsilon

http://www.eclipse.org/epsilon

264 R.F. Paige et al.

Fig. 3. Component and measurement DSL

We have applied the modelling approach and the optimisation algorithm to a
number of TLCM problems, including the next-release problem (i.e., determin-
ing the optimal features to include in a next software release), a lifeboat problem,
and a crisis management problem. With this approach we were able to make ex-
plicit the relationships between solutions and problems, particularly when those
relationships were extremely complex (e.g., when an aggregate of components
was used in a non-obvious way to satisfy a complex decomposition of goals). Ef-
fectively, the approach can be used to disentangle the most appropriate ways to
satisfy goals, to exhaustively enumerate all possible optimal solutions to TLCM
problems, and as a result guide TLCM practitioners through the process of mak-
ing tradeoffs between these solutions. DSLs and modelling helped us to reveal
complexity, but also manage it in efficient and controlled ways.

4 Conclusions

We have outlined a modelling approach, based on the construction of domain-
specific languages, for improving understanding of complex systems. Typical
approaches to use of domain-specific languages (e.g., as exemplified in Model-
Driven Engineering) focus on generating new applications; we instead focus on
using the principles of domain-specific languages to produce views of complex
systems that help us better understand interactions between components. We
have used this approach, in concert with model transformation technology, to
better understand complex business processes (to help identify failure behaviour,
both locally and in subsystems) and to better understand complex scenarios (to
help identify the relationships between actors in scenarios). We are current ap-
plying domain-specific languages to wider search-related problems, particularly
for validation and verification of models and mechanisms for manipulating mod-
els. One of the critical problems in modelling is determine the validity of the

Revealing Complexity through Domain-Specific Modelling and Analysis 265

model; we are attempting to evaluate this by building tools that manipulate
models (e.g., via transformation, code generation, or comparison) and then us-
ing search-based techniques to automatically test the tools, thus ideally giving
us more confidence in the validity of the models, the DSLs themselves, and the
tools.

References

1. Baxter, G.: White paper: Complexity in health care. Technical report, Large Scale
Complex IT System, LSCITS (2010)

2. Brook, R.H., McGlynn, E.A., Cleary, P.D.: Quality of health care: measuring qual-
ity of care. New England Journal of Medicine 335, 966–970 (1996)

3. Brooke, P.J., Paige, R.F., Power, C.: State exploration and property checking for
fuzzy scenarios (under review, 2012)

4. Burton, F.R., Paige, R.F., Rose, L.M., Kolovos, D.S., Poulding, S., Smith, S.:
Solving Acquisition Problems Using Model-Driven Engineering. In: Vallecillo, A.,
Tolvanen, J.-P., Kindler, E., Störrle, H., Kolovos, D. (eds.) ECMFA 2012. LNCS,
vol. 7349, pp. 428–443. Springer, Heidelberg (2012)

5. Donabedian, A.: The Definition of Quality and Approaches to Its Assessment.
Health Administration Press (1980)

6. dos Santos, O.M., Woodcock, J., Paige, R.F.: Using model transformation to
generate graphical counter-examples for the formal analysis of xuml models. In:
ICECCS, pp. 117–126 (2011)

7. Object Management Group. Business process definition metamodel (BPDM), pro-
cess definitions (2008), http://www.omg.org/cgi-bin/doc?dtc/2008-05-09

8. Haywood-Farmer, J., Alleyne, A., Duffus, B., Downing, M.: Controlling service
quality. Business Quarlerly 50(4), 62–67 (1986)

9. Haywood-Farmer, J.: A conceptual model of service quality. International Journal
of Operations and Production Management 8(6), 19–29 (1988)

10. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic Symbolic Model
Checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002.
LNCS, vol. 2324, pp. 113–140. Springer, Heidelberg (2002)

11. Lowe, G.: Probabilistic and prioritized models of timed CSP. Theoretical Computer
Science 13(2), 315–352 (1995)

12. McKane, T.: Enabling acquisition change - an examination of the Ministry of
Defence’s ability to undertake Through Life Capability Management. Technical
report (June 2006)

13. NHS. Acute stroke and transient ischaemic attack suspected (January 2010),
http://healthguides.mapofmedicine.com/choices/map/stroke2.html

14. Parasuraman, A., Zeithaml, V.A., Berry, L.L.: A conceptual model of service qual-
ity and its implications for future research. Journal of Marketing 49, 41–50 (1985)

15. Plsek, P.E., Greenhalgh, T.: The challenge of complexity in health care. British
Medical Journal 323, 624–628 (2001)

16. Sweeney, K., Griffiths, F. (eds.): Complexity and Healthcare: an introduction. Rad-
cliffe Medical Press (2002)

17. Wallace, M.: Modular architectural representation and analysis of fault propagation
and transformation. Electr. Notes Theor. Comput. Sci. 141(3), 53–71 (2005)

http://www.omg.org/cgi-bin/doc?dtc/2008-05-09
http://healthguides.mapofmedicine.com/choices/map/stroke2.html

R. Calinescu and D. Garlan (Eds.): Monterey Workshop 2012, LNCS 7539, pp. 266–282, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Information Requirements for Enterprise Systems

Ian Sommerville1, Russell Lock2, and Tim Storer3

1 School of Computer Science, University of St. Andrews, St. Andrews, Scotland
2 Department of Computer Science, Loughborough University, Leics., England

3 School of Computing Science, Glasgow University, Glasgow, Scotland
ian.sommerville@st-andrews.ac.uk, r.lock@lboro.ac.uk,

timothy.storer@glasgow.ac.uk

Abstract. In this paper, we discuss an approach to system requirements
engineering, which is based on using models of the responsibilities assigned to
agents in a multi-agency system of systems. The responsibility models serve as
a basis for identifying the stakeholders that should be considered in establishing
the requirements and provide a basis for a structured approach, described here,
for information requirements elicitation. We illustrate this approach using a
case study drawn from civil emergency management.

Keywords: requirements engineering, requirements, enterprise systems,
responsibility modeling, socio-technical systems.

1 Introduction

The derivation of requirements for complex systems has been recognized as a major
problem in industry. The system requirements are a definition of what is expected of
the system. They inform the system implementation and, in some cases, serve as a
basis for a contract between a system procurer and a system provider. Historically,
requirements have been expressed as statements of natural language text that have set
out the functionality of the system that is expected. Modern agile methods have
rejected the notion of requirements as descriptions of functionality and use
approaches such as user stories to describe what is expected. However, these
approaches are still primarily concerned with what the system should do.

Behavioural approaches to requirements engineering are appropriate when systems
are to be developed from scratch. However, in most organization, new systems are
now created by integrating functionality from existing systems and components. In
such cases, it makes little sense to specify requirements in terms of what the system
should do – the functionality is already defined in these systems. Rather, we argue
that it is more appropriate to consider the system requirements from an informational
perspective – what information should the system provide and who needs that
information to do their job.

The derivation of requirements involves extensive discussions and consultations
with system stakeholders – people who may be system users, their managers or who
are influenced in some way by the system. An enduring problem in requirements
engineering has been how to identify the stakeholders to be consulted and how to help

 Information Requirements for Enterprise Systems 267

them articulate their requirements for a system [1]. Requirements engineering
methods such as Volere [2], say little about this problem – they highlight the
importance of stakeholder consultation but their only guidance of stakeholder
identification is to provide a list of stakeholder types. The problems of stakeholder
identification are exacerbated in situations where the system to be developed spans
several organizations and these stakeholders are distributed across these
organizations.

To address this problem, we have developed the notion of responsibility modeling.
We explicitly identify the responsibilities of organizational stakeholders in a problem
setting and draw up a model showing these responsibilities and their assignment to
agents. This then serves as a basis for both identifying stakeholders and for
identifying whether or not there are inconsistencies in responsibility perception in the
different organizations involved.

Once stakeholders have been identified, we can then enter into discussions with
them about how they do their job and what information they require to do so. The
responsibility model, along with a set of standard questions, is used to facilitate that
discussion and to help the requirements engineer tease out the interactions between
stakeholder responsibilities. This then leads to a statement of ‘information
requirements’ which are then used to inform the system design and implementation.

In the remainder of the paper, we discuss enterprise systems and how these are
typically created by composing and configuring existing software systems or
components. We go on to explain why we think information requirements are the
most important type of requirement for enterprise systems and follow this with an
introduction to responsibility modeling. We explain how responsibility models are
used to derive information requirements and illustrate our approach with a case study
of an emergency management system. We conclude with a discussion of related work
and our thoughts on how this work can be taken forward.

2 Enterprise Systems

The focus of our work for a number of years has been enterprise systems [3]. This
term is widely used and is sometimes used synonomously with the term ERP or
enterprise resource planning systems. Whilst ERP systems are certainly enterprise
systems, we actually use the term more widely to denote systems that have the
following characteristics:

1. They are multifunctional systems in that they deliver different classes of
functionality. For example, an enterprise system may deliver functionality to
support both sales and purchasing functions in an organization.

2. They are often oriented around one or more shared databases. The sharing of
data means that data is not replicated in the organization and there are
opportunities for data sharing across the different functions delivered by the
system.

3. The different components of the system are self-contained systems so that they
can operate with or without other components. An enterprise system may
therefore be considered as a system of systems.

268 I. Sommerville, R. Lock, and T. Storer

4. They are used by different classes of stakeholder who have different jobs in the
organization. Users may have different levels of power and authority in the
organization and different levels of technical expertise. The user base for these
systems is therefore heterogeneous and drawn from different levels in the
organization.

5. The system will have emergent behavior that cannot be predicted by an
analysis of the system components. This behavior may be desirable or
undesirable and is a consequence of the complexity of the relationships
between the different systems in the enterprise system.

ERP systems, such as those marketed by SAP and Oracle, are enterprise systems
where all of the system components are supplied by a single supplier. These ERP
systems normally have a preferred mode of use and organizations that wish to use an
ERP system are advised to adapt their processes to this mode of use. Typically, a
single ERP system will replace a number of separate systems in an organization.

More generally, enterprise systems may include systems from a number of
different suppliers. These may communicate through a shared database but may also
maintain their own databases. Some component systems may be legacy systems –
older systems based on obsolete technology that have been ‘wrapped’ with e.g. a
service interface so that they can interact with other systems. Other components may
be off-the-shelf systems from different manufacturers, specially written systems, etc.

Enterprise systems may be considered as technical software/hardware systems but
they are an integral part of wider socio-technical systems in the enterprise. Socio-
technical systems are systems that include people as well as technical elements and
which are profoundly influenced by organizational policies, processes and culture, as
well as external regulation. In essence, socio-technical systems are the ways in which
work gets done in an organization.

Over the past decade of so, the notion of a virtual organization or virtual enterprise
[4] has been developed. A virtual organization is temporary entity that is created with
a particular mission and which involves a number of other organizations. For
example, a virtual organization may be created to organize a major sporting event
such as the Olympic Games. This encompasses many different partners, who each
have their own IT systems.

Virtual organizations are enterprises in their own right and enterprise systems may
therefore be created to support their operation. In this case, the component systems
are distributed across the organizations in the virtual enterprise. These systems have
all of the above enterprise system characteristics but with additional complications:

1. The system components in the system of systems are independently owned and
managed. This means that there is no single authority that can control the
functionality and development of the enterprise system.

2. There is no single shared database but rather a confederation of databases from
the different organizations that are involved in the system. Inevitably there are
syntactic and semantic incompatibilities between these systems.

3. The practices and cultures of the different organizations in the virtual
organization are different. This has the consequence that the overall virtual
enterprise system is perceived in quite different ways by stakeholders in these
different organizations.

 Information Requirements for Enterprise Systems 269

In this paper, we will draw on our experience of interacting with a virtual organization,
which is created to deal with serious civil emergencies such as a terrorist attack, regional
flooding, or a nuclear incident.

3 Requirements Engineering for Enterprise Systems

Requirements engineering (RE) is the process of understanding a system’s
environment with a view to deriving the requirements for the system – what has to be
implemented to provide the business functionality that is required. For organizational
systems, this inevitably means dealing with multiple stakeholders from different parts
of the organization who have differing needs and priorities. The RE process therefore
inevitably involves negotiations with and between these stakeholders to arrive at a set
of requirements that is acceptable to all stakeholders. This is illustrated in Figure 1.

The requirements engineering team works with stakeholders to understand their
requirements for a new or replacement system. These requirements are then
documented, usually using natural language text, and system models of different
kinds may be produced. These are then taken back to stakeholders for checking.
Typically, this is an incremental process and there will be several rounds of the cycle
completed before a comprehensive set of requirements have been produced.

Inevitably, there will be conflicts between these requirements as they will represent
the wishes of stakeholders with diverse needs. Some of these conflicts will be
resolved by the requirements engineering team but there is always a need for a period
of negotiation to settle disagreements and to arrive at a set of compromise
requirements. This negotiation may also involve the implementation team who
provide information about the costs of implementing the requirements – if
requirements are too expensive to implement, they may be discarded.

Fig. 1. The requirements engineering cycle

270 I. Sommerville, R. Lock, and T. Storer

Fig. 2. Enterprise system requirements engineering

Most approaches to requirements engineering that have been developed have
adopted a behavioural perspective – they focus on what the system should ‘do’, in
terms of delivering functionality to stakeholders of different kinds. However, when
we are considering enterprise systems, the detailed functionality is largely pre-defined
by the system components that are used. Instead, we argue that the focus of
requirements engineering process should be on identifying the information that is
needed and used by stakeholders, rather than the specific functionality that is used.

In essence, the requirements engineering process should focus its analysis on the
information that people need to do their work, the information that they create in the
course of that work and the information that is shared with other people. Non-
functional information requirements such as confidentiality requirements for shared
information, presentation requirements, etc. may also be elicited .

The basis of this idea is not simply that there is limited scope for extending the
functionality of the system. It reflects the reality that the introduction of an enterprise
system normally requires changes to the business processes in the organization.
People have to change and adapt to use the new system and, by and large, this is not
really a problem. They can learn new processes and user interfaces. Problems arise,
however, when people do not have the information they need to do their job, whatever
the specific process that is used.

Therefore, a focus on the information needs of stakeholders, as illustrated in Figure 2,
is likely to be the most productive approach for enterprise system requirements
engineering.

When we are considering information requirements, however, we need to take into
account that political and organizational considerations affect both the availability and
the sharing of information. Stakeholders may deliberately withhold or delay
information because they see some personal benefit in doing so; they may demand
that information be presented in certain ways or may insist on their own information
classification schemes.

To illustrate what we mean here, consider the situation in hospitals where there is
perennial (and probably inevitable) tension between the hospital administrators and
the senior doctors. Information that is required to support administration is inevitably

 Information Requirements for Enterprise Systems 271

different from clinical information and providing that information often requires
doctors to do extra work. If doctors are in a strong position within the organization,
they may simply refuse to provide that information, thus constraining the information
system. On the other hand, if the power struggle favours the hospital managers, then
the doctors may comply with the demands to change the way they capture patient
information. The information requirements depend on the power relationships in the
organization as well as what people need in order to do their job.

4 Responsibility and Responsibility Modelling

Our work over the past few years has been concerned with the notion of socio-
technical systems engineering, where we are exploring how methods and techniques
for socio-technical analysis of organizations can be used alongside systems and
software engineering methods [5]. As part of this work, we have been investigating
the abstractions that can be used to model complex socio-technical systems. Such
systems include human and automated components, are significantly influenced by
organizational policies, culture and politics and often involve participants and systems
from a number of different organizations.

One abstraction that we have found to be particularly helpful is the notion of
‘responsibility’, which can be used to represent the expectations placed on both
individuals and systems and which is a universal abstraction, used in all types of
organization. We define a responsibility to be:

A duty, held by some agent, to achieve, maintain or avoid some given state,
subject to conformance with organizational, social and cultural norms.

The key points in this definition are

• a responsibility is a duty, which implies that the agent holding the
responsibility is accountable to some authority for their actions,

• responsibilities may be concerned with avoiding undesirable situations and not
just with accomplishing some actions

• in discharging responsibilities, agent behaviour is constrained by laws,
regulations and social/cultural conventions and expectations. Therefore, the
effectiveness of an agent in discharging their responsibility is not only judged
by the outcome but also by the ways in which the agent has discharged that
responsibility.

Responsibilities are a particularly helpful abstraction because they are firmly rooted in
the world of work and are not abstract notions, such as goals, which are apparently
internalized in individuals. The naturalness of responsibilities means that
responsibility holders find it easy to communicate with people about their own
responsibilities and also about the responsibilities of others.

Of course, it is often the case that there are different interpretations about what a
responsibility means. Perceived differences in what a responsibility entails are often
helpful in identifying sources of misunderstanding and, sometimes, requirement
conflicts. For example, a responsibility to arrange seminars in a university may be

272 I. Sommerville, R. Lock, and T. Storer

interpreted as simply involving finding speakers and gaining their agreement to speak,
but without any involvement in booking rooms, arranging refreshments, etc. The
same responsibility may also be considered to be more inclusive so that it involves
both finding speakers and making all other arrangements for the seminar presentation.

A responsibility model is a succinct description of the responsibilities that have
been assigned to agents in one or more organizations. Our experience in modeling
with client organizations is that modeling notations have to be simple, easy to explain
and must avoid technical concepts that are alien to the people in the organization. For
this reason, we believe that technical modeling notations such as the UML are not
particularly useful for early-stage requirements engineering.

To make the models as simple as possible to explain, we have limited a
responsibility model to three abstractions:

1. Responsibilities, as discussed above. Examples of responsibilities, drawn from
an emergency response system, might be ‘Establish local communications’,
‘Casualty evacuation’ and ‘Press liaison’.

2. Agents, which are organizational, human or system entities that may be
assigned responsibilities. Therefore, an agent may be a named organization
such as the ambulance service, a person or a role, such as the communication
coordinator or a software-intensive system, such as an automated despatcher
for emergency vehicles.

3. Resources, which are used by agents in discharging their responsibilities. We
distinguish between two types of resource namely physical resources, which
are ‘consumed’ in use and information resources, which are not. An example
of a physical resource is an ambulance – there are a limited number of
ambulances in an area and once these have all been allocated, the despatcher
must wait until one has been released. By contrast, an information resource
such as a geographical information system is not (normally) limited by demand
– it can be used irrespective of the number of users.

Figure 3 illustrates a responsibility model that we developed as part of an analysis of
response to a civil nuclear emergency at a power station by the coast. There are
consequent responsibilities to inform shipping in the area. In this model:

1. Responsibilities are shown in round-edged rectangles.
2. Agent names are enclosed in angle brackets.
3. Physical resources are shown in square brackets.
4. The names of information resources are surrounded by vertical bars.
5. Arrows show the sources and destination of information.

From this model, you can see that responsibility to check on the safety of shipping
falls on MRCC Clyde, the maritime rescue coordination center for the Clyde Estuary
area and it relies on incident information provided by the police and the nuclear
emergency liaison officer from the NAECC, the National Atomic Emergency
Coordination Centre. Notice that we don’t decompose this responsibility – how it is
discharged is up to the organization assigned the responsibility and is of no concern to
the emergency coordination team.

 Information Requirements for Enterprise Systems 273

Fig. 3. An example of a responsibility model

The broadcasting of safety information relies on a number of information resources
from various sources (not shown here) and the physical resources of VHF and MF
radios, which are used to broadcast the information.

5 Deriving Information Requirements

Responsibility models document the responsibilities of the agents involved in a multi-
agency virtual enterprise and so serve as a basis for identifying the sources of
requirements and the stakeholders who need to be consulted to derive these requirements.
Our approach to requirements derivation is based on a set of structured questions that are
put to stakeholders in the system. These questions are based around the following topics:

1. What information needs to be provided to discharge this responsibility?
Whilst an apparently simple question, it is not necessarily the case that
stakeholders from different agencies require the same information. For
example, a stakeholder in agency A may already have some information
because it is generated in agency A but this needs to be provided in other
agencies. So, as well as identifying specific information items, these questions
identify information that may have to be shared between agencies.

2. What channels are used to communicate this information?
This question identifies the ways in which information is communicated to
stakeholders. In some organizational systems, this is simple and straightforward
but in other circumstances such as emergency response, communication channels
can be unreliable. We therefore may identify requirements for alternative
communication channels that may be used.

274 I. Sommerville, R. Lock, and T. Storer

3. Where does this information come from?
Again, an apparently simple question that can elicit surprisingly complex
answers. Our aim is to identify the databases and data sources for the
information required but different stakeholders may actually acquire
comparable information from different sources. The question can often reveal
duplication and overlap in the information maintained by organizations.

4. What information is generated and recorded in the discharge of this
responsibility and why?
This question tries to tease out what information is created by an agent who
holds and responsibility and the rationale for the information creation. This
helps us identify requirements for storing that information and for maintaining
meta-data for that information (who created, when created, etc.

5. What channels are used to communicate this recorded information?
As above, we are interested in communication problems that may arise and
backup requirements.

6. What are the consequences if the information required is unavailable,
inaccurate, incomplete, late, early?
Problems of information availability are common in multi-organizational
systems Here we are specifically interested in trying to derive ‘coping’
requirements which allows the system to continue in effective operation when
things go wrong. We have developed an approach based on HAZOPs [7],
which we have discussed in some detail in a separate paper [8].

These questions are not formulaic – they are interpreted by the requirements
engineering depending on local circumstances and the people being interviewed.
Their purpose is to structure the discussion between a requirements engineer and
system stakeholders. Typically, they lead to further questions and discussion about
how stakeholders discharge their responsibilities. We expect the requirements
engineer to deliver the results of that discussion in a form that is appropriate for the
type of system being developed. This could be natural language requirements,
diagrams or tables or even user stories.

6 Case Study – Emergency Coordination System

To illustrate the derivation of requirements from responsibilities, we use an example
of a system that helps coordinate the responses of the different agencies that are
involved in dealing with civil emergencies. In the UK (and we understand elsewhere),
the emergency services each have their own command and control systems and they
do not think that it is appropriate to integrate these into a single system for all of the
emergency services. Systems from other agencies may also be required to support
emergency coordination. These might include systems from government agencies,
such as the environment agency for flood management, and systems from local and
regional government that maintain information about the local area.

 Information Requirements for Enterprise Systems 275

Fig. 4. Responsibility model of evacuation coordination

Therefore, the coordination system is primarily an information management system
that draws information from other systems and databases. It serves a variety of
different stakeholders - emergency service staff working at the site of the emergency,
emergency service coordination and planning officers, press officers, local
government officers, and so on.

We will focus in this case study on the information requirements for the evacuation
of premises in an area that is threatened by flooding. The information here is drawn
from an analysis of a flooding emergency in the north-west of England in 2005.

Figure 4 shows the responsibility model for area evacuation. Some terminology
here may need to be explained:

1. Silver command is the command centre that is set up to deal with the
emergency and is responsible for strategic decision making. It is located in a
pre-allocated, networked control room. Officers from the different services are
involved in Silver Command. It is generally located away from the source of
the emergency and communicates by radio and telephone with the on-site
command centre (Bronze Command).

2. In England, there are two levels of local government at the district level
(District Council) and at the regional level (County Council). The allocation
of functions to District and County councils is historical.

Given situation information such as the current and predicted level of local rivers and
weather forecasts, Silver Command carries out a risk analysis and on the basis of that
analysis may decide that an area should be evacuated (Initiate Evacuation). This is a
legal decision that results in the handover of certain powers to the emergency
services, such as the right to remove people from their homes, and this must be agreed
by all of the services. Evacuation then proceeds (the dashed arrow in Figure 4 means

Inland Search
and Rescue

Arrange
Transportation

Initiate Evacuation

Evacuation

Collect Evacuee
Information

Establish
Reception
Centres

Security Coordinate
Evacuation

< Silver command > < District council >

< Fire service >
< County council > < Police >

276 I. Sommerville, R. Lock, and T. Storer

that these responsibilities are discharged in sequence). The police are responsible for
coordination and the maintenance of security and the fire service are responsible for
search and rescue operations if these are required. The district council arranges
transport for evacuees but the county council is responsible for setting up safe places
(reception centres) to which the evacuees are taken.

Notice that the responsibility to collect information about evacuees has no agent
associated with it. This is an omission in the emergency plan that we discovered when
we drew up the responsibility model. This highlights one of the key benefits of
responsibility modeling – it serves to expose responsibility vulnerabilities that may
lead to a failure to discharge the responsibility.

Figure 4 also illustrates another characteristic of responsibility models – they may
be incomplete. In this case, we do not show any resources that may be used in the
discharge of a responsibility. This means that we do not need to clutter a diagram with
unnecessary information before using that diagram and that we can proceed with
modeling even when information is incomplete.

By asking the questions identified above, we can discover the information that is
required and produced as part of evacuation coordination. This is presented in a
tabular form in Tables 1 and 2. Table 1 documents the information that is required to
discharge the responsibility. Table 2 documents the information generated.

Table 1. Information used in the discharge of the evacuation responsibility

Information required Source Communication channel
Area map County council Radio data link to printers

in local command centre
Priority premises list District Council Radio data link to printers

in local command centre
Assembly points list District Council Radio data link to printers

in local command centre
Evacuated premises Police, Fire Service Radio from Silver

Command
Unsafe routes Police Radio from Silver

Command
Threat information Environment agency Radio from Silver

Command
Transport capacity and
availability

District Council Radio from Silver
Command

Police and other
emergency service
availability

Police, other services Radio from Silver
Command

The priority premises list is a list of premises, such as schools and care homes, where
the occupants cannot be expected to evacuate themselves. The evacuation involves local
residents going to local assembly points from which they are transported to a place of
safety. Unsafe routes are those routes that must be closed off by the emergency services
because they are already flooded or in imminent danger of flooding.

 Information Requirements for Enterprise Systems 277

We have found that it is important to maintain information about the communication
channels that are used. Communications are often a problem in emergency management
so it is important to check that backup channels are available. In addition, the system
being developed automatically generates and sends messages and so it is important to
have information about how these should be transmitted.

Table 2. Information recorded in the discharge of the evacuation responsibility

Information created/recorded Channels
Information about evacuated premises,
evacuation time and units responsible
for evacuation

Radio or verbal report from ground
units to local Bronze Command. Email
or fax to Silver Command if available,
otherwise radio.

Information about unchecked premises Radio or verbal report from ground
units to local Bronze Command. Email
or fax to Silver Command if available,
otherwise radio

Information about unsafe routes Radio or verbal report from ground
units to local Bronze Command. Email
or fax to Silver Command if available,
otherwise radio

A critical part of the questioning process is the analysis of the consequences if
information is not available as expected. We assess these consequences when the
information required is unavailable, inaccurate, incomplete, delivered late or early? For
example, consider the information relating to the list of priority premises to be evacuated:

1. Information unavailable. A manual premises check is required to see if there
are vulnerable people who need help with evacuation. Evacuation delayed and
additional effort required.

2. Information inaccurate. Again, a manual premises check may be required.
There may be delay in evacuating vulnerable people and vulnerable people
may not left behind.

3. Information incomplete. Delay in evacuation.
4. Information late. Information has to be communicated to units in the field by

radio rather than to local coordination centre. This is time consuming and less
reliable than written communications with Bronze Command.

5. Information early. No consequence.

The information on ‘information hazards’ may then be used as a basis for defining
requirements for mitigation strategies that lessen the consequences of subsequent
failure. We see examples of these in the requirements shown in the following section.

6.1 System Requirements

After the information about the information used by and generated by stakeholders
has been collected, it is then the responsibility of the requirements engineer to
generate system requirements in an appropriate form. If a formal requirements

278 I. Sommerville, R. Lock, and T. Storer

document is to be produced, this is likely to be a mix of natural language
requirements and tables; if the requirements are expressed less formally, then tables
such as Table 1 and Table 2, along with relevant commentary may be all that is
required.

We show a subset of natural language requirements for an emergency response
coordination system (ERCS) along with the rationale for these requirements below.
These have been derived from the information documented in Tables 1 and 2.

1. The ERCS shall be able to import information from the District Council
planning system, the Police emergency system and the Fire Service emergency
system. (Different types of information needs to be shared and this allows for
information transfer between agencies).

2. All information to be imported shall be available in either XML format or in
PDF. (This is intended to minimize the problems of importing information from
different databases).

3. The ERCS shall maintain its own list of priority premises to be evacuated for each
town in the local area. This shall be updated by the local council when the
coordination centre is established from the council’s list. (This is a critical asset
for evacuation. The premises list is normally maintained by the local government
authority but may not be immediately available outside of normal working hours;
While an older list may be out of date, it is better than nothing).

4. The ERCS shall maintain a list of premises evacuated along with the time of
evacuation and the units involved in the evacuation. (This allows units
involved in the evacuation to be coordinated and maintains an audit trail of
who did what and when).

5. The ERCS shall notify all liaison officers of new information about the threat
situation as it becomes available. (Different services may respond differently
to changes in the threat situation e.g. local government staff may withdraw
from a situation because they are not equipped to deal with search and rescue).

6. Alerts that threat information has changed should be displayed on all user
screens and should be sent by SMS to all liaison officers (Threat information is
critical and should be sent on multiple channels. SMS can reach officers when
they are not at their desk).

7. ERCS operators should be able to update the Area Map with information about
unsafe routes, without the need to access the source data for that map (This
allows maps to be distributed to emergency services but does not require
operators to have access to the Council GIS).

8. If information on evacuated premises is not available, the ERCS shall request
the information from the Police liaison officer and send an SMS alert that this
information has been requested. (The Police are responsible for collecting this
information and the Police liaison officer is then responsible for initiating a
manual premises check if this is required).

9. The ERCS shall maintain a list of all unchecked premises and shall
automatically update this when information on evacuated premises is updated.
(If premises have been evacuated, they are no longer unchecked. This partially
mitigates problems due to delays in updating the unchecked premises list).

 Information Requirements for Enterprise Systems 279

10. Transcripts of all incoming radio communications shall be maintained in the
ERCS along with the time of these communications and the identifier of the
source of the message (This is required for auditing purposes if problems are
subsequently reported).

7 Related Work

The notion of using models of responsibility to support the requirements engineering
process was first suggested by Dobson and Strens [8]. This was part of the ORDIT
project [9, 10], which focused on organizational issues in software engineering. The
work on requirements here was mostly concerned with what they termed
‘organizational requirements’ – requirements that are derived from organizational
factors such as the power and authority relationships between people and departments
in an organization.

Working in conjunction with Sommerville and others [11, 12], Dobson continued
the work on responsibility models and documented this in a series of papers, which
were published in a book that he co-edited with Dewsbury [13]. These were the basis
for our own work on responsibility modeling where we have been concerned with
responsibilities and system dependability and models of responsibility in virtual
organizations [14, 15, 16] .

Responsibilities are an example of an abstraction that is clearly located in the
world of system stakeholders rather than a technical abstraction such as an object or
system function. The most closely related alternative abstraction to responsibility that
has been proposed is the notion of a goal. A goal is seen as something that an agent is
trying to achieve and goal-based approaches to requirements engineering such as i*
and KAOS are intended to expose high level dependencies between the goals
associated with agents in a given system [17, 18, 19].

Sub-goals may be derived from higher level objectives and assigned to agents for
completion. Goals are achieved through the achievement of some or all sub- goals.
Relationships between sub-goals express the possible ways in which the super-goal
may be achieved. Analysis of such models can examine, for example, whether a
super-goal may fail due to the failure of a single sub-goal (brittleness), or whether a
particular agent has been overloaded with too many goals to achieve.

We argue that the key benefit of using responsibilities rather than goals comes
from the naturalness of the abstraction. Goals, in the sense of something that is to be
achieved, have 3 main problems:

1. The goals of individuals are usually internalised and people find these very
difficult to articulate. This is particularly true in professional roles where the
work to be done is left to the discretion of the individual.

2. Many, perhaps most organizations, do not have a coherent set of organizational
goals and, where they do, it cannot be assumed that goals set by management
are actually shared by the people in the organization.

3. The goals of individuals in an organization may be focused on personal
advancement and this may, in fact, conflict with organizational goals.

280 I. Sommerville, R. Lock, and T. Storer

In a review of research on goal-oriented approaches, Lapouchnian [20] rightly states
“Identifying goals is not an easy task”. He has found, in practice, that goals are
normally derived from other information that is discovered from stakeholders rather
than articulated directly from them.

8 Conclusions

The modeling approach proposed here, based on the responsibilities that have been
assigned to agents in an enterprise, has been found to be useful in supporting the
elicitation of ‘information requirements’. We argue that for enterprise systems, which
are systems of systems it is more appropriate to focus on the information required and
created by system stakeholders rather than the behavioural characteristics of a system.

The key benefits of using responsibilities and responsibility models in this context
are:

1. Naturalness: can stakeholders without experience of requirements engineering
relate to the approach? The notion of responsibility and responsible behaviour
is widely used in everyday discourse so people can readily discuss their
responsibilities in some situation. The questions used to discover information
requirements relate directly to the stakeholder's job and are therefore easy to
understand.

2. Scalability: Can the approach be used with real rather than simple example
systems? The problem with many RE methods is that they have been
developed using relatively simple systems and when scaled up, unmanageable
volumes of information are created. Our development has always relied on real
system examples and we are confident that our approach scales – for example,
we have developed responsibility models of 300-page emergency plans.

3. Complementarity: can the approach be used alongside other requirements
engineering methods? Responsibility models offer a different perspective from
the behavioural perspective used in other methods so there are no problems in
practice in using these together.

There are practical and methodological problems in attempting to compare
requirements engineering methods, which mean quantitative comparative evaluation
is unreliable. Furthermore, comparison of methods is not the same as comparison of
outcomes. Method A may be better than method B at eliciting requirements but until a
system has been implemented and put into use, we really don’t know if these
requirements meet the needs of the system stakeholders.

Therefore, we cannot and do not claim here that the use of responsibility models in
the RE process necessarily leads to the discovery of ‘better’ requirements. All we can
say is that responsibilities are a good way of stimulating requirements discussions and
this, we believe, increases the chances that the requirements are likely to be
appropriate.

Responsibility models provide a technology-independent perspective on complex
systems of systems, where the components are already in existence. We have
explored how these models may also be used in the systems design phase [21]. In this

 Information Requirements for Enterprise Systems 281

work, we have found the need to enhance these models with the notion of a capability
– a set of competences and resources – that defines the responsibilities that could be
assigned to a system. This work is still at an early stage but it points the way to how
responsibilities and capabilities could be used to support system of systems design.

References

1. Glinz, M., Wieringa: Stakeholders in Requirements Engineering: Guest Editors
Introduction. IEEE Software 24(2), 18–20 (2007)

2. Robertson, S., Robertson, J.: Mastering the Requirements Process. Addison Wesley,
Harlow (1999)

3. Giachetti, R.E.: Design of Enterprise Systems: Theory, Architecture and Methods. CRC
Press, Boca Raton (2010)

4. Camarinha-Matos, L., Afsarmanesh, H.: The Virtual Enterprise Concept. In: Proc. IFIP
TC5 WG5.3 / PRODNET Working Conference on Infrastructures for Virtual Enterprises:
Networking Industrial Enterprises, pp. 3–14 (1999)

5. Baxter, G., Sommerville, I.: Socio-technical Systems: From design methods to systems
engineering. Interacting with Computers 23(1), 4–17 (2011)

6. Redmill, F., Chudleigh, M., Catmur, J.: System Safety: HAZOP and Software HAZOP.
Wiley, Chichester (1999)

7. Lock, R., Storer, T., Sommerville, I., Baxter, G.: Responsibility Modelling for Risk
Analysis. In: Proc. ESREL 2009, Prague, pp. 1103–1109 (September 2009)

8. Dobson, J.E., Strens, M.R.: Responsibility modelling as a technique for requirements
definition. Intelligent Systems Engineering 3(1), 20–26 (1994)

9. Blyth, A.J., Chudge, J., Dobson, J.E., Strens, M.R.: ORDIT: A new methodology to assist
in the process of eliciting and modelling organizational requirements. In: Kaplan, S. (ed.)
Proceedings on the Conference on Organizational Computing Systems, Milpitas,
California, USA, pp. 216–227. ACM Press (1993)

10. Dobson, J.E., Strens, M.R.: Organizational requirements definition for information
technology systems. In: Proceedings of the IEEE International Conference on
Requirements Engineering (ICRE 1994), Colorado Springs, pp. 158–165. IEEE Press
(April 1994)

11. Sommerville, I.: Models for responsibility assignment. In: Dewsbury, G., Dobson, J. (eds.)
Responsibility and Dependable Systems, pp. 165–186. Springer (2007)

12. Sommerville, I.: Causal responsibility models. In: Dewsbury, G., Dobson, J. (eds.)
Responsibility and Dependable Systems, pp. 187–207 (2007)

13. Dewsbury, G., Dobson, J. (eds.): Responsibility and Dependable Systems. Springer-Verlag
London Ltd. (June 2007)

14. Sommerville, I., Storer, T., Lock, R.: Responsibility modelling for contingency planning.
In: Workshop on Understanding Why Systems Fail, Contingency Planning and Longer
Term Perspectives on Learning from Failure in Safety Critical Systems (June 2007)

15. Sommerville, I., Lock, R., Storer, T., Dobson, J.: Deriving Information Requirements from
Responsibility Models. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009.
LNCS, vol. 5565, pp. 515–529. Springer, Heidelberg (2009)

16. Sommerville, I., Storer, T., Lock, R.: Responsibility Modelling for Civil Emergency
Planning. Risk Management 11, 179–207 (2009), doi:10.1057/rm.2009.11

282 I. Sommerville, R. Lock, and T. Storer

17. Dardenne, A., Fickas, S., van Lamsweerde, A.: Goal-directed concept acquisition in
requirements elicitation. In: Proceedings of the Sixth International Workshop on Software
Specification and Design, pp. 14–21. IEEE Computer Society Press (October 1991)

18. Yu, E.S.: Towards modelling and reasoning support for early-phase requirements
engineering. In: 3rd IEEE International Symposium on Requirements Engineering (RE
1997), pp. 226–235. IEEE Computer Society (1997)

19. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acquisition.
Science of Computer Programming 20, 3–50 (1993)

20. Lapouchnian, A.: Goal-oriented requirements engineering: An overview of the current
research. Depth report, Department of Computer Science, University of Toronto (June
2005)

21. Lock, R., Sommerville, I.: Modelling and analysis of socio-technical system of systems.
In: 15th IEEE International Conference on Engineering of Complex Computer Systems,
Oxford, March 22-26, pp. 224–232 (2010)

A Counterexample-Based Incremental

and Modular Verification Approach

Étienne André, Kais Klai, Hanen Ochi, and Laure Petrucci

LIPN, CNRS UMR 7030
Université Paris 13, Sorbonne Paris Cité

99 Avenue Jean-Baptiste Clément
93430 Villetaneuse, France

{first.last}@lipn.univ-paris13.fr

Abstract. Model checking is a powerful and widespread technique for
the verification of finite state concurrent systems. However, the main hin-
drance for wider application of this technique is the well-known state ex-
plosion problem. In [16], we proposed an incremental and compositional
verification approach where the system model is partitioned according
to the actions occurring in the property to be verified and where the en-
vironment of a component is taken into account. But the verification at
each increment might be costly. On the other hand, Symbolic Observa-
tion Graphs provide a compact analysis means for LTL\X properties. We
have shown a purely modular construction of these in [15]. Therefore, in
this paper, we combine both techniques to benefit from their pros. Also,
we propose a novel approach for incrementally checking the validity of
the counter-example.

1 Introduction

Model checking is a powerful and widespread technique for the verification of
finite state concurrent systems. However, the main hindrance for wider applica-
tion of this technique is the well-known state explosion problem. Modular and
compositional approaches to verification are promising to tackle this problem.
They are based on the “divide and conquer” principle and aim at deducing the
properties of the system from those of its components analysed in isolation.

In [16], we proposed an incremental and compositional verification approach
where the system model is partitioned according to the actions occurring in the
property to be verified and where the environment of a component is taken into
account using the linear place invariants of the system. The first component con-
tains only the actions occurring in the formula, and each newly added component
is obtained based on the neighbourhood of those already analysed.

However, the verification at each increment might be costly. On the other
hand, Symbolic Observation Graphs (SOGs) [9,17] provide an abstraction-based
approach leading to a compact representation of the system’s state space graph,
and allowing for the analysis of properties expressed using LTL\X (Linear Time

R. Calinescu and D. Garlan (Eds.): Monterey Workshop 2012, LNCS 7539, pp. 283–302, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

284 É. André et al.

Logic [20] from which the “next operator” has been removed). We have shown
a purely modular construction of these in [15].

Therefore, in this paper, we combine both techniques to benefit from their
advantages. Since, it has been empirically shown that breaking up a system
is a difficult task (see for instance [5]), we assume here that the system is
already given as a set of components sharing global actions. In order to use
an approach derived from [16], either all actions of the formula belong to a
single component, or we compose all those containing such actions, to start
with. Note that [16] considered Petri nets models, whereas the technique is here
generalised to Labelled Transitions Systems (LTSs). In general, the LTS and
a counterexample can be derived on-the-fly as long as an initial state and a
transition relation are provided.

Related Work. During the last 20 years, many researchers have worked on the
use of abstraction and/or modularity to tackle the explosion problem of model-
checking properties on concurrent systems. On one hand, modularity refers to
a wide range of techniques that make use of the fact that components have
some intrinsic behavior of their own. Each component (subpart) of the global
system is verified separately and the behavior of the main system is deduced
from the behaviors of its components (see, e.g. [22,4]). Among modular tech-
niques, authors of [18] present algorithms to exploit the modular analysis in the
determination of reachable states with specified partial markings, to determine
possible deadlocks, both global and local, and also liveness. The idea there was
to start from a system designed in a modular way and construct the state space
of the complete system in a similar way: one local state space per module and
a synchronization graph showing their interactions. The technique was applied
to a problem of controller design, where some of the actions could be controlled
and others not. The approach advocated was also to lift these actions to the
global (i.e. synchronization) level, so that both synchronized and controllable
actions are visible in the synchronization graph and only there. Another related
paradigm is compositional state space verification [26]. In this paradigm, sys-
tems are specified as a parallel composition of subcomponents, and the state
space of the full system is computed from the state spaces of the subcompo-
nents. Moreover, the state spaces of subcomponents can be replaced by smaller
and behaviourally equivalent state spaces before constructing the state space
of the full system. Authors use methods and models considering actions in the
context of synchonous communicating systems.

On the other hand, abstraction-based techniques aim to build an abstract
model of the system by getting rid of some of its irrelevant parts so that the
analysis can be achieved on the abstract model instead of the original system. De-
pending on the property to be checked, the abstract model can either compeletely
characterize the system, or represents a super set of its possible behaviors. In the
first case, the abstraction satisfies the formula if and only if the original system
does (e.g. [25,21,9,17,7]). In the second case, only a sufficient condition exists
(i.e. if the abstract model is error-free, then so is the original system). Thus,
when the abstract model does not satisfy the property, one can not decide about

A Counterexample-Based Incremental and Modular Verification Approach 285

the verification result on the original system (e.g. [13]). Counterexample-driven
abstraction refinement techniques (e.g. [1,3,6,24,10]) come with an iterative ap-
proach to face this weakness: when the abstract model does not satisfy the
property, an abstract counterexample is automatically supplied and we check
whether it corresponds to a concrete counterexample in the system. If this is the
case, we conclude that the system does not satisfy the property. Otherwise, we
start over using a new abstract model. In [10] as in the approach presented in
this paper, the abstract model used in one pass is obtained using the one com-
puted in the previous pass, while in [3,24,1,6] the abstract model is constructed
from scratch and the new one is model-checked.

The approach we present in this paper has the advantage to combine modular-
ity and counter-example abstraction refinement for the verification of temporal
properties (generic properties, e.g. deadlock freeness, can also be considered in
a similar way).

Benefits and Originality of the Approach. The approach presented in this pa-
per enjoys several advantages. Firstly, SOGs are computed locally. This favours
reuse of modules since once the SOG is computed, it can be used in another
environment without need of calculating it again. Moreover, for confidentiality
issues, a SOG showing only global actions can be provided instead of the mod-
ule itself, thus hiding the details of the internal functioning to external users,
and favouring the use of “black box” (or “gray box”) modules. The verification
process is incremental at all stages: not only the formula verification but also
checking the counterexample. Thus, the whole LTS does not always require a
complete analysis, and the satisfaction of the property can be decided on-the-fly.

Even though the combination of both techniques from [15] and [16] is quite
easy, it also leads to improvements. The definition of aggregates contains a more
elaborate structure for detecting internal deadlocks, making things way easier
at the composition stage. Moreover, the validation of counterexamples is also
incremental, sticking to the spirit of the overall approach.

Outline. The paper is structured as follows: after preliminary definitions and
notations in Section 2, the approach is introduced in Section 3. It defines the
different steps as well as the associated model checking algorithm. Section 4
presents the application of our approach to case studies. Finally, Section 5 con-
cludes and gives perspectives for future work.

2 Preliminaries

The technique presented in this paper applies to different kinds of process models
that can map to labelled transition systems, e.g. Petri nets. The techniques
addressed here are of particular interest for the analysis of workflow Petri nets
(WF-nets) as shown in [14]. For the sake of simplicity and generality, we chose
to present it for labelled transition systems, since this formalism is well adapted
to event-based approaches.

286 É. André et al.

2.1 Labelled Transition Systems

Definition 1 (Labelled Transition Systems)
A labelled transition system (LTS for short) is a 4-tuple 〈Γ,Act ,→, I〉 where:

– Γ is a finite set of states;
– Act is a finite set of actions;
– → ⊆ Γ ×Act × Γ is a transition relation;
– I ⊆ Γ is a set of initial states.

In this paper, we restrict the set of states Γ to those that are reachable from
an initial state in I. We distinguish observed actions, denoted by a set Obs ,
from unobserved actions, denoted by UnObs (with Obs ∪ UnObs = Act and
Obs ∩ UnObs = ∅). Observed actions include the set of actions occurring in an
LTL formula to be verified and interface actions allowing for the synchronisation
of two LTSs. Unobserved actions are the remaining ones. Therefore, unobserved
actions can be seen as silent τ actions.

In the sequel, we use the following notations:

– For s, s′ ∈ Γ and a ∈ Act , we denote by s a−→s′ that (s, a, s′) ∈ →.
– If σ = a1a2 · · · an is a sequence of actions, σ denotes the set of actions

occurring in σ, while |σ| denotes the length of σ, and s σ−→s′ denotes that
∃s1, s2, · · · sn−1 ∈ Γ : s a1−→s1

a2−→· · · sn−1
an−→s′.

– The set Enable(s) denotes the set of actions a such that s a−→s′ for some
state s′. For a set of states S, Enable(S) denotes

⋃
s∈SEnable(s).

– π = s0
a1−→s1

a2−→· · · denotes a path of an LTS.
– s �→, for s ∈ Γ , denotes that s is a dead state, i.e., Enable(s) = ∅.
– ReachUnObs(s) = {s′ | s σ−→s′∧σ ⊆ UnObs} is the set of states that are reach-

able from a state s by unobserved actions only. For S ⊆ Γ , ReachUnObs (S) =⋃
s∈S ReachUnObs(s).

– s �⇒, for s ∈ Γ , denotes that no state of ReachUnObs (s) enables an observed
action, i.e., Enable(ReachUnObs (s)) ∩ Obs = ∅. Conversely, s ⇒ denotes
¬(s �⇒), i.e. there is a state in ReachUnObs (s) enabling an observed action.

– A finite path C = s1
σ−→sn is said to be a circuit if sn = s1 and |σ| ≥ 1.

If σ ⊆ UnObs then C is said to be a livelock. If, in addition, s1 �⇒ then C is
called a strong livelock. Otherwise it is called a weak livelock.

If s �⇒ for s ∈ Γ , only a dead state or a strong livelock are reachable from s. In
this paper we assume that a strong livelock behaviour is equivalent to a deadlock.
These two behaviours are not distinguished and both are called deadlock. The
reason for this is that if unobserved actions are local to a module, the system
will somehow be stuck in this module, whatever the others’ behaviour.

2.2 Model Checking LTL Formulae

Checking LTL formulae on an LTS is reduced to analyse its maximal paths. A
maximal path is either a finite path (leading to a terminal state) or an infinite one.

A Counterexample-Based Incremental and Modular Verification Approach 287

Since we observe a subset of the LTS’s actions, we distinguish the infinite paths
where observed actions occur infinitely often from those where from some point,
only unobserved actions occur infinitely often (called divergent paths). It is well
known that preserving maximal paths suffices to preserve properties expressed
using LTL\X. This corresponds to the CFFD semantics [12], which is exactly the
weakest equivalence preserving LTL\X. The usual solution in automata theoretic
approaches to check LTL formulae on an LTS is to convert each of its finite paths
(leading to a terminal state) to an infinite one by adding a loop onto its last
state.

Definition 2 (Maximal paths). Let T be an LTS and π = s1
a1−→s2

a2−→· · ·
an−1−→sn a path of T . Then, π is said to be a maximal path if one of the following
two properties holds:

– sn �→,
– π = s1

a1−→s2
a2−→· · · sm am−→· · · an−1−→sn and sm

am−→· · · an−1−→sn is a circuit.

Observed Behaviour. In the following, we define a particular mapping (called
observed behaviour) applied to states of an LTS T . It will be established that it
is the necessary and sufficient local information to be retained so that LTL\X
properties can be checked on the composition of two processes.

Definition 3 (Observed behaviour mapping). Let T =
〈Γ,Obs ∪ UnObs,→, I〉 be an LTS. The observed behaviour is progressively
defined by :

1. λT : Γ → 2Obs

λT (s) = Enable(ReachUnObs (s)) ∩Obs
2. λT : 2Γ → 2Obs

λT (S) = {λT (s) | s ∈ S}
3. λmin

T (S) = {X ∈ λT (S) |� ∃Y ∈ λT (S) : Y ⊂ X}.

Informally, the observed behaviour of a state s, λT (s), represents the set of
observed actions which can be executed from s, possibly via a sequence of un-
observed actions. The observed behaviour is then extended to sets of states: the
observed behaviour λT of a set of states S is a set of sets of observed actions.
This set contains the observed behaviour of the states of S. Finally, λmin

T (S) is
the minimal set of subsets (w.r.t. the set inclusion relation) of λT (S).

The following proposition establishes that deadlock-freeness of an LTS can be
deduced from computing the observed behaviour associated with its states.

Proposition 1. Let T = 〈Γ,Obs ∪ UnObs,→, I〉 be an LTS. T is deadlock-free
if and only if ∀S ⊆ Γ : ∅ /∈ λmin

T (S).

Note that it is actually sufficient to check that, for all individual states s, λT (s) �=
∅. In Section 3, we will need to consider sets of states (instead of states), and
this is the reason why Proposition 1 is needed in this form.

288 É. André et al.

2.3 Synchronisation of LTSs

In the following, we define the synchronised product of two LTSs. The synchro-
nised product of n LTSs (for n > 2) can be built by iterative multiplication.

Definition 4 (LTS synchronised product). Let Ti = 〈Γi,Act i,→i, Ii〉, i =
1, 2 be two LTSs. The synchronised product of T1 and T2 is the minimal LTS
T1 × T2 = 〈Γ,Act ,→, I〉 given by:

1. Γ ⊆ Γ1 × Γ2 ;
2. Act = Act1 ∪Act2 ;
3. → is the transition relation, defined by:

∀(s1, s2) ∈ Γ : (s1, s2)
a−→(s′1, s

′
2) ⇔⎧⎨

⎩
s1

a−→1s
′
1 ∧ s2

a−→2s
′
2 if a ∈ Act1 ∩ Act2

s1
a−→1s

′
1 ∧ s2 = s′2 if a ∈ Act1 \Act2

s1 = s′1 ∧ s2
a−→2s

′
2 if a ∈ Act2 \Act1

4. The set of states Γ contains all (and by minimality only) reachable states:
Γ = {(s1, s2) ∈ Γ1 × Γ2 | ∃(i1, i2) ∈ I1 × I2, ∃σ ∈ Act∗ : (i1, i2)

σ−→(s1, s2)};
5. I = I1 × I2;

Note that the parallel operator for synchronisation is similar to Hoare’s classical
alphabetised parallel operator for CSP [11], with the exception that τ actions
are synchronised in our settings.

Every state of the synchronised product is a pair of states; the first compo-
nent indicates the corresponding state of the first LTS; the second component
indicates the one of the second LTS. Each LTS can still perform its own activ-
ities autonomously, i.e. only one component of the pair representing a state of
the composed LTS is changed by such an action. For common activities, both
components of the state are changed synchronously.

Consider the two examples of LTSs in Figure 1 (unobserved actions are de-
noted by τ). The synchronised product of these two LTSs is an LTS containing
24 reachable states, depicted in Figure 2.

Recall that even if two LTSs are deadlock free, their synchronised product
is not necessarily. Both LTSs in Figure 1 are deadlock free; however, in the
synchronised product in Figure 2, the path (s0, s

′
0)

τ−→(s0, s
′
2)

τ−→(s1, s
′
2) leads

to the deadlock state (s1, s
′
2).

Notations. Given n LTSs Ti, for i = 1 . . . n, we denote by T〈i,...,k〉, for 1 ≤ i < k ≤
n, the LTS representing the synchronised product of the LTSs Ti, Ti+1, . . . , Tk.
When i = k, T〈i,...,k〉 is denoted by T〈i〉.

3 Approach

In this section we describe our incremental and modular approach for model
checking LTL\X properties. In order to counter the state space explosion prob-
lem we propose to abstract each LTS involved in the whole system by a SOG.

A Counterexample-Based Incremental and Modular Verification Approach 289

s0

s1

s2

s3

s4

s5

s6

s7

τ

a
a

τ

c

τ

τ

τ

τ

a

b

(a)

s′0

s′1 s′2

τ τ

a b

(b)

Fig. 1. Two LTSs

This allows for not considering local states, i.e. states (s1, s2) that permit the
execution of neither interface actions nor actions occurring in the formula to be
checked. We recall the notion of Symbolic Observation Graph in Section 3.1,
and the preservation of LTL\X properties in Section 3.2. Then we present our
approach on top of these notions in Section 3.3.

3.1 The Symbolic Observation Graph

The construction of the SOG corresponding to an LTS is guided by the set of
actions occurring in an LTL\X formula expressing a property to be checked.
Such actions are said to be observed while the other actions of the system are
unobserved. Previous results [9,17] show that such a formula is satisfied by the
LTS if and only if it is satisfied by the respective SOG. The SOG is defined as a
graph where each node is a set of states linked by unobserved actions and each
arc is labelled by an observed action. Nodes of the SOG are called aggregates and
may be represented and managed efficiently using decision diagram techniques
(BDDs, see e.g. [2]). In practice, due to the small number of actions in a typical
formula, the SOG has a very moderate size and thus the time complexity of
the verification process is negligible in comparison to the building time of the
SOG (see [9,17,15] for experimental results). SOGs are used to abstract LTSs so
that all internal behaviour is hidden. Additional information is attached to the
aggregates so that the preservation of LTL\X formulae still holds by composition.
The observed actions are of two kinds: the actions occurring in the LTL formula
to be checked, and the interface actions.

Definition 5 (Aggregate). Let T = 〈Γ,Act ,→, I〉 be an LTS with Act =
Obs ∪ UnObs. An aggregate is a tuple a = 〈S, λ, l〉 defined as follows:

290 É. André et al.

(s0, s
′
0)start

(s1, s
′
0)(s0, s

′
1) (s0, s

′
2)

(s1, s
′
1)(s4, s

′
0) (s1, s

′
2)

(s3, s
′
0)(s4, s

′
1)(s5, s

′
0)(s4, s

′
2)(s6, s

′
0)

(s6, s
′
1)(s6, s

′
2) (s5, s

′
2) (s7, s

′
0) (s5, s

′
1) (s3, s

′
2) (s3, s

′
1)

(s2, s
′
0) (s7, s

′
2) (s7, s

′
1)

(s2, s
′
1) (s2, s

′
2)

τ τ τ

a τ τ τ τ

aτ τ τ τ

τ τ τ τ

τ

τ τ
τ

τ τ τ

a τ τ τ τ

τ τ

c

b

c
c

τ

τ

τ

Fig. 2. Product of the 2 LTSs in Figure 1

1. S is a nonempty subset of Γ satisfying: ReachUnObs(S) = S;
2. λ = λmin

T (S)
3. l ∈ {true, false}; l = true iff S contains a weak livelock.

From now on, a.S, a.λ and a.l denote the corresponding attributes of a given
aggregate a.

In the following definition, we inductively define a SOG associated with an LTS.

Definition 6 (Symbolic Observation Graph). A symbolic observation graph
(SOG for short) associated with an LTS T = 〈Γ,Obs ∪ UnObs,→, I〉 is a 4-tuple
〈A,Act ′,→′, I ′〉 where:

1. A is a finite set of aggregates satisfying:

– there is an aggregate a0 ∈ A with a0.S = ReachUnObs(I), and

A Counterexample-Based Incremental and Modular Verification Approach 291

– if, for some a ∈ A and o ∈ Obs, the set Ext(a, o) := {s′ �∈ a.S | ∃s ∈
a.S, s o−→s′} is not empty, then it is a pairwise-disjoint union of non-
empty sets S1 . . . Sk, and for i = 1 . . . k, there is an aggregate ai ∈ A
with ai.S = ReachUnObs (Si);

2. Act ′ = Obs;
3. →′ ⊆ A×Act ′ ×A is the transition relation satisfying:

– if a �= a′ then (a, o, a′) ∈ →′ iff a′.S = ReachUnObs (S
′) for some S′ ⊆

Ext(a, o), and
– (a, o, a) ∈ →′ iff ReachUnObs({s′ ∈ Γ | ∃s ∈ a.S, s o−→s′}) = a.S;

4. I ′ = {a0} (where a0.S = ReachUnObs(I)).

Note that Definition 6 does not guarantee the uniqueness of a SOG for a given
LTS. In fact, it offers some flexibility for its implementation. In particular, the
SOG can be nondeterministic even if the original LTS is not. It is clear that the
canonical minimal SOG is obtained when the SOG is deterministic. Actually,
one can take advantage of such nondeterminism to obtain smaller aggregates.
Even if the SOG obtained in this way has more aggregates than a deterministic
one, its construction might consume less time and memory.

This is different from, e.g. determinisation of a process or specification with
unobserved actions hidden used in some model checkers.

s0

s1

a0

({{a}}, l)

s2

s3

a1

({{c}}, l)

s4

s5

a2

({{a}, {b}}, l)

s6

s7

τ

τ τ

τ

τ

τ

a

a

a, b

c

(a)

s0

s1

a0

({{a}}, l)

s2

s3

a2

({{c}}, l)

s4

s5

a1

({{a}, {c}, {b}}, l)

s2 s3

s6

s7

τ

τ τ

τ

τ

τ

τ

τ

a

c

c
a, b

(b)

Fig. 3. Two possible SOGs for the LTSs in Figure 1(a)

The two SOGs (a) and (b) of Figure 3 correspond to two possible SOGs as-
sociated with the LTS of Figure 1(a) page 289, while the SOG of Figure 4 is a
SOG of the LTS of Figure 1(b). Let us explain the first two SOGs. The set of

292 É. André et al.

observed actions is {a, b, c} and the unobserved actions are represented by the
mute action τ . Each aggregate a is indexed with a pair (a.λ, a.l). The left part
λ is the observed behaviour associated with a, and indicates whether a contains
a deadlock state (viz. ∅ ∈ a.λ). The symbol l (resp. l) is used when a contains
(resp. does not contain) a livelock. The first SOG (Figure 3(a)) is nondetermin-
istic and the sets of states of the aggregates represent a partition of the LTS’s
states. In this SOG, one can regroup a1 and a2 leading to the deterministic SOG
(Figure 3(b)) where s2 and s3 belong to two different aggregates.

s′0

s′1 s′2

τ τ

a′
0

({{a}, {b}}, l)

a, b

Fig. 4. SOG for the LTSs in Figure 1(b)

Preservation of LTL\X Properties. The equivalence between checking a
given LTL\X property on the observation graph and checking it on the original
LTS is ensured by the preservation of maximal paths. Thus, the symbolic ob-
servation graph preserves the validity of formulae written in classical LTL from
which the “next operator” has been removed (because of the abstraction of the
immediate successors) (see for instance [23,8]).

The following theorem establishes that checking an LTL\X formula on an
LTS can be reduced to check it on a corresponding SOG. It is easily proven by
combining our definition of a SOG and results of [9].

Theorem 1. Let G be a SOG over a set of observed actions Obs, corresponding
to an LTS T . Let ϕ be a formula from LTL\X on a subset of Obs.

Then T |= ϕ iff G |= ϕ.

3.2 Composition of SOGs

Let us consider several LTSs which communicate synchronously. This section
shows how to compose the SOGs of the individual LTSs so that the result is

A Counterexample-Based Incremental and Modular Verification Approach 293

isomorphic to some SOG of the composition of the original LTSs. Thus, the
composition of SOGs is correct (with respect to LTL\X formulae) if and only if
the composition of the original LTSs is correct. However, it is well known that
deadlock-freeness is not preserved by composition (e.g. the two LTSs of Figure 1
are deadlock-free but their synchronised product in Figure 2 is not).

The computation of the observed behaviour associated with an aggregate a
can be done using symbolic operations exclusively (BDD operations). Moreover,
it is not necessary to explore all the states of the aggregate but only analyse the
observed transitions and the states that enable these states (immediately).

From now on, an aggregate a is identified by two attributes a.l and a.λ. Also,
the set of states a.S of an aggregate a does not have to be stored explicitly
within the aggregate. Once the SOG is built, it will not play any role in the
composition process.

When composing several modules, a SOG corresponding to each module is
computed locally and once and the obtained SOGs are then composed, leading to
a new SOG. The observed behaviour and the livelock attributes of each aggregate
of this SOG are deduced from those of the composed aggregates, as follows.

Definition 7 (Product aggregate). Let Ti = 〈Γi,Obsi ∪ UnObsi,→i, Ii〉, for
i = 1, 2, be two LTSs. Let G1 and G2 be SOGs corresponding to T1 and T2,
respectively. Let ai be an aggregate of Gi. The product aggregate a = a1 × a2 is
defined by:

1. a.l = a1.l ∨ a2.l
2. a.λ = {(x∩y)∪(x∩(Obs 1 \Obs2))∪(y∩(Obs 2\Obs1)) | x ∈ a1.λ, y ∈ a2.λ}

Deducing the weak livelock attribute of the product aggregate from the involved
aggregates is rather trivial: there exists a livelock in the product aggregate a =
a1 × a2 if and only if there exists a livelock in a1 or there exists a livelock in
a2. Computing the observed behaviour a.λ requires some explanation. First note
that the sets of observed actions Obs1 and Obs2 are not necessarily identical.
When we compose a1 and a2, if a1 can progress in G1 by using local observed
actions (i.e. actions that are observed in G1 but not shared by G2), the product
aggregate a should be able to do the same. If this is not the case, then a has to
have the same behaviour as a1 and a2 conjunctively. In this way, the observed
behaviour associated with a product aggregate is helpful to deduce whether the
involved set of (pairs of) states contains a deadlock.

Proposition 2. Let T1 and T2 be two LTSs. Let T = 〈Γ,Obs ∪ UnObs,→, I〉
be their synchronised product. Let G1 and G2 be SOGs corresponding to T1 and
T2, respectively. Let a1 and a2 be two aggregates of G1 and G2, respectively, such
that a = a1 × a2. Then ∃s ∈ (a1.S × a2.S) ∩ Γ : s �⇒ if and only if ∅ ∈ a.λ.

Given two SOGs G1 and G2, their synchronised product is a SOG G. The synchro-
nised product of two SOGs can be defined similarly to the synchronised product
of two LTSs (Definition 4). The only difference is that we deal with aggregates

294 É. André et al.

(carrying additional information) instead of states. Definition 7 allows for de-
ducing the attributes of a product attribute a = a1 × a2 from the attributes of
a1 and a2. In particular, the observed behaviour computation allows to detect
new deadlock situations, i.e. deadlocks due to the composition process.

(a0, a
′
0)

({∅, {a}}, l)

(a1, a
′
0)

({{c}}, l)

(a2, a
′
0)

({∅, {a}, {b}}, l)

a a

c

a, b

Fig. 5. Product of the SOGs in Figures 3(a) and 4

For instance, the synchronised product between the SOGs of Figures 3(a)
and 4 is a SOG (presented in Figure 5) containing three aggregates (a0, a

′
0),

(a2, a
′
0) and (a1, a

′
0) where the first two contain a deadlock. Indeed, by composing

their observed behaviour we obtain the empty set as a member of the observed
behaviour of the product aggregate.

The following theorem will be a basis for our approach. We give an informal
illustration of this theorem in Figure 6.

Theorem 2. Let T1 and T2 be two LTSs with synchronised product T . Let G1

and G2 be SOGs corresponding to T1 and T2 with respect to observed actions
Obs1 and Obs2 respectively. Let G be the synchronised product of G1 and G2.
Then, G is a SOG of T with respect to the observed actions Obs1 ∪Obs2.

Corollary 1. Let T1 and T2 be two LTSs with synchronised product T . Let G1

and G2 be SOGs corresponding to T1 and T2 with respect to observed actions
Obs1 and Obs2 respectively. Let G be the synchronised product of G1 and G2.
Then T |= ϕ iff G |= ϕ.

3.3 Verification Algorithm

We suppose that a decomposition of the system T into n LTSs (T1, . . . , Tn), and
an LTL\X formula ϕ are given. We also suppose that this decomposition is such
that all actions appearing within ϕ appear only in T1. If this is not the case,
we compose all components containing such actions, so that such actions appear
only in T1.

A Counterexample-Based Incremental and Modular Verification Approach 295

T1, T2 T1 × T2

SOG(T1),SOG(T2) SOG(T1 × T2)

synchronous product

(=)

SOG product

Fig. 6. Illustration of Theorem 2

i ← 1

T1, . . . , Tn;ϕ

T1,i |= ϕ i < n

i ← i + 1

T |= ϕ

valid CE?

T �|= ϕ

yes

yes

no

no

yes

no

Fig. 7. Our approach (general scheme)

We give the general scheme of our approach in Figure 7. The main principle
is that we will check ϕ on the synchronisation of the SOGs corresponding to an
iteratively growing number of LTSs. Starting with i = 1, we first check whether
T1 |= ϕ, viz. whether the first subsystem satisfies ϕ (test “T〈1,...,i〉 |= ϕ” in
Figure 7, with i = 1). If not, we then check the validity of the counterexample
exhibited (test “valid ce” which will be explained below); if the counterexample
is indeed valid, the global system T does not satisfy the property (“T �|= ϕ”). If
the counterexample is not valid, or if the first subsystem satisfies ϕ, we go one
step further (“i ← i + 1”) by considering the system obtained by composition
of the first and the second subsystems. Note that the satisfiability test (test

296 É. André et al.

“T〈1,...,i〉 |= ϕ” with i = 2) is performed on the synchronised SOGs, and not
on the LTSs, which is much more efficient (see [16]). Also recall that this is
equivalent, by Corollary 1. This scheme is performed again iteratively until all
subsystems have already been considered; in that case, if the composition of the
n SOGs corresponding to the n subsystems satisfies the formula, then the whole
system T also satisfies the formula (“T |= ϕ”).

Checking Validity of Counterexamples. Suppose that T〈1,...,i〉 does not satisfy ϕ
and a counterexample σ has been found. Checking that σ is an actual coun-
terexample (test “valid ce”) is performed by analysing the environment part of
the system, i.e. T〈i+1,...,n〉. This can be achieved in an incremental way as well,
as depicted in Figure 8. Let σk be the projection of σ on the actions shared
by T〈1,...,i〉 and T〈i+1〉. If σk is not an accepted run of T〈i+1〉, then the coun-
terexample is not valid. Otherwise, we iteratively check the validity of σ on the
LTS T〈i+1,...,k〉, for k = (i + 2) . . . n. If all iterations show that the projection
of σ (on the appropriate sets of actions) is an accepted run, then σ is a valid
counterexample.

k ← i+ 1

k ≤ n valid CE

σk ←
σ|(T1,i∩Ti+1,k)

σk ∈
Runs(Ti+1,k)

k ← k + 1

invalid
CE

no

yes

yes
no

Fig. 8. Approach for checking validity of counterexamples

Advantages. The main interest of our scheme relies on the iterative composition
of SOGs instead of LTSs (by Corollary 1). Furthermore, such SOGs are computed
locally: one SOG corresponds to one LTS, independently of any information
concerning neighbouring systems except their shared actions. As a consequence,
one can reuse SOGs; even better, one can provide a SOG instead of an LTS,
and thus allow for confidentiality (the original system is not provided, only its
abstraction with respect to its neighbouring systems is). Similarly, refinement of

A Counterexample-Based Incremental and Modular Verification Approach 297

one subsystem is possible without reverifying the whole system, as long as the
SOG of the refined subsystem is the same as the original one.

Also note that our scheme is more general than the one of [16] in the sense
that we do not give any assumption on the decomposition: we suppose for the
sake of simplicity that it is given a priori.

4 Case Study: The Clients/Servers Example

4.1 Description of the Model

Our approach based on an incremental and modular verification is illustrated
on the well known Clients/Servers problem. This is a distributed application
which partitions tasks between the providers of a service (called servers), and
the requesters of this service (called clients). Clients and servers communicate by
sending and receiving messages. This system can be modelled by a composition
of clients and servers LTSs depicted in Figure 9. Each client can issue service
requests by sending messages to any of the servers, and each server can provide
the service to the requesting clients, sending it an answer message.

When a client i is ready (state CReady i), it sends a message (action CSendj
i)

to a server j which is also in a ready state, SReadyj (for sake of clarity, we
use subscript for clients and superscript for servers). The client is then in a
pending state (CWait i) waiting for a response from the server to move to the
ready state again by enabling CRecji . Until then, the server is in a busy state

(SBusyj
i) to proceed the received message, and then sends a response message

to the corresponding client before returning to its initial state.
Each client has an internal behaviour: After receiving message, the client

decrypts and verifies it according to its own rules (actions decrypt i and verify i).
If the message is valid, the client stores it in a local database (action storei);
otherwise, the client rejects it (action reject i).

4.2 First Property

We are interested in checking whether the first client receives a response from
each server to whom it sends a message. This can be expressed by the LTL
formula ϕ1 = �(CSendj

1 ⇒ ♦CRecj1), where � reads “always” and ♦ reads
“eventually”.

We consider the case where the first client sends a message to server 1, and
receives a response from server 1; other cases can be obtained similarly. As
mentioned in the previous section, we propose to compose all components such
that all actions of the formula appear only in the first LTS (first client TC1): the
second client and the servers are denoted respectively TC2, TS1 and TS2 so that
T = (TC1, TS1, TC2, TS2) = T<1,2,3,4>. This case can easily be generalized to an
arbitrary number of servers and clients.

298 É. André et al.

CReady i

CWait1i

CRec1i

CDec1i

CCheck1
i

CWait2i

CRec2i

CDec2i

CCheck2
i

CSend1
i

CRec1i

decrypt i

verify i

reject i,
storei

CSend2
i

CRec2i

decrypt i

verify i

reject i,
storei

(a) LTS TCi for client i

SReadyj

SReadyj
1

SRecj1

SBusyj
1

SReadyj
2

SRecj2

SBusyj
2

CSend j
1

SRecj1

SSend j
1

CRecj1

CSend j
2

SRecj2

SSend j
2

CRecj2

(b) LTS TSj for server j

Fig. 9. LTSs composing the Clients/Servers model

Step 1. In order to check the LTL formula ϕ1 using our approach, we start
with the first subsystem TC1. As we can see in Figure 9(a), we obviously have
TC1 |= ϕ1 since once a message is sent to the first server (action CSend1

i), this
client eventually receives an answer from that server (actionCRec1i). Let us verify
this on the corresponding SOG, that we give in Figure 10(a). Observe that only
the actions of ϕ1 (viz., CSend1

1, CRec
1
1, CSend

2
1 and CRec21) are observable. It

is straightforward to verify that ϕ1 holds for this SOG.

Step 2. Following our approach in Figure 7, the second step is to synchronise
SOGs associated with TC1 and the next subsystem (the first server component,
viz. TS1). We give in Figure 10 the SOG of TS1, where only the actions of ϕ1

(viz., CSend1
1 and CRec11) and the interface actions (viz. CSend1

2 and CRec12)
are observable.

The obtained synchronised product of SOGs, denoted by (TC1, TS1), is rep-
resented in Figure 11. Note that, for the sake of clarity, we abbreviated some
state names; for example, CReady1 is abbreviated with CR1, and SRec21 is ab-
breviated with SV 2

1 (V is used for ReceiVe, other letters are straightforward).
For this subsystem, the formula holds, viz. (TC1, TS1) |= ϕ1.

Step 3. We give the rest of the analysis with less details. The verification process
is applied to the synchronised product by composing one more subsystem. We
get the synchronised product of SOGs (TC1, TS1, TC2), that we do not represent
here. It can be shown that the formula ϕ1 is satisfied by this product.

A Counterexample-Based Incremental and Modular Verification Approach 299

CR1

CW 1
1 CW 2

1

CV 1

CSend1
1

CSend2
1

CRec11

CRec21CSend1
1

CSend2
1

(a) SOG of Client 1

SR1

SR1
1 SR1

2

CSend1
1

CSend1
2CRec11

CRec12

(b) SOG of Server 1

Fig. 10. SOGs of Client 1 and Server 1 for ϕ1

CR1SR1

CW 2
1SR1CW 1

1SR
1
1 CR1SR

2
1

CV 1SR1 CW 2
1SR

2
1

CV 1SR
2
1

CSend1
1 CSend2

1 CSend1
2

CRec11
CRec21 CSend1

2

CRec12

CSend2
1

CSend1
1

CSend2
1

CSend1
2

CRec12

CReq2
1

CRec12 CSend2
1

Fig. 11. Synchronised product of SOGs T<1,2> = (TC1, TS1)

300 É. André et al.

Step 4. Then, we go one step further, and we perform the synchronised product
of SOGs (TC1, TS1, TC2, TS2) (again, which is not given here). The formula is also
satisfied by this product. Hence, the formula is satisfied by the whole system T .

With the earlier approach from [16], the whole system had to be analysed
to prove that the property holds. In this case, the contribution of our modular
and incremental approach using a counterexample is not visible. Nevertheless,
the gain is obtained when checking the property on the synchronised product of
subsystems’ abstractions (SOGs), so that the graph is smaller and the verifica-
tion process is faster. Considering the LTSs instead of the SOGs would result in
a much larger product. Even for the simple (non-synchronised) LTSs in Figure 9,
their corresponding SOG (in Figure 10) is much smaller: compare a maximum
of 9 × 7 states (in the worst case) for the LTSs, with a maximum of 4 × 3 for
the SOG (actually 7, see Figure 11. This example confirms the first advantage
of our approach which reduces the complexity of model checking.

4.3 Second Property

Let us now consider another property to verify: the first client has to alternate
between the two servers at least once when sending messages. This property can
be expressed by the LTL formula ϕ2 = �(CSend i

1 ⇒ ♦CSend j
1) with i �= j and

i, j ∈ {1, 2}.
Let us consider the first component, viz. the SOG of the first client (given in

Figure 10(a)). We immediately notice that ϕ2 is not satisfied, and a counterex-
ample σ is deduced which is the infinite path composed by (CSend1

1CRec
1
1)

∞.
Using our algorithm to check the validity of the counterexample (given in Fig-
ure 8), we can deduce that σ is a valid counterexample that can be run on T<1,2>,
T<1,2,3> and T<1,2,3,4> = T . Therefore we can deduce that T �|= ϕ2. Hence, our
counterexample-based approach is more efficient for checking a formula which
is not satisfied by the system, because we could prove the non-validity of the
formula directly from a single component.

5 Conclusion

We proposed here an incremental and compositional verification approach based
on [16]. We improved that approach by incrementally verifying the counter-
example on incremental partial decompositions of the LTS. Our approach has
the following advantages. First, by composing the LTSs using SOGs [15], we
strongly reduce the complexity of this verification when compared to monolithic
verification. In the worst case, i.e. if the formula is indeed valid, we verify it on
the whole set of LTSs; this remains much more efficient than monolithic veri-
fication, due to the use of SOGs. Second, it allows the verification of systems
containing black box (or gray box) subsystems: if one does not want to provide
some part of the system (e.g. due to confidentiality issues) one may still provide
the corresponding abstraction under the form of its SOG, thus allowing verifica-
tion without disclosing the precise implementation. This also allows for reusing

A Counterexample-Based Incremental and Modular Verification Approach 301

some components under the form of their SOG. Several issues can be investi-
gated in the future: Given a decomposition 〈T1, . . . , Tn〉, we considered so far
that the actions of the LTL\X formula ϕ all appear in T1 only (see Section 3.3).
If these actions appear in further LTSs, one idea would be to decompose the
formula in subformulae, as for instance in [19], each to be checked on the under-
lying sub-compoenent. Also, we suppose that the decomposition of the system
is already given. As done in [16], one can build a decomposition of the system
which is guided by the formula to be checked.

An efficient implementation of our approach is ongoing. It will both strengthen
the initial results on examples of moderate size and allow for comparing the
approach developed here with the monolithic verification on the one hand, and
with the approach of [16] on the other hand.

References

1. Ball, T., Rajamani, S.K.: Automatically Validating Temporal Safety Properties
of Interfaces. In: Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 103–122.
Springer, Heidelberg (2001)

2. Bryant, R.E.: Symbolic boolean manipulation with ordered binary-decision dia-
grams. ACM Computing Surveys 24(3), 293–318 (1992)

3. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided
Abstraction Refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

4. Clarke, E.M., Long, D.E., McMillan, K.L.: Compositional model checking. In: LICS
1989, pp. 353–362 (1989)

5. Cobleigh, J.M., Avrunin, G.S., Clarke, L.A.: Breaking up is hard to do: An
evaluation of automated assume-guarantee reasoning. ACM Trans. Softw. Eng.
Methodol. 17(2), 7:1–7:52 (2008)

6. Das, S., Dill, D.L.: Successive approximation of abstract transition relations. In:
Proceedings of the 16th Annual IEEE Symposium on Logic in Computer Science,
LICS 2001, p. 51. IEEE Computer Society, Washington, DC (2001)

7. Duret-Lutz, A., Klai, K., Poitrenaud, D., Thierry-Mieg, Y.: Self-Loop Aggregation
Product — A New Hybrid Approach to On-the-Fly LTL Model Checking. In: Bul-
tan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 336–350. Springer,
Heidelberg (2011)

8. Goltz, U., Kuiper, R., Penczek, W.: Propositional Temporal Logics and Equiva-
lences. In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 222–236.
Springer, Heidelberg (1992)

9. Haddad, S., Ilié, J.-M., Klai, K.: Design and Evaluation of a Symbolic and
Abstraction-Based Model Checker. In: Wang, F. (ed.) ATVA 2004. LNCS,
vol. 3299, pp. 196–210. Springer, Heidelberg (2004)

10. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. SIGPLAN
Not. 37(1), 58–70 (2002)

11. Hoare, C.A.R.: Communicating sequential process. Communication of the
ACM 21(8), 666–677 (1978)

12. Kaivola, R., Valmari, A.: The Weakest Compositional Semantic Equivalence Pre-
serving Nexttime-less Linear Temporal Logic. In: Cleaveland, W.R. (ed.) CONCUR
1992. LNCS, vol. 630, pp. 207–221. Springer, Heidelberg (1992)

302 É. André et al.

13. Klai, K., Haddad, S., Ilié, J.-M.: Modular Verification of Petri Nets Properties: A
Structure-Based Approach. In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp.
189–203. Springer, Heidelberg (2005)

14. Klai, K., Ochi, H.: Modular verification of inter-enterprise business processes. In:
eKNOW, pp. 155–161 (2012)

15. Klai, K., Petrucci, L.: Modular construction of the symbolic observation graph. In:
Billington, J., Duan, Z., Koutny, M. (eds.) ACSD, pp. 88–97. IEEE (2008)

16. Klai, K., Petrucci, L., Reniers, M.: An Incremental and Modular Technique for
Checking LTL\X Properties of Petri Nets. In: Derrick, J., Vain, J. (eds.) FORTE
2007. LNCS, vol. 4574, pp. 280–295. Springer, Heidelberg (2007)

17. Klai, K., Poitrenaud, D.: MC-SOG: An LTL Model Checker Based on Symbolic
Observation Graphs. In: van Hee, K.M., Valk, R. (eds.) PETRI NETS 2008. LNCS,
vol. 5062, pp. 288–306. Springer, Heidelberg (2008)

18. Lakos, C., Petrucci, L.: Modular analysis of systems composed of semiautonomous
subsystems. In: ACSD, pp. 185–194. IEEE Computer Society Press (2004)

19. Lehmann, A., Lohmann, N., Wolf, K.: Stubborn Sets for Simple Linear Time Prop-
erties. In: Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS, vol. 7347, pp.
228–247. Springer, Heidelberg (2012)

20. Manna, Z., Pnueli, A.: The temporal logic of reactive and concurrent systems.
Springer-Verlag New York, Inc., New York (1992)

21. Peled, D., Valmari, A., Kokkarinen, I.: Relaxed visibility enhances partial order
reduction. Formal Methods in System Design 19(3), 275–289 (2001)

22. Pnueli, A.: In transition from global to modular temporal reasoning about pro-
grams. In: Logics and Models of Concurrent Systems, pp. 123–144. Springer-Verlag
New York, Inc. (1985)

23. Puhakka, A., Valmari, A.: Weakest-Congruence Results for Livelock-Preserving
Equivalences. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS,
vol. 1664, pp. 510–524. Springer, Heidelberg (1999)

24. Säıdi, H.: Model Checking Guided Abstraction and Analysis. In: Palsberg, J. (ed.)
SAS 2000. LNCS, vol. 1824, pp. 377–396. Springer, Heidelberg (2000)

25. Valmari, A.: On-the-fly Verification with Stubborn Sets. In: Courcoubetis, C. (ed.)
CAV 1993. LNCS, vol. 697, pp. 397–408. Springer, Heidelberg (1993)

26. Valmari, A.: Compositionality in State Space Verification Methods. In: Billing-
ton, J., Reisig, W. (eds.) ICATPN 1996. LNCS, vol. 1091, pp. 29–56. Springer,
Heidelberg (1996)

Compositional Reverification

of Probabilistic Safety Properties
for Large-Scale Complex IT Systems

Radu Calinescu1, Shinji Kikuchi2, and Kenneth Johnson1

1 Department of Computer Science
University of York, Deramore Lane, York YO10, UK
{radu.calinescu,kenneth.johnson}@york.ac.uk

2 Fujitsu Laboratories Limited
4-1-1 Kamikodanaka, Nakahara-ku, Kawasaki, Kanagawa 211-8588, Japan

skikuchi@jp.fujitsu.com

Abstract. Compositional verification has long been regarded as an ef-
fective technique for extending the use of symbolic model checking to
large, component-based systems. This paper explores the effectiveness of
the technique for large-scale complex IT systems (LSCITS). In particu-
lar, we investigate how compositional verification can be used to reverify
LSCITS safety properties efficiently after the frequent changes that char-
acterise these systems. We identify several LSCITS change patterns—
including component failure, join and choice—and propose an approach
that uses assume-guarantee compositional verification to reverify prob-
abilistic safety properties compositionally in scenarios associated with
these patterns. The application of this approach is illustrated using a
case study from the area of cloud computing.

1 Introduction

A variant of symbolic model checking termed compositional verification has
proved particularly effective in extending the applicability of formal verification
to large, component-based systems [1,2,14,21,25,27,29]. This technique analyses
the components of a system independently, and derives global system properties
through verifying a composition of its component-level properties. The state-
transition models verified in both steps of the technique are often orders of
magnitude smaller than a monolithic model of the same system.

However, traditional compositional verification is less effective for a class of IT
systems of growing practical importance, namely large-scale complex IT systems
(LSCITS). LSCITS are affected by regular component failures, joins and depar-
tures, and by frequent modifications in environment and requirements [9,28,31].
This continual change has the effect of quickly invalidating the result of any
compositional verification, which is based on a set of models that are accurate
for only a short period of time.

Recent research has used (quantitative) model checking techniques at run-
time, to ensure that IT systems continue to comply with their requirements after

R. Calinescu and D. Garlan (Eds.): Monterey Workshop 2012, LNCS 7539, pp. 303–329, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

304 R. Calinescu, S. Kikuchi, and K. Johnson

changes similar to those experienced by LSCITS [5,6,12,17,20,24]. The approach
proposed in this work involves monitoring the running system, and verifying
an updated model of its behaviour whenever an environment or system change
is identified. If the runtime verification confirms that the system continues to
comply with its requirements, no further action is required. Otherwise, the ver-
ification results are used to guide a self-adaptation process through which the
system adjusts its parameters to reinstate the compliance with its requirements.
While the approach proved effective in applications ranging from dynamic power
management [4,11,12] to quality-of-service optimisation in service-based systems
[5,6,17], none of the systems in these applications was an LSCITS.

This paper presents the results of our work to integrate techniques from the
areas of compositional verification and runtime model checking. We envisage that
a successful integration of the two types of techniques will extend the benefits of
our recent work on runtime model checking [5,6,8,10,12] to larger systems, and
ultimately to certain classes of LSCITS.

The rest of the paper is organised as follows. In Section 2, we overview exist-
ing compositional verification techniques, focusing on the probabilistic assume-
guarantee approach used in our work. In Section 3, we identify several LSCITS
change patterns, and we explain how assume-guarantee compositional verification
can be used reverify compliance with safety properties incrementally in scenar-
ios associated with these patterns. A running example from the area of cloud
computing is used to illustrate these results throughout this section. Finally,
Section 4 summarises the contributions of our work and discusses a number of
future research directions.

2 From Monolithic to Compositional Verification

2.1 Running Example

We will illustrate the concepts and verification techniques discussed in the paper
using the three-tier software service whose deployment on cloud infrastructure
is depicted in Figure 1. Several instances of each of the three components (or
functions) of this service—Web, Application and Database—are run on different
virtual machines (VMs) that are located on four physical servers.

Note that while the system in Figure 1 is not a large system, it can be easily
scaled up to become one by using standard cloud infrastructure functionality
to increase the number of servers, virtual machines and “function” instances,
potentially by many orders of magnitude. Indeed, some of the discussion later in
the paper assumes this to be the case. Likewise, running a scaled-up version of
the service across multiple cloud data-centres (an increasingly common practice
for some users of cloud infrastructure [16,33]) can augment the system with
LSCITS-specific characteristics.

Compositional Reverification of Probabilistic Safety Properties 305

Cloud infrastructure configuration

Service (logical) configuration

Fig. 1. Three-tier service deployed on cloud infrastructure

2.2 Background

Model checking a component-based system involves verifying if the parallel com-
position of n > 1 interdependent models of the system components and environ-
ment M1, M2, . . . , Mn satisfies a set of requirements R:

M1 ‖ M2 ‖ . . . ‖ Mn |= R. (1)

Each model Mi , 1 ≤ i ≤ n, comprises a finite set of states Si and a state
transition relation Ti ⊆ Si × Si with the property that for every state s ∈ Si

there is at least a state s ′ ∈ Si such that (s , s ′) ∈ Ti . The states in Si correspond
to possible states of the modelled real-world component or environment element,
and Ti encodes the possible transitions between these states. A labelling function
Li : Si → APi is used to associate each state with a set of atomic propositions
that are true in that state, and s0i ∈ Si denotes the initial state of Mi . Formally,

Mi = (Si , s
0
i ,Ti ,Li), 1 ≤ i ≤ n, (2)

is termed a Kripke structure over the set of atomic propositions APi .
The requirements R are formulae defined over ∪n

i=1APi and expressed in ex-
tensions of propositional logic that support reasoning about the timing of events
in the system. These temporal logics are used to specify desirable sequences of
transitions between system states without referring to time explicitly. In par-
ticular, temporal logic formulae can specify safety properties (e.g., “the server
failure state is never entered”) and liveness properties (e.g., “the VM is eventu-
ally migrated to an operational server”).

These concepts are illustrated in Figure 2, which depicts a model of a single
physical server from our running example from Figure 1. We assume that the
server has initially NDISK disks, NCPU CPUs and NMEM memory blocks that
are operational, but that each of these components can fail over time. To ensure
that such component failures do not lead to failures of the VMs running on the

306 R. Calinescu, S. Kikuchi, and K. Johnson

{disks = NDISK ,
cpus = NCPU ,
mem = NMEM}

{disks = NDISK−2,
cpus = NCPU ,
mem = NMEM}

{disks = NDISK−1,
cpus = NCPU ,
mem = NMEM}

{disks = 2,
cpus = NCPU ,
mem = NMEM}

{disks = 2,
cpus = NCPU ,
mem = NMEM}

{disks > 0,
cpus = NCPU ,
mem = NMEM}

{disks > 0,
cpus > 0,
mem = NMEM}

{disks > 0,
cpus = 1,
mem = NMEM}

{disks > 0,
cpus > 0,
mem = 2}

{disks > 0,
cpus > 0,
mem = 1}

{disks > 0,
cpus > 0,
mem > 0}

{disks = 2,
cpus = NCPU ,
mem = NMEM

detect}

{disks > 0, cpus = 1,
mem = NMEM

detect}

{disks>0, cpus>0,
mem = 2, detect}

s0 s1

s2

{disks = 0∨
cpus = 0∨
mem = 0}

{disks = 1,
cpus = NCPU ,
mem = NMEM}

Fig. 2. State transition model of a physical server. The states labelled with the atomic
proposition detect are reached if multiple component failures render the server “unsafe”
and the failure detection mechanism operates correctly. For our running example, the
server is deemed unsafe when it is left with only two disks or one CPU or two memory
blocks that are operational.

server, the server is provided with a hardware failure detection mechanism. When
multiple failures of components of the same type make the server “unsafe”, this
mechanism triggers the migration of the VMs to another physical server.

The model in Figure 2 supports the verification of safety properties such as
“it is never the case that the failure of all server components of the same type
(i.e., all disks or all CPUs or all memory blocks) is not detected” over a fixed
time period (e.g., one year). The state transitions of this model correspond to:

– individual components failures (e.g., the transition (s0, s1) corresponds to
the failure of the first disk within the analysed time period);

– individual components being operational at the end of the considered time
period (e.g., the transition (s0, s2) is taken if the first disk is operational
throughout the considered time period);

– the failure detection mechanism operating correctly (i.e., the three transi-
tions depicted using thick lines in the transition graph from Figure 2);

– if applicable, the incorrect operation of the failure detection mechanism (i.e.,
the three transitions represented with dotted lines).

To keep the model small, the first two types of state transitions are included for a
component only when the failure or correct operation of that component has an
impact on the safety properties that we are interested in. For instance, state s2 is
reached if at least one of the disks remains operational throughout the considered
time period. Therefore, the model does not include any transitions leaving s2 or
a state reachable from s2 and modelling the failure or correct operation of a

Compositional Reverification of Probabilistic Safety Properties 307

disk; and all these states are labelled with the atomic proposition “disks > 0”.
Choosing the right level of abstraction for the model in this way is essential in
order to reduce the size of its state space.

The safety property “it is never the case that the failure of all disks or all
CPUs or all memory blocks is not detect -ed” can be expressed formally using
the G (globally) and U (until) linear-time temporal logic (LTL) operators:

G[¬(¬detect U disk = 0 ∨ cpu = 0 ∨ mem = 0)]. (3)

This property is satisfied by the server model if and only if the state transitions
represented with dotted lines in Figure 2 are not present. We make this observa-
tion by examining every single path (i.e., sequence of transitions) from the initial
state s0 to the state labelled with the atomic proposition “disk = 0 ∨ cpu = 0 ∨
mem = 0”, and noting that it includes a state labelled “detect” if and only if
the dotted-line transitions are not part of the model.

Various modelling formalisms support the verification of reliability, perfor-
mance and cost-related properties by additionally annotating the model tran-
sitions and/or states with probabilities, transition rates and costs/rewards, re-
spectively. For instance, annotating the state transitions from our server model
in Figure 2 with probabilities allows the verification of probabilistic safety prop-
erties such as “the probability that the failure of all server components of the
same type is detected is at least 0.999”. This property can be expressed formally
in probabilistic computation tree logic (PCTL) as

P≥0.999[G[¬(¬detect U disk = 0 ∨ cpu = 0 ∨ mem = 0)]], (4)

where P is the probabilistic PCTL operator.
Finally, component interactions are modelled by annotating the state transi-

tions of the models Mi = (Si , s
0
i ,Ti ,Li) from (2) with actions from an action

alphabet αi , 1 ≤ i ≤ n. When a transition (s , s ′) ∈ Ti is annotated with action
a ∈ αi , it can be taken when model Mi is in state s only at the same time with
an a-annotated transition in every other model Mj �= Mi whose action alphabet
also includes a, 1 ≤ j ≤ n.

Figure 3 shows a variant of the server model in which transitions are anno-
tated with both probabilities and actions. The former support the verification
of the probabilistic safety property (4). The latter enable the modelling of the
interaction between the server and the other components of the system in Fig-
ure 1, e.g., through the parallel composition of the server model Mserver with
the model Mweb+app of the two Web and two App(lication) instances running
on Server A or on Server B. This model (shown in Figure 4) comprises state
transitions annotated with the actions “server down”, “warn” and “server up”
that also belong to the action alphabet for the server model. The Mweb+app state
transitions corresponding to the actions shared between the two models are not
annotated with probabilities like all the other Mweb+app state transitions, as
these probabilities depend on the server behaviour and are unknown until the
two models are composed.

The way in which we established the safety property (3) by examining every
path starting at the initial state s0 of the model in Figure 2 is applicable only

308 R. Calinescu, S. Kikuchi, and K. Johnson

{disks = NDISK ,
cpus = NCPU ,
mem = NMEM}

{disks = NDISK−2,
cpus = NCPU ,
mem = NMEM}

{disks = NDISK−1,
cpus = NCPU ,
mem = NMEM}

{disks = 2,
cpus = NCPU ,
mem = NMEM}

{disks = 2,
cpus = NCPU ,
mem = NMEM}

{disks > 0,
cpus = NCPU ,
mem = NMEM}

{disks > 0,
cpus > 0,
mem = NMEM}

{disks > 0,
cpus = 1,
mem = NMEM}

{disks > 0,
cpus > 0,
mem = 2}

{disks > 0,
cpus > 0,
mem = 1}

{disks > 0,
cpus > 0,
mem > 0}

{disks = 2,
cpus = NCPU ,
mem = NMEM

detect}

{disks > 0, cpus = 1,
mem = NMEM

detect}

{disks>0, cpus>0,
mem = 2, detect}

disk op

warndetect

server down

disk op

disk op

disk op

cpu op

warndetect

cpu op
cpu op

cpu op

mem op

warndetect

mem op
mem op

mem op
mem op

server up1.0

1.0

0.005

0.995

0.005 0.005 0.0051.00.9

0.10.995 0.995
0.995

0.001

0.999

0.001 0.001 0.0011.00.95

0.050.999 0.999
0.999

0.002

0.998

0.002 0.002 0.0021.00.9

0.10.998 0.998
0.998

0.998

0.002

{disks = 0∨
cpus = 0∨
mem = 0}

{disks = 1,
cpus = NCPU ,
mem = NMEM}

0.995
disk op

0.005

Fig. 3. Model Mserver for the running example: annotating the state transitions of the
server model with probabilities and actions enables the verification of probabilistic
safety properties and the modelling of component interactions, respectively

to models that are relatively small or have a particularly regular structure. Ad-
vanced model checking techniques including symbolic model checking and partial
order reduction overcome this limitation by avoiding the exhaustive enumeration
and analysis of all such paths through the model [13].

2.3 Compositional Verification

Even though symbolic model checking extends the applicability of formal ver-
ification to some very large models, this is still insufficient for many models
associated with today’s IT systems. A complete model of our service from Fig-
ure 1, for instance, requires the parallel composition of:

– Four instances of the server model Mserver from Figure 3 (one for each of
Servers A, B, C and D). These model instances—denoted MserverA , MserverB ,
MserverC and MserverD—are obtained from the model Mserver in Figure 3 by
subscripting all its actions and atomic proposition parameters with A, B, C

and D, respectively (e.g., server downA or diskB).
– Two instances of the “Web-Application” model Mweb+app from Figure 4

(corresponding to the web and application instances deployed on Server A
and Server B, and denoted Mweb+appA

and Mweb+appB
).

– Two instances of the “Database” model Mdb from Figure 5 (MdbC and MdbD ,
corresponding to the Database instances on Servers C and D, respectively).

– The three-tier architecture model Mservice from Figure 6.

We implemented this composition as a monolithic model

M = MserverA ‖ MserverB ‖ MserverC ‖ MserverD ‖ Mweb+appA
‖

Mweb+appB
‖ MdbC ‖ MdbD ‖ Mservice

(5)

Compositional Reverification of Probabilistic Safety Properties 309

{web = 2,
app = 2}

server down

warn

server up

vm migrate

vm op vm op

vm op

vm op vm op

vm op

vm op

vm op

{web = 0,
app = 0}

{web > 0,
app > 0}

{web = 2,
app = 2}

{web = 2,
app = 2}

{web > 0,
app = 2}

{web > 0,
app = 1}

{web > 0,
app = 0}

{web = 1,
app = 2}

{web = 1,
app = 2}

{web = 1,
app > 0}

{web = 1,
app = 1}

{web = 1,
app = 0}

{web = 0,
app = 2}

{web = 0,
app > 0}

{web = 0,
app = 1} {web = 0,

app = 0}

1.0

web down

0.15

0.85
0.95 0.95

0.95

0.950.95

0.95

0.95

0.95

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

app down

1.0

1.0

web up

app up

1.0

1.0

web up

app down

1.0

1.0

web up

app up

1.0

1.0

web up

app down

1.0

1.0

web down

app up

1.0

1.0

web down

app down

1.0

Fig. 4. Model Mweb+app for the running example: the two Web and the two
App(lication) instances on Server A or B are down at the end of the analysed time
period if the server fails, the VM migration triggered by a warning is unsuccessful, or
the VMs running them fail

for the probabilistic symbolic model checker PRISM [22], and the tool ran out
of memory when attempting to verify if the resulting 176,381,406,182,650-state
model satisfied the property “the probability that the service fails within a one-
year time interval is under 0.0005”.

310 R. Calinescu, S. Kikuchi, and K. Johnson

{db = 1}
server down

warn

server up

vm migrate

vm op

1.0

db down

0.85

0.15

0.95

1.0

db up

0.05

{db = 1}

{db = 1}

{db = 1}

{db = 0}

Fig. 5. Model Mdb for the running example: the Database instance on Server C or D
is down at the end of the analysed time period if the server fails, the VM migration
triggered by a warning is unsuccessful, or the VM running it fails

This state explosion is avoided by compositional verification, a collection of
techniques that increase the size of the (component-based) systems that can be
model checked significantly. In its original form proposed in the seminal work
of Pnueli [29], compositional verification involves establishing that the parallel
composition of two models M1 ‖ M2 satisfies a global property G through veri-
fying two premises independently. The first premise is that M2 satisfies G when
it is part of a system that satisfies an assumption (i.e., property) A. The second
premise is that A is satisfied by the remainder of the system (i.e., by M1) un-
der all circumstances. This can be expressed formally as a proof tree by using
Pnueli’s generalisation [29] of the Hoare triple notation [23]:

〈true〉M1〈A〉, 〈A〉M2〈G〉
〈true〉M1 ‖ M2〈G〉

. (6)

The technique is termed assume-guarantee reasoning, to distinguish it from other
compositional verification approaches that have emerged more recently.

Given the importance of extending the applicability of model checking to
larger systems, assume-guarantee reasoning has received significant attention
from the research community [3,14,15,21]. In particular, assume-guarantee rea-
soning has been extended to probabilistic systems [27], enabling the composi-
tional verification of probabilistic safety properties for parallel model compo-
sitions such as model (5) from our running example. The models used in this
extension of the technique are probabilistic automata (PAs) [30] of the form

Mi = (Si , s
0
i , αi , δi ,Li). (7)

As before, Si , s0i ∈ Si , αi and Li represent a finite set of states, the ini-
tial state, the action alphabet and an atomic-proposition labelling function,
respectively. However, the state transition relation Ti from the definition of
the Kripke model in (2) is replaced by a probabilistic state transition rela-
tion δi ⊆ Si × (αi ∪ {τ}) × Dist(Si), where Dist(Si) denotes the set of all
discrete probability distributions over the state set Si . The possible transi-
tions from a generic state s ∈ Si to another state in Si are given by the set
δi(s) = {(s , a, d) | (s , a, d) ∈ δi}. When the system is in state s , an element

Compositional Reverification of Probabilistic Safety Properties 311

1.0

service down

{web = 4,
app = 4,
db = 2}

web down & app down(A) web down & app down(B)

web up & app down(B)

web down & app up(B)
{web = 2,
app = 2,
db = 2}

{web = 0 ∨ app = 0,
db = 2}

web down & app up(A)

{web = 2,
app = 4,
db = 2}

web up & app down(A)

{web = 4,
app = 2,
db = 2}

1.0

service down
web down & app down(B)

web down & app up(B)

{web = 0,
app > 0,
db = 2}

1.0

service down
web down & app down(B)

web up & app down(B)
{web > 0,
app = 0,
db = 2}

1.0

service down
db down(B)

{web > 0,
app > 0,
db = 0}

db down(A)

{web > 0,
app > 0,
db = 1}

{web > 0,
app > 0,
db = 2}

1.0
service up

{web > 0,
app > 0,
db > 0}

web up & app down(B)

web up & app up(B)

web up & app up(B)

web down & app up(B)

web up & app up(B)

w
eb

u
p
&

a
p
p
u
p
(A

)

db
up(A)

Fig. 6. Model Mservice for the running example: the service fails if all instances of any
of the Web, Application and Database “functions” fail

(s , a, d) ∈ δi(s) is chosen nondeterministically, and the next state s ′ is selected
randomly according to the distribution d ∈ Dist(Si). This characteristic of prob-
abilistic automata is particularly useful for modelling LSCITS components, as
illustrated in Figure 7 for a physical server from our running example.

The analysis of PA properties requires the resolution of its nondeterministic
choices by means of adversaries, i.e., functions that map any finite path end-
ing in a generic state s ∈ Si to one of the discrete probability distributions in
δi(s) or “decide” to remain in state s . Given the set of all adversaries Advi of a
PA model Mi , we are typically interested in verifying a property related to the
minimum and/or maximum probability of an event over all adversaries in Advi .

312 R. Calinescu, S. Kikuchi, and K. Johnson

{disks = NDISK ,
cpus = NCPU ,
mem = NMEM}

{disks = NDISK−1,
cpus = NCPU ,
mem = NMEM}

{disks > 0,
cpus = NCPU ,
mem = NMEM}

0.995

no disk

disk1 op

disk2 op

s0 s1

s2

0.999

0.001

0.005

1

Fig. 7. Fragment of the PA model of a server that may use disks
of type “disk1”, disks of type “disk2” or may not be equipped
with the NDISK ’th disk. Accordingly, δ1(s

0) = {(s0,disk1 op, [(s0, 0),
(s1, 0.001), (s2, 0.999), . . .]), (s0,disk2 op, [(s0, 0), (s1, 0.005), (s2, 0.995), . . .])),
(s0,no disk, [(s0, 0), (s1, 1), (s2, 0), . . .]))}.

For the system in our running example, for instance, we want to establish that
the PA version of the parallel composition M in (5) satisfies

Pmin
≥0.9995[F ¬(web = 0 ∨ app = 0 ∨ db = 0)], (8)

namely that the minimum probability that none of the three service functions
fails, over all possible adversaries of M , is at least 0.9995.

The core probabilistic assume-guarantee rule introduced in [27] is a proba-
bilistic variant of (6):

〈true〉M1〈A〉≥p1 , 〈A〉≥p1M2〈G〉≥p2

〈true〉M1 ‖ M2〈G〉≥p2

, (9)

where, given a model M and a probabilistic safety property 〈X 〉≥p , M |= 〈X 〉≥p

holds iff the minimum probability that X is satisfied over all adversaries of M
is at least p. A probabilistic safety property 〈X 〉≥p is specified by means of:

– A deterministic finite automaton (DFA) X err = (Q , αX , δX , q0,F) with the
state set Q , alphabet αX , transition function δX : Q ×αX → Q , initial state
q0 and accepting states F ⊆Q . The finite words accepted by X err specify the
sequences of actions associated with prefixes of paths that do not satisfy X .

– The rational probability bound p.

Consider, for instance, the server model Mserver from Fig. 3, its action alphabet
αserver = {disk op, cpu op, mem op, detect, warn, server up, server down},
and let 〈A1〉≥0.999 be the probabilistic safety property from eq. (4). The DFA
Aerr

1 and its regular language L(Aerr
1) of “bad prefixes” are shown in Fig 8(a).

Compositional Reverification of Probabilistic Safety Properties 313

web down, app down

web upapp down

web up app down

app down web up

(e) Aerr
5 : L(Aerr

5) = (app down+web up |
web up+app down)
(web up | app down)∗

db down

db down

(f) Aerr
6 : L(Aerr

6) = db down+

service down

service down

(g) Gerr: L(Gerr) = service down+

web down, app down

web downapp down

web down app down

app down web down

(c) Aerr
3 : L(Aerr

3) = (app down+web down |
web down+app down)
(web down | app down)∗

web down, app up

web downapp up

web down app up

app up web down

(d) Aerr
4 : L(Aerr

4) = (app up+web down |
web down+app up)
(web down | app up)∗

server downwarn

warn, server downwarn, server down

(a) Aerr
1 : L(Aerr

1) = server down+

warn

warn

(b) Aerr
2 : L(Aerr

2) = warn+

Fig. 8. Deterministic finite automata and regular expressions defining for the proba-
bilistic safety properties from the running example

Given the DFAs Aerr and Gerr for the assumed and guaranteed probabilistic
safety properties in the proof rule (9), the verification of its two premises is
carried out as follows [27]:

– To verify 〈true〉M1〈A〉≥p1 quantitatively, the parallel composition of M1 and
Aerr is model checked to obtain 1−p1, the maximum probability of reaching
the (undesirable) accepting states of Aerr, over all adversaries of M1.

– To verify 〈A〉≥p1M2〈G〉≥p2 , M2 is composed with both Aerr and Gerr. Be-
cause the satisfaction of A with probability p1 and of G with probability p2
must be analysed together, a technique called multi-objective model checking
[18] is then used. This technique produces 1−p2, the maximum probability of

314 R. Calinescu, S. Kikuchi, and K. Johnson

reaching the (undesirable) accepting states of Gerr, under the assumption
〈A〉≥p1 and over all adversaries of M2. These steps are described in detail in
[27], and automated in the latest version of the probabilistic symbolic model
checker PRISM [26].

To verify that model M from eq. (5) satisfies the probabilistic safety property
(8), we used the probabilistic assume-guarantee proof tree

〈true〉MserverA〈A1A ,A2A〉≥p1,p2

〈A1A ,A2A〉≥p1,p2Mweb+appA
〈A3A ,A4A ,A5A〉≥p3,p4,p5

〈true〉MserverA ‖ Mweb+appA
〈A3A ,A4A ,A5A〉≥p3,p4,p5

, (*)

〈true〉MserverB〈A1B ,A2B〉≥p1,p2

〈A1B ,A2B〉≥p1,p2Mweb+appB
〈A3B ,A4B ,A5B〉≥p3,p4,p5

〈true〉MserverB ‖ Mweb+appB
〈A3B ,A4B ,A5B〉≥p3,p4,p5

, (*)

〈true〉MserverC〈A1C ,A2C〉≥p1,p2

〈A1C ,A2C〉≥p1,p2MdbC
〈A6C〉≥p6

〈true〉MserverC ‖ MdbC
〈A6C〉≥p6

, (*)

〈true〉MserverD〈A1D ,A2D〉≥p1,p2

〈A1D ,A2D〉≥p1,p2MdbD
〈A6D〉≥p6

〈true〉MserverD ‖ MdbD
〈A6D〉≥p6

, (*)

〈A3A,A4A,A5A,A3B,A4B,A5B,A6C,A6D〉≥p3,p4,p5,p3,p4,p5,p6,p6Mservice〈G〉≥p7

〈true〉M 〈G〉≥p7

(#)

(10)

Notice that this proof tree represents a bottom-up reflection of the structure of
the real-world system from Figure 1, where:

– the probabilistic safety properties 〈A1A〉≥p1 to 〈A1D〉≥p1 , 〈A2A〉≥p2 to
〈A2D〉≥p2 , etc. are defined by the DFAs in Figure 8 (with the appropiate
subscript—A, B, C or D—applied to their action names);

– the probabilities p1 to p7 were obtained using the probabilistic model checker
PRISM as described earlier;

– (*) denotes the application of the ASym-Mult probabilistic assume-
guarantee proof rule from [27];

– (#) marks the application of the new assume-guarantee proof rule that we
introduce in Appendix A.

We executed the verification steps for all premises in (10) on a Macbook Pro
laptop with 2.66 GHz Intel Core 2 Duo processor and 8GB of memory, us-
ing the hardware failure probabilities reported in [32,34] (pdisk fail = 0.0231,
pcpu fail = 0.0018 and pmem fail = 0.0231 for a one-year period of operation).1

1 The component failure probabilities in Figs. 3 and 7 were used only for illustration.

Compositional Reverification of Probabilistic Safety Properties 315

Table 1. Experimental results for the probabilistic assume-guarantee proof tree (10).
The probabilities associated with the assumed and guaranteed properties in (10) were
calculated for a one-year time interval, based on the hardware component failure prob-
abilities reported in [32,34].

Verified model Number of states Result

MserverA−D 570 p1 = 0.999998
p2 = 0.999544

Mweb+appA−B
54 p3 = 0.999946

p4 = 0.997452
p5 = 0.997452

MdbC−D
13 p6 = 0.949954

Mservice 1035 p7 = 0.997482

The results of the verification and the size of the models verified are shown in
Table 1. As indicated by these results, the size of the state space for the verified
models ranged between 13 and 1035, which explains why each of the verification
steps completed in under one second. We anticipate that safety proporties for
systems comprising much larger numbers of servers, VMs per server, and function
instances per service could be verified using the approach, and we are planning
to confirm this experimentally in the future.

3 Reverification of Safety Properties for LSCITS

We showed in the previous section how compositional verification can be used to
verify safety properties of a class of systems that can potentially be very large.
However, size is not the only defining characteristic of LSCITS. LSCITS can be
seen as coalitions of systems whose components join and leave continually, and
within which frequent component selection and failure represent the norm rather
than an exception [9,28,31].

In this section, we present techniques for the calculation of the minimal se-
quence of assume-guarantee premises that need to be reverified in response to
several of these key patterns of LSCITS change. To describe these techniques,
we will use the following additional notation:

– M, the set of PA models (7);
– P , the set of probabilistic safety properties;
– DFA, the set of deterministic finite automata;
– dfa : P → DFA, the function that maps each probabilistic safety property

to its defining deterministic finite automaton;
– prob : P → [0, 1], the function that maps each probabilistic safety property

to its associated probability (i.e., ∀〈X〉≥p ∈ P • prob(〈X 〉≥p) = p);
– mc : 2P ×M×DFA → [0, 1], the quantitative model checking function that,

given a set of assumptions A ∈ 2P , a model M ∈ M and a deterministic
finite automaton Gerr ∈ DFA, ensures that 〈G〉≥p , i.e., M |= 〈G〉≥mc(A,M ,Gerr)

under the assumptions A;

316 R. Calinescu, S. Kikuchi, and K. Johnson

– V ⊂ 2P×M×2P, the set of all verification steps that can appear as premises
in a probabilistic assume-guarantee proof tree; (A,M ,G) ∈ V iff A and G
are finite sets of assumed and guaranteed probabilistic safety properties for
the PA model M , respectively.

Note that 〈true〉 is a special element of P ; when it is used as an assumption for
a model M ∈ M, dfa(〈true〉) is the one-state DFA that has the same alphabet
αM as M and does not accepts any word, i.e., dfa(〈true〉) = ({q0}, αM , {a ∈
αM •(q0, a) �→ q0}, q0, {}) and prob(〈true〉) = 1. In the definition of the transition
function for dfa(〈true〉), we used the set comprehension notation {a ∈ αM •
(q0, a) �→ q0} to build the set of mappings “(q0, a) �→ q0” for all possible values
a ∈ αM . This notation, including its generalised form {declaration | predicate •
expression} will be used again in this section as a concise way of specifying sets
such as {x ∈ N | 5 ≤ x ≤ 20 • √

x}, the set comprising the square root of all
natural numbers between 5 and 20.

We are interested in the finite sequences of verification steps (v1, v2, . . . , vn) ∈
seqV that correspond to probabilistic assume-guarantee proof trees, which we
term compositional verification tasks. A sequence (v1, v2, . . . , vn), where vi =
(Ai ,Mi ,Gi) ∈ V for all 1 ≤ i ≤ n, is a compositional verification task iff
the set of assumed properties for each of its verification steps comprises only
the special property 〈true〉 and properties guaranteed by preceeding verification
steps: Ai ⊆ {〈true〉} ∪G1 ∪G2 ∪Gi−1, for 1 ≤ i ≤ n.

Using the notation introduced above, the compositional verification task (9)
from our running example can be specified as a nine-element sequence of verifi-
cation steps (v1, v2, . . . , v9), where

v1 = ({〈true〉},MserverA , {〈A1A〉≥p1 , 〈A2A〉≥p2})
v2 = ({〈true〉},MserverB , {〈A1B〉≥p1 , 〈A2B〉≥p2})
v3 = ({〈true〉},MserverC , {〈A1C〉≥p1 , 〈A2C〉≥p2})
v4 = ({〈true〉},MserverD , {〈A1D〉≥p1 , 〈A2D〉≥p2})
v5 = ({〈A1A〉≥p1 , 〈A2A〉≥p2},Mweb+appA

, {〈A3A〉≥p3 , 〈A4A〉≥p4 , 〈A5A〉≥p5})
v6 = ({〈A1B〉≥p1 , 〈A2B〉≥p2},Mweb+appB

, {〈A3B〉≥p3 , 〈A4B〉≥p4 , 〈A5B〉≥p5})
v7 = ({〈A1C〉≥p1 , 〈A2C〉≥p2},MdbC , {〈A6C〉≥pA6

})
v8 = ({〈A1D〉≥p1 , 〈A2D〉≥p2},MdbD , {〈A6D〉≥pA6

})
v9 = ({〈A3A〉≥p3 , 〈A4A〉≥p4 , 〈A5A〉≥p5 , 〈A3B〉≥p3 , 〈A4B〉≥p4 ,

〈A5B〉≥p5 , 〈A6C〉≥p6 , 〈A6D〉≥p6},Mservice , {〈G〉≥p7})

(11)

3.1 Reverification of a Sequence of Verification Steps

Consider a compositional verification task cv = (v1, v2, . . . , vn) ∈ seqV that was
completed successfully as described in the Section 2.3. The rest of this section
describes a technique for the derivation of the minimal sequence of verification
steps Δcv ∈ seqV that need to be carried out to reverify the safety properties
associated with cv after different types of changes in the verified system.

We start by introducing a reverify function that takes as parameters:

Compositional Reverification of Probabilistic Safety Properties 317

1. a sequence of verification steps vs ∈ seqV ; and
2. a set of guaranteed property changes of the form (g, g ′) ∈ P × P (where g

and g ′ are related properties before and after a system change, respectively)

and produces the minimum sequence of verification steps that need to be carried
out in order to reestablish the probabilistic safety properties from vs . We define
the function

reverify : seqV × 2P×P → seqV (12)

recursively on the size of the sequence of verification steps vs :

reverify((), changes) = ()

reverify((A,M ,G) � vs , changes) =

=

{
reverify(vs , changes), if A ∩ {(g, g ′) ∈ changes • g} = ∅
(A′,M ,G ′)� reverify(vs , changes ′), otherwise

(13)
where:

(i) A′ = {a ∈ A | ¬(∃(g, g ′) ∈ changes • a = g)} ∪ {(g, g ′) ∈ changes | g ∈
A • g ′} is obtained by updating all the assumptions from A that changed;

(ii) G ′ = {x ∈ P | (∃ g ∈ G • dfa(x) = dfa(g)) ∧ prob(x) = mc(A′,M , dfa(g))}
is the new set of probabilistic safety properties guaranteed by the model
M given the changed assumed property set A′;

(iii) changes ′= changes∪{(g, g ′)∈G×G ′ | dfa(g)=dfa(g ′) ∧ prob(g ′)<prob(g)}
represents the new set of guaranteed property changes, which is obtained
by extending the old changes set with all pairs from G×G ′ that correspond
to a decrease in a safety probability bound.

Throughout this section we assume that the goal of the reverification is to
establish whether the analysed system continues to satisfy given probabilistic
safety properties after changes. If the aim is instead to find the new probability
bounds for all safety properties, then prob(g ′) < prob(g) should be replaced with
prob(g ′) �= prob(g) in the calculation of changes ′ above.

The cost of executing the reverify function has two components:

1. the cost of running the verification steps (A′,M ,G ′) from (13);
2. the cost of performing the set intersection from (13) and the calculations

from steps (i)–(iii) described above.

For each use of reverify in handling one of the LSCITS change patterns covered
later in this section, we will prove that reverify yields the minimum sequence of
verification steps required to reverify the analysed probabilistic safety properties.
Therefore, we focus here only on the second cost component. To evaluate this
cost component, we consider the execution of reverify(cv , changes) for a generic
compositional verification task cv and a generic property change set changes .
Without loss of generality, we assume that cv comprises n > 0 verification
steps, and that these n verification steps and the changes set taken together

318 R. Calinescu, S. Kikuchi, and K. Johnson

contain m > 0 assumed and guaranteed probabilistic safety properties. Under
these assumptions, the set intersection A ∩ {(g, g ′) ∈ changes • g} from (13)
requires at most O(m2) time. Likewise, the two set comprehensions from step
(i) take at most O(m2) time even for the most basic implementation of set
membership queries. Building the set G ′ in step (ii) requires O(m) time (in
addition to the cost of executing mc(A′,M , dfa(g)), but this is part of the first
cost component). Finally, the cost of updating changes to changes ′ in step (iii)
requires again at most O(m2) time for the examination of the elements in G×G ′.
Due to the recursive reverify invocations, the operations analysed above are
performed n times, so the overall time complexity for the operations covered
by the second cost component is O(nm2). Note that, even for large values of n
and m, this represents a modest overhead compared to the first cost component,
which corresponds to executing the model checking operationsmc(A′,M , dfa(g))
from (13). Since we will prove that the minimal set of such model checking
operations is executed in each scenario in which reverify is used in the remainder
of the section, we conclude that reverify is cost effective for the scenarios in which
it is used.

Having introduced and analysed the generic reverify function in (12)–(13), we
are ready to calculate the minimum sequences of verification steps required after
different types of LSCITS changes.

3.2 LSCITS Component Failure (or “Departure”)

Suppose that the system component associated with model Mi from the verifica-
tion step vi of the compositional verification task cv = (v1, v2, . . . , vn) failed (or
left the system), where 1 ≤ i ≤ n. In this scenario, appropriately modified vari-
ants of some or all of the verification steps vi+1, vi+2, . . . , vn need to be redone.
The theorem below provides a method for the derivation of these verification
steps.

Theorem 1. The minimal sequence of verification steps that needs to be carried
out to reverify a compositional verification task cv = (v1, v2, . . . , vn) after the
failure of the component associated with its i-th verification step is

Δcv = reverify((vi+1 , vi+2, . . . , vn), {g ∈ Gi • (g, 〈true〉)}). (14)

The proof of this theorem is included in Appendix A.

Returning to our running example, suppose that the database function on server
D is removed from the system because the service workload no longer justifies
maintaining two instances of the database. Since the verification step associated
with this component in (11) is v8, the sequence of verification steps that need to
be redone is given by

Δcv = reverify((v9), {(〈A6D〉≥p6 , 〈true〉)}). (15)

Compositional Reverification of Probabilistic Safety Properties 319

According to the reverify definition in (13), this is

Δcv = reverify(({〈A3A 〉≥p3 , 〈A4A〉≥p4 , 〈A5A〉≥p5 , 〈A3B〉≥p3 , 〈A4B〉≥p4 ,
〈A5B〉≥p5 , 〈A6C 〉≥p6 , 〈A6D〉≥p6},Mservice , {〈G〉≥pG}),

{(〈A6D〉≥p6 , 〈true〉)})
= ({〈A3A〉≥p3 , 〈A4A〉≥p4 , 〈A5A〉≥p5 , 〈A3B〉≥p3 , 〈A4B〉≥p4 , 〈A5B〉≥p5 ,

〈A6C〉≥p6 , 〈true〉},Mservice , {〈G〉≥p′
7
})� reverify((), changes ′)

= ({〈A3A〉≥p3 , 〈A4A〉≥p4 , 〈A5A〉≥p5 , 〈A3B〉≥p3 , 〈A4B〉≥p4 , 〈A5B〉≥p5 ,

〈A6C〉≥p6},Mservice , {〈G〉≥p′
7
})� ()

= ({〈A3A〉≥p3 , 〈A4A〉≥p4 , 〈A5A〉≥p5 , 〈A3B〉≥p3 , 〈A4B〉≥p4 , 〈A5B〉≥p5 ,
〈A6C〉≥p6},Mservice , {〈G〉≥p′

7
})

(16)
where the probability bounds p1 to p7 are those in Table 1,

p′
7 = mc({〈A3A〉≥p3 , 〈A4A〉≥p4 , 〈A5A〉≥p5 , 〈A3B〉≥p3 , 〈A4B〉≥p4 , 〈A5B〉≥p5 ,

〈A6C〉≥p6},Mservice , dfa(〈G〉≥p7))

and

changes ′ =

{
{(〈A6D〉≥p6 , 〈true〉), (〈G〉≥p7 , 〈G〉≥p′

7
)}, if p′

7 < p7
{(〈A6D〉≥p6 , 〈true〉)}, otherwise

Redoing the only verification step in (16) yields p′
7 = 0.949943. Since p′

7 <
p7 = 0.997482 (cf. Table 1), changes ′ = {(〈A6D〉≥p6 , 〈true〉), (〈G〉≥p7 , 〈G〉≥p′

7
)}

(although this updated set of changes is not used in the recursive invocation of
reverify , which is applied to the empty sequence of verification stepss).

3.3 LSCITS Component Change

Assume that the system component associated with model Mi , 1 ≤ i ≤ n, from
the verification step vi of compositional verification task cv = (v1, v2, . . . , vn)
changed. The theorem below specifies the minimum sequence of verification steps
that need redone to re-establish the properties corresponding to cv .

Theorem 2. The minimal sequence of verification steps that needs to be carried
out to reverify a compositional verification task cv = (v1, v2, . . . , vn) after a
change in the component associated with its i-th verification step is

Δcv = (Ai ,M
′
i ,G

′
i)
�

reverify((vi+1 , vi+2, . . . , vn),
{(g, g ′)∈Gi×G ′

i |dfa(g)=dfa(g ′) ∧ prob(g ′)<prob(g)}),
(17)

where M ′
i represents the updated model for the changed system component and

G ′
i = {x ∈ P | (∃ g ∈ Gi • dfa(g) = dfa(x)) ∧ prob(x) = mc(Ai ,M

′
i , dfa(x))}.

Proof. The proof is similar to that of Theorem 1.
��

To illustrate the application of the result in Theorem 2, suppose that the service
functions running on Server A from our running example are redeployed on a

320 R. Calinescu, S. Kikuchi, and K. Johnson

different type of server (perhaps located in a different data centre). Suppose that
the new server has N ′

DISK = 4 disks instead of NDISK = 3 disks for the server
from our original scenario, but that the N ′

DISK new disks are less reliable, i.e.,
p′
disk fail = 0.0250 compared to pdisk fail = 0.0231 previously. According to (17),

the sequence of verification steps that need to be redone is

Δcv = ({〈true〉},M ′
serverA , {〈A1A〉≥p′

1
, 〈A2A〉≥p′

2
})�

reverify((v2 , v3, . . . , v9), changes),

where M ′
serverA is the updated model for Server A,

p′
1 = mc({〈true〉},M ′

serverA
, dfa(〈A1A 〉≥p1)),

p′
2 = mc({〈true〉},M ′

serverA , dfa(〈A2A 〉≥p2)),

the probabilities p1 and p2 are those in Table 1, v2 to v9 are defined in (11), and

changes = {i ∈ N | 1 ≤ i ≤ 2 ∧ p′
i < pi • (〈AiA〉≥pi , 〈AiA〉≥p′

i
)}.

Executing the first verification step in Δcv yields

p′
1 = 1− 5.85E-8 (which is larger than p1 = 0.999998)

p′
2 = 0.999984 (which is larger than p2 = 0.999544)

hence changes = {} and, since reverify((v2 , v3, . . . , v9), {}) = (), no further veri-
fication step needs to be carried out.

3.4 LSCITS Component Joining

Suppose that a new component with model Mnew joins the system. Re-
establishing the probabilistic safety properties of the system requires updating
any component models that depend on Mnew , and carrying out verification steps
for Mnew , these updated models, and any other models whose verification steps
include assumed properties that have changed. The minimal sequence of verifi-
cation steps that need to be carried out is given by the theorem below.

Theorem 3. Let Mnew be the model of a new component that joins a system
for which a composition verification task cv = (v1, v2, . . . , vn) was completed
successfully before this operation. Also, let Mi1 , Mi2 , . . . , Mim , m > 0, be the
models of the components that depend onMnew , 1 ≤ i1 < i2 < . . . < im ≤ n, and
assume that their updated versions reflecting the presence of the new component
are M ′

i1 , M
′
i2 , . . . , M

′
im . Under these circumstances, the minimal sequence of

verification steps that needs to be carried out to reverify cv is

Δcv = (Anew ,Mnew ,Gnew)�
reverify(((A′

i1 ,M
′
i1 ,Gi1), vi1+1, vi1+2, . . . , vi2−1,

(A′
i2
,M ′

i2
,Gi2), vi2+1, vi2+2, . . . , vi3−1,

. . .
(A′

im ,M
′
im ,Gim), vim+1, vim+2, . . . , vn),

{(g, gnew)∈P×Gnew |dfa(g)=dfa(gnew) ∧ prob(g)=0}),

(18)

Compositional Reverification of Probabilistic Safety Properties 321

where Anew ⊆ ∪i1−1
j=1 Gj ∪ {〈true〉} is the set of assumed properties for the

verification of the new system component, and A′
ij ⊆ Aij ∪ {a ∈ P | (∃ g ∈

Gnew •dfa(a) = dfa(g)) ∧ prob(a) = 0} represents the new set of assumed prop-
erties for the model M ′

ij , 1 ≤ j ≤ m. Note that A′
ij \Aij �= {} for all 1 ≤ j ≤ m

since M ′
ij
depends on Mnew .

Proof.We note first that the minimal sequence of verification steps must include
the verification step for the new component, i.e., (Anew ,Mnew ,Gnew). Moreover,
this step can appear at the beginning of the sequence since its assumed property
set, Anew , consists of properties already established by the previously executed
compositional verification task cv . We also note that the assumed property sets
for the verification tasks v1 to vi1−1 are unchanged after the new component
joined the system. Accordingly, the use of a sequence of verification steps that
start at the i1-th component as the first argument for the reverify invocation
from (18) is correct. The rest of the proof shows that this invocation of reverify
yields the sequence of verification steps required to re-establish the probabilistic
safety properties in cv for the system components associated with the models
M ′

i1 , Mi1+1, Mi1+2, . . . , Mi2−1, M
′
i2 , Mi2+1, Mi2+2, . . . , Mim−1, M

′
im , Mim+1,

Mim+2, . . . , Mn after the execution of the verification step (Anew ,Mnew ,Gnew).
This part of the proof is similar to the proof of Theorem 1, and therefore not
included in the paper.

��

Returning to our running example, suppose that the service is augmented with
a third database instance running on an additional server (Server E). The first
verification step from (v1, v2, . . . , v9) that is affected by this change is v9, whose
model needs to be updated to M ′

service . The new verification step for the com-
ponent that joined is

vnew = (Anew ,Mnew ,Gnew) = ({〈A1E〉≥p1 , 〈A2E〉≥p2},MdbE , {〈A6E〉≥p6}),

so, according to Theorem 3,

Δcv = ({〈A1E〉≥p1 , 〈A2E〉≥p2},MdbE , {〈A6E〉≥p6})�
reverify(((A′

9 ,M
′
service , {〈G〉≥p′

7
})), {(〈A6E〉≥0}, 〈A6E〉≥p6})})

with A′
9 = {〈A3A〉≥p3 , 〈A4A〉≥p4 , 〈A5A〉≥p5 , 〈A3B〉≥p3 , 〈A4B〉≥p4 , 〈A5B〉≥p5 ,

〈A6C〉≥p6 , 〈A6D〉≥p6 , 〈A6E〉≥0}. As a result,

Δcv = ({〈A1E〉≥p1 , 〈A2E〉≥p2},MdbE , {〈A6E〉≥p6})�
({〈A3A〉≥p3 , 〈A4A〉≥p4 , 〈A5A〉≥p5 , 〈A3B〉≥p3 , 〈A4B〉≥p4 ,
〈A5B〉≥p5 , 〈A6C〉≥p6 , 〈A6D〉≥p6 , 〈A6E〉≥p6},M ′

service , {〈G〉≥p′
7
})

Carrying out the two verification steps yields p6 = 0.949954 (as for the other
database instances) and p′

7 = 0.999861.

322 R. Calinescu, S. Kikuchi, and K. Johnson

3.5 LSCITS Component Choice

Assume that the functionality of the i-th system component, 1 ≤ i ≤ n, can
be provided by m > 1 new concrete implementations of this component, each
characterised by different performance, reliability and cost. Let M 1

i , M
2
i , . . .M

m
i

be the models associated with these functionally equivalent component imple-
mentations. Assume that the implementation that helps the system satisfy its
requirements with minimum cost needs to be identified.

Theorem 4. The minimal sequence of verification steps that needs to be carried
out to select the least expensive i-th component in the scenario described above
is

Δcv = (Ai ,M
1
i ,G

1
i)
�

reverify((vi+1 , vi+2, . . . , vn),

{(g, g ′)∈Gi×G1
i |dfa(g)=dfa(g ′) ∧ prob(g ′)<prob(g)})�

(Ai ,M
2
i ,G

2
i)
�

reverify((vi+1 , vi+2, . . . , vn),

{(g, g ′)∈Gi×G2
i |dfa(g)=dfa(g ′) ∧ prob(g ′)<prob(g)})�

. . .�
(Ai ,M

m
i ,Gm

i)�
reverify((vi+1 , vi+2, . . . , vn),

{(g, g ′)∈Gi×Gm
i |dfa(g)=dfa(g ′) ∧ prob(g ′)<prob(g)}),

(19)
whereG j

i = {x ∈ P | (∃ g ∈Gi•dfa(g)=dfa(x)) ∧ prob(x)=mc(Ai ,M
j
i , dfa(x))}

for 1 ≤ i ≤ m.

Proof. Selecting the least expensive component requires the independent exam-
ination of the effect of changing Mi with each of the models M 1

i , M
2
i , . . .M

m
i , in

order to identify the options that satisfy the requirements of the system. There-
fore, the minimal sequence of verification steps is obtained by concatenating the
minimal sequences of verification steps from Theorem 2 for models M 1

i to Mm
i ,

as shown in (19).
��

Returning again to our running example, suppose that the version of the virtu-
alisation middleware installed on Server A from Figure 1 can be selected from
three options. Assume that these options are associated with different levels of
functionality/configurability, and with different levels of reliability, reflected in
the probability pVM fail that a VM fails to operate correctly during a given time
period:

1. The latest stable version of the virtualisation software, which is characterised
by pVM fail = 0.05 for a one-year time period. As shown by the probabilities
annotating the state transitions associated with vm op actions in Figure 4,
this is the option used by model Mweb+appA

from our case study.

Compositional Reverification of Probabilistic Safety Properties 323

2. The latest beta version of the virtualisation middleware, which provides the
richest functionality and configurability, but which is also the least reliable,
with pVM fail = 0.1 for a one-year time period.

3. A highly reliable old version of the middleware that is characterised by
pVM fail = 0.01 over one year, but which lacks some of the monitoring
capabilities of the other two options.

The last two options mentioned above correspond to two new models M 1
web+appA

and M 2
web+appA

for verification step v5 from our compositional verification task
cv from eq. (11). According to Theorem 4, the minimal sequence of verification
steps required to assess the suitability these two new options is

Δcv = ({〈A1A〉≥p1 , 〈A2A〉≥p2},M 1
web+appA

, {〈A3A〉≥p1
3
, 〈A4A〉≥p1

4
, 〈A5A〉≥p1

5
})�

reverify((v6 , v7, v8, v9),

{(g, g ′)∈G5×G1
5 |dfa(g)=dfa(g ′) ∧ prob(g ′)<prob(g)})�

({〈A1A〉≥p1 , 〈A2A〉≥p2},M 2
web+appA

, {〈A3A〉≥p2
3
, 〈A4A〉≥p2

4
, 〈A5A〉≥p2

5
})�

reverify((v6 , v7, v8, v9),
{(g, g ′)∈G5×G2

5 |dfa(g)=dfa(g ′) ∧ prob(g ′)<prob(g)})

Carrying out the two verification steps shown explicitly above yields: p1
3 =

0.999852, p1
4 = p1

5 = 0.989953, p2
3 = 0.999952 and p2

4 = p2
5 = 0.999852.

Since the probability bounds for the original compositional verification task were
p3 = 0.999946 and p4 = p5 = 0.997452, we have

Δcv = ({〈A1A〉≥p1 , 〈A2A〉≥p2},M 1
web+appA

, {〈A3A〉≥p1
3
, 〈A4A〉≥p1

4
, 〈A5A〉≥p1

5
})�

reverify((v6 , v7, v8, v9),

{(〈A3A〉≥p3 , 〈A3A〉≥p1
3
), (〈A4A〉≥p4 , 〈A4A〉≥p1

4
), (〈A5A〉≥p5 , 〈A5A〉≥p1

5
)})�

({〈A1A〉≥p1 , 〈A2A〉≥p2},M 2
web+appA

, {〈A3A〉≥p2
3
, 〈A4A〉≥p2

4
, 〈A5A〉≥p2

5
})�

reverify((v6 , v7, v8, v9), {})
= ({〈A1A〉≥p1 , 〈A2A〉≥p2},M 1

web+appA
, {〈A3A〉≥p1

3
, 〈A4A〉≥p1

4
, 〈A5A〉≥p1

5
})�

({〈A3A〉≥p1
3
, 〈A4A〉≥p1

4
, 〈A5A〉≥p1

5
, 〈A3B〉≥p3 , 〈A4B〉≥p4 ,

〈A5B〉≥p5 , 〈A6C〉≥p6 , 〈A6D〉≥p6},Mservice , {〈G〉≥p1
7
})�

({〈A1A〉≥p1 , 〈A2A〉≥p2},M 2
web+appA

, {〈A3A〉≥p2
3
, 〈A4A〉≥p2

4
, 〈A5A〉≥p2

5
})�

()

= ({〈A1A〉≥p1 , 〈A2A〉≥p2},M 1
web+appA

, {〈A3A〉≥p1
3
, 〈A4A〉≥p1

4
, 〈A5A〉≥p1

5
})�

({〈A3A〉≥p1
3
, 〈A4A〉≥p1

4
, 〈A5A〉≥p1

5
, 〈A3B〉≥p3 , 〈A4B〉≥p4 ,

〈A5B〉≥p5 , 〈A6C〉≥p6 , 〈A6D〉≥p6},Mservice , {〈G〉≥p1
7
})�

({〈A1A〉≥p1 , 〈A2A〉≥p2},M 2
web+appA

, {〈A3A〉≥p2
3
, 〈A4A〉≥p2

4
, 〈A5A〉≥p2

5
}).

The only remaining verification step to carry out is the one in the middle, which
yields p1

7 = 0.997494, a value that is slightly lower than the probability bound
p7 = 0.997482 provided by the original choice of a virtualisation middleware
version for Server A.

324 R. Calinescu, S. Kikuchi, and K. Johnson

4 Conclusion and Future Work

Large-scale complex IT systems (LSCITS) are notoriously difficult to verify for-
mally. Their extremely large state spaces, continual changes and nondeterminis-
tic behaviour challenge not only the scalability of existing verification techniques,
but also the validity of the traditional approach of performing the verification
offline, typically at design time. While an increasing number of compositional
verification techniques address the scalability challenge, less research has ex-
plored the effect that continual change has on the verification of LSCITS.

This paper overviewed assume-guarantee compositional verification in the
context of a case study from the area of cloud computing, and presented a
formalism for specifying several classes of change that are common to LSCITS.
We showed how this formalism can be used to generate the sequence of verifi-
cation steps that need to be (re-)done after each type of change, and illustrated
the application of this approach for several scenarios from our case study.

Our future work will focus on extending the change specification formalism to
other classes of LSCITS change (e.g., changes in requirements), and on validating
it in additional case studies. In the longer term, we envisage the integration of the
approach with online learning techniques supporting change detection [7,17] and
with techniques for learning the assumptions for its sequence of compositional
verification steps [15,19].

Finally, an important challenge for our compositional reverification approach
is the availability of suitable models for the components of the analysed LSCITS.
In the work presented in this paper, we assumed that such models were available
for all LSCITS components, including those joining the system “on the fly”.
Clearly, this assumption does not hold in many real-world scenarios. Significant
future research is therefore needed to devise techniques that can learn these
models from observations of the running system, or at least automate their
synthesis from domain-specific descriptions of the LSCITS components.

Acknowledgements. This work was partly supported by the UK Engineering
and Physical Sciences Research Council grant EP/H042644/1.

References

1. de Alfaro, L., Henzinger, T.A.: Interface automata. SIGSOFT Softw. Eng.
Notes 26(5), 109–120 (2001),
http://doi.acm.org/10.1145/503271.503226

2. Berezin, S., Campos, S.V.A., Clarke, E.M.: Compositional Reasoning in Model
Checking. In: de Roever, W.-P., Langmaack, H., Pnueli, A. (eds.) COMPOS 1997.
LNCS, vol. 1536, pp. 81–102. Springer, Heidelberg (1998),
http://dl.acm.org/citation.cfm?id=646738.701964

3. Blundell, C., Giannakopoulou, D., Pasareanu, C.S.: Assume-guarantee testing.
ACM SIGSOFT Software Engineering Notes 31(2) (2006)

4. Calinescu, R.: General-purpose autonomic computing. In: Denko, M., et al. (eds.)
Autonomic Computing and Networking, pp. 3–30. Springer (2009)

http://doi.acm.org/10.1145/503271.503226
http://dl.acm.org/citation.cfm?id=646738.701964

Compositional Reverification of Probabilistic Safety Properties 325

5. Calinescu, R., Ghezzi, C., Kwiatkowska, M., Mirandola, R.: Self-adaptive software
needs quantitative verification at runtime. Communications of the ACM (Septem-
ber 2012)

6. Calinescu, R., Grunske, L., Kwiatkowska, M., Mirandola, R., Tamburrelli, G.: Dy-
namic QoS management and optimization in service-based systems. IEEE Trans-
actions on Software Engineering 37, 387–409 (2011)

7. Calinescu, R., Johnson, K., Rafiq, Y.: Using observation ageing to improve Marko-
vian model learning in QoS engineering. In: Proceedings 2nd ACM/SPEC Inter-
national Conference on Performance Engineering, pp. 505–510 (2011)

8. Calinescu, R., Kikuchi, S., Kwiatkowska, M.: Formal methods for the develop-
ment and verification of autonomic IT systems. In: Cong-Vinh, P. (ed.) Formal
and Practical Aspects of Autonomic Computing and Networking: Specification,
Development and Verification, pp. 1–37. IGI Global (2012)

9. Calinescu, R., Kwiatkowska, M.: Software Engineering Techniques for the Develop-
ment of Systems of Systems. In: Choppy, C., Sokolsky, O. (eds.) Monterey Work-
shop 2008. LNCS, vol. 6028, pp. 59–82. Springer, Heidelberg (2010)

10. Calinescu, R., Kikuchi, S.: Formal Methods @ Runtime. In: Calinescu, R., Jack-
son, E. (eds.) Monterey Workshop 2010. LNCS, vol. 6662, pp. 122–135. Springer,
Heidelberg (2011)

11. Calinescu, R., Kwiatkowska, M.: CADS*: Computer-Aided Development of Self-*
Systems. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503, pp.
421–424. Springer, Heidelberg (2009),
http://qav.comlab.ox.ac.uk/papers/fase09.pdf

12. Calinescu, R., Kwiatkowska, M.Z.: Using quantitative analysis to implement auto-
nomic IT systems. In: 31st International Conference on Software Engineering, pp.
100–110 (2009), http://dx.doi.org/10.1109/ICSE.2009.5070512

13. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (1999)

14. Clarke, E.M., Long, D.E., McMillan, K.: Compositional model checking. In: Proc.
4th Intl. Symp. Logic in Computer Science, pp. 353–362 (1989),
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=39190

15. Cobleigh, J.M., Giannakopoulou, D., Păsăreanu, C.S.: Learning Assumptions for
Compositional Verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 331–346. Springer, Heidelberg (2003),
http://dl.acm.org/citation.cfm?id=1765871.1765903

16. Dikaiakos, M.D., Katsaros, D., Mehra, P., Pallis, G., Vakali, A.: Cloud comput-
ing: Distributed internet computing for it and scientific research. IEEE Internet
Computing 13(5), 10–13 (2009)

17. Epifani, I., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Model evolution by run-
time adaptation. In: Proceedings of the 31st International Conference on Software
Engineering, pp. 111–121. IEEE Computer Society (2009)

18. Etessami, K., Kwiatkowska, M., Vardi, M.Y., Yannakakis, M.: Multi-objective
Model Checking of Markov Decision Processes. In: Grumberg, O., Huth, M. (eds.)
TACAS 2007. LNCS, vol. 4424, pp. 50–65. Springer, Heidelberg (2007)

19. Feng, L., Kwiatkowska, M.Z., Parker, D.: Automated Learning of Probabilistic
Assumptions for Compositional Reasoning. In: Giannakopoulou, D., Orejas, F.
(eds.) FASE 2011. LNCS, vol. 6603, pp. 2–17. Springer, Heidelberg (2011)

20. Filieri, A., Ghezzi, C., Tamburrelli, G.: A formal approach to adaptive software:
continuous assurance of non-functional requirements. Formal Asp. Comput. 24(2),
163–186 (2012)

http://qav.comlab.ox.ac.uk/papers/fase09.pdf
http://dx.doi.org/10.1109/ICSE.2009.5070512
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=39190
http://dl.acm.org/citation.cfm?id=1765871.1765903

326 R. Calinescu, S. Kikuchi, and K. Johnson

21. Grumberg, O., Long, D.E.: Model checking and modular verification. ACM Trans.
Program. Lang. Syst. 16(3), 843–871 (1994),
http://doi.acm.org/10.1145/177492.177725

22. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A Tool for Auto-
matic Verification of Probabilistic Systems. In: Hermanns, H. (ed.) TACAS 2006.
LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

23. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun.
ACM 12(10), 576–580 (1969), http://doi.acm.org/10.1145/363235.363259

24. Inverardi, P., Patrizio, Tivoli, M.: Towards an assume-guarantee theory for adapt-
able systems. In: Proceedings of the Software Engineering for Adaptive and Self-
Managing Systems Workshop (SEAMS), pp. 106–115 (2009)

25. Kesten, Y., Pnueli, A.: A compositional approach to ctl* verification. Theor. Com-
put. Sci. 331(2-3), 397–428 (2005),
http://dx.doi.org/10.1016/j.tcs.2004.09.023

26. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of Probabilistic
Real-Time Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

27. Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Assume-Guarantee Verifica-
tion for Probabilistic Systems. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010.
LNCS, vol. 6015, pp. 23–37. Springer, Heidelberg (2010),
http://qav.cs.ox.ac.uk/bibitem.php?key=KNPQ10

28. Northrop, L., et al.: Ultra-large-scale systems - the software challenge of the future.
Tech. rep., Software Engineering Institute, Carnegie Mellon University (June 2006)

29. Pnueli, A.: In transition from global to modular temporal reasoning about
programs. In: Apt, K.R. (ed.) Logics and Models of Concurrent Sys-
tems, pp. 123–144. Springer-Verlag New York, Inc., New York (1985),
http://dl.acm.org/citation.cfm?id=101969.101977

30. Segala, R., Lynch, N.A.: Probabilistic simulations for probabilistic processes. Nord.
J. Comput. 2(2), 250–273 (1995)

31. Sommerville, I., Cliff, D., Calinescu, R., Keen, J., Kelly, T., Kwiatkowska, M.,
McDermid, J., Paige, R.: Large-scale complex IT systems. Communications of the
ACM 55(7), 71–77 (2012)

32. Thomas, K.: Solid state drives no better than others, survey says,
http://www.pcworld.com/businesscenter/article/213442/solid state

drives no better than others survey says.html

33. Tordsson, J., Montero, R.S., Moreno-Vozmediano, R., Llorente, I.M.: Cloud bro-
kering mechanisms for optimized placement of virtual machines across multiple
providers. Future Generation Computer Systems 28(2), 358–367 (2012)

34. Vishwanath, K.V., Nagappan, N.: Characterizing cloud computing hardware reli-
ability. In: Proceedings of the 1st ACM Symposium on Cloud Computing, SoCC
2010, pp. 193–204. ACM, New York (2010),
http://doi.acm.org/10.1145/1807128.1807161

http://doi.acm.org/10.1145/177492.177725
http://doi.acm.org/10.1145/363235.363259
http://dx.doi.org/10.1016/j.tcs.2004.09.023
http://qav.cs.ox.ac.uk/bibitem.php?key=KNPQ10
http://dl.acm.org/citation.cfm?id=101969.101977
http://www.pcworld.com/businesscenter/article/213442/solid_state_drives_no_better_than_others_survey_says.html
http://www.pcworld.com/businesscenter/article/213442/solid_state_drives_no_better_than_others_survey_says.html
http://doi.acm.org/10.1145/1807128.1807161

Compositional Reverification of Probabilistic Safety Properties 327

Appendix A

A.1 Additional Probabilistic Assume-Guarantee Proof Rule

The proposition below introduces the assume-guarantee proof rule (#) that we
used in eq. (9). To prove the rule we use the following additional notation:

– Prσi

Mi
(Ai) represents the probability that model Mi satisfies the safety prop-

erty Ai for a fixed adversary σi ∈ Advi .
– Given an adversary σ ∈ AdvM1‖M2‖...‖Mx

, σ �Mi∈ Advi denotes the projection
of σ onto Mi , 1 ≤ i ≤ x .

Proposition 1. If M1, M2, . . . , Mk are probabilistic automata, and 〈A1〉≥p1 ,
〈A2〉≥p2 , . . . , 〈Ak 〉≥pk

are probabilistic safety properties such that αAi ⊆ αMi

for all 1 ≤ i ≤ k −1 and αAk
⊆ αMk

∪αA1 ∪αA2 ∪ . . .∪αAk−1
, then the following

proof rule holds:

〈true〉M1〈A1〉≥p1

〈true〉M2〈A2〉≥p2

. . .
〈true〉Mk−1〈Ak−1〉≥pk−1

〈A1,A2, . . . ,Ak−1〉≥p1,p2,...,pk−1
Mk 〈Ak 〉≥pk

〈true〉M1 ‖ M2 ‖ . . . ‖ Mk 〈Ak 〉≥pk

(20)

Proof. Starting from the hypothesis, we have:

∀ i ∈ {1, 2, . . . , k − 1} • ∀σi ∈ AdvMi • Prσi

Mi
(Ai) ≥ pi

(according to the definition of 〈true〉Mi〈Ai〉≥pi)
⇒
∀ i ∈ {1, 2, . . . , k − 1} • ∀σ ∈ AdvM1‖M2‖...‖Mk−1

• Prσ�Mi

Mi
(Ai) ≥ pi

(since σ �Mi∈ AdvMi)
⇒
∀ i ∈ {1, 2, . . . , k − 1} • ∀σ ∈ AdvM1‖M2‖...‖Mk−1

• PrσM1‖M2‖...‖Mk−1
(Ai) ≥ pi

(by part (a) of Lemma 1 from [27], since αAi ⊆ αMi)
⇒
∀σ ∈ AdvM1‖M2‖...‖Mk−1

• PrσM1‖M2‖...‖Mk−1
(A1) ≥ p1 ∧ . . .∧

∧PrσM1‖M2‖...‖Mk−1
(Ak−1) ≥ pk−1

(rewrite of the previous step)
⇒
〈true〉M1‖M2‖. . .‖Mk−1〈A1,A2, . . . ,Ak−1〉≥p1,p2,...,pk−1

(by definition)
⇒
〈true〉M1 ‖ M2 ‖ . . . ‖ Mk 〈Ak 〉≥pk

(by applying the ASym-Mult rule from [27])

��

328 R. Calinescu, S. Kikuchi, and K. Johnson

A.2. Proof of Theorem 1

Theorem 1. The minimal sequence of verification steps that needs to be carried
out to reverify a compositional verification task cv = (v1, v2, . . . , vn) after the
failure of the component associated with its i-th verification step is

Δcv = reverify((vi+1 , vi+2, . . . , vn), {g ∈ Gi • (g, 〈true〉)}). (21)

Proof. We start by observing that, according to the recursive definition of
reverify from (13), Δcv can be rewritten as:

Δcv = Δcv1 � reverify((vi+1 , vi+2, . . . , vn), changes0)

= Δcv2 � reverify((vi+2 , vi+3, . . . , vn), changes1)
= . . .

= Δcvn−i+1
� reverify((), changesn−i+1),

(22)

where Δcv1 = (), changes1 = {g ∈ Gi • (g, 〈true〉)} and, for 1 < j ≤ n − i + 1,
Δcj and changesj are obtained by carrying out the calculations defined by (13).
We will prove the following intermediate results by induction on the value of j :

1. Δcj is the minimal sequence of verification steps required to re-establish the
probabilistic safety properties associated with the first i + j − 1 elements of
cv ;

2. changesj is the set of all changes in the probabilistic safety properties guar-
anteed by models M1, M2, . . . , Mi+j−1,

for j = 1, 2, . . . ,n − i + 1. The theorem will then follow immediately from the
fact that Δcvn−i+1 is “the minimal sequence of verification steps required to re-
establish the probabilistic safety properties associated with the first i +(n− i +

1)−1 = n elements of cv”, since Δcv = Δcvn−i+1
�reverify((), changesn−i+1) =

Δcvn−i+1
� () = Δcvn−i+1.

The base case, corresponding to j = 1, is straightforward:

1. Δcv1 = () since the verification steps v1, v2, . . . , vi−1 do not need to be
redone (as their assumption sets A1, A2, . . . , Ai−1 do not contain any prop-
erties guaranteed by the failed component), and vi does not need to be redone
(because we already know that it corresponds to the failed component);

2. changes1 = {g ∈ Gi • (g, 〈true〉)} since none of the properties guaranteed
by M1, M2, . . . , Mi−1 has changed, and all properties in Gi , which were
guaranteed by the failed component, need to be replaced with the property
that does not offer any guarantees, i.e., 〈true〉.

Suppose now that Δcj and changesj satisfy our two properties for a value of
j such that 1 ≤ j < n − i + 1. We will prove that the two properties are also
satisfied by Δcj+1 and changesj+1.

According to the notation introduced in (22) and to the definition of reverify
from (13),

Δcj+1 = Δcj �
{
(), if Ai+j ∩ changesj = ∅
(A′

i+j ,M ,G ′
i+j), otherwise

(23)

Compositional Reverification of Probabilistic Safety Properties 329

and

changesj+1 = changesj ∪⎧⎨
⎩

{} if Ai+j ∩ changesj = ∅
{(g, g ′)∈Gi+j ×G ′

i+j | dfa(g)=dfa(g ′) ∧
prob(g ′)<prob(g)} otherwise

(24)

where

– A′
i+j = {a ∈ Ai+j | ¬(∃(g, g ′) ∈ changesj • a = g)} ∪ {(g, g ′) ∈ changesj |

g ∈ Ai+j • g ′};
– G ′

i+j = {x ∈ P | (∃ g ∈ Gi+j • dfa(x) = dfa(g)) ∧ prob(x) = mc(A′
i+j ,

Mi+j , dfa(g))}.

We analyse each of the two cases above in turn, recalling the fact that, according
to the inductive hypothesis, changesj is the set of all changes in the probabilistic
safety properties guaranteed by models M1 to Mi+j−1:

– The case Ai+j ∩ changesj = ∅ corresponds to the scenario in which the as-
sumptions for the verification step vi+j are unchanged. Therefore, the mini-
mal sequence of verification steps for modelsM1 toMi+j coincides in this case
with the minimal sequence of verification steps for modelsM1 to Mi+j−1, i.e.,
with Δcvj (according to the inductive hypothesis). Since Δcvj+1 = Δcvj , it
follows that, in this case, Δcvj+1 satisfies the first required property. Fi-
nally, no probabilistic safety properties guaranteed by Mi+j changed, so
changesj+1 = chagesj satisfies the second required property.

– The second case (i.e., Ai+j ∩ changesj �= ∅) corresponds to the scenario in
which at least one of the assumptions for the verification step vi+j changed,
hence the model Mi+j needs to be reverified against the updated set of
assumptions A′

i+j defined above, yielding the new guaranteed probabilistic
safety properties in G ′

i+j . The minimal set of verification steps to be re-
done for models M1 to Mi+j consists of all the verification steps that need
to be redone for models M1 to Mi+j−1 (i.e., Δcvj) and the additional step
(A′

i+j ,Mi+j ,G
′
i+j). This is precisely Δcvj+1, so the first required property

is also satisfied in the second case. Finally, we note again that changesj the
set of all changes in the probabilistic safety properties guaranteed by M1 to
Mi+j−1, and that the set {(g, g ′)∈Gi+j×G ′

i+j | dfa(g)=dfa(g ′) ∧ prob(g ′)<
prob(g)} contains precisely the changes to the probabilistic safety properties
guaranteed by Mi+j . Therefore, the union of these two sets (i.e., changesj+1)
represents the set of all changes in the probabilistic safety properties guar-
anteed by models M1 to Mi+j .

��

Extreme Symmetries in Complex Distributed Systems:
The Bag-Oriented Approach

Maximilien Colange1, Lom-Messan Hillah2, Fabrice Kordon1, and Pierre Parutto1

1 LIP6, CNRS UMR 7606, Université P. & M. Curie – Paris 6
4, Place Jussieu, F-75252 Paris Cedex 05, France

{Maximilien.Colange,Fabrice.Kordon}@lip6.fr
2 LIP6, CNRS UMR 7606 and Université Paris Ouest Nanterre La Défense

200, Avenue de la République, F-92001 Nanterre Cedex, France
Lom-Messan.Hillah@lip6.fr

Abstract. Model checking is widely used as an automatic exhaustive verifica-
tion technique to check properties of complex systems. However, it is difficult
to operate in the context of today’s emerging systems that combine distribution
(and asynchronous communications) together with a large size (and a hierarchical
composition of components – and thus, of specifications).

This paper combines existing techniques tackling the known combinatorial
explosion of model checking. To achieve this, we exploit the structure of such dis-
tributed systems (symmetries and hierarchical composition), thus allowing a bet-
ter compression factor and calculus factorization in favorable cases. We present
these techniques and assess their impact on some benchmark examples.

Keywords: Symmetric Nets with Bags, formal method, model checking, state
space generation, Symmetries-based techniques, Hierarchical Set Decision Dia-
grams.

1 Introduction

Context. Model checking is now widely used as an automatic and exhaustive verifica-
tion technique to check properties of complex systems. However, this approach suffers
from an intrinsic combinatorial explosion issue that must be tackled. One trend is to
take full advantage of the characteristics of the class of system being analyzed. A first
example of this was, in the 1990’s, the exploitation of the characteristics of hardware
systems [7].

Today’s emerging complex systems have two main characteristics. Firstly, they are
more and more distributed: numerous entities, often sharing the same code (only the
context differs), communicate asynchronously. Secondly, these entities are often hier-
archically organized: systems are composed of systems (SoS for Systems of Systems).

Moreover, these emerging systems handle more and more critical functions and need
to be trusted. Their complexity prevents traditional test or simulation based approaches
to reach a satisfactory level of confidence, formal methods, such as those based on state
space analysis, must be operated. However, the asynchronous nature of such systems,

 This work was partially supported by a grant from the Direction Générale pour l’Armement.

R. Calinescu and D. Garlan (Eds.): Monterey Workshop 2012, LNCS 7539, pp. 330–352, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Extreme Symmetries in Complex Distributed Systems 331

as well as their size, increase the combinatorial explosion of these analysis techniques,
thus preventing their use in satisfactory conditions.

Problem. One issue in tackling the combinatorial explosion related to state space anal-
ysis is to combine existing reduction techniques. Among them, several are commonly
involved in the analysis of distributed systems:

1. Partial Orders: this technique aims at fighting the interleaving introduced when
several execution flows are running in parallel. When several paths lead from state
A to state B in the state space, only one is stored. This technique may reduce the
explored state space by orders of magnitude in favorable cases [16,3].

2. Symmetries: this technique aims at identifying the possible permutations of actors
in a system (i.e. all clients are identical up to a permutation of identity). Instead of
building the explicit state space, symmetries allow to compute a quotient state space
that can be exponentially smaller in favorable cases. This technique was introduced
for Petri nets in the early 1990’s [6] and then adapted in a more general case [23]. A
variant, called “counter abstraction” [2], also allow to consider as a whole groups
of processes.

3. Locality: this technique aims at exploiting the locality of the system’s evolution.
Typically, when one process evolves, the set of variables to be changed is very
small compared to the state of the full system. This locality property allows to
share the representation of common parts in the state space. The use of appropri-
ate data structures to represent the state space such as decision diagrams leads to
exponential gains in favorable cases [5].

Preliminary experiments [28,10] have demonstrated that the two last techniques can be
combined, despite the fact that they appear to be independent. The idea is to achieve
this in a more efficient way and reduce the need for the partial order reduction by using
a dedicated modeling technique, since it seems difficult to combine the three techniques
together.

Contribution. This paper proposes a method for structuring symmetries in a system
model by means of bags. The idea is to make a link between potentially useful modeling
constructs and efficient model checking mechanisms in order to improve the combina-
tion of reduction techniques. The objective is twofold:

– Reducing again the potential interleaving, thus decreasing the need for partial order
techniques,

– Exploiting the hierarchical structure of symmetries for a better encoding of the
quotient state space into decision diagrams, and thus, increasing the combined effi-
ciency.

Altogether, these combined techniques should help us provide efficient state space gen-
eration and state space analysis for distributed systems.

To achieve this, we rely on the use of bags to structure data carried out in a sys-
tem. Thus, we use Symmetric nets with Bags (SNB) [18] that are a compact and read-
able dialect of colored Petri nets, allowing structured specification of complex systems.
However, we claim it can be generalized to other notations dedicated to concurrent sys-
tems as soon as a structural analysis, allowing to detect permutations and a hierarchical
structuring, can be performed.

332 M. Colange et al.

We call this approach “extreme symmetries” because we make an intensive use of
these in different ways, as it is explained in the discussion part of section 2.1.

Contents. Section 2 presents basic definitions of the formal concepts the presented
method relies on. Then, section 3 details the main principles of our contribution. Finally,
section 4 presents an early performance evaluation of the method by means of selected
examples.

2 Definitions

This section provides the definitions needed in this paper: Symmetric Nets with Bags
(SNB) and Decision Diagrams (DD). The goal of this section is to provide an overview
for the understanding of the paper only. However, there are references to formal and
precise definitions.

Symmetric Nets with Bags are used to model systems with the possibility to structure
data in a new way where hierarchical information can be exploited to tackle complexity.
Decision Diagrams is a commonly accepted technique to represent state spaces in a
very compact way. In this paper, we focus on a specific class of decision diagrams: Set
Decision Diagrams (SDD), that can be composed hierarchically.

2.1 Symmetric Nets with Bags

Petri Nets [15]. They are a well-known formalism for the modeling of asynchronous
systems. Basically, a Petri Net (or P/T net) consists in a set of places and a set of
transitions. Places contain tokens, and transitions move tokens from place to place.
More precisely, when it fires, a transition consumes tokens from its input places, and
produces tokens to its output places, thus reaching a new marking (vector of tokens in
places). By applying a fixed point on the firing relation, one can theoretically generate
the full state space for finite systems.

Colored Petri nets [21,22] extend P/T nets by adding typed data in tokens. Colored
Petri nets may have a better expressive power (sometimes leading to undecidability) but
the specification is smaller, thus increasing readability.

Among several variants of colored Petri nets, Symmetric Nets (SN) [6] define a sim-
ple typing mechanism (discrete types, cartesian product) allowing the exploitation of
symmetries in a system. The expressive power of SNs is the same as P/T nets.

Symmetric Nets with Bags (SNB). This is a recent extension of SN [18]. SNBs propose
a new mechanism allowing to avoid some interleaving, by enabling multisets (or bags,
see definition 3 in section 3.3) of colors in tokens. SNBs allow to express the same
symmetries as SNs do, thus enabling similar exploitation of symmetries.

The SNB presented in Fig. 1 models a simple deadlock-free resource manager based
on the global allocation of all required resources before entering a critical section [26].
There are two discrete types of color respectively describing the processes ids (Proc)
and the critical resources (Res). Then, the type representing the set of bags of resources
is defined (BagR), as well as its cartesian product with processes ids (P_BagR).

Initially, marking Mr in R contains the available resources of the system (there can be
several copies of some resources, i.e. several tokens of the same value) and Mp in outCS

Extreme Symmetries in Complex Distributed Systems 333

Mp

Mo

Fig. 1. An example of SNB: the Resource Manager. Mp = 〈Proc.all〉 and Mr = n×〈Res.all〉,
with n being a positive value. Class.all is the function that generates generates one token per
possible value in Class.

represents all the processes (they are represented by their identity) that are initially out
of the critical section. Transition enter assigns to a process p a bag of resources R. As
indicated by the guard of the transition, a process is assigned at least one resource. Place
InCS holds the processes using at least one resource (in the critical section). Transition
release allows to release resources. However, its guard prevents from releasing all the
resources, which is done when firing transition exit.

SNB do not extend the expressive power of SN but lead to a more compact model as
illustrated below.

SNB versus SN. This system could be modeled using SN too. However, the resulting
model is then more complex. Two strategies to unfold a SNB into an equivalent SN are
considered.

The first one relies on the unfolding of places and transitions in which bags occur. It
is illustrated in Fig. 2. Let us detail the process for transition enter when 1 < card(R)≤
N. First, the cartesian product P_BagR is replaced by N cartesian products (one per
possible cardinality of R in enter bindings). Transition enter and place InCS must also
be duplicated N times since tokens and bindings are typed by the new cartesian products
types. The main problem of this modeling technique is that an upper bound of the bag
cardinality must be known a priori (here, N = 3 was chosen). Also, changing the model

Fig. 2. Unfolding the model of Fig. 1 for 1 < card(R)≤ N,with N = 3

334 M. Colange et al.

parameters (i.e. type definition) or guards has an impact on the model’s structure, thus
leading to uneasy maintenance.

The second strategy is to “pump” resources (generally one by one). For instance the
exit transition would be replaced by a sub-model having several places and the transi-
tions ensuring that all resources used by a process are released. The main drawback of
this approach is that it changes the semantics of the model by introducing more states
and interleaving in the state space. Furthermore, it requires either the use of inhibitor
arcs, or to preserve and manage the number of allocated resources to p. It is also hard
to scale up, as for the previous strategy.

The SNB model is therefore much more compact and scalable than its SN equivalent.
Indeed, modification on the model parameters does not require structural changes.

Benefits of SNBs. Bags in SNBs allow to abstract complex constructs such as the afore-
mentioned pumping scheme. The encapsulation of bags in tokens also allows a better
structuring of the model. This is illustrated in our example where they encode quite
clearly the allocation of resources to a process. Bags in SNB thus offer to the modeler
two tools: an abstraction mechanism, along with a structuring mechanism, that may be
combined.

Moreover, by avoiding situations that generate interleaving, bags reduce the need
for partial order techniques that are difficult to stack on top of decision diagrams and
symmetries without paying the price of not using this technique.

This is what we call “extreme symmetries”: a way to structure symmetries in the
system specification to enable the activation of efficient encoding of the state space
generation and analysis (in the decision diagram meaning of it). This structuring infor-
mation is transparently provided by the modeler instead of being guessed by the model
checker.

2.2 Decision Diagrams

Principle. Shared Decision Diagrams (DD) [4] are a data structure to compactly repre-
sent sets. There are many variants of decision diagrams used for model-checking, but
they all rely on the same underlying principles: i) nodes of the decision tree are unique
in memory thanks to a canonical representation; ii) the number of paths through the
diagram (states) can be exponential in the representation size (nodes in the DD); iii)
using caches, most operations manipulating a DD are polynomial in the representa-
tion size; iv) the effectiveness of the encoding strongly depends on the chosen variable
ordering [9].

Set Decision Diagrams (SDD). In this paper we rely on Hierarchical Set Decision Dia-
grams (SDD, defined in [14]), which extend classical BDD in two respects: 1) variables
are considered to have a set domain instead of a Boolean one; 2) operations over SDD
are encoded using homomorphisms instead of the usual fashion where another decision
diagram with two variables per variable of the state signature is used. Definitions are
taken almost verbatim from [29].

A SDD is a data structure for representing a set of sequences of assignments of the
form ω1 ∈ s1;ω2 ∈ s2; · · · ;ωn ∈ sn, also noted ω1

s1−→ ω2
s2−→ ·· ·ωn

sn−→ 1, where ωi are
variables and si are sets. These sets can themselves be represented by SDD: in that case,

Extreme Symmetries in Complex Distributed Systems 335

we think of SDD as hierarchical decision diagrams. We assume no implicit variable
ordering and the same variable can occur several times in an assignment sequence. We
define the terminal 1 to represent the empty assignment sequence, terminating any valid
sequence. The terminal 0 represents the empty set of assignment sequences. Let Var be
a set of variables, and for any ω in Var, let Dom(ω) be the domain of ω, that may be
infinite.

Definition 1 (SDD). The set S of SDD is defined inductively by δ ∈ S if either:

– δ ∈ {0,1} or
– δ = 〈ω,π,α〉 with:

• ω ∈ Var,
• π = {s0; . . . ;sn} a finite partition of Dom(ω)
• α an injective mapping from π to S

By convention, paths terminated by the SDD 0 are not represented.

Let us note that SDD or other variants of DD can be used as the domain of variables,
thus introducing hierarchy in the data structures.

Example of State Encoding. Let us illustrate the use of SDD with a simple example:
the encoding of two states in the model of Fig. 1:

S0 = InCS(/0)+OutCS(〈1p〉+ 〈2p〉+ 〈3p〉)+R(〈1r〉+ 〈2r〉+ 〈3r〉+ 〈4r〉+ 〈5r〉+ 〈6r〉)
S1 = InCS(〈1p,{1r,2r,3r,4r,5r,6r}〉)+OutCS(〈2p〉+ 〈3p〉)+R(/0)

S0 is the initial state where all resources are available and all processes out of the critical
section. S1 is a state where process 1 is in the critical section and uses all resources. Fig-
ure 3 shows a possible encoding of these two states. Let us first provide some notation
convention in this figure:

– 1p,2p,3p (respectively 1r,2r,3r,4r,5r,6r) correspond to the values in Proc (respec-
tively Res),

– double lines correspond to the encoding of the marking structure, single lines to a
piece of marking and dotted lines to a hierarchical relation,

The main part of this SDD has two paths: the left one encodes S1, the right one encodes
S0. The encoding of S1 must be read as follows: place InCS holds a composed token

1

InCS

OutCS

R

x

1

OutCS

R

1

1

1p

2p

3p

1p

1

1r

2r

3r

4r

5r

6r

1

Fig. 3. Example of hierarchical encoding of some markings from the net of Fig. 1

336 M. Colange et al.

represented by another SDD on the left. This SDD refers itself to a second one that
represents the bag containing one occurrence of each element in Res. Then, continuing
the path, place outCS holds two tokens: 2p and 3p. Finally, place R is empty (the un-
derlying SDD is reduced to its terminal). A similar interpretation can be performed for
S0.

Figure 3 illustrates several types of sharing with SDD. First, as for traditional deci-
sion diagrams, common nodes are represented only once (let us note that the terminal
node is represented several times to make the figure clearer but there is only one oc-
currence in memory). Second, sub-SDD introduce a new type of sharing. Typically, the
marking of R in S0 and the bag contained in the token of InCS in S1 are represented once
in a sub-SDD. Similarly the rightmost SDD encodes two markings: {〈1p〉,〈2p〉,〈3p〉}
and {〈2p〉,〈3p〉} that share a common part.

SDD Operations. SDD support standard set operations: ∪, ∩, \. The semantics of these
operations are based on the sets of assignment sequences that the SDD represent.

SDD also offer a concatenation δ1 · δ2 which replaces terminal 1 of δ1 by δ2. This
corresponds to a cartesian product. Basic and inductive homomorphisms are also in-
troduced to define application-specific operations. A more detailed description of SDD
homomorphisms can be found in [13].

A basic homomorphism is a mapping Φ : S �→ S satisfying Φ(0) = 0 and ∀δ,δ′ ∈
S,Φ(δ∪δ′) = Φ(δ)∪Φ(δ′). Many basic homomorphisms are hard-coded. The sum +
operation between two homomorphisms (∀δ ∈ S,(Φ1 +Φ2)(δ) = Φ1(δ)∪Φ2(δ)) and
the composition of two homomorphisms ◦ (Φ1 ◦Φ2(δ) = Φ1(Φ2(δ))) are themselves
homomorphisms.

A homomorphism c is a selector iff. ∀δ ∈ S,c(δ) ⊆ δ. This allows to represent
boolean conditions, as c selects states satisfying a given condition; thus the negation of
c is c̄(δ) = δ\ c(δ). As a shorthand for "if-then-else", we use IfThenElse(c,h1,h2) =
h1 ◦ c+ h2◦ c̄, where h1 and h2 are homomorphisms.

This mechanism is generalized with a variant called "multi-linear" homomorphisms.
Such a homomorphism splits a SDD into several parts, for which it applies a specific
operation.

Multi-linear homomorphisms are particularly useful when one wants to change the
value of a variable x depending on the value of a variable y that has not been read yet
(e.g. in tokens containing bags). Since SDD represent a set, several values for y may
exist. Multi-linear homomorphisms split the SDD into several subsets s1 . . .sn, one for
each value of y. Thus, for each i, all the elements of si have the same value for y and
can therefore be applied the same update of variable x. Thus, the main part (x) remains
unchanged and this reduces the number of temporary SDD nodes to be merged later;
this reduced the known “peak-effect” of decision diagrams.

The fixpoint h of a homomorphism, defined as h(δ) = hk(d) where k is the smallest
integer such that hk(δ) = hk+1(δ), is also a homomorphism provided k exists.

Besides providing a high level way of specifying a system’s transition relation, ho-
momorphisms can be used to express many model checking algorithms directly. For
instance, given a SDD s0 representing initial states and a homomorphism succ repre-
senting the transition relation, we can obtain reachable states by the equation Reach =
(succ+ Id)(s0).

Extreme Symmetries in Complex Distributed Systems 337

Specifying model checking problems as homomorphisms allows the software library
to enable automatic rewritings that yield much better performances, such as the satura-
tion algorithm [19].

Discussion on SDD. When hierarchical structuring is possible, SDD allow a better
sharing than traditional “flat” decision diagrams. The main reason is that hierarchy in-
troduced flexibility in the encoding, thus reducing the known effect of variable ordering
on the performances of this technique. They also enable partial reuse of local encoding
patterns (as shown in Fig. 3)

Finally, the homomorphism notion and the associated rewriting techniques allow an
intensive use of caches and the activation of efficient resolution algorithms such as
automatic saturation [19]. Therefore, SDD are a good candidate to be stacked with the
symmetry-based optimizations brought by SNB.

In this specific framework, multi-linear homomorphisms are of particular interest to
canonize marking. This is because the structure of the marking may not respect the
locality of the operations where decision diagrams are usually very efficient. Such ho-
momorphisms could help to reduce the drawback of this lack of locality.

3 Formal Analysis of Extreme Symmetric Systems

Formal analysis consists in verifying expected properties of a system modeled in an ap-
propriate formalism. We focus here on state-based analysis. Thus, expected properties
usually are specified as reachability formulas, deadlock detection, LTL or CTL formu-
las, etc. over the model state space. The drawback of these approaches is the so-called
combinatorial explosion of the number of states that hinders analysis.

3.1 Existing Approaches for the Analysis of Symmetric Systems

Several approaches have been proposed to tackle this combinatorial explosion. We fo-
cus on two of them, namely symmetry reduction, and decision diagrams. We then asso-
ciate these two techniques with bag-based modeling.

Symmetries. Concurrent systems often exhibit symmetries: the typical example con-
sists in n identical processes that behave asynchronously. A state in such systems is
then characterized by the states of these n processes, up to a renaming of the processes:
the processes are all behaviorally equivalent.

Formally, two components are said to be symmetrical if they can be permuted with-
out changing the behavior of the system. In most systems, there are several groups of
components with similar behavior: each component can be permutable with any com-
ponent in the same groups. In SNB, such behavioral groups are defined as equivalence
classes on C.

Definition 2 (Color Equivalence Classes). Let us consider a discrete data type (i.e. a
color in a SNB) C. Two colors in C are symmetrical if the behavior of the system is not
affected when they are swapped.

338 M. Colange et al.

The “is symmetrical to” is an equivalence relation over C. Its equivalence classes
C1, . . . ,Cn partition C in the following way:

C =
⋃̇

i=1..N

Ci

The symmetries on the colors naturally extend to symmetries of system states. The
relation “is symmetrical to” is also an equivalence relation over the set of system states,
whose equivalence classes are also called symbolic states. The quotient state space is
defined as the quotient of the reachability graph by this equivalence relation [6]. In
favorable cases, the quotient state space is exponentially smaller than the state space.

Decision Diagrams. We mentioned decision diagrams in section 2.2 as a compact struc-
ture. They were first used in model checking [5] to successfully handle large state
spaces. Several variants have been used since then for the efficient representation of
large state spaces.

Symmetry reduction and decision diagrams can be used together. Although previous
works have shown their efficiency, decision diagrams still require specific algorithms
because their optimal use is not straightforward. [8] has shown that the traditional ap-
proach for the representation of complex operations on decision diagrams fails at pro-
viding an efficient solution to the computation of a quotient state space. However, the
notion of homomorphism presented in section 2.2 appears to be a promising way to
overcome this obstacle, as several investigations show [13,28,10]. Nevertheless, the de-
sign of algorithms for symmetry reduction using decision diagrams is still a challenging
problem.

3.2 Using Bags Information to Optimize State Space Generation

Bags provide an abstraction mechanism, especially for subsystems that generate inter-
leaving. They thus decrease the need for partial order techniques that are incompatible
with decision diagrams. This can be observed on transition enter in Fig. 1 and its un-
folding presented in Fig 2. In the SNB, there is only one possible transition to be fired
while, in the second model, several exist. So, if the number of symbolic states in the
quotient state space remains the same, the number of firings is dramatically reduced
in the case of SNB [10]. Then, we avoid several type of situations where partial order
techniques could be operated.

At this stage, several techniques can be activated, based on the information carried
out by bags, as provided in SNB. We list these techniques before showing how they are
applied to implement the transition relation.

Technique 1: Dedicated Representation of Guards. together with the definition of
Symmetric nets, a dedicated representation for guards was introduced [6]. The objective
was to preserve the information about equivalence classes in color types and thus, to
enable the implementation of the so-called symbolic firing of transitions.

For instance, an expression like v < V (where v represents a variable and V a con-
stant in the color class C) implicitly defines two color equivalence classes. The first
one C1 contains all the values of C that are smaller than V , and C2 contains the other

Extreme Symmetries in Complex Distributed Systems 339

values of C. Once the color equivalence classes have been computed, such an expression
can be rewritten v ∈C1.

This rewriting can be generalized to any relation between a variable and a constant
provided that equivalence classes are computed. Guards are then expressed using a dis-
junction of membership test to selected equivalence classes. For instance, inequalities
between two variables leads to a partition of C into N = |C| singleton subclasses (i.e.
such an expression breaks all the symmetries) while = and �= preserve the equivalence
relation.

Such a representation is painful to explicit by the modeler but it can be automati-
cally computed on Symmetric Nets [27]. Extensions of this algorithm can be provided,
considering extra operators to manage bags cardinalities.

Technique 2: Deducing a Hierarchical Representation from the Bag Structure.
This idea has been introduced in a first reachability analysis tool for SNB [10] and
its principle is roughly presented in the example for marking encoding in Fig. 3. It can
also be extended to the manipulation of bags.

Technique 3: Recursive Unfolding. this technique is efficient when a system (or parts
of a system) can be defined recursively [19]. Let us sketch its principle on the din-
ing philosophers problem. Instead of considering symmetries “horizontally” (e.g. all
philosophers share the same behavior), the idea is to consider them “vertically”. Then,
Tn the table of n can be decomposed in a recursive way:

Tn = 2× Tn
2

+ interactions = 2× 1
2 tables

= 2×
︷ ︸︸ ︷
2×Tn

4
+ interactions + interactions = 4× 1

4 tables

= 2× 2×
︷ ︸︸ ︷
2×Tn

8
+ interactions + interactions + interactions = 8× 1

8 tables

... ...

until T2 (the “elementary” table with 2 philosophers) is reached. This technique, when
it applies for regular systems, proved to be extremely efficient thanks to a recursive
hierarchical encoding (which is possible with SDD). We show, later in this paper, that
bags can be encoded recursively in a similar way to the example provided here.

Technique 4: Anonymization. this technique was introduced to deal with the compu-
tation of a hierarchical order to encode a state space with SDD [20]. The principle is
to reuse similar patterns with a new interpretation. For instance, if we consider two se-
quences of affectations (x = 4 −→ y = 2 −→ 1) and (t = 4 −→ u = 2 −→ 1), one can observe
that x,y for the first one and t,u for the second one can be considered as “contextual
information”, thus reducing those two patterns to a single one.

This technique, associated with a hierarchical representation, can dramatically re-
duce the number of different SDD patterns, and thus, lead to a more compact storage of
the state space.

These four techniques are exploited to elaborate an efficient representation in memory
of the state space, as well as performant computation of the quotient state space.

340 M. Colange et al.

Class
Res is Res1 = [1..3] ∪

Res2 = [4..6];

Var
r1 in Res1;
r2 in Res2;

M

Fig. 4. illustration of the symbolic firing, M = 〈Res1.all〉+4×〈Res2.all〉

3.3 Computing the Transition Relation in SNB

We detail here how efficient algorithms dedicated to SNB can be deduced from the
techniques identified in the previous section.

The Transition Relation. Models usually are specified in terms of a transition system,
with initial states and a generic transition relation. The verification of a property then
consists in an exploration of the state space. Algorithm 1 is typical of the state space
generation for a model given as a set of initial states and the transition relation. Once
the state space has been generated, several properties (reachability, deadlock detection,
LTL, CTL formulae . . .) can be checked against it.

Depending on the type of property to be verified, this algorithm can be tweaked for
improved performance. For instance, reachability and LTL formulae can be checked on-
the-fly (the algorithm returns as soon as the property is verified or a counter-example is
found). We do not focus on such optimizations but on the “core generation” of the state
space instead.

The Transition Relation in SN. The transition relation is quite straightforward in this
case. [6] introduces a framework for an efficient use of symmetries in SN. Formally,
colors are separated into color equivalence classes that express the possible symmetries,
as explained earlier.

Let us illustrate this framework with the SN of Fig. 4 that illustrates the affectation
of resources in a system. There are two types of resources: Res1 (one is hold at a time)
and Res2 (two copies are hold simultaneously).

Since all resources in Res1 (resp. Res2) are symmetrical, there are several symmet-
rical bindings for the variables r1 and r2 that lead to symmetrical markings.

The color equivalence classes are partitioned into dynamic subclasses, depending on
the marking. For instance, Res1 could be split into Z1, the free resources (tokens in place
free), and Z2 the busy ones (tokens in place busy). A symbolic marking is thus expressed
in terms of such dynamic subclasses. Similarly, binding the variables of a transition to
dynamic subclasses rather than explicit values allows to capture several symmetrical

Require: a model M given as a set of initial states S0 and the transition relation Next
S ← S0
repeat

S ← S∪Next(S)
until a fixpoint is reached
return S

Ensure: S is the state space of M

Algorithm 1. The state space generation algorithm

Extreme Symmetries in Complex Distributed Systems 341

bindings at once. For instance, considering that Res1 = Z1 ∪Z2 and Res2 = Z3 ∪Z4, r1
and r2 have two possible bindings each, leading to four symbolic bindings. This number
is to be compared to the nine possible explicit bindings (9 in the example).

Variables can only be bound to dynamic subclasses Z such that card(Z) = 1. This
may lead to a preprocessing of the symbolic marking, called splitting in order to obtain
such dynamic subclasses. Similarly, once the symbolic firing occurred, a postprocessing
operation called grouping recomputes the dynamic subclasses.

Let us note that, in this case, both the description of markings and the description
of bindings are represented using equivalence classes as basic representation of values.
The larger the color equivalence classes, the fewer values are evaluated during the firing
of transitions, and the fewer states in the quotient state space.

The Transition Relation in SNB. [18] extends the notion of symbolic markings and
symbolic firing to SNB. The sole difference between the SN and SNB transition rela-
tions is the binding of bag variables, and the efficient computation of all the possible
bindings. In SNB, classical variables are instantiated as in SN, and bag variables are
instantiated with bags over dynamic subclasses. The same processes of splitting and
grouping the dynamic subclasses, adapted for bags, occur.

Finding all the bindings of a transition with bag variables is always reducible to
the enumeration of bags over a finite domain (the dynamic subclasses) with bounded
cardinality. A naive enumeration would however suffer from the interleaving that was
supposed to be avoided. We propose an appoach for the efficient computations of such
bindings.

A bag (or multiset) is a set where there can be several instances of some elements.

Definition 3. Bag Let C = {c1 . . .cn} be a finite set. A bag b over C is a formal sum
b = Σn

i=1aici where ai ∈N is the multiplicity of the element ci.
The cardinal of b is |b| = Σn

i=1ai, and the support of b is the set of elements with non-
zero multiplicity: Supp(b) = {ci|ai > 0}.
The multiplicity of ci may also be denoted by b(ci).

Bag(C) denotes the set of multisets over C. Bagn(C) denotes the set of multisets over C
having a cardinality of n. The union, intersection and difference on sets extend naturally
to multisets:

– b1 ∪b2 = Σn
i=1(b1(ci)+ b2(ci))ci

– b1 ∩b2 = Σn
i=1 min(b1(ci),b2(ci))ci

– b1 − b2 = Σn
i=1 max(b1(ci)− b2(ci),0)ci

– b1 ⊂ b2 if and only if b1(c)≤ b2(c) for all c ∈C

Note that when all the multiplicity are 0 or 1, then the bag is a set, and that all definitions
above fall back to classical set definitions. Further optimizations can be obtained when
the encountered bags are actually restricted to be sets, but are not detailed here as they
mainly rely on classical computations over sets.

Application of technique 1 is then trivial (canonization of guards). However, it re-
quired some extensions for bags. In order to compute the set of bags having cardinal n
over a set C, one may use recursive definitions concerning either the cardinality of, or
the support of the bags, thus applying technique 2.

342 M. Colange et al.

Property 1. Recursion over the cardinal
Bagm+n(C) = Bagm(C)�Bagn(C) = {b1 ∪b2|b1 ∈ Bagm(C),b2 ∈ Bagn(C)}

Property 2. Recursion over the support

Bagn(C1 ∪ . . .∪Ck) = (
k⋃

i=1
Bagn(Ci))∪Bag∗n(C1, . . . ,Ck) where Bag∗n represents the bag

of cardinality n over mixed supports (i.e. involving several Ci).

Properties 1 and 2 allow to represent a set of bags of a given cardinality in terms of sets
of bags of smaller cardinality or smaller support.

When colors classes are split into equivalence classes, the use of property 2 reduces
the problem in terms of generating sets of bags over color classes. Then, we use the re-
cursion over bags cardinality. All together, these properties allow for an efficient divide-
and-conquer generation strategy.

For instance, by carefully choosing the parameters n and m in property 1, one can
represent Bagn(C) in O(log(n)) SDD nodes. This leads to the type of recursive encod-
ing over the structure of the bags as done by technique 3 (its principle is sketched in
Fig. 5). Thus, as soon as we detect an upper bound for the cardinality of a bag over C,
its representation is easily elaborated based on this scheme.

Finally, technique 4 (Anonymization) can be applied to increase the sharing of com-
mon patterns. This can be applied to the markings structure (see the example presented
in Fig. 3) or to the net structure (as illustrated in [20]).

It is also applicable to the recursive bag representation as illustrated in Fig. 6. The
idea is to have a representation of the bag cardinalities for a generic class C that can
be mapped to any C or Ci ⊂C. Then, values in C are only referenced by their position
and the maximum cardinality of C is the one of the largest type (or equivalence class).
When a reference is made to C, the associated context is expressed using a reference
to the effective class C is mapped to. This relation is done at runtime when effective
markings or transition bindings in the SNB are computed. By applying this principle to
the recursion over bag cardinalities in Fig. 5 we get the reduced representation of Fig. 6.
This technique also applies to the recursion over bag support.

All together, these techniques allow to contain the combinatorial explosion of the state
space in terms of memory, as well as CPU consumption, since less calculus are needed.

Overview of the State Space Representation. The representation of a SNB state space
is divided in three parts (see Fig. 7):

Bagn(C1 ∪ C2)

Bagn/2(C1 ∪ C2) Bagn(C1)

Bagn/2(C1)

Bag∗n(C1, C2)

Bag∗n/2(C1, C2)

Bagn(C2)

Bagn/2(C2)
•••

••••••

•••

recursion over the cardinal
recursion over the support

Fig. 5. Recursion over the definition of bags

Extreme Symmetries in Complex Distributed Systems 343

Bagn(C1 ∪ C2)

Bagn/2(C1 ∪ C2)

Bag∗n(C1, C2)

Bag∗n/2(C1, C2)

•••

•••

•••

recursion over the cardinal
recursion over the support

Bagn(C)

Bagn/2(C)

C = C2

C = C1

C =
C
2

C =
C
1

C = C2C = C1

C = C2

C = C1

Fig. 6. Optimized representation of bags (anonymization over bag cardinalities)

1. the structure of the system states,
2. a sets of bags “heap”,
3. representation of bag values.

Structure of the system states encodes the structure of states as they are expressed in
the SNB. A naive way to encode this is to list the net places in a given order. However,
the hierarchy supported by SDD allows a better reuse of patterns describing parts of the
SNB structure.

The representation of tokens in places refers to a “heap” storing sets of bags as a
unique and shared data structure.

Sets of bags “heap” encodes the bags of color that can be referenced to represent tokens
in places. Once again, the representation can be hierarchical, especially when bags are
hold in colored tokens.

The representation of bags in tokens refers to common representation of bag.

Representation of bag values recursively encodes the bags referenced in the state space.

The four techniques mentioned in section 3.2 can be activated there. In particular,
anonymization allows a better reuse of representation patterns in any part of the state
space.

Implementation of the Transition Relation. As explained earlier, one of the main
characteristics of SDDs is the ability for developers to use dedicated operations (homo-
morphisms). To take full advantage from SDDs, the transition relation is encoded with
homomorphisms. There are four steps in the transition relation [18]:

1. splitting dynamic subclasses,
2. binding the variables of each transition to splitted dynamic subclasses,
3. firing the transition,
4. canonizing the symbolic markings to group and rename dynamic subclasses.

Structure of
the system states

Set of bags
«heap»

Representation
of bag values

Fig. 7. Structure of the state space representation

344 M. Colange et al.

MgMp

Fig. 8. The SaleStore example modeled with a SNB. Mp = 〈People.all〉 and Mg = 〈Gifts.all〉,
P = G = n is the scaling parameter of this example.

Each step is encoded as a homomorphism, and the transition relation is the composition
of these four homomorphisms. Each step is theoretically independent, but it is of interest
to propagate some information from one step to the next one for optimization purposes.
In our implementation for instance, the two first steps are almost merged, in order to
compute as few bindings as possible.

Building these operations on top of SDDs allows to profit from the shared structure.
For instance, splitting the dynamic subclasses in the marking of a place is done only
once for all the markings that share it. This significantly optimizes each step, especially
the costly canonization.

The presented data structures are generated on the fly by the homomorphisms when
needed. Thus, the SDD representation of the system acts like a cache itself.

4 Assessment

In this section, we take several examples for which the use of SNB is of interest for
modeling purpose. We then provide some performances compared to the reference tool
on Symmetric Nets: GreatSPN [17].

4.1 The Examples

We selected three examples that illustrate the interest of bag-based modeling as well
as the interest of bags in the optimization of state space based analysis: the deadlock-
free resource manager, the salestore, and the distributor. The two first models are “toy
examples” emphasizing the use of bags in tokens. The last model also benefits from the
use of bags but it was designed from a case study found in the litterature.

The Resource Manager Model. This is the model presented in Fig. 1 (see section 2.1).
However, for the need of performances analysis, we constrained it to let processes have
a maximum of three resources in their critical section. To do so, we changed the guard
of transition enter into [card(R) > 0 and card(R) < 4]. The scaling parameter of
this example is n in the initial marking Mr.

This model shows how bags can help to preserve symmetries. In order to discriminate
between the transition exit (where a process and all its allocated resources are released)
and the transition release (where some resources are released, but the process remains
in he critical section), the SN unfolding breaks a few symmetries. This explains the
difference of the number of symbolic states found by Crocodile and by GreatSPN in
Table 1 (section 4.2). This is also an example of the interest of the bags in such models.

Extreme Symmetries in Complex Distributed Systems 345

The Salestore Model. This model was introduced in [10] and is shown in Fig. 8. People
enter the sale store through an airlock (transition airlock) with a capacity of two (of
course, a single person may enter too). Then, people may buy items (at most two but
possibly zero if none fits their need) and leave with the acquired items. Let us note
that this example has two scalable parameters: P, the number of involved people in the
system and G, the number of possible gifts in the warehouse. In our example, the model
has been explicitly constrained: the airlock has a maximum capacity of 2 people and
each customer cannot leave with more than 2 gifts.

The Distributor Model. This model of a coffee dispenser machine and optional fea-
tures (e.g. milk, sugar, etc.) was introduced in [25] as a Feature Petri Net. We present
in Fig.9 a SNB version of this model. The machine dispenses products (place theProd-
ucts) like coffee or tea. When brewing (transition elaborate) one of these products, it
may add options (place theOptions) like milk or sugar, on demand.

The machine is refilled with products and options according to the conditions on
transitions addProduct and addOption respectively. Options may be enabled (transition
enable) or disabled individually (transition disable) and dynamically.

The original work in [25] presenting Feature Petri nets is intended to model the be-
havior of Software Product Lines (SPL). That approach was proposed as a means to
“ensure that all products1 meet their specifications without having to check each prod-
uct individually”. A modular modeling framework is then proposed to incrementally
build larger feature nets from smaller ones. The Feature nets are based on P/T nets.
New features are thus added as new net fragments.

Our model is an adaptation of this example, showing SNB suitability to model a SPL:
the specification is much more compact since, instead of adding pieces of Nets, only the
definition of color types is changed. Moreover, thanks to the use of bags, scalability over
the sets of features and their multiplicity in the machine configurations is guaranteed.

Mp

Mo

M ′
o

Fig. 9. The distributor example modeled with a SNB. Mp = x × 〈Products.all〉, Mo = x ×
〈Options.all〉 and M′

o = 〈Options.all〉, x is the scaling parameter of this example.

1 i.e. an assembly of selected features to build a specific model (e.g. {Coffee, Tea, Milk}).

346 M. Colange et al.

Mg

Mp

Fig. 10. The unfolded equivalent SN from the model of Fig. 8

4.2 Performances

A first version of Crocodile was implemented and compared to GreatSPN [17] in [10].
GreatSPN is a well-known model checker for various classes of Petri Nets. Among its
various capabilities, we only use its quotient state space generation features. It works
with SN only, and does not use decision diagrams 2.

This first study revealed that the combination of symmetries and decision diagrams
is of interest: our tool was more performant than GreatSPN. However, at this stage, the
management of bags was not optimized at all. This impeded performances when bags
were used in tokens, while sets in tokens were appropriately handled.

For the resource manager and the salestore, we compare Crocodile2 to GreatSPN once
again. We compute the quotient state space of the SNB and the unfolded SN with
Crocodile2, and the quotient state space of the unfolded SN with GreatSPN. The un-
folded SN of the resource manager is presented in Fig. 2 and the one of the salestore is
presented in Fig. 10.

Since the distributor is too complex to unfold, we only compute the quotient graph
with Crocodile2 from the SNB version. The idea is to show its capability to scale-up
well. All experiments were run on a Xeon 64 bits at 2.6 GHz processor.

Table 1 reports these experiments. It displays the following information: value of the
scaling parameter, number of explicit states in the system, number of symbolic states
found by Crocodile2 and GreatSPN (they should be the same), time and memory to
compute the quotient state space in the various versions we processed. Gray cells show
that no experiment has been done for this configuration. EDNF means “execution did
not finished” (more than 4 hours of processing).

Figure 11 provides charts showing the evolution of the required CPU and memory
for processing the quotient state space.

A first observation is that both tools compute the same number of symbolic states
for the Salestore model, a proof that our algorithm reaches the minimum quotient state
space with SNB. However, this is not the case for the resource manager and this is due

2 A prototype version of GreatSPN uses several variants of decision diagrams [1]: multi-way DD
(MDD), multi-terminal MDD (MTMDD), and edge-valued MDD (EV+ MDD). None of these
are hierarchical and they encode Stochastic P/T nets so far. Their results also show significant
gain from the original version. However, we could not use this version of GreatSPN against
our prototype.

Extreme Symmetries in Complex Distributed Systems 347

Table 1. Performances of state space generation using Crocodile2 and GreatSPN

scaling # Explicit # Symbolic States Time (s) Memory (KB)
parameter States Crocodile2 GreatSPN Crocodile2 GreatSPN Crocodile2 GreatSPN

on SNB on SN SNB SN SN SNB SN SN

Resource manager
02 1.8×1001 4 8 ε 0.02 ε 80 80 80
04 2.2×1003 12 38 0.04 0.48 0.05 80 3 112 80
06 7.2×1005 27 116 0.24 4 0.67 4 008 4 716 1 156
08 4.5×1008 53 289 1 23 44 8 188 8 816 9 076
10 4.8×1011 94 621 6 120 5892 19 120 16 820 851 596
15 8.2×1019 295 EDNF 165 3185 EDNF 245 212 101 860 EDNF
20 7.7×1028 717 2941 EDNF 3 059 216 EDNF
22 4.3×1032 973 6131 4 192 604
23 3.5×1034 EDNF EDNF EDNF

Salestore
02 2.9×1001 13 13 0.01 0.01 ε 80 80 80
04 4.2×1003 60 60 0.13 0.14 0.04 2 864 3 128 80
06 1.5×1006 180 180 0.94 0.97 0.63 5 720 6 028 1132
08 9.4×1008 425 425 5 4 40 12 292 14 108 9 056
10 9.7×1011 861 861 23 18 4798 32 056 34 352 851 452
15 1.6×1020 3 336 EDNF 500 242 EDNF 222 764 221 192 EDNF
20 1.3×1029 9 196 5010 2157 1 076 816 910 444
22 7.0×1032 12 948 10003 4596 1 811 008 1 398 944
23 5.6×1034 EDNF EDNF 6339 EDNF 1 730 348
24 4.5×1036 9357 2 419 028
25 3.8×1038 EDNF EDNF

Distributor
01 2.2×1004 64 0.11 2 740
02 1.4×1006 560 0.84 3 936
03 1.6×1007 2 400 4 7 064
04 8.9×1007 7 700 14 13 760
05 3.4×1008 20 384 43 26 768
06 1.0×1009 47 040 108 46 224
07 2.5×1009 97 920 236 71 436
08 5.7×1009 188 100 472 111 144
09 1.1×1010 338 800 918 171 040
10 2.2×1010 578 864 1596 239 684
11 3.8×1010 946 400 2894 420 620
12 6.5×1010 1 490 580 4553 699 408
13 1.0×1011 2 273 600 7763 1 070 832
14 1.6×1011 EDNF EDNF EDNF

to the unfolding that breaks some hierarchical symmetries as we already mentioned in
section 4.1.

We also observe that, for small values of the scaling parameter, greatSPN outper-
forms Crocodile2 both in time and memory consumption. This is typical of the involved
techniques (both decision diagram-based and symmetries-based) that have an “initial
cost” due to the management of data structures, that is not compensated in the case of
small state spaces. Then, curves cross when the gain in memory and CPU compensates
this overhead.

For the two models we also compare with GreatSPN, we reach a stage where great-
SPN exceeds the maximum computation time. As observed in [10], the combinato-
rial explosion of firings is greater for GreatSPN since it canonizes more states than
Crocodile2. When both are working on SN, Crocodile2 benefits from the fact that de-
cision diagrams allow to fire and canonize a set of states at the same time. SNB bring
a strong reduction of the interleaving that should increase efficiency. In fact the smaller

348 M. Colange et al.

1E−03

1E−02

1E−01

1E+00

1E+01

1E+02

1E+03

1E+04

 2 4 6 8 10
 15

 20
 22

tim
e

(s
)

scaling parameter

Experiment
Crocodile/SNB

Crocodile/SN
GreatSPN/SN

(a) Resource manager, time measures

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

 2 4 6 8 10
 15

 20
 22

m
em

or
y

(K
B

)

scaling parameter

Experiment
Crocodile/SNB

Crocodile/SN
GreatSPN/SN

(b) Resource manager, memory measures

1E−03

1E−02

1E−01

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

 2 4 6 8 10
 15

 20
 22

 24

tim
e

(s
)

scaling parameter

Experiment
Crocodile/SNB

Crocodile/SN
GreatSPN/SN

(c) Salestore, time measures

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

 2 4 6 8 10
 15

 20
 22

 24

m
em

or
y

(K
B

)

scaling parameter

Experiment
Crocodile/SNB

Crocodile/SN
GreatSPN/SN

(d) Salestore, memory measures

1E−01

1E+00

1E+01

1E+02

1E+03

1E+04

 1 3 5 7 9 11
 13

tim
e

(s
)

scaling parameter

(e) Distributor, time measures

1E+03

1E+04

1E+05

1E+06

1E+07

 1 3 5 7 9 11
 13

m
em

or
y

(K
B

)

scaling parameter

(f) Distributor, memory measures

Fig. 11. Time and Memory required to generate the quotient state space for the examples

number of symbolic states for the SNB version of the resource manager leads to an
increased efficiency of the state space generation in time (see Fig. 11a).

For those two models, we observe no increase of performances between the SNB
version and the unfolded SN one (for Crocodile2). This seems mostly due to the fact that
multi-linear homomorphisms have been recently implemented in libDDD and probably
require some optimization when associated with hierarchical representations. We guess
(this must be investigated) that there are some side effects on the cache management
that impede CPU gains and memory consumption.

Extreme Symmetries in Complex Distributed Systems 349

The distributor model is difficult to model easily with SN while its structure would
depend on the numbers of products and options which is the scaling parameter (this
SNB structure remains constant). However, our tool is able to scale up quite well with
respect to the number of generated states.

4.3 Discussion

Evaluation of Reachability Properties. So far, our prototype only provides analysis
of reachability properties. Such properties are constraints that can be checked during
state space generation. This does not bring extra complexity (just a constant due to the
property evaluation). Evaluation of a reachability property is done using the following
schema:

– translation of the property into constraint c on the symbolic markings (expressed as
a SDD),

– for each new symbolic state s, compare the canonical representation of s with c
(since both are SDDs, this is a fast operation).

So far, once a state verifying the property is found, the tool must reexecute the state
space generation algorithm to store the list of symbolic firings leading to the identified
state. Thus, verification of a reachability property may lead to building twice the state
space in the worst case. This complexity is compensated by the gain in the state space
generation.

Towards Evaluation of CTL Formulas. CTL formulas can be evaluated on symmet-
ric systems provided that, either it respects the system symmetries, or the equivalence
relation is computed including constraints of both the model and the property (this may
degrade the model symmetries).

Crocodile2 is implemented on top of libITS [24], that provides access to SDD via
high-level structuring mechanisms (synchronizations and hierarchy). This library sup-
ports the evaluation of CTL formulas when atomic propositions they refer to are ex-
pressed in a symbolic way.

CTL evaluation heavily relies on the transition relation of the system. This is why we
focus on the efficiency of its implementation since it is a key issue to provide efficient
CTL analysis.

Usability of Bags in Tokens. One could have some skepticism about the usability of
SNB. In fact, they are good to capture some dynamic aspects that are commonly found
in distributed systems when a variable number of resources is handled by an actor of the
system. This is typically the case for resources in the resource manager model (Fig. 1).
As shown in section 2.1, modeling of such parts with SN requires to manually bound
the number of handled resources. On top of the fact that symmetries are more difficult
to capture, this makes the model more complex, and each state to be handled more
difficult to encode in memory.

A domain that is very suitable for SNB-based modeling is games where players carry
out a variable number of objects or features. The resulting model is much simpler and
its analysis benefits from the use of Bags.

Moreover, the handling of SN being included in the handling of SNB, Crocodile2
remains a good tool to perform analysis on such models.

350 M. Colange et al.

5 Conclusion

This paper presents a method that links a modeling concept recently introduced in Petri
nets, the use of bags in tokens, to some efficient state space generation techniques.
This modeling concept helps the modeler increase the structuring of symmetries in a
specification in a relatively “natural” manner. This bag concept (as introduced in SNB)
is of particular interest when associating a variable number of items to an entity (e.g. the
critical resources in the resource manager model – see Fig. 1). Such a modeling issue
often occurs when modeling distributed systems. This structuring information is reused
in the back-end of a model checker tool to tackle the combinatorial explosion.

One main interest of the proposed modeling concept is to reduce the need for par-
tial order techniques. Another originality is to increase the efficiency of the combined
use of symmetries-based techniques, together with hierarchical decision diagrams. This
association of techniques is of interest when performing state space-based analysis of
complex and distributed systems.

We have implemented the presented strategies in a tool, Crocodile2, which outper-
forms the previous version thanks to the intensive use of efficient data representation
techniques and operations. This tool is to be integrated in the CosyVerif verification
environment [12].

Early assessment of this method by means of SNB models shows increased perfor-
mance of reachability analysis versus a reference tool like GreatSPN. These promising
results strengthen the idea that, in order to tackle complex distributed systems analysis,
combined techniques must be activated together with enabling model-level optimized
constructs. However, this requires some structural analysis capabilities such as the ones
provided by Petri nets.

So far, we have experimented this association on Symmetric Nets with Bags (SNB).
A further objective is to generalize this concept in order to apply it to other types of
notations dedicated to classes of systems exhibiting symmetries such as peer-to-peer
applications or Software Product Lines. A first study in that direction [11] showed in-
teresting results.

Another objective is the optimization of the multi-linear homomorphisms that aim at
tackling the cost of non-locality when using decision diagrams. Such an improvement
would benefit to all application based on decision diagrams.

References

1. Babar, J., Beccuti, M., Donatelli, S., Miner, A.S.: GreatSPN Enhanced with Decision Dia-
gram Data Structures. In: Lilius, J., Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128,
pp. 308–317. Springer, Heidelberg (2010)

2. Basler, G., Mazzucchi, M., Wahl, T., Kroening, D.: Symbolic Counter Abstraction for Con-
current Software. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 64–78.
Springer, Heidelberg (2009)

3. Bošnački, D., Holzmann, G.J.: Improving Spin’s Partial-Order Reduction for Breadth-First
Search. In: Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639, pp. 91–105. Springer, Heidel-
berg (2005)

4. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Transactions
on Computers 35(8), 677–691 (1986)

Extreme Symmetries in Complex Distributed Systems 351

5. Burch, J.R., Clarke, E.M., Mcmillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model check-
ing: 1020 States and beyond. Information and computation 98(2), 142–170 (1992)

6. Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.: Stochastic well-formed coloured
nets for symmetric modelling applications. IEEE Transactions on Computers 42(11), 1343–
1360 (1993)

7. Clarke, E.M.: The Birth of Model Checking. In: Grumberg, O., Veith, H. (eds.) 25 Years of
Model Checking. LNCS, vol. 5000, pp. 1–26. Springer, Heidelberg (2008)

8. Clarke, E., Enders, R., Filkorn, T., Jha, S.: Exploiting symmetry in temporal logic model
checking. Formal Methods in System Design 9(1), 77–104 (1996)

9. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)
10. Colange, M., Baarir, S., Kordon, F., Thierry-Mieg, Y.: Crocodile: A Symbolic/Symbolic Tool

for the Analysis of Symmetric Nets with Bag. In: Kristensen, L.M., Petrucci, L. (eds.) PETRI
NETS 2011. LNCS, vol. 6709, pp. 338–347. Springer, Heidelberg (2011)

11. Colange, M., Kordon, F., Thierry-Mieg, Y., Baarir, S.: State Space Analysis using Symme-
tries on Decision Diagrams. In: 12th International Conference on Application of Concurrency
to System Design (ACSD 2012), pp. 164–172. IEEE Computer Society, Hamburg (2012)

12. Cosyverif: a verification environment (2012), http://www.cosyverif.org
13. Couvreur, J.-M., Encrenaz, E., Paviot-Adet, E., Poitrenaud, D., Wacrenier, P.-A.: Data Deci-

sion Diagrams for Petri Net Analysis. In: Esparza, J., Lakos, C. (eds.) ICATPN 2002. LNCS,
vol. 2360, pp. 101–120. Springer, Heidelberg (2002)

14. Couvreur, J.-M., Thierry-Mieg, Y.: Hierarchical Decision Diagrams to Exploit Model Struc-
ture. In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 443–457. Springer, Heidelberg
(2005)

15. Girault, C., Valk, R.: Petri Nets for Systems Engineering. Springer (2003) ISBN: 3-540-
41217-4

16. Godefroid, P., Wolper, P.: A partial approach to model checking. In: Proceedings of Sixth
Annual IEEE Symposium on Logic in Computer Science, LICS 1991, pp. 406–415 (July
1991)

17. GreatSPN: Petri nets suite (2012), http://www.di.unito.it/~greatspn
18. Haddad, S., Kordon, F., Petrucci, L., Pradat-Peyre, J., Treves, L.: Efficient state-based analy-

sis by introducing bags in petri nets color domains. In: American Control Conference, ACC
2009, pp. 5018–5025. IEEE (2009)

19. Hamez, A., Thierry-Mieg, Y., Kordon, F.: Building efficient model checkers using hierar-
chical set decision diagrams and automatic saturation. Fundamenta Informaticae 94(3-4),
413–437 (2009)

20. Hong, S., Kordon, F., Paviot-Adet, E., Evangelista, S.: Computing a Hierarchical Static Order
for Decision Diagram-Based Representation from P/T Nets. In: Jensen, K., Donatelli, S.,
Kleijn, J. (eds.) ToPNoC V. LNCS, vol. 6900, pp. 121–140. Springer, Heidelberg (2012)

21. Jensen, K.: Coloured Petri nets and the invariant-method. Theor. Comput. Sci. 14, 317–336
(1981)

22. Jensen, K., Kristensen, L.: Coloured Petri Nets: Modelling and Validation of Concurrent
Systems. Springer (2009) ISBN: ISBN 978-3-642-00283-0

23. Junttila, T.: On the Symmetry Reduction Method for Petri Nets and similar formalisms. Ph.D.
thesis, Helsinki University of Technology, Espoo, Finland (2003)

24. libits (2012), http://move.lip6.fr/software/DDD
25. Muschevici, R., Proença, J., Clarke, D.: Modular Modelling of Software Product Lines with

Feature Nets. In: Barthe, G., Pardo, A., Schneider, G. (eds.) SEFM 2011. LNCS, vol. 7041,
pp. 318–333. Springer, Heidelberg (2011)

26. Tanenbaum, A.: Operating Systems: Design and Implementation. Prentice Hall (1987)

http://www.cosyverif.org
http://www.di.unito.it/~greatspn
http://move.lip6.fr/software/DDD

352 M. Colange et al.

27. Thierry-Mieg, Y., Dutheillet, C., Mounier, I.: Automatic Symmetry Detection in Well-
Formed Nets. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679,
pp. 82–101. Springer, Heidelberg (2003)

28. Thierry-Mieg, Y., Ilié, J.-M., Poitrenaud, D.: A Symbolic Symbolic State Space Representa-
tion. In: de Frutos-Escrig, D., Núñez, M. (eds.) FORTE 2004. LNCS, vol. 3235, pp. 276–291.
Springer, Heidelberg (2004)

29. Thierry-Mieg, Y., Poitrenaud, D., Hamez, A., Kordon, F.: Hierarchical Set Decision Dia-
grams and Regular Models. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS,
vol. 5505, pp. 1–15. Springer, Heidelberg (2009)

Towards Communication-Based Steering

of Complex Distributed Systems

Klaus Dräger and Marta Kwiatkowska

Department of Computer Science, University of Oxford, Oxford, UK

Abstract. Quantitative verification is an established automated
technique that can ensure predictability and dependability of software sys-
tems which exhibit probabilistic behaviour. Since offline usage of quantita-
tive verification is infeasible for large-scale complex systems that
continuously adapt to the changing environment, quantitative runtimever-
ification was proposed as an alternative. Using an illustrative case study
of communicating, distributed probabilistic processes, we formulate the
problem of quantitative steering, a runtime technique that involves sys-
tem monitoring, prediction of future errors, and enforcement of system’s
behaviour away from the error states.We consider a communication-based
variant of steering where enforcement is achieved by modifying the con-
tents of communication channels. Our approach is based on stochastic
games, where one player is the system and the other players assume the
role of the controller, and hence steering reduces to finding a controller
strategy that meets the given quantitative goal. We discuss the solution to
the quantitative steering problem and its extensions inspired by complex
real-world scenarios.

1 Introduction

Software systems underpin the vast majority of our activities, from commerce, to
manufacturing, transport and healthcare. Typical requirements for such systems
are that they run in distributed and de-centralised environments; must be fault-
tolerant, since devices may fail and communication media may be unreliable; and
are expected to run continuously, adapting to the changes in the environment,
for example user demand. Being deployed in business-critical setting, they must
also behave in a predictable and dependable manner.

Formal verification techniques such as model checking [10] have proved par-
ticularly useful in preventing errors in the deployed software. Formal verification
is used mainly in an offline fashion, though there have been recent efforts to
integrate it within autonomic systems [9], where adaptive behaviour can be han-
dled by applying concepts from control such as feedback loops. In this context,
software is monitored at runtime, its behaviour analysed against given require-
ments, and, if deviation is detected, instructions are issued to steer its behaviour
accordingly. In cases where software systems can exhibit failure and must comply
with resource limitations, the modelling frameworks typically allow for proba-
bilistic behaviour and annotation with appropriate quantities to represent the

R. Calinescu and D. Garlan (Eds.): Monterey Workshop 2012, LNCS 7539, pp. 353–368, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

354 K. Dräger and M. Kwiatkowska

incurred cost, e.g. energy usage. Quantitative verification [19] is a technique
which combines formal verification with numerical computation, and is able to
automatically answer the questions such as “what is the maximum probability
of reaching an error state?”, and “what is the expected energy usage in the start
up phase?”. Quantitative verification techniques have been implemented, e.g.,
within the PRISM model checker [20]. PRISM has been successfully used to
verify a range of quantitative/probabilistic temporal properties, in some cases
discovering critical flaws.

The offline application of quantitative verification, however, is usually infea-
sible in the context of large-scale complex systems [24]. The main culprit is
state-space explosion in conjunction with the inherent complexity of the analy-
sis methods that are involved. A quantitative runtime verification approach was
recently proposed [2,16,1] as an alternative, complementary analysis method. We
adopt this approach, and focus on the following system characteristics:

– adaptivity in presence of probabilistic choice: we explicitly model failure us-
ing probability distributions, and allow for continuous changes as the system
evolves, including changes to probability values and system transitions;

– resource limitations: we model resource limitatations, for example finite mes-
sage queue sizes, by placing quantitative bounds on them;

– partial observability: we assume that, while we have a formal model over-
approximating the behaviour of the processes, we know nothing about their
current internal state other than what we can infer from the model and the
communication history.

In this paper we formulate the problem of quantitative runtime steering for
large-scale complex systems that exhibit the above characteristics. The (non-
quantitative) steering problem has been earlier solved in the context of dis-
tributed systems [26], where a model checker has been used to predict and pre-
vent future inconsistencies. As a representative setting, we consider systems com-
prising a number of distributed probabilistic processes, communicating through
message channels. We assume that each process is modelled as a Markov decision
process (see the next section for details) and the system is constructed through
parallel composition of those. To enable steering, we allow an explicit controller
process who can use the channels both as a source of information (to try to
determine the actual system state) and as a steering medium (by altering the
channel contents). We then take a stochastic game view [8] of the system, where,
in addition to a randomised player that deals with probabilistic transitions, we
have:

– player 1 representing the decisions of a controller, striving to ensure that the
required quantitative property holds; and

– player 2 representing the combined decisions of the system components,
which in order to cover the worst possible scenario is usually assumed to
be malicious.

In [8], a reward-based temporal logic and verification algorithms were proposed
for turn-based stochastic games and implemented as an extension of PRISM [23].

Towards Communication-Based Steering of Complex Distributed Systems 355

The logic can express properties such as “player 1 has a strategy to ensure that
the maximum probability of reaching a final state is at least 0.99, regardless
of the strategy of any other player”. Here, for simplicity, we assume that the
controller’s goal is to ensure a safety objective, namely the avoidance of a given
set of error states. As a secondary goal, we want the controller to achieve this
objective in the least intrusive way possible. We model this requirement by
associating a cost with every alteration of the channels; this naturally leads to
the definition of the steering problem in terms of a generation of a controller
strategy that meets the stated quantitative goal.

To illustrate our approach, we introduce a motivating case study which forms
the basis of our discussions. We then describe how to solve the steering problem
outlined above, at first treating a simplified variant which can be solved exactly
using existing methods. As mentioned above, due to the adaptivity and partial
observability, this exact solution will be inappropriate for very large systems;
in the following sections we discuss how to adapt the method to a variety of
harder scenarios inspired by real-world complex systems. We conclude the paper
by summarising future research in this area.

Related Work. The idea to incorporate the use of formal methods at runtime
dates back to the work of Crow and Rushby [11] on fault detection, identifi-
cation and reconfiguration. Subsequent developments include the framework of
[22]. In [26] a model checker executed from the current local state has been
used to predict and prevent future inconsistencies in a distributed system. In
the quantitative runtime setting, a number of approaches have been proposed
for different types of models, to mention the autonomic approach of [2,1] for
discrete- and continuous-time Markov chains, parametric techniques of [15,16]
for discrete time Markov chains and the incremental approach of [21] for Markov
decision processes. Partially observable Markov decision processes are known to
be infeasible, but a promising partial approach to adversary generation was re-
cently proposed in [18]. Stochastic games have been a very active research topic,
see e.g. [13,7,3]. A survey of results can be found in [5] and an overview of par-
tially observable stochastic games in [4]. The majority of the work has been
theoretical, and we are aware of only two implementations, GIST [6] for syn-
thesis and PRISM-games for quantitative verification [8,23]. Our paper is the
first to propose stochastic game techniques as a solution to quantitative runtime
steering.

1.1 Case Study

Consider the following example, motivated by a cloud computing scenario, for
distributing a workload of tasks among a number of processing units. We are
given processing units P1, . . . , Pn arranged in a network (see Figure 1). For the
sake of simplicity, the network topology we use in this example is a ring of pro-
cesses, each of which can communicate with other processes up to two positions
away, and with an environment process.

Figure 2 shows the abstract specification for process Pr, r ∈ {1, . . . , n}. The
process executes the following main loop:

356 K. Dräger and M. Kwiatkowska

– In the idle location q1, it can receive requests to perform some computation,
either as a reqr message from the environment, or as a ai,r or bi,r message
from another process Pi, representing some subtask which Pi generated to
distribute the workload. Note that i serves as a free variable, which param-
eterizes families of actions (ai,r and acki,r) and locations (q11,i) in Pr. The
process moves to q2, storing the client process id in variable m (a value of 0
representing the environment).

– In each of the busy locations q2, q3, q4, further requests from another Pi are
rejected using a nackr,i message.

– In locations q2 and q3, the process makes a probabilistic decision about
whether or not to issue a subrequest of type a or b, respectively. If the answer
is positive, it then chooses a recipient, by calling the auxiliary function pick j
(resp. pick k), which
• assigns to j (resp. k) a neighbour id chosen uniformly at random, ex-
cluding the current values of j, k,m, and

• increases the counter tries,
and sending an ar,j (resp. br,k) message.

– In q4, the process checks and acts on responses:
• if tries exceeds a given bound, give up and send a nackr,m message,
• if an ack arrives from Pj (or Pk), set j (respectively k) to zero,
• if both j and k are zero, there are no pending subrequests; send an ack
message,

• if either Pj or Pk send a nack, choose a new recipient for the failed
subrequest (again using pick j/pick k).

Note that the system is driven by user demand and does not offer a guarantee
that the workload will be successfully distributed; in fact, it may fail to do
so and this can be expressed using probability. This system therefore exhibits
two problems. Firstly, in the case when a process fails to distribute the workload
despite having tried the specified number of times, it is possible that ack or nack
messages arrive after the tries counter has exceeded the bound; these messages
are not cleaned up and can confuse the process in subsequent computations.
Secondly, the system may enter a configuration in which failure is unacceptably
high, for example, if the workload is distributed badly between the units. Suppose
the initial request leads to generation of subtasks as in Figure 3, where in the
rightmost configuration processes P1, . . . , P7 are all busy (note that these are
only a subset of the full system, and some of them may still have subrequests to
send). Then in that rightmost column:

– P5 has only busy neighbours, so if it generates any subrequests, it will fail
(after 5 attempts). The probability for this case is 0.64.

– If P5 does fail, P3 receives the resulting nack5,3 and re-sends its subrequest
up to 4 times; the recipient is chosen randomly from {P1, P2, P5}, subject to
the condition that the same recipient cannot be chosen in two successive
attempts. Since all neighbours other than P5 are busy, this will lead to
a failure of the overall request with probability 0.4672 (see the case k =
5, tries = 2 in Figure 4).

Towards Communication-Based Steering of Complex Distributed Systems 357

Environment
P1

P2 P3

P4

...
...

ack4,0, nack4,0

req4

a2,3, b2,3, ack2,3, nack2,3

a3,2, b3,2, ack3,2, nack3,2

Fig. 1. A simple cluster of computing units. Processes P1, . . . , Pn are arranged in a ring,
each able to directly communicate with processes up to two positions away, and with the
environment, which can generate requests reqi for each process Pi. Messages ai,j , bi,j rep-
resent subrequests from Pi to Pj ; acki,j and nacki,j are success and failure notifications
(in the latter case, j can be 0, representing a notification to the environment).

Our goal is to prevent the above scenario through using a controller which cancels
requests responsible for creating such contiguous overloaded regions by deleting
them and injecting a nack message. The idea is that the controller is able to
predict that congestion is reachable in the near future, and can then select an
appropriate strategy to avoid it. In the example scenario, the congestion problem
could be addressed by trying to get P6 to send its second subrequest to a process
further down the chain, instead of its direct neighbour. In order to do this, the
controller would delete the request (a6,7 or b6,7) and inject a nack7,6 message.

2 Preliminaries

In this section, we formally describe the class of systems we are interested in,
together the corresponding quantitative verification and steering problems. The
systems comprise a number of distributed, probabilistic processes, each modelled
as a Markov decision process, communicating through (bounded) channels.

2.1 Words and Word Distances

As usual, the sets of finite and infinite words over an alphabet Σ are denoted by
Σ∗ and Σω, respectively. The empty word is ε, and the length of a word w ∈ Σ∗

is |w|.
In order to represent the intrusiveness of a steering strategy, we use a distance

between words, based on the number of steps needed to transform one into the
other, where a step consists of deleting or inserting a symbol (corresponding
to interception or injection of a message). Specifically, we have the following
definition.

358 K. Dräger and M. Kwiatkowska

q1 q2

q3q4

q5

q6

q7q8q9

q10

q11,i

q12,i

q13,i

q14

j, k,m := 0

tries := 0 reqr?

{ai,r , bi,r}? m := i

0.6

0.4 pick j

pick k

ar,j !0.6

0.4

br,k!

nackk,r?

ar,j !

pick j

nackj,r?

ackj,r?
j := 0

ackk,r?
k := 0

tries
>
5

nackr,m!
j, k := 0 ackr,m!

j = k = 0

m, tries := 0
{ai, bi}?

nackr,i!

{ai, bi}? nackr,i!

{ai, bi}?

nackr,i!

Fig. 2. One process Pr in the cluster. Variables m, j, and k are used to store the ids of
neighbours whose subrequest Pr is currently processing (m) and to which subrequests
have been sent (j, k). The auxiliary actions pick j and pick k, called before sending a
subrequest, assign a neighbour index other than the current values of j, k,m to j or k,
respectively, and increment the tries counter.

P1

P2

P3

P4

P5

P6

P7

P1

P2

P3

P4

P5

P6

P7

P1

P2

P3

P4

P5

P6

P7

P1

P2

P3

P4

P5

P6

P7

P1

P2

P3

P4

P5

P6

P7

Fig. 3. Buildup of congestion in part of the network. Arrival of a request leads to a
cascade of subrequests, eventually rendering all processes in the segment P1, . . . , P7

busy (indicated by shading). In particular, P5 is effectively isolated in the final state
(rightmost column), since it has only busy neighbours. This leads to a failure probability
for the overall task which is unnecessarily high.

Towards Communication-Based Steering of Complex Distributed Systems 359

k = 5
tries = 2

k ∈ {1, 2}
tries = 2

0.36

a
ck

k = 5
tries = 3

k ∈ {1, 2}
tries = 3

0.36

a
ck

0.64

nack0.
5

na
ck

0.5 nack

k = 5
tries = 4

k ∈ {1, 2}
tries = 4

0.36

a
ck

0.64

nack0.
5

na
ck

0.5 nack

k = 5
tries = 5

k ∈ {1, 2}
tries = 5

0.36

a
ck

0.64

nack0.
5

na
ck

0.5 nack

tries > 5

0.641
3

2
3

p = 1

p = 0.4672 p = 0.5248 p = 0.64 p = 0.64

p = 0.6274 p = 0.73 p = 0.82

p = 1

Fig. 4. Probabilities of overall failure in the situation shown in Figure 3, starting in the
next-to-last column and abstracting away all details except the values of k ∈ {1, 2, 5}
and the tries counter in P3. The subrequest can only succeed (with probability 0.36)
when k = 5; the value of k must change in each iteration.

Definition 1. Let Σ be an alphabet, and let γ = (γ−, γ+) consist of the cost
functions γ−, γ+ : Σ → N ∪ {∞}. This gives rise to a weighted directed graph
GΣ,γ = (Σ∗, E, w), where E consists of all pairs of the form (xay, xy), (xy, xay)
for a ∈ Σ and x, y ∈ Σ∗, and the edge weight w is given by w(xay, xy) = γ−(a)
and w(xy, xay) = γ+(a).

The (weighted edit) distance dγ(u, v) between words u, v ∈ Σ∗ is the minimal
weight of a path from u to v in GΣ,γ.

2.2 Markov Decision Processes

Definition 2. Given a set S, a finitely supported probability distribution on S
is a function Δ : S → R≥0 such that Δ(s) = 0 for all but finitely many s ∈ S
and

∑
s∈S Δ(s) = 1. We denote the set of all such distributions on S by D(S).

Definition 3. A Markov decision process (MDP) is a tuple A = (Q,Σ, q0, T),
where

– Q is a set of states, including the initial state q0 ∈ Q,
– Σ is an alphabet of actions, and
– T : Q×Σ → D(Q) is a partial transition function.

The action alphabet represents the possibility of nondeterministic choices in A,
which can be resolved by an adversary. In its most general form, this adversary
makes a probabilistic choice between actions based on the history, i.e. it is given
as a function σ : Q∗ → D(Σ). For any such adversary and any temporal property
ϕ defining a measurable set �ϕ� ⊆ Qω of paths, we get a probability pσA(ϕ) of the

360 K. Dräger and M. Kwiatkowska

behaviour of A satisfying ϕ in standard fashion [19]. The supremum supσ p
σ
A(ϕ)

and infimum infσ p
σ
A(ϕ) are denoted by pmax

A (ϕ) and pmin
A (ϕ), respectively.

For simplicity, we will restrict ourselves to pure memoryless adversaries, given
by functions σ : Q → Σ, which suffice for the case of safety/reachability
properties.

2.3 The Simple Steering Problem

We first introduce a version of the steering problem which, at least in principle,
can be solved exactly using existing methods. In the next section, we will discuss
some complications which are typical for real-life scenarios.

We consider systems modelled as a parallel composition of a number of pro-
cesses, each given as an MDP, communicating through (bounded) message chan-
nels. In particular, the alphabet of each process consists of three subsets: internal
actions, as well as send and receive actions along the channels. Formally, we have
the following.

Definition 4. A Probabilistic Bounded Channel System (PBCS) is given by
S = (A,C, β, γ), where

– A = {A1, . . . , Ak} is a finite set of MDPs Ai = (Qi, Σi, q
0
i , Ti),

– C = {Γi,j | i, j ∈ {1, . . . , k}, i �= j} is a set of message alphabets, whose
disjoint union we denote by Γ ,

– β : C → N is a channel bound function, and
– γ = (γ−, γ+) is a pair of cost functions on Γ ,

such that, for i = 1, . . . , k, the alphabet Σi in Ai is the union of a set Λi of local
actions, {a? | a ∈ Γj,i for some j}, and {a! | a ∈ Γi,j for some j}.

A (global) state s = (l, c) of S consists of

– a tuple l = (li) of local states li ∈ Qi for each i, and
– a tuple c = (ci,j) of channel contents ci,j ∈ Γ ∗

i,j for all i �= j.

We denote the set of global states by QS. The initial global state s0 is given by
li = q0i for all i and ci,j = ε for all i �= j.

A transition of this system corresponds to a transition in one of its processes,
which, as a side effect, may add a new message to an outgoing channel (if the
action was a send) or consume a message from an incoming channel (if it was a
receive). These two types of non-local transitions may only happen if the channel
in question is not full or empty, respectively. Formally, we define the transition
relation of the composed system S.

Definition 5. Let S = (A,C, β, γ) be a PBCS and s = (l, c) its global state.

– For q ∈ Qi, s[q] = (l′, c) is obtained by replacing the location li of Ai in l
with q, i.e. l′i = q and l′j = lj for j �= i.

– For Δ ∈ D(Qi), s[Δ] ∈ D(QS) is the distribution defined by s[Δ](s[q]) =
Δ(q) for q ∈ Qi and s[Δ](s′) = 0 otherwise.

Towards Communication-Based Steering of Complex Distributed Systems 361

– For a ∈ Γi,j, a.s = (l, c′) and s.a = (l, c′′) are obtained by appending a to
the front or back, respectively, of the channel contents ci,j:

• c′i,j = a.ci,j and c′′i,j = ci,j .a;

• c′r,s = c′′r,s = cr,s otherwise.

Then the transitions in Ai translate into the following system transitions for
all s = (l, c):

– if a ∈ Λi and Ti(qi, a) = Δ, then T (s, a) = s[Δ];

– if a ∈ Γi,j, |ci,j | < β(Γi,j) and Ti(qi, a!) = Δ, then T (s, a!) = (s.a)[Δ];

– if a ∈ Γj,i and Ti(qi, a?) = Δ, then T (a.s, a?) = s[Δ].

Thus the composed system induces an MDP (QS , Σ, s0, T) over the global states,
and our goal is to ensure that this MDP satisfies a given safety property, ex-
pressed as a subset E ⊆ QS of error states to be avoided.

In order to do this, we assume a controller whose task is to steer the system
away from the bad states. This controller cannot directly influence the decisions
of the system processes, but has access to the communication channels, and
can remove or insert messages. The set of controller transitions is thus given
by (l, c) ⇒ (l, c′) for all l, c, c′. The cost of such a transition is the sum of
the distances between the channel contents in c and c′, i.e. d((l, c), (l, c′)) =∑

i�=j dγ(ci,j , c
′
i,j).

This gives rise to a stochastic game structure between the system and the
controller. One round of this game consists of the system executing an enabled
system transition, followed by a probabilistic choice according to the resulting
distribution, and the controller executing one of its transitions, i.e. altering the
channel contents.

Definition 6. The steering game GS = (N, I,M, c) for a PBCS S = (A,C, β, γ)
consists of:

– the set N = NS ∪NC of nodes, where

• NS = QS × {0} is the set of system nodes, containing the initial node
I = (s0, 0),

• NC = QS × {1} is the set of controller nodes,

– the set M = MS ∪MC of moves, where

• MS is the set of system moves
{((s, 0), Δ′) | s → Δ,Δ′(s, 1) = Δ(s) for all s},

• MC is the set of controller moves {((s, 1), (s′, 0)) | s ⇒ s′},
and

– π : M → N gives the cost of a move, where π(m) = 0 for m ∈ MS and
π((s, 1), (s′, 0)) = dγ(s, s

′) represents the total cost of steering operations to
obtain s′ from s.

A play of GS is an infinite sequence of nodes p = n0, n1, . . . such that n0 = I
and, for all i, (ni, ni+1) ∈ M .

362 K. Dräger and M. Kwiatkowska

We are interested in the long-run cost of such plays. Since a play is in general
infinite, we cannot simply add up all the costs of its moves, because this sum
would diverge. A standard solution to this problem is to use the discounted payoff
of p, which is defined in terms of a suitably chosen discount factor λ ∈ (0, 1), as
the infinite sum

∑∞
k=1 λ

kc(nk−1, nk).
The behaviour of the system and controller players is given in terms of strate-

gies σS : NS → D(NC) and σC : NC → NS such that (n, σS(n)) ∈ MS for
all n ∈ NS and (n, σC(n)) ∈ MC for all n ∈ NC . Any choice σ = (σS , σC) of
strategies turns the game into a Markov chain Mσ = (N,n0, T) in the standard
fashion [8], with the probability distribution T (n) given by T (n) = σS(n) for
n ∈ NS and T (n)(σC(n)) = 1 for n ∈ NC .

The expected discounted payoff for σS , σC and discount factor λ is then given
by the limit ηλ(σS , σC) = limk→∞ pk of the sums

pk =
∑

n1,...,nk∈N

T (n0, n1) · · ·T (nk−1, nk)(λ
1c(n0, n1) + · · ·+ λkc(nk−1, nk)).

In order to solve the steering problem described above, we need to find a con-
troller strategy σC with two properties, as defined below.

Definition 7. A λ-optimal strategy for a steering game G and a set E of error
states is a controller strategy σC which

1. avoids the error states, i.e. reaches E with probability 0 in M(σS ,σC) for all
system strategies σS , and

2. among the strategies satisfying the first property, minimizes the worst-case
expected discounted payoff, i.e. the supremum supσSηλ(σS , σC).

In the next section we discuss ways of finding a λ-optimal strategy, if it exists
(which it may not, if the safety condition cannot be guaranteed).

3 Attacking the Steering Problem

3.1 The Simple Version

We will first consider the simplest version of the steering problem as presented in
the previous section, assuming a fixed system and full observability, by which we
mean that the controller is aware of the internal state of the system processes.
In this case, the problem has a straightforward solution using existing methods:

1. Compute the full game graph GS = (N, I,M, c).
2. Determine the unsafe region U , starting from the set E of error nodes and

iteratively adding the following sets until a fixpoint is reached:

– all system nodes n ∈ NS for which there is Δ ∈ D(N) and n′ ∈ U with
(n,Δ) ∈ MS and Δ(n′) > 0;

– all controller nodes n ∈ NC such that n′ ∈ U for all n′ with (n, n′) ∈ MC .

Towards Communication-Based Steering of Complex Distributed Systems 363

3. If U contains I, give up: we cannot avoid the error. Otherwise, remove U
and all incident transitions from GS , and use the existing algorithms [12] to
find an optimal strategy for the resulting discounted payoff game on N \ U .

Unfortunately, the case of large-scale complex systems is much more complicated,
and this simple solution is no longer appropriate. Some prominent difficulties are:

1. The state space, even if finite, (for example, because the processes are ac-
tually finite-state abstractions), is huge, making the explicit construction of
the full game graph impractical.

2. If we allow for continuous system adaptation, this would, in our setting,
manifest itself as changes to parameters such as transition probabilities,
channel sizes, or cost functions. This calls for incremental quantitative verifi-
cation techniques [21], which can be executed at runtime, reacting to system
changes.

3. Full observability is unrealistic: all we can really expect the controller to see
is the communication behaviour of the processes, i.e. the channel contents.
In particular, we have to assume that processes could perform arbitrarily
many unobservable internal transitions between communications, i.e. a sys-
tem move would consist of a sequence of local transitions followed by a send
or receive transition.

Note that the latter two points also imply that we can no longer hope to guar-
antee the safety property. Instead, we aim at a best-effort approach, which, in
this context, we take to mean an attempt to avoid (or, in the partial observabil-
ity scenario, minimize the probability of reaching) the error states within some
number of steps.

We will now describe an approach which addresses the first two points; partial
observability introduces some rather fundamental issues and will be discussed in
Section 4.

3.2 Runtime Verification

In order to tackle the more general case, we use a runtime approach, which only
explores a bounded part of the state space in any given step. Specifically, we
assume given a suitable lookahead L ∈ N such that the goal in each step is to
find a minimum-cost controller strategy to avoid the error states for at least L
steps, starting from the current state s. Note that, in this case, we can simply
add up the costs of a play with no need for a discount factor.

This problem can be formalized using the techniques developed in [8]. For
the original game GS = (N, I,M, c) and the error states E, define the set of
error nodes Ne := {(s, i) | s ∈ E, i ∈ {0, 1}}, and consider the modified game
G′

S,E,L,s = (N ′, I ′,M ′, c′) starting in s, where

– N ′ = N × {0, . . . , L},
– I ′ = (s, 0, 0),
– M ′ = M ′

S ∪M ′
C with

364 K. Dräger and M. Kwiatkowska

• the system moves M ′
S given by

{((n, i) , Δ′) | n /∈ Ne, (n,Δ) ∈ MS, Δ
′((n′, i)) = Δ(n′) for all n′}, and

• the controller moves M ′
C given by

{((n, i) , (n′, i+ 1)) | n /∈ Ne, (n, n
′) ∈ MC , i < L},

– c′((n, i), (n′, i′)) = c(n, n′) for all n, n′, i, i′.

Intuitively, we have augmented the original game with a counter which is in-
cremented on each controller move. The error states become sinks from which
no escape is possible. The controller then strives to reach the states where the
counter has the value L, avoiding the error states up to this bound on the num-
ber of states, but without guaranteeing that the error states will be avoided in
future.

We thus need to find the minimum-cost controller strategy to reach the set
of goal nodes G = {(n, L) | n ∈ N}, where the cost of not reaching them (due
to a failure to avoid the error states) is infinite. In the logic rPATL, which is an
extension of the logic ATL with the probabilistic and reward operators, this can
be expressed as ϕ ≡ 〈〈{C}〉〉Rc

min=?[F
∞g] , where C is the controller player, and

g is an atomic proposition labelling the goal states.
The overall solution then proceeds as follows: in each step, use the model

checking algorithm from [8] to find the strategy1 solving the rPATL formula
ϕ on the game G′

S,E,L,s starting in the current state (note that this includes
taking into account any changes in the model); make any changes which are
immediately required by this strategy; and await the next system transition.

If the error condition is based on the states of just a small number of processes,
this approach can be augmented using a form of target enlargement by first
computing, for this subsystem, the set U of unsafe states (as defined in the
simple case). The cylinder over U (i.e. the system states where the relevant
processes are in an U -state) is then used in place of E.

4 Extensions

The game-based approach to the quantitative runtime steering problem that
we introduced in the previous section is sufficient for the simplified setting, but
not for many realistic large-scale complex systems scenarios. In this section, we
use our framework as a basis to discuss a number of challenging variations. We
briefly describe them and suggest possible solutions.

4.1 Compositional Analysis

In case the error condition is given in terms of some local error states in a subset
of processes, it is tempting to try analysing these processes in isolation. If the
bound L is relatively small, it may well be possible that the message channels
to some of these processes are sufficiently full so that the behaviour of the other

1 An implementation of strategy generation for the logic rPATL is in progress, ex-
tending the functionality of [23].

Towards Communication-Based Steering of Complex Distributed Systems 365

processes cannot influence them within this number of steps. Even if this is not
the case, there may only be a small number of messages which could be both
sent and received before the time bound, allowing us to restrict the analysis of
the processes not contributing to the error.

4.2 Partial Observability

In order to cope with partial observability, the controller needs to keep track
of the states in which the system processes might be, and the corresponding
probabilities. The recent paper [4] gives a good overview of the complexity of
this problem in general stochastic games.

The classic approach to this problem occurs in the case of partially observable
Markov decision processes (POMDPs)M = (Q,Σ,O,Δ0, T, o), which are MDPs
extended with a set O of observables and an observation function o : Q → O.
The idea is that an observer infers at each step a distribution Di based on Di−1,
the action ai, and the observation o(qi); these distributions are referred to as
belief states.

The channel systems we are considering are an extreme case, in that we only
have the actions available, corresponding to a trivial (singleton)O. The controller
could then maintain a sequence of belief states Δi, starting with the Dirac dis-
tribution Δ0 such that Δ0(s

0) = 1, and updating based on the observed actions
ci. Let Si ⊆ Q be the support of ci, i.e. the set of states q for which T (q, ci)
is defined, and let pi be the probability

∑
q∈Si

Δi(q) of Si in Δi. After ci is
observed, the new belief state is

Δi+1(q) =
∑
q′∈Si

Δi(q
′)T (q′, ci, q)/pi.

This could then be combined with the steering game as described in the previ-
ous section, where we now have an initial distribution (Δi) instead of an initial
state. One problem with this approach is that the support of the distributions
involved might grow substantially over time. For the belief states, this can be
addressed to some extent by realizing that we can maintain individual distri-
butions for the processes instead of one distribution over product states, which
could complement the compositional approach when it is viable.

So far, while we have treated the internal state of processes as unobservable,
we were still assuming that the controller knows about all actions which occur.
There are two quite realistic deviations from this which make the analysis much
harder:

– There may be a delay between the time when an action occurs and the time
when the controller becomes aware of it. This can be treated as a special
case of incomplete information and dealt with as in [25].

– Some or all internal actions can be silent. In particular, since the controller
cannot know about their occurrence, in this case a system step would ac-
tually consist of some number of such silent transitions followed by an
observable one. The example in Figure 5 illustrates this situation: when

366 K. Dräger and M. Kwiatkowska

s0

s1 s2

τ1 τ2

0.5 0.5

a!

a!0.4

0.6

a!

0.7

0.3

Fig. 5. State inference in systems with silent transitions. Even if the process is known to
be in s0 initially, the presence of τ -transitions means that, when observing an a!-event,
we only know that the state was in {s0, s1, s2} before.

observing an action, there are several possible sequences of silent actions
which might have occurred (in this case, τ1, τ2, or neither) resulting in sev-
eral possible belief states {s0, s1, 0.5s1 + 0.5s2}, with the successor states
{0.3s0 + 0.7s2, s0, 0.5s0 + 0.2s1 + 0.3s2}. Pursuing this naive extension of
the belief state-based analysis leads to exponentially growing sets of distri-
butions, which suggests the need for more compact (and less precise) repre-
sentations for the possible process states.

4.3 Multi-way Communication Channels

The communication in our system model uses point-to-point channels, each with
a dedicated sender and receiver. It would be interesting to generalize this to chan-
nels with arbitrary sets of readers and writers. Adapting the basic algorithms
to this setting is straightforward (it changes the set of system transitions, which
just needs to be reflected in the game structure), but the compositional approach
described above becomes more difficult, since the assumptions about the possible
interactions within the chosen time frame are no longer valid.

4.4 Soft Errors

We have so far used the assumption that the error states should be avoided
if at all possible. Alternatively, one can consider situations in which they are
merely undesirable and can be recovered from. In this case, instead of a safety
property, the goal of the controller could, for example, be to minimize the time
spent in these error states; more generally, we could assign a separate cost func-
tion to states and look for controllers minimizing the discounted long-term cost.
If combined with the action-based cost function, this leads to multi-objective
properties for stochastic games, about which very little is currently known; see
[14,17] for multi-objective model checking algorithms and implementation for
MDPs.

Towards Communication-Based Steering of Complex Distributed Systems 367

5 Conclusion and Future Work

In this paper we have formulated the problem of quantitative runtime steering
for large-scale complex systems modelled as a parallel composition of Markov de-
cision processes communicating through bounded channels. We have shown how
the simplified setting can be solved by employing stochastic games, and reduces
to finding a controller which meets a given quantitative goal by manipulating
the channel contents. Real-world scenarios are, however, more complex, and we
have outlined the challenges and possible solutions in this case.

Quantitative runtime verification and steering are powerful new techniques
that have the potential to significantly enhance fault prevention and therefore
predictability and dependability of software systems. In future we will work on
adding these techniques to the repertoire of automated verification.

Acknowledgements. This research is supportedbyEPSRCprojectEP/F001096.

References

1. Calinescu, R., Ghezzi, C., Kwiatkowska, M., Mirandola, R.: Self-adaptive software
needs quantitative verification at runtime. Communications of the ACM (to appear,
2012)

2. Calinescu, R., Kwiatkowska, M.: Using quantitative analysis to implement auto-
nomic it systems. In: Proc. ICSE 2009, pp. 100–110. IEEE (2009)

3. Chatterjee, K., de Alfaro, L., Henzinger, T.A.: The Complexity of Stochastic Rabin
and Streett Games,. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 878–890. Springer, Heidelberg
(2005)

4. Chatterjee, K., Doyen, L.: Partial-observation stochastic games: How to win when
belief fails. In: Proc. LICS 2012 (to appear, 2012)

5. Chatterjee, K., Henzinger, T.A.: A survey of stochastic omega-regular games. Jour-
nal of Computer and System Sciences (2011)

6. Chatterjee, K., Henzinger, T.A., Jobstmann, B., Radhakrishna, A.: Gist: A Solver
for Probabilistic Games. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 665–669. Springer, Heidelberg (2010)

7. Chatterjee, K., Jurdzinski, M., Henzinger, T.: Quantitative stochastic parity games.
In: Proc. SODA 2004, pp. 121–130 (2004)

8. Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., Simaitis, A.: Automatic Ver-
ification of Competitive Stochastic Systems. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 315–330. Springer, Heidelberg (2012)

9. Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J.,
Becker, B., Bencomo, N., Brun, Y., Cukic, B., Di Marzo Serugendo, G., Dustdar,
S., Finkelstein, A., Gacek, C., Geihs, K., Grassi, V., Karsai, G., Kienle, H.M.,
Kramer, J., Litoiu, M., Malek, S., Mirandola, R., Müller, H.A., Park, S., Shaw,
M., Tichy, M., Tivoli, M., Weyns, D., Whittle, J.: Software Engineering for Self-
Adaptive Systems: A Research Roadmap. In: Cheng, B.H.C., de Lemos, R., Giese,
H., Inverardi, P., Magee, J. (eds.) Software Engineering for Self-Adaptive Systems.
LNCS, vol. 5525, pp. 1–26. Springer, Heidelberg (2009)

10. Clarke, E., Grumberg, O., Peled, D.: Model Checking. The MIT Press (1999)

368 K. Dräger and M. Kwiatkowska

11. Crow, J., Rushby, J., Struss, P.: Model-based reconfiguration: Diagnosis and re-
covery (1994)

12. de Alfaro, L., Henzinger, T., Majumdar, R.: Discounting the Future in Systems
Theory. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.)
ICALP 2003. LNCS, vol. 2719, pp. 1022–1037. Springer, Heidelberg (2003)

13. de Alfaro, L., Majumdar, R.: Quantitative solution of omega-regular games. In:
STOC 2001, pp. 675–683. ACM Press (2001)

14. Etessami, K., Kwiatkowska, M., Vardi, M., Yannakakis, M.: Multi-objective model
checking of Markov decision processes. Logical Methods in Computer Science 4(4),
1–21 (2008)

15. Filieri, A., Ghezzi, C., Tamburrelli, G.: Run-time efficient probabilistic model
checking. In: Proc. ICSE 2011, pp. 341–350. ACM, New York (2011)

16. Filieri, A., Ghezzi, C., Tamburrelli, G.: A formal approach to adaptive software:
continuous assurance of non-functional requirements. Formal Aspects of Comput-
ing 24, 163–186 (2012)

17. Forejt, V., Kwiatkowska, M., Parker, D.: Pareto curves for probabilistic model
checking. In: Proc. 10th International Symposium on Automated Technology for
Verification and Analysis (ATVA 2012). LNCS. Springer (to appear, 2012)

18. Giro, S., Rabe, M.: Verification of partial-information probabilistic systems us-
ing counterexample-guided refinements. In: Proc. 10th International Symposium
on Automated Technology for Verification and Analysis (ATVA 2012). LNCS.
Springer (to appear, 2012)

19. Kwiatkowska, M.: Quantitative verification: Models, techniques and tools. In: Proc.
6th joint meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE),
pp. 449–458. ACM Press (September 2007)

20. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of Probabilistic
Real-Time Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

21. Kwiatkowska, M., Parker, D., Qu, H.: Incremental quantitative verification for
Markov decision processes. In: Proc. DSN-PDS 2011, pp. 359–370. IEEE (2011)

22. Oreizy, P., Medvidovic, N., Taylor, R.N.: Runtime software adaptation: framework,
approaches, and styles. In: Proc. Companion of ICSE 2008, pp. 899–910. ACM
(2008)

23. PRISM-games, http://www.prismmodelchecker.org/games/
24. Sommerville, I., Cliff, D., Calinescu, R., Keen, J., Kelly, T., Kwiatkowska, M.,

McDermid, J., Paige, R.: Large-scale Complex IT Systems. Communications of
the ACM 55(7), 71–77 (2012)

25. Stoller, S.D., Bartocci, E., Seyster, J., Grosu, R., Havelund, K., Smolka, S.A.,
Zadok, E.: Runtime Verification with State Estimation. In: Khurshid, S., Sen, K.
(eds.) RV 2011. LNCS, vol. 7186, pp. 193–207. Springer, Heidelberg (2012)

26. Yabandeh, M., Knezevic, N., Kostic, D., Kuncak, V.: Crystalball: predicting and
preventing inconsistencies in deployed distributed systems. In: Proceedings of the
6th USENIX Symposium on Networked Systems Design and Implementation, NSDI
2009, pp. 229–244. USENIX Association, Berkeley (2009)

http://www.prismmodelchecker.org/games/

Evolution, Adaptation,

and the Quest for Incrementality�

Carlo Ghezzi

Politecnico di Milano
Dipartimento di Elettronica e Informazione

DeepSE Group
Piazza Leonardo da Vinci, 32, 20133 Milano (MI), Italy

carlo.ghezzi@polimi.it

Abstract. Software is constantly evolving. Evolution becomes neces-
sary to respond to changes that may occur in the requirements and/or
in the environment in which it is embedded. A consequence of changes is
that several activities (such as analysis, verification, code generation, de-
ployment) need to be redone, over and over. This paper focuses on verifi-
cation. Incrementality comes into play because often changes are local to
restricted parts. In order to save time, it would be beneficial if instead of
redoing activities from scratch after each change, the results of previous
processing may be reused and composed with the results of processing
restricted portions of the changed software. Incrementality becomes even
more necessary when changes occur at runtime and the software itself
is responsible for reacting in a self-managed manner. In this setting, the
processing that needs to be performed after each change is subject to
severe time constraints. The paper is a position statement on incremen-
tality in the context of self-adaptive systems. It starts by motivating the
need for incrementality and then reviews three main approaches to in-
cremental verification that have been proposed earlier, compares their
potential, and outlines promising research directions.

1 Introduction

Modern software systems are embedded in an increasingly dynamic and open
world [10], which is a source of continuous change. The requirements the system
is expected to satisfy change because the goals one tries to achieve through the
system change over time. The domain assumptions upon which the software is
built may also change, and the change may lead to violations of the requirements.
The consequence of these exogenous changes is that the software system is also
required to change in order to fulfil its goals.

This phenomenon is traditionally known as software evolution. Its initial
recognition dates back to the 1970s (see [5,27]). In the recent years, however,
change became even more pervasive and manifested itself in new forms. Changes

� This research has been partially funded by the European Commission, Programme
IDEAS-ERC, Project 227977-SMScom.

R. Calinescu and D. Garlan (Eds.): Monterey Workshop 2012, LNCS 7539, pp. 369–379, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

370 C. Ghezzi

occur at runtime and must be handled at runtime. Indeed, there is a need for
systems that can recognize changes and react to them in a self-managed man-
ner, as they are running and providing service. The goal of self-adaptive software
leads to the notion of software adaptation as a new form of software evolution.

Software engineering has long been concerned with supporting software evo-
lution. Research has been focusing on developing design methods that would
facilitate software evolution. The foundational work by David Parnas on design
for change [28] lead to the notions of modularity, encapsulation, interface ab-
stractions, contracts, and so on. Languages—object- and then aspect-oriented—
were also invented to effectively support program changes.

There has been also research on supporting change through incremental meth-
ods and tools. The systematic design of a software system, in fact, goes through
a number of steps, which generate certain artifacts. Typically, high-level mod-
els are developed, analyzed, and transformed into increasingly more detailed
descriptions and verified against certain properties. Eventually, an executable
form is generated and deployed for execution. A change in the requirements or
in the domain assumptions implies that the development process needs to be
revisited to accommodate changes. A naive approach would consist of viewing
the changes as defining a new system. An incremental approach instead would
try to characterize exactly what changed and reuse as much as possible of the
results of previous processing steps in the steps that must be replayed after the
change. The main motivation is of course time efficiency. Time is in fact a very
critical factor in change management. It is very important in the case of software
evolution, to support timely development of new versions of an existing system.
Because many modern systems are large, redoing the processing from scratch
after each change may in fact have a severe impact on the development process.
Time becomes even more important in the case of adaptation, because changes
in the running system may be subject to very tight time constraints to react in
order to prevent requirements violations.

Existing approaches to incrementality are unfortunately still partial, rather
ad-hoc, and only cover a few steps of software development. In this paper, we
argue that in order to support software evolution, we should revisit all steps of the
development process with the goal of making them incremental. This becomes a
fundamental issue if we wish to support software adaptation. As we will motivate
in Section 2, adaptive software requires that certain activities that are normally
conceived as off-line development steps must extend their scope to runtime, to
provide full support to self-adaptive reactions. But to in order to comply with
the tight time constraints that characterize the runtime environment, execution
efficiency becomes very critical, and therefore it asks for incrementality.

This paper is a position statement on incrementality in the development of
adaptive software, focusing on analysis and verification activities. In this context,
the goal of incrementality may be stated as follows: Let S be a system and let P
be a property against which S has been verified. A change is a new pair 〈S′, P ′〉.
An incremental verification reuses partial results of the analysis of S against P

Evolution, Adaptation, and the Quest for Incrementality 371

to analyze S′ against P ′. The main objective is to improve time efficiency of
verification.

The goal of this position statement is to provide arguments that support
this view, mostly based on the author’s past and current work and planned fu-
ture research. As such, it lacks completeness of the analysis of related work and
avoids entering into technical details of the presented techniques, which can be
found in referenced papers. The paper is organized as follows. Section 2 provides
more background discussion on change, evolution, and adaptation and how they
affect verification. Section 3 discusses three main approaches to incremental ver-
ification. Finally, Section 4 outlines a possible research agenda and draws some
conclusions.

2 Motivations

A software system is built to satisfy certain requirements R, which derive from
some overall goals G. The software system is embedded in an environment (also
called domain) whose properties D must be understood in order to derive the
software specification S, which must be satisfied by the software system to ensure
that the requirements R are actually met. According to M. Jackson and P. Zave
([20,30]), the software engineers who are responsible for deriving S and imple-
menting a system that satisfies S must fulfill a satisfaction argument, expresed
as S,D |= R, which can be read as:

If the specification defined by S is satisfied by the software and the domain
properties D hold and both S and D are satisfied and consistent with each
other, then the requirements R are satisfied by the system.

The satisfaction argument must be fulfilled by software engineers when the sys-
tem is initially developed. This is normally achieved by reasoning on suitable
models of the software system (which correspond to S) and of the environment
(which correspond to D) and providing convincing arguments that these entail
satisfaction of R. Because of possible changes, however, these arguments are
very fragile, and may be broken whenever R and/or D change. R may change
because the goals change over time, for example due to turbulence in the stake-
holders’ world. D may change because some of the assumptions made initially
later change, or because the behavior of the environment we are dealing with
intrinsically changes. In many practical cases, it is possible to predict at devel-
opment time what in the environment may change at runtime. For example,
we may know that in a mobile application the kind of localization method may
change depending on whether the user will be indoor or outdoor. Some other
times, certain environment properties that may affect the behavior of the ap-
plication are hard to predict exactly at design time. As an example, the access
rate to certain functions from end-users, which may affect the overall requested
response time, may be difficult to predict when the system is initially designed:
they may change, for example in certain seasonal peak conditions.

372 C. Ghezzi

In all the previous cases, the assumptions D made by designers when the
system is initially developed may be invalidated at runtime, and may continue
to change, when the system is operational. In all these cases, the reasons that
may require changes in the system are discovered dynamically, by observing the
running system. This is the situation in which adaptation comes into play. Adap-
tation deals with changes in the environment that may be detected and can be
handled in a self-managed manner1. The application itself must be capable of
monitoring the data that may indicate a change in the environment’s behavior.
Often, the collected data must be abstracted —e.g., through a machine-learning
step— into higher-level phenomena on which the software itself can reason to
understand whether an adaptation is required to continue to satisfy the require-
ments. And finally —if necessary— the adaptation must take place as the system
is running.

In previous work [4,7], it has been shown that in order to support the above
reasoning features, a model of the system and of the environment must be kept
alive at runtime. Models at runtime must be checked to prove the same satis-
faction arguments that were verified at design time and may now be violated at
runtime, leading to an adaptation. The need for runtime verification to possi-
bly detect requirements violation and decide proper reactions asks for efficient
verification procedures, which must decide within stringent time constraints.
Often,the very nature of the application requires self-adaptation (and hence ver-
ification) to be completed within hard deadlines. Because runtime changes are by
their nature incremental (only a few phenomena change at each time point) and
because changes may occur very frequently, the opportunities for incrementality
should be fully exploited.

Although our main motivations originate from the need for continuous adap-
tation at run time, incrementality would be highly beneficial also in the context
of agile software development and explorative design, where change is an intrinsic
and distinctive feature.

3 Approaches

In this section we review three approaches to incrementality. The review is not
meant to be complete, in the sense of coverage of all possible approaches that
were proposed in the past. Also, it does not aim at providing a taxonomy of
possible approaches. It does, however, try to provide a perspective in which the
author’s past and future work in this area can be positioned. The approaches
we are going to present fall under the following three broad categories: incre-
mentality by change encapsulation, incrementality by change anticipation, and
syntax-driven incrementality.

1 The reader may refer to [6] for an excellent discussion of the precise meaning of the
term adaptive software.

Evolution, Adaptation, and the Quest for Incrementality 373

3.1 Incrementality by Change Encapsulation

The first approach we discuss is a direct consequence of design for change. It
applies compositional reasoning to a modularized system through an approach
that commonly is called assume-guarantee. The system is viewed as a parallel
composition of modules, each of which has to guarantee a certain property, that
corresponds to its contract subscribed with the other modules. The key idea of
assume-guarantee reasoning [22,29] is that we show that module M1 guarantees
certain properties P1 on the assumption that module M2 delivers certain prop-
erties P2, and vice versa for M2, and then claim that the system composed of M1

and M2 (i.e., both running and interacting together) guarantees P1 and P2 un-
conditionally. Verification methods of this kind are called compositional because
they allow one to reason about M1 and M2 separately and deduce properties
about the parallel composition of the two modules M1||M2 without having to
reason about the composed system directly. This direction is perhaps the most
widely studied in the literature and leads in general to compositional approaches
that can help dominate the complexity of reasoning on a large system.

Assume-guarantee approaches can be applied to manage verification incre-
mentally. That is, whenever the effect of a change can be encapsulated within
the boundary of a module (i.e., that module, after the change that affected it,
can be proved to continue to guarantee its contract property), the other modules
are not affected, and their verification does not need to be redone. Success of
this approach depends on how well the initial design that defined the module
boundaries ensures that anticipated possible changes do not percolate through
the module’s interface, affecting its guaranteed property (i.e., its contract). Com-
positional reasoning fails whenever the consequence of a change is that a module
does not guarantee the specified property any more. Often, in fact, the effect
of certain changing phenomena care cross-cutting. As a final remark, because if
its reliance on the modular structure of the system, incrementality by change
encapsulation is intrinsically a large-grain technique. As such, it only partly fits
the requirements of runtime adaptation.

3.2 Incrementality by Change Anticipation

The second approach we describe is also based on anticipating the changes that
may occur, but it does not rely on the modular structure. It is not necessary to
state a-priori boundaries to prevent change propagation and it does not suffer
from limitations due to percolation of change effects through interfaces. The
approach is based on the concept of partial evaluation (PE), initially proposed by
[12]. PE was originally defined for programs, and supports program specialization
when some input values are known statically (i.e., before runtime).

PE can be intuitively defined as follows: Let P be a program, which defines a
function from an input domain I to an output domain O (P : I → O). Suppose
that I can be partitioned in two subsets, Is and Id, where Is is the set of input
data that are known statically, before runtime. Partial evaluation transforms the
program P into a new program P̂ , called residual program, by precomputing all

374 C. Ghezzi

static input before runtime. The residual program is more specialized and it is
executed more efficiently than the original program.

Partial evaluation meets incremental change management quite naturally: the
binding to concrete information that is known before runtime can be propagated
through the program. The method postpones to runtime evaluation only the part
that depends on runtime information (the residual program).

The principle of partial evaluation can be generalized to a much wider context
than just programs. For example, we have been working, and still are, on incre-
mental probabilistic model checking through parameterization2. The artifacts we
focus on in this work are Markov models, which may be used to represent – and
reason about – nonfunctional properties of systems, expressed in a probabilistic
setting. Examples of such properties are reliability, performance, or costs of any
kinds (including, for example, energy consumption). For the sake of simplicity,
let us consider a specific formalism: Discrete Time Markov Chains (DTMCs).
A DTMC can be viewed as a finite state machine where each transition is la-
beled by a probability value that represents the probability that the transition
is taken to exit the state (of course, the sum of the probabilities associated with
the transitions existing any given state must be equal to 1.)

A DTMC can be verified against a property the model is expected to satisfy,
expressed in a temporal logic language, such as PCTL [3]. Verification can be
performed by a model checker (notable examples are PRISM [25] and MRMC
[23]). Suppose now that some changes occur in the world which imply that the
model also has to change. We assume here that changes only affect the proba-
bilities associated with the transitions. A non-incremental approach implies that
verification through model checking should be applied to the modified model,
and re-applied after any subsequent change from scratch. The incremental ap-
proach we have been working on ([14]) is called parametric. This means that the
transitions representing phenomena that can change are labeled by variables, not
constants. Constants model phenomena that are fully known before execution
and cannot change, whereas variables model changeable phenomena. Evalua-
tion of the required PCTL properties on the model (which contains constant
and variable parts) is a partial evaluation, which involves both numeric and
symbolic processing. The result is a (polynomial) formula that represents the
residual verification condition corresponding to the partially evaluated PCTL
property. This verification condition is kept and used at runtime to support con-
tinuous verification. In fact, as the real values become known at runtime, the
evaluation of the verification condition can tell us whether the system behaves
as specified or not. The proposed method is extremely efficient at runtime, at
the obvious expense of a high pre-runtime complexity, which we are generally
willing to pay to achieve runtime efficiency3.

2 Other approaches to incremental analysis of Markov models are described by
[26,9,18].

3 The design-time complexity heavily depends on the number of variables (i.e., change-
able phenomena).

Evolution, Adaptation, and the Quest for Incrementality 375

Let us move on a more concrete ground, to provide glimpse of the practical
use of the approach. A DTMC can be used to model a system from a relia-
bility viewpoint. The paths on the state diagram from the initial to the final
states represent the possible different use cases. Final states are states having a
self-transition labeled with probability 1. They are also called absorbing states.
Some of these absorbing states represent success, some represent failure. The
probabilities used to label transitions represent domain assumptions about dis-
tributions of user requests to the system or the expected probability of successful
completion (vs. failure) of certain computational steps. For example, the DTMC
in Figure 1, taken from [17], models an e-commerce system, which integrates ex-
ternal services for user authentication (offering Login and Logout operations),
normal shipping of goods (operation NrmShipping), express shipping (oper-
ation ExpShipping) and payment (operation CheckOut). The DTMC shows
that these operations, offered by external service providers, may fail: for ex-
ample, Login and Logout fail with probability 0.03, leading to the final state
FailedLg. The DTMC also shows that after successful login, users are recog-
nized as belonging to two possible customer categories, ReturningCustomer or
NewCustomer, that differ in terms of quality of service to be guaranteed by the
e-commerce application. The expected usage profile is that the probability that
a user is a ReturningCustomer is 0.35. Similarly, expected usage profiles give us
the values of probabilities that ExpShipping is chosen instead of NrmShipping.
Finally, suppose that the global requirements to be satisfied by the model include
the following ones:

– P>0.8 [♦ s = 16]: the probability of eventually reaching state 16, which
corresponds to the successful completion of the session (see Figure 1) is
greater than 0.8.

– P<0.035 [♦ s = 13 {s = 1}]: the probability of eventually reaching state
13 (representing a failed express shipping) given that the DTMC starts its
execution in state 1 (Returning Customer) is less than 0.035.

– P<0.06 [♦ s = 5]: the probability of eventually reaching the FailedLg state is
less than 0.06.

By using the probabilistic model checker PRISM [25] on the DTMC, it is easy
to verify the satisfaction of the requirements. If, however, we assume that usage
profiles actually may change at runtime, we may replace the constants that label
exit transitions from states 2, 14 with x and 1−x, respectively (and do similarly
for states 7, and 9). Verification of the above PCTL formulae on the model yield
polynomial formulae to be evaluated on the variables we introduced to label
transitions. These polynomials are carried on to runtime to support runtime
verification.

A main limitation of this approach is that it can deal with a limited class of
variability; in the DTMC case, the structure of the model cannot change, just
transition labels.

376 C. Ghezzi

12

Profiler

9

Buy

6

Search

1

Returning

3

NewCustomer

7

Buy

4

Search

11

10

ExpShipping

12

14

Logout

16

Success

5 1

FailedLg

8

FailedChk

15 1

FailedNrmSh

13 1

FailedExpSh

1

0

Login

0.97

0.03

0.65

0.35

1

1

0.2
0.5 0.05

0.6

NrmShipping

0.030.95

0.1 0.97

0.95

0.9

1

0.15

1

0.3

0.05

CheckOut

0.25

Fig. 1. Example DTMC Model (taken from [17]), representing initial assumptions. To
anticipate possible future changes, transitions exiting states 2, 7, 9, and 14 may be
labeled by variables.

3.3 Syntax-Driven Incrementality

Syntax-driven incrementality assumes that the artifact to be analyzed incremen-
tally has a syntactic structure that is described by a formal grammar. Analysis
algorithms are then developed as incremental syntax-driven algorithms. The best
known and most basic examples of syntax-driven incrementality can be found
in the domain of syntax-driven compilation, and date back to the 1970s. The
author, together with D. Mandrioli, developed a theory of incremental parsing
[15,16]. The goal of this past work was to improve the time efficiency of syntax
analysis of programs by allowing a parser to reuse knowledge from a previous
analysis (the saved syntax tree) in order to limit the amount of re-analysis that
needs to be done after any change. Changes may be insertions and/or deletions
of text in the program. Incremental parsing algorithms can automatically detect
the minimum portions of text that need to be re-parsed and can then produce a
new syntax tree that weaves the newly built portion with reused portions of the
previous one. Incremental algorithms have also been devised for the semantic
evaluations that can be expressed in terms of attribute grammars [21].

The benefit of syntax-driven incrementality is that the possible changes are
not constrained a-priori in any sense. The incremental algorithm is able to au-
tomatically decide which is the minimum portion of text that needs to be re-
analyzed (i.e., the new portion of parse tree that needs to be built). This also
automatically determines the portion of semantic attribute evaluation that needs
to be performed.

In [11], we applied attribute grammars to the verification of workflows. As-
sume that an implementation of a high-level model like the one shown in Figure
1) is given in a workflow language, like BPEL [1], which orchestrates a number of

Evolution, Adaptation, and the Quest for Incrementality 377

services. These services, which provide authentication, payment, and shipping,
are characterized by their failure profiles, which take into account multiple fail-
ure mode. The usage profile related with the selection of paths of the workflow
is also given. The goal is to evaluate the overall reliability of the workflow that
coordinates the independent services. The failure profile of the composition is
described in terms of an attribute grammar that allows the workflow’s failure
profile to be synthesized as an attribute of the entire workflow (the program).
The interesting finding of this paper is that a verification process (in the spe-
cific example, reliability analysis) can be expressed as an attribute grammar
and executed as attribute evaluation. The next natural research step, which we
are currently undertaking, is making this evaluation incremental. In the spe-
cific example, if the failure profile of certain components changes over time, the
incremental algorithm is able to update the overall reliability attribute of the
workflow by recomputing only parts of the attributes, reusing the values com-
puted earlier for other unchanged parts, and then propagating attribute values
through the tree up to the root. The same algorithm would be incremental if
changes are applied to the structure of the workflow dynamically [13].

Notice that in a syntax-driven approach changes can be of any kind. The
change can only be in some elementary attribute (the failure profile of an ex-
ternal component), in which case only the attribute evaluation process needs to
be performed incrementally. The change can also be in the workflow, with the
addition/deletion of parts. In this latter case, incrementality of syntax analysis
determines the portion of the syntax tree to be newly built and the portion to
be reused, and attributes are evaluated incrementally according to the changes
in the syntactic structure.

4 Future Work and Conclusions

This position paper has given motivations for incremental strategies to support
continuous verification of evolving and, in particular, self-adaptive software. It
also went through three general approaches that can help moving in the direc-
tion of incrementality: incrementality by change encapsulation, incrementality
by change anticipation, and syntax-driven incrementality. The three classes do
not cover all current and previous work on incremental verification. Moreover,
other work than the one presented here exists in each class. Although an exten-
sive state-of-art analysis falls beyond the scope of this position statement, a few
references to other relevant work are given next.

An assume-guarantee approach to probabilistic model checking of Markov
models is presented in [26]. Parametric model checking of Markov models has
also been studied by [9] and [18]. As for contributions to incremental program
model checking, one may refer to [19,8,24].

As for future work, significant research advances are needed, for example, to
further exploit the approach we called “incrementality by change anticipation”
in cases where we are currently unable to generate a closed verification formula
at development time (e.g., for models described as Continuous Time Markov

378 C. Ghezzi

Chains and properties expressed in CSL [2]). More work is also needed to assess
the potentials of “syntax-driven incrementality”. We are actually engaged in this
line of research, and our goal is to show that most existing analysis algorithms
can be expressed as syntax-driven algorithms. As such, they can benefit from
the incrementality that is inherent in the approach.

Another interesting research can be address the issue of better understand-
ing and possibly deriving a taxonomy of different approaches to incrementality,
clearly identifying the benefits and pitfalls, and clarifying where the different
approach overlap and how they can be combined.

Finally, we would like to remark that the all the approaches we discussed in
this paper date back to seminal theoretical work that was done in the 1970s. They
can provide now mature results to solve practical problems that are becoming
crucial due to continuous evolution and runtime adaptation.

Acknowledgments. Many contributed to shaping these ideas and provided
useful comments on the initial draft. I would like to thank, in particular, Dino
Mandrioli, Raffaela Mirandola, Domenico Bianculli, Giordano Tamburrelli and
Antonio Filieri. The participants in the Monterey workshop provided comments
and engaged me in very useful discussions that will guide my future work. The
anonymous reviewers also provided very useful comments.

References

1. Alves, A., Arkin, A., Askary, S., Bloch, B., Curbera, F., Goland, Y., Kartha, N.,
Sterling, König, D., Mehta, V., Thatte, S., van der Rijn, D., Yendluri, P., Yiu, A.:
Web services business process execution language version 2.0. OASIS Committee
Draft (May 2006)

2. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: Model-checking algorithms
for continuous-time markov chains. IEEE Transactions on Software Engineering 29,
524–541 (2003)

3. Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT Press (2008)
4. Baresi, L., Ghezzi, C.: The disappearing boundary between development-time and

run-time. In: FoSER 2010, New York, USA (2010)
5. Belady, L., Lehman, M.: A model of large program development. IBM Systems

Journal (1976)
6. Bruni, R., Corradini, A., Gadducci, F., Lluch Lafuente, A., Vandin, A.: A Con-

ceptual Framework for Adaptation. In: de Lara, J., Zisman, A. (eds.) FASE 2012.
LNCS, vol. 7212, pp. 240–254. Springer, Heidelberg (2012)

7. Calinescu, R., Ghezzi, C., Kwiatkowska, M., Mirandola, R.: Self-adaptive software
needs quantitative verification at runtime. Communications of the ACM (accepted
for publication)

8. Conway, C.L., Namjoshi, K.S., Dams, D.R., Edwards, S.A.: Incremental Algorithms
for Inter-procedural Analysis of Safety Properties. In: Etessami, K., Rajamani, S.K.
(eds.) CAV 2005. LNCS, vol. 3576, pp. 449–461. Springer, Heidelberg (2005)

9. Daws, C.: Symbolic and Parametric Model Checking of Discrete-Time Markov
Chains. In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 280–294.
Springer, Heidelberg (2005)

Evolution, Adaptation, and the Quest for Incrementality 379

10. Di Nitto, E., Ghezzi, C., Metzger, A., Papazoglou, M., Pohl, K.: A journey to
highly dynamic, self-adaptive service-based applications. In: ASE (2008)

11. Distefano, S., Filieri, A., Ghezzi, C., Mirandola, R.: A compositional method for
reliability analysis of workflows affected by multiple failure modes. In: Proceedings
of the 14th International ACM Sigsoft Symposium on Component Based Software
Engineering, CBSE 2011, pp. 149–158. ACM, New York (2011)

12. Ershov, A.: On the partial computation principle. Information Processing Letters
(1977)

13. Filieri, A., Ghezzi, C., Mandrioli, D.: Sidecar: Syntax-driven incremental composi-
tional verification (unpublished internal report, 2012)

14. Filieri, A., Ghezzi, C., Tamburrelli, G.: Run-time efficient probabilistic model
checking. In: Proceedings of the 33rd International Conference on Software En-
gineering (2011)

15. Ghezzi, C., Mandrioli, D.: Incremental parsing. ACM Transactions on Program-
ming Languages and Systems (1979)

16. Ghezzi, C., Mandrioli, D.: Augmenting parsers to support incrementality. Journal
of the ACM (1980)

17. Ghezzi, C., Tamburrelli, G.: Reasoning on non-functional requirements for inte-
grated services. In: RE 2009. Proceedings of the International Conference on Re-
quirements Engineering (2009)

18. Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic Reachability for Paramet-
ric Markov Models. In: Păsăreanu, C.S. (ed.) Model Checking Software. LNCS,
vol. 5578, pp. 88–106. Springer, Heidelberg (2009)

19. Henzinger, T.A., Jhala, R., Majumdar, R., Sanvido, M.A.A.: Extreme Model
Checking. In: Dershowitz, N. (ed.) Verification: Theory and Practice. LNCS,
vol. 2772, pp. 332–358. Springer, Heidelberg (2004)

20. Jackson, M., Zave, P.: Deriving specifications from requirements: An example. In:
ICSE 1995, p. 1005 (1995)

21. Jalili, F.: A general incremental evaluator for attribute grammars. Science of Com-
puter Programming (1985)

22. Jones, C.: Tentative steps toward a development method for interfering programs.
ACM Transactions on Programming Languages and Systems (1983)

23. Katoen, J.-P., Khattri, M., Zapreev, I.S.: A Markov reward model checker. In:
QEST, pp. 243–244. IEEE Computer Society, Los Alamos (2005)

24. Krishnamurthi, S., Fisler, K.: Foundations of incremental aspect model-checking.
ACM Trans. Softw. Eng. Methodol. 16(2) (2007)

25. Kwiatkowska, M., Norman, G., Parker, D.: Prism 2.0: a tool for probabilistic model
checking. In: Proceedings. First International Conference on the Quantitative Eval-
uation of Systems, QEST 2004, pp. 322–323 (2004)

26. Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Assume-Guarantee Verifica-
tion for Probabilistic Systems. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010.
LNCS, vol. 6015, pp. 23–37. Springer, Heidelberg (2010)

27. Lehman, M.: Life cycles, and laws of software evolution. Proceedings of the IEEE
(1980)

28. Parnas, D.: On the criteria to be used in decomposing systems into modules. Com-
munications of the ACM (1972)

29. Rushby, J.: An Overview of Formal Verification for the Time-Triggered Architec-
ture. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT 2002. LNCS, vol. 2469, pp.
83–105. Springer, Heidelberg (2002)

30. Zave, P., Jackson, M.: Four dark corners of requirements engineering. ACM Trans.
Softw. Eng. Methodology (1997)

Independent Implementability of Viewpoints

Thomas A. Henzinger1,� and Dejan Ničković2

1 IST Austria, Klosterneuburg, Austria
2 AIT Austrian Institute of Technology, Vienna, Austria

Abstract. Interface theories provide a formal framework for component-
based development of software and hardware which supports the in-
cremental design of systems and the independent implementability of
components. These capabilities are ensured through mathematical prop-
erties of the parallel composition operator and the refinement relation
for components. More recently, a conjunction operation was added to
interface theories in order to provide support for handling multiple view-
points, requirements engineering, and component reuse. Unfortunately,
the conjunction operator does not allow independent implementability
in general.

In this paper, we study conditions that need to be imposed on in-
terface models in order to enforce independent implementability with
respect to conjunction. We focus on multiple viewpoint specifications
and propose a new compatibility criterion between two interfaces, which
we call orthogonality. We show that orthogonal interfaces can be refined
separately, while preserving both orthogonality and composability with
other interfaces. We illustrate the independent implementability of dif-
ferent viewpoints with a FIFO buffer example.

1 Introduction

Component-based design is a common design methodology, where complex sys-
tems are developed by assembling individual components. It usually involves a
combination of bottom-up and top-down design techniques. In bottom-up design,
the designer assembles the overall system by integrating already available com-
ponents. Top-down design starts from the specification of the overall system that
is decomposed and refined into requirements for the subsequent design stages.

Interface theories [6] were developed as a formal framework that supports both
bottom-up and top-down approaches in component-based design. An interface
is an abstract specification that describes the interaction of a component with
its environment. In particular, an interface captures both the assumptions that
the component makes about its environment, and the guarantees that the com-
ponent provides when used in the intended design context. In order to support
bottom-up design, interface theories provide a composition operator that satisfies

� This work was supported in part by the ERC Advanced Grant QUAREM (Quanti-
tative Reactive Modeling) and by the FWF National Research Network RISE (Rig-
orous Systems Engineering).

R. Calinescu and D. Garlan (Eds.): Monterey Workshop 2012, LNCS 7539, pp. 380–395, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Independent Implementability of Viewpoints 381

the incremental design property. Two interfaces are compatible for composition if
their port types match and there exists a design context in which they can inter-
act without violating their mutual guarantees. Incremental design requires the
possibility of checking the compatibility of two interfaces and composing them,
without considering the precise design context in which the composition will be
used. The composition operator is both associative and commutative, thus ensur-
ing that compatible interfaces can be developed independently and composed in
any order. In top-down design, the notion of refinement plays a central role. This
design flow starts with a system-level interface that is iteratively decomposed
and refined into sub-system interfaces, until implementations of respective com-
ponents are obtained. Top-down design, illustrated in Figure 1, is subject to the
independent implementability property, that requires the possibility of refining
compatible interfaces separately, while still maintaining compatibility between
them.

M

M1 M2

M1

M11

M12

M13

M2

M21 M22

M11

M111 M112

Fig. 1. Top-down design

The properties of the composition operator and the refinement relation, pro-
vide necessary basic support for bottom-up and top-level design in interface
theories. However, composition alone does not cover all the aspects that are
encountered in component-based design, such as:

1. Specification of component’s multiple viewpoints, where each viewpoint is
modeled as an interface, and specifies a particular (behavioral, timing, power
consumption, etc.) aspect of the component;

2. Requirement engineering, by formal modeling of requirement documents that
consist of a conjunction of individual requirements;

3. Component reuse in different parts of a design.

382 T.A. Henzinger and D. Ničković

In order to provide additional support for the above aspects of component based
design, the conjunction operator was introduced in [8], in the context of stateless
and Moore interfaces [4]. The conjunction is a partial function defined on pairs
of interfaces and is the most general refinement of individual interfaces, i.e. the
greatest lower bound in the refinement lattice on interfaces. The conjunction
between two interfaces is defined if they are consistent1, i.e. if their input vari-
ables do not overlap with the output variables and the output guarantees do
not contradict each other. The conjunction operator was subsequently added to
modal interfaces [10], assume/guarantee contracts [2] and synchronous relational
interfaces [12]. Top-down design with conjunction is illustrated in Figure 2 in
the context of multiple viewpoints and component reuse, where components can
be reused in different parts of a design, without being restricted to be trees of
components, but they can also be directed acyclic graphs.

Functional
Specification

Timing
Specification

Power
Specification

(a) (b)

M1 M2 M3

M1 ∧M2 ∧M3

M

M1 M2

M1

M11

M12

M13

M2

M21 M22

M11

M111 M112

M112 ∧M22

Fig. 2. Top-down design with conjunction for: (a) component reuse, and (b) multiple
viewpoints

The conjunction of specifications plays an important role in top-down de-
sign. A natural requirement for the conjunction operator would be to support
independent implementability and allow separate stepwise refinement of indi-
vidual interfaces. Unfortunately, conjunction does not satisfy the independent
implementability property, in general. We illustrate this point with the following
example.

Example 1. Let M , M ′ and N be three stateless interfaces shown in Figure 3.
The input variables of M and N do not overlap with their respective output
variables. Furthermore, the output guarantees of M and N do not contradict,
i.e. there always exists an output (y = 2), such that both the guarantees of M

1 In [8], consistency is called shared refinability.

Independent Implementability of Viewpoints 383

andN are satisfied. It follows that M and N are consistent. Moreover,M ′ refines
M because the two interfaces accept the same inputs and the output guarantee of
M ′ implies the output guarantee of M . However, M ′ and N are not consistent,
because the conjunction of their output guarantees is unsatisfiable, hence the
conjunction of M ′ and N is not defined. It follows that M and N cannot be
refined independently, given that the consistency property is not preserved by
refinement.

M :

⎧⎪⎪⎨
⎪⎪⎩

var:

{
in: x : B

out: y : N

A: True

G: y ≤ 2

M ′ :

⎧⎪⎪⎨
⎪⎪⎩

var:

{
in: x : B

out: y : N

A: True

G: y < 2

N :

⎧⎪⎪⎨
⎪⎪⎩

var:

{
in: x : B

out: y : N

A: True

G: y ≥ 2

Fig. 3. Single-state interfaces M , M ′ and N : M and N are consistent, M ′ refines M ,
but M ′ and N are not consistent

In this paper, we study sufficient conditions that need to be imposed on
stateless and Moore interfaces, in order to guarantee their independent imple-
mentability with respect to the conjunction operator. We focus in particular on
the context where conjunction is used to combine multiple viewpoints of the
same component. Independent implementability of viewpoints is a highly desir-
able requirement of an interface theory, because different aspects of a component
are often specified and developed by different design teams, and are not effec-
tively combined until a late stage in the design process. We first observe that
different viewpoints of a component usually specify non-overlapping aspects, and
the guarantees that are provided by individual viewpoints are rarely conflicting.
It follows that the notion of consistency is not well adapted to conjunction of
viewpoints. We instead propose a different criterion, that we call orthogonality,
for conjunction of two interfaces to be defined. We say that two interfaces are or-
thogonal if their input variables do not overlap with their output variables, and
if the intersection of their output variables is empty. While this condition is not
realistic for specifying multiple requirements of the same view of a component,
we believe it is reasonable for expressing multiple view requirements. We show
that for every two interfaces that are orthogonal, they can be refined separately,
while maintaining orthogonality between them.

2 Stateless Interfaces

A stateless interface consists of a set of input and output variables, an input
assumption predicate and an output guarantee predicate.

384 T.A. Henzinger and D. Ničković

Definition 1 (Stateless interface). A stateless interface M = 〈XI , XO, ϕ, ψ〉
consists of the following components:

– XI and XO are disjoint sets of input and output variables. We define X =
XI ∪XO;

– ϕ is a predicate over XI called input assumption; and
– ψ is a predicate over XO called output guarantee.

We require the stateless interface to be well-formed, i.e. to accept at least one
input value and generate at least one output value.

2.1 Connection, Composition and Refinement

In this section, we define standard connection and parallel composition operators,
as well as the refinement relation, as in [7], and recall the incremental design
and independent implementability properties that are supported by stateless
interfaces.

A connection consists of a set of interface variable pairs and defines which
variables in an interface are interconnected after application of the connection
operator. For all pairs, the first component is an output and the second compo-
nent an input variable of the stateless interface to which the output is connected.
Formally, we have the following:

Definition 2 (Connection). A connection θ is a set of pairs (x, y), consisting
of a source variable x and a target variable y, such that for all pairs (x, y), (x′, y′)
∈ θ, if x �= x′, then y �= y′.

We denote by Sθ the set of source variables in θ, by Tθ the set of target variables
in θ, and by ρθ the predicate

∧
(x,y)∈θ(x = y).

We say that a connection θ is compatible with a stateless interface M , if the
following conditions hold: (1) the source variables in θ are all output variables of
M ; (2) the target variables in θ are all input variables in M ; and (3) when source
variables are connected to target variables, there exists a valuation of remaining
input variables in M for which the assumption ϕ of M is satisfied for all values
of output variables of M that satisfy the guarantee ψ of M .

Definition 3 (Compatibility for connection). A stateless interface M =
〈XI , XO, ϕ, ψ〉 is compatible with a connection θ if the following conditions hold:

– Sθ ⊆ XO;
– Tθ ⊆ XI ;
– the predicate ϕ̂ = ∀XO.∀Tθ.((ψ ∧ ρθ) → ϕ) is satisfiable.

Given an interface M and a connection θ such that M is compatible with θ, the
result of applying θ to M is the stateless interface Mθ = 〈X̂I , X̂O, ϕ̂, ψ̂〉, where

Independent Implementability of Viewpoints 385

– X̂I = XI\Tθ;
– X̂O = XO ∪ Tθ; and
– ψ̂ = (ψ ∧ ρθ)

Example 2. The application of a connection θ to a stateless interface M is il-
lustrated in Figure 4. In this example, θ = {(z, x)} and the predicate ϕ̂ =
(∀x, z)((z < 2∧ z = x) → (x < 3∧ y �= 0)) is satisfiable and can be simplified to
y �= 0.

M :

⎧⎪⎪⎨
⎪⎪⎩

var:

{
in: x, y : N

out: z : N

A: x < 3 ∧ y �= 0
G: z < 2

Mθ :

⎧⎪⎪⎨
⎪⎪⎩

var:

{
in: x : N

out: y, z : N

A: y �= 0
G: z < 2 ∧ x = z

Fig. 4. Stateless interfaces M and Mθ, where θ = {(z, x)}

Theorem 1 ([7]). Let M be a well-formed stateless interface and θ be a con-
nection. If M is compatible with θ, then Mθ is a well-formed stateless interface.

Parallel composition operator supports combination of compatible stateless in-
terfaces. We say that two stateless interfaces are compatible for parallel compo-
sition if (1) their output variables are disjoint; (2) the input variables of each
stateless interface are disjoint of the output variables of the other stateless in-
terface; and (3) the conjunction of their guaranteed is satisfiable.

Definition 4 (Compatibility for composition). Two stateless interfaces M =
〈XI

M , XO
M , ϕM , ψM 〉 and N = 〈XI

N , XO
N , ϕN , ψN 〉 are compatible for parallel com-

position if

– XO
M ∩XO

N = ∅;
– XI

M ∩XO
N = XI

N ∩XO
M = ∅; and

– ϕM ∧ ϕN is satisfiable.

Formally, parallel composition of two compatible stateless interfaces is defined
as follows:

Definition 5 (Parallel composition). Given two stateless interfaces M =
〈XI

M , XO
M , ϕM , ψM 〉 and N = 〈XI

N , XO
N , ϕN , ψN 〉 which are compatible for paral-

lel composition, their parallel composition is the interface M || N = 〈X̂I , X̂O, ϕ̂,

ψ̂〉, where

– X̂I = XI
M ∪XI

N ;

– X̂O = XO
M ∪XO

N ;
– ϕ̂ = (ϕM ∧ ϕN); and

– ψ̂ = (ψM ∧ ψN).

386 T.A. Henzinger and D. Ničković

Theorem 2 ([7]). Let M and N be two well-formed stateless interfaces. If M
and N are compatible for parallel composition, then M || N is a well-formed
stateless interface.

We say that a stateless interface N refines the stateless interface M if it has
more permissive assumption and more restrictive guarantees.

Definition 6 (Refinement). Given two well-formed stateless interfaces M =
〈XI

M , XO
M , ϕM , ψM 〉 and N = 〈XI

N , XO
N , ϕN , ψN 〉, we say that N refines M ,

denoted by N � M , if

– (XI
M ∪XI

N) ∩ (XO
M ∪XO

N) = ∅;
– ϕM → ϕN is valid; and
– ψN → ψM is valid.

Following definitions of refinement, compatibility for connection, connection,
compatibility for composition and parallel composition, we have that stateless
interfaces satisfy the independent implementability with respect to both connec-
tion and composition, as stated in the following theorem.

Theorem 3 ([7]). Let M and N be two well-formed stateless interfaces and θ
be a connection. If N � M and M is compatible with θ, then N is compatible
with θ and Nθ � Mθ.

Let M , N and S be three well-formed stateless interfaces such that XN∩XS ⊆
XM . If M and S are compatible for composition and N � M , then N and S are
compatible for composition and N || S � M || S.

2.2 Conjunction

The conjunction M ∧ N of two stateless interfaces M and N was introduced
in [8] as an interface meant to work in two environments based on separate
descriptions of each environment. The interface M ∧N allows inputs that satisfy
assumptions of either M or N , and provides the guarantees of both M and N . In
order to ensure that the conjunction of two interfaces is well-formed, the notion
of consistency was introduced. Two stateless interfaces are said to be consistent
if (1) the input variables do not overlap with the output variables and (2) their
output guarantees do not contradict each other.

Definition 7 (Conjunction). Given two consistent stateless interfaces M =
〈XI

M , XO
M , ϕM , ψM 〉 and N = 〈XI

N , XO
N , ϕN , ψN 〉, the conjunction of M and N

is the stateless interface M ∧N = 〈X̂I , X̂O, ϕ̂, ψ̂〉, where

– X̂I = XI
M ∪XI

N ;

– X̂O = XO
M ∪XO

N ;
– ϕ̂ = (ϕM ∨ ϕN); and

– ψ̂ = (ϕM ∧ ϕN).

Independent Implementability of Viewpoints 387

Theorem 4 ([8]). Let M and N be two well-formed stateless interfaces. If M
and N are consistent, then M ∧N is a well-formed stateless interface.

The conjunction of two stateless interfaces subsumes all behaviors of the given
interfaces, as stated in the following theorem.

Theorem 5 ([8]). Let M and N be two well-formed stateless interfaces. If M
and N are consistent, then M∧N � M and M∧N � N , and for all well-formed
stateless interfaces S, if S � M and S � N , then S � M ∧N .

Unfortunately, conjunction does not support independent implementability of
stateless interfaces, as demonstrated in Figure 3. The reason comes from the
consistency condition between two stateless interfaces, that is not preserved by
refinement. Given consistent stateless interfaces M and N , the output guaran-
tees of M and N do not conflict by definition. However, another interface M ′

that refines M may strengthen its guarantees in a way that makes the output
guarantees ofM ′ andN conflicting. Thus, stateless interfacesM ′ andN may not
be consistent. However, we observe that in the case that the conjunction opera-
tor is used to combine multiple viewpoints of the same component, the output
variables of the individual viewpoints are usually disjoint, hence their output
guarantees cannot contradict each other. In fact, the consistency between two
stateless interfaces is not preserved by refinement. Following this observation,
we propose a new condition between two stateless interfaces, that we call or-
thogonality.

Definition 8 (Orthogonality). Let M and N be two well-formed stateless
interfaces. We say that M and N are orthogonal if (XI

M ∪XI
N)∩(XO

M ∪XO
N) = ∅

and XO
M ∩XO

N = ∅.

We believe that in the context of multiple viewpoint specifications, the orthog-
onality is a realistic requirement. Note that while the output variables of two
orthogonal interfaces are disjoint, the two interfaces are interacting with each
other through common input variables. In the following lemma, we show that
orthogonal interfaces are consistent.

Lemma 1. Let M and N be two well-formed stateless interfaces. If M and N
are orthogonal, then M and N are consistent.

Proof. Assume that M and N are well-formed and orthogonal. It follows that
both ψM and ψN are satisfiable. By definition, we have that ψM is a predicate
over XO

M and ψN is a predicate over XO
N , and by assumption we have that

XO
M ∩ XO

N = ∅. It follows that there exists a valuation over XO
M ∪ XO

N that

satisfies both ψM and ψN , hence ψ̂ is also satisfiable.
��

Following Lemma 1, we are ready to state the result that establishes the inde-
pendent implementatibility property for the conjunction operator between or-
thogonal stateless interfaces.

388 T.A. Henzinger and D. Ničković

Theorem 6 (Independent implementability of conjunction). Let M , N
and S be three well-formed stateless interfaces such that XO

N ∩XS = XN ∩XO
S =

∅. If M and S are orthogonal and N � M , then N and S are orthogonal and
N ∧ S � M ∧ S.

Proof. Assume that M and S are orthogonal and N � M . By Lemma 1, M and
S are consistent, hence M ∧ S is defined.

We have by definition of a stateless interface that (1)XI
N∩XO

N = XI
S∩XO

S = ∅.
By the assumption that XO

N ∩ XS = ∅ and XN ∩ XO
S = ∅, we have that (2)

XI
N∩XO

S = XO
N∩XI

S = ∅. By (1) and (2), it follows that (XI
N∪XI

S)∩(XO
N∩XO

S) =
∅.

Furthermore, by the assumption that XO
N ∩XS = ∅, we have that XO

N ∩XO
S =

∅. It follows that N and S are orthogonal, hence by Lemma 1 consistent, and
N ∧ S is defined.

By the assumption, we have that (3) N � M and by Theorem 5, we have that
(4) N ∧S � N . By (3) and (4), we have that (5) N ∧S � M . By Theorem 5, we
have that (6) N ∧ S � S. Finally, by (5), (6) and Theorem 5, we can conclude
that N ∧ S � M ∧ S.

��

Example 3. Consider stateless interfaces M and N shown in Figure 5. The two
interfaces do not share output variables, hence they are orthogonal. Stateless
interface N ′ refines N , by constraining its guarantee predicate. It is not hard
to see that the conjunction M ∧N ′ refines M ∧N , illustrating the independent
implementability property of the conjunction operator.

M :

⎧⎪⎪⎨
⎪⎪⎩

var:

{
in: x : B

out: y : N

A: True

G: y ≤ 2

N :

⎧⎪⎪⎨
⎪⎪⎩

var:

{
in: x : B

out: z : N

A: True

G: z ≥ 0

M ∧N :

⎧⎪⎪⎨
⎪⎪⎩

var:

{
in: x : B

out: y, z : N

A: True

G: y ≥ 2 ∧ z ≥ 0

N ′ :

⎧⎪⎪⎨
⎪⎪⎩

var:

{
in: x : B

out: z : N

A: True

G: z mod 2 = 0

M ∧N ′ :

⎧⎪⎪⎨
⎪⎪⎩

var:

{
in: x : B

out: y, z : N

A: True

G: y < 2 ∧ z mod 2 = 0

Fig. 5. Stateless interfaces M , N and N ′: M and N are orthogonal, and N ′
 N ,
hence M and N ′ are orthogonal and M ∧N ′
 M ∧N

3 Moore Interfaces

In this section, we consider Moore interfaces, a synchronous interface model,
that was first introduced in [4]. Moore interfaces have internal states, that are

Independent Implementability of Viewpoints 389

decorated with assumption predicates over input variables, and guarantee pred-
icates over output variables. We consider Moore interfaces with deterministic
transition relation, where transitions are guarded by predicates over input and
output variables of the interface.

Definition 9 (Moore interface). A Moore interface M = 〈XI , XO, Q, q̂, ϕ, ψ, ρ〉
consists of the following components:

– XI and XO are disjoint sets of input and output variables. We define X =
XI ∪XO;

– Q is a finite set of locations, and q̂ ∈ Q is the initial location;
– ϕ is a labeling that associates with each location q ∈ Q an input assumption

predicate over XI;
– ψ is a labeling that associates with each location q ∈ Q an output guarantee

predicate over XO;
– ρ is a transition guard that associates with each pair of locations q, q′ ∈ Q a

predicate ρ(q, q′) over X.

Given a set X of variables, a valuation v over X is a function that assigns to
each x ∈ X , a value v(x) of the appropriate type. We denote by V [X], the set
of all valuations v over X . Given a predicate ϕ on X , we write v |= ϕ if the
valuation v satisfies ϕ.

An execution of M is a sequence q0, v0, q1, . . . , qn, vn, qn+1 of states qi ∈ Q
and valuations vi ∈ V [X] such that: (1) q0 = q̂ is the initial state of M , and (2)
vi |= ϕ(qi) ∧ ψ(qi) ∧ ρ(qi, qi+1). We say that the sequence v0, . . . , vn is the trace
of M , and that the states q0, . . . , qn+1 are reachable in M .

The Moore interfaces can in general be non-deterministic, or even block in
some executions. Thus, we consider only well-formed interfaces, where the well-
formedness criterion is defined as follows:

Definition 10 (Well-formedness). A Moore interface M = 〈XI , XO, Q,
q̂, ϕ, ψ, ρ〉 is well-formed if for all states q that are reachable in M : (1) both
ϕ(q) and ψ(q) are satisfiable; (2) (ϕ(q) ∧ ψ(q)) → ∃q′. ρ(q, q′) is valid, and (3)
((ρ(q, q′) ∧ (ρ(q, q′′))) → q′ = q′′ is valid for all q′, q′′ ∈ Q.

Well-formedness ensures that the interface is non-blocking by conditions (1) and
(2), and deterministic by (3).

3.1 Composition and Refinement

In this section, we define standard parallel composition operator and refinement
relation in the lines of [4], and recall the incremental design and independent
implementability properties that are supported by Moore interfaces.

The parallel composition is a partial function on pairs of Moore interfaces,
that is defined if the two interfaces are compatible. We say that two interfaces
are compatible if their variable types match and if there exists a design context
in which the two interfaces can interact in a way that preserves their individual
guarantees.

390 T.A. Henzinger and D. Ničković

Definition 11 (Compatibility and parallel composition). Given two Moore
interfaces M = 〈XI

M , XO
M , QM , q̂M , ϕM , ψM , ρM 〉 and N = 〈XI

N , XO
N , QN , q̂N ,

ϕN , ψN , ρN 〉, let XO = XO
M ∪ XO

N , XI = (XI
M ∪ XI

N)\XO, Q = QM × QN ,
q̂ = (q̂M , q̂N), and for all q, q′ ∈ QM and r, r′ ∈ QN , ψ(q, r) = ψM (q) ∧ ψN (r)
and ρ((q, q′), (r, r′)) = ρM (q, q′) ∧ ρN (r, r′). We say that M and N are com-
patible, if XO

M ∩ XO
N = ∅, and there exists a labeling ϕ⊗ such that for all ex-

ecutions (q0, r0), v0, . . . , vn−1, (qn, rn) of 〈XI , XO, Q, q̂, ϕ⊗, ψ, ρ〉, we have that
vi |= (ϕM (qi) ∧ ϕN (ri)) for all 0 ≤ i ≤ n.

The parallel composition P = M || N is defined if and only if M and N are
compatible, in which case P = 〈XI , XO, Q, q0, ϕ, ψ, ρ〉, where ϕ is the weakest
labeling that satisfies the above conditions.

The parallel composition operator is associative, thus supporting incremental de-
sign, i.e. ensuring that the compatible interfaces of a system can be put together
in any order.

Theorem 7 ([4]). Given three Moore interfaces M , N and S, either M ||
(N || S) and (M || N) || S are both undefined, or they are both defined and
equal.

The refinement of two Moore interfaces is defined as an alternating simulation
relation R, and we say that R is a witness for N � M .

Definition 12 (Refinement). Given two Moore interfaces M = 〈XI
M , XO

M ,
QM , q̂M , ϕM , ψM , ρM 〉 and N = 〈XI

N , XO
N , QN , q̂N , ϕN , ψN , ρN 〉, we say that N

refines M , denoted by N � M , if

1. (XI
M ∪XI

N) ∩ (XO
M ∪XO

N) = ∅, and
2. there exists a relation R ⊆ QM ×QN such that: (1) (q̂M , q̂N) ∈ R, ϕM (q) →

ϕN (r) is valid; (2) ψN (r) → ψM (q) is valid, and (3) for all q′ ∈ QM and
r′ ∈ QN , if ϕM (q)∧ψN (r)∧ρM (q, q′)∧ρN (r, r′) is satisfiable, then (q′, r′) ∈
R.

Following definitions of refinement, compatibility and composition, it follows
that Moore interfaces satisfy the independent implementability requirement, as
stated in the following theorem:

Theorem 8 ([4]). Let M , N and S be three well-formed Moore interfaces such
that XN ∩XS ⊆ XM . If M and S are compatible, and N � M , then N and S
are also compatible and N || S � M || S.

3.2 Conjunction

The conjunction M ∧N of two Moore interfaces M and N was also introduced
and defined in [8] as the weakest interface that refines both M and N , similarly
to the stateless case. In the context of a conjunction of Moore interfaces M and
N , as long as the inputs satisfy both the assumptions of M and N , the outputs
must satisfy both the guarantees of M and N . If the assumption of M (N) is

Independent Implementability of Viewpoints 391

violated, then the conjunction interface does not need anymore to satisfy the
guarantees of M (N) and jumps to a copy of N (M). The conjunction does not
allow inputs that violate both assumptions of M and N .

Definition 13 (Conjunction). Given two Moore interfaces M =
〈XI

M , XO
M , QM , q̂M , ϕM , ψM , ρM 〉 and N = 〈XI

N , XO
N , QN , q̂N , ϕN , ψN , ρN 〉, let

P be the Moore interface 〈XI , XO, Q, q̂, ϕ, ψ, ρ〉, where

– XI = XI
M ∪XI

N

– XO = XO
M ∪XO

N

– Q = (QM ×QN) ∪QM ∪QN

– q̂ = (q̂M , q̂N)
– ϕ and ψ are defined for all q ∈ QM and r ∈ QN , by

ϕ(q, r) = (ϕM (q) ∨ ϕN (r)) ψ(q, r) = (ψM (q) ∧ ψN (r))
ϕ(q) = ϕM (q) ψ(q) = ψM (q)
ϕ(r) = ϕN (r) ψ(r) = ψN (r)

– ρ is defined for all q, q′ ∈ QM and r, r′ ∈ QN , by

ρ((q, r), (q′, r′)) = (ϕM (q) ∧ ϕN (r) ∧ ρM (q, q′) ∧ ρN (r, r′))
ρ((q, r), q′) = (ϕM (q) ∧ ¬ϕN (r) ∧ ρM (q, q′))
ρ((q, r), r′) = (¬ϕM (q) ∧ ϕN (r) ∧ ρN (r, r′))
ρ(q, q′) = ρM (q, q′)
ρ(r, r′) = ρN (r, r′)
ρ(q, (q′, r′)) = ρ(r, (q′, r′)) = ⊥

We say that M and N are consistent if: (1) XI ∩ XO = ∅, and (2) ψ(q) is
satisfiable for all states q that are reachable in M ∧N .

When M and N are consistent, the conjunction M ∧ N is the well-formed
Moore interface P .

Theorem 9 ([8]). Let M and N be two well-formed Moore interfaces. If M and
N are consistent, then M ∧ N � M and M ∧ N � N , and for all well-formed
Moore interfaces S, if S � M and S � N , then S � M ∧N .

In Section 1, we have seen that the conjunction operator does not support inde-
pendent implementability in general, and hence similarly to the stateless inter-
face case, we introduce the same orthogonality condition for Moore interfaces.

Definition 14 (Orthogonality). Let M and N be two well-formed Moore in-
terfaces. We say that M and N are orthogonal, if (XI

M ∪XI
N)∩ (XO

M ∪XO
N) = ∅

and XO
M ∩XO

N = ∅.

In the following lemma, we show that two orthogonal Moore interfaces are also
consistent:

Lemma 2. Let M and N be two well-formed Moore interfaces. If M and N are
orthogonal, then M and N are consistent.

392 T.A. Henzinger and D. Ničković

N

M

enq ∨ deq True enq ∨ deq

True enq ∧ deq

cnt = 0 cnt = 1 cnt = 2

pc = 0 pc ≤ 5

enq = deq enq = deq enq = deq

enq ∧ deq enq ∧ deq

enq ∧ deq enq ∧ deq

enq ∧ deq

enq ∨ deq

enq ∧ deq

Fig. 6. FIFO buffer - functional specification M and functional/power consumption
specification N

Proof. The proof is identical to the one of Lemma 1.
��

Following Lemma 2, we are ready to state the result that establishes the indepen-
dent implementability property for the conjunction operator between orthogonal
Moore interfaces.

Theorem 10 (Independent implementability of conjunction). Let M ,
N and S be three well-formed interfaces such that XO

N ∩ XS = XN ∩ XO
S = ∅.

If M and S are orthogonal and N � M , then N and S are orthogonal and
N ∧ S � M ∧ S.

Proof. The proof follows the same line as the proof of Theorem 6. ��

4 FIFO Buffer Example

We illustrate independent implementability of viewpoints with a FIFO buffer
example. The FIFO buffer specification consists of two interfaces, M and N
that describe two different aspects of the buffer. These two specifications are
extensions of the example presented in [8], and are depicted in Figure 6.

The interfaceM specifies a buffer of size 2.M has two Boolean input variables
enq and deq, that model the enqueue and dequeue operations and one integer
variable cnt that gives the current number of items that are stored in the buffer.
The assumption (guarantee) predicates are depicted in the upper (lower) part
of locations, and transitions are labeled by their guards. Initially, the buffer is
empty, hence cnt = 0. Every exclusive enqueue (dequeue) operation increases
(decreases) the cnt variable by one. However, in the initial state, the buffer is
not allowed to dequeue, and in the state where the buffer is full (cnt = 2), the

Independent Implementability of Viewpoints 393

enq ∨ deq

True

enq ∨ deqTrueenq ∨ deq

T enq ∧ deq

True

enq ∨ deqTrue

True

cnt = 2

pc = 0 pc ≤ 5

cnt = 0 cnt = 1

pc = 0 pc = 0 pc = 0
cnt = 1∧ cnt = 2∧

cnt = 0 cnt = 1 cnt = 2

cnt = 0∧

pc ≤ 5 pc ≤ 5 pc ≤ 5

enq ∧ deq enq ∧ deq

enq ∧ deq enq ∧ deq

enq = deq enq = deq enq = deq

enq ∧ deq

enq ∧ deq enq ∧ deq

enq ∧ deq enq ∧ deq

enq ∧ deq enq ∧ deq enq ∧ deq

enq ∧ deqenq ∧ deq

enq ∨ deq

enq ∧ deq

enq ∧ deqenq ∧ deq enq ∧ deq enq ∧ deq

enq ∧ deq enq ∧ deq

enq ∧ deq enq ∧ deq

enq ∧ deq

enq ∧ deq

enq ∧ deq

enq ∧ deq

enq ∧ deq

enq ∧ deq enq ∧ deq

enq ∧ deqenq ∧ deq

Fig. 7. FIFO buffer - conjunction M ∧N

buffer is not allowed to enqueue new items. Note that simultaneous enqueue and
dequeue operations are allowed, but have no effect.

Interface N specifies a power consumption and another behavioral aspect
of a FIFO buffer. It has the same input variables as N (enq and deq), and
an integer output variable pc that models the power consumption of a buffer.
This interface forbids two consecutive enqueue or dequeue operations to happen.
Additionally, it specifies the power consumption needed to process enqueue and
dequeue requests. We can see that the absence of enqueue/dequeue requests
results in no power consumption. On the other hand, any combination of the
presence of enqueue and dequeue operations is bounded by 5 power units.

The interfaces M and N are naturally combined by the conjunction operator.
The two interfaces are consistent, hence their conjunction M ∧N is defined and
is shown in Figure 7. To obtain the conjunction M ∧ N , we need additional
transitions leaving the dashed line box when the assumptions of M (N) are
violated, and from then on only assumptions and guarantees of N (M) need to
be satisfied.

394 T.A. Henzinger and D. Ničković

N ′

M ′

enq ∨ deq True enq ∨ deqTrue

True

enq ∧ deq

enq ∧ deq

cnt = 0 cnt = 1 cnt = 2 cnt = 3

pc = 0

pc = 2

pc ≤ 4

enq = deq

enq ∧ deq enq ∧ deq

enq ∧ deq enq ∧ deq enq ∧ deq

enq ∧ deq

enq = deq enq = deqenq = deq

enq ∧ deq

enq ∧ deq

enq ∧ deq

enq ∧ deq

enq ⊕ deq

Fig. 8. FIFO buffer - functional specification M ′ and functional/power consumption
specification N ′ such that M ′
 M and N ′
 N

.

Interfaces M and N may be under-specified for many applications. For ex-
ample, a designer may need to use a buffer that can store more than two items.
Moreover, the interface N does not distinguish between the power consumption
of enqueue and dequeue operations, that may have different resource require-
ments to be processed. Hence, M and N may need to be refined. Refining the
requirements directly on the conjunction M ∧N can be highly impractical, given
the relative complexity of M ∧N with respect to M and N . This can be appre-
ciated by comparing Figures 6 and 7.

In this example, interfaces M and N are not only consistent, but also orthog-
onal. In fact, their output variables are disjoint, that is the number of items
in the buffer does not depend on its power consumption, and vice versa. The
orthogonality of M and N allows us to postpone taking an explicit conjunction
of M and N , and to refine them separately and independently. In Figure 8, we
show two interfaces, M ′ and N ′, where M ′ refines the interface M , and N ′ re-
fines the interface N . M ′ specifies a buffer that can store up to three elements.
It provides the same guarantees as M , while the number of items in the buffer is
bounded by two, but is also able to process an additional enqueue request and
store a maximum of three items.

On the other hand, the interface N ′ refines the power consumption guar-
antees, by distinguishing between the presence of an exclusive enqueue or de-
queue request, that consumes exactly 2 power units, and a simultaneous en-
queue/dequeue request that requires up to 4 power units. We leave to the reader
the exercise to checking that M ′ and N ′ are indeed orthogonal and that M ′∧N ′

refines M ∧N .

Independent Implementability of Viewpoints 395

5 Conclusion

In this paper, we proposed orthogonality as a new condition between two Moore
interfaces that ensures the independent implementability with respect to the
conjunction operator. We believe that the orthogonality is the right notion when
considering conjunction of multiple viewpoints. We demonstrated the stepwise
refinement property of orthogonal interfaces with an example of a FIFO buffer
that combines behavioral and power consumption specifications.

The power consumption specification of the FIFO buffer corresponds to a
pure threshold resource interface in [5], but it was encoded as a Moore interface
in our example. We believe that the next important step would be to study
conjunction of fully heterogeneous interface models, a problem closely related to
heterogeneous composition [1,3]. In particular, we are interested in models where
the non-functional properties are expressed as Büchi threshold, pure energy and
reward energy interfaces from [5] or real-time interfaces [9, 11].

References

1. Benveniste, A., Caillaud, B., Carloni, L.P., Caspi, P., Sangiovanni-Vincentelli, A.L.:
Composing heterogeneous reactive systems. ACM Trans. Embed. Comput. Syst. 7,
43:1–43:36 (2008)

2. Benveniste, A., Caillaud, B., Ferrari, A., Mangeruca, L., Passerone, R., Sofronis,
C.: Multiple Viewpoint Contract-Based Specification and Design. In: de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2007. LNCS, vol. 5382,
pp. 200–225. Springer, Heidelberg (2008)

3. Caspi, P., Benveniste, A., Lublinerman, R., Tripakis, S.: Actors without Directors:
A Kahnian View of Heterogeneous Systems. In: Majumdar, R., Tabuada, P. (eds.)
HSCC 2009. LNCS, vol. 5469, pp. 46–60. Springer, Heidelberg (2009)

4. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Mang, F.Y.C.: Synchronous and
Bidirectional Component Interfaces. In: Brinksma, E., Larsen, K.G. (eds.) CAV
2002. LNCS, vol. 2404, pp. 414–427. Springer, Heidelberg (2002)

5. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource Interfaces.
In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 117–133. Springer,
Heidelberg (2003)

6. de Alfaro, L., Henzinger, T.A.: Interface automata. In: ESEC / SIGSOFT FSE,
pp. 109–120 (2001)

7. de Alfaro, L., Henzinger, T.A.: Interface Theories for Component-Based Design.
In: Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT 2001. LNCS, vol. 2211, pp.
148–165. Springer, Heidelberg (2001)

8. Doyen, L., Henzinger, T.A., Jobstmann, B., Petrov, T.: Interface theories with
component reuse. In: EMSOFT, pp. 79–88 (2008)

9. Henzinger, T.A., Matic, S.: An interface algebra for real-time components. In: IEEE
Real Time Technology and Applications Symposium, pp. 253–266 (2006)

10. Raclet, J.-B., Badouel, E., Benveniste, A., Caillaud, B., Legay, A., Passerone, R.:
A modal interface theory for component-based design. Fundam. Inform. 108(1-2),
119–149 (2011)

11. Thiele, L., Wandeler, E., Stoimenov, N.: Real-time interfaces for composing real-
time systems. In: EMSOFT, pp. 34–43 (2006)

12. Tripakis, S., Lickly, B., Henzinger, T.A., Lee, E.A.: A theory of synchronous rela-
tional interfaces. ACM Trans. Program. Lang. Syst. 33(4), 14 (2011)

Understanding Specification Languages

through Their Model Theory

Ethan K. Jackson and Wolfram Schulte

Microsoft Research, Redmond, WA
{ejackson,schulte}@microsoft.com

Abstract. This paper studies the design of specification languages
through their model theory. We show how language constructs and spec-
ification idioms are deeply rooted in the underlying model theory. We
also show that some problems are fundamentally difficult to specify due
to the underlying foundation of the language. The languages we study
are Alloy, Maude, and FORMULA. FORMULA attempts to handle a
large class of specifications problems while utilizing constraint solvers
for formal analysis.

1 Introduction

Formal specification languages can be understood through their model theory.
The models relation |=Th pairs a structure with a formula whenever the structure
gives a valid interpretation to the formula under the theory Th. Consider the
theory of Boolean algebra without quantifiers (i.e. SAT). The structures are
functions from variables to Booleans and the formulas are propositions over
Boolean variables:

ν(x) �→ true, ν(y) �→ false |=SAT x ∧ ¬y.

The models relation also suggests the various types of formal reasoning. Model
checking is to decide if M |=Th ϕ, given M and ϕ. Model finding is to generate
a model M given a formula ϕ such that M |=Th ϕ.

One might imagine that the details of |=Th are far removed from the speci-
fications users write. In this paper we show how the underlying model theory
impacts the language level as much as it impacts the formal analysis:

– The structures determine what can be represented.
– The formulas determine the properties that can be expressed.
– The analyses (model checking / finding) determine the questions that can

be asked.

In practice, users must have a deep understanding of the shapes of models and
formulas in order to write specifications. Many standard concepts such as func-
tions, relations, trees, and expressions require non-trivial encodings leading to
various language idioms and specification patterns.

R. Calinescu and D. Garlan (Eds.): Monterey Workshop 2012, LNCS 7539, pp. 396–415, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Understanding Specification Languages through Their Model Theory 397

The goal of this paper is to illustrate how the model theory impacts com-
mon encoding tasks and language idioms. First, we review two well-known and
dissimilar specification languages: Alloy[1] and Maude[2]. In Alloy models are
finite relations over a universe of constants and the theory is first-order logic over
relational algebra FOL(RA). In Maude models are terms and theories are user-
defined equational theories. In Alloy it is simple to represent relational structures
and search problems; in Maude it is simple to represent recursive structures and
language semantics.

Finally, we discuss the approach taken by the FORMULA language, which
attempts to combine the benefits of both styles [3]. In formula models are
finite sets of well-typed terms and the theory is a subclass of fixpoint logic
(FPL). The goal of formula is to easily represent heterogeneous abstractions
consisting of both:

– Relational structures such as finite graphs, system configurations and sets of
objects in a heap;

– Recursive structures such as finite trees, instances of algebraic data types
and fragments of expression languages.

This paper explores the impact of model theory on specification languages through
two examples encoded in three languages. The running examples are the homo-
morphism pair problem and a Boolean expression problem. The homomorphism
pair problem is to specify pairs of homomorphically-related finite graphs. The
Boolean expression problem is to specify the evaluation semantics of a small
Boolean expression language using a definition for disjunction based on De Mor-
gan’s law. Each example presents its own challenges. Section 2 reviews the Alloy
specifications, Section 3 presents the Maude specifications, and Section 4 illus-
trates the formula specifications. Finally, we conclude in Section 6.

2 Finite Relations and Alloy

There are variety of formal specification languages based on finite relations,
including Alloy and Datalog languages [4,5,6]. These languages gives rise to
signatures with the following shape:

ΣFR
·
= 〈U,R1, . . . , Rk〉,

where U is a (possibly infinite) set of constants and each Ri is a finite n-ary
relation over U . In symbols, Ri ⊆ Un and ∃m ∈ N. |Ri| = m. Alloy specifications
place constraints on the relations. A constraint ϕ is a first-order formula where all
variables are quantified over relations. The formulas can also contain relational
operators such as reflexive and transitive closure. Alloy’s main analysis engine
is a finite model finder ; it searches for interpretations of the relations satisfying
constraints [7]. We write x for a vector of variables (x1, . . . , xn) and R(x) for
x ∈ R. We also write R(), R(,) etc... to indicate a unary, binary, etc... relation.

398 E.K. Jackson and W. Schulte

2.1 Finite Functions

A finite function is encoded by introducing unary relations for the (co-) domain,
and then constraining the relation so it behaves like a function. Given unary
relations Dom1, . . . , Domm and Cod1, . . . , Codn, then R encodes a function
from

∏
Domi to

∏
Codj if arity(R) = m + n, it is left-total and right-unique.

If R is also left-unique it encodes an injection. If it is also right-total it encodes
a surjection. Below are the first-order constraints for these properties.

(Left-total) ∀x ∈
∏

Domi. ∃y ∈
∏

Codj . R(x,y).
(Right-total) ∀y ∈

∏
Codj . ∃x ∈

∏
Domi. R(x,y).

(Left-unique) ∀x,x′ ∈
∏

Domi. ∀y ∈
∏

Codj . R(x,y) ∧R(x′,y) ⇒ x = x′.
(Right-unique) ∀x ∈

∏
Domi. ∀y,y′ ∈

∏
Codj . R(x,y) ∧R(x,y′) ⇒ y = y′.

Alloy’s model theory uses finite relations for structures, which impacts the lan-
guage. There is no function application and function declarations are shorthands
for the previous constraints. The language simulates classes, objects and field
accessors through finite relations, constraints and the relational join operator.
For example, the Alloy specification in Figure 1 describes a data structure called
HomPair ; each instance must contain a homomorphic pair of graphs (G,H). The
sig block simulates a class definition by introducing a unary relation HomPair().
The elements of HomPair correspond to the unique IDs of HomPair instances.
Intuitively, HomPair instances contain other relations, such as the unary vertex
relation Gv. Containment is simulated by increasing the arity of contained rela-
tions. For example, the vertex set Gv corresponds to the binary relation Gv(,)
where Gv(x, y) holds if the HomPair instance with ID x has a vertex labeled y in
its set Gv. The arrow operator −> is relational product; hence the edge relations
Ge and He are subsets of Gv × Gv and Hv × Hv. The homomorphism witness
Hom (Line 7) uses the cardinality constraint one to indicate it is functional. This
introduces the left-total and right-unique axioms (appropriately adjusted for the
hidden HomPair ID argument).

Finite relations impact how constraints are written in Alloy. The axiom that
every instance of HomPair contains a pair of homomorphic graphs is shown in

1. sig HomPair
2. {
3. Gv : Int,
4. Ge : Gv −> Gv,
5. Hv : Int,
6. He : Hv −> Hv,
7. Hom : Gv −> one Hv
8. }

9. fact {
10. all p : HomPair,
11. u, v : p.Gv, u’, v’ : p.Hv |
12. u −> v in *(p.Ge) and
13. u −> u’ in p.Hom and
14. v −> v’ in p.Hom =>
15. u’ −> v’ in *(p.He) }
16. }

Fig. 1. Specifying homomorphic graphs using Alloy

Understanding Specification Languages through Their Model Theory 399

Lines 9 - 16. Variables are quantified over relations; field accesses are simulated
by relational join. For instance, the notation u, v: p.Gv uses the relational join
operator ‘.’ to construct a unary relation p.GV () satisfying p.Gv(y) ⇔ Gv(p, y).
The operator ∗R generates the reflexive closure of a binary relation R. Figure 2
shows the overall signature of the HomPair specification and a model satisfying
constraints.

ΣHomPair
·
= (U, HomPair(), Gv(,), Hv(,), Ge(, ,), He(, ,), Hom(, ,)).

HomPair
·
= {c}. Hom

·
= {(c, 1, 3), (c, 2, 3)}.

Gv
·
= {(c, 1), (c, 2)}. Ge

·
= {(c, 1, 2)}.

Hv
·
= {(c, 3)}. He

·
= {(c, 3, 3)}.

Fig. 2. A model of the HomPair specification

2.2 Recursive Structures

Finite relations easily encode class-like data types; relational joins simulate field
accesses naturally. However, some finite structures are not encoded so easily.
Consider the language of Boolean expressions in a grammar-like form:

e := x | not(e) | or(e, e) | and(e, e).

Boolean expressions are directed acyclic graphs (DAGs) so they are representable.
Rather, the difficulty is operating on DAGs, which often requires recursive def-
initions outside of FOL(RA). Consider this constraint on the eval() function:

∀e, e′. eval(or(e, e′)) = eval(not(and(not(e), not(e′)))). (1)

It constrains the eval() function to evaluate or(e, e′) in the same way as it
evaluates the negation of De Morgan applied to not(or(e, e′)).

1. abstract sig Expr {}
2. sig And extends Expr
3. { arg1: Expr, arg2: Expr }
4. sig Or extends Expr
5. { arg1: Expr, arg2: Expr }
6. sig Not extends Expr
7. { arg: Expr }
8. sig Var extends Expr
9. { name: Int }

10. one sig Eval {
11. eval: Expr −> one Bool
12. }{
13. all o : Or, n, n’, n” : Not, a : And |
14. some b : Bool |
15. (n.arg = a and a.arg1 = n’ and
16. a.arg2 = n” and n’.arg = o.arg1 and
17. n”.arg = o.arg2) =>
18. (o −> b in eval <=> n −> b in eval) }

19. fact {
20. not (some e: Expr | e −> e in
21. ˆ(And <: arg1 + Or <: arg1 + And <: arg2 + Or <: arg2 + Not <: arg))
22. }

Fig. 3. Partial specification of an expression language using Alloy

400 E.K. Jackson and W. Schulte

Figure 3 shows one attempt to embed the language of Boolean expressions
into finite relations. It uses the signatures And, Or, Not, and Var to encode
expressions. Lines 19-22 encode acyclicity of expressions. This is accomplished
by first forming binary restrictions of the expression relations. For instance, And
<: arg1 is a relation R satisfying R(x, y) ⇔ arg1(x, y)∧And(x). An expression is
cyclic if there is some sub-expression e where (e, e) is in the transitive closure (R̂)
of the union of these binary restrictions. Lines 12-18 attempt to encode Equation
1, but the attempt is flawed. In particular, the implication is activated only when
the expressions hold for the same objects (e.g. n’.arg = o.arg1). Instead, the LHS
should be true whenever both fields contain structurally equal subexpressions.
Whether or not structural equality (∼) is definable depends on the particular
specification language. In the case of Alloy, structural equality is outside of the
scope of the language, which permits only first-order logic over relations and
several built-in relational operators. Equation 1 cannot be encoded, but we only
provide an semi-formal argument that this is the case.

The transitive closure operator can be viewed as a built-in recursive function
on binary relations, as follows:

Ftrans(R)
·
=

{
R if trans(R) ⊆ R,
Ftrans(R ∪ trans(R)) otherwise.

(2)

where trans(R)
·
= {(x, y) | R(x, y)∧R(y, z)}. The question is whether structural

equality can be rephrased as a recursive function in the form of Equation 2. Con-
sider the problem of defining structural equality between binary trees encoded
with binary relations lft(,) and rt(,). If lft(x, y) holds then the node named x has
left child y, for x ∈ node and y ∈ node∪ {nil}. The rt relation has an analogous
interpretation for the right children. The first step towards an encoding is to
rephrase the problem on a single relation. This is accomplished by tagging the
relations and combining them into a single ternary relation:

R0
·
= (l → lft) ∪ (r → rt) ∪ {(∼, nil, nil)}

for constants l, r, and ∼. Structural equality is computed by the following re-
cursive function:

F∼(R)
·
=

{
R if trans∼(R) ⊆ R,
F∼(R ∪ trans∼(R)) otherwise.

(3)

where:

trans∼(R)
·
=

⎧⎨
⎩(∼, x, x′)

∣∣∣∣∣∣
R(l, x, y) ∧R(r, x, z)∧
R(l, x′, y′) ∧R(r, x′, z′)∧
R(∼, y, y′) ∧R(∼, z, z′)

⎫⎬
⎭ (4)

Although Equations 2 and 3 have a similar form, structural equality cannot be
rephrased into transitive closure unless trans∼ can be rephrased as trans over
a suitable binary relation. We claim this not possible.

Understanding Specification Languages through Their Model Theory 401

However, structural equality is definable in languages supporting fixpoint logic
(FPL) over finite relations, such as Datalog languages [8]. Figure 4 shows the
definition of structural equality in Datalog, assuming the same signature as the
Alloy specification. Structural equality can be encoded with FPL but at a cost.
First, expression languages are essentially algebraic data types (ADTs), and users
must have a full understanding of how relations simulate algebraic data types.
This is particularly true if some ADT-like relations contain IDs of object-like
relations. Second, the model finder must still work to produce IDs even though
structural equality is insensitive to their values. At the same time, there are many
isomorphic models satisfying the constraints, and it is non-trivial to avoid these
isomorphic models. In conclusion, model theory based on finite relations and
FOL(RA) or FPL significantly impacts the language-level encoding strategies
and idioms.

3 Algebraic Data Types and Maude

ADTs are useful. At the other end of the spectrum are languages based entirely
on ADTs. Most noteworthy are term rewriting systems (TRS) such as Maude.
These languages give rise to signatures with the following shape:

ΣADT
·
= 〈U,C, f1, . . . , fk, τ1, . . . , τl〉,

such that C ⊆ U is a (possibly infinite) set of constants. Each fi is an n-ary
function fi : U

n → U for n ≥ 1. The Peano axioms are implicitly assumed for
these functions:

– f(x) �= c, for all c ∈ C.
– fi(x) = fj(y) ⇔ i = j ∧ x = y.

– U =
⋃

i≥0 Ci, where C0
·
= C and Ci>0

·
=

⋃k
j=1 fj(Ci−1).

The Peano axioms yield term algebras. An element of U is called a term; all
terms can be uniquely expressed using a combination of constants and function
applications. Usual equality of terms (=) is equivalent to structural equality by
the Peano axioms. The functions fi are called data constructors and τj are called
data types. Data types are subsets of terms: τi ⊆ U ; the expressiveness of the
types depends on the specification language. With ADTs instances of expression
languages can be written without introducing object IDs. For example, a Boolean
expression is just a term:

not(and(not(true), not(var(0))))

1. ∼(id, id’) :- Var(id), Var(id’), name(id, x), name(id’, x).
2. ∼(id, id’) :- Not(id), Not(id’), arg(id, x), arg(id’, x’), ∼(x, x’).
3. ∼(id, id’) :- And(id), And(id’), arg1(id, x), arg2(id, y),
4. arg1(id’, x’), arg2(id’, y’), ∼(x, x’), ∼(y, y’).
5. ∼(id, id’) :- Or(id), Or(id’), arg1(id, x), arg2(id, y),
6. arg1(id’, x’), arg2(id’, y’), ∼(x, x’), ∼(y, y’).

Fig. 4. Defining structural equality over finite relations using Datalog

402 E.K. Jackson and W. Schulte

3.1 Equational Theories

We still need a way to write meaningful specifications over ADTs. Extend ΣADT

with a binary relation on terms called theory equality (≈). Users give semantics
to terms by a set of axioms A over theory equality and types; axioms must have
the form:

∀x. s ≈ t ⇐
∧

ϕi. ∀x. τ(s) ⇐
∧

ϕi,

where ϕi is either si ≈ ti or τi(si). The subformulas s, si and t, ti may contain
constructor applications, constants and variables. The axiom ∀x. x ≈ x is always
in A. The key result is there exists a unique least congruence relation ≈Th(A)

and least sets τ
Th(A)
1 , . . . , τ

Th(A)
l satisfying the axioms.

The axioms A can be viewed as a user-defined theory Th(A), called an equa-
tional theory. In the resulting model theory formulas have the following grammar:

formula := term ≈ term. term := var | c ∈ C | f(term), f ∈ ΣADT ,

models are functions ν from variables to terms, and the models relation is defined
as:

ν |=Th(A) s ≈ t if s[x/ν(x)] ≈Th(A) t[x/ν(x)],

where s[x/ν(x)] is the Σ-term obtained by substituting all occurrences of the
variables x in s with the Σ-terms ν(x). Maude (ignoring extensions) is a model
finder for formulas of the form x ≈ t, where t is variable-free:

x |=Th(A) x ≈ t. (5)

Finding an x equivalent to t under Th(A) is accomplished by rewriting t using
axioms until t is reduced to a term where no further rewrites are applicable.
Unlike Alloy, which uses a fixed theory, users must design their own theories so
meaningful questions can be phrased in the form of Equation 5.

3.2 Recursive Structures

Equational theories fit well with ADTs because they immediately generalize to
all subexpressions, as shown in Figure 5. Lines 2 - 8 introduce the constants True,
False, the data constructors Var, Not, And, Or, and the types Bool, Expr (called
sorts). The data constructors and constants are declared with type constraints,
e.g. Var : Nat Bool−> Expr. (The Bool value given to the Var constructor indicates
the value assigned to that variable.) Actually, type constraints are compiled into
axioms on type membership:

∀x, y. Expr(Var(x, y)) ⇐ Nat(x) ∧Bool(y).

Understanding Specification Languages through Their Model Theory 403

1. fmod Expr is
2. sort Bool Expr .
3. op True : −> Bool [ctor] .
4. op False : −> Bool [ctor] .
5. op Var : Nat Bool −> Expr .
6. op Not : Expr −> Expr .
7. op And : Expr Expr −> Expr .
8. op Or : Expr Expr −> Expr .
9. subsort Bool < Expr .
10. vars X Y : Expr .
11. vars N : Nat .

12. vars B : Bool .
13. eq And(X, X) = X .
14. eq Var(N, B) = B .
15. eq Or(X, Y) =
16. Not(And(Not(X), Not(Y))).
17. eq And(False, X) = False .
18. eq And(X, False) = False .
19. eq And(True, True) = True .
20. eq Not(True) = False .
21. eq Not(False) = True .
22. endfm

Fig. 5. Semantics of Boolean expression as an equational theory

Similarly, the subsort statement (Line 9) introduces the axiom:

∀x. Expr(x) ⇐ Bool(x).

Lines 13 - 21 introduce axioms about theory equality. For instance, Lines 15 -
16 correspond to Equation 1. It introduces the axiom:

∀x, y. Or(x, y) ≈ Not(And(Not(x), Not(y))) ⇐ Expr(x) ∧ Expr(y).

The remaining equations encode the semantics of the Boolean operators Not,
And.

Maude evaluates queries of the form x |=Th(A) x ≈ t by rewriting t according
to the axioms. Term rewriting is an operational semantics and requires more
than just equations. First, the equations must be terminating, i.e. all sequences
of rewrites must eventually terminate. For this reason, rewrites only replace
LHSs with RHSs, otherwise every equation implies a trivial sequence of non-
terminating rewrites. Second, equational theories must be confluent, i.e. every
term must reduce to the same final form regardless of the order of rewrites.
Without confluence, occasionally an equation s ≈ t might be judged as true
and occasionally it might be judged as false. (Note, these rules are relaxed for
badly-typed terms.) Below is a sequence of writes:

Or(V ar(0, T rue), False) → Not(And(Not(V ar(0, T rue)), Not(False))) →
Not(And(Not(True), Not(False))) → . . . → Not(And(False, T rue)) →
Not(False) → True.

In the case of Boolean expressions, every expression should eventually be rewrit-
ten to True / False. This intent is expressed by the annotations [ctor] on the
declarations of True, False (Lines 3 - 4). If the specifications have been written
correctly, every well-typed term should be rewritten to a final form containing
only [ctor] constants / constructors.

3.3 Relational Structures and Search

Earlier we showed that encoding ADTs into finite relations is non-trivial. Con-
versely, issues arise when axiomatizing finite relations using equational theories.

404 E.K. Jackson and W. Schulte

1. fmod Graphs is
2. sorts Edge EdgeSet Graph. subsort Edge < EdgeSet .
3. op < , > : NzNat EdgeSet−> Graph [ctor] .
4. op [,] : Nat Nat −> Edge [ctor comm] .
5. op , : EdgeSet EdgeSet −> EdgeSet [ctor assoc comm idem] .
6. op in : Edge EdgeSet −> Bool .
7. vars E : Edge . vars S : EdgeSet .
8. eq E in E = true .
9. eq E in E,S = true .
10. eq E in S = false [owise].
11. endfm

Fig. 6. Defining graphs in Maude

Consider the binary set union operator ∪, e.g. 1∪ (2∪ 3) yields the set {1, 2, 3}.
Axiomatizing ∪ requires axioms for associativity (A), commutativity (C), and
idempotence (I). However, the AC axioms are non-terminating so they cannot
be written in the standard way. Instead, Maude provides the special attributes
[assoc], [comm] and [idem] for introducing these axioms and handles them spe-
cially during rewriting.

Figure 6 shows a Maude specification for graphs. Edges are constructed by
the commutative [,] operator and edge sets are built using the ACI operator
, . (We assume every graph has at least one edge.) The in operator determines if
an edge is present in an edge set. Notice the equations for in are simple, because
the operators have been declared to be C and ACI. In Line 8, the pattern E,S is
sufficient because the AC axioms allow Maude to rewrite the edge set until E is
at the front. The shorthand [owise] expands to a conditional equation handling
the remaining cases. A graph is constructed by < , >, which takes the number
of vertices in the graph and the edge set.

Another consequence of terminating and confluent equational theories is the
difficultly of encoding search problems. Consider the NP-complete problem of
checking if there exists a homomorphism from one graph to another. We can
encode this problem into Maude by defining the operator CheckHom : Graph
Graph −> Witness. The CheckHom term will be reduced to a term representing
the homomorphism function from VG to VH , if it exists. However, the only way
to define a confluent CheckHom is via a systematic generate and test scheme.
This encoding is likely to be inefficient and it will require many axioms to imple-
ment search. (See Appendix A.) In our opinion, this shows a trade-off between
specifications as constraints over a fixed theory (Alloy) and specifications as the-
ories over a fixed constraint formula (Maude). Equational theories are a powerful
specification tool, but encoding hard search problems within equational theories
is challenging. (Maude also supports non-deterministic transition systems via
non-confluent rewriting rules. An explicit state model checker for temporal logic
is available, but this is outside the scope of our paper.)

Understanding Specification Languages through Their Model Theory 405

1. domain BoolExpr {
2. Var := new (name: Natural, val: Boolean).
3. Not := new (arg: any Expr).
4. And := new (arg1: any Expr, arg2: any Expr).
5. Or := new (arg1: any Expr, arg2: any Expr).
6. Expr := Boolean + Var + Not + And + Or.
7. sub := (exp: Expr).
8. eval := (exp: Expr, val: Boolean).

9. sub(x) :- x is Expr; sub(Not(x)).
10. sub(x), sub(y) :- sub(And(x, y)); sub(Or(x, y)).
11. sub(Not(And(Not(x), Not(y)))) :- sub(Or(x, y)).

12. eval(true, true). eval(false, false).

13. eval(e, x) :- sub(e), e = Var(, x).
14. eval(e, x) :- sub(e), eval(e’, x), e = Not(e’), y = !x.
15. eval(e, x) :- sub(e), eval(e’, x), eval(e”, y), e = And(e’, e”), z = x & y.
16. eval(e, x) :- sub(e), eval(e dm, x), e = Or(e’, e”),
17. e dm = Not(And(Not(e’), Not(e”))).
18. }.

Fig. 7. Defining Boolean expressions in formula

4 The FORMULA Approach

We now describe the hybrid approach taken by the specification language for-

mula. Like Maude, formula begins with ADTs, but instead of theory equality
it extends the signature with a single unary relation K over terms, called the
knowledge relation. Like Alloy, formula specifications are understood as con-
straints on relations; specifically as constraints on the single relation K. The
logic of formula is a class of fixpoint logic (FPL), similar to (but more general
than) Datalog. First-class ADTs and FPL allow recursive reasoning over terms,
while the knowledge relation supports direct encoding of relational structures.
Like Alloy, formula provides finite model finding so users do not have to encode
search strategies.

We now introduce the approach with an informal discussion of the Boolean
expression language encoded with formula. Figure 7 shows the relevant code.
Lines 3 - 9 are data type declarations ; they simultaneously introduce data con-
structors and data types into the specification. Ignoring the keywords new and
any, then a type declaration can have the form:

f := (l1: T1, . . ., ln: Tn)

in which case it introduces an n-ary constructor f and a data type τf . In for-

mula the corresponding data type has the same name as the constructor and
the two are distinguished by context. The pairs li: Ti give the names and types
of constructor arguments. For example, the type declaration

406 E.K. Jackson and W. Schulte

Var := new (name: Natural, val: Boolean)

gives Var two arguments called name and val that are expected to be of types
Natural and Boolean. The data type τVar contains all the Var terms conforming
to type constraints:

τVar
·
= {Var(x, y) | x ∈ N ∧ y ∈ B}.

An f -term t is said to be well-typed if t ∈ τf . Additionally, auxiliary data types
can be declared using set-theoretic union (+) as shown in Line 6. The Expr
declaration does not introduce a constructor, but introduces a new data type
τExpr that is equal to the union of other data types:

τexpr
·
= τBoolean ∪ τVar ∪ τNot ∪ τAnd ∪ τOr.

These are useful to define more complex recursive data types, as in the cases of
Not / And / Or.

4.1 Writing Constraints

The data type declarations required for the formula encoding are similar to
the Maude encoding, except for the two additional constructors sub and eval.
As with the Alloy encoding, these extra constructors are needed to axiomatize
evaluation of expressions. Alloy specifications constrain user-defined relations by
FOL(RA). formula specifications constrain the knowledge relation K through
a set of rules. For example, the rule:

sub(x) :- x is Expr.

explains that if x ∈ τExpr ∩ K, then the term sub(x) is also in K. The LHS
of a rule is called the head and the RHS is called the body. Operationally, a
formula program defines a fixpoint operator that monotonically extends K by
applying rules until K can be extended no further. The least fixpoint of this
operator identifies a unique K, which is the interpretation of the program. The
model theory is more subtle, and we shall discuss it shortly.

The intent of Lines 9-11 is to extend K with all the subexpressions appearing
within elements of K. These rules use some syntactic sugar explained in Table 1.
Unlike Maude, which simplifies away terms by rewriting, formula must saturate
K with all the subexpressions that need to be evaluated. Line 11 introduces the
extra subexpressions for evaluating Or expressions with De Morgan. Suppose K
contains the expression Or(Var(0, true), Not(Var(1, false))). Then these rules
extend K with the following terms:

sub(Or(Var(0, true), Not(Var(1, false)))),
sub(Var(0, true)), sub(Not(Var(1, false))), sub(Var(1, false))

sub(Not(And(Not(Var(0, true)), Not(Not(Var(1, false)))))),
sub(And(Not(Var(0, true)), Not(Not(Var(1, false))))),
sub(Not(Var(0, true))), sub(Not(Not(Var(1, false))))

(6)

Understanding Specification Languages through Their Model Theory 407

Table 1. Some syntactic sugar in formula programs

Syntactic sugar Example Translation

A rule with a variable called ‘ ’ h :- x = g(,). h :- x = g(xfresh, yfresh)
A rule without is h :- f(y). h :- xfresh is f, xfresh = f(y).
A rule with several heads h1, h2 :- B. h1 :- B. h2 :- B.
A rule with several bodies h :- B1; B2. h :- B1. h :- B2.

Lines 12-17 gives the rules for evaluating subexpressions. They extend K
with terms of the form eval(e, x) whenever the subexpression e is known to
evaluate to x. Line 12 contains special rules called facts, which do not contain
any constraints in the body. Facts must appear in K. In particular true always
evaluates to true and false always evaluates to false. Lines 14-15 illustrate
some built-in operators. For instance, the evaluation of Not and And utilize the
built-in operators ! and &.

4.2 Domains and Models

The logic program in Figure 7 defines a fixpoint operator; executing the logic
program computes the least fixpoint of this operator by repeatedly applying
rules starting from facts. The only facts in BoolExpr are eval(true, true) and
eval(false, false), and the least fixpoint contains exactly these two terms. One
way to evaluate more complex expressions is to extend the program with more
facts. Consider adding the fact:

Or(Var(0, true), Not(Var(1, false))).

Adding this fact produces a larger fixpoint containing the sub-terms from Equa-
tion 6 along with many eval-terms. In particular, the fixpoint contains the evalu-
ation of the previous expression: eval(Or(Var(0, true), Not(Var(1, false))), true).
Thus, instead of giving the program “input” in the traditional sense, it can be
extended with more facts to cause various computations. But the basic rules of
evaluation are fixed across all extensions.

This observation can be formalized by treating a logic program as open for
some types of facts; we call these open-world programs. A program is closed by
extending with a finite set of facts. We call such an extension a world. Once
a program is closed by a world it computes a unique least fixpoint; before this
the least fixpoint is underspecified. In formula open-world programs are placed
within domain blocks when they serve to axiomatize abstractions. A legal exten-
sion of a domain is a set of variable-free well-typed facts. The type declarations
of a domain further constrain the possible extensions. Only constructors declared
with the new keyword can appear in extended facts. In the Boolean expression
example, the sub and eval constructors are declared without new, which effec-
tively fixes their semantics, i.e. sub and eval terms can only be produced by the
domain rules.

408 E.K. Jackson and W. Schulte

1. model Expr1 of BoolExpr {
2. Or(Var(0, true), Not(Var(1, false))).
3. }

4. model Expr2 of BoolExpr {
5. Or(Var(0, false), Not(Var(1, true))).
6. }

Fig. 8. Several formula models of Boolean expressions

formula worlds are called models, which close domains. Models describe in-
stances of abstractions by listing a set of variable-free well-typed facts containing
only new-modified constructors, as shown in Figure 8. The knowledge relation
K of a model is obtained by closing the domain with model facts and computing
the least fixpoint. Notice that the models Expr1 and Expr2 assign the variables
0 and 1 in different ways. This is not contradictory, because each model defines
its own extension of the domain. Each model is an independent instance of the
Boolean expression abstraction.

4.3 Model Theory and Open-World Reasoning

The model theory needs to be adjusted to account for open-world reasoning. To
avoid confusion, we shall use the phrase world to describe extensions of programs.
Let Π be an open-world program and lfp(Π ∪ W) be the least fixpoint of the
program after it is closed by a finite set of variable-free well-typed facts W . Then
the models relation between knowledge relations and open-world programs is:

K |= Π iff there exists W s.t. K = lfp(Π ∪W). (7)

Though the full formalization of formula is outside the scope of this paper, it
is important to note that formula programs must compute a unique finite least
fixpoint for every world W . The uniqueness property is obtained by syntactic
restrictions on programs, but the finiteness property is equivalent to program
termination (hence undecidable) and must be guaranteed by the user. For the
remainder of this paper we shall assume all programs exhibit these properties.

formula is a finite model finder for open-world programs. It constructs both
K and W witnessing that K |= Π . However, unconstrained search is rarely
useful, so model finding can be further constrained with goals and partial models :

1. Goal. A goal g is rule of the form cfresh :- B. K satisfies g if cfresh ∈ K
and K |= Π ∪ g.

2. Partial Model. A partial model is a constraint on the structure of worlds.
Partial models limit search to a subset of worlds.

Model checking can be rephrased as constrained model finding by choosing an
appropriate goal g.

Consider the NP-complete problem of finding an assignment of Boolean vari-
ables so a given expression evaluates to true. Unlike Maude, where search proce-
dures were encoded as confluent rewrites, the SAT problem can be rephrased as
a model finding problem over an open-world program. Like Alloy, formula also

Understanding Specification Languages through Their Model Theory 409

1. domain BoolSAT extends BoolExpr {
2. prob := new (exp: Expr).
3. badAsn :- sub(Var(x, y)), sub(Var(x, z)), x != z.
4. isSat :- prob(e), eval(e, true), no badAsn.
5. }

6. partial model Problem of BoolSAT {
7. requires atmost 1 prob.
8. prob(Or(Var(0, x), Not(Var(1, y)))).
9. }

10. model Solution of BoolSAT {
11. prob(Or(Var(0, true), Not(Var(1, true)))).
12. Or(Var(0, true), Not(Var(1, true))).
13. }

Fig. 9. Encoding Boolean satisfiability with open-world programs

uses a powerful solver (Z3 [9]) to search for solutions. Unlike Alloy, the for-

mula specification is able to embed the recursive definition of expression evalu-
ation. Figure 9 shows the formula specification. The BoolSAT domain includes
all the declarations / rules of BoolExpr via the extends keyword. It adds the
open constructor prob to hold an expression that should be solved. Line 3 checks
for contradictory assignments of the same variable. Line 4 produces the isSat
constant if there is some problem prob(e) ∈ K such that e evaluates to true
without any bad assignments (no badAsn).

The partial model in Lines 6-9 represents a subset of the possible extensions
of BoolSAT. The intent is to limit the search so exactly one specific Boolean
expression is solved. Line 7 is a cardinality constraint limiting the number of
prob-facts that can appear in any extension to one. Line 8 immediately introduces
a prob-fact containing the variables x and y. For every fact in a partial model
there must exist a corresponding fact in a world for some substitution of the
variables. Therefore, this partial model describes a set of worlds with exactly
one prob-fact resembling the fact in Line 8. The command:

solve Problem isSat

initiates the model finder on the partial model Problem with the goal cfresh
:- isSat. The model finder must instantiate variables x and y so the problem
expression evaluates to true. Lines 10-13 show one solution where x �→ true, y �→
true. Notice the model Solution contains an expression fact, which is necessary
to cause evaluation of the problem expression. Only the formula model (i.e.
world) is returned, because K can be uniquely reconstructed. In summary, the
open-world approach using strongly typed logic programs can handle recursive
structures and fixpoints while supporting flexible model finding.

410 E.K. Jackson and W. Schulte

4.4 Finite Relations

Relations can also be encoded. Consider the following undirected graph:

G
·
= 〈{1, 2}, {(1, 1), (1, 2)}〉.

The vertex and edge relations VG/EG can be encoded by declaring data con-
structors of matching arity, and then enumerating the relations as facts within
a model. First, the data type declarations might be:

V := new (lbl: Integer). E := new (src: Integer, dst: Integer).

And the contents of the model might be:

{ V(1). V(2). E(1, 1). E(1, 2). }

Any place the specification would test for (x, y) ∈ EG, instead it tests for
E(x, y) ∈ K. For example, this rule computes the reflexive closure of the edge
relation, assuming the edge relation has been point-wise enumerated in a for-

mula model.

rflx(y, x) :- E(x, y).

By allowing K to contain complex terms, an arbitrary number of finite relations
can be encoded without introducing the ACI axioms as required for Maude.

However, the data declarations do not capture the complete relationship be-
tween VG and EG; namely EG ⊆ VG×VG. This relationship needs to be axioma-
tized. formula provides a convention for axiomatizing the intended relationship
between data types via a special rule of the form:

conforms :- B.

The conformance rule produces the special constant conforms for those models
obeying the intended relationships between data types. For example:

badEnd :- E(x,), no V(x); E(, y), no V(y).
conforms :- no badEnd.

The first rule produces badEnd if there is some E(x, y) ∈ K where V (x) /∈ K
or V (y) /∈ K. This occurs precisely if EG � VG × VG. Thus, the conformance
rule produces conforms only if the relationship is satisfied. The formula model
finder automatically assumes the subgoal conforms to restrict search to conform-
ing models.

As with Alloy, finite relations and functions are so common that language
support is highly desirable. formula provides similar idioms, which are most
convenient when using the following encoding pattern: Suppose R ⊆ R1×. . .×Rn

for unary relations Ri. Then every relation must have a corresponding construc-
tor. In particular, the declaration of R should use the types of the constituent
constructors:

R := new (arg1: R1, . . ., argn: Rn).

Understanding Specification Languages through Their Model Theory 411

Instead of integer arguments, which could appear in any other relation-like con-
structor, the argument types identify the intended constituent relations. For
these declarations formula automatically introduces rules of the form:

badArg :- R(x1, . . .), no x’1 is R1, x’1 = x1;
...

R(. . .,xn), no x’n is Rn, x’n = xn.

Then no badArg is automatically conjuncted onto the conformance rule. Actually,
this encoding generalizes to relations of arbitrary arity and argument types.
In the cases where the arguments are built-in constants, then these values are
ignored and are outside this idiom. Thus, the previous declarations for undirected
graphs can be rewritten as:

V := new (lbl: Integer). E := new (src: V, dst: V).

and the user does not have to write additional conformance rules. The contents
of a model might be:

{ V(1). V(2). E(V(1), V(1)). E(V(1), V(2)). }

Finally, in the case where a type is not used to encode a relation, then a new-
modified constructor accepting this type should marked its field with the any
modifier. This modifier causes the compiler to skip generation of argument con-
straints for that field. Recall the data type declarations for the Boolean expres-
sion language use the any modifier, because they are not encoding relations
(Figure 7, Lines 3-5). (The compiler does not generate constraints for non-new
constructors.)

Similar constraints can be generated for partial/total functions. As with Alloy,
finite functions are specified by introducing uniqueness and totality constraints.
Again consider a finite function F : I1 × . . .× Im → O1 × . . .×On. Assuming F
is represented as:

F := new (in1: I1, . . . , inm: Im, out1: O1, . . . , outn: On).

Then the relevant totality and uniqueness constraints can be added according to
Table 2. The function modifiers in Table 3 instruct the compiler to automatically
introduce these constraints. All constructors annotated with function modifiers
are implicitly modified with new.

4.5 Finding Homomorphism Pairs

We now return to the problem of finding homomorphic pairs of graphs. In Al-
loy the encoding was succinct and declarative, but in Maude the encoding was
verbose and necessitated writing a confluent search strategy. The formula en-
coding uses the aforementioned conventions on constructors to encode the finite
relations as shown in Figure 10. Lines 2-6 encode the same relations as the Alloy
specification. Lines 7-8 introduce the rflx constructor for computing the reflex-
ive closure of the edge sets. The reflexive closure is then computed in Line 9.

412 E.K. Jackson and W. Schulte

1. domain HomPair {
2. Gv := new (id: Integer).
3. Ge := new (src: Gv, dst: Ge).
4. Hv := new (id: Integer).
5. He := new (src: Hv, dst: He).
6. Hom := fun (gv: Gv =>hv: Hv).
7. rflx := (e1: V, e2: V).
8. V := V.

9. rflx(y, x) :- Ge(x, y); He(x, y).
10. badHom :- Hom(x1, y1), Hom(x2, y2),
11. rflx(x1, x2), no rflx(y1, y2).
12. conforms :- no badHom.
13. }

Fig. 10. Specification of HomPair problem with formula

Table 2. Rules for totality and uniqueness constraints

(Not-left-total) nlt :- I1(x1), . . . , Im(xm), no F(x1, . . ., xm, , . . .,).
(Not-right-total) nrt :- O1(y1), . . . , On(yn), no F(, . . ., , y1, . . ., yn,).
(Not-left-unique) nlu :- e is F, e = F(,. . ., ,y1,. . .,yn),

e’ is F, e’ = F(,. . ., ,y1,. . .,yn),
e != e’.

(Not-right-unique) nru :- e is F, e = F(x1,. . .,xm, ,. . .,),
e’ is F, e’ = F(x1,. . .,xm, ,. . .,),
e != e’.

Table 3. Examples of function modifiers. Complete set of modifiers is fun, sur, inj, bij
and –>/ =>

Modifiers Example Description

fun, –> F := fun (i: A –> o: B). A partial function from A ∩ K to
B ∩ K. Gets argument and right-
unique constraints.

fun, –>, any F := fun (i: A –> o: any B). A partial function from A∩K to B.
Gets argument constraint only on i
field. Gets right-unique constraint.

fun, => F := fun (i: A => o: B). A total function from A∩K to B∩
K. Gets argument, right-unique,
and left-total constraints.

sur, =>, any F := sur (i: any A => o: B). A total surjection from A to B∩K.
Gets argument constraint on field
o. Gets right-unique, left-total, and
right-total constraints.

Finally, a bad homomorphism is one where vertices x1 and x2 are connected,
but are mapped to vertices y1 and y2 that are not connected (Lines 10-11). The
user-defined conformance rule for the domain is no badHom. But the compiler
will automatically extend this rule with more conjuncts due to the use of new
and function modifiers.

Understanding Specification Languages through Their Model Theory 413

1. model Solution of HomPair {
2. Gv(1). Gv(2).
3. Ge(Gv(1), Gv(2)).
4. Hv(3).

5. He(Hv(3), Hv(3)).
6. Hom(Gv(1), Hv(3)).
7. Hom(Gv(2), Hv(3)).
8. }

Fig. 11. Example of generated homomorphism pair

The model finder can be used to find homomorphic pairs. Because the model
finder always includes conforms as a subgoal, it may be invoked directly on the
domain without an explicit goal: solve HomPair. A result is a model like the one
shown in Figure 11. In summary, the formula approaches combines ADTs with
strongly-typed open-world logic programming to declaratively specify recursive
and relational structures. Model finding over open-world programs uses state-of-
the-art solvers to implement search. Users do not implement search within the
program.

5 Conclusion

This paper studied the design of specification languages through their model
theory. We showed that everything from basic syntax to complex specification
idioms are deeply rooted in the underlying model theory. In practice, users must
have a deep understanding of the shapes of models and formulas in order to write
specifications. Many standard concepts such as functions, relations, trees, and
expressions require non-trivial encodings. We showed that Alloy provides suc-
cinct specifications for search problems over finite relations. On the other hand,
Maude provides succinct specifications for recursive definitions, such as evalua-
tion semantics. Finally, we introduced the formula approach, which attempts
to handle both of these problems while retaining automated formal analysis by
constraint solving.

References

1. Jackson, D.: Alloy: A New Technology for Software Modelling. In: Katoen, J.-P.,
Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, p. 20. Springer, Heidelberg (2002)

2. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Quesada,
J.F.: Maude: Specification and Programming in Rewriting Logic. Theor. Comput.
Sci. 285(2), 187–243 (2002)

3. Jackson, E.K., Kang, E., Dahlweid, M., Seifert, D., Santen, T.: Components, plat-
forms and possibilities: towards generic automation for MDA. In: EMSOFT, pp.
39–48 (2010)

4. Lifschitz, V.: Datalog Programs and Their Stable Models. In: de Moor, O., Gottlob,
G., Furche, T., Sellers, A. (eds.) Datalog 2010. LNCS, vol. 6702, pp. 78–87. Springer,
Heidelberg (2011)

414 E.K. Jackson and W. Schulte

5. Alvaro, P., Marczak, W.R., Conway, N., Hellerstein, J.M., Maier, D., Sears, R.:
Dedalus: Datalog in Time and Space. In: de Moor, O., Gottlob, G., Furche, T.,
Sellers, A. (eds.) Datalog 2010. LNCS, vol. 6702, pp. 262–281. Springer, Heidelberg
(2011)

6. Becker, M.Y., Fournet, C., Gordon, A.D.: Secpal: Design and semantics of a de-
centralized authorization language. Journal of Computer Security 18(4), 619–665
(2010)

7. Torlak, E., Jackson, D.: Kodkod: A Relational Model Finder. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg
(2007)

8. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power
of logic programming. ACM Comput. Surv. 33(3), 374–425 (2001)

9. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

A CheckHom Specification

1. fmod Configs is

2. including Graphs .

3. sorts Config Placement .

4.

5. *** A placement describes a map from GV to HV.

6. *** It has the form v1 => u1, v2 => u2, end ...

7. op init : Nat −> Placement .

8. op end : −> Placement [ctor].

9. op , : Placement Placement −> Placement [ctor assoc] .

10. op => : Nat Nat −> Placement [ctor].

11.

12. *** A configuration [N | P] states the number of vertices in H

13. *** and gives a placement from GV to HV.

14. op [|] : Nat Placement −> Config [ctor] .

15.

16. *** An initial configuration is generated using [N | init(M)],

17. *** which expands into the default placement for the M vertices of G

18. vars S T : EdgeSet . vars E : Edge . vars N : Nat .

19. ceq init(N) = (N + -1 => 0), init(N + -1) if N > 0 .

20. eq init(0) = end .

21.

22. *** The inc operator generates a new placement: inc([N | P]).
23. *** In turn, the pinc operator increments a placement.

24. op inc : Config −> Config .

25. op pinc : Nat Placement −> Placement .

26. vars P : Placement . vars I I’ J : Nat .

27. eq inc([N | P, end]) = [N | pinc(N, P), end] .

28. ceq pinc(N, (P, I => J)) = P, (I => J + 1) if J < N + -1 .

Understanding Specification Languages through Their Model Theory 415

29. ceq pinc(N, (P, I => J)) = pinc(N, P), (I => 0) if J = N + -1 .

30. ceq pinc(N, I => J) = I => J + 1 if J < N + -1 .

31. ceq pinc(N, I => J) = I => N if J >= N + -1 .

32.

33. *** Placements can be applied to vertices an edges.

34. *** This returns the vertex / edge under the placement.

35. op [] : Placement Nat −> Nat .

36. op [] : Placement Edge −> Edge .

37. eq ((I => J), P)[I] = J .

38. ceq ((I’ => J), P)[I] = P[I] if I’ =/= I .

39. eq P[[I,J]] = [P[I], P[J]] .

40.

41. *** The IsPlaced operator checks if an edge from G is in H

42. *** under the current placement.

43. op IsPlaced : EdgeSet Placement EdgeSet −> Bool .

44. ceq IsPlaced((E,S), P, T) = false if not P[E] in T .

45. ceq IsPlaced(E, P, T) = false if not P[E] in T .

46. eq IsPlaced(S, P, T) = true [owise] .

47. endfm

48.

49. fmod Hom is

50. including Configs .

51. sort Witness .

52.

53. op CheckHom : Graph Graph −> Witness .

54. op CheckHom : Config EdgeSet EdgeSet −> Witness .

55. op Wit : Config EdgeSet EdgeSet −> Witness [ctor] .

56. vars P : Placement . vars S T : EdgeSet . vars N M I J : Nat .

57. eq CheckHom(<(M),(S)>, <(N),(T)>) = CheckHom([N | init(M)], S, T) .

58. ceq CheckHom([N | (I => J), P], S, T) = CheckHom(inc([N | (I => J), P]), S, T)

59. if not IsPlaced(S, (I => J), P, T) and J < N .

60. ceq CheckHom([N | (I => J), P], S, T) = Wit([N | (I => J), P], S, T)

61. if IsPlaced(S, (I => J), P, T) and J < N .

62. ceq CheckHom([N | (I => J), P], S, T) = Wit([N | (I => J), P], S, T) if J >= N .

63. endfm

Author Index

André, Étienne 283
Autili, Marco 118

Brooke, Phillip J. 251
Broy, Manfred 1
Burton, Frank R. 251

Calinescu, Radu 303
Cengarle, Maŕıa Victoria 1
Chen, Bangdao 132
Cliff, Dave 29
Colange, Maximilien 330
Cortellessa, Vittorio 118

Di Ruscio, Davide 118
Dräger, Klaus 353
Dwivedi, Vishal 157

Faleiro, Jose 148
Fuhrmann, Hauke 209

Garlan, David 157
Ge, Xiaocheng 251
Geisberger, Eva 1
Ghezzi, Carlo 369
Gutzwiller, Robert S. 81

Haber, Arne 183
Hanxleden, Reinhard von 209
Hennicker, Rolf 224
Henzinger, Thomas A. 380
Hillah, Lom-Messan 330

Inverardi, Paola 118

Jackson, Ethan K. 396
Johnson, Kenneth 303

Keen, Justin 71
Kikuchi, Shinji 303
Klai, Kais 283

Kordon, Fabrice 330
Kwiatkowska, Marta 353

Lange, Douglas S. 81
Lee, Edward A. 209
Lock, Russell 266
Ludwig, Matthias 224

McDermid, John A. 94
Motika, Christian 209

Ničković, Dejan 380
Northrop, Linda 29

Ochi, Hanen 283

Paige, Richard F. 251
Parutto, Pierre 330
Pelliccione, Patrizio 118
Petrucci, Laure 283
Poulding, Simon 251
Power, Christopher D.S. 251

Rajamani, Sriram 148
Rajan, Kaushik 148
Ramalingam, G. 148
Reeder, John 81
Rendel, Holger 183
Roscoe, A.W. 132
Ruchkin, Ivan 157
Rumpe, Bernhard 183

Sarles, Cullen 81
Schaefer, Ina 183
Schmerl, Bradley 157
Schulte, Wolfram 396
Sommerville, Ian 266
Storer, Tim 266

Tivoli, Massimo 118

Vaswani, Kapil 148
Verbancsics, Phillip 81

	Title
	Preface
	Message from the Monterey Workshop General Chairs
	Table of Contents
	Part I: Challenges of Large-Scale Complex IT Systems
	Cyber-Physical Systems: Imminent Challenges
	Introduction
	Towards Cyber-Physical Systems
	Characteristics of CPS
	Technological Challenges
	Individual Technologies
	Engineering Technologies

	Social Challenges
	Conclusions
	References

	The Global Financial Markets: An Ultra-Large-Scale Systems Perspective
	Introduction
	Background: Failures in Risky Technology
	Where Next for the Financial Markets?
	Summary
	References

	What Is a Care Pathway?
	Introduction
	Two Ideas
	The Challenges
	Care Pathways
	Teams That Expect the Unexpected
	Institutions Shape Journeys
	Implications for IT Systems
	Concluding Comments
	References

	Command and Control of Teams of Autonomous Systems
	Introduction
	Control of Complex Systems
	Control of Systems by Humans
	The Roles for Learning
	Developing Team Tactics
	Recognizing Correct Tactical Behavior

	Autonomic Control
	Conclusions
	References

	The Risks of LSCITS: The Odds Are Stacked against Us
	Introduction
	Methodological Remarks
	An Analysis of Some Loss Events
	A Syringe Pump
	The Cloud
	The “Flash Crash”
	Überlingen
	Société Générale
	Observations

	Risk Analysis
	Risk Analysis Principles
	Risk Analysis of Loss Events
	Risk Analysis for LSCITS

	Discussion
	Conclusions
	References

	Part II: Model-Driven Engineering
	Integration Architecture Synthesis for Taming Uncertainty in the Digital Space
	Introduction
	State-of-the-Art Overview
	Derivation of Partial Models
	Models@runtime
	Automatic Connector Synthesis to Support Software Integration and Coordination
	Functional and Non-functional Verification and Validation under Uncertainty

	The EAGLE Approach
	Integration Synthesis for Taming Uncertainty
	Discussion
	Conclusion
	References

	Social Networks for Importing and Exporting Security
	Introduction
	Using a HISP
	Pair-Wise HISP
	Group HISP
	Improving the Usability and Security of HISPs

	Proving Online Identities
	Bootstrapping a Large Group by Using OSNs
	Collecting Group Information
	Counting and Authenticating Members

	Demonstration Implementation
	Performance Analysis
	Related Research
	Conclusions
	References

	CScale – A Programming Model for Scalable and Reliable Distributed Applications
	Introduction
	Programming Model
	Language
	Semantics
	Target Applications

	Implementation
	Wait-Free Data Types
	Consistent Queries via Lattice Agreement
	Incremental Evaluation and View Maintenance

	Current Status and Experience
	References

	Foundations and Tools for End-User Architecting
	Introduction
	The Problem
	End-User Architecture
	Case Studies
	Dynamic Network Analysis
	Neuroscience
	Geospatial Analysis

	Related Work
	Discussion
	Conclusion
	References

	Evolving Delta-Oriented Software Product Line Architectures
	Introduction
	Spatial Variability
	Temporal Variability
	Refactoring Delta-oriented Product Lines
	Comparison to Annotative Variability Modeling
	Related Work
	Conclusion
	References

	Multi-view Modeling and Pragmatics in 2020
	Introduction
	Background and Related Work
	Trend 1: Agile, Domain-Specific Development Processes
	2020 Vision: Usage-Specific Views
	Dual Modeling

	Trend 2: Novel Input Devices
	2020 Vision: Touch-Based Editing and Browsing
	Structure-Based Editing

	Trend 3: The Move to the Cloud
	2020 Vision: Actor-Oriented, Cloud-Based Modeling Tools
	Example of a Service: Simulation
	Example of a Service: Automatic Layout

	Conclusions and Outlook
	References

	View-Based Development of a Simulation Framework for Multi-disciplinary Environmental Modelling
	Introduction
	Base View Development
	Base View Requirements
	Base View Design
	Base View Components

	Simulation Time and Coordination
	Time View Requirements
	Time View Design
	Time View Components

	Data Exchange and Simulation Space
	Data Exchange: Requirements
	Simulation Space: Requirements

	Integration
	Application of the Framework
	Conclusion
	References

	Revealing Complexity through Domain-Specific Modelling and Analysis
	Introduction
	Domain-Specific Modelling Approach
	Illustrations
	Failures in Healthcare Processes
	Secure Transaction Problem
	Through-Life Capability Management

	Conclusions
	References

	Information Requirements for Enterprise Systems
	Introduction
	Enterprise Systems
	Requirements Engineering for Enterprise Systems
	Responsibility and Responsibility Modelling
	Deriving Information Requirements
	Case Study – Emergency Coordination System
	System Requirements

	Related Work
	Conclusions
	References

	Part III: Formal Specification, Analysis and Verification
	A Counterexample-Based Incremental and Modular Verification Approach
	Introduction
	Preliminaries
	Labelled Transition Systems
	Model Checking LTL Formulae
	Synchronisation of LTSs

	Approach
	The Symbolic Observation Graph
	Composition of SOGs
	Verification Algorithm

	Case Study: The Clients/Servers Example
	Description of the Model
	First Property
	Second Property

	Conclusion
	References

	Compositional Reverification of Probabilistic Safety Properties for Large-Scale Complex IT Systems
	Introduction
	From Monolithic to Compositional Verification
	Running Example
	Background
	Compositional Verification

	Reverification of Safety Properties for LSCITS
	Reverification of a Sequence of Verification Steps
	LSCITS Component Failure (or ``Departure'')
	LSCITS Component Change
	LSCITS Component Joining
	LSCITS Component Choice

	Conclusion and Future Work
	References

	Extreme Symmetries in Complex Distributed Systems: The Bag-Oriented Approach
	Introduction
	Definitions
	Symmetric Nets with Bags
	Decision Diagrams

	Formal Analysis of Extreme Symmetric Systems
	Existing Approaches for the Analysis of Symmetric Systems
	Using Bags Information to Optimize State Space Generation
	Computing the Transition Relation in SNB

	Assessment
	The Examples
	Performances
	Discussion

	Conclusion
	References

	Towards Communication-Based Steering of Complex Distributed Systems
	Introduction
	Case Study

	Preliminaries
	Words and Word Distances
	Markov Decision Processes
	The Simple Steering Problem

	Attacking the Steering Problem
	The Simple Version
	Runtime Verification

	Extensions
	Compositional Analysis
	Partial Observability
	Multi-way Communication Channels
	Soft Errors

	Conclusion and Future Work
	References

	Evolution, Adaptation, and the Quest for Incrementality
	Introduction
	Motivations
	Approaches
	Incrementality by Change Encapsulation
	Incrementality by Change Anticipation
	Syntax-Driven Incrementality

	Future Work and Conclusions
	References

	Independent Implementability of Viewpoints
	Introduction
	Stateless Interfaces
	Connection, Composition and Refinement
	Conjunction

	Moore Interfaces
	Composition and Refinement
	Conjunction

	FIFO Buffer Example
	Conclusion
	References

	Understanding Specification Languages through Their Model Theory
	Introduction
	Finite Relations and Alloy
	Finite Functions
	Recursive Structures

	Algebraic Data Types and Maude
	Equational Theories
	Recursive Structures
	Relational Structures and Search

	The FORMULA Approach
	Writing Constraints
	Domains and Models
	Model Theory and Open-World Reasoning
	Finite Relations
	Finding Homomorphism Pairs

	Conclusion
	References

	Author Index

