

Lecture Notes in Computer Science 4888
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Fabrice Kordon Oleg Sokolsky (Eds.)

Composition
of Embedded Systems

Scientific and Industrial Issues

13th Monterey Workshop 2006
Paris, France, October 16-18, 2006
Revised Selected Papers

13

Volume Editors

Fabrice Kordon
Université Pierre et Marie Curie
Laboratoire d’Informatique de Paris 6
Modeling and Verification
4 place Jussieu, 75252 Paris Cedex 05, France
E-mail: Fabrice.Kordon@lip6.fr

Oleg Sokolsky
University of Pennsylvania
Department of Computer and Information Science
3330 Walnut Street, Philadelphia, PA 19104-6389, USA
E-mail: sokolsky@cis.upenn.edu

Library of Congress Control Number: 2007941813

CR Subject Classification (1998): D.1.3, D.2-3, D.4.5, F.3, C.2.1, C.2-4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-77418-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-77418-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12209217 06/3180 5 4 3 2 1 0

Preface

Composition of Embedded Systems:
Scientific and Industrial Issues

The Monterey Workshops series was initiated in 1992 by David Hislop with the purpose
of exploring the critical problems associated with cost-effective development of high-
quality software systems. During its 14-year history, the Monterey Workshops have
brought together scientists that share a common interest in software development re-
search serving practical advances in next-generation software-intensive systems. Each
year is dedicated to a particular topic of critical importance. In the past years, workshop
topics were “Networked Systems: Realization of Reliable Systems on Unreliable Net-
worked Platforms” (2005 in Laguna Beach, California), "Software Engineering Tools:
Compatibility and Integration" (2004 in Vienna), " Engineering for Embedded Sys-
tems: From Requirements to Implementation" (2003 in Chicago), "Radical Innovations
of Software and Systems Engineering in the Future" (2002 in Venice), "Engineering
Automation for Software Intensive System Integration" (2001 in Monterey).

The 14th Monterey Workshop was held in Paris, France, during October 16–18,
2006.

Context of the 2006 Monterey Workshop

Distributed real-time embedded (DRE) systems are notoriously hard to design, imple-
ment, and validate. The complexity of a typical system found in many critical ap-
plications in civil and military aviation, transportation systems, and medical devices
exceeds the capabilities of existing development and verification technologies. Compa-
nies spend enormous amounts of time and resources on verification and validation of
DRE systems they develop and yet, despite their best efforts, hard-to-find errors show
up in deployed products.

More and more, large DRE systems are built from components developed by third-
party suppliers in an attempt to reduce development costs. But integration of DRE com-
ponents presents its own set of problems: components that appear correct in isolation
fail to function properly when put together. Research on DRE composition aims to
develop techniques for designing DRE components and integrating them into larger
systems in such a way that emphasizes safety and reliability of the integrated systems.

The 14th Monterey Workshop on "Composition of Embedded Systems: Scientific
and Industrial Issues" focused on new, promising directions for achieving high soft-
ware and system reliability in DRE systems while minimizing design, verification, and
validation efforts and time to market.

All presentations at the workshop were by invitation upon the advice of the Program
Committee.

VI Preface

Invited Speakers

Juan Colmenares University of California at Irvine, USA
David Corman Boeing, USA
Gregory Haik Thales, France
Jérôme Hugues Telecom-Paris, France
Xenofon Koutsoukos Vanderbilt University, USA
Ingolf Krueger UC San Diego, USA
Radu Grosu Stony Brook University, USA
Gabor Karsai Vanderbilt University, USA
Christoph Kirsch University of Salzburg, Austria
Fran cois Laroussinie ENS Cachan, France
Klaus Müller-Glaser FZI, Germany
Rick Schantz BBN Technologies, USA
Manuel Rodriguez Naval Postgraduate School, USA
Roman Obermaisser TU Vienna, Austria
Fran cois Terrier CEA-LIST, France
Joseph Sifakis Verimag, France

Papers included in this volume were selected among the submissions from the work-
shop’s discussions.

Workshop Topics

Our society is increasingly reliant on embedded systems for many critical day-to-day
activities. In many application domains, such as automotive and avionics industries,
satellite communications, and medical devices, embedded software is the major driving
force. Development of embedded software has come to dominate design effort, time,
and costs. Despite massive development efforts, software is now a significant cause
of failure in embedded devices. Advances in embedded software development tech-
nologies are therefore fundamental to the economic success, scientific and technical
progress, as well as national security of our society.

Development of embedded software-intensive systems is always a hard task due to a
multitude of stringent constraints that these systems have to satisfy, including stringent
timing, memory footprint, and other resource requirements. In recent years, the problem
has become even more complicated due to the advent of DRE systems, which need
to interact with each other in a timely and predictable fashion, while still satisfying
their individual requirements. The increased complexity of DRE systems has rendered
existing development technologies inadequate for the demands of today’s applications.

Composition is a possible approach for conquering the complexity of modern
embedded systems design. In this approach, the components of the system can be devel-
oped in isolation and then integrated together in a property-preserving way. Composi-
tional development for embedded systems is an active research area, but much remains
to be done to keep up with the needs of industry and society.

Preface VII

The workshop discussed a range of challenges in embedded systems design that
require further major advances in software and systems composition technology:

– Model-driven development for DRE systems. Modeling and model-driven de-
velopment (MDD) are of particular importance for DRE systems, because of their
dependence on continuously evolving environments and strict requirements that
need to be specified precisely for testing and verification.

– Balancing cost and assurance in DRE systems. High assurance comes at a high
cost. System developers need to balance development costs and assurance levels
depending on the criticality of particular system aspects. This area has not received
enough attention from the research community and system developers lack proper
tools to reason about such trade-offs.

– Domain-specific languages for DRE systems. Domain-specific languages (DSL)
allow designers to represent systems directly using concepts from their application
domains. Because of this, models and designs are easier to understand and vali-
date, increasing confidence in the system. Research on DSL has been very active
recently, yet many open questions remain, including semantic definitions for DSLs
and correctness of model transformations with respect to the language semantics.

– Composition of real-time components. Timing and resource constraints, preva-
lent in DRE system development, make composition much more difficult. Com-
ponent interfaces that are the basis for system integration now have to expose not
only the input and output behaviors of the component, but also its resource de-
mands. Formalisms that are used to reason about composition need to be able to
capture the notion of resources and resource scheduling.

– Fault tolerance for DRE. Dealing with emergency situations is a major part of
the DRE operation. The handling of faults and other abnormal events consumes
a major portion of the system development efforts and represents the vast major-
ity of code in a system implementation. At the same time, most model-driven ap-
proaches concentrate on the functional aspects of system behavior and the nominal
environment.

The papers presented at the workshop and collected in this volume discuss recent
advances in addressing the above challenges, and outline directions of future research
necessary to conquer them. The papers are organized into the following three groups:

– The first group addresses the problem of MDD for DRE systems. Papers in this
group address model-level composition of functional and non-functional properties,
as well as correctness of property-preserving model transformations that are key to
the MDD process.

– The second group of papers is devoted to software engineering and analysis for
component-based DRE systems.

– Finally, the last group of papers discuss component implementation and integration
technologies that address the composition on a more concrete level, while making
full use of modeling and software engineering approaches considered in the first
two groups.

VIII Preface

Acknowledgements

We are grateful to the Steering Committee, the Local Organizing Committee, and the
invited speakers for making the workshop a success. We acknowledge generous spon-
sorship from the Army Research Office (David Hislop) and from the National Science
Foundation (Helen Gill).

September 2007 Fabrice Kordon
Oleg Sokolsky

Organization

Executive Committee

Program Chairs Fabrice Kordon (Université Pierre & Marie Curie, France)
Oleg Sokolsky (University of Pennsylvania, USA)

Local Organization Fabrice Kordon (Université Pierre & Marie Curie, France)

Technical Program Committee

Beatrice Berard Université Paris-Dauphine, France
Valdis Berzins Naval Postgraduate School, USA
Juan de la Puente Universidad Politecnica de Madrid, Spain
Gabor Karsai Vanderbilt Universiy, USA
Insup Lee Pennsylvania University, USA
Edward Lee University of California at Berkeley, USA
Tom Maibaum King’s College, London, UK
Joseph Sifakis Verimag, France
Henny Sipma Stanford University, USA
Francois Terrier CEA-LIST, France

Table of Contents

Model Driven Development and Embedded Systems

On the Correctness of Model Transformations in the Development of
Embedded Systems . 1

Gabor Karsai and Anantha Narayanan

Supporting System Level Design of Distributed Real Time Systems for
Automotive Applications . 19

Klaus D. Müller-Glaser, Clemens Reichmann, and Markus Kuehl

From MDD to Full Industrial Process: Building Distributed Real-Time
Embedded Systems for the High-Integrity Domain 35

Jérôme Hugues, Laurent Pautet, and Bechir Zalila

Model-Based Failure Management for Distributed Reactive Systems 53
Vina Ermagan, Ingolf Krüger, and Massimiliano Menarini

Software Engineering for Embedded Systems

A Methodology and Supporting Tools for the Development of
Component-Based Embedded Systems . 75

Marc Poulhiès, Jacques Pulou, Christophe Rippert, and
Joseph Sifakis

Industrial Challenges in the Composition of Embedded Systems 97
David Corman and James Paunicka

Deep Random Search for Efficient Model Checking of Timed
Automata . 111

Radu Grosu, Xiaowan Huang, Scott A. Smolka, Wenkai Tan, and
Stavros Tripakis

OASiS: A Service-Oriented Architecture for Ambient-Aware Sensor
Networks . 125

Xenofon Koutsoukos, Manish Kushwaha, Isaac Amundson,
Sandeep Neema, and Janos Sztipanovits

Composition Technologies

Composing and Decomposing QoS Attributes for Distributed Real-Time
Systems: Experience to Date and Hard Problems Going Forward 150

Richard Schantz and Joseph Loyall

XII Table of Contents

Recent Additions on the Application Programming Interface of the
TMO Support Middleware . 168

K.H. (Kane) Kim, Juan A. Colmenares, Liangchen Zheng,
Sheng Liu, Qian Zhou, and Moon-Cheol Kim

Integrating Automotive Applications Using Overlay Networks on Top
of a Time-Triggered Protocol . 187

Roman Obermaisser

Reliability Properties of Models for Flexible Design and Run-Time
Analysis . 207

Luqi, Valdis Berzins, and P.M. Musial

Author Index . 221

On the Correctness of Model Transformations in

the Development of Embedded Systems

Gabor Karsai and Anantha Narayanan

Institute for Software Integrated Systems,
Vanderbilt University,

Nashville TN 37203, USA

Abstract. Model based techniques have become very popular in the de-
velopment of software for embedded systems, with a variety of tools for
design, simulation and analysis of model based systems being available
(such as Matlab’s Simulink [20], the model checking tool NuSMV [4] etc.).
Model transformations usually play a critical role in such model based
development approaches. While the available tools are geared to verify
properties about individual models, the correctness of model transfor-
mations is generally not verified. However, errors in the transformation
could present serious problems. Proving a property for a certain source
model becomes irrelevant if an erroneous transformation produces an
incorrect target model. One way to provide assurance about a trans-
formation would be to prove that it preserves certain properties of the
source model (such as reachability) in the target model. In this paper,
we present some general approaches to providing such assurances about
model transformations. We will present some case studies where these
techniques can be applied.

1 Model Based Development of Embedded Systems

Embedded software today is often being developed using model-based tech-
niques. The industry-standard tools for such development are widely available,
and they typically include a visual modeling language (supporting dataflow-
style and statechart-style modeling paradigms), a simulation engine, and a code-
generator that produces embedded code from the diagrams [1,2]. The modeling
languages used are practical, but their semantics is often not defined precisely,
to the level of detail used in case of more traditional languages such as Ada. The
only source for the definition of semantics is often the vendor’s documentation.
Other tools (e.g. [3]) provide support for embedded system development through
the UML 2.0 modeling language standard, with highly customizable code genera-
tors. The advantages of using these model-based tools are well-known, and widely
publicized by their vendors. The gains in productivity can be clearly measured
in practical applications. The higher-level, domain-specific models that could be
directly executed and then ‘compiled’ into code are natural for control designers,
and let engineers ignore implementation level details that introduce ‘accidental
complexities’ in software development.

F. Kordon and O. Sokolsky (Eds.): Monterey Workshop 2006, LNCS 4888, pp. 1–18, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 G. Karsai and A. Narayanan

However such model-based tools often fall short on the side of system veri-
fication. System verification in practice means simulating the design using the
simulation engine; an activity which cannot be exhaustive, by definition. The
model-based development environments allow creating a simulation model of
the plant to be controlled, as well as an (executable) model of the controller
that controls it, such that integrated simulation studies could be performed. Ap-
proaches and tools have also been developed for the simulation of time-domain
properties of schedulers, networks, protocols, etc. Simulation of embedded sys-
tems as the de facto technique for verification is widely practiced in the industry.

1.1 The Problem with Model-Based Approaches

It is unclear how model-based approaches lend themselves to the certification
processes mandatory in critical applications, like aerospace and safety systems.
Models offer higher-level abstractions for specifying and designing systems, and
-if their semantics is well-defined- can be subjected to rigorous formal, often
automated, verification. However, the verification of the models does not neces-
sarily imply the verification of the code generated from the models. Neither does
simulation-based testing imply that the generated code will work with the phys-
ical environment as desired. Note that existing practical approaches like code
reviews and code-level verification fare better, as the subject of the verification
is the final artifact, not an abstraction of it. However, automatically generated
code could be hard to understand and analyzed in a manual process, thus code
reviews are not practical for model-based systems. There have been several ef-
forts in defining the semantics of modeling languages [6], most significantly, the
Unified Modeling Language [7]. Such approaches often apply to generic languages
such as the UML, and are not tailored to domain specific languages that can
vary greatly from application to application. It is also extremely difficult to come
up with a semantics for a language that captures all behavior, and is practical
to use at the same time.

We should recognize that the crucial ingredient in model-based development
of critical embedded software is the correctness of tool-chains that tie model-
ing, verification, and code generation together. The productivity gains and the
expected assurances for the correctness of generated systems of model-based de-
velopment cannot be reached unless the toolchain used provides some sort of
guarantees that the code satisfies the stringent requirements. Figure 1 shows the
notional architecture of a model-based development tool-chain.

Note that these toolchains often include non-trivial transformation or transla-
tion steps, including the code generator and model translators that connect the
design language used (e.g. Statechart [1]) to the analysis ‘language’ (e.g. SMV
[4]), and possibly other model-to-model transformation steps. When these tools
are used, it is natural to expect that model-to-model transformations preserve
the semantics of the models, verification results computed by analysis tools (e.g.
model checkers) are valid for the design models, and the generated code exhibits
identical behavior to the one specified by the model. Thus, the correctness of
such ’model transformations’ is an essential question to answer. Otherwise, for

On the Correctness of Model Transformations in the Development 3

Fig. 1. Notional Architecture of a Model-based Development Toolchain

instance, verification results obtained for the models cannot be carried over to
the code generated from the models. In summary, model-based development for
embedded systems of the high-consequence category must address the need for
verifiable model transformations and code generators that give assurances for
the logical consistency of the toolchain.

2 Towards Verified Transformations

Verifying model transformations, in general, is as difficult as verifying a compiler
for a high-level language. However, the domain-specific (read: restricted) nature
of the modeling languages, and the fact that model transformations can be for-
mally described using high-level constructs (e.g. graph transformation rules [8])
provides an opportunity for establishing the correctness of transformations with
a reasonable effort.

One key pragmatic observation is that the correctness may not be necessary
in general (i.e. for all properties and for all possible models to be transformed),
rather, it is sufficient to establish it for specific cases (i.e. for specific properties
and for specific models). This means that the correctness of the model transfor-
mation is not proven in general, but a proof is provided for every invocation of
that transformation that is valid -only- for the actual model being transformed.
In other words, for each instance of the model transformation a certificate is
automatically generated that can be used, for example, in a certification process
such as [9] and [10]. Thus, the goal is to build such machinery into the model
transformation tools, so that the certificates can be automatically produced.
In addition, the verification itself must be independent of the domain. In other
words, it must not be tied to a single domain specific language, but be applicable
to a wide class of such languages. We call this approach ‘instance-based verifica-
tion’. We have developed two early prototypes for such model transformations
that we will discuss below.

4 G. Karsai and A. Narayanan

2.1 Certification Via Bisimilarity

Assume that we have a modeling language that supports a Statechart like nota-
tion for modeling. Suppose that we wish to verify reachability properties of such
models. The semantics of Statecharts allow, for example, inter-level transitions
(which are transitions that cut across levels of hierarchy). This makes verifica-
tion of properties such as reachability non-trivial. One approach to overcome this
difficulty is to transform them into a simplified notation such as Extended Hi-
erarchical Automata (EHA) [12], and then using a model checker such as SPIN
[11] to verify reachability in the model. Note that EHA-s are not isomorphic
to Statecharts, although there exists an algorithm for translating Statecharts
to EHA-s [13]. We have implemented this transformation algorithm using our
graph transformation environment [8].

The problem of verification is formulated as: “Show that the reachability prop-
erties determined by the model checker tool on the translated EHA model hold
for the original Statechart model”. Such properties are commonly encountered
in model based development, where the models are some form of a transition
system. We have approached this problem by finding a bisimulation [14] between
the source and the target models. The justification for this is that, for the in-
put and the result of the model transformation to be behaviorally equivalent,
the transition systems must be bisimilar. For this purpose, we use the following
definition of bisimulation:

Bisimulation. Given an LTS (S, Λ, →), a relation R over S is a bisimulation
if:

(p, q) ∈ R and p α
→ p′ implies that

there exists a q ′ ∈ S such that q α→ q ′ and (p′, q ′) ∈ R,

and conversely,

q α→ q ′ implies that
there exists a p′ ∈ S such that p α

→ p′ and (p′, q ′) ∈ R.

The instance-based verification approach must generate a ‘certificate’ that
shows whether a bisimilarity relationship exists. This certification can be pro-
duced by:

1. introducing extra steps into the transformation process that build ‘links’
(that trace a relation R) between elements of the input and target models
of the transformations, and

2. using a simple, linear-time algorithm to check if R is a bisimulation

With a minimal extension to the existing model transformation tool we were
able to generate the required certificate for every run of the translator. Figure 2
describes the process. The changes to the model transformations were straight-
forward and artificially introduced errors in the transformation were detected by
the bisimilarity checker.

On the Correctness of Model Transformations in the Development 5

Fig. 2. Checking Bisimilarity to Certify Transformations

2.2 Certification by Semantic Anchoring

In an embedded system development process often a multitude of modeling lan-
guages are used. For example, as a design language one might use Stateflow, but
as the input language of a code generator one might use the UML-variant of Stat-
echarts. The annoying differences between these languages are not well-known
and not easy to discover. Hence, there is a strong need for the formal definition
of the semantics of such domain-specific modeling languages. Recent work [15]
has developed the concept of semantic anchoring that solves the problem in two
steps, described below.

1. First, a simple, well-defined and well-understood mathematical framework,
called the semantic unit is developed that defines a core semantic idea. A
labeled transition system capturing the core behavior of a Finite-State Au-
tomaton is an example for a semantic unit. This unit is defined in a formal
document, as well as in a formal language, whose underlying semantics is
well-known 1. The description must be parametric, i.e. one should be able
to instantiate the definitions with different parameter values (e.g. different
number states, different transitions, events, etc.)

2. Second, the semantics of a domain-specific modeling language is defined by
the (model) transformation that maps the abstract syntax of the modeling
language into a fully configured instance of the semantic unit. This transfor-
mation is considered the definition of the DSML.

Now given two modeling languages, with the corresponding definitions of the
semantics, how can we show that the model transformation mapping the first
language into the second is correct? In our example, given a definition for the
semantics of both Stateflow and UML-Statecharts, how can we show that the
model translator from Stateflow to UML-Statecharts preserves the model’s be-
havior? The key idea here is that this can be checked by finding a bisimulation on
the level of the ‘anchored’ models, i.e. on the level of the instantiated semantic
units (or, behavior models).

1 In our work the ASML language has been used that is based on the notion of Abstract
State Machines of Gurevich [16].

6 G. Karsai and A. Narayanan

One difficulty in this approach is that the differences in the languages may
result in behavior models that are structurally dissimilar, even though they may
model the same observable property. Consider, for instance, the transition sys-
tems in Figure 3. Assume that Figure 3(a) represents an automaton, where the
dotted, unlabeled states and transitions are not observable by an external ob-
server. To an external observer, the automaton will appear to function identically
to the one represented by the transition system in Figure 3(b). Thus, the two
automata appear identical to an external observer, even though the inherent
transition systems are not bisimilar.

(a) (b)

Fig. 3. Similar Transition Systems

To address this issue, we turn to the notion of weak bisimilarity [17]. Weak
bisimulation allows us to weaken the notion of what constitutes a transition, al-
lowing us to set the granularity at which we accept two systems as behaviorally
equivalent. In our case, we can simply disregard unobservable states (such as
the dashed ones in Figure 3(a)), and define the relation R only for the observ-
able states. We then define a transition as going from one observable state to
another, by collapsing the dashed transitions appropriately. Using these guide-
lines, we rephrase our earlier definition of bisimulation, for the special case of
weak bisimulation as:

Weak Bisimulation. Given an LTS (S, Λ, →), a relation R over S is a weak
bisimulation if:

∀ (p, q) ∈ R and ∀α: p α⇒ p′, ∃ q ′ such that q α⇒ q ′ and (p′, q ′) ∈ R,

and conversely,

∀α: q α
⇒ q ′, ∃ p′ such that p α

⇒ p′ and (p′, q ′) ∈ R.

where p, q, p′, q ′ are all observable states, the transition ⇒ is from one observable
state to another.

The approach to verifying the transformation is illustrated in Figure 4. The
input and the target models of the transformation are ‘translated down’ into
the common semantic framework. This is done by the semantic anchoring steps

On the Correctness of Model Transformations in the Development 7

Fig. 4. Framework for verifying behavior preservation

that are assumed to be correct, as they define the semantics of the input and
target languages. The lower-level behaviors are linked to the original input and
the resulting target models respectively, while maintaining some notion of corre-
spondence between the model elements of the input and the target. The relation
R is encoded based on these correspondences, between the two transition sys-
tems representing the low-level behavior models. We then check if R is a weak
bisimulation, based on the above definition. This will allow us to conclude if the
source and the target models behave identically.

We will now look at some case studies that use the techniques described
above, to provide a correctness certification for transformation instances that
were successful.

3 Case Study 1: Statechart to EHA Transformation

To illustrate the first approach described above, we describe a transformation
from Statecharts to Extended Hybrid Automata (EHA). We wish to analyze a
specific property in a Statechart model, namely the property of reachability, by
transforming it into an EHA model and using a model checker. The verification of
the transformation consists of assuring whether the source and target models are
identical with respect to reachability, for a particular instance of its execution.
In other words, we wish to check whether every state that is reachable in the
EHA model is also reachable in the Statechart model, and vice-versa.

3.1 Extended Hierarchical Automata

EHA models are composed of one or more Sequential Automata, which are non-
hierarchical finite automata. The states of a Sequential Automaton (called Basic
States) may be refined into further Sequential Automata, to express hierarchy in
a flat notation. A Statechart model can be represented by a Sequential Automa-
ton, with a finite automaton representing the top level states of the Statechart.
Compound states in the Statechart must be represented as individual Sequential

8 G. Karsai and A. Narayanan

Automata, and marked as refinements of the corresponding Basic States in the
EHA. The entire Statechart can be represented this way, using a set of Sequential
Automata and a series of refinements.

Some transitions in the Statechart may cut across levels of hierarchy. Such
transitions are said to be inter-level. Transitions in an EHA model, however, are
always contained within one Sequential Automaton, and cannot cut across levels
of hierarchy. Inter-level transitions my therefore be elevated based on the scope
of the transition. An inter-level transition is placed in the Sequential Automaton
corresponding to the Statechart state containing it, and is drawn between the
Basic States corresponding to the top-most ancestors of the source and target
states in the Statechart. The transition in the EHA is also annotated with special
attributes called source restriction and target determinator, which keep track of
the actual source and target states of the transition.

3.2 Transformation Steps

The transformation from Statecharts to EHA was specified as a graph transfor-
mation, using GReAT [8], based on the approach described in [13]. The basic
steps of the transformation are listed below:

1. Every Statechart model is transformed into an EHA model, with one top
level Sequential Automaton in the EHA model.

2. For every (primitive or compound) state in the Statechart (except for regions
of concurrent states), a corresponding basic state is created in the EHA.

3. For every composite state in the Statechart model, a Sequential Automaton
is created in the EHA model, and a “refinement” link is added that connects
the Basic State in the EHA corresponding to the state in the Statechart, to
the Sequential Automaton in the EHA that it is refined into.

4. All the contained states in the composite state are further transformed by
repeating steps (1) and (2). The top level states in the Statechart are added
to the top level Sequential Automaton in the EHA.

5. For every non-interlevel transition in the Statechart model a transition is
created in the EHA between the Basic States corresponding to the start and
end states of the transition in the Statechart model.

6. For every inter-level transition in the Statechart model, we trace the scope of
the transition to find the lowest parent state sP that contains both the source
and the target of the transition. A transition is created in the EHA, in the
Sequential Automaton corresponding to sP . The source of the transition in
the EHA is the Basic State corresponding to the highest parent of the source
in the Statechart that is within sP , and the target in the EHA is the Basic
State corresponding to the highest parent of the target in the Statechart
that is within sP . The transition in the EHA is further annotated, with the
source restriction attribute set to the basic state corresponding to the actual
source in the Statechart, and the target determinator set to the basic state
corresponding to the actual target in the Statechart.

Figure 5 shows a sample statechart model, and Figure 6 shows the trans-
formed EHA model. There are two inter-level transitions in the Statechart model

On the Correctness of Model Transformations in the Development 9

Fig. 5. A sample Statechart model

(namely, 2 and 3). Their equivalent transitions in the EHA model are annotated
with the appropriate source restriction and target determinator, as shown in the
table in Figure 6.

Fig. 6. Sample EHA model

3.3 Verifying the Transformation

We wish to check whether every state that is reachable in the EHA model is
also reachable in the Statechart model, and vice-versa. To define the property
of reachability in Statecharts, we use the notion of a state configuration. A state
configuration in a Statechart is a valid set of states that the system can be active
in. If a state is part of an active configuration, then all its parents are also part of
the active configuration. A transition takes a system from one state configuration
to another state configuration. Similarly, a state configuration in an EHA model
is a set of Basic States. If a Basic State is part of an active configuration, and
is part of a non-top-level Sequential Automaton, then the Basic State that is
refined into this Sequential Automaton is also a part of the active configuration.

We perform the verification by treating the models as transition systems be-
tween state configurations, and finding a bisimulation relation between them,
based on the following steps:

1. Every state configuration SA in the Statechart model must have an equiva-
lent state configuration SB in the EHA model. Based on the transformation
described above, a Basic State is created in the EHA model for every State
in the Statechart. During the transformation process, we use a ‘cross-link’ to

10 G. Karsai and A. Narayanan

relate the State in the Statechart model and its corresponding Basic State in
the EHA model (as shown in Figure 7), meaning that the two are equivalent.
We define that the state configurations SA and SB are in R, or (SA, SB) ∈
R, if every State in SA has an equivalent Basic State in SB and vice-versa.

2. If for any two equivalent state configurations (SA, SB) ∈ R, there exist
transitions (t : SA → S′

A, t′: SB → S′
B) such that S′

A and S′
B are equivalent,

then the relation R is a bisimulation.

If the R is a bisimulation, then verifying the EHA model for reachability will
be equivalent to verifying the Statechart model for reachability. If not, it means
that the models do not behave identically with respect to reachability, and that
could be due to an error in the transformation.

Fig. 7. Sample GReAT rule with cross-link

4 Case Study 2: Transformation between Variants of
Statecharts

To illustrate the next approach to verifying transformations, we describe a trans-
formation between two variants of the Statecharts formalism. For the purposes
of this case study, we will consider two hypothetical variants, and list out their
differences. Their semantics will be described by semantic anchoring.

4.1 Variants of Statecharts

Since the introduction of the original Statecharts formalism [18], many imple-
mentation variants have been developed, a number of which have been surveyed
in [19]. These variants differ in several subtle features. For this case study, we
propose two hypothetical variants, called SCA and SCB, which differ in certain
specific aspects as noted below.

On the Correctness of Model Transformations in the Development 11

Compositional Semantics. Compositional semantics is the property of a
language by which a compound object is completely defined by the semantics
of its subcomponents. The presence of inter-level transitions (which cut across
levels of hierarchy) in Statecharts violates compositional semantics [19]. If a Stat-
echart allows inter-level transitions, it does not have compositional semantics.
In our case study, only SCB will have compositional semantics. In other words,
SCA will allow inter-level transitions, while SCB will not.

Inter-level transitions may be ‘simulated’ in SCB by using special
‘self-termination’ and ‘self-start’ states, which act as proxy states for effecting
transitions across different hierarchies. To maintain equivalent step semantics
while performing such transitions, the proxy states must be instantaneous (i.e.
executed in the same time step).

Instantaneous States. Instantaneous states are entered and exited within a
single time step in the execution of the Statechart. When a system encounters an
instantaneous state, it is immediately exited, until a non-instantaneous state is
reached. The sequence of transitions leading to the final state is called a ‘macro
step’. Most common Statechart variants do not allow instantaneous states. In
this case study, we will allow only SCB to have instantaneous states.

State References. In some Statecharts variants, triggers may be specified by
referencing the activity of other parallel states. For instance, the condition in(S)
is true when state S is active, and entering or exiting S will result in events
en(S) and ex(S) respectively. Such conditions are called state references. In this
case study, we will allow SCA to have state references, but not SCB.

Figure 8 shows an SCA model and an SCB model. The SCB model in this
case simulates the behavior of the SCA model. The state D in Figure 8(b) is an
instantaneous state that acts as a ‘self-termination’ state. The transitions T21
and T22 are fired in a single time step, thus simulating the effect of firing the
transition T2 in Figure 8(a). We would like to note at this point that there may be
models that can be described in one Statechart variant that cannot be described
in the other. Our objective is not to find a transformation that will transform
any SCA model into an SCB model; it is only to check whether a particular
SCB model generated by transforming an SCA model is indeed acceptable.

4.2 Semantic Anchoring

We will use non-hierarchical FSMs as the semantic unit to represent the behavior
of the Statechart variants, extended to allow instantaneous states. The semantics
of the FSM semantic unit is described using AsmL [15]. The semantic anchoring
itself is specified using graph transformations, which transform the Statechart
model into its semantic unit.

The behavior models generated by the semantic anchoring are shown in Figure
9. States in the FSM semantic models represent valid state configurations in the
Statechart model (for instance, the state P Q A in Figure 9(a) represents the
state configuration containing the states P, Q and A in Figure 8(a)). The state

12 G. Karsai and A. Narayanan

(a) SCA model

(b) SCB model

Fig. 8. Models of Statechart Variants

P Q D in Figure 9(b) is an instantaneous state. Note that the two transition
systems are not strictly bisimilar, though they represent similar behaviors as
observed by an external observer.

(a) Semantic model for SCA model

(b) Semantic model for SCB model

Fig. 9. FSM Semantic Models

4.3 Transformation Steps

For this case study, the languages SCA and SCB were defined in GME, and a
transformation from SCA to SCB was built using GReAT [8]. The main steps
in the transformation are listed below:

1. For every state in the SCA model, create a state in the SCB model, and give
it an identical label. This label will later be used to trace the equivalence
relation.

2. For every simple transition (with both the source and the destination under
a single parent) in the SCA model, construct a transition in the SCB model
between the corresponding states.

3. For every inter-level transition in the SCA model, add a self-termination or
a self-start state in the SCB model, until the source and the destination fall
under the same parent, thus constructing a series of transitions in the SCB
model.

On the Correctness of Model Transformations in the Development 13

4. If the SCA model contains state references, add specially named triggers to
the appropriate transitions. For instance, if a trigger en(S) is encountered,
add a trigger en S in the output, and the action en S to all the transitions
into state S in the output.

4.4 Verification by Weak Bisimilarity

We consider the behaviors of the two models to be identical if they appear
identical to an external observer. Thus, the transition systems representing the
behavior need not be strictly bisimilar. We turn to the more practical notion of
weak bisimilarity, by carefully redefining what constitutes states and transitions.

We only consider non-instantaneous states, and define transitions to be be-
tween non-instantaneous states. Thus, we define a relation R between non-
instantaneous states of the two transition systems representing the two behavior
models. By retaining the state labels during the transformation and the seman-
tic anchoring process, we say that two non-instantaneous states are in R if their
labels are identical. We then say that R is a weak bisimulation if:

∀ (p, q) ∈ R and ∀α: p α⇒ p′, ∃ q ′ such that q α⇒ q ′ and (p′, q ′) ∈ R,

and conversely,

∀α: q α⇒ q ′, ∃ p′ such that p α⇒ p′ and (p′, q ′) ∈ R.

where p, q, p′, q ′ are all non-instantaneous states, the transition ⇒ is from one
non-instantaneous state to another, and α is the aggregate of the events for the
transition, disregarding instantaneous states and actions (The label α constitutes
both the cause of a transition and its effect. In our implementation, we represent
α as a comma separated list of the events that are the triggers and the actions
of the transition. In the case of a weak transition, this list will include all the
non-instantaneous events that are the triggers and the actions of the sequence of
transitions which constitute the weak transition). According to this definition,
the FSM models in Figurers 9(a) and 9(b) are weakly bisimilar. Note that this
notion of weak bisimilarity guarantees equivalence of behavior between the two
models, for all practical purposes.

5 Case Study 3: Code Generation from Stateflow Models

C code is generated from Stateflow models by converting them to an intermediate
form called SFC. SFC provides an abstract representation of C programs, using
modeling primitives such as Functions, FunctionCall, ConditionalBlock etc. to
represent fragments of C code. A straightforward translation can produce the
textual C code from the SFC model.

The generated code models the step semantics of the Stateflow diagram [20].
This is achieved primarily by using three types of functions for each state in the
Stateflow model: an enter function models entry into the state, an exit func-
tion models leaving the state, and an exec function models the step execution of

14 G. Karsai and A. Narayanan

that state if it is in the active configuration for that step. This allows us to, for
instance, model a guarded transition as FunctionCalls to the appropriate exit
and enter functions, enclosed in a ConditionalBlock. Additional statements are
generated to complete the model, such as labels for states, variables, and struc-
tures to capture context information. The execution of this code simulates the
Stateflow model by managing the active state configuration, which is the direct
result of how the enter, exit and exec functions are called. The active configura-
tion can thus be mapped on to a finite automaton, which should represent the
flattened form of the Stateflow model.

The generation of the SFC model from a Stateflow model is achieved by a
graph transformation. Errors in this transformation could generate an incorrect
SFC model, which would result in code that may not truly represent the seman-
tics of the original Stateflow model. One way to check if the generated model is
indeed correct is to compare the flattened automaton constructed from the state
configurations encountered in the C code with the original Stateflow model. If
the two are bisimilar, we can conclude that the generated code truly represents
the semantics of the Stateflow model for that instance.

The nature of the SFC paradigm allows us to construct the flattened au-
tomaton directly from the SFC model, by following some basic steps as outlined
below.

5.1 Step 1: Collect the Flattened Active State Configurations

The exec function of each state models the step execution for that state. If the
state contains sub-states, then it calls the exec functions of its active sub-states,
and so on, until the leaf states are reached. Thus, tracing a sequence of exec func-
tion calls to a leaf state will give one active configuration. A function call graph
is a graph whose nodes are function signatures, and edges represent potential
function calls. A path in this graph represents a sequence of function calls.

Figure 11 shows a portion of a function call graph, restricted to calls between
exec functions, for the code generated from the Stateflow model in Figure 10 (the

Fig. 10. Sample Stateflow model

On the Correctness of Model Transformations in the Development 15

Fig. 11. Function call graph - exec functions

Fig. 12. Function call graph - transitions

function name consists of the name of the state it models in the Stateflow model,
followed by a unique id, followed by ‘exec’ to indicate that it is an exec function).
This takes the form of a rooted tree, with the topmost state at the root, and the
leaf states as the leaf nodes. Collecting all the states in a path from the root to
a leaf node gives one possible active state configuration. The active state con-
figurations in this case are: {Controller, ON, Hi}, {Controller, ON, No},
{Controller, ON, Lo} and {Controller, OFF}. Each of these will correspond
to a separate state in the flattened automaton.

5.2 Step 2: Add Transitions to Complete the Finite Automaton

Transitions are implemented by calling the exit function of the source state
and then the enter function of the target state. Both these function calls are
placed inside a conditional block in the exec function of the source state. This
conditional block encodes the triggers and guard conditions. When the source
state is active, its exec function is called, which checks if the transition can be
fired. If it can, then it calls the appropriate exit and enter functions, which
results in a new active configuration. The exit function of a state also calls the
exit functions of its direct sub-states, and the enter function of a state also calls
the necessary enter functions, such as initial sub-states.

16 G. Karsai and A. Narayanan

Fig. 13. Flattened automaton from generated code

We once again use the function call graph of the generated C code to determine
the transitions in the flattened automaton. Figure 12 shows a section of the
call graph, that models the transition from the ON state to the OFF state in
Figure 10. The two function calls in the exec function of the ON state are enclosed
in a conditional block. The exit function calls give the state configurations that
form the source of the transition, and the enter function calls give the state
configuration that forms the target of the transition.

In this case, the configurations containing {ON, Hi}, {ON, No} and {ON, Lo}
can be the source states of the transition. The target state of the transition is the
configuration containing {OFF}. In the flattened automaton, we draw transitions
from each of the possible source configurations to the target configuration. In
this way, all the possible transitions are created in the flattened automaton. The
result is shown in Figure 13. This is the automaton that the generated C code
simulates. The check if this represents the semantics of the original Stateflow
model, we must check whether the two transition systems are bisimilar.

5.3 Bisimilarity Checking

As we have seen in the first case study, we can generate an EHA representation
from the Stateflow model. Figure 14 shows the EHA representation for the State-
flow model in Figure 10. To check for bisimilarity, we first construct a relation
R mapping each state configuration in the EHA model to its equivalent config-
uration in the flattened automaton in Figure 13. The transformation from the
Stateflow model to the SFC model copies the state labels into the function prim-
itives. This allows us to identify which functions belong to which states. Thus,
the labels in the automaton in Figure 13 are derived directly from the Stateflow
model. Retaining the state labels in the EHA model allows us to map equivalent
state configurations by comparing the labels. After constructing the relation R,
we check whether R is a bisimulation, according to the given definition.

While the function primitives are specific to this implementation, we would
like to point out that this example shows that it is possible to obtain an au-
tomaton representation from code that is generated to simulate a Statechart
model, as an extension of the transformation that generates the code from the
Statechart model. This allows us the possibility to establish an assurance about
the correctness of the transformation.

On the Correctness of Model Transformations in the Development 17

Fig. 14. EHA representation of Stateflow model

6 Summary and Future Work

The model-based development of embedded systems requires transformations
on models. Even in simple cases, code generators are needed. For verification,
models often need to be translated into the input language of the verification
tools. While verification tools can prove properties about models, their results
are reliable only if the transformation were correct to begin with. In order to
ensure that the embedded system and its code satisfies stringent correctness
criteria, it is necessary that the tools used in the development are verified, and
all transformations preserve, for example, the salient behavioral properties of
the models.

In this paper we introduced the concept of ‘instance-based verification’ that
provides a pragmatic approach to generate a certificate for each transformation
executed, and showed some early results for specific model transformations. The
three case studies show how this technique can be applied, and address some
difficulties that arise in the verification of these transformations. Further research
in this area should extend the technique to other properties, e.g. no-cycles in
the call graphs of generated code, all variables initialized before use, no index
limits violated, and others. Another important extension is the ability to verify
transformations that discard or add aspects to the model (such as creating an
abstraction of the original model). A strict bisimulation equivalence may not be
applicable in such cases, and other coarser forms of equivalence must be explored.

In our approach, we have modified the transformation rules in order to add
certain annotations, that will later help us to verify the preservation of certain
properties. In the absence of these modifications, it would be a regular model
transformation (whose results may not be certifiably correct). We are currently
researching techniques by which existing model transformation specifications can
automatically be embellished with the ingredients for creating annotations that
can be used with a generalized verification framework.

Acknowledgement. This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 0509098. We would like to thank the
anonymous reviewers for their valuable comments and suggestions.

18 G. Karsai and A. Narayanan

References

1. Matlab, Simulink and Stateflow tools: http://www.mathworks.com
2. Matrix-X tools: http://www.ni.com
3. Rhapsody tools: http://www.ilogix.com
4. The NuSMV tools: http://nusmv.irst.itc.it
5. Formal Verification with SPIN: http://spinroot.com
6. Harel, D., Rumpe, B.: Meaningful Modeling: What’s the Semantics of ‘Semantics’?

Computer 37(10), 64–72 (2004)
7. Evans, A., Lano, K., France, R., Rumpe, B.: Meta-modeling semantics of UML. In:

Kilov, H., Rumpe, B., Simmonds, I. (eds.) Behavioral Specifications of Businesses
and Systems, Kluwer Academic Publisher, Dordrecht (1999)

8. Agrawal, A., Karsai, G., Neema, S., Shi, F., Vizhanyo, A.: The design of a language
for model transformations. Journal Software and Systems Modeling 5(3), 261–288
(2006)

9. Denney, E., Fischer, B.: Certifiable Program Generation. In: Glück, R., Lowry, M.
(eds.) GPCE 2005. LNCS, vol. 3676, pp. 17–28. Springer, Heidelberg (2005)

10. Zuck, L., Pnueli, A., Fang, Y., Goldberg, B.: VOC: A Translation Validator for
Optimizing Compilers. In: COCV 2002. International Workshop on Compilers Op-
timization Meets Compiler Verification, ENTCS, vol. 65(2), Elsevier Science, Am-
sterdam (2002)

11. Holzmann, G.: The model checker SPIN. IEEE Transactions on Software Engineer-
ing 23(5), 279–295 (1997)

12. Mikk, E., Lakhnech, Y., Siegel, M.: Hierarchical automata as model for statecharts.
In: Shyamasundar, R.K., Euda, K. (eds.) ASIAN 1997. LNCS, vol. 1345, pp. 181–
196. Springer, Heidelberg (1997)

13. Varro, D.: A Formal Semantics of UML Statecharts by Model Transition Systems.
In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2002.
LNCS, vol. 2505, pp. 378–392. Springer, Heidelberg (2002)

14. Sangiorgi, D.: Bisimulation: From the origins to today. In: LICS 2004. Proceedings
of the 19th Annual IEEE Symposium on Logic in Computer Science, pp. 298–302.
IEEE Computer Society, Los Alamitos (2004)

15. Chen, K., Sztipanovits, J., Abdelwahed, S., Jackson, E.K.: Semantic anchoring
with model transformations. In: Hartman, A., Kreische, D. (eds.) ECMDA-FA
2005. LNCS, vol. 3748, pp. 115–129. Springer, Heidelberg (2005)

16. Gurevich, Y.: Specification and Validation Methods. In: Evolving Algebras 1993:
Lipari Guide, pp. 9–36. Oxford University Press, Oxford (1993)

17. Harwood, W., Moller, F., Setzer, A.: Weak bisimulation approximants. In: Ésik, Z.
(ed.) CSL 2006. LNCS, vol. 4207, Springer, Heidelberg (2006)

18. Harel, D.: Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming 8(3), 231–274 (1987)

19. von der Beeck, M.: A comparison of statecharts variants. In: Langmaack, H.,
de Roever, W.-P., Vytopil, J. (eds.) ProCoS 1994. LNCS, vol. 863, pp. 128–148.
Springer, Heidelberg (1994)

20. Simulink Reference, The Mathworks, Inc. (July 2002)

http://www.mathworks.com
http://www.ni.com
http://www.ilogix.com
http://nusmv.irst.itc.it
http://spinroot.com

F. Kordon and O. Sokolsky (Eds.): Monterey Workshop 2006, LNCS 4888, pp. 19–34, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Supporting System Level Design
of Distributed Real Time Systems

for Automotive Applications

Klaus D. Müller-Glaser1, Clemens Reichmann2, and Markus Kuehl2

1 Universitaet Karlsruhe, ITIV, Engesserstrasse 5, 76128 Karlsruhe, Germany
kmg@itiv.uni-karlsruhe.de

2 Aquintos GmbH, Lammstrass 21, 76133 Karlsruhe, Germany
reichmann@aquintos.com, kuehl@aquintos.com

Abstract. Up to 70 electronic control units (ECU’s) serve for safety and
comfort functions in a car. Communicating over different bus systems most
ECU’s perform close loop control functions and reactive functions fulfilling
hard real time constraints. Some ECU’s controlling on board entertain-
ment/office systems are software intensive, incorporating millions of lines of
code. The design of these distributed and networked control units is very
complex, the development process is a concurrent engineering process and is
distributed between the automotive manufacturer and several suppliers. This
requires a strictly controlled design methodology and the intensive use of
computer aided engineering tools. The CASE-tool integration platform
“GeneralStore” and the “E/E-Concept Tool” for design space exploration
supports the design of automotive ECU’s, however, GeneralStore is also used
for the design of industrial automation systems and biomedical systems.

Keywords: automotive control systems, heterogeneous models, CASE tool
integration platform GeneralStore, model transformation, EE-Concept-Tool for
design space exploration.

1 Introduction

More than 60 electronic control units (ECU’s) serve for safety and comfort functions
in a luxury car. Communicating over different bus systems (e.g. CAN class C and B,
LIN, MOST, Bluetooth [1]) many ECU’s are dealing with close loop control
functions as well as reactive functions, they are interfacing to sensors and actuators
and have to fulfill safety critical hard real time constraints. The embedded software in
such ECU’s is relatively small, counting up from a few thousand lines of code to
several ten thousands lines of code. The software is running on a standard hardware
platform under a real time operating and network management system like
OSEK/VDX [2]. Other ECU’s controlling the onboard infotainment system (video
and audio-entertainment, office in the car with according internet and voice
communication, navigation) are really software intensive incorporating already

20 K.D. Müller-Glaser, C. Reichmann, and M. Kuehl

millions of lines of code. All ECU’s are connected to the different busses which in
turn are connected through a central gateway to enable the communication of all
ECU’s.

As new functions in future cars require communication to traffic guidance systems,
road condition information systems as well as car to car communication, the software
intensive infotainment ECU’s will be directly coupled to power train and body control
ECU’s, even forming closed loop control. Thus, the design of these future systems
need to combine methodologies and computer aided design tools for reactive systems
and closed loop control systems as well as software intensive systems.

The challenge for the design of those distributed and networked control units is to
find and define all requirements and constraints, to understand and analyze those
manifold interactions between the many control units, the car and the environment
(road, weather etc.) in normal as well as stress situations (crash), within a
development process which is concurrent and distributed between the automotive
manufacturer and several suppliers. This requires a well understood life-cycle model
(like the V-model [3]) and a strictly controlled design methodology and using
computer aided engineering and design tools to its largest extent.

For the development of closed loop control functions (e.g. power train control)
ECU designers prefer graphical methods using data flow diagrams offered by tools
like Mathworks Matlab/Simulink [11] or ETAS Ascet-MD [12]. For reactive
functions (e.g. body control) designers prefer statechart descriptions offered by e.g.
Matlab/Stateflow or I-Logix Statemate [13]. For the software intensive functions in
car-infotainment designers prefer the Unified Modeling Language UML [14].
Therefore, the design of the new complex functions which are distributed over many
ECU’s will require heterogeneous modeling. To support an according model based
design methodology we have developed the CASE (Computer Aided Software
Engineering) tool integration platform “GeneralStore”, which is described in chapter
2 with its meta-modeling and integration aspects as well as simulation and automatic
code generation. Chapter 3 discusses model to model transformation and chapter 4
describes the “E/E-Concept Tool” which supports design space exploration for the
automotive domain.

2 Case Tool Integration Platform

The integration platform “GeneralStore” is a tool that assists a seamless development
process starting with a model and ending with executable code. The integration
platform features coupling of subsystems from different modeling domains (see for
Figure 1) on model level. From the coupled models it generates a running prototype
respectively system by code generation. In addition to object-oriented system
modeling for software intensive components in embedded systems, it supports time-
discrete and time-continuous modeling concepts. Our approach provides structural
and behavioral modeling with front-end tools and simulation/emulation utilizing
back-end tools. The CASE-tool chain we present in this chapter further supports
concurrent engineering including versioning and configuration management. Utilizing
the UML notation for an overall model based system design, the focus of this chapter
lies on the coupling of heterogeneous subsystem models and on a new code
generation and coupling approach.

 Supporting System Level Design of Distributed Real Time Systems 21

Fig. 1. Tools used for heterogeneous modeling in automotive applications

2.1 Meta Modeling

In our approach the whole system is described as an instance of one particular meta-
model in one notation. The related meta-model has to cover all three domains: time-
discrete, time-continuous, and software. The Unified Modeling Language is an Object
Management Group (OMG) standard [6] which we use as a system notation and meta-
model. It is a widely applied industry standard to model object-oriented software.
Abstract syntax, well-formed rules, the Object Constraint Language (OCL) and
informal semantic descriptions specify UML. As we will point out later, we use this
notation to store the overall model while ECU-designers still use those domain
adequate modeling languages (e.g. signal flow diagram, state charts, UML, etc.),
which fits best to her/his design problem.

The UML specification provides the XML Metadata Interchange format (XMI) [7]
to enable easy interchange of meta-data between modeling tools and meta-data
repositories in distributed heterogeneous design environments. XMI integrates three
key industry standards: the Extensible Markup Language (XML) as a standard of the
World Wide Web Consortium W3C [16], the UML, and the Meta Object Facility
(MOF) [8], an OMG meta-modeling standard which is used to specify meta-models.

2.2 Integration Platform

The integration platform GeneralStore follows a 3-tier architecture. On the lowest
layer (database layer) the commercial object-relational database management system
ORACLE respectively MySQL was selected. On the business layer we provide user
authentication, transaction management, object versioning and configuration

Rhapsody in C++ (i-Logix)
Statemate (i-Logix)
Stateflow (The MathWorks)
ASCET (ETAS)

Event driven
Modeling with state charts

[my

/

S

/

ASCET (ETAS)
MATLAB/Simulink(TheMathWorks)
MATRIXx (National Instruments)

Signal flow oriented
Modeling with block diagrams

Architecture
Modeling with UML

B Soc

o

Bat

So

Real-time Studio (ARTiSAN)
Rhapsody in C++ (i-Logix)
Rose (Rational Software, IBM)
Together (Borland)
Poseidon (Gentleware)
MagicDraw (NoMagic)
Ameos (Aonix)
TAU2 (Telelogic)

22 K.D. Müller-Glaser, C. Reichmann, and M. Kuehl

management. GeneralStore uses MOF as its database schema for storing UML
artifacts. Inside the database layer an abstraction interface keeps GeneralStore
independent from the given database.

While interim objects on the business layer enclose MOF elements, the CASE
adaptor stays thin and highly reusable. These interim objects are used to enable object
identity to handle object versioning and configuration management.

GeneralStore CASE-Tool Integration Platform

Template
UML Coder

XMI

C
++

...
generator

other
commercial

code generators

XMI2XX

C
/C

++

CG-Adaptor

Rhapsody in
MicroC

automation

JAVA

MicroC

XMI

C

JAVA

Target-Monitoring
Model Debugging

Test

Compiler / Linker / Make

C

Matlab
Automation

JAVA

Matlab
Embedded Coder

DCOM

Target platforms (RTOS)

Matlab Wrapper
Generator

JAVA

Statemate Wrapper
Generator

JAVA

Model Data
MySQL, ORACLE

SQL

MATLAB
Simulink

MDL

MATLAB
Stateflow

MDL XMI 1.0, XMI 1.1, XMI 1.2

Rhapsody

Poseidon

MagicDraw

Together

Rose

ARTiSAN

AONIX

Statemate

Fig. 2. Integration Platform GeneralStore

The business layer of GeneralStore, the mediator pattern [9], is used to keep the
CASE-tool integration simple and its adaptor uniform. The transformations for
specific notations supported by CASE-tools are implemented using plug-ins (see top
of Figure 2). On the presentation layer GeneralStore provides three principal CASE-
tool adapters:

1. MATLAB/Simulink/Stateflow was selected for the control system design
domain and the integration is done using the proprietary model file (MDL).

2. Generic and specialized XMI importer/exporter filters of *.xmi files: Here we
use XSLT transformations [10] to adopt the tool specific interpretation of the UML
and XMI standard. The UML CASE-tools we have chosen are Together (Borland),
Poseidon (Gentleware), MagicDraw (No Magic, Inc.), Rhapsody in C++/JAVA (i-
Logix), and Rational Rose (IBM). Statemate (i-Logix) was chosen in the time-discrete
domain.

3. COM based integration of ARTiSAN Real-Time Studio: This UML CASE-tool
was selected because of its focus on embedded real time systems.

All tools, except Statemate, which allows only export of XMI files, are linked to
the GeneralStore architecture in a bidirectional way.

 Supporting System Level Design of Distributed Real Time Systems 23

The code generation plug-ins (Template Coder, Embedded Coder, and Rhapsody in
MicroC) controls the transformation to the source code (Figure 2). Their wrapper gen-
erators are automatically building the interface to the UML model.

For model management and CASE-tool control, GeneralStore offers a system
hierarchy browser. Since the internal data-model representation of GeneralStore is
UML, GeneralStore offers a system browser for all UML artifacts of the current
design. A large amount of MOF objects are generated, e.g. an empty model
transformed out of Matlab/Simulink already generates 3783 XMI entities because of
the many tool internal parameters normally not visible to the user. A simple integrator
block needs 405 entities, a basic PID-block can count up to 2786 entities. However,
describing many instantiated blocks of the same kind, the XMI entities increase is
linear and scales well even to very large designs. The description of an autosampler
(robot arm) with closed loop and reactive functions for a chemical analysis system,
for example, showed a total of 44239 XMI entities. The description of a complete
passenger car for hardware-in-the-loop tests in Matlab/Simulink (>8 Megabyte .mdl
file) generated more than 4 million entities. However, today’s powerful database
systems still perform very well with that amount of data items. For speed up in navi-
gating through a complex design GeneralStore offers design domain specific
hierarchy browsers, e.g., a system /subsystem hierarchy view for structural or time-
continuous design, or a package hierarchy view for software design.

2.3 Code Generation

There are highly efficient commercial code generators on the market. In safety critical
systems certificated code generators have to be used to fulfill the requirements. The
GeneralStore platform allows partitioning of the whole system into subsystems. Thus
we enable the usage of different domain specific code generators. Each code
generator has benefits in specialized application fields.

We follow the Model Driven Architecture (MDA) [14] approach: transforming a
Platform Independent Model (PIM) to the Platform Specific Model (PSM).

For control-systems there are commercial code generators like TargetLink (from
dSPACE GmbH [17]), Embedded Coder (from Mathworks, Inc.) or ECCO (from
ETAS GmbH). In the time-discrete domain we utilize the code generator of Statemate
(Rhapsody in MicroC from I-Logix). In the software domain commercial code
generators only generate the stubs of the static UML model while behavioral
functionality has to be implemented by the software engineer. As we focus on a
completely generated executable specification, it is necessary to generate code out of
the overall model. Therefore we provide a code generator as a GeneralStore plug-in to
enable structural and behavioral code generation directly from a UML model. The
body specification is done formally in the Method Definition Language (MeDeLa),
which is a high level action language based on Java syntax. It suits the action
semantics defined by the OMG since UML version 1.4 as the concrete syntax.

Currently GeneralStore supports Embedded Coder for closed-loop models,
Rhapsody in MicroC for state charts, and a template coder for the UML domain (see
Figure 2). Our template code generator is using the Velocity engine to generate Java
or C++ source code. Velocity is an Apache open source project [18] focused on

24 K.D. Müller-Glaser, C. Reichmann, and M. Kuehl

HTML code generation. It provides macros, loops, conditions, and callbacks to the
data model’s business layer. One of its strengths is the speed when rendering.

Using the templates, the structure of the UML model is rendered to code. The
behavioral specification is done with MeDeLa. It is transformed to the according
Abstract Syntax Tree (AST). Then the AST is traversed as the Velocity template
renders each statement or expression. It is possible to access the whole UML model
from the template. Up to now, we use class diagrams and state diagrams.

Different domains have interactions, e.g., signal inspection, adoption of control
system parameters at runtime, or sending messages between time-discrete and
software artifacts. Those interfaces are defined in the different models and the
coupling definitions are done in the UML model. The developer of such a subsystem
is able to explicitly define which events, signals, data, and parameters can be accessed
from the outside (the UML model). After the definition in the specific domain (e.g.,
closed-loop control system design) is finished the notation is automatically
transformed to the UML. For the discrete subsystem domain this works analogously.

The wrapper generator collects all the information about the interface in this model
and generates artifacts, which represent the interface in UML. This includes the
behavioral part of the access, which is done with MeDeLa. The developer uses the
UML template mechanism to specify the general access mechanism for a specific
type of interface. This is highly customizable. Thus the code generation provides a
highly flexible mechanism for modeling domain interfaces.

2.4 Simulation and Emulation

For early verification on system level and subsystem level simulation as well as
emulation is used.

The standard procedure in designing new functions for automotive applications is
to build the model with the according tool and simulate that model within that tool
(supporting either closed loop control systems, reactive systems or software intensive
systems). This works well for the subsystem level where we may have only models of
one kind. However, the model of the complete system very often consists of models
of different kinds. Simulation of heterogeneous models for closed loop control
together with reactive control is supported within several tools e.g.
Matlab/Simulink/Stateflow or ETAS Ascet MD). These tools offer synchronized
simulation kernels, one for closed loop control to numerically solve systems of
ordinary differential equations (calculating physical quantities continuous in value
and time), the other kernel to solve boolean equations (quantities discrete in value and
time) for reactive systems. Combining these models with UML models is not
supported in a single simulation tool. A possible solution is to use and link different
tools to carry out co-simulation [20], to use a simulation-backplane [21, 22], or to use
GeneralStore to link the code fragments.

In using automatically generated code running on a rapid prototyping hardware
platform, emulation complements simulation for verification purposes. Running
generated C-code on a target microprocessor platform or even generating VHDL code
and synthesizing a hardware implementation of an algorithm to be mapped into an
FPGA speeds up execution time by two orders of magnitude compared to simulation.

 Supporting System Level Design of Distributed Real Time Systems 25

A very common problem for simulation of automotive applications is due to the
use of model libraries of one domain (e.g. closed loop control) but of different tools;
most prominent is the use of libraries in Matlab/Simulink and ETAS Ascet MD.
Whereas Matlab/Simulink models are used in early system design phases, ASCET
MD models may be used later on for models closer to product implementation. So
very often a simulation using models out of both tools is required. Here, a tool
integration platform like ETAS INTECRIO gives support [23]. INTECRIO is a rapid
prototyping environment for electronic control units supporting the specific needs of
electronics and software development in the automotive industry. The possible inte-
gration of different Behavior Modeling Tools (BMT) allows working with the tool of
choice in each project and in each specialized team. Open interfaces and the available
BMT Connectors for MATLAB®/Simulink® and ASCET enable a smooth integration
of different software functions generated with different BMTs. The resulting software
prototype can be tested on a rapid prototyping hardware platform.

Another possible solution is to do a model transformation from one tool to the
other tool, e.g. Matlab/Simulink into ASCET MD. The very same problem exists
when using UML models built with different UML tools. Thus model to model
transformation is another important issue.

3 Model to Model Transformation

The above mentioned reasons ask for model to model transformations, but there are
other reasons, too. One of the major problems in the ECU software development
process using heterogeneous modelling is an obvious lack in design synchronisation,
which means that model data has to be created multiple times to cover the needs of
the different design phases (e.g. concept design versus detailed design). Moreover the
phase transition between software architecture design (UML notation) and software
development (block diagram notation, state-charts) is not continuous as a result of
different description languages. This often leads to a design gap between the
mentioned design phases. Overall the design gap between different CASE tools or
even between different design phases has to be closed to accelerate future
developments. A technique to solve this productivity issue is model to model
transformation. Established model to model transformations (e.g. model importers to
migrate models from different vendor tools) are hard coded today and therefore
hardly to maintain as the model often is very complex. We have developed an
innovative solution for model-to-model (M2M) transformation to bridge the obvious
design gap between different CASE tools.

3.1 Model to Model Transformation Technology

Our model-to-model transformation uses a model-based design approach for the
design and construction of transformation rules. This technique to annotate the
transformation rules is called M²TOS. It uses the graphical Unified Modelling
Language combined with a special action language as a specification language for
transformation rules between a source model and a target model. The advantages in
using UML for the specification of transformation rules result in a very good

26 K.D. Müller-Glaser, C. Reichmann, and M. Kuehl

readability and maintainability of the transformation rules. An optimising code-
generator is used in the M²TOS design process to produce executable and efficient
transformation rules without hand-coding at all.

UMLClass_2_Module

LHS

Realization Elements

source : Class

a : TaggedValue

name == RefClass
dataValue

RHS

Realization Elements

source : SDModule

: SDFolder

{ID=elementName}

elementName =>ASIS

<<root>>
: DB

: SDClassComponent

{ID=elementName, elementID}

elementName = Utility::CreateClassName(source.name)
elementID = "SDCC_" + source.getUUID()

a : SDAttribute

elementName = a.dataValue
elementID = "SDCI_" + source.getUUID()

modelElement-taggValue

folder-component

dBase-folder

classComponent-classInstance

module-moduleVariable

folder-component

UMLClass_2_Module

LHS

Realization Elements

source : Class

a : TaggedValue

name == RefClass
dataValue

RHS

Realization Elements

source : SDModule

: SDFolder

{ID=elementName}

elementName =>ASIS

<<root>>
: DB

: SDClassComponent

{ID=elementName, elementID}

elementName = Utility::CreateClassName(source.name)
elementID = "SDCC_" + source.getUUID()

a : SDAttribute

elementName = a.dataValue
elementID = "SDCI_" + source.getUUID()

modelElement-taggValue

folder-component

dBase-folder

classComponent-classInstance

module-moduleVariable

folder-component

Fig. 3. Transformation Rule specified in UML

In Figure 3 one specific transformation rule is shown. It is separated into a sub-
package LHS (left hand side) and RHS (right hand side). LHS is implemented as a
search pattern and RHS as a creation pattern that simultaneously parameterises the
merge process. The structure of a transformation rule is graphically modelled as a
UML Object diagram. The search pattern supports the AND, OR and NOT structures.
The attribute values of an object are specified formally in text form by means of the
Method Definition Language (MeDeLa). Therefore the expressions are declarative in
the search pattern and imperative in the creation pattern. On one hand the
transformation rules are grouped in transformation concepts and on the other hand,
the rules are organised based on the source meta-model. With both these mechanisms,
a clear and easily understandable transformation model can be created. Redundant
transformation rules can be avoided by reuse-mechanisms.

3.2 Model to Model Transformation Sequences

In Figure 4 the resulting model-to-model transformation sequence is presented. In the
given scenario Mathworks Simulink® is used as a source tool to provide rapid proto-
typing models to feed an ASCET® function development for detailed ECU software
design. The Simulink models are parsed by an importer of the transformation engine.
The transformation engine with the help of the M2M rule-set scans the source model
and generates target model artefacts to export to ASCET. The speed of the
transformation is of very high performance. Depending on the size of the model and

 Supporting System Level Design of Distributed Real Time Systems 27

the given CASE tool interface even big models can be transformed under one minute
CPU time on a standard PC. In a comparable sequence, a different rule-set
implements a M2M transformation between ARTiSAN Studio UML and ASCET.

Rule4Rule4
Rule3Rule3

Rule2Rule2

ImporterImporter TransformatorTransformator Exporter

Rule-Modell
UML

Source Model
Tool A

Target-Model
Tool B

<<metamodel>>
Source-Metamodel

<<metamodel>>
Source-Metamodel

<<metamodel>>
Target-Metamodel

<<metamodel>>
Target-Metamodel

Rule1Rule1

LHSLHS RHSRHS

Instance of Instance of

Fig. 4. Structure of the M2M transformation

The available transformation rules for ASCET and Simulink are implemented bi-
directional to synchronize models between both CASE tools. This synchronisation
technology is very important to ensure that further modifications of transformed
models have to be bridged back into a master model or to synchronize development
teams using different CASE tools without the need for time-consuming hand-based
transformations. This model synchronisation (which also covers the “merge” use
case) is implemented with a model versioning technique based on a relational
database, to compare an updated model with a previous version of the model. This
synchronisation technique ensures that changes in the model will not be lost after
repetitive transformation. In any case, a transformation report will be generated.

So far we looked at modeling functionality using heterogeneous models and using
different behavior modeling tools. However, this is not enough to evaluate different
architectures of distributed ECU’s in a car. Design space exploration in early system
design phases needs domain specific descriptions of different views onto the system,
taking into account not only ECU’s but also the mounting spaces and the wiring
harness which interconnects them. These aspects build up the electrical/electronic
architecture (e/e-architecture) of a car, a large set of metrics is used to analyze
alternative architectures.

4 Design Space Exploration

The early concept phases in the development process do have a deep impact on the
final e/e-architecture of the vehicle. This impact can be measured in resulting costs
for the mass production of e/e-components. The goal of the concept phase therefore is

28 K.D. Müller-Glaser, C. Reichmann, and M. Kuehl

to make the right decision for a specific e/e-architecture under different weighted
metrics (costs, quality, reliability etc.) or constraints.

4.1 Requirements for Methods in Early Design Phases

The introduction of methods to improve and formalize early concept phases is a must.
The requirements for methods in early concept phases are: a complete formalised
description of the e/e-architecture; automated rapid evaluation of the various possible
e/e-architectures against defined cost and/or quality metrics. Both requirements can be
captured by the introduction of a complete data-model for concept evaluation of e/e-
architectures including design domains like Function/Feature Networks (top level
description), Function Networks, components networks and finally topology (e.g.
wiring harness, mounting locations for ECU components). Combined with a set of
properties for each data-model artefact, different e/e-architectures can then be
evaluated and compared.

When looking into concepts, the evaluation of different e/e-architectures is nearly
as important as their formal description. The assessments to find the “right”
architecture are based on numerous metrics that give key figures and qualitative facts
for measuring purposes and comparisons between various conceptual alternatives.

Currently, most of these metrics are collected and set together by hand. Often,
some data is held in a spread sheet tool like Excel which then allows for calculating
some metrics, but still necessary data is to be collected and prepared. This means a
time consuming process, which limits today’s evaluation to only looking into a few
conceptual alternatives focusing on one or two possible vehicle variants. Other
metrics can only be estimated by experts, a rather non-objective and non-repeatable
basis for drawing decisions. Regarding the actual situation with constraints on time
and costs while running into an ever increasing complexity, such manual evaluation is
not sufficient anymore.

A prototype for a tool has been developed by DaimlerChrysler (Mercedes-Benz
Passenger Car Development and DaimlerChrysler Research & Technology) and by
FZI Forschungszentrum Informatik (Research Centre for Information Technology,
Department Electronic Systems and Microsystems) in the last three years. After a
successful evaluation of the tool prototype at DaimlerChrysler, the tool has been
transferred into a commercial product by Aquintos GmbH [24].

4.2 Meta Model for e/e-Architecture

The importance of a formalised meta model for the concept evaluation phase of e/e-
architectures is resulting from a need to structure model data (so called concepts),
graphics (graphical notation), metrics (cost and quality estimation etc.) and also
evaluation results. Benchmarking (e.g. comparison of different e/e concepts) can only
be implemented with an e/e-model. The meta model is an automotive domain specific
data model to handle the overall concept model of a complex e/e-architecture in the
concept phase. The focus of the meta model therefore is on interface data and
structural data (e.g. functional architecture). Algorithmic parts are intentionally
excluded from the meta model since the algorithmic or state event behaviour of the
ECU functions are part of the detailed (fine) development phase following later on. In
Figure 5 the different e/e-architecture layers of the meta model are named.

 Supporting System Level Design of Distributed Real Time Systems 29

Functional Architecture
Functions and Subfunctions
Interaction

Software Architecture
Software Structure
Company Standards

Networking Architecture
Communication of ECU
Performance

Component Architecture
ECUs, Variants,
Performance, Memory etc.

Component Topology
Location of the ECUs
Construction, Maintenance, Recycling

Power Supply
Electrical Power Supply and distribution
Generator, Electrical load

Elektronics

Elektrics

Geometry
Physics

HW

SW

Interfaces
Mappings
Processes

Fig. 5. Architecture Layers available within the E/E-meta model

In general the meta-model is divided into software and hardware model artefacts.
From a top-down design approach the functional architecture is an abstract
description of which functions the e/e-architecture consists of and how the
communication between the functions is established. A function itself is defined as an
atomic implementation of an electronic feature (e.g. power window lifter, exterior
light, turn signal etc.). From a bottom-up design approach the component architecture,
cable harness, networking and power supply are detailed model artefacts in the scope
of e/e-architecture hardware. Both hardware and software meta model artefacts are
connected with mappings.

Figure 6 shows a topologic schematic of ECU mounting locations inside the body
of a passenger car and the resulting wiring harness, this figure also visualizes the need

Fig. 6. Topologic schematic of ECU mounting locations, busses and wires

30 K.D. Müller-Glaser, C. Reichmann, and M. Kuehl

to model the electrical part of a distributed ECU network as the number of ECU’s and
their location determines the number of wires, the length, the number of connectors
required, the overall weight of the wring harness as well as the costs.

4.3 E/E-Architecture Meta Model Construction

The construction of the e/e-meta model was done using the established UML notation.
The principal process for the construction of formal meta models was implemented as
shown in Figure 7.

UML model of domain concepts

Code Generation

Transformation

Compilation

Instantiation

Test and Evaluation Model

MOF model of domain concepts

Source Code of the metamodel

Executable metamodel

Final ReviewFinal Review

Customer

Model Expert

Kickoff Meeting

Model Review Model Evaluation

Meta Modeling

Model Review Model Evaluation

Meta Modeling

Fig. 7. Development process of the E/E-meta model

Within a kick-off meeting (interview with different automotive experts with
knowledge from recent automotive projects like AUTOSAR [5], TITUS etc.) a UML
model for the description of e/e-systems was designed. This UML models contains
most of the domain concepts to capture information for benchmarking of e/e-
architectures. The UML model uses UML classes, associations, properties and
packages. This UML model in a second step has been translated into a formal meta
model (using the MOF Meta Object Facility notation from the object management
group) as mentioned in chapter 2.1. The meta model is a clearly structured version of
the UML model from the domain expert interview (extended with model navigation
facility) which can be generated automatically to an executable presentation for the
use within a CASE tool. The executable meta model is secondly used for the metrics
implementation.

4.4 E/E-Architecture Evaluation Metrics

The benchmarking metrics are implemented as executable scripts which navigate
within the meta model. For the calculation of estimates necessary properties will be
addressed by the metric script. The final design of the meta model is a result of
incremental prototype implementations and intensive meta model testing. Actually the
e/e-meta model consists of more than 250 meta classes and more than 1000 different
meta attributes. The e/e-meta model offers description classes and properties for the

 Supporting System Level Design of Distributed Real Time Systems 31

following abstraction layers (Figure 8): feature list (which customer features), feature-
functions network (abstract function presentation of software and hardware of the e/e-
concept with intercommunication), functions network (detailed description of
functions with atomic functions and compositions), components network (networking
of ECU’s and intra-ECU components) and topology (wiring harness, busses,
connectors, battery etc.).

Feature-Functions Network

Feature List

Functions Network

Components Network

Topology

FL

FFN

FN

KN

TOP

T
op

-D
ow

n-
D

es
ig

n

B
ot

to
m

-U
p-

D
es

ig
n

Fig. 8. Abstraction Layers of the Concept Tool Notation

4.5 E/E-Architecture Evaluation

So, the formal description of e/e-architectures in a database now allows for a widely
automated evaluation. Once set up, the tool is capable of going repeatedly through
various different architecture concepts and producing objective metrics for their
comparison. This doesn’t only save time, but allows for further investigation of
factors that couldn’t be taken into account so far.

In an atomised evaluation process, which is supported by a formal database
description, it is important to distinguish the two main categories of such metrics:
quantitative (e.g. cost, weight, length, number of wires) and qualitative (e.g.
reusability, reliability, level of complexity, safety integrity level). Obviously, the
quantitative side consists basically of database queries and counting tasks. This
remains sufficient as long as all relevant information is already at hand and therefore
is included in the databases. However, in the early conceptual stages of a project,
several values such as cost and weight have to be estimated. Such estimations can be
done by users or automatically be derived by more complex algorithms. In addition,
the qualitative side needs more sophisticated algorithms. And, as soon as one requires
automated evaluations and comparisons, that summarize the results and use thresholds
for flagging, a simple querying is not sufficient any more. With Jython a standardized
scripting language is available to the user for independent implementation of any
evaluation algorithm. This makes it possible to both program database queries and
investigate complex correlations in a similarly straightforward fashion like Excel
macros. Furthermore, the results can be attached to the architecture description in the
database and be visualized in the editors as either information or colour changes. With
seamlessly provided views and editors, that are necessary to support the
implementation of algorithms and the back-annotation of the results, the evaluation

32 K.D. Müller-Glaser, C. Reichmann, and M. Kuehl

component is not just a scripting interface but an integral part of the whole tool
framework.

4.6 Tool implementation in Cooperation

The complete e/e-concept tool environment was developed in very close cooperation
of researchers at DaimlerChrysler and FZI together with the tool users, namely the
engineers in passenger car development. Thus the tool is considered to be very user
friendly, as the users were involved from the very beginning when defining the API
and all dedicated graphical or text editors. However, to build the library of metrics
and to evaluate alternative solutions of e/e–architectures was and is completely done
by engineers of the OEM, as these libraries hold the proprietary OEM knowledge.
More than 100 metrics have been defined so far and will be implemented in according
evaluation algorithms. The results so far demonstrate the usefulness of such
architecture evaluation tools, however, the results will not be made public due to the
proprietary character.

4.7 Current Work: Extension for Test Activities

Despite a high level of process maturity in ECU hardware and software development
projects, misunderstandings and errors are hard to avoid due to complexity and
development shared between OEM and several suppliers. The seamless integration of
test activities into the development process is a required measure to identify problems
as early as possible.

Appropriate test methods and tools must be chosen for each development phase.
To gain the greatest benefit from testing, activities should already start during the
requirements specification phase and accompany the whole development process.

To ensure a maximum efficiency of test activities a seamless test management
including an overall test strategy is essential. It avoids test gaps, as well as unwanted
test reruns. Professional test engineering as a dedicated part of software and hardware
development helps maximizing quality with minimized efforts and costs. Figure 9
shows the goals along the v-model development process.

Already during requirements specification each functional and non functional
requirement issue should have an annotation, also formally described in how to
validate, verify and test the requirement issue. For early requirements and design
reviews a knowledge based rule check can help to detect inconsistent, incomplete and
non plausible requirements. The rule checks can be implemented using the LHS-part
of the model to model transformation engine as described in chapter 3.1. Based on the
formal descriptions first model-in-the-loop tests can be run using simulation, followed
by rapid prototyping to prove a solution concept. Rapid prototyping (RP) for
automotive ECU’s is mainly done by OEM’s in three phases (called A, B and C-
samples): first concept oriented RP independent of ECU target architecture, then
architecture oriented RP, followed by target oriented RP. Then the ECU development
is done by a supplier. After delivery of an ECU the OEM performs a hardware-in-the-
loop test for a single ECU (component HiL), when all ECU’s for a car are available
the OEM performs an integration test for these ECU’s (integration HiL), finally the

 Supporting System Level Design of Distributed Real Time Systems 33

Fig. 9. Supporting test methods and tools along development phases

ECU’s are tested in a car during test drives. Finally tests may be repeated for
maintenance and repair during the whole life time of the car. Automatic generation of
tests, reuse of tests and a seamless test process are current research challenges.

5 Conclusion

To cope with increasing complexity of future e/e-architectures in a car according and
different best of point tools are used for modelling and simulation of closed loop
control, reactive control and software intensive functions. Tool integration platforms
and new tools for early design space explorations of e/e-architectures are required and
are currently becoming available commercially. First applications of these tools for
the design of next generation cars show promising results but also the need for further
research and development of tools especially supporting early system design phases
and supporting a seamless design flow from requirements specification to system
level modelling, system level simulation, emulation, rapid prototyping, design,
analysis, integration, test, application and maintenance. Also, a tight connection to
life-cycle product data management systems (PDM) is required.

34 K.D. Müller-Glaser, C. Reichmann, and M. Kuehl

Domain specific tools will evolve quickly, as evaluating architectures requires
taking into account domain specific metrics of high complexity.

References

1. Automotive Busses: http://www.interfacebus.com/Design_Connector_Automotive.html
2. OSEK/VDX homepage: http://www.osek-vdx.org
3. V-Model home-page: http://www.v-modell.iabg.de/vm97.htm#ENGL
4. Polyspace home-page: http://www.polyspace.com
5. Bortolazzi, J.: Systems Engineering for Automotive Electronics. Lecture Notes, Dep. of

EEIT, University of Karlsruhe, Germany (2003)
6. Object Management Group: OMG / Unified Modeling Language (UML) V1.5 (2003)
7. Object Management Group: OMG / XML Metadata Inter-change (XMI) V1.2 (2002)
8. Object Management Group: OMG / Meta Object Facility (MOF) V1.4 (2001)
9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns - Elements of Reusable

Object-Oriented Software. Addison-Wesley, Reading (1994)
10. Sussman, D., Kay, M.: XSLT Programmer’s Reference. In: WROX (2001)
11. The Mathworks homepage: http://mathworks.com
12. ETAS homepage: http://en.etasgroup.com
13. I-Logix homepage: http://www.ilogix.com
14. UML homepage: http://www.omg.org/gettingstarted/what_is_uml.htm
15. Artisan homepage: http://www.artisansw.com
16. World Wide Web Consortium (W3C): homepage: http://www.w3.com/Consortium
17. Dspace Inc. homepage: http://www.dspaceinc.com/ww/en/inc/home.htm
18. Java based template engine: http://jakarta.apache.org/velocity/
19. Telelogic Inc. homepage: http://www.telelogic.com/
20. Krisp, H., Bruns, J., Eolers, S.: Multi-Domain Simulation for the incremental design of

heterogeneous systems. In: ESM 2001. European Simulation Multiconference, pp. S.381–
386 (2001)

21. Tanurhan, Y., Schmerler, S., Müller-Glaser, K.: A Backplane Approach for Co-Simulation
in High Level System Specification Environments. In: Proceedings of EURODAC 1995
(1995)

22. Schulz, H.M.: Description of EXITE and distributed simulation toolbox. Extessy AG
(2002)

23. ETAS INTECRIO Homepage http://en.etasgroup.com/products/intecrio/in_detail.shtml
24. Aquintos GmbH Homepage: http://www.aquintos.com/de/index.php

From MDD to Full Industrial Process:
Building Distributed Real-Time Embedded Systems for

the High-Integrity Domain

Jérôme Hugues, Laurent Pautet, and Bechir Zalila

GET-Télécom Paris – LTCI-UMR 5141 CNRS
46, rue Barrault, F-75634 Paris CEDEX 13, France

Jerome.Hugues@enst.fr, Laurent.Pautet@enst.fr, Bechir.Zalila@enst.fr

Abstract. From small and very specialized applications, real-time embedded
systems are now evolving towards large distributed and interconnected systems.
The construction of such systems is becoming increasingly complex, while being
put under heavy pressures (economic, mission criticality, time, etc.).

We see a current trend to extend and reuse existing specification and mod-
eling techniques for embedded systems under the “Model Driven Architecture”
approach (MDA). Expected benefits range from a better control over the applica-
tion life-cycle to the integration of performance, analysis or verification tools.

In this paper, we take a very pragmatic position and illustrate how building
Distributed Real-Time systems (DRE) for the High-Integrity domain in a Model
Driven Development (MDD) process may fail to address core requirements, and
why going “back to the basics” of the code and implementation is required to
avoid missing the strongest requirements; and avoid a situation in which the MDD
fails to deliver its promises.

Our claim is that MDD provides value to the engineering of complex system,
if and only if it can take full advantage of the expressive power of the models to
help the user in certifying or validating its system. This includes full control of
the code generation, validation and verification or testing process.

In the following, we show some limits in current MDD-based DRE projects.
We discuss how a careful use of a modeling language like AADL can reduce
them, by separating modeling concerns from the underlying execution environ-
ment. We then introduce our work in this domain, demonstrating how both a
unified modeling approach, combined with precise code generators can provide
the user full control and confidence when building its own DRE systems.

1 Introduction

The usage of embedded systems in our daily life is increasing with the use of many
electronic appliances, most of which use a computer program inside. They usually fall
into the embedded class of systems, meaning their interaction with the user and their
constraints (resources, availability, etc.) differ from typical (“desktop”) applications.

Besides, economic pressure implied shorter development cycle. For instance, phone
suppliers should output a new device every three months. The presence of a bug has a
strong economic cost. This implies the development process should follow a stringent
engineering methodology.

F. Kordon and O. Sokolsky (Eds.): Monterey Workshop 2006, LNCS 4888, pp. 35–52, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

36 J. Hugues, L. Pautet, and B. Zalila

In the mean time, the OMG founded a set of standards to foster the construction
of systems. Around the “Model Driven Architecture” (MDA) initiative [OMG03], the
model becomes the implementation, backed by the UML as backbone for the modeling
language, and CORBA and Object-Oriented languages for the runtime support.

This approach demonstrated its pertinence to develop many business applications.
Modeling tools help the developer to formalize its system; validation, model checking
and then code generation tools help in validating and building the actual system while
reducing manual code writing.

From this success, several specializations of CORBA and UML emerged to address
the specific requirements of DRE systems: RT-CORBA (real-time concerns), CORBA/e
(downsizing of CORBA for embedded targets), UML/SPT and the MARTE profile, etc.
They are presented as foundations for a Model Driven Development (MDD) process,
relying on the following postulates: 1) models are the roots of the system, 2) model
can be exchanged and processed by different tools, 3) implementation concerns are
mitigated: it is assumed a conforming entity will support this process.

Our claim is that these postulates promise too much to the industry; it is likely that
one will encounter pitfalls: models inconsistency, tools limitations, performance issues,
lack of quality, etc. These pitfalls must be addressed to avoid a situation in which the
MDD fails to deliver all its premises, leaving the software engineer with limited tools
and techniques, or using costly engineering practice.

In this paper, we discuss Model Driven Development (MDD) at large, and its inter-
action with other tools, and why we should focus not only on the methodology to be
defined for building systems, but also on the run-time entities that best support it.

In the following, we describe one typical occurrence of a MDD process, we then
introduce a set of limits in such process. We then present our current work around the
definition of an AADL-based toolsuite and conclude with perspectives.

2 MDD in Action: An Analysis

In this section, we introduce a case study that illustrates current trends in building DRE
systems following a MDD process.

Defining a DRE system is a complex task that requires many capabilities: system en-
gineering, low-level programming, physics modeling, mission definition, etc. All these
skills must be combined to build a complex system such as a GPS or a fleet of UAVs.
These skills come from heterogeneous domains (computer science, supervision and
planning, mechanics). Models provide the necessary abstraction to exchange informa-
tion by showing only relevant information.

In [SBK+05], the authors show how relying on models and support tools can sup-
press many error-prone actions such as code writing, testing and integration.

The process proposed relies on a set of Domain Specific Languages (DSLs), all of
which built around meta-models. From these models, a set of rules to generate code
that targets the API of the CIAO/TAO/ACE frameworks. These frameworks implement
CORBA CCM combined with RT-CORBA and COS Event features.

This case study addresses many issues of DRE systems: compositions of compo-
nents, configuration, deployment with validation capabilities to ensure QoS require-

From MDD to Full Industrial Process 37

ments can actually be met. Besides, it shows how a large part of a system can be gener-
ated from well chosen abstractions, reducing manual coding.

However, this case study also illustrates how complexity issues may impede a MDD
process:

– many dimensions of the problem: configuration, deployment or definition are each
addressed with an ad hoc DSL. This creates many views of the same system. Lead-
ing to a huge volume of information to be specified and then understood by the
systems engineers.

– dependency to one platform: CIAO’s configuration model becomes visible at the
system modeling level, increasing coupling between the model and its supporting
platform. This inversion might reduce portability to different platform.

– complexity of the process: as defined, this process involves many software compo-
nents, built in a long timeframe. This has two costs: development costs to make this
process evolve to new models (a fruitful engineering challenge); run-time cost to
instantiate all those components.

– lack analyzability and traceability: with modeling tools and COTS interleaved, un-
derstanding the exact execution path of a request inside the system is challenging.
With the use of both code generation and execution framework, ensuring traceabil-
ity of model entities in the actual code is difficult if not impossible. This decreases
the benefits of the whole process, for which the capability to validate, certify the
application is the key point.

– limited optimization: as a consequence of both complexity and analyzability is-
sues, optimizing the system becomes challenging. Each building block comes with
its own “surface” that is difficult to reduce, optimize or analyze with respect to
application actual needs: e.g. CORBA POA complexity for simple setup, COR-
BA COS Notification communication channels, etc. This implied complexity, com-
ing from implementation concerns, greatly impede the use of vertically integrated
component-based process on resource-constrained setups.

Each of these issues put a strong limits on the extent of MDD process applied to
building DRE systems. However, they are strong requirements of many advanced R&D
projects in the space or avionics domain: certification, validation are to be included
and enabled in the development process. Resource-aware engineering is also a strong
requirement. Therefore, MDD should not only address the construction of the system
through a well defined process, but also ensures the quality of the process itself.

In the next section, we list more general limits in defining such process.

3 Challenges in the Definition of a MDD Process for DRE or HI
Systems

MDD focuses on the way to combine modeling technologies to ease the construction of
complex systems, including DRE. It describes how models can be exchanged between
tools to ensure designer’s choices are valid and enforced at execution time.

For instance, the MDA working group at the OMG described a set of specifications
(technology and tools) to build an integrated environment in which the application is
defined, validated and built (e.g. MOF, QVT, etc.).

38 J. Hugues, L. Pautet, and B. Zalila

Hence, a great emphasis is currently set on what to model, and how to use this model.
However, key challenges are seldom contemplated:

1. The accuracy of the model w.r.t. the modeled entities
Building a model is a complex task. Every specification (including standards) usu-
ally comes with interpretation. These interpretations impede the exploitation of the
models, or interoperability between tools. Such interpretation may range from se-
mantics details (e.g. connection between components) to the way one should use
the modeling tool by domain experts rather than modeling experts.

2. The run-time environment
The MDA claims that “The model is the implementation”. This usually implies an
underlying run-time environment (RTE) is defined, and a code generation process
from the model to this run-time occurs, mapping model entities onto RTE entities
to actually support their execution.

Building a run-time for DRE systems is a complex task that shall not be underes-
timated. Functional and non-functional elements, for a large configuration domain
make it difficult to have a “one size fits all” architecture. Heterogeneous RTEs shall
be defined, all of which built around well-defined patterns that addresses specific
needs. By analyzing the model, a specific set of patterns, or a dedicated RTE shall
be selected and then configured.

3. Expressive power of the model
Validation or verification tools shall be able to analyze and exploit complete model.
Yet, combinatorial explosions, lack of theory for complex assembly of components
and tasks, the impossibility to define a specific configuration may reduce the attrac-
tive power of MDD.

Moreover, the model shall not be tainted by the underlying RTE: the impact of
configuration parameters from the RTE on the model should be limited to standard
elements (e.g. CORBA policies) and not by implementation-defined elements to
ensure model’s portability.

We note that these challenges are nothing but typical software engineering concerns:
Which scheduling theory to apply (RMA, holistic analysis)? How to ensure the code
respects this theory (Ravenscar profile, etc.)? How to restrain the code so that it meets
these constraints ?

These questions are reworded in MDA vocabulary: Which profile to use? What are
the entities of the metamodel? What is the destination of the model transformation
process? How to ensure these transformations are correct and preserve the semantics?

MDD aims at defining a canvas in which one can express these concerns, in a set
of models that are further exploited for validation or code generation purposes. Yet,
building a model shall neither fully hide the design of the underlying verification tools,
and RTE; nor neglect them. Code generators and verifications tools belong to the “back-
end” part of the process: they will turn a model into a running system, validated with
respect to domain constraints.

We note that current work around MDD focus on the use of UML, CORBA and
Object-Oriented technologies and their extensions for DRE systems. We claim these
extensions cannot address a core set of constraints for High-Integrity systems such as:

From MDD to Full Industrial Process 39

1. minimalist target environment, for which CORBA and its subsets (like CORBA
profile CORBA/e [OMG06]) remains too wide,

2. high-integrity systems, for which object orientation (OO) and dynamic binding
does not provide enough information about which piece of code is actually exe-
cuted [Gas06],

3. hard real time systems, for which QoS is too fuzzy and requires a more formal
definition.

Besides, they usually do not cover the full development cycle of the system, leaving
verification or testing for future work. By avoiding these difficulties, designers of MDD
process can provide cost effective solutions for the average case, but fail to address
worst case scenarios.

We note that addressing such scenarios is an interesting challenge to assess MDD
viability. First, nothing shall prevent one to address very stringent requirement at the
model level, and then generate the appropriate implementation. Second, it is an inter-
esting case study, because we have all the theory to build and assess such system from
early requirements down to code generation and evaluation (e.g. WCET, behavior, stack
check, . . .) and therefore to fully automate the process, from model definition to vali-
dation, verification and then from code generation to execution.

Therefore, we claim one could focus on DRE in a hard real time set up to assess a
full MDD process, providing both a modeling and a runtime environments; and then to
extend it to wider configurations, more difficult to analyze or optimize.

We also note this imposes some “co-design” between the modeling environment
and the supporting run-time environment, e.g. to specify configuration, code generation
strategies. Such interactions should be taken into account, but reduced to avoid tainting
the model with implementation-specific concerns, and preserve model portability.

Such process has already been defined in the context of SCADE [Hal93]. SCADE is
a complete modeling and model processing environment. It supports the synchronous
language paradigm to model complex high integrity systems. It supports model verifi-
cation, design-by-contract and provides a certified code generator. However, the code
generated is highly dedicated to the SCADE language itself, this reduces its use in wide
system that mixes programming languages.

In [BV05], the authors state that generating code minimizes the risk of several se-
mantic breaches when translating the model towards code. The manual coding exposes
the developer to these breaches. They propose some guidelines to generate Ravenscar
compliant Ada 95 code from a real-time profile for UML. However, this approach is
highly specific and misses many features for more general DRE systems, like distribu-
tion, resource management.

Thus, a more generic MDE-based process is to be defined. In the following, we aim
at defining such architecture

4 An Ideal Model-Driven Suite for DRE Systems

In the previous sections, we listed both CORBA-CCM (and its implementations) and
SCADE as complete implementations of a MDE process. However, they are limited

40 J. Hugues, L. Pautet, and B. Zalila

in that they integrate in a vertical way many technologies, but fail to go down to fully
optimized and fine-tuned code.

In this section, we list requirements for a highly tailorable MDE process, and detail
why we should go back to some basics of software engineering to restore balance be-
tween modeling and actual code. Then, we present building blocks we are developing
to address them.

From the previous sections, we note that the key blocking factors for developing a
MDE suite for DRE systems are mostly the high interleaving factor between the models,
the modeling process and the exploitation of the models down to code generation.

By carefully separating each level, one might enable finer grained modeling and
assembling of software building blocks to build the full system. We list the following
requirements to enable such separation of concerns:

– Select a modeling formalism (UML, AADL, components, etc) used to describe the
building blocks of the system, their interconnection. This formalism should only
capture the static or the dynamic semantics of the system, without any strong ref-
erence to the implementation of the underlying run-time environment. This allows
for the definition of multiple independent RTEs;

– Select a run-time environment to support the semantics of the above-defined blocks,
selected after a complete analysis of the system;

– Define a mapping between blocks and a model processing tool (model checker,
schedulability analyzer, code generator).

By allowing separation of concerns between these three layers, one would be in-
line with full MDE, allowing model exchanges between tools, while allowing much
flexibility in the way the model is used.

Therefore, selecting a run-time environment may become a late binding issue, pro-
viding the model and this environment are compatible.

In the following, we illustrate how the Architecture Analysis and Description Lan-
guage (AADL) can serve as a basis for the implementation of this ideal process. We
first describe its key features, and then how to use them in a complete process, in the
context of High-Integrity process for building DRE systems.

5 An Overview of the AADL

AADL (Architecture Analysis and Description Language) [SAE04] aims at describing
DRE systems by assembling blocks separately developed.

The AADL allows for the description of both software and hardware parts of a sys-
tem. It focuses on the definition of clear block interfaces, and separates the implemen-
tations from these interfaces. It can be expressed using graphical and textual syntaxes.

An AADL model can incorporate non-architectural elements: embedded or real-time
characteristics of the components (execution time, memory footprint. . .), behavioral
descriptions, etc. Hence it is possible to use AADL as a backbone to describe all the
aspects of a system.

From MDD to Full Industrial Process 41

An AADL description is made of components. The AADL standard defines software
components (data, threads, thread groups, subprograms, processes), execution plat-
form components (memory, buses, processors, devices) and hybrid components (sys-
tems). Components model well identified elements of the actual architecture. Subpro-
grams model procedures like in C or Ada. Threads model the active part of an appli-
cation (such as POSIX threads). Processes are memory spaces that contain the threads.
Thread groups are used to create a hierarchy among threads. Processors model micro-
processors and a minimal operating system (mainly a scheduler). Memories model hard
disks, RAMs, etc. Buses model all kinds of networks, wires, etc. Devices model sensors,
etc. Unlike other components, systems do not represent anything concrete; they actually
create building blocks to help structure the description.

Component declarations have to be instantiated into subcomponents of other com-
ponents in order to model an architecture. At the top-level, a system contains all the
component instances. Most components can have subcomponents, so that an AADL
description is hierarchical. A complete AADL description must provide a top-level sys-
tem that will contain the other components, thus providing the root of the architecture
tree. The architecture in itself is the instantiation of this system.

The interface of a component is a component type. It provides features (e.g. commu-
nication ports). Components communicate one with another by connecting their fea-
tures. To a given component type correspond zero or several implementations. Each of
them describe the internals of the components: subcomponents, connections between
those subcomponents, etc. An implementation of a thread or a subprogram can specify
call sequences to other subprograms, thus describing the execution flows in the architec-
ture. There can be multiple implementations of a given component type, so it is possible
to select the actual components to put into the architecture, without having to change
the other components, this provides a convenient approach to configure applications
from a repository of existing entities.

The AADL defines the notion of properties that can be attached to most elements
(components, connections, features, etc.). Properties are attributes that specify con-
straints or characteristics that apply to the elements of the architecture: clock frequency
of a processor, execution time of a thread, bandwidth of a bus, etc. Some standard prop-
erties are defined; but it is possible to define one’s own properties.

Figure 1 presents a simple AADL model that depicts two threads: one periodic
(GNC, “guidance navigation control”; one sporadic (TMTC, “telemetry/telecommand”)

Fig. 1. The GNC/TMTC AADL case study

42 J. Hugues, L. Pautet, and B. Zalila

that interact to read and update a shared variable (POS, “position”). Such system mod-
els for instance a satellite guidance system.

Let us note the model depicted in figure 1 is only the high-level view of the system,
additional elements can be added to detail the signature of methods that apply on POS,
the deployment of each element onto a physical architecture, worst case execution time
(WCET) of each element, etc.

Projects such as OSATE [SAE06] define modeling environments to build AADL
models, using the Eclipse platform.

As a companion tool, we have developed the Ocarina tool-suite [VZ06] to process
AADL models and generate code from this models, targeting a particular RTE. This
allows one to develop, configure and deploy distributed systems.

6 Using AADL in an Ideal MDE Process

In the previous section, we presented the AADL, insisting on its static semantics (types
and entities). We now reflect on the usage of this language in a complete process.

AADL defines both entities (component types for software and hardware), but also
their semantics. This semantics embodies typical behavioral and interaction patterns
for High-Integrity systems. It does not prescribe a precise run-time. Therefore, from
the AADL standard, multiple run-time may be defined, targeting different application
domains (High-Integrity, Real-Time, Fault-Tolerant, deeply embedded, ...).

We want to select as many as possible independent layers of technology.
Without loss of generality, we chose the AADL as a core modeling language to

support the different steps of system construction, from early prototypes to final im-
plementation. Supported entities and extensible property sets allow one to build full
models and adapt them to the application context. Furthermore, analysis tool can pro-
cess the models to assess its viability, point out potential problems, and complete the
specification when possible (full resource dimensioning, execution metrics).

We have developed the Ocarina tool-suite [VZ06] to process AADL models and
allow the developer to develop, configure and deploy distributed systems. Ocarina offers
scheduling analysis capabilities, connection with formal verification tools, and more
notably code generation to Ada 2005.

Ocarina provides a “front-end” for processing models that describe systems. Then,
several “back-ends” allow one to exploit these models and target a specific run-time
environment.

These elements are independent from the underlying distribution middleware. We
propose two middleware environments to support different families of requirements,
also developed by our team:

1. QoS-based: using the schizophrenic middleware PolyORB [VHPK04]. This mid-
dleware provides support for typical QoS policies, supporting CORBA (and exten-
sions such as RT-CORBA and FT-CORBA), OMG DDS and a neutral core mid-
dleware. This setup allows support for many QoS policies (concurrency runtime,
scheduling policies, fault tolerance, protocol and transport configuration, etc.) at a
reasonable footprint cost. Besides, it is amenable to formal verification techniques:
its core components have been modeled and verified with Petri Nets.

From MDD to Full Industrial Process 43

2. High-Integrity edition: using a reduced distribution runtime built for Ravenscar Ada
kernels. This setup allows the construction of distributed high-integrity applications
that is compliant with development standards from the space industry.

These two middleware implementations propose various levels of configuration and
services to address model constraints. This enables the precise construction of applica-
tion from a common set of AADL properties.

By carefully separating application properties, isolated in AADL properties, from the
underlying RTE, we avoid tainting the model with implementation-specific elements
and preserve model portability. This also allows one to support new RTEs, for new
targets, different code generation strategies, etc.

Let us note that the choice of a particular RTE is driven not by the model itself,
through the use of specific features or properties. It is driven by the result of its analysis.
Depending on this analysis, the most compatible RTE would be selected given memory
constraints, real-time schedules, hardware support, etc.

Therefore, we propose multiple RTE compatible with one unique high-level mod-
eling entity, each of which support a different range of constraints, from DRE to dis-
tributed High-Integrity systems, with tools to assess their functional and non-functional
properties. This addresses the requirements we listed in the section 4.

In the following, we show how the complete chain has been implemented in the
context of High-Integrity systems.

7 From AADL Models to DHI Systems

In this section, we illustrate how an AADL model is sufficient to detail the deployment
view of the application: nodes, processors, network buses, tasks on each node; proper-
ties refine the type of tasks (periodicity, priority) and the source code associated to each
processing task.

We define our distribution model as a set of caller/callee tuples that interact through
asynchronous messages. This model is supported by an AADL architectural model
that defines the location of each node, and the payload of the message exchanged as
a method name plus additional parameters. This model is simple enough for being an-
alyzed by most scheduling algorithms while reducing pessimism in the context of an
holistic analysis [GGH00]. Yet, it is powerful enough to model various systems inspired
by our research partners.

From a system’s AADL description, we first compute required resources, then gen-
erate code for each logical node (figure 1). We review the elements that implement this
distribution model, detailing their function, the corresponding design pattern and how
they are computed from the AADL model. Being a static description of a DRE systems,
AADL allows optimizations that reduce the complexity of the code:

– Naming table: They are used to store location information on the entities that in-
teract. Each table lists one entry per remote node that can be reached, and one entry
per opened communication channel on this node. We build one table per node,
computed from the topology of the interactions described in the AADL model. It
is indexed by an enumeration affecting one tag per logical node reachable from

44 J. Hugues, L. Pautet, and B. Zalila

this node, resulting in O(1) access time to communication handlers (e.g. sockets
structures, SpaceWire stacks, ethernet addresses, etc).

– Marshallers: They handle type conversion between network streams and actual
request data in node’s CPU representation. They are derived from subprograms in-
terface, which describe the structure of data to be exchanged. This is computed
beforehand from the AADL models, as for CORBA IDL. Resulting code is in
O(sizeof (payload)) complexity. This code relies on application provided
buffers, we describe this point later.

– Stubs and skels: They handle the construction and analysis of network messages.
It is notionally equivalent to CORBA stubs and skeletons, but reduced to asyn-
chronous oneway request management. Stubs transform a request for an inter-
action into a network stream, skels do the reverse operation. Both elements are
built from AADL components interface and actual interaction between threads, a
stub/skel tuple is built only if a remote interaction occurs, otherwise local com-
munication is done using local message boxes. We exploit this knowledge to have
O(sizeof (payload)) components: a request is a discriminated record, its trans-
lation is of linear complexity.

– Protocol instances: They are asynchronous communication channels, configured
from the deployment information stored in the AADL model. AADL lets the de-
signer express the buses between nodes, the protocol and the threads that access
it. All these information are analyzed to configure the exact protocol instances re-
quired to allow communication between application entities. They are set up at
node start up time. The complexity of the action performed by these instances de-
pends on the underlying transport low layer. Its analysis depends on deployment
information (e.g. TDMA, CAN bus, SpaceWire, etc.).

– Concurrent objects: They handle the execution logic of the node. We build one
task per cyclic or sporadic tasks (corresponding to client-side activity); plus one
task per protocol handler to process incoming requests on behalf of an AADL
server component. Subsequent tasks are built for the management of the trans-
port low layer. Finally, we build one protected object (mutex-like entities) to allow
for communication between tasks. Let us note all these objects strictly follow the
Ravenscar profile, ensuring code analyzability using RMA and Holistic analysis.

The generated code provides a framework that will call directly user code when
necessary. This relieves the user from the necessity to know an extensive API, and
allows a finer control of the behavior of the system that is under the sole responsibility
of the code generation patterns. Current code generator targets an Ada 2005 runtime,
current ongoing work considers targeting a C runtime.

We note that generating code to configure these entities reduces the need for a large
middleware API. Hence, buffers, tasks, naming tables are allocated directly from the
application models. This enables a finer control on the code structure, reducing the need
for complex structures to register application entities such as CORBA COS Naming,
and the hand writing of error prone setup code (e.g. DDS policies). Usually, these API
defines some level of protection to defend against concurrent accesses, use memory
allocation, all of which goes against the core requirements of HI systems. Besides,

From MDD to Full Industrial Process 45

those can be discarded by carefully analyzing the model that is a transcription of the
application requirements and design plan.

In the following section, we present our current implementation work, and how
model processing actually reduces memory footprint while providing interesting code
features for HI systems.

8 An Integrated MDE Toolsuite for DHI Systems

In this section, we detail our model processing chain, built around PolyORB-HI, Oca-
rina and companion tools; and assess it on one complete example.

(1) Semantic Analysis

AADL model

(2) Schedulatiblity Analysis

Scheduling Tool

(3) Behavioral analysis
Model Checker

Fig. 2. Exploiting AADL models

8.1 Assessing an AADL Model

AADL models support both code generation and model analysis. Analysis can range
from simple semantic analysis to more sophisticated one such as schedulability analy-
sis, model checking of the behavior of the nodes, etc.

In this section, we show how such analysis can be conducted using our AADL model
processing suite (figure 2).

Semantic analysis is performed using our AADL compiler Ocarina. Ocarina verifies
that the given AADL model is conforming to the AADL standard and that some addi-
tional restrictions are respected:

– All event or data ports are connected,
– All threads are either periodic or sporadic,
– All shared data use a concurrent access protocol that bounds priority inversion (e.g.

the Priority Ceiling Protocol mandated by the Ravenscar profile).

46 J. Hugues, L. Pautet, and B. Zalila

AADL defines a standard execution semantics, this allows us to go further and assess
the system is meaningful, and can run prior to its generation and execution. We allow
both schedulability analysis and model checking to assess node liveness.

Schedulability analysis is performed using Cheddar [SLTM04]. Cheddar is an Ada 2005
framework that provides tools and library to check if AADL threads will meet their
deadline at execution time. Cheddar uses the Ocarina [VZ06] libraries to analyze the
AADL models.

From an AADL model, a model of interacting tasks is computed. Tasks can interact
either locally sharing data through protected object (or mutex), or remotely through a
communication bus. The first allows for traditional Rate Monotonic Analysis, while the
second requires advanced techniques such as Holistic analysis. Cheddar supports both;
this enables one to check one’s architecture can run within expected bounds.

Checking of the behavior of the nodes is performed by transforming the AADL model
into a Petri net [HKPV07] and then by performing formal verification on the resulting
Petri net. The transformation into Petri net is performed using a Petri net generator
module provided by Ocarina. It maps the behavioral pattern of each AADL entity onto
a Petri subnets that are then weaved to form the model of a complete system.

The formal verification (absence of deadlocks, causality analysis through temporal
logic formulae . . .) is performed using the CPN-AMI Petri Net modeling and model
checking environment [MT].

For each interaction pattern expressed in the AADL model (interacting tasks, mes-
sage sent, . . .), we build the corresponding Petri Nets and assemble them to build one
model representing the whole system. From this model, we can either explore its state
space and look for deadlock (state from which no progress is possible), look for incon-
sistent state or test for more complex timed logical formulas (such as if event E holds,
then output O is always emitted).

These analyses allow one to fully assess system viability prior to its execution on the
target. If required, the model can be refined to correct the behavior, adjust WCET, etc.

8.2 Generating Executable Code

We use code generation facilities in Ocarina to semantically analyze the AADL model,
compute required resources and generate code conforming to HI restrictions.

First, the model is built by the application designer, he maps its application entities
onto a hardware architecture. Then, this architecture is tested for completeness and
soundness, any mismatch in the configuration is reported by the analysis tool (e.g. lack
of connection from an object). Consequently, model processing occurs, and code is
generated from this AADL model, following a precise set of mapping rules. Finally,
code can be compiled and run on the target.

Code generation relies on patterns presented in section 7 inherited from previous
work on code generation from Ravenscar [BV05] and classical design patterns for dis-
tribution such as the Broker [BMR+96], constrained to remove all dynamic behavior
supported by the minimal middleware for HI systems: PolyORB-HI.

From MDD to Full Industrial Process 47

We named this middleware “PolyORB-HI” as a follow up to the PolyORB project
we develop [VHPK04]. It shares many common architectural notions while using a
different code base.

Like PolyORB, PolyORB-HI is a “schizophrenic middleware”. Schizophrenic mid-
dleware [QKP01] are built on isolated elements that embody key steps in request pro-
cessing, allowing for finer configuration of each blocks. We identified seven steps in
request processing, each of which is defined as one fundamental service. Services are
generic components for which an general implementation is provided. Developers may
provide an alternate implementation. Each middleware instance is one coherent assem-
bling of these entities. Instances can support standard specifications like CORBA or
DDS, or application-specific middleware for embedded targets.

PolyORB-HI strictly follows all restrictions we defined in the previous part. It is de-
veloped in Ada 2005 [ISO06]. It is compliant with both the Ravenscar profile and the
High Integrity System restrictions (Annexes D and H of the Ada 2005 standard). Let
us note that most restrictions are enforced at compile time (no dispatching, no floating
point, no allocator, etc). This simply yet efficiently enforces the absence of unwanted
features used by the middleware, increasing the confidence in the code generated while
limiting its complexity. Code generated by Ocarina follows the same compilation re-
strictions.

User code is also tested for consistency with the above restrictions. To ensure user
code does no impact scheduling (and thus threatens asserted properties), we ensure at
compile-time it uses no tasking constructs (tasks and protected objects) by positioning
the corresponding restrictions on its packages. This is done using the native Ada pragma
Restrictions mechanisms.

9 Case Study

In this section, we illustrate on a case study the benefits of this approach to fully build
a HI system. This case study has been provided by our partners from the IST-ASSERT
project.

9.1 Scenario

The figure 3 shows the software view of our case study. This model holds three nodes,
each is a spacecraft with different roles:

1. SC1 is a leader spacecraft that contains a periodic thread which sends its position to
SC2 and SC3.

2. SC2 and SC3 are follower spacecraft. They receive the position sent by SC1 with
a sporadic thread (Receiver_Thread), update their own position and store it in a
local protected object. A second thread in these two spacecraft reads periodically
the position value from the local protected object, and “watches and reports” all
elements at that position (e.g. earth observation, etc. . .).

This model gathers typical elements from Distributed High Integrity (D-HI)
systems, with a set of periodic tasks devoted to the processing of incoming orders

48 J. Hugues, L. Pautet, and B. Zalila

Protected

Object

Protected

Object

Read

Update

Update

100ms

Receiver_Thread
500ms

Watch
Read

Watcher_Thread

Spacecraft_2

Send

1s
Sender_Thread

Spacecraft_1

Read

Update

Update

100ms

Receiver_Thread
500ms

Watch
Read

Watcher_Thread

Spacecraft_3

Fig. 3. Software view of the MPC case study

(Watcher_Thread), buffers to store these orders (Protected Object) and sporadic
threads to exchange data (Receiver_Thread). These entities work at different rates,
and should all respect their deadlines so that the Watcher_Thread can process all ob-
servation orders in due time.

The software view only represents how the processing is distributed onto different
entities (threads) and gathered as AADL processes to form partitions. The next step is
to map this view onto a physical hardware view, so that CPU resources can be affected
to each node.

The figure 4 is a graphical representation of the deployment view of the system. It
only shows the global architecture of the application (number of nodes, their mapping
to hardware components). It indicates that each partition is bound to a specific CPU, and
how the communication between partitions occurs, using different buses. The details of
each node will also be described using AADL.

These two views are expressed using the same modeling notation, they can be merged
to form the complete system: interacting entities in the software view represent the pro-
cessing logic of the system, whereas the hardware view completes the system deploy-
ment information by allocating resources.

Fig. 4. Deployment view of the MPC case study

From MDD to Full Industrial Process 49

From this combined view, a set of analyses can be conducted, in conformance with
the process we propose.

9.2 Schedulability Analysis and Model Checking

The case study we retained is simple enough to be analyzed by these tools. Let us note
that intermediate models (Cheddar or Petri Nets) are of similar in size and complexity
to the initial AADL model. This implies the model transformations we proposed do not
add parasite complexity to these intermediate models.

9.3 Generated Code

A prototype of PolyORB-HI, running on both ERC32 and LEON2 targets has been
built. These processors are used by the European Space Agency for its next generation
of embedded systems (satellites, vehicles, etc. . .). Thanks to Ada 95 portability, the same
code can also be tested on native targets, or on other boards, such as PowerPC-based.
This makes the prototyping of embedded system easier since we can test them on native
platform before embedding them on their corresponding hardware. In this section, we
study the footprint of the code generated on LEON2 targets.

Table 1 summarizes the code size for the node SC2 of our case study. It that combines
periodic and sporadic threads, data components and a SpaceWire interface to receive
inbound messages. We display both the actual lines of code (SLOCs) and the size of
the binary objects. The used compiler is the GNAT for LEON 1.3 Ada 95 compiler.
All tests were done in local, using the tsim simulator for LEON, emulating a 50Mhz
processor. The SpaceWire interface is simulated in tsim as an I/O module bound to the
LEON processor.

The code generation strategy we retained maps AADL constructs onto Ada 95 equiv-
alent ones so that there exists traceability between the AADL model and the corre-
sponding Ada 95 source code: e.g. between AADL threads and Ada 95 tasks, AADL
data component and Ada 95 records or protected objects. Such strategy reduces the
need for a large API, and eases code review after generation.

The total size of the executable, combining real-time kernel, middleware and the ap-
plication, is 576kB, using the GNAT for LEON 1.3 compiler. It fits the requirements
from minimal embedded systems, and is clearly under the typical memory range for
API-based middleware such as nORB or microORB, which are above 1MB for a com-
plete system, including full OS support.

Given the development process we retained, most code is automatically generated
from the AADL model. The code in the middleware handles simple and low-level ac-
tions: messages, protocol, transport. Generated code adds tasking constructs required
to execute the application and enables interaction between entities: transport handler,
application activities, advanced marshallers, naming tables, etc. . .

The code generation strategy we chose accounts for a large part of the distribution
aspects of the application: it includes the elaboration of tasks and protected objects,
the allocation of dedicated memory area, stubs and skeletons, marshallers and naming
table. Finally, the runtime accounts for another large part of the size of the application.

50 J. Hugues, L. Pautet, and B. Zalila

Table 1. Footprint for the SC2 node

Component SLOCs .o size (bytes)
Application 89 8852
Generated code 961 66804
Middleware 1068 32957
Ada Run-Time +
drivers

N/A ≈ 541Kb

9.4 Assessment of the Process

From the AADL model, we are capable of generating both, information that the model
is sound and the corresponding executable, ready to run on LEON2 boards.

We demonstrate how to exploit one AADL model and user-provided code for some
processing functions. AADL serves both as a documentation of the system (require-
ments expression, functional and non functional properties, topology of the system can
be expressed in one model) and as a template to validate it and generate its implemen-
tation: it preserves system design.

Therefore, we have an immediate benefit from an engineering point of view: the
developer can focus on its system architecture. The complete tool suite ensures it is
correct, and handles the configuration of all code-level entities. This suppresses many
manual code writing, a tedious and error-prone process underlined by well-known soft-
ware failures in the space domain like the Ariane V maiden flight. It also tremendously
reduce the development cycle and allow one to go faster from the prototyping phase to
the design of the final system.

All these analyses have been tested successfully on significant examples submitted
by industrial partners in the context of the IST-ASSERT project.

10 Conclusions

Model Driven Development is an appealing evolution of software engineering, by
proposing a paradigm shift from traditional programming to model and code genera-
tion. However, we note it may promise too much and fail to deliver sufficient guarantees
for specific domains such as DRE, for very constrained targets.

We claim that some limitations do not lie in the process itself, but in the way it is
implemented: the distance between the models and the supporting runtime environment
can introduce parasite complexity (runtime overhead, heavy language constructs, etc.).
Therefore, it is often necessary to stop modeling activities to go back to the basics of
implementation, reducing modeling efforts.

We propose a toolsuite built around the AADL to promote system modeling at the
architecture-level. This modeling approach makes it possible to reason at different ab-
straction levels, from system overview down to implementation concerns. This helps
selecting the most precise runtime entities when required.

We proposed two different supporting environment for DRE systems, one based
on QoS policies, supporting CORBA and its real-time extensions, DDS, etc.; another

From MDD to Full Industrial Process 51

supporting High-Integrity constraints. Besides, our toolsuite integrates schedulability
analysis and formal verification tools to assess system’s viability.

We validated our approach on significant examples provided in the context of the
IST-ASSERT project, and detailed some of the outcomes of this project.

Current work focuses on the extension of the Ocarina toolsuite towards other appli-
cation properties, including fault-tolerance, proof (a-la PVS) and the enforcement of
wider application properties to configure the underlying runtime. We are also working
on a C runtime to support the same level of functions, for other application targets like
RTEMS and VxWorks.

Acknowledgement. The authors thank F. Singhoff from the Cheddar project and the
members of the IST-ASSERT project for their feedback on earlier version of this work.
This work is partially funded by the IST-ASSERT project.

References

[BMR+96] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-Oriented
Software Architecture: A System of Patterns. John Wiley & Sons, New York (1996)

[BV05] Bordin, M., Vardanega, T.: Automated Model-Based Generation of Ravenscar-
Compliant Source Code. In: ECRTS 2005. Proceedings of the 17th Euromicro Con-
ference on Real-Time Systems, pp. 59–67. IEEE Computer Society, Washington
(2005)

[Gas06] Gasperoni, F.: Safety, security, and object-oriented programming. SIGBED
Rev. 3(4), 15–26 (2006)

[GGH00] García, J.J.G., Gutiérrez, J.C.P., Harbour, M.G.: Schedulability analysis of dis-
tributed hard real-time systems with multiple- event synchronization. In: Proceed-
ings of 12th Euromicro Conference on Real-Time Systems, pp. 15–24. IEEE Com-
puter Society Press, Los Alamitos (2000)

[Hal93] Halbwachs, N.: A tutorial of Lustre (1993)
[HKPV07] Hugues, J., Kordon, F., Pautet, L., Vergnaud, T.: A Factory To Design and Build Tai-

lorable and Verifiable Middleware. In: Kordon, F., Sztipanovits, J. (eds.) Monterey
Workshop 2005. LNCS, vol. 4322, pp. 121–142. Springer, Heidelberg (2007)

[ISO06] ISO/IEC 8652:2007(E) Ed. 3. Annotated Ada 2005 Language Reference Manual.
Technical report (2006)

[MT] MoVe-Team. CPN-AMI, http://www.lip6.fr/cpn-ami
[OMG03] OMG. MDA Guide v1.01. OMG (2003)
[OMG06] OMG. Common Object Request Broker - for embedded. OMG (MAY 2006) Draft

Adopted specification ptc/06-05-01
[QKP01] Quinot, T., Kordon, F., Pautet, L.: From functional to architectural analysis of a

middleware supporting interoperability across heterogeneous distribution models.
In: DOA 2001. Proceedings of the 3rd International Symposium on Distributed
Objects and Applications, IEEE Computer Society Press, Los Alamitos (2001)

[SAE04] SAE. Architecture Analysis & Design Language (AS5506) (September 2004),
available at http://www.sae.org

[SAE06] SAE. Open Source AADL Tool Environment. Technical report, SAE (2006)
[SBK+05] Schmidt, D.C., Balasubramanian, K., Krishna, A.S., Turkay, E., Gokhale, A.: Model

Driven Engineering for Distributed Real-time Embedded Systems. In: Model-
Driven Development of distributed Real-Time and Embedded Systems, pp. 31–60.
Hermes Publishing (2005)

http://www.lip6.fr/cpn-ami
http://www.sae.org

52 J. Hugues, L. Pautet, and B. Zalila

[SLTM04] Singhoff, F., Legrand, J., Tchamnda, L.N., Marcé, L.: Cheddar: a Flexible Real
Time Scheduling Framework. ACM Ada Letters 24(4), 1–8 (2004)

[VHPK04] Vergnaud, T., Hugues, J., Pautet, L., Kordon, F.: PolyORB: a schizophrenic middle-
ware to build versatile reliable distributed applications. In: Llamosí, A., Strohmeier,
A. (eds.) Ada-Europe 2004. LNCS, vol. 3063, pp. 106–119. Springer, Heidelberg
(2004)

[VZ06] Vergnaud, T., Zalila, B.: Ocarina: a Compiler for the AADL. Technical report, Télé-
com Paris (2006), available at http://aadl.enst.fr

http://aadl.enst.fr

Model-Based Failure Management for

Distributed Reactive Systems

Vina Ermagan, Ingolf Krüger, and Massimiliano Menarini

University of California, San Diego
9500 Gilman Drive, Mail Code 0404, La Jolla, CA 92093-0404, USA

{vermagan,ikrueger,mmenarini}@ucsd.edu
http://sosa.ucsd.edu

Abstract. Failure management is key to the development of safety-
critical, distributed, reactive systems common in such applications as
avionics, automotive, and sensor/actuator networks. Specific challenges
to effective failure management include (i) developing an understanding
of the application domain so as to define what constitutes a failure; (ii)
disentangling failure management concepts at design and runtime; and
(iii) detecting and mitigating failures at the level of systems-of-systems
integration. In this paper, we address (i) and (ii) by developing a failure
ontology for logical and deployment architectures, respectively, including
a mapping between the two. This ontology is based on the interaction
patterns (or services) defining the component interplay in a distributed
system. We address (iii) by defining detectors and mitigators at the ser-
vice/interaction level – we discuss how to derive detectors for a signifi-
cant subset of the failure ontology directly from the interaction patterns.
We demonstrate the utility of our techniques using a large scale oceano-
graphic sensor/actuator network.

Keywords: Failure Management, Distributed Systems, Ontology, Reac-
tive Systems.

1 Introduction

Failures can cause serious harm in many application domains. In domains such
as avionics, automotive, and plant control, lives often depend on the correct
functionality of software systems. One of the most challenging tasks of system
developers is to ensure that the system both delivers the expected functionalities
and is resilient to failures. We advocate the use of a combination of elements
from Model Driven Architecture (MDA) [1] and Service-Oriented Architectures
(SOA) to disentangle functional aspects of system behavior from the treatment
of failures.

The basic building block of our approach is the service. Services capture inter-
action patterns between system entities. Our approach leverages the interaction
descriptions captured by services to identify, at run time, deviations from the
specified behavior. An ontology guides the identification of failures and the ac-
tivation of additional services that mitigate the effects of such failures.

F. Kordon and O. Sokolsky (Eds.): Monterey Workshop 2006, LNCS 4888, pp. 53–74, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://sosa.ucsd.edu

54 V. Ermagan, I. Krüger, and M. Menarini

Fig. 1. Model-based failure-management approach

Figure 1 outlines the model-based failure management approach we propose.
The figure shows the two main elements of our approach. We leverage an on-
tology, encompassing a failure taxonomy, service oriented models, deployment
models and the mapping between them, to inform an MDA approach. We enrich
the logical and deployment models typical of any MDA with a failure hypothesis.
This additional artifact, based on the failure ontology, captures what physical
and logical entities can fail in a system. It also provides a formal basis to reason
about system correctness in presence of failures.

Our SOA models are based on hierarchically composed interaction models,
extending the service notion used, for example, in Web services [2]. Addressing
quality of service of end-to-end properties becomes easier because the interac-
tions of different nodes are the main modeling entities in our specification lan-
guage. In our approach, the key mechanism to deal with failures is decoupling
Unmanaged Services and Managed Services. Unmanaged Services are responsi-
ble for providing the required functionalities, while Managed Services enable the
detection of failures and the implementation of mitigation strategies that avoid,
or recover from, failures.

A service-oriented process using the failure taxonomy requires devising two
special types of Services: Detectors and Mitigators (similar to the detector/
corrector approach taken by Arora et al. in [3]). Detectors compare the commu-
nication patterns captured in the service specification with the ones observable
in the running system; they apply mitigation strategies when a behavior is de-
tected that does not match the specification. Mitigators are services that modify
the interaction pattern of the system so as to recover from failure conditions.

In prior work we have applied these ideas in the context of the automotive do-
main [4]. Here, we generalize and extend this work to a wider range of application
domains, including sensor networks. Furthermore, we present first ideas towards
the derivation of detectors and mitigators from interaction specifications.

Outline: The remainder of the paper is structured as follows. In Section 2,
we describe a case study extracted from the domain of oceanographic sensor
networks, which we use as a running example throughout this paper. In Sec-
tion 3, we present the failure taxonomy. In Section 4, we present the relationship
between the ontology and the interaction-based specification of services. In Sec-
tion 5, we discuss two patterns that generate detectors for two important types of
failures: absence of expected behaviors and occurrence of unexpected behaviors.

Model-Based Failure Management for Distributed Reactive Systems 55

Section 6 addresses the applicability of the approach and limitations of the pro-
posed solutions. Section 7 covers the related work. Section 8 provides concluding
remarks.

2 A Case Study

The proposed approach for creating failsafe systems can be tailored to target var-
ious embedded, distributed reactive systems. Examples of application domains
are automotive, avionics, plant control, and wireless sensor networks. In this pa-
per, we target a large federated sensor network system where low-power devices
connected via slow wireless network links interact with more powerful compu-
tation devices connected to traditional wired networks. The example is inspired
by requirements for the domain of global ocean observatories, namely the feder-
ated Ocean Research Interactive Observatory Networks (ORION) program, for
which a conceptual architecture study is available at [5]. We limit ourselves to
a small subset of ORION’s goals, namely the development of an infrastructure
for marine observation allowing scientists to share the control of sensor networks
deployed on the ocean floor.

Fig. 2. Underwater sensor case study from ORION

To demonstrate our approach we introduce the simple case study of Figure 2.
The setup includes two sites: an underwater site and a coastal center. The un-
derwater site has a sensor array consisting of one audio and one video sensor.
These sensors are controlled by a low-power embedded computation unit and can

56 V. Ermagan, I. Krüger, and M. Menarini

communicate to the coastal center via a slow and unreliable wireless link. The
components of the underwater observatory site are connected via a traditional
wired network that provides reliable communication between the embedded pro-
cessing unit, the sensors array and the wireless communication subsystem. The
coastal center communicates with the underwater site via a wireless transmitter;
the rest of the components (including various powerful computers for scientific
computation and workstations for scientists to interact with the system) are
connected by a wired network.

In this paper, we will focus on a single use case that allows us to discuss how
to deal with failures. The goal of our system is to take pictures of whales. The
use case proceeds as follows: the underwater microphone detects whale sounds
and activates the camera when a whale is nearby. The camera takes pictures.
Image processing software processes the images to detect if the picture with
reasonable probability contains a whale. If so, the picture is compressed and sent
to the surface for further analysis. The more powerful image detection software
running on the mainland computers can then determine whether the animal in
the picture is indeed a whale. If so, it instructs the underwater station to send
more pictures of it. In the current paper, we are not interested in how the image
or sound detection algorithms work; instead, we focus on how to detect and
address possible failures in the system.

Figure 3 shows the interactions that must be carried out by system com-
ponents to fulfill the use case outlined above. The graphical language used to
define the interactions is based on Message Sequence Charts (MSC) [6,7,8]. An
MSC defines the relevant sequences of messages (represented by labeled arrows)
among the interacting roles. Roles are represented as vertical axes in our MSC
notation. The MSC syntax we use should be fairly self-explanatory, especially
to readers familiar with UML2 [8]. In particular, we support labeled boxes in
our MSCs indicating alternatives and unbounded repetitions. High-level MSCs
(HMSCs) indicate sequences of, alternatives between and repetitions of services
in two-dimensional graphs – the nodes of the graph are references to MSCs,
to be substituted by their respective interaction specifications. HMSCs can be
translated into basic MSCs without loss of information [7].

A number of extensions to the standard MSCs warrant explanation [9,10].
First, we take each axis to represent a role rather than a class, object, or compo-
nent. The mapping from roles to components is a design step in our approach.
Second, we use an operator called join [7,9], which we use extensively to compose
overlapping service specifications. We call two services overlapping if their inter-
action scenarios share at least two roles and at least one message between shared
roles. The join operator will synchronize the services on their shared messages,
and otherwise result in an arbitrary interleaving of the non-shared messages of
its operands. Join is a powerful operator for separating an overall service into
interacting sub-services.

Our use case scenario is captured by four MSC graphs. Figures 3(b) through
3(d) show three interactions defining the “ValidatePicture”, “StopCamera” and
“TakePictureUnderwater” services, respectively. Figure 3(d) shows the use of

Model-Based Failure Management for Distributed Reactive Systems 57

JOIN

LOOP <*>

JOIN

TakePictureUnderwater

ValidatePicture

StopCamera

(a) Overview

(b) ValidatePicture (c) StopCamera

(d) TakePictureUnderwater

Fig. 3. Interactions for the ORION case study

58 V. Ermagan, I. Krüger, and M. Menarini

both unbounded repetition (outer box labeled “LOOP”) and nondeterministic
alternatives (inner box labeled “ALT”). Note how the services depicted in these
three figures overlap. Figure 3(a) captures the composition of the other three by
using the join operator. Consider, for instance, the AnimalPicture messages in
Figures 3(b) and 3(d). The use of the join operator forces the ValidatePicture
interaction to start only when TakePictureUnderwater has identified that an
animal is in the picture and the picture has been sent to the Image Compress
role.

The behavior prescribed by the four graphs of Figure 3 is the following. The
ValidatePicture MSC Figure 3(b) prescribes that the component playing the role
Image Filter sends a message containing the image of an Animal (AnimalPic-
ture) to the component playing the Image Compress role. This picture is then
compressed and sent trough the slow unreliable link to the Whale Detector pro-
gram on the shore facility. The system activity can now proceed in two ways:
either the Whale Detector recognizes that the picture contains a Whale, in which
case it sends it to the Image Storage role to be archived and return a Whale mes-
sage to the Image Filter role, or it detects that the image does not contain a
whale, in which case it returns a NotWhale message to the Image Filter. The
StopCamera MSC (Figure 3(c)) is very simple. It mandates that a NotWhale
message sent from Whale Detector to Image Filter is followed by a Stop message
sent to the Camera. The brace in the MSC defines a deadline for the interaction
of 100 milliseconds. The other MSC, showing the initiation of the picture-taking
activity, is TakePictureUnderwater (Figure 3(d)). The Sound Detector sends a
WhaleSound message to the Camera. From this point a loop is initiated in which
the Camera sends Pictures to the Image Filter. Two alternatives are possible:
the image filter sends an AnimalPicture message to Image Compress or it sends
a Stop to Camera. When camera receives a Stop message it exits the loop and
stops taking pictures.

Figure 3(a) depicts the Overview HMSC. It joins the three MSCs previously
described. The join operator prescribes the parallel execution of the joined MSCs
synchronizing on common messages. For example, because the AnimalPicture
message between roles Image Filter and Image Compress is encountered in both
ValidatePicture and TakePictureUnderwater, and they are joined, only one in-
stance of Animal Picture will be exchanged and the other messages defined in
ValidatePicture must follow the AnimalPicture message defined in TakePicture-
Underwater.

The interactions of Figure 3 outline the expected behavior of the system
without any consideration for failures. In other words, Figure 3 contains the
“sunny-day scenarios”. This is a good starting point for understanding regular
system functionality; the next step is to also gain an understanding of what
entities in the domain can fail and how these failures should be dealt with.
Failures, of course, happen at runtime rather than in the domain model itself.
Therefore, the steps required for failure analysis are (i) mapping the logical
roles expressed in the interaction to runtime entities, and (ii) defining a failure
hypothesis that formalizes our assumption about what can and cannot fail in

Model-Based Failure Management for Distributed Reactive Systems 59

the system. In the following sections, we will analyze this case study for possible
failures and provide the required steps for failure management.

3 Failure Taxonomy

Failure management is particularly effective if it is performed throughout the
development process[11] – rather than, as often happens, as an afterthought. To
raise awareness of failures already from the very early phases of the software and
systems engineering process, including requirements gathering, a comprehensive
taxonomy for failures and failure management entities is essential. Failure tax-
onomy is a domain specific concept [11]. In previous work, we have developed
a general failure taxonomy for the automotive domain [4]. Here we extend this
ontology to address failure management in distributed reactive systems. Fur-
thermore, we discuss a domain-specific failure model for sensor networks, as the
case study of this paper.

Figure 4 shows the extended failure taxonomy using UML2 class diagram
notation[8]. It captures the relationships between failures and our means for
detecting and managing them. The central entity of this taxonomy is a Failure.
A Failure has one or more Causes and one or more Effects.

A failure Cause can be due to either a software problem, Software Failure, or
a hardware problem, Hardware Failure, and is very dependent on the application
domain. In Figure 5, we have captured several of the elements that can fail in
our application domain, and we have identified the types of failures they can

Fig. 4. Failure ontology

60 V. Ermagan, I. Krüger, and M. Menarini

cause. Hardware Failures can be due to failing Sensors, Actuators, Wireless and
Wired Networks, and Computation Units. Software Failures are due to bugs in
Programs that run on the Computation Units.

In Figure 4, an Effect is the observable result of a failure occurrence. A De-
tector can detect the occurrence of a Failure based on its Effect. This relation
binds the detector to the observable results of failures. Therefore, it is important
to define what type of Effects a failure can have, and to leverage them to create
Detectors.

We have identified four key aspects of the Effect. First, the Risk Level identifies
the degree of hazard a particular failure can cause. Based on this assessment it is
possible to decide if the failure can be ignored or not. The three main risk levels
are Hazardous, Potentially Hazardous, and Non Hazardous. A Hazardous failure
always leads to an Accident, while a Potentially Hazardous failure can lead to
an Accident given some specific conditions. Non Hazardous failures never lead
to accidents. An Accident is an unwanted event with serious consequences. The
definition of a serious consequence depends on the specific domain. In our simple
example, we could define it as an event that requires somebody to physically
access the underwater site. Therefore, the occurrence of a failure that completely
disables the software running on an embedded computation device would be an
accident. In a domain such as avionics, an accident could be an event that
causes loss of lives. It is important to notice that the assessment of risk depends
on the Environment. If the embedded device was running in the scientist’s office
instead of underwater, the need to access it to restart the system in the event of a
software failure would not have the same consequences, and would not probably
be considered an accident.

Another important aspect of the failure Effect is the Behavior Type of the fail-
ure. The Failure can either cause the system to present an Unexpected Behavior
or a Non Occurrence Behavior [12]. An Unexpected Behavior is the occurrence

Fig. 5. Domain failures

Model-Based Failure Management for Distributed Reactive Systems 61

of an event that was not supposed to happen. One instance of an Unexpected
Behavior is a duplicated message; another is the power-intake of a network node
being outside of the specified range. Non Occurrence Behavior is defined by the
absence of an event that was supposed to happen. A lost message in a commu-
nication protocol is an example of such behavior.

It is important to realize that it is often impossible to identify the correct
behavior type of a failure’s Effect without additional information about the
failure Cause. If the sequence of messages Ma, Mb is expected by a role A, and
the role receives Mb as a first message, it can be either that message Ma was
lost, or a wrong message Mb was sent instead of Ma. A lost message would be an
instance of Non Occurrence Behavior, and a wrong message would be an instance
of Unexpected Behavior. The importance of this classification is that it allows us
to capture two detection strategies. Unexpected Behavior can be detected by an
observer that has only a specification of the sequence of events that can happen
in a correct system. On the other hand, detecting a Non Occurrence Behavior
often requires the introduction of the concept of time.

The third aspect of an Effect is the Quality of Service. Sometimes the only
observable result of a failure is the degradation in the Quality of Service prop-
erties of the system. Three types of Quality of Service Effects can be identified.
Bandwidth Exceeding, Missing Deadlines, and Power Over-consumption. Band-
width Exceeding happens when sensors send too many requests over the network,
or when, for example, they send too much data at too high a frequency. Missing
Deadline happens when, because of some failure, the system has slowed down,
and it can not meet the timing constraints any more. For instance, when a highly
loaded node in a network breaks down, the load might be distributed over the
neighboring nodes, which could lead to an overload of the neighbors, and hence
a slowdown in several nodes. Finally, Power Over-consumption happens when a
node’s power consumption exceeds the expected limit. This is particularly im-
portant in systems such as the one introduced in the case study, or in the sensor
networks domain, where accessing nodes for battery replacement is very costly,
and hence, it is very important that nodes remain power-efficient.

The last aspect of an Effect is the Repetition Type. We deem the Effect to
be either Permanent or Transient. Classic examples of a Permanent failure are
total hardware failures – such as total failures of sensors, program crashes, or
deadlocks. The Transient repetition type can arise from transient hardware prob-
lems such as flipped bits during communication due to unexpected noise from
the Environment, or race conditions in concurrent programs.

When a failure is detected, the system needs to mitigate it. This is done by
following certain Mitigation Strategies. The Mitigation Strategy we must apply
to deal with failures depends both on the failures’ Effects and Causes. We iden-
tify two main strategies: Runtime Strategy and Architectural Strategy. When a
duplicated message is detected at runtime, Ignore Message can be one Runtime
Mitigation Strategy. Similarly, when a message loss is detected, Resend Message
is a candidate Runtime Mitigation Strategy. Replicate Component and Failsafe
Mode are typical Architectural Strategies. In our case study, if we assume that the

62 V. Ermagan, I. Krüger, and M. Menarini

embedded computation unit hardware in the underwater site can break down,
and we still want to be able to guarantee the functionality of the system without
the need to dive in and change the unit, we must use the Replicate Component
strategy and provide a backup computation unit. To deal with the possible loss
of a message on the wireless link between the two sites, we can apply the Re-
sent Message strategy. We must introduce an acknowledgment message for each
transmission and resend the message until one party gets an acknowledgment
from the other.

4 Services

Implementing distributed reactive systems is a complicated and error-prone task.
Model Driven Architectures [1,13,14] and Service-Oriented Architectures (SOA)
have been proposed as a solution to tackle the complexity of such systems. Fail-
ures in distributed systems happen not only at a level internal to the components,
but also, and more severely, they happen across the interactions of the inte-
grated components. Hence, failures are mainly crosscutting issues that must be
addressed in an end-to-end manner. Service-oriented design is specifically suited
for addressing failures, because Services are by nature crosscutting concerns of
the system. In previous work, we have discussed our service-oriented approach for
design and development of distributed reactive systems [15,4]. We concentrate
on the modeling of services themselves, rather than deployment concerns such
as service publishing, discovery and binding – these aspects of service-oriented
architectures are covered extensively in the literature [2].

In the following, we briefly describe our model for service-oriented design for
distributed reactive systems. Then we introduce our interaction-based model for
Services.

4.1 Failure Aware Service Model

In our approach, distributed reactive systems are captured as a collection of
Services. Intuitively, the system has a number of Services, each providing one or
more system functionalities. Services can have Detectors and Mitigators in order
to manage the Failures that are identified within each Service. In the following,
we will describe each entity in more detail.

The main entity of the model is the notion of Service. A Service is defined
by a series of interactions providing some system functionality. A Service can
be a Composite Service or a Basic Service. Every Composite Service is com-
posed of a number of sub-Services interacting with each other to provide a more
general Service. Each of the sub-Services can be simple or composite on their
own, thereby allowing the model to provide a hierarchy of services to tackle the
complexity of distributed systems.

Figure 3 illustrates the application of the Service model to our case study.
Three Basic Services each capture part of the defined system functionality: tak-
ing the picture under water, validating the picture, and stopping the Camera.

Model-Based Failure Management for Distributed Reactive Systems 63

Fig. 6. Models of services

They are shown in parts (b) − (d), and Figure 3−(a) illustrates the Composite
Service integrating the three Basic Services.

Services are either Managed Services or Unmanaged Services. This catego-
rization is orthogonal to services being Composite or Simple, meaning that ev-
ery Composite Service or Basic Service can be either Managed or Unmanaged.
Unmanaged Services define system behavior without considering failures, while
Managed Services are critical concerns of the systems that require failure man-
agement.

Managed Services are a type of Services and, therefore, they can also be a
component of a Composite Service. In particular, it is possible to have Managed
Services that are composed of other Managed Services. Each one of them will
have a Detector and a Mitigator that will address failures at its level. Using
this schema, by hierarchically composing simpler services in more complex ones
and by adding Detectors and Mitigators to the various component services, it is
possible to achieve a fine level of granularity in managing failures.

One specific Service is a Detector. A Detector is responsible for monitoring the
Managed Services it is associated with, and detecting the eventual occurrence
of a failure. The Detector detects the possible occurrence of a failure based
on a Detection Strategy. One possible Detection Strategy is detection based on
Interactions. In the next section, we will elaborate further on our model for
Services and Interactions.

Upon occurrence of a Failure, the corresponding Detector detects the failure
by observing its Effects. For instance, an unreliable communication medium
might loose a message. The effect of this failure is that the recipient would
not receive the expected message. A common mechanism for detecting failures
is using timeouts. Time is captured in the model in the form of Deadlines.

64 V. Ermagan, I. Krüger, and M. Menarini

An Effect of a failure could be missing a Deadline. Each asserted Deadline is
associated with a Detector that is responsible for monitoring that Deadline. Note
that every failure has one or more Causes as well as some Effects. The cause of
the above failure can be an unreliable communication medium. Note that the
same Effect, namely not receiving the expected message, might have another
Cause, such as failure of the sender, rather than the communication channel.
Although the Detector will detect a failure based on its Effects, it might also be
able to identify the failure’s Cause by storing information about the state of the
different participating roles, or contained sub-Services.

Each Detector is associated with a corresponding Mitigator. Upon detection
of a failure, the Detector activates the corresponding Mitigator responsible for
managing that specific failure. A Mitigator is another specific Service that is
responsible for resolving the faulty state in order to maintain the safety of the
system. A Mitigator applies its corresponding Mitigation Strategy to resolve
the faulty state. Mitigation Strategies describe what should be done when a
specific type of failure happens. Typical Mitigation Strategies are replication,
changing the mode to a more restricted operation mode, resending in case of a
message loss, or ignoring the message in case of a message duplicate. Following
the strategy pattern, decoupling the definition of the mitigation strategy from
the entity that applies it provides flexibility to the model by allowing future
changes to the strategy that is applicable to a specific failure without the need
to make any additional modifications to other elements in the system.

This model, allows us to compose a predefined Unmanaged Service with a
Detector and its associated Mitigator in order to add failure management to
it, creating a Composite Managed Service. If multiple failures are identified in
one Service, it will be wrapped in multiple layers of Detectors and Mitigators.
This capability provides a seamless means to manage the failures that are found
in further iterations of the design/development process, without redefining the
existing Services.

Note that defining the failure management entities as part of the model is
highly encouraged; this captures the possible failures in the system at the very
early stages of the design process, specifically during requirements gathering.
However, capturing all the possible failures and their detecting and mitigating
solutions in the first iteration of the design/development process is not necessary
for designing a failsafe system, as it is not usually even possible.

In order to illustrate the application of the Detectors and Mitigators, consider
our case study again. The underwater equipment must work in a very energy
efficient manner, and so a critical system function is to make sure that if there is
no whale in the pictures taken by the Camera, picture-taking stops right away.
Since the wireless communication between the Underwater Site and the Coastal
Center is unreliable and might lose messages, there exists the chance that the
Whale Detector may decide that there are no whales in the picture and send
this message to the Image Filter, but the message may get lost. Waiting for the
Camera to take another picture, passing it through the Image Filter and Image
Compressor, and resending it would waste energy. In addition, if the response

Model-Based Failure Management for Distributed Reactive Systems 65

Fig. 7. Models of interactions

of the Whale Detector would be lost several times in a row, the picture taking
process would be repeated multiple times before stopping; more energy would
be wasted. Note that it also might be the case that the Whale Detector service
itself might fail, resulting in no reply to the Underwater Site whatsoever. Hence,
sending a Stop message to the Camera in case there is no reply from the Whale
Detector is critical.

One way to express this critical requirement is to enforce a time constraint,
say 1 second, on the interval between sending the Animal Picture message by the
Image Filter and the receipt of the Whale/Not Whale message from the Whale
Detector. A Detector is then added to the Validate Picture Service. The Detector

66 V. Ermagan, I. Krüger, and M. Menarini

monitors the communications of the Image Filter Service. If the Detector ob-
serves the transmission of the Animal Picture message by the Image Filter, but
the Whale/Not Whale message was not received within 1 second, then a Failure
is detected. When the Failure is detected, the Detector sends a message to the
corresponding Mitigator, triggering it to resolve the situation. One possible mit-
igation is for the Mitigator to act on behalf of the ValidatePicture service and
to inject a Stop message into the system so that it is delivered to the Camera.
Note that if the Image Filter Software or the mapped hardware is assumed to
be unreliable as well, we should also enforce a time constraint, say 10 millisec-
onds, between receipt of a Not Whale message from the Whale Detector and the
transmission of the Stop message to the Camera. If the Detector detects a failure
for this time constraint, again it activates the corresponding Mitigator, which
sends the Stop message. Note that the communication between the entities of the
Underwater Site is considered a wired and reliable communication, and hence,
observing the sending of the Stop message assures that the Camera receives it.

One other interesting point in this model is that the Detector can also occa-
sionally detect the Cause of the failure. For instance, the Detector can distinguish
between the failure of the Image Filter and the failure of the wireless connection
or the Coastal Center. If the Picture Message is received by the Image filter, but
the Animal picture is not sent within the 1 second interval, then the cause of
the failure can be assumed to be the Image Filter. This is also the case if the
Not Whale message is received, but the Stop message is not sent within the 10
ms interval.

One final entity of the service model is the Failure Hypothesis. In order to ver-
ify that a system is fail-safe, we need to make some assumptions and restrictions
on how it can fail. Of course there is no way to reason about a system where all
pieces of hardware in that system might fail at the same time. A Failure Hypoth-
esis captures how the system is assumed to be able to fail while still remaining
safe. This information is captured in the form of a Failure Hypothesis based on
the failure taxonomy presented in the previous section. A Failure Hypothesis
identifies the entities in the system that can fail. Hence, every Managed Service
is associated with a Failure Hypothesis. A Failure Hypothesis is also known by
and has an impact on both the Managed Service’s Detector and Mitigator. In
our case study, the fact that the Wireless connection might lose messages is part
of the Failure Hypothesis. If the Image Filter is assumed to be able to fail, then
this information is also part of the Failure Hypothesis.

4.2 Interaction Model

In this section, we briefly discuss our interaction model for Services. A more
elaborate explanation of this model can be found in [4]. As illustrated in Fig-
ure 7, a Service provides a specified functionality, as defined by the interaction
of its Roles. Hence, a Service is captured as a composite Interaction Element.
This expresses the close relationship we see between services and their defining
interaction patterns; it also makes the interaction patterns accessible to defining
failure detectors and mitigators.

Model-Based Failure Management for Distributed Reactive Systems 67

An Interaction Element can be a Role, a Channel, an Atom, or a Compound.
In an interaction, a Role represents the participation of a system entity in an
interaction pattern. An Atom can be a Message, an Event, or a Reference to
another Service. An Event is either a Send Event or a Receive Event. Compound
interaction elements consist of a number of Interaction Elements composed by
Operators. Instances of Operators are Sequence, Loop, Alternative, Parallel and
Join, representing sequential composition, repetition, choice, parallel and join
composition, respectively.

Note that this interaction model abstracts away from concrete notations –
in this text we have used MSCs based on this interaction model to specify the
services of our case study in Figure 3. The interaction model can also easily be
married with the UML2 sequence diagram and state machine model [8].

5 Deriving Detectors

In the previous section, we identified two distinct types of behavior for failure
Effects: Unexpected Behavior and Non Occurrence Behavior. The importance
of this classification is evident when we try to devise detectors able to deal
with failures that present such effects. From the MSC-based specification of the
interaction behavior, it is possible to automatically create two types of detectors,
each able to identify one type of failure effect.

Fig. 8. Relation between detectors, deadlines and effects

Because our specification is based on interactions, failures making the system
violate its specification can be identified by observing how the real communi-
cation deviates from the expected one. In Figure 8, we have captured the rela-
tionship between the failure effects on the system behavior and the interaction
elements in an Interaction Based Detection Strategy. The Interaction Element
defines a communication pattern that must be carried out between elements of

68 V. Ermagan, I. Krüger, and M. Menarini

the system. At run-time it is possible to observe the actual interactions and
determine if they deviate from the specified ones.

By their very nature MSCs define causal relationships between messages ex-
changed. To enable the definition of QoS properties (and in particular of tim-
ing properties), we enrich the model by assigning to each interaction element
a deadline property that mandates a maximum execution time for the whole
interaction[16]. Deadline attributes allow for specification of end-to-end QoS
properties. With this addition, we are able to automatically obtain from the
specification the two types of detectors we need to identify failures that present
either types of effect.

To detect Unexpected Behaviors, we can create an observer that analyzes all
messages exchanged as part of an interaction fragment and compares the obser-
vation to the definition of the corresponding Interaction Element. In particular,
we are interested in identifying failures at the granularity of Roles. Therefore,
each lifeline in the specification MSC identifies the interaction fragment that
must be observed.

In previous work, [17,16] we have devised an algorithm that is able to synthe-
size a state machine for each lifeline in an MSC, capturing the communication
behavior of the corresponding role. The input into this algorithm is a set of
MSCs such as the one given in Figure 3; we make a closed-world assumption
with respect to the interaction sequences that occur in the system under consid-
eration. We derive an automaton for an individual role specification from a given
set of MSCs by successively applying four transformation steps: 1. projection of
the given MSCs onto the role of interest, 2. state insertion, i.e. adding missing
start and end states before and after every interaction pattern, 3. transforma-
tion into an automaton by identifying the MSCs as transition paths, and by
adding intermediate states accordingly, and 4. optimization of the resulting au-
tomata. This synthesis algorithm [18] works fully automatically for causal MSCs
[19], and can handle choice, repetition, concurrency/interleaving and join [7].
Because the algorithm is based on syntactic manipulation of the given MSCs it
is oblivious to the underlying MSC semantics – as long as the semantics of the
target component model matches the one used for the MSCs serving as input to
the algorithm.

Figure 9 shows the state machine obtained by applying the outlined algorithm
to the MSC specification for the Camera role. Starting in state js0 , when a
whaleSound is received, the camera takes the picture and sends it to the Image
Filter. The camera keeps sending until it receives a Stop signal and returns to its
initial state. If the camera is broken and does not stop sending pictures when the
stop message is received, we would observe a message Picture when the camera is
in state js0 . This would be identified by the system as an Unexpected Behavior
failure.

Thus, to detect failures, a state machine is run in parallel with the code for
each role in the system. For each message sent or received by the role, the state
machine takes the transition labeled with the corresponding message name. For
a given type of observed message, if it is not possible to find any transition from

Model-Based Failure Management for Distributed Reactive Systems 69

Fig. 9. State machine for the detector of the Camera role

the current automaton state, then a failure is detected. In particular, if the error
is in an outgoing message of a role under observation, the role is considered to
have failed, and appropriate mitigators are activated.

In general, detecting Non Occurrence Behavior requires more information; the
simple causal relationship between messages is not enough. In fact, the MSCs in
our interaction specification are used to describe purely asynchronous commu-
nication patterns. In this scenario, if a communication channel fails, receipt of
a message could be delayed forever and may never trigger failure detection. To
address this, we have then enriched our model with the Deadline entity, which
introduces the concept of time into the model. With this addition, we are able
to specify QoS requirements that are time-related and to detect failures whose
effect is a Non Occurrence Behavior. The detector is still based on the observa-
tion of messages exchanged. In this case, however, a watchdog timer is activated
when an Interaction Element message is observed, and it has a timeout defined
by the Deadline value. When the Interaction Element ’s last message is observed,
the watchdog is deactivated. If the watchdog fires, a Non Occurrence Behavior
failure is detected.

6 Discussion

The failure management approach we have presented in this paper associates
the notion of failures with the interaction patterns that define services. This is

70 V. Ermagan, I. Krüger, and M. Menarini

particularly suitable in the context of systems of systems integration challenges
– here many failures occur and have to be managed at the level of sub-system
interplay.

The ontology we have developed effectively constitutes a requirements gather-
ing language for failures throughout the software and systems engineering process
– this language can be used informally, or can be translated into formal anal-
ysis frameworks supporting test and verification. One possible application for
the ontology is to translate it into a set of spreadsheets that are populated and
tracked by engineers throughout the development process; this would introduce
a structured yet flexible approach to capturing failure management knowledge
into the requirements engineering life-cycle. The ontology itself is designed to
allow refinement and tailoring to domains other than the one explicitly explored
in this text – in many cases this is simply a matter of defining specific failure
causes and effects, as well as the corresponding mapping from logical to runtime
entities.

The presented approach gives rise to a rich set of research questions. The
first issue is in the generation of state machines from message sequence charts.
Services (captured by the interactions) are partial specifications of the system.
However, in order for the generated state machine to be able to detect Unexpected
Behavior failures, it must specify the complete communication behavior of each
role. Therefore, we must use MSCs to capture a complete specification of the
system communication. One way to weaken this requirement is to monitor only a
subset of the messages exchanged by each role. This would allow the creation of a
partial specification where messages not specified in an MSC are not monitored
for failure detection.

Another problem in the creation of Unexpected Behavior monitors is that, in
general, a nondeterministic state machine can have multiple identically-labeled
outgoing transitions from a given state. A state machine of this kind would op-
erate an internal choice that is not detectable by observing the communication
during an execution of the system. Without additional information on the inter-
nal state of the system, we would have to deal with it by delaying the inference
of the chosen transition to the moment where the right choice can be identified –
a strategy known as angelic nondeterminism[20]. From the observation point of
message traces we have chosen, there is always an equivalent automaton where
the next state is unequivocally defined by the observed messages. We then can
simply run such an automaton in parallel to the role, as described in the previous
section.

Another interesting discussion point is how to plug detectors and mitigators
into the service architecture without changing the original unmanaged service
interaction descriptions. In fact, we want to have Detectors observing the inter-
actions without needing to change the original services. Broadcasting commu-
nication infrastructures could enable the transparent integration of detectors.
Unfortunately, mitigators are harder to integrate. Sometimes, in fact, there is
the need to completely change the message routing policy in order to apply a
mitigation strategy. We are currently experimenting with using an enterprise ser-

Model-Based Failure Management for Distributed Reactive Systems 71

vice bus (ESB [21]) based architecture to implement managed services – in fact,
ESB provides complete decoupling between routing policies and communicating
entities. This is left as future work.

Future work will also investigate how to deal with timing issues in detect-
ing Non Occurrence Behavior failures. In particular, research should be con-
ducted into the implementation of a global deadline detection clock that spans
distributed entities. Especially for tight QoS timing constraints, detectors and
mitigators that are physically separate from the services they manage can intro-
duce unacceptable delays, making failure management impossible. On the other
hand, in order for our approach to failure management to work, the probability
of detector and mitigator failure must be decoupled from the probability of the
failure of the service they apply to. Limitations to the presented approach and
options for dealing with those issues will be analyzed in a forthcoming paper.

7 Related Work

Various approaches to failure management have been proposed in the literature.
For instance, Fault Tolerant CORBA [22] is an OMG standard for a fault tolerant
middleware. Its aim is to provide a transparent framework for dealing with failing
objects in CORBA-based applications. This standard has been analyzed and
implemented in several research projects (for example, [23]). Similarities with
our approach can be found in the concept of fault detectors and recovery services.
However, their detectors use heartbeat messages or polling an is alive method
to detect faults. Our approach generalizes this idea and allows us to detect not
only crash or deadlock failures, but, in general, unexpected and nonoccurrence
behavior failures. Also, the mitigation strategy in our case is more flexible. While
FT-CORBA allows only object replication, we can accommodate a much wider
set of mitigation strategies [12]. Finally, not relying on heartbeat messages to
detect failures, but being able to analyze the normal flow of messages exchanged,
our detectors can be deployed on systems where there are tight constraints on
communication resources.

Our Detectors and Mitigators are closely related to the detector and corrector
used in [3] by Arora and Kulkarni to achieve failure tolerance. Similarly to our
approach they add components to the system in a stepwise manner to address
different failures. The main difference is that our work focuses on interactions
and gives a global view of the failure as a violation of an end-to-end property,
while the work in [3] defines programs as sets of variables and actions operating
on variables.

The concept of a failure hypothesis needed to enable verification of the system
safety is also not new. In [24], for example, a fault model capturing the permitted
fault behavior of a physical system is expressed as a separate model called fault
impact. In our case the failure hypothesis has a larger scope and can encompass
also software failures. Moreover we use a different specification technique (MSCs
as opposed to Petri nets).

72 V. Ermagan, I. Krüger, and M. Menarini

In creating mitigators we can leverage standard techniques for failure manage-
ment. For example, we plan to leverage techniques similar to N-Version Program-
ming [25] to reduce the risk of implementation errors. The mitigation strategy
when a malfunction is detected could be to switch to a reduced functionality
safe mode version of the code that probably doesn’t contain the error. More-
over, our detectors are generated from the model and contain different code
than the handmade implementations in the system. It would also be interesting
to extend our model to combine it with architectural reconfiguration approaches
such as the one presented in [26,27]. Another technique that could be used in our
system is a software black box-like approach. In [28], the authors assign features
to modules and add hooks to record procedure calls. They then use a decoder to
interpret the collected data and debug eventual errors. In our approach, we start
from the model. Moreover we don’t need hooks because messages can be spoofed
from a communication channel. Also, we already detect failures with detectors,
so we can easily provide a software black box that records useful data during
execution. In such a scenario, programmers could receive data on failures from
running systems and further improve product quality during the lifetime of the
system.

8 Conclusion

In this paper, we have presented a model-based approach to failure management.
Our models define services by means of interaction patterns – this allows us, in
particular, to address failures at the systems-of-systems integration level.

The proposed solution for failure management is based on a failure ontology
for the application domain. This ontology disentangles logical architecture from
deployment and runtime aspects; this allows us to lift failure management from
being an implementation afterthought to all phases of the software and systems
engineering process. We use the ontology to identify additional services called
Detectors and Mitigators that are in charge of identifying failures and recovering
from them. Both detectors and mitigators are associated with Strategies we
can tailor to specific failure causes and effects. Detectors and Mitigators wrap
“unmanaged” into “managed” services. This is useful for extending specifications
of “sunny-day scenarios” to take failures into account, without having to alter
the original scenarios. This results in a low barrier for introducing the failure
management approach. Managed services are hierarchical, which allows us to
introduce detectors and mitigators at any level of abstraction/detail.

We have also presented two patterns for deriving Detectors from interaction
specifications. This technique addresses both unexpected and missing behaviors.
Its limitations are in the treatment of missing behaviors when no deadlines are
specified, as well as in failures that do not represent themselves at the level
of interactions. Introducing time as an explicit modeling concept together with
classical architectural strategies such as redundancy, heart-beats and watch-dogs
helps alleviate this limitation.

Model-Based Failure Management for Distributed Reactive Systems 73

There is ample opportunity for future research. In particular, the coupling of
the proposed approach with architectural and design patterns for failure manage-
ment has the potential for enabling the design of a comprehensive methodolog-
ical failure management framework that covers the entire software and systems
engineering process.

Acknowledgments. Our work was partially supported by NSF grants CCF-
0702791 and OCE/GEO #0427924, as well as by funds from the California
Institute for Telecommunications and Information Technology (Calit2). The au-
thors are grateful to the organizers and participants of the Monterey workshop
2006 for highly valuable discussion on this subject. We thank Barry Demchak
and the reviewers for their insightful comments on this manuscript.

References

1. Mellor, S., Clark, A., Futagami, T.: Special Issue on Model-Driven Development.
In: IEEE Software, vol. 20(5), IEEE, Los Alamitos (2003)

2. W3C: Web services architecture (2004),
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211

3. Arora, A., Kulkarni, S.S.: Component based design of multitolerant systems. IEEE
Transactions on Software Engineering 24 (1998)

4. Ermagan, V., Krüger, I., Menarini, M., Mizutani, J.I., Oguchi, K., Weir, D.: To-
wards Model-Based Failure-Management for Automotive Software. In: Proceed-
ings of the ICSE 2007 Workshop on Software Engineering for Automotive Systems
(SEAS) (2007)

5. CI Conceptual Architecture Design Team: Orion cyberinfrastructure conceptual ar-
chitecture, www.orionprogram.org/advisory/committees/ciarch/default.html

6. ITU-TS: Recommendation Z.120: Message Sequence Chart (MSC) (2004)
7. Krüger, I.H.: Distributed System Design with Message Sequence Charts. PhD the-

sis, Technische Universität München (2000)
8. OMG: UML 2.1.1 Superstructure Specification. Number formal/07-02-03. OMG

(2007)
9. Krüger, I.H.: Capturing Overlapping, Triggered, and Preemptive Collaborations

Using MSCs. In: Pezzé, M. (ed.) FASE 2003. LNCS, vol. 2621, pp. 387–402.
Springer, Heidelberg (2003)

10. Krüger, I.H., Mathew, R.: Systematic Development and Exploration of Service-
Oriented Software Architectures. In: Proceedings of the 4th Working IEEE/IFIP
Conference on Software Architecture (WICSA), pp. 177–187. IEEE, Los Alamitos
(2004)

11. Leveson, N.G.: Safeware: system safety and computers. ACM Press, New York
(1995)

12. Putman, J.: Architecting With Rm-Odp. Prentice-Hall, Englewood Cliffs (2000)
13. Gilliers, F., Kordon, F., Regep, D.: A Model Based Development Approach for

Distributed Embedded Systems. In: Wirsing, M., Knapp, A., Balsamo, S. (eds.)
RISSEF 2002. LNCS, vol. 2941, pp. 137–151. Springer, Heidelberg (2004)

14. Jackson, E.K., Sztipanovits, J.: Corrected through Construction: A Model-based
Approach to Embedded Systems Reality. In: 13th Annual IEEE International Sym-
posium and Workshop on Engineering of Computer Based Systems, IEEE, Los
Alamitos (2006)

http://www.w3.org/TR/2004/NOTE-ws-arch-20040211
www.orionprogram.org/advisory/committees/ciarch/default.html

74 V. Ermagan, I. Krüger, and M. Menarini

15. Krüger, I., Meisinger, M., Menarini, M.: Applying Service-Oriented Development
to Complex System: a BART case study. In: Kordon, F., Sztipanovits, J. (eds.)
Monterey Workshop 2005. LNCS, vol. 4322, Springer, Heidelberg (2007)

16. Ahluwalia, J., Krüger, I.H., Phillips, W., Meisinger, M.: Model-based run-time
monitoring of end-to-end deadlines. In: EMSOFT 2005. 5th ACM international
conference on Embedded Software, ACM Press, New York (2005)

17. Krüger, I.H., Mathew, R.: Component synthesis from service specifications. In:
Leue, S., Systä, T.J. (eds.) Scenarios: Models, Transformations and Tools. LNCS,
vol. 3466, Springer, Heidelberg (2005)

18. Krüger, I., Grosu, R., Scholz, P., Broy, M.: From mscs to statecharts. In: Ram-
mig, F.J. (ed.) Distributed and Parallel Embedded Systems, pp. 61–71. Kluwer
Academic Publishers, Dordrecht (1999)

19. Finkbeiner, B., Krüger, I.: Using message sequence charts for component-based
formal verification. In: Specification and Verification of Component Based Systems
(SAVCBS), Iowa State University Workshop at OOPSLA (2001)

20. Back, R., von Wright, J.: Combining Angels, Demons and Miracles in Program
Specifications. TCS 100(2), 365–383 (1992)

21. Krüger, I., Meisinger, M., Menarini, M., Pasco, S.: Rapid Systems of Systems
Integration - Combining an Architecture-Centric Approach with Enterprise Service
Bus Infrastructure. In: 2006 IEEE International Conference on Information Reuse
and Integration (IRI 2006), IEEE Systems, Man, and Cybernetics Society, pp.
51–56 (2006)

22. OMG: Fault Tolerant CORBA. vol. formal/04-03-21. OMG (2004)
23. Baldoni, R., Marchetti, C., Virgillito, A., Zito, F.: Failure management for ft-corba

applications. In: WORDS 2001. Proceedings of the Sixth International Workshop
on Object-Oriented Real-Time Dependable Systems, IEEE, Los Alamitos (2001)

24. Völzer, H.: Verifying fault tolerance of distributed algorithms formally – an exam-
ple. In: Proceedings of the International Conference on Application of Concurrency
to System Design, IEEE, Los Alamitos (1998)

25. Chen, L., Avizienis, A.: N-Version Programming: A Fault-Tolerance Approach to
Reliability of Software Operation. In: Proc. 8th IEEE Int. Symp. on Fault-Tolerant
Computing (FTCS-8), pp. 3–9 (1978)

26. Giese, H., Henkler, S.: Architecture-driven platform independent deterministic re-
play for distributed hard real-time systems. In: Proceedings of the ISSTA 2006
workshop on Role of software architecture for testing and analysis, pp. 28–38 (2006)

27. Tichy, M., Schilling, D., Giese, H.: Design of self-managing dependable systems
with UML and fault tolerance patterns. In: Proceedings of the 1st ACM SIGSOFT
workshop on Self-managed systems, pp. 105–109 (2004)

28. Elbaum, S., Munson, J.: Software Black Box: an Alternative Mechanism for Failure
Analysis. In: International Symposium on Software Reliability Engineering, pp.
365–376 (2000)

A Methodology and Supporting Tools for the

Development of Component-Based Embedded
Systems

Marc Poulhiès1,2, Jacques Pulou2, Christophe Rippert1, and Joseph Sifakis1

1 VERIMAG
2 France Telecom R&D

{poulhies, rippert, sifakis}@imag.fr, jacques.pulou@orange-ftgroup.com

Abstract. The paper presents a methodology and supporting tools for
developing component-based embedded systems running on resource-
limited hardware platforms. The methodology combines two complemen-
tary component frameworks in an integrated tool chain: BIP and Think.
BIP is a framework for model-based development including a language
for the description of heterogeneous systems, as well as associated simu-
lation and verification tools. Think is a software component framework
for the generation of small-footprint embedded systems. The tool chain
allows generation, from system models described in BIP, of a set of func-
tionally equivalent Think components. From these and libraries includ-
ing OS services for a given hardware platform, a minimal system can
be generated. We illustrate the results by modeling and implementing a
software MPEG encoder on an iPod.

1 Introduction

Embedded systems development is subject to strong requirements for optimality
in the use of resources, and correctness with respect to non-functional properties,
as well as requirements for time-to-market and low cost through reuse and easy
customization.

We need holistic methodologies and supporting tools for all development ac-
tivities from application software to implementation. The methodologies should
be component-based to ease code reuse, modularity, reconfiguration and allow
implementations having a minimal footprint by only including the necessary ser-
vices. Components allow abstractions for structuring code according to a logical
separation of concerns. For early design error detection, application of valida-
tion and analysis techniques is essential, especially to guarantee non-functional
properties. Finally, the methodologies should rely on automated implementation
techniques that, for a given hardware platform, make the best possible use of its
characteristics and include only strictly necessary OS services.

Model-based development techniques aim at bridging the gap between appli-
cation software and its implementation by allowing predictability and guidance
through analysis of global models of the system under development. They offer in

F. Kordon and O. Sokolsky (Eds.): Monterey Workshop 2006, LNCS 4888, pp. 75–96, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

76 M. Poulhiès et al.

principle, domain-specific abstractions independent of programming languages
and implementation choices. Nevertheless, they rely on system component mod-
els, which drastically differ from software component models used for operat-
ing systems and middleware [1,2,3]. For system description, components should
encompass real-time behavior, rich interfaces and a notion of composition for
natural description of heterogeneous interaction and computation. In contrast,
software components allow structuring and reuse of functions and associated
data. They use point-to-point interaction (e.g. function calls) through binding
interface specifications.

We present a fully component-based methodology and supporting tools for
the development of real-time embedded systems. The methodology combines
two complementary component frameworks in an integrated tool chain: BIP [4,5]
and Think [6] (see Figure 1). BIP is a framework for model-based development
including a language for the description of heterogeneous real-time systems, as
well as associated simulation and verification tools. Think is a software com-
ponent framework for the generation of small-footprint embedded systems. Our
tool chain allows generation, from system models described in BIP, of a set of
functionally equivalent Think components. From these and libraries including
OS services, a minimal system is generated for a given hardware platform.

Fig. 1. The BIP to Think tool-chain

The paper deals with the integration of component-based approaches used at
the two ends of the development chain. Usually, model-based techniques focus on
system description and analysis while they provide limited or very specific sup-
port for component-based implementation. For instance, tools supporting hetero-
geneous description, such as Ptolemy [7] or Metropolis [8], do not address imple-
mentation issues. Others, such as MetaH [9], Giotto [10] or ROOM [11], rely on
given models of computation and provide support for specific implementations.

A Methodology and Supporting Tools for the Development 77

Component-based techniques for operating systems and middleware lack
analysis capabilities [1]. This motivates work on modeling middleware and op-
erating systems, for instance to evaluate performance and validate configuration
mechanisms as in [12]. However, such works typically use a standard system
architecture with all system services located in the kernel, and providing no sup-
port for applications to control the behavior of low-level services. This requires
modeling the kernel in order to validate its runtime behavior, a very difficult
task considering the complexity of standard kernels.

In contrast, Think is based on the exokernel paradigm [13] leading to mini-
mal solutions involving only the strictly necessary services. Using this paradigm
permits to move all the critical services (such as scheduling for instance) into the
application space, where they can be validated with the applications. This leaves
only very basic functionalities into the nano-kernel, which can be tested sepa-
rately to guarantee their proper runtime behavior. Think is a mature exokernel
technology which has been successfully used to generate implementations for
very constrained platforms such as smart cards [14], AVR (ATmega 2561, 8bits
microprocessor, 8Kb RAM, 256Kb FLASH) as well as ARM platforms (32Mb
RAM, 64Mb FLASH).

Our work integrates heterogeneous system modeling and analysis with a gen-
eral component-based implementation techniques. In this respect, it has similar
objectives with the work around nesC/TOSSIM/TinyOS environment for the
development of wireless sensor networks [15,16,17]. This framework has a more
narrow application scope and the integration between programming, simulation
and implementation tools is much stronger. However, in contrast with TinyOS,
Think preserves the components as runtime entities, permitting dynamic recon-
figuration or component replacement. Our work has also some similarities with
VEST [18]. However, VEST relies upon a thread-based model, whereas neither
BIP nor Think adopt any specific behavioral model.

The paper is organized as follows. Section 2 presents the BIP component
framework used to model the behavior and structure of systems. Section 3 de-
scribes the Think framework which provides the library and tool chain used
to generate system implementations. The generation tool used to translate a
BIP description to a Think system is presented in Section 4. A quantitative
evaluation of the results on a software MPEG encoder is presented in Section 5.

2 The BIP Component Model

BIP[5,19] (Behavior, Interaction, Priority) is a framework for modeling hetero-
geneous real-time components. BIP supports a methodology for building com-
ponents from:

– atomic components, a class of components with behavior specified as a set
of transitions and having empty interaction and priority layers. Triggers of
transitions include ports which are action names used for synchronization.

– connectors used to specify possible interaction patterns between ports of
atomic components.

78 M. Poulhiès et al.

– priority relations used to select amongst possible interactions according to
conditions depending on the state of the integrated atomic components.

The application of this methodology leads to layered components (see fig 2).
The lower layer describes the behavior of a component as a set of atomic compo-
nents; the intermediate layer includes connectors describing interactions between
transitions of the layer underneath; the upper layer consists of a set of priority
rules used to describe scheduling policies for interactions.

This methodology allows a clear separation between behavior and structure
of a system (interactions and priorities).

The implementation of the BIP component framework includes a language for
hierarchical component modeling, and a code generator for an execution platform
on Linux. The execution platform allows simulation as well as exhaustive state
space enumeration. The generated models can be validated by using techniques
available in Verimag’s IF toolset [20,21].

Fig. 2. Layered component model

We provide a description of the main features of the BIP language.

2.1 Atomic Components

An atomic component consists of:

– A set of ports P = {p1 . . . pn}. Ports are action names used for synchroniza-
tion with other components.

– A set of control states S = {s1 . . . sk}. Control states denote locations at
which the components await for synchronization.

– A set of variables V used to store (local) data.
– A set of transitions modeling atomic computation steps. A transition is a

tuple of the form (s1, p, gp, fp, s2), representing a step from control state s1
to s2. It can be executed if the guard (boolean condition on V) gp is true
and some interaction including port p is offered. Its execution is an atomic
sequence of two microsteps:
1. an interaction including p which involves synchronization between com-

ponents with possible exchange of data, followed by
2. an internal computation specified by the function fp on V . That is, if v

is a valuation of V after the interaction, then fp(v) is the new valuation
when the transition is completed.

A Methodology and Supporting Tools for the Development 79

full

empty
in

[0<x]

y:=f(x)

in

ou
t

out

Fig. 3. An atomic component

Figure 3 shows an atomic reactive component with two ports in, out, variables
x, y, and control states empty, full. At control state empty, the transition
labeled in is possible if 0 < x. Interactions through in may modify the variable
x . They are immediately followed by the computation of a new value for y. From
control state full, the transition labeled out can occur. The omission of guard
and function for this transition means that the associated guard is true and the
internal computation microstep is empty. The syntax for atomic components in
BIP is the following:

atom::=
component component id

port [complete | incomplete] port id+

[data type id data id+]
behavior
{state state id

{on port id [provided guard]
[do statement] to state id}+}+

end
end

That is, an atomic component consists of a declaration followed by the definition
of its behavior. Declaration consists of ports and data. Ports are identifiers and
have attributes complete and incomplete whose meaning will be explained in 2.2.
For data basic C types can be used. In the behavior, guard and statement are
C expressions and statements respectively. We assume that these are adequately
restricted to respect the atomicity assumption for transitions e.g. no side effects,
guaranteed termination.

Behavior is defined by a set of transitions. The keyword state is followed by a
control state and the list of outgoing transitions from this state. Each transition
is labelled by a port identifier followed by its guard, function and a target state.

The BIP description of the reactive component of figure 3 is:

component Reactive
port in, out
data int x, y
behavior

80 M. Poulhiès et al.

state empty
on in provided 0 < x do y:=f(x) to full

state full
on out to empty

end
end

The following example shows an atomic component modeling the control of a
simple preemptable task:

component Task
port complete awake,begin,finish
port incomplete preempt, resume
behavior

state IDLE
on awake to WAIT

state WAIT
on begin to EXECUTE

state EXECUTE
on finish to IDLE
on preempt to SUSPEND

state SUSPEND
on resume to EXECUTE

end
end

The component has four control states called IDLE, WAIT, EXECUTE and SUSPEND,
five ports called awake, begin, finish, preempt and resume. The ports have at-
tributes complete and incomplete which characterize the way they synchronize
with other ports to form interactions (see next section).

2.2 Connectors and Interactions

Components are built from a set of atomic components with disjoint sets of
names for ports, control states, variables and transitions.

Notation: We simplify the notation for sets of ports in the following manner.
We write p1|p2|p3|p4 for the set {p1, p2, p3, p4} by considering that singletons are
composed by using the associative and commutative operation |.

A connector γ is a set of ports of atomic components which can be involved in
an interaction. We assume that connectors contain at most one port from each
atomic component. An interaction of γ is any non empty subset of this set. For
example, if p1, p2, p3 are ports of distinct atomic components, then the connector
γ = p1|p2|p3 has seven interactions: p1, p2, p3, p1|p2, p1|p3, p2|p3, p1|p2|p3. Each
non trivial interaction i.e., interaction with more than one port, represents a
synchronization between transitions labeled with its ports.

A Methodology and Supporting Tools for the Development 81

Following results in [22], we introduce a typing mechanism to specify the
feasible interactions of a connector γ, in particular to express the following two
basic modes of synchronization:

– Strong synchronization or rendezvous, when the only feasible interaction of
γ is the maximal one, i.e., it contains all the ports of γ.

– Weak synchronization or broadcast, when feasible interactions are all those
containing a particular port which initiates the broadcast. That is, if γ =
p1|p2|p3 and the broadcast is initiated by p1, then the feasible interactions
are p1, p1|p2, p1|p3, p1|p2|p3.

A system run is a sequence of feasible interactions.
The typing mechanism distinguishes between complete and incomplete in-

teractions with the following restriction: All the interactions containing some
complete interaction are complete; dually, all the interactions contained in in-
complete interactions are incomplete. An interaction of a connector is feasible if
it is complete or if it is maximal.

Preservation of completeness by inclusion of interactions allows a simple char-
acterization of interaction types. It is sufficient, for a connector γ to give the set
of its minimal complete interactions. For example, if γ = p1|p2|p3|p4 and the
minimal complete interactions are p1 and p2|p3, then the set of the feasible in-
teractions are p1, p2|p3, p1|p4, p2|p3|p4, p1|p2|p3, p1|p2|p3|p4.

If the set of the complete interactions of a connector is empty, that is all
its interactions are incomplete, then synchronization is by rendezvous: the only
feasible interaction involves all the ports of the connector (this is the maximal
incomplete interaction of the connector), see figure 4(a). Broadcast through a
port p1 triggering transitions labeled by ports p2, . . . , pn can be specified by
taking p1 as the only minimal complete interaction.

The syntax for connectors is the following:

interaction ::= port id+

connector::=
connector conn id = port id+

[complete = interaction+]
[behavior

{on interaction [provided guard] [do statement]}+

end]

That is, a connector description includes its set of ports followed by the optional
list of its minimal complete interactions and its behavior. If the list of the minimal
complete interactions is omitted, then this is considered to be empty. Connectors
may have behavior specified as for transitions, by a set of guarded commands
associated with feasible interactions. If α = p1|p2|...|pn is a feasible interaction
then its behavior is described by a statement of the form: on α provided Gα

do Fα, where Gα and Fα are respectively a guard and a statement representing
a function on the variables of the components involved in the interaction. As for
atomic components, guards and statements are C expressions and statements
respectively.

82 M. Poulhiès et al.

x1

x2

x3

p1

p2

p3

p1

p2

p3

(a) (b)

x1

x2

x3

C1 C2

Fig. 4. Interaction types

The execution of α is possible if Gα is true. It atomically changes the global
valuation v of the synchronized components to Fα(v).

We use a graphical notation for connectors in the form of trees.
We denote an incomplete singleton interaction by a bullet on the correspond-

ing port and an incomplete singleton interaction by a triangle. A generalisation
of this notation is possible to describe hierarchical connectors [23]. For example,
consider the connector C1 described below:

connector C1 = p1|p2|p3
behavior

on p1|p2|p3 provided ¬(x1 = x2 = x3)
do x1, x2, x3 := MAX(x1, x2, x3)

end

It represents a strong synchronization between p1, p2 and p3 which is graphically
represented in figure 4(a), where the singleton incomplete interactions p1, p2, p3
are marked by bullets. The behavior for the interaction p1|p2|p3 involves a data
transfer between the interacting components: the variables xi are assigned the
maximum of their values if they are not equal.

The following connector describes a broadcast initiated by p1. The correspond-
ing graphical representation is shown in fig 4(b).

connector C2 = p1|p2|p3
complete = p1
behavior

on p1 do skip
on p1|p2 do x2 := x1
on p1|p3 do x3 := x1
on p1|p2|p3 do x2, x3 := x1

end

This connector describes transfer of value from x1 to x2 and x3.
Notice that contrary to other formalisms, BIP does not allow explicit distinc-

tion between inputs and outputs. For simple data flow relations, variables can
be interpreted as inputs or outputs. For instance, x1 is an output and x2, x3 are
inputs in C2.

A Methodology and Supporting Tools for the Development 83

2.3 Priorities

Given a system of interacting components, priorities are used to filter interac-
tions amongst the feasible ones depending on given conditions. The syntax for
priorities is the following:

priority::=
priority priority id [if cond] interaction < interaction

That is, priorities are a set of rules, each consisting of an ordered pair of interac-
tions associated with a condition (cond). The condition is a boolean expression
in C on the variables of the components involved in the interactions. When the
condition holds and both interactions are enabled, only the higher one is possible.
Conditions can be omitted for static priorities.

Notation: We simplify the notation for repetitive rules. It is possible to have
a set of interactions instead of a single interaction in the previous pair. All the
interactions in the left hand side set have a lower priority than all the interactions
in the right hand side set.

The System example given in section 2.4 illustrates the use of priorities.

2.4 Compound Components

A compound component allows defining new components from existing sub-
components (atoms or compounds) by creating their instances, specifying the
connectors between them and the priorities. The syntax of a compound compo-
nent is defined by:

compound::=
component component id

{contains type id {instance id[parameters]}+}+

[connector+]
[priority+]

end

The instances can have parameters providing initial values to their variables
through a named association.

An example of a compound component named System is shown in figure 5.
It is the serial connection of three reactive components, defined as:

full

ou
tin

empty

full

ou
tin

full

ou
tin

C2 C3

emptyempty

Systemr2r1 r3

C1 C4

Fig. 5. A compound component

84 M. Poulhiès et al.

component System
contains Reactive r1, r2, r3
connector C1 = r1.in
complete = r1.in
connector C2 = r1.out|r2.in
behavior

on r1.out|r2.in do r2.x := r1.y
end
connector C3 = r2.out|r3.in
behavior

on r2.out|r3.in do r3.x := r2.y
end
connector C4 = r3.out
complete = r3.out
priority P1 r1.in < r2.out|r3.in
priority P2 r1.in < r3.out
priority P3 r1.out|r2.in < r3.out

end

We use priorities to enforce a causal order of execution as follows: once there is
an in through C1, the data are processed and propagated sequentially, finally
producing an out through C4 before a new in occurs through C1. This is achieved
by a priority order which is the inverse of the causal order.

The following example shows a compound component obtained by composi-
tion of three instances task1, task2 and task3 of the atomic component Task,
given in the previous example in section 2.1.

component FPPS
contains Task task1, task2, task3
connector beg1 = task1.begin, task2.preempt,task3.preempt
connector beg2 = task2.begin, task1.preempt,task3.preempt
connector beg3 = task3.begin, task1.preempt,task2.preempt
connector fin1 res2 = task1.f inish, task2.resume
connector fin1 res3 = task1.f inish, task3.resume
connector fin2 res1 = task2.f inish, task1.resume
connector fin2 res3 = task2.f inish, task3.resume
connector fin3 res1 = task3.f inish, task1.resume
connector fin3 res2 = task3.f inish, task2.resume
priority

// Priorities are shown below
end

The connectors are used to enforce mutual exclusion, that is, at most one
task can be in state EXECUTE. For example, the connector begi is used to force
preemption by taski of the other tasks when they are at state EXECUTE. The
connector fini resj(i �= j) is used to resume preempted tasks when taski finishes.
It is easy to check mutual exclusion between tasks in the compound component.

A Methodology and Supporting Tools for the Development 85

We show below the three types of rules used to enforce decreasing priorities
between the tasks.Rules begi j(i �= j) for beginning tasks of higher priority. Rules
begiprej to avoid preemption of tasks of higher priority. Finally, the rule fin1 2 3

ensures that when both task2 and task3 are suspended, task2 will resume.

priority // resume task2 if both task3 and
// task2 are suspended
priority fin1 2 3 task1.finish|task3.resume < task1.finish|task2.resume
// do not start 3 if 1 is ready
priority beg1 3 task3.begin, task3.begin|task1.preempt, task3.begin|task2.preempt

< task1.begin
// do not start 2 if 1 is ready
priority beg1 2 task2.begin, task2.begin|task1.preempt, task2.begin|task3.preempt

< task1.begin
// do not start 3 if 2 is ready
priority beg2 3 task3.begin, task3.begin|task2.preempt, task3.begin|task1.preempt

< task2.begin
// do not start 2 if 1 is executing
priority beg2pre1 task2.begin|task1.preempt < task1.preempt
// do not start 3 if 1 is executing
priority beg3pre1 task3.begin|task1.preempt < task1.preempt
// do not start 3 if 2 is executing
priority beg3pre2 task3.begin|task2.preempt < task2.preempt

2.5 Implementation

The implementation of the BIP framework (see figure 6) includes a frontend
for editing and parsing BIP programs, and a dedicated platform for the valida-
tion of models. The execution platform (BIP/Linux Platform on fig. 6) consists
of an Engine and software infrastructure for executing the models. It directly
implements BIP’s operational semantics in the following manner:

At a given control state, an atomic component waits for interactions through
the ports of the transitions enabled at that state. The Engine has access to the
connectors and the priority rules of the compound components. When all the
atomic components are waiting for interaction, the Engine:

1. computes the possible interactions;
2. filters by using priority rules the possible interactions by considering only

the maximal ones according to the priority orders;
3. chooses and executes one maximal interaction. The execution may involve

transfer of data between the interacting components. These are notified at
the end of the transfer to continue the execution of their interacting transi-
tions.

The platform allows state space exploration and provides access to the model-
checking tools of the IF toolset [20,21]. It generates a finite state model that is

86 M. Poulhiès et al.

Fig. 6. BIP Framework

fed to the IF tools permitting to validate BIP models and ensure that they meet
properties such as deadlock-freedom, state invariants and schedulability.

For instance, it is easy to check that the FPPS example is deadlock-free. For
schedulability analysis, a timed BIP model is needed. It can be obtained by
adding timing constraints (e.g. enforcing periodicity of the awake port and worst
case execution times on the finish port) to the system model. Timing constraints
are expressed in BIP by using variables modeling clocks following the hybrid
automata paradigm [24]. More information about modeling real-time systems in
BIP can be found at [19].

3 The Think Framework

Think[6,25] (THink Is Not a Kernel) is a software framework for the develop-
ment of small-footprint embedded systems. It includes a programming model, a
library of operating system abstractions, and a set of tools dedicated to autom-
atize the configuration and building processes.

Think is an implementation of the Fractal component model [26]. Fractal has
been implemented on various software platforms (Java [27], .Net, C++ [28], etc.)
and for various uses (middlewares, multimedia applications, aspect-oriented pro-
gramming, etc.). Think is a C/assembly implementation of Fractal aiming as
easing the development of low-footprint embedded systems. Fractal is a hierar-
chical component model which advocates design patterns, such as separation of
concerns for instance, to reduce development and maintenance costs of complex
software systems. A component in Fractal consists of two parts: a functional core
which implements the service provided by the component, and a control layer

A Methodology and Supporting Tools for the Development 87

used to manage the component itself and implement non-functional properties.
Fractal programming model is based on the export-bind design pattern, which
guarantees the flexibility of the composition and permits to develop modular
implementations of system services. Components in Fractal can be dynamically
reconfigured or replaced due to the separation between the functional part of a
component and its control interface [29]. This programming model is a major
asset compared to similar system-building tools such as the OSKit [30] for in-
stance, as it permits to manage components as runtime entities which can be
easily reconfigurated or replaced.

Think includes a library of standard system abstractions optimized for vari-
ous embedded platforms (ARM, PowerPC, Xscale, AVR, etc) that can be used
to build minimal systems suitable for execution on severely constrained hard-
ware platforms. Think includes both platform-independent services (i.e. mem-
ory manager, TCP/IP stack, file-systems, etc.) and services depending on the
characteristics of the underlying hardware (i.e. MMU manager, NIC and IDE
drivers, etc.). The modularity of the Fractal component model permits to link
only the required services, without having to manage cross-dependencies be-
tween modules as this is often the case in monolithic kernels. This flexibility
is a major asset with respect to traditional embedded operating systems which
typically include all the system services that could possibly be used by applica-
tions, resulting in a major waste of memory for embedded applications. Think

is thus especially well suited for resource-limited embedded systems as it permits
to build dedicated runtime environments including only the system abstractions
needed by the embedded applications.

Think offers various tools easing the configuration and building of the sys-
tem. The structure of the system is described using an Architecture Description
Language (ADL) that permits to specify which component must be included in
the system and the static links between the components. An Interface Descrip-
tion Language is used to describe the services implemented by the components
and how they can interact. A generation chain takes these descriptions and auto-
matically generates a minimal system composed of the applications, the selected
system services and the software framework needed to make them interact.

4 The BIP to Think Compiler

We developed a compiler which generates Think components from BIP source
code, as well as the glue code needed to bind them (C and ADL source files).
Figure 7 depicts the translation process, which preserves the structure of BIP
models. Atomic components are translated into Think components. For each
connector a Think component is generated. Priorities are implemented by using
a specific Think component. Finally, an Engine component is used to implement
the operational semantics of BIP. Checking the correctness of the translation can
be decomposed into two steps:

88 M. Poulhiès et al.

– checking the correctness of each individual translation for atomic compo-
nents, connectors and priorities. These translations are simple expansions of
the BIP code which are easy to check.

– checking correctness of the Engine which is the only active component. The
Engine implements the semantics in the form of a simple automaton (see
figure 8).

Bellow, we illustrate the method by using the FPPS example.

Fig. 7. The BIP to Think translation process

4.1 Atomic Components

Each BIP atomic component is mapped into a Think component. Each data
variable of an atomic BIP component is translated into an interface (Data) ex-
ported by the corresponding primitive Think component. The interface consists
in two simple methods get and set.

Similarly, each port of an atomic BIP component is translated into an interface
(Port) with 2 main methods: isSynced, to evaluate the guard of the transition
associated with this port, and execute, to compute the function of this transition.
We provide below the code generated for the port begin and the transition from
state WAIT to EXECUTE:

#define TASK_EXECUTE 3

// self variable is the Task component
// instance reference used to access
// bound interfaces and component’s
// variables
_enter_state_EXECUTE (Taskdata *self) {
reset_ports(self);
self->finish_port = 1;
self->preempt_port = 1;
self->state = TASK_EXECUTE;

}

_begin_execute (Taskdata *self){
if (self->state == TASK_WAIT){

_enter_state_EXECUTE(self);
}

}

A Methodology and Supporting Tools for the Development 89

Notice that when a state is entered (method enter state EXECUTE here), the
variables associated with ports (finish port and preempt port, ...) are reset (i.e.
set to 0) and only the variables associated with the ports that can be enabled
(ie. the port labels an outgoing transition from present state and its guard (if
any) evaluates to true) are toggled. Interactions eligible for execution must have
their port variables set to 1.

4.2 Connector Components

Each connector of a BIP description is translated into a Think component.
This component is bound to the Port interface of each port of the connector and
exports a Connector interface. If the connector has guarded commands, it is also
bound to the Data interface of each involved variable.

The connector component computes the feasible interactions of the connec-
tor and triggers the execution of a maximal one, when it is needed. This is
implemented by using 2 methods:

– execute which executes one maximal feasible interaction of the connector
and returns false if there is no feasible interaction;

– isLegal which tests whether there is at least one feasible interaction to exe-
cute.

A connector component can also inhibit some interaction so as to respect
priorities (see 4.3). This is implemented by 2 methods:

– inhibit(id) method which marks the id interaction as not eligible
– the isInteractionLegal(id) that tests whether or not the id interaction is

feasible.

We provide below the isLegal and execute methods for a connector connect-
ing port begin of the component task1, and ports preempt of components task2

and task3. The compiler is able to statically compute the maximum interac-
tion and stores it in the MAX INT macro. The example below shows a broadcast
synchronization used when the first task begins (connector beg1):

// max interaction code
#define MAX_INT 0x0007
// connector local port coding
#define TASK1_BEGIN 0x1
#define TASK2_PREEMPT 0x2
#define TASK3_PREEMPT 0x4

// self variable is the connector component
// instance reference
bool isLegal(beg1data *self) {
// this mask has 1 bit for each port
self->port_mask = 0;

//ask if task1.begin is synced or not
if(CALL(self->task1_begin, isSynced)){

90 M. Poulhiès et al.

self->port_mask |= TASK1_BEGIN;
}
if(CALL(self->task2_preempt, isSynced)){

self->port_mask |= TASK2_PREEMPT;
}
if(CALL(self->task3_preempt, isSynced)){

self->port_mask |= TASK3_PREEMPT;
}

// legal iff begin port synced
return (self->port_mask & TASK1_BEGIN);

}

bool execute(beg1data *self){
// if begin not synced, nothing to execute
if (!(self->port_mask & TASK1_BEGIN)) {

return 1;
}

//notify all synced ports
if (self->port_mask & TASK1_BEGIN){

CALL(self->task1_begin, execute);
}
if (self->port_mask & TASK2_PREEMPT){

CALL(self->task2_preempt, execute);
}
if (self->port_mask & TASK3_PREEMPT){

CALL(self->task3_preempt, execute);
}
return 0;

}

4.3 The Priority Component

All BIP priority rules are implemented into a single Think component. This
component is bound to the Connector interface of each involved connector and
to the Data interface of each variable used in the guards. It exports a simple
Priority interface which includes the method apply. This method sequentially
applies all the priority rules in the system. For example, one relation of the BIP
priority rule beg1 3 from the previous example is translated into:

// beg3 : task3.begin, task2.preempt
// < beg1 : task1.begin

// self variable is the priority component
// instance reference

// guard is empty
guard = 1;
// low prio connector : beg2
cn_low = self->beg2;

A Methodology and Supporting Tools for the Development 91

// high prio connector : beg1
cn_high = self->beg1;
iid_low = BEG2_TASK2_BEGIN |
BEG2_TASK3_PREEMPT ;

// high prio inter. id (iid)
iid_high = BEG1_TASK1_BEGIN ;

// ask high prio connector if it is legal
// and inhibit inter on lower prio connector
// if needed
if (guard && CALL(cn_high,
isInteractionLegal, iid_high))
CALL(cn_low, inhibit, iid_low);

4.4 The Engine

The Engine component implements the BIP Engine using a Think component.
It contains the entry point of the system generated by Think and is responsible
for scheduling the computation. It runs an infinite loop (see figure 8) choosing
one maximal feasible interaction out of all possible ones and executing it. The
Engine first builds a list of connectors for which at least one interaction is feasible
(using the isLegal method for connectors), then it asks the priority component
to apply priorities (using the apply method). Finally, it chooses a connector from
the previous list and executes it (using the execute method of the connector).

4.5 Deployment

Figure 9 shows the architecture generated for FPPS after it has been deployed
(running). For the sake of clarity, only one connector component is represented.

Fig. 8. Engine’s loop

92 M. Poulhiès et al.

Fig. 9. The generated system after deployment

The FPPS example described in BIP in the previous section includes three
tasks running in mutual exclusion. This property has been validated on the
BIP code using model-checking tools. The correctness of the translation process
ensures that mutual exclusion between the three tasks is respected in the code
generated by the BIP2Think compiler.

5 Evaluation

To illustrate our methodology and evaluate the performances and memory-
footprint of the generated system, we considered a software MPEG encoder. We
started from monolithic legacy C code (approx. 7000 lines of code). We used BIP
as a programming model for componentizing the C code so as to reveal causality
dependencies between functions. This led to a BIP model consisting of 20 compo-
nents and 34 connectors. A high-level decomposition of the BIP encoder model
in shown below. Bullets represent incomplete ports and thick lines represent
buffered connections (i.e 2 connectors with a buffer component in the middle).

We used scheduling policies proposed in [31] to control the execution of the
model so as to respect given deadlines and optimize quality. The BIP to Think

compiler produces 56 components. The resulting code is 6300 lines of C code
and 1000 lines of ADL code.

We generated an implementation of the encoder for an Apple iPod Video
on which we only used one of the two ARM cores running at 80Mhz. The test
consists in the encoding of 2 different videos.

To estimate the overhead added by the BIP componentization, we compare
the generated encoder system against a monolithic implementation derived from
the original encoder source code (i.e. without BIP or Think). Results are given
on Figures 11 and 12.

A Methodology and Supporting Tools for the Development 93

Fig. 10. BIP encoder model

Resolution Length Encoding time Speed
(in pixels) (in frames) (in seconds) (in fps)
320×240 40 500 0.08
64×48 161 77 2

Fig. 11. Performances on the iPod Video for the BIP+Think encoder

Resolution Length Encoding time Speed
(in pixels) (in frames) (in seconds) (in fps)
320×240 40 200 0.203
64×48 161 37 4.3

Fig. 12. Performances on the iPod Video for the monolithic encoder

The overall encoding frame rate seems reasonable given the low CPU fre-
quency and memory bandwidth of the iPod. Figure 12 shows an overhead in
performance of roughly 100% for the BIP+Think version. This is reasonably
good considering that our compiler is still in an early stage of development and
has no optimization features. A more detailed analysis of the overheads by profil-
ing, shows that this is due for approximately 66% to execution of connectors and
for 33% to execution of priority rules. These can be reduced by code optimiza-
tion. One possible optimization is to replace the priority component and take
into account priorities at compile time by restricting the guards of the atomic
components. This solution is more efficient but less modular as it is not pos-
sible to incrementally modify priorities. A similar optimization can be applied
for connectors. It is possible, by using BIP’s operational semantics, to replace

94 M. Poulhiès et al.

two components by a single product component. The execution of connectors
between composed components becomes an internal transition of the product
component. This avoids communication overheard but also leads to a less mod-
ular solution.

The system size (including the video encoder) is 300Kb for the BIP+Think

and 216Kb for the monolithic version which results in a 38% overhead in size.
For comparison, a regular iPod linux kernel weights more than 1Mb without any
application code.

6 Conclusion and Future Work

We presented a methodology and tools for the design, validation and implemen-
tation of component-based systems. The methodology integrates two existing
component frameworks: one for high-level system description and analysis, the
other for component-based execution and reconfiguration. BIP allows high-level
system descriptions which can be simulated and validated on a workstation be-
fore being deployed on the target embedded platform. Think offers a large li-
brary of system services, already optimized for embedded hardware platforms,
to produce a minimal system, based on the modularity of the library and com-
pilation chain.

Integration is through a transformation preserving not only the semantics but
also the structure of the system model. The implementation includes a set of com-
ponents for scheduling, interconnect and functionality, which can be dynamically
reconfigured. Rigorous operational semantics of BIP allows application of state-
of-the-art validation techniques on system models for checking properties such as
deadlock-freedom, state invariants and schedulability. Model validation implies
validation of the implementation, provided that the tool chain and the low-level
services included in the system are correct. This is ensured by the systematic
approach used in the translator which maps BIP concepts directly into Think

components, and by the simplicity of the nano-kernel which includes only basic
services, due to the exokernel architecture.

Bare-machine implementation is particularly appropriate for embedded sys-
tems. It allows tailored, lightweight, low-overhead solutions and precise control of
execution timing. Another advantage is validation of the implementation which
may be problematic when legacy operating systems are used. Faithfully modeling
the underlying execution mechanisms for a given operating system is non-trivial.

Future work concerning the BIP to Think translator includes support for
external events, such as interrupts or I/O. This type of events are currently
supported by Think and can be modeled in BIP as external ports. Another
work direction is the optimization of bindings in the Think framework, in order
to keep the flexibility of the export-bind design pattern without enduring the
cost of going through a proxy each time an inter-component method invocation
is executed.

A Methodology and Supporting Tools for the Development 95

Acknowledgments

We would like to thank Ananda Basu, Jacques Combaz and Löıc Strus for con-
tributing to the work presented in this paper.

References

1. Friedrich, L., Stankovic, J., Humphrey, M., Marley, M., Haskins, J.: A Survey of
Configurable, Component-Based Operating Systems for Embedded Applications.
IEEE Micro 21(3), 54–68 (2001)

2. Object Management Group: The CORBA Component Model Specification v4.0
(April 2006)

3. Microsoft Corporation: COM: Component Object Model Technologies
http://www.microsoft.com/com/

4. Sifakis, J.: A Framework for Component-based Construction. In: Proceedings of the
International Conference on Software Engineering and Formal Methods (September
2005)

5. Basu, A., Bozga, M., Sifakis, J.: Modeling Heterogeneous Real-Time Components
in BIP. In: 4th IEEE International Conference International Conference on Software
Engineering and Formal Methods (September 2006)

6. Fassino, J.P., Stefani, J.B., Lawall, J., Muller, G.: THINK: A Software Framework
for Component-based Operating System Kernels. In: Proceedings of the Usenix
Annual Technical Conference (June 2002)

7. Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S.,
Sachs, S., Xiong, Y.: Taming Heterogeneity: The Ptolemy Approach. Proceedings
of the IEEE 91(1), 127–144 (2003)

8. Balarin, F., Watanabe, Y., Hsieh, H., Lavagno, L., Passerone, C., Sangiovanni-
Vincentelli, A.L.: Metropolis: An Integrated Electronic System Design Environ-
ment. IEEE Computer 36(4), 45–52 (2003)

9. Vestal, S.: Formal Verification of the MetaH Executive Using Linear Hybrid Au-
tomata. In: IEEE Real Time Technology and Applications Symposium, pp. 134–144
(June 2000)

10. Henzinger, T.A., Kirsch, C.M., Sanvido, M.A.A., Pree, W.: From Control Models
to Real-Time Code using Giotto. IEEE Control Systems Magazine 23(1), 50–64
(2003)

11. Selic, B.: Real-Time Object-Oriented Modeling (ROOM). In: IEEE Real Time
Technology and Applications Symposium (June 1996)

12. Subramonian, V., Gill, C.D., Sanchez, C., Sipma, H.B.: Reusable Models for Tim-
ing and Liveness Analysis of Middleware for Distributed Real-Time Embedded
Systems. In: Proceedings of the 6th Conference on Embedded Software (October
2006)

13. Engler, D.R., Kaashoek, M.F., O’Toole, J.: Exokernel: An Operating System Ar-
chitecture for Application-Level Resource Management. In: Proceedings of the 15th

ACM Symposium on Operating Systems Principles (December 1995)
14. Deville, D., Galland, A., Grimaud, G., Jean, S.: Smart Card operating systems:

Past, Present and Future. In: Proceedings of the 5th NORDU/USENIX Conference
(February 2003)

http://www.microsoft.com/com/

96 M. Poulhiès et al.

15. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System Archi-
tecture Directions for Network Sensors. In: Proceedings of the 9th ACM Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(November 2000)

16. Levis, P., Lee, N., Welsh, M., Culler, D.E.: TOSSIM: Accurate and Scalable Sim-
ulation of Entire TinyOS Applications. In: ACM SenSys, pp. 126–137 (November
2003)

17. Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., Culler, D.: The nesC
Language: A Holistic Approach to Networked Embedded Systems. In: Proceedings
of the ACM Conference on Programming Language Design and Implementation
(June 2003)

18. Stankovic, J.A., Zhu, R., Poornalingam, R., Lu, C., Yu, Z., Humphrey, M., Ellis,
B.: VEST: An Aspect-Based Composition Tool for Real-Time Systems. In: Pro-
ceedings of the 9th IEEE Real-Time and Embedded Technology and Applications
Symposium (May 2003)

19. BIP: http://www-verimag.imag.fr/∼async/BIP/bip.html
20. Bozga, M., Graf, S., Ober, I., Ober, I., Sifakis, J.: The IF Toolset. In: School

on Formal Methods for the Design of Computer, Communication and Software
Systems (September 2004)

21. Bozga, M., Graf, S., Mounier, L.: IF-2.0: A Validation Environment for Component-
Based Real-Time Systems. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, pp. 343–348. Springer, Heidelberg (2002)

22. Gößler, G., Sifakis, J.: Composition for component-based modeling. Sci. Comput.
Program 55(1-3), 161–183 (2005)

23. Bliudze, S., Sifakis, J.: The algebra of connectors: structuring interaction in bip.
In: EMSOFT 2007. Proceedings of the 7th ACM & IEEE international conference
on Embedded software, pp. 11–20. ACM Press, New York (2007)

24. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin, X.,
Olivero, A., Sifakis, J., Yovine, S.: The Algorithmic Analysis of Hybrid Systems.
Theor. Comput. Sci. 138(1), 3–34 (1995)

25. Think: http://think.objectweb.org/
26. Fractal: http://fractal.objectweb.org/
27. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.B.: The Fractal

Component Model and Its Support in Java. Software Practice and Experience, spe-
cial issue on Experiences with Auto-adaptive and Reconfigurable Systems 36(11–
12), 1257–1284 (2006)

28. Layäıda, O., Hagimont, D.: Plasma: A component-based framework for building
self-adaptive applications. In: Proceedings of the Conference on Embedded Multi-
media Processing and Communications (January 2005)

29. Polakovic, J., Özcan, A.E., Stefani, J.B.: Building Reconfigurable Component-
Based OS with THINK. In: Euromicro Conference on Software Engineering and
Advanced Applications (September 2006)

30. Ford, B., Back, G., Benson, G., Lepreau, J., Lin, A., Shivers, O.: The Flux OSKit:
A Substrate for OS and Language Research. In: Proceedings of the 16th ACM
Symposium on Operating Systems Principles (October 1997)

31. Combaz, J., Fernandez, J.C., Lepley, T., Sifakis, J.: QoS Control for Optimality and
Safety. In: Proceedings of the 5th Conference on Embedded Software (September
2005)

http://www-verimag.imag.fr/~async/BIP/bip.html
http://think.objectweb.org/
http://fractal.objectweb.org/

F. Kordon and O. Sokolsky (Eds.): Monterey Workshop 2006, LNCS 4888, pp. 97–110, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Industrial Challenges in the Composition of Embedded
Systems

David Corman and James Paunicka

The Boeing Company, P.O. Box 516,
St. Louis, MO. 63166

{David.E.Corman, James.L.Paunicka}@Boeing.com

Abstract. This paper describes a wide range of challenges faced by system
designers in developing embedded and networked embedded systems (today’s
Cyber Physical Systems – CPS). These challenges derive from the complexity
of the environment that the systems will need to operate in, coupled with
emerging needs to continually increase system capabilities. Environmental
complexities include the operation of systems in System-of-Systems (SoS)
environments. System complexities posing challenges in embedded systems
composition include the ever-increasing desire for on-board vehicle autonomy,
and requirements for multiple safety criticalities co-existing within a software
suite embedded in a vehicle. These complexity issues are driving dramatic
increases in sizes of embedded real-time vehicle software loads. This brings
concomitant increases in software development timelines and difficulty in
system composition, verification, validation, and certification. The software
engineering challenges are daunting, resulting in software being an ever
increasing cost and schedule driver in emerging new system developments.

Keywords: embedded real-time systems, systems composition, certification,
validation, Cyber Physical Systems.

1 Summary

Emerging techniques in embedded systems development are benefiting from a
number of current research areas, such as composability, model-driven development,
and techniques in Verification and Validation (V&V) and certification, etc. System
attributes, such as autonomy and operation in a System of Systems (SoS) context,
provide significant challenges to the systems developer, but also provide interesting
opportunities to the research community.

As one of the premier global aerospace companies, the Boeing Company works in
a rich set of application areas that will benefit from research focused on composition
of real-time embedded systems in multiple domains:

• Air (manned and unmanned, commercial and military)
• Space (ultra high-reliability applications)
• Land (e.g., Future Combat Systems – networked system of systems)

98 D. Corman and J. Paunicka

Our goal, as systems developers at Boeing, is to transition the best software,
techniques and tools from this emerging research by applying them to our current and
next-generation of products.

Fig. 1 highlights characteristics of our next generation system developments.
Today’s systems primarily were developed in a world in which the systems operate
individually. They are statically configured with limited capability to adapt to the
dynamic environment. Demands on higher system performance and lower system
cost are driving next generation systems to be highly networked and highly dynamic
in nature. Systems will operate as part of a system of systems with roles that may
change as the situation dictates. This will include on-line system customization
including on-line code generation. Systems will operate in heterogeneous
environments supporting both autonomous behavior and ad-hoc collaborations. As
we move from hard wired network environments to a wireless world, systems will be
required to exhibit fault-tolerant behaviors that can account for unreliable networks.
Moreover, systems will need to be designed to exhibit “predictably safe” behaviors in
an uncertain environment. Additionally, design artifacts must be available to support
system level verification and validation.

Fig. 1. Pervasive Industrial Strength Challenges in the Composition of Embedded Systems

System complexity is outstripping our capability to affordably develop and
compose the next generation of real-time embedded systems. Virtually all new
developments will be focused on component-based systems. Most are highly
dynamic and require some level of dependable performance. All can benefit greatly
from additional research.

This paper describes the wide range of challenges facing designers in composing
and developing embedded and networked embedded systems and presents a number
of technology development successes aimed at meeting these challenges in efforts that
culminated in live flight demonstration on relevant tactical platforms.

 Industrial Challenges in the Composition of Embedded Systems 99

2 Embedded System Challenges

Fig. 2 highlights some of the embedded system challenges for today’s systems. We
use as an example a high performance tactical fighter. The system is characterized by
multiple system processors that support the diversity of functions required to both fly
and operate effectively. These include embedded processors required for both
mission critical (e.g., mission processing) and flight critical activities (e.g., flight
control). Traditionally, much of processing was statically controlled with processor
resources scheduled on a periodic basis. Processing typically was hard real-time for
activities that need to be complete within a frame. In the future, mission processing
will include software real-time tasks such as download of imagery that will be soft
real-time. Scheduling algorithms will be dynamic and adaptive to the mission state.
Additional avionics capabilities including new sensors provide potential to
dramatically improve performance. These gains will only be harvested if the system
is made more responsive to the dynamic operating environment. This includes support
for real-time re-tasking, mission adaptation, mission re-planning in a networked SoS
environment that includes smart weapons, autonomous Unmanned Aerial vehicles
(UAVs), mixed-initiative control, and collaborative operation.

1980
avionics

1990
avionics

2005
Avionics

0

Software Size
Radar

WeaponsWeapons

Nav Sensors

Weapon
Management

Nav Sensors

Weapon
Management

Data LinksD
Many

Computers

Multiple Buses

Constrained
Tactical Links

O(106) Li es of
CodeHard & Soft

Real-Time

Periodic &
Aperiodic

Multiple Safety
Criticalities

Information
Security

Mission
Computer

Vehicle
Mgmt

COTS

2000
Avionics

Fig. 2. Embedded System Technology Challenges

System complexities posing challenges in embedded systems composition include:

• Ever-increasing desire for on-board vehicle autonomy, including real-time
on-board re-routing in response to dynamic mission conditions and
autonomous reactions to various contingencies,

• Requirements for multiple safety criticalities co-existing within a software
suite embedded in a vehicle,

• Multi-level security requirements in on-board software,
• Network-centric participation mandating use of constrained legacy data

links required for interoperability with existing platforms.

The above complexity issues and drivers are resulting in dramatic increases in the
sizes of embedded real-time vehicle software loads. This complexity is reflected in
code size estimates for modern fighters such as Joint Strike Fighter predicted by
United States Congressional Budget Office to be on the order of 18M lines of code

100 D. Corman and J. Paunicka

[1]. This contrasts with today’s typical software loads on the order of 1M lines. This,
of course, brings concomitant increases in software development timelines and
difficulty in system composition, verification, validation, and certification. The
software engineering challenges are daunting, resulting in software being an ever
increasing cost and schedule driver in emerging new system developments.

2.1 Dynamic Operation in a Networked SoS Environment

Dynamic system behavior requirements can stem from operational issues such as
reaction to on-board contingencies, execution of incoming human directives, and
participation of platforms in a net-centric environment, including participation in
swarms and other cooperative multi-vehicle missions. Implementation of on-board
software that can react to these dynamic conditions is supported by a variety of
techniques such as mixing of hard and soft real-time tasks, active resource
management and dynamic scheduling, and support for software component
reconfiguration at system mode changes.

Collaboration
Server

C4ISR Data

Quality of Service
Management

Adaptive
Resource Mgmt

Browser
Application

JTIDS
Controls &
Displays

Link 16 Interface Software
F-15 JTIDS FDL Terminal

Quality Object
Framework

Link 16 Interface Software
C2 JTIDS Class II Terminal

Pluggable Protocol

Collaboration
Client

Link 16

Virtual Target
Folder

C2C2 FF--1515

ORB

ORB

TCP sockets
Pluggable
Protocol

Collaboration
Server

C4ISR Data

Quality of Service
Management

Adaptive
Resource Mgmt

Browser
Application

Browser
Application

JTIDS
Controls &
Displays

JTIDS
Controls &
Displays

Link 16 Interface Software
F-15 JTIDS FDL TerminalF-15 JTIDS FDL Terminal

Quality Object
Framework

Link 16 Interface Software
C2 JTIDS Class II TerminalC2 JTIDS Class II Terminal

Pluggable Protocol

Collaboration
Client

Link 16

Virtual Target
Folder

Virtual Target
Folder

C2C2 FF--1515

ORB

ORB

TCP sockets
Pluggable
Protocol

Fig. 3. WSOA First Generation Interoperability Bridge

Boeing demonstrated a first generation solution to the challenge of Dynamic
Operation in a SoS Environment in the Weapon System Open Architecture (WSOA)
demonstration, Fig. 3. From a technology perspective, WSOA challenges were: 1)
Applying Quality of Service (QoS) technology to make optimal use of available
bandwidth; 2) Adaptive management of processor resources across the network; 3)
Dynamic scheduling to incorporate hard and soft real-time processes [2]. WSOA also
introduced the use of a pluggable CORBA protocol above Link 16 along with a new
interoperability layer. This protocol layer was used for QoS negotiation and C2-
Fighter “tactical net-meeting”. On an operational level, WSOA flight demonstrated
collaborative real-time mission re-planning and imagery transmission over Link 16
between an F-15 and a surrogate AWACS platform. WSOA demonstration was
highly successful and showed that significant utility was achieved as a result of
adaptive resource management and dynamic scheduling. [15] provides a tutorial
description of the technologies employed in WSOA. The right hand side of Figure 3
highlights the challenges involved in multiple UAV collaboration. The figure was
extracted from the DARPA MICA Public Release presentation [16]. Major
challenges facing the designer were to develop mixed initiative control of UAV teams
including collaborative strategies and tactics for these teams under the supervision of

 Industrial Challenges in the Composition of Embedded Systems 101

Fig. 4. FCS Networked System of Systems

a single human operator, with adjustable autonomy determining the degree of human
authority desired or required during task execution. Although an important first step,
the WSOA architecture could not approach answering the true networked SoS
challenge posed by today’s operational environment with hundreds of interacting
systems. Networking challenges include integration of systems within a larger SoS
context, including considerations for heterogeneous / federated networks, incorporation
of legacy fielded systems, being able to operate with inherently unreliable networks,
and making optimum use of data links of various bandwidth capabilities (e.g., wireless,
satellite, etc.).

Probably the most complex example of system of system behavior is exhibited by
the Future Combat System (FCS). FCS will network 18 separate platform types – 8
manned ground vehicles, 4 unmanned air vehicles, 6 unmanned ground vehicles –
with soldiers, unattended ground sensors and munitions, Fig. 4. According to the
General Accountability Office [17], FCS is developing a first-of-a-kind network that
will entail development of unprecedented capabilities— including: 1) On-the-move
communications, high-speed data transmission, dramatically increased bandwidth and
simultaneous voice, data and video; 2) The simultaneous design and integration of 18
major weapon systems or platforms within strict size and weight limitations; 3)
Maturation and integration into a system of systems of at least 53 technologies that
are considered critical to achieving FCS’critical performance capabilities.

Multi-entity embedded systems challenges deal with effective utilization of
multiple, sometimes-cooperating vehicles to accomplish an objective. This includes
being able to accommodate a heterogeneous mix of vehicles. Challenges include

102 D. Corman and J. Paunicka

resource and task allocation for vehicles in the population and issues associated with
deconflicted dynamic responses to changes in the battlespace.

Information management will play an ever increasing role in SoS operation as
massive amounts of data become available from netted platforms for war fighter
exploitation [20]. Entities such as the Global Information Grid (GIG) hold the
promise of enabling flexible and timely delivery of critical battlespace information
from a mix of airborne assets that collect information to war fighters needing that
information [21]. Various aspects of information management will help make
intelligent use of finite communications bandwidth in the face of an almost infinite
amount of data that would be available from airborne platforms (e.g., use of metadata
to support information brokering).

Information assurance and security impose additional challenges. Tamper-resistant
avionics software is also needed [22, 27]. To support the dynamic system behaviors
and coalition environments that are prevalent today, a new paradigm in security
architecture for networked systems must be developed. Traditional security solutions
as practiced that impose static structure and partitioning are not viable. Covert
channels, created under cover of reconfiguration must be prevented. These SoS
solutions must be interoperable in a coalition environment. Significant effort is being
expended on the development of system of system architectures that can support
Multiple Independent Levels of Security (MILS). MILS is an enabling architecture
that can dramatically reducing the size and complexity of security-critical code, thus
allowing faster and more cost-effective development and evaluation. MILS is based
on work initiated by John Rushby in the early 1980s, and has evolved in a cooperative
effort among government (e.g. US Air Force Research Laboratory), education
(University of Idaho) and commercial organizations (e.g. Greenhills, Objective
Interface Systems, and the major aerospace contractors including Boeing, Lockheed
Martin, and Raytheon). Further details on MILS, its implications and state of
development can be found in [19] which provides an extensive tutorial and many
references on the broad subject of MILS and its relationship to networked embedded
systems.

Networked real-time embedded systems truly pose a multi-dimensional
development challenge. We need to consider multiple system aspects including hard
and soft real-time operation, timeliness, security, and safety in the design space as we
start to build our system designs. Maturity of the potential solution is also quite
important as we look to integrating system components. Maturity is typically referred
to as Technology Readiness Level (TRL). TRL 1 is associated with basic technology
research. TRL 6 represents a System/subsystem model or prototype demonstration in
a relevant environment. TRL 8 and 9 represent maturity for a system that has been
flight demonstrated or 'flight proven' through successful mission demonstration or
operation respectively. Achieving the multiple aspects of design requires a holistic
design approach with technology needs in the areas of: 1) Component models; 2)
Process technologies and tools for correct by construction design; and 3) Product
technologies including use of product line architectures [3]. Fig. 5 highlights the
multi-dimensional aspect of this system design problem.

 Industrial Challenges in the Composition of Embedded Systems 103

OO, reuse, architectures,
real-time theory, languages,

product lines, standards
to address cost, timeliness,

and quality

software to be
reused in system:

OSes,
Middleware,
COTS/GOTS

tools, methods,
environments,

etc, to build
systems

Process Technologies

Product Components
Product Technologies

•Affordability
•Quality
•Timeliness
•Security
•Hard/Soft Real-Time
•Periodic/Aperiodic
•Safety
•Reliability
•TRL…

Fig. 5. Networked SoS Information Technology Challenges

2.2 Software Engineering Challenges

Creating component models/development environments for fielded “Legacy” systems
is challenging. Rather than being able to select the component model first, we may
have, instead, an existing infrastructure to create a component model and
development environment for. In this case we must define the component model
consistent with the legacy platform using abstractions appropriate for: Component-
based development, Existing infrastructure, and Functional and non-functional
requirements. We must generate the development environment using: Modeling
tools, Code generators, Infrastructure adapters, and Testing/analysis tools. Finally
analysis techniques may require data that does not currently exist such as timing and
state transition data for legacy systems and components. This is frequently difficult to
obtain and impractical to create directly.

One of the major challenges in software engineering is component / system
integration. Large scale systems such as tactical fighters contain hundreds and
thousands of components that must be integrated together to build an executable.
DARPA in the Model Based Integration of Embedded Systems (MoBIES) program
made initial progress and showed through benchmarked experiments that this
approach can have huge savings in integration time and dramatic reductions in
software errors [4]. Component integration remains a daunting problem. Fig. 6 shows
a perspective of the integration challenge. We need an integrated environment that
can provide multi-view modeling, analysis, and configuration of component based
simulations to support design meeting multiple aspect constraints. Progress has been
slowed by the lack of embedded system modeling and closed tool interfaces.
Vanderbilt University has led in the development of an Open Tool Integration
Framework (OTIF) and model based design technology that have great potential in
achieving this goal [5].

Scalable technologies to design, analyze, verify and validate large networked
SoS are needed. For design, multi-view modeling and analysis tools are needed to
capture cross-cutting systematic concerns (deployment, composition, messaging, fault

104 D. Corman and J. Paunicka

Fig. 6. Software Integration Challenges

tolerance, etc.) in native architectural terms. Integrated dynamic design space
exploration and analysis tools to address traffic analysis, system loading, operational
latencies, path tracing, safety/security non-interference, etc. are also required.
Generative technologies for correct-by-construction syntheses would address
architectural abstractions, common pattern application, synthesized composition
configuration, middleware integration, etc.

Underlying all the aforementioned system complexities and resulting embedded
software challenges is the requirement to verify and validate (V&V), as well as certify
the systems that will contain this software and operate in networked and SoS contexts,
while providing the system capabilities demanded by our customers.

Federal Aviation Administration (FAA) certification for commercial aircraft is a
costly and lengthy process. It involves review of testing artifacts as well as design
processes. Certification technology has not advanced much since the publication of
DO 178B - Software Considerations in Airborne Systems and Equipment
Certification which is the standard for software development published by RTCA,
Incorporated [23]. The standard was developed by RTCA and EUROCAE and first
published in 1982 [24]. As systems have become more complex, the costs have
certification have increased exponentially. In fact, there is some debate on whether
the costs for certifying the next generation systems can be met by industry.

Although technology for developing componentized systems is beginning to be
widely used, the certification community has not yet developed an approach that
certifies components and then re-uses the certification over other systems. In the past,
issues of FAA certification were not directly applicable to military systems.
However, with the potential for unmanned air vehicles to travel in controlled National
Airspace, the applicability of certification is becoming likely.

 Industrial Challenges in the Composition of Embedded Systems 105

Fig. 7 highlights some of the challenges for V&V and certification. Critical areas
are in the domain of mixed initiative operations in which a human interfaces with
automata, adaptive and highly dynamic systems that change control capability in
response to sensed environment, and mixed criticality systems in which different
levels of safety or assurance exist in subsystems. There are some success stories
emerging. Recent efforts are developing techniques in “proof carrying code” and
certifiable protocols for human automata interactions that show great potential [6]. In
addition, there is new research looking at tools for certifying component systems that
may provide sufficient evidence to enable re-using certification on other systems.
Whilst technology may be available in the future, a sea change in certification
processes may also be needed to accrue the benefits.

• V&V and Certification is
expensive, and getting more
expensive, for fielded systems

• Future advanced manned and
un-manned systems may not
fit naturally under current V&V
and Certification regimes

• Need approaches for efficient
V&V and Certification for
emerging technologies for
them to be deployable

• Multi-entity Systems
• Human interaction with

Autonomy.
• Fused Sensor Systems
• Adaptive Systems that

change with environmental
stimulus

• Mixed Criticality- Functions
dependent on information of
varying confidence

Fig. 7. Verification, Validation and Certification Challenges

For V&V, flexible and reconfigurable SoS simulation and validation tools must be
tailorable to the specific mission context. These must be composable in number and
type of participants, topology, etc., and must integrate real and simulated / surrogate /
synthesized elements. They must also provide completeness in varying topologies
and operational context.

For Product technologies, we also need composable approaches to enable
heterogeneous system variability while addressing changing resource availability.
Product line architecture analysis must address product variability in heterogeneous
security, criticality, timeliness and physical deployment concerns. Component
models and patterns for uber-scale systems must enable software variability across
and within systems while addressing cross-cutting aspects. For QoS and resource
management, tools must address resource and behavioral adaptation at both the
system and SoS levels.

106 D. Corman and J. Paunicka

3 Some Successes

Boeing has utilized various system and software engineering technologies, such as
component-based designs and model-driven development, to address complexity
challenges. For example, the Bold Stroke [7] effort started in the mid-1990s addressed
software challenges with a product-line architecture featuring:

• Component-based design of complex Mission Management System on-
board Operational Flight Programs (OFPs) facilitating re-use of
components across manned strike fighter and trainer platforms, and
eventually transitioning to complex unmanned strike fighter platforms,

• Isolation of application components by middleware [28] from underlying
compute platforms, including underlying operating systems and compute
hardware, facilitating (1) application development on desktop systems with
seamless migration to embedded systems during the development process,
and (2) less expensive system upgrades to more capable compute platforms
during system evolution.

FCS SOSCOE Architecture
Hardware (CPU, Memory, IO)

Operating System & Board Support Package

RT CORBA (TAO)

OCP Extensions to TAO

Controls API

Online
Model

Controller Gnd
Station

Hardware (CPU, Memory, IO)

Operating System & Board Support Package

RT CORBA (TAO)

OCP Extensions to TAO

Controls API

Online
Model

Controller Gnd
Station

Open Control Platform for
Autonomous Systems

Hardware (CPU, Memory, IO)

Operating System & Board Support Package

RT CORBA (TAO)

OCP Extensions to TAO

Controls API

Online
Model

Controller Gnd
Station

Hardware (CPU, Memory, IO)

Operating System & Board Support Package

RT CORBA (TAO)

OCP Extensions to TAO

Controls API

Online
Model

Controller Gnd
Station

Open Control Platform for
Autonomous Systems

Hardware (CPU, Memory, I/O)

Board Support Package

Operating System

Infrastructure Services

HUD
M

PCD

Stations Station

Airframe Radar

JD
AM

M
K82

AIM
12

0
AIM

9L

Tgts FLIR Weapons Fly-out
Model TAO

RT-O
S

POSIX
 B

SP

PC, P
ow

er
PC

Hardware (CPU, Memory, I/O)

Board Support Package

Operating System

Infrastructure Services

HUD
M

PCD

Stations Station

Airframe Radar

JD
AM

M
K82

AIM
12

0
AIM

9L

Tgts FLIR Weapons Fly-out
Model TAO

RT-O
S

POSIX
 B

SP

PC, P
ow

er
PC

Bold Stroke Product Line Architecture
(F/A-18, F-15, T-45)

Hardware (CPU, Memory, I/O)

Board Support Package

Operating System

Infrastructure Services

HUD
M

PCD

Stations Station

Airframe Radar

JD
AM

M
K82

AIM
12

0
AIM

9L

Tgts FLIR Weapons Fly-out
Model TAO

RT-O
S

POSIX
 B

SP

PC, P
ow

er
PC

Hardware (CPU, Memory, I/O)

Board Support Package

Operating System

Infrastructure Services

HUD
M

PCD

Stations Station

Airframe Radar

JD
AM

M
K82

AIM
12

0
AIM

9L

Tgts FLIR Weapons Fly-out
Model TAO

RT-O
S

POSIX
 B

SP

PC, P
ow

er
PC

Bold Stroke Product Line Architecture
(F/A-18, F-15, T-45)

Fig. 8. Boeing Leverages Middleware Based Architectures to provide Hardware and Operating
System Independence

Boeing has continued to build upon the Bold Stroke architecture to produce a
family of middleware based architectures that have successfully provided hardware
and operating system independence to entire families of manned and unmanned
systems, Fig. 8. These architectures include the Open Control Platform, successfully
used in DARPA’s Software Enabled Control (SEC) Program and the System of
Systems Common Operating Environment (SoSCOE) that is the software foundation
of the Future Combat System (FCS) [25].

 Industrial Challenges in the Composition of Embedded Systems 107

In the world of unmanned flight platforms, the concept of component-based
designs and compute platform isolation was demonstrated numerous times with the
Open Control Platform (OCP) middleware and tool suite as part of the DARPA
Software-Enabled Control (SEC) program [8]. With the OCP tool suite, model-driven
development of advanced Unmanned Aerial Vehicle (UAV) controllers with design
tools such as MathWorks Simulink was supported. Development and testing of UAV
controller software on desktop computers was enabled using OCP middleware and its
compute platform isolation features. After this development and testing phase, the
controller software was then delivered to the Boeing SEC team for final integration
and testing on target on-board avionics hardware prior to live flight.

During the course of the SEC program, component-based UAV controller software
from various research teams executing within the OCP was flight testing on a mix of
relevant flight platforms. Paragraphs below describe some of the characteristics of
the platforms.

• Large, fixed-wing platforms – J-UCAS X-45A flight test platform (T-33
flown in autonomous mode) and an F-15E strike fighter, flying numerous
manned / unmanned collaborative war-fighting scenarios, communicating
over a legacy Link 16 data-link at Edwards Air Force Base, [9].

• Small, fixed-wing platform – the Boeing ScanEagle low-cost, high-
endurance reconnaissance UAV, flying complex autonomous maneuvers at
the Boardman, Oregon flight range, [10]

• Large, rotary-wing platform – the Boeing Maverick UAV, currently the
avionics and Command and Control test bed for the DARPA A160
Hummingbird UAV, in demonstrations of autonomous routing and
automated landing features at the A160 flight range at Victorville,
California, [11]

• Small, rotary-wing platform – a Yamaha RMAX, demonstrating multiple
warfighting support capabilities at the McKenna Military Operations in
Urbanized Terrain (MOUT) site at Fort Benning, Georgia [12].

As referenced in the above descriptions, Link 16 is a Time Division Multiple
Access based secure, jam-resistant high-speed digital data link which operates over-
the-air in the L band portion (969–1206 MHz) of the UHF spectrum. It is used by the
United States and many NATO countries for communication between air, ground, and
sea units. Link 16 limits the exchange of information to users within line-of-sight of
one another. It uses the transmission characteristics and protocols, conventions, and
fixed-length (or variable length) message formats defined by MIL-STD 6016C
(formerly the JTIDS technical interface design plan). Link 16 is one of the digital
services of the Multifunctional Information Distribution System (MIDS) in the
Standardization Agreement STANAG 5516. Information is typically passed at a rate
on the order of 100 kbits/second. Link 16 equipment is typically installed in ground,
airborne, and sea-based air defense platforms and selected fighter aircraft. [14]

A recent demonstration at White Sands Missile Range (WSMR) provided a
showcase for multi-entity UAV operations involving component-based embedded
software for rerouting UAVs in response to changing battlespace conditions [26].
In the demonstration, Fig. 9, multiple ScanEagle UAVs were populated with

108 D. Corman and J. Paunicka

• RT-Java middleware,
event channels, and
frameworks evaluated

• Demonstrating real-
time performance in
embedded avionics
application

• Hosted on relevant
embedded hardware in
relevant vehicle
(ScanEagle)

• Realizing small
footprint designs

• C++ PRiSm (Product-
line Reusable Scalable
Embedded) middleware
exhibiting real-time
performance

• Relevant hardware /
relevant vehicle

Source: Boeing Public Release video for PCES demonstration

Fig. 9. Technical Progress and Tech Transition

embedded research software components executing on Boeing Product-line Reusable
Scalable eMbedded (PRiSm) middleware platforms. The PRiSm-based software
executed on a special Payload Processor board installed within the ScanEagle avionics,
isolating the research software from the existing qualified flight control software. The
research software autonomously re-routed the UAVs in response to higher-level
commanders’ request for effects in target areas. Target area effects that were requested
and demonstrated included: looking for targets in a specified geographic area;
performing maneuvers in a target area to support generation of weapon-quality
aimpoints for a subsequent strike; positioning the vehicle in safe locations for live
monitoring of an incoming weapon strike; and control of the vehicle supporting post-
strike battle damage assessment of the target. The ScanEagle UAVs received requests
for effects from a mission commander in an Air Operations Center (AOC) through a
net-centric mix of terrestrial LANs (connecting the AOC to the ScanEagle Ground
Control Stations (GCSs)) and Radio Frequency (RF) communications (connecting the
GCSs to the UAVs).

In the WSMR ScanEagle demonstration, two variants of PRiSm middleware were
implemented – C++ and Real Time Java (RT-Java). Both variants exhibited proper
real-time performance and successfully routed the ScanEagle UAVs through a
dynamic war fighting scenario that involved multiple pop-up targets. The use of RT-
Java in the ScanEagle flight earned the demonstration team an international award for
innovations in the use of Java.

4 Summary

The wide range of challenges facing embedded system designers in our industry is
daunting. The demands of ever-increasing system complexity and the need to operate

 Industrial Challenges in the Composition of Embedded Systems 109

in a system of systems context stretch our ability to design, verify, validate, and
certify these systems. A portfolio of research programs at Boeing is aimed at meeting
these challenges. From the initial open systems architecture work of Bold Stroke to
the further advances made possible by a string of DARPA programs, the concepts of
object-oriented design, enabled by advances in middleware and component models,
are providing important solutions to help us affordably compose these complex
systems. Other work in system-of-systems interoperability and network quality of
service are providing the base technology to allow us to effectively network these
systems together. Finally, our work in verification, validation, and certification,
under the leadership of the Air Force Research Laboratory, is helping ensure that the
designs of these advanced platforms can be successfully and affordably certified and
made available to our customers.

References

1. United States Government Accountability Office, Tactical Aircraft – Opportunity to
Reduce Risks in the Joint Strike Fighter Program with Different Acquisition Strategy,
GAO-05-271 (2005)

2. Corman, D.E., Gossett, J.: WSOA - Weapons System Open Architecture –An Innovative
Technology Framework for Time Critical Target Operations. In: 6th International
Command and Control Research and Technology Symposium, Command and Control
Research Program (2001)

3. Sharp, D.C.: Reducing Avionics Software Cost Through Component Based Product Line
Development. In: Software Technology Conference (1998)

4. Sharp, D.C.: Variable Aspects and Models for Reusable Component-based Avionics
Systems. In: 2nd Workshop on Reflective and Adaptive Middleware, pp. 149–152 (2003)

5. Institute for Software Integrated Systems, Open Tool Integration Framework,
www.isis.vanderbilt.edu/Projects/WOTIF/

6. Paunicka, J.L., Crum, V., Bortner, R., Homan, D.: Advanced UAV Flight Control and
Certification Impacts. In: American Institute of Engineers UAV Payloads Conference, San
Diego, CA (December 2006)

7. Sharp, D.C.: Distributed Real-Time Embedded Middleware for Avionics Systems. In:
Systems and Software Technology Conference (April 2002)

8. Paunicka, J.L., Corman, D.E., Mendel, B.: The OCP-an open middleware solution for
embedded systems. In: American Control Conference (June 2001)

9. Paunicka, J.L., Mettler, B., Schouwenaars, T., Valenti, M., Kuwata, J., How, J., Feron, E.:
Autonomous UAV Guidance Build-Up: Flight Test Demonstration and Evaluation Plan.
In: AIAA Guidance, Navigation and Control Conference, Austin, TX (August 2003)

10. Boeing/Insitu UAV Demonstrates Next-Generation Software, Autonomy Technology,
http://www.boeing.com/phantom/news/2004/q1/nr_040218t.html

11. Boeing Team Demonstrates Advanced Autonomous Flight Control for UAVs,
http://www.boeing.com/phantom/news/2005/q2/nr_050621a.html

12. Tech Successfully Flies Smarter Rotary Wing UAV, http://www.gatech.edu/news-
room/release.php?id=515

13. Loyall, J., Schantz, R., Corman, D.E., Paunicka, J.L., Fernandez, S.: A Distributed Real-
time Embedded Application for Surveillance, Detection, and Tracking of Time Critical
Targets. In: 11th IEEE Real-Time and Embedded Technology and Applications
Symposium, San Francisco, CA (March 2005)

110 D. Corman and J. Paunicka

14. Wikipedia entry for Link 16 (September 24, 2007), http://en.wikipedia.org/wiki/Link_16
15. Corman, D., Gossett, J.: WSOA - Using Emerging Open System Architecture Standards to

Enable Innovative Techniques for Time Critical Target Prosecution. In: IEEE AES 2002
(2002)

16. Mixed Initiative Control of Automa-teams (MICA) public released overview
briefing(September 24, 2007), http://dtsn.darpa.mil/IXO/programs.asp?id=41

17. General Accountability Office Report, Testimony Before the Subcommittee on Airland,
Committee on Armed Services, U.S. Senate March 16, 2005. Future Combat Systems
Challenges and Prospects for Success (2005), http://www.gao.gov/new.items/d05442t.pdf

18. MILS Architecture: Multiple Independent Levels of Security - High-assurance security at
an affordable cost, Military Embedded Systems (September 24, 2007), http://www.mil-
embedded.com/articles/white_papers/jacob/

19. Van Fleet, W.M., et al.: MILS:Architecture for High-Assurance Embedded Computing.
Software Technology Support Center Cross Talk Magazine (August 2005),
http://www.stsc.hill.af.mil/crosstalk/2005/08/0508Vanfleet_etal

20. Combs, V.T., Hillman, R.G., Muccio, M.T., McKeel, R.W.: Joint Battlespace Infosphere:
Information Management Within a C2 Enterprise, Defense Technical Information Center
Accession Number ADA463694 (June 2005)

21. Martens, E.J., Corman, D.E.: Live-flight demonstration of agent technology for connecting
the tactical edge to the global information grid, Defense Transformation and Net-Centric
Systems. In: Suresh, R. (ed.) Proceedings of the SPIE, vol. 6578 (May 2007)

22. Technology and Acquisition Systems Security and Program Protection, Air Force
Policy Directive 63-17 (November 2001), www.e-publishing.af.mil/shared/media/epubs/
AFPD63-17.pdf

23. RTCA/DO-178B, Software Considerations in Airborne Systems and Equipment
Certification (December 1, 1992)

24. RTCA/DO-178, Software Considerations in Airborne Systems and Equipment
Certification, RTCA, Inc. (September 13, 1982)

25. Sharp, D.: Boeing, Future Combat Systems, and the OMG. OMG Technical Meeting, St.
Louis, Missouri (April 2004)

26. Wilson, J.R.: The Evolution of UAV Avionics. Military and Aerospace Electronics
(September 2005)

27. Gansler, J.S.: Implementing Anti-Tamper. Under Secretary of Defense Memorandum
(January 2001), http://www.at.dod.mil/Docs/gansler_2001.pdf

28. Sharp, D.: Distributed Real-Time Embedded Middleware for Avionics Systems. In:
Software Technology Conference, Salt Lake City, Utah (April-May 2002)

Deep Random Search for Efficient

Model Checking of Timed Automata

R. Grosu1, X. Huang1, S.A. Smolka1, W. Tan1, and S. Tripakis2

1 Dept. of CS, Stony Brook Univ., Stony Brook, NY 11794, USA
{grosu,xhuang,sas,wktan}@cs.sunysb.edu

2 Verimag, Centre Equation, 38610 Gieres, France
tripakis@imag.fr

Abstract. We present DRS (Deep Random Search), a new Las Vegas
algorithm for model checking safety properties of timed automata. DRS
explores the state space of the simulation graph of a timed automaton by
performing random walks up to a prescribed depth. Nodes along these
walks are then used to construct a random fringe, which is the starting
point of additional deep random walks. The DRS algorithm is complete,
and optimal to within a specified depth increment. Experimental results
show that it is able to find extremely deep counter-examples for a number
of benchmarks, outperforming Open-Kronos and Uppaal in the process.

1 Introduction

The goal of this paper is to demonstrate the effectiveness of random search in
the model checking of timed automata (TA). To this end, we present the Deep
Random Search (DRS) algorithm for checking safety properties of TA. DRS is an
iterative-deepening, deep-random-walk, random-fringe-backtracking Las-Vegas
algorithm. By “deep random walk” we mean that in any state of a random walk,
DRS always chooses a random non-visited child, as long as such a state exists.
By “random fringe backtracking” we mean that the algorithm does not limit
backtracking to predecessors; rather it randomly selects a node from the fringe
as the starting point for a deep random walk. This strategy removes much of the
bias towards the initial state of the search space. We now discuss the algorithm
in more detail, highlighting its main features.

– The DRS algorithm operates on simulation graphs, an efficient, symbolic rep-
resentation of timed automata that can be generated on-the-fly [5,13]. A
node of a simulation graph is a symbolic state comprising a finite set of
regions all having the same discrete state. Although, in the worst case, a
simulation graph can be exponentially large in the size of the underlying
TA, in practice, it is orders of magnitude smaller than the region graph.

– DRS is a Las Vegas algorithm, i.e. a randomized algorithm that always pro-
duces the correct answer but whose running time is a random variable.
The quintessential Las Vegas algorithm is randomized quick sort, which
chooses its pivot element randomly and consequently runs in expected time

F. Kordon and O. Sokolsky (Eds.): Monterey Workshop 2006, LNCS 4888, pp. 111–124, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

112 R. Grosu et al.

O(n log n) for all input of length n. As explained below, DRS uses iterative
deepening to perform a complete, albeit random, search of the state space
under investigation, thereby qualifying it for its Las Vegas status.

– DRS performs deep random search by taking random walks that are as deep
as possible: they reach a leaf node, a prescribed cutoff depth, or a node
whose children were already visited (a closed node). A node with at least
two unvisited children that is encountered along such a walk it is added to
the fringe. A closed node is deleted from the fringe.

– Instead of limiting backtracking to predecessors, DRS employs random fringe
backtracking. That is, when a deep random walk terminates, a node is picked
at random from the fringe to commence a new deep random walk. This
process continues until the fringe is empty, thereby ensuring completeness
up to the cutoff value. In contrast, most model-checking algorithms based
on a Monte Carlo search strategy, such as [15,8,19,11,16,7], commence a new
random walk from the initial state of the search space. A bias towards the
initial state of the search space can therefore be seen with these techniques.
Random fringe backtracking is, in contrast, designed to eliminate this bias.

– DRS allows the user to initialize the fringe by taking walks initial deep random
walks, where walks ranges between 1 and the number of children of the initial
state. Parameter walks, in combination with the cutoff value, gives the user
control over both the breadth and depth of the random search performed by
DRS. Should the user have a priori knowledge about the “shape” (density and
length) of the execution space and potential counter-examples, then these
parameters can be used to fine-tune DRS’s performance accordingly.

– Iterative deepening is realized by repeating the deep-random-search process
with a new cutoff value equal to that of the old cutoff plus a prescribed
increment. For an increment of one, DRS is optimal [17] in the sense that it
always finds the shortest counter-example, should one exist. Otherwise, it is
optimal up to the value of the increment.

Our experimental results show that for all benchmarks having a counter-example,
DRS consistently outperforms the Open-Kronos [5] and Uppaal [13] model check-
ers. Otherwise, its performance is consistent with that of Open-Kronos. The
benchmarks were chosen to exhibit a wide range of counter-examples, with depth
from 6 to 13,376. Open-Kronos performs traditional depth-first on simulation
graphs. Uppaal uses Difference Bounded Matrices, Minimal Constraint Rep-
resentation and Clock Difference Diagrams to symbolically represent the state
space, and allows the user to choose between breadth-first and depth-first search.

In related work, a number of researchers have investigated the use of random
search (i.e. random walk) in model checking and reported on its benefits, includ-
ing [15,8,19,11,16]. To the best of our knowledge, DRS is the first complete Las
Vegas algorithm to be proposed for the problem.1

1 Randomized SAT solvers for bounded model checking [3] and the algorithm of [11]
are heuristics-based guided search algorithms in which randomization plays a sec-
ondary role; e.g., to break ties among alternatives with the same cost. In contrast,
randomization is the primary algorithmic technique utilized by DRS.

Deep Random Search for Efficient Model Checking of Timed Automata 113

The rest of the paper is organized as follows. Sections 2 and 3 review the
theory of timed automata and simulation graphs. Section 4 presents our DRS

algorithm, while Section 5 discusses our experimental results. Section 6 offers
our concluding remarks.

2 Timed Büchi Automata

In this section we define Timed Büchi automata, a real-time extension of classical
Büchi automata that will serve as our formal model of real-time systems. We
begin with some preliminary definitions. Let N denote the natural numbers, R+

the non-negative real numbers, and let X be a finite set of variables taking values
in R+. In our definition of a Timed Büchi automaton to follow, X will be a finite
set of clock variables. An X -valuation is a function v : X → R+ that assigns
to each variable in X a value in R+. 0 denotes the valuation assigning 0 to all
variables in X . Given a valuation v and δ ∈ R+, v + δ is defined to be the
valuation v′ such that v′(x) = v(x) + δ for all x ∈ X . Given a valuation v and
X ⊆ X , v[X := 0] is defined to be the valuation v′ such that v′(x) = 0 if x ∈ X
and v′(x) = v(x) otherwise.

An atomic constraint on X is a constraint of the form x#c, where x ∈ X ,
c ∈ N and # ∈ {<, ≤, ≥, >}. A valuation v satisfies an atomic constraint α,
denoted v |= α, if substituting the values of the clocks in the constraint yields
a valid inequality. For example, v |= x ≤ 5 iff v(x) ≤ 5. A conjunction of
atomic constraints defines a set of X -valuations, called an X -zone. For example,
x ≤ 5 ∧ y > 3 defines the set of all valuations v such that v(x) ≤ 5 ∧ v(y) > 3.2

Definition 1 (Timed Büchi Automaton [1]). A timed Büchi automaton
(TBA) is a six-tuple T = (X , Q, q0, E, invar, F), where:

– X is a finite set of clocks.
– Q is a finite set of discrete states, q0 ∈ Q being the initial discrete state.
– F ⊆ Q is a finite set of accepting states.
– E is a finite set of edges of the form e = (q, ζ, X, q′), where q, q′ ∈ Q are the

source and target discrete states, ζ is an X -zone, called the guard of e,and
X ⊆ X is a set of clocks to be reset upon taking the edge.

– invar, the invariant of q, is a function that associates an X -zone with each
discrete state q.

Given an edge e = (q, ζ, X, q′), we write source(e), target(e), guard(e) and reset(e)
for q, q′, ζ and X , respectively. Given a discrete state q, we write in(q) (resp.
out(q)) for the set of edges of the form (, , , q) (resp. (q, , ,)). We assume
that for each e ∈ out(q), guard(e) ⊆ invar(q).

2 Zones are particularly interesting since they can be represented using O(n2) space-
efficient data-structures such as difference-bound matrices [6], where n is the number
of clocks. Standard operations on these data structures are also time-efficient; e.g.,
intersection in O(n2), test for emptiness in O(n3).

114 R. Grosu et al.

A state of A is a pair s = (q,v), where q ∈ Q and v ∈ invar(q). We write
discrete(s) to denote q. The initial state of A is s0 = (q0,0).

An edge e = (q1, ζ, X, q2) can be seen as a (partial) function on states. Given
a state s = (q1,v) such that v ∈ ζ and v[X := 0] ∈ invar(q2), e(s) is defined
to be the state s′ = (q2,v[X := 0]). Whenever e(s) is defined, we say that a
discrete transition can be taken from s to s′.

A real number δ ∈ R+ can also be seen as a (partial) function on states.
Given a state s = (q,v), if v + δ ∈ invar(q) then δ(s) is defined to be the state
s′ = (q,v + δ); otherwise δ(s) is undefined. Whenever δ(s) is defined, we say
that a time transition can be taken from s to s′.

An infinite sequence of pairs (δ0, e0), (δ1, e1), ..., where for all i = 0, 1, ...,
δi ∈ R+ and ei ∈ E, defines a run of A starting at state s, if s is a state of
A and the sequence of states s0 = s, si+1 = ei(δi(si)) is defined for all i ≥ 0.
The run is called accepting if there exists an infinite set of indices J ⊆ N,
such that for all i ∈ J , discrete(si) ∈ F . The run is called zeno if the sequence
δ0, δ0 + δ1, δ0 + δ1 + δ2, ... converges, that is, if ∃δ ∈ R+, ∀k ∈ N, Σi=0,...,kδi < δ.
Otherwise, the run is called non-zeno.

Example 1. Consider the two TBA of Figure 1. Circles represent discrete states,
double circles represent accepting states, and arrows represent edges. Labels
a, b, c refer to edges. A run of A1 starting at state (q0,0) is (0.5, a), (0.25, a),
(0.125, a), . . .; this run is zeno. In fact, any run of A1 taking a-transitions forever
is zeno. On the other hand, the run (0, b), (1, c), (1, c), · · · of A1 is non-zeno.
Finally, every accepting run of A2 is non-zeno.

�� ��

�

�

� � �
� � �� �� �

�
� � �

��

�� ��

�

� �� �
� � �

�

� � �� �

� � �

� �� �

� � �

��

Fig. 1. A TBA with zeno runs (left) and a strongly non-zeno TBA (right)

When drawing a TBA, we typically omit “rewriting” into the guards those con-
straints that are already enforced by an invariant. So, for example, the guard
on the a-transition of TBA A2 of Figure 1 should have been 1 ≤ x ≤ 3. Since,
however, the atomic constraint x ≤ 3 is already enforced by q0’s invariant, it can
be omitted in the figure. This is done for notational simplificity.

Example 2. As a more practical example, consider the TBA of Figure 2 rep-
resenting the well-known Fischer real-time mutual exclusion protocol. The au-
tomaton encodes the protocol each process executes in order to gain entry into
its critical section. The idea behind the protocol is as follows. A process, having
process id pid, has a local clock x and access to a global variable id. The tim-
ing constraints on x are such that all processes can change the global variable

Deep Random Search for Efficient Model Checking of Timed Automata 115

to their own process id, then read the global variable later and if the shared
variable is still equal to its own id, enter the critical section. Note that although
the Fischer automaton is a TBA, it does not have any final states. To introduce
liveness into the model, once could encode a liveness property as an auxiliary
“monitor” TBA, or simply a Büchi automaton. Then the composition of the
Fischer automaton and the monitor automaton gives the global timed Büchi au-
tomaton. This is the approach taken, for example, in [18]. Note that the Fischer
mutual exclusion protocol is one of the benchmarks we consider in Section 5.

idle begin

waitcritical

id = 0
x := 0

id := pid
x := 0

id != pid
x > T2

id = pid
x > T2

id := 0

x < T1

Fig. 2. A TBA for the Fischer real-time mutual exclusion protocol

Definition 2 (Language and emptiness problem for TBA). The language
of A, denoted Lang(A), is defined to be the set of all non-zeno accepting runs
of A starting at the initial state s0. The emptiness problem for A is to check
whether Lang(A) = ∅.

The emptiness problem for TBA is known to be PSPACE-complete [1]. More
precisely, the worst-case complexity of the problem is linear in the number of
discrete states of the automaton, exponential in the number of clocks, and ex-
ponential in the encoding of the constants appearing in guards or invariants.
This worst-case complexity is inherent to the problem: as shown in [4], both the
number of clocks and the magnitude of the constants render PSPACE-hardness
independently of each other.

Definition 3 (Strong non-zenoness). A TBA A is called strongly non-zeno
if all accepting runs starting at the initial state of A are non-zeno.

A structural loop of a TBA A is a sequence of distinct edges e1 · · · em such that
target(ei) = source(ei+1), for all i = 1, ..., m (the addition i + 1 is modulo m).
We say that the structural loop is accepting if there exists an index 1 ≤ i ≤ m
such that target(ei) is an accepting state. We say that the structural loop spends
time if there exists a clock x of A and indices 0 ≤ i, j ≤ m such that:

116 R. Grosu et al.

1. x is reset in step i, that is, x ∈ reset(ei), and
2. x is bounded from below in step j, that is, (x < 1) ∩ guard(ej) = ∅.

Definition 4 (Structural non-zenoness). We say that a TBA A is struc-
turally non-zeno if every accepting structural loop of A spends time.

For example, in Figure 1, automaton A1 is not structurally non-zeno, while
automaton A2 is. A2 would not be structurally non-zeno if any of the guards
x ≥ 1 were missing.

Lemma 1 ([18]). If A is structurally non-zeno then A is strongly non-zeno.

Theorem 1 ([18]). Any TBA A can be transformed into a strongly non-zeno
TBA A′, such that: (1) A′ has one clock more than A and (2) Lang(A) = ∅ iff
Lang(A′) = ∅.

3 Simulation Graphs

Simulation graphs were introduced in [5] as a technique for checking reachability
in timed automata. In [18,2], it is shown how simulation graphs can also be used
to check TBA emptiness. We summarize these results in this section.

Consider a TBA A = (X , Q, q0, E, invar, F). A symbolic state S of A is a finite
set of regions [1] ri = (q, ζi), 1 ≤ i ≤ k, all associated with the same discrete
state q ∈ Q. We also denote S as (q, ζ), where ζ = ∪iζi.3 Given an edge e ∈ E,
let e(S) be the set of all regions r′ for which there exists r ∈ S such that r can
reach r′ by a transition labeled e in the region graph. Similarly, let ε(S) be the
set of all regions r′ for which there exists r ∈ S such that r can reach r′ by a
(possible empty) sequence of time-passing transitions in the region graph (thus,
S ⊆ ε(S)). Then, we define post(S, e) = ε(e(S)).

Definition 5 (Simulation graph). The simulation graph of a TBA A, de-
noted SG(A), is the graph whose set of nodes S is the least set of non-empty
symbolic states of A, such that:

1. ε((q0,0)) ∈ S is the initial node of SG(A)), and
2. if e ∈ E, S ∈ S and S′ = post(S, e) is non-empty, then S′ ∈ S.

SG(A) has an edge S
e→ S′ iff S, S′ ∈ S and S′ = post(S, e).

An example of a TBA and its simulation graph is given in Figure 3. The simula-
tion graph was automatically generated using the Kronos [5] tool. The intuition
behind the three nodes of the simulation graph is as follows. The initial node
captures all regions associated with initial state q0 of the TBA by letting time
pass until the a-transition occurs. The constraints in this node reflect that fact
that all clocks of a TBA are synchronized, and therefore proceed at the same
3 A union of regions is generally not convex. In practice, tools such as Kronos work

with symbolic states that can be represented by zones; i.e., such that ∪iζi is convex.

Deep Random Search for Efficient Model Checking of Timed Automata 117

constant rate. They are also reflective of the fact that, because of q0’s invariant,
x cannot advance past 7, at which time the a-transition is taken. The node of
simulation graph associated with state q1 is indicative of the fact that y was
reset by the a-transition but not x, and that the a-transition is taken at time 7.
The remaining node indicates that the b-transition resets x but not y, and that
when it does occur, y has not advanced past 3. It also indicates that, as in the
initial node, x cannot advance past 7 while the TBA resides in q0.

�� ��

���� � � � � � � ��

���� � � � � � � � � ��

���� � � � � � � � � � � ��

� � �

� �� �
� � �
�

� �� �
� � �
�

�

��

������

Fig. 3. A TBA and its simulation graph

A node (q, ζ) ∈ S is accepting if q ∈ F . Let F and Δ be the set of accepting
nodes and the set of edges of SG(A), respectively. The simulation graph SG(A) =
(E, S, S0, Δ, F) defines a discrete Büchi automaton (BA) over the input alphabet
E and symbolic states S.

A sequence σ = S0
e0→ S1

e1→, ..., where S0 ∈ S0 and for all i ≥ 0, Si
ei→ Si+1 ∈

Δ is called an infinite run of SG(A) if the sequence is infinite and a finite run
otherwise. An infinite run is called accepting if there exists an infinite set of
indices J ⊆ N, such that for all i ∈ J , Si ∈ F . We say that σ is ultimately
periodic if there exist i ≥ 0, l ≥ 1 such that for all j ≥ 0, Si+j = Si+j mod l.
This means that σ consists of a finite prefix S0

e0→ · · ·Si−1
ei−1→ , followed by the

“infinite unfolding” of a cycle Si
ei→ · · · Si+l−1

ei+l−1→ Si. The cycle is called simple
if for all 0 ≤ j = k < l, Si+j = Si+k, that is, the cycle does not visit the same
node twice. In the following, we refer to such a reachable simple cycle as a lasso
and say that the lasso is accepting if its simple cycle contains an accepting node.

Theorem 2 ([18]). Let A be a strongly non-zeno TBA. Lang(A) = ∅ iff there
is an accepting lasso in the simulation graph of A.

4 The Deep Random Search Algorithm

Let A be a strongly non-zeno TBA and let S = SG(A) be A’s simulation graph;
as shown in Section 3, S exists and there is an efficient procedure for generating
it from A. Moreover, S is a Büchi automaton (BA). Now let ϕ be a real-time
property expressed in a logic for timed automata, e.g., Tectl

∗
∃ [2]. Since the

formulas of this logic are built up from timed automata, we can construct, as

118 R. Grosu et al.

shown in [2], a corresponding BA T = SG(A¬ϕ), the simulation graph of the
strongly non-zenoTBA A¬ϕ. The Tectl

∗
∃model-checking problem A |= ϕ is then

naturally defined in terms of the TBA emptiness problem for S × T .
If ϕ is a safety property, then T has an associated deterministic finite au-

tomaton pref(T) that recognizes all finite trajectories violating the property [12].
As a consequence, the model-checking problem for safety properties can be re-
duced to a reachability (of accepting states) problem on the product automaton
B = fin(S) × pref(T), where fin(S) is the finite automaton recognizing all finite
trajectories of S.

Our model checker for timed automata applies the deep-random-search (DRS)
algorithm described below to the finite automaton B. As discussed in Section 1,
DRS is an iterative-deepening, deep-random-walk, random-fringe-backtracking
Las-Vegas algorithm. By “deep random walk” we mean that in any state of
a random walk, DRS always chooses a random non-visited child (immediate suc-
cessor) state, as long as such a state exists. By “random fringe backtracking” we
mean that the algorithm does not limit backtracking to predecessors; rather it
randomly selects a node from the fringe as the starting point for a deep random
walk. This strategy removes much of the bias towards the initial state of the
search space. We assume that B is given as the triple (initState, Next-Child,

Acc) where initState is the initial state, Next-Child is an iterator function for
the immediate successors of a state of B, and Acc is a predicate defining the
accepting states of B.

To fine tune the breath and the depth of the search, DRS inputs three addi-
tional parameters: walks, cutoff and increment. The first of these is the number
of initial deep random walks taken by the algorithm from the root, which is
always constrained to be greater than one and less then the number of children
of initState. While not affecting completeness, this parameter determines the
initial fringe, and therefore influences the way the computation tree grows. The
second parameter bounds the depth of the search; thus, it affects completeness.
To obtain a complete algorithm, cutoff has to be set to infinity. The third pa-
rameter is the iterative-deepening increment. While not affecting completeness,
this parameter may affect optimality. Setting increment to one ensures the al-
gorithm is optimal. Note, however, that (theoretical) optimality may lead to
poor performance for deep counter-examples, as the search has to explore all the
states in the tree above the counter-example.

The pseudo-code for DRS is shown in Figure 4. It uses the following three
global variables: generated, fringe and done. The first of these is the set of so-
far-generated states and is used to ensure that no state is visited more than once.
The second variable is the set of generated states with unexplored successors,
together with their depth. We call a state together with its depth a node. The
third variable is a flag which is true when no random walk has been cutoff and
therefore the entire search space has been explored.

Procedure DRS has an iterative-deepening for-loop. In each iteration, it ini-
tializes the global variables, it increments the cutoff depth and then calls proce-
dure Bounded-DRS. This procedure returns only if no counter-example was found.

Deep Random Search for Efficient Model Checking of Timed Automata 119

State initState; /* Initial state of the search space */

State Next-Child(State); /* Iterator function for immediate successors */

Bool Acc(State); /* Predicate define accepting states */

Node Set fringe = empty; /* Generated states with unexplored successors */

State Set generated = empty; /* Set of generated states */

Bool done = false; /* True when search space explored */

void DRS(Int increment) {
/* Deep Random Search: iterative-deepening for-loop. In each iteration, */

/* initialize global variables, increment cutoff depth, call Bounded-DRS */

for (Int co = increment; (!done && co≤ cutoff); co += increment); {
done = true; generated = empty; fringe = empty;

Bounded-DRS(co); }
exit ("no counter-example"); }

void Bounded-DRS(Int cutoff) {
/* Perform complete search up to cutoff depth. Initialize fringe by */

/* taking no. deep walks specified by param walks. Then repeatedly */

/* take deep walks from random node in fringe by calling Random-Walk */

if (Acc(initState)) exit("counter-example", initState);

Insert(generated, initState);

Node Set children = Nonaccepting-Interior-Children((initState,1));

for (Int i = 1; (children != empty && i≤ walks); i++) {
Node node = Random-Remove(children);

Insert(generated, node.state); Insert(fringe, node);

Random-Walk(node, cutoff); }
while (fringe != empty) {

node = Random(fringe);

Random-Walk(node, cutoff); }
return;}

void Random-Walk(Node node, Int cutoff) {
/* Perform random walk in search of accept state up to cutoff depth. */

/* Visited states added to generated and fringe. Node removed from */

/* from fringe when all its children visited. */

Node next = node;

while (next.depth < cutoff) {
Node Set children = Nonaccepting-Interior-Children(next) ;

if (|children|≤ 1) {Remove(fringe, next); if (|children| == 0) return;}
next = Random(children);

Insert(generated, next.state); Insert(fringe, next); }
Remove(fringe, next); done = false; return;}

Node Set Nonaccepting-Interior-Children(Node nd) {
/* construct set of interesting children of current node; i.e. those */

/* nodes not previously generated, non-accepting, non-leaf. */

Node Set children = empty;

for (State nx = Next-Child(nd.state); nx != Null; nx = Next-Child(nd.state)){
if (! In(generated, nx)) {

if (Acc(nx)) exit("counter-example", nx);

if (! Leaf(nx)) Insert(children, (nx, nd.depth+1));} } }
return children;}

Fig. 4. DRS model-checking algorithm

120 R. Grosu et al.

Moreover, if no random walk was cut off, upon return from Bounded-DRS, the flag
done is still true, signaling that the entire state space of B has been explored
without finding a counter-example.

Procedure Bounded-DRS performs a complete search of the transition graph of
B up to the cutoff depth. The procedure first checks whether the initial state is
accepting in which case it exits and signals that it has found a counter-example.
Otherwise, it initializes the fringe by taking the number of deep walks specified
by the parameter walks. Each such walk starts from a different child of the initial
state. As long as the fringe is not empty, the procedure then repeatedly starts
deep random walks from a random node in the fringe and up to the cutoff depth,
by calling Random-Walk.

Procedure Random-Walk traverses a deep random path in the computation tree
of B. For each node along the path, it first obtains the set of all the non-accepting,
non-generated, interior children of the node. If this set is empty, or if it contains
only one node, the current node can be safely removed from the fringe, as all
its successors have been (or are in the process of being) explored. Moreover,
if the set is empty, the walk cannot be continued and the procedure returns.
Otherwise, it randomly picks one of the children, inserts it in the generated set
and in the fringe and continues from this node. The procedure is guaranteed to
stop when the cutoff value is reached. In this case, the cutoff node is removed
from the fringe and done is set to false.

Procedure Nonaccepting-Interior-Children uses the iterator Next-Child of B
to construct the set of interesting children of the current node. A child state of
the current node’s state is inserted (together with its depth) in this set only if
the state was not previously generated, is non-accepting, and has at least one
enabled successor (it is not a leaf).

Theorem 3 (Correctness & completeness). Given a timed automaton A
and safety property ϕ, DRS-MC returns a counter-example if and only if A |= ϕ.
Proof. The proof follows from Theorems 1, 2 and the fact that the DRS model-
checking algorithm is complete.

Theorem 4 (Complexity). Let B = fin(S) × pref(T) be the finite automaton
discussed above. Then DRS uses O(|B|) time and space, where |B| is the number
of states in B.

Theorem 5 (Optimality). Let d be the smallest depth of an accepting state of
B. Then the depth of a counter-example returned by DRS is never greater than
d + increment.

Theorem 5 is an “optimality up to increment” result. Assuming that DRS finds
a counter-example during iteration k + 1, k ≥ 1, we have that k · increment <
d ≤ (k + 1) · increment, and the result follows.

5 Experimental Results

We have implemented the DRS model-checking algorithm as an extension to the
Open-Kronos model checker for timed automata [18]. Open-Kronos takes as

Deep Random Search for Efficient Model Checking of Timed Automata 121

input a system of extended timed automata and a boolean expression defining
the accepting states of the automata. The input is translated into a C program
which is compiled and linked to the Profounder, a tool that performs on-the-fly
generation of the simulation graph of the input TA model and applies standard
depth-first search for reachability analysis.

To assess the performance and scalability of DRS, we compared its performance
to Open-Kronos and Uppaal (3.4.11) on the following real-time model-checking
benchmarks: the Fischer Real-Time Mutual-Exclusion Protocol, the Philips Au-
dio Protocol, and the Bang &Olufsen Audio/Video Protocol. All reported results
(Tables 1-4) were obtained on a PC equipped with an Athlon 2600+ MHz pro-
cessor and 1GB RAM running Linux 2.6.5 (Fedora Core 2).

In the tables, the meaning of the column headings is the following: proc is
the number of processes; sender is the number of senders (Tables 3 and 4); time
is given in seconds; states is the number of visited states—for DRS, this is the
size of the set generated; depth is the depth of the accepting state found by
the model checker; and oom means the model checker ran out of memory. The
statistics provided for DRS are averages obtained over a representative number of
runs of the algorithm. Because Uppaal does not provide the number of visited
states, path depth, etc., only its execution time is given here.

The Fischer protocol uses timing constraints and a shared variable to ensure
mutual exclusion among processes competing for access to a critical section [14].
Table 1 contains the results for checking mutual exclusion (a safety property) on a
buggy version of the protocol. As the results indicate, DRS consistently outperforms

Table 1. Mutual exclusion for Fischer protocol (buggy version)

Open-Kronos DRS Uppaal

proc time states depth time states depth time

2 0.038 63 44 0.003 20 6 0.021

4 2.968 1227 1166 0.006 67 28 0.041

8 13.20 35409 2048 0.082 216 211 1.280

12 204 332253 2048 0.512 386 374 18.61

16 >12hrs ? ? 0.906 238 222 223 (oom)

Table 2. Mutual exclusion for Fischer protocol (correct version)

Open-Kronos DRS Uppaal

proc time states time time

2 0.004 203 0.011 0.02

3 0.386 24949 0.513 0.03

4 943 3842501 1388 0.14

5 4hrs oom oom 2.01

6 4hrs oom oom 124

7 4hrs oom oom >5hrs

122 R. Grosu et al.

Table 3. Results for the Phillips audio protocol

Open-Kronos DRS Uppaal

sender time states depth time states depth time

1 0.004 72 71 0.003 16 12 0.026

4 3.259 46263 2048 0.007 30 26 0.041

8 422.2 1026446 2048 0.041 93 26 0.158

12 >12hrs ? ? 0.736 375 42 0.802

24 >12hrs ? ? 0.020 41 17 39.095

28 >12hrs ? ? 0.033 50 22 107 (oom)

Table 4. Results for the B&O audio/video protocol

Open-Kronos DRS Uppaal

sender time states depth time states depth time

2 0.226 1285 1284 0.034 1659 1657 0.174

3 35.161 1135817 1997 10.76 166113 2318 1.050

4 53.532 1130669 1608 50.554 617760 2972 10.1

5 1200 oom - 10 min 6769520 4734 2 min

6 1200 oom - 37 min 30316978 13376 12 min (oom)

Open-Kronos and Uppaal, thereby illustrating the power of deep random search
in finding counter-examples. Table 2 contains the mutual-exclusion results for the
correct version of the protocol. In this case, DRS, like Open-Kronos, must perform a
complete search of the state space and the performance of the two model checkers
is similar. In particular, the number of states visited is essentially the same for both
model checkers, and therefore given only once in Table 2. Uppaal’s performance,
on the other hand, is superior to that of Open-Kronos and DRS, although it too
struggles when the number of processes reaches 7.

The purpose of the Phillips audio protocol is to exchange control information
between audio components using the Manchester encoding [10]. The correct-
ness of the encoding relies on timing delays between signals. The protocol was
designed to satisfy the following safety property: communication between com-
ponents should be reliable, with a tolerance of ±5% on the timing. However,
the protocol is faulty and our results are given in Table 3 for a varying number
of sender components. For this benchmark, DRS consistently outperforms both
Open-Kronos and Uppaal.

The Bang&Olufsen audio/video protocol was designed to transmit messages
between audio/video components over a single bus. Its behavior is highly tim-
ing dependent. The protocol is intended to satisfy the following safety property:
whenever a frame has been sent, the transmitted frame must be intact, and other
senders must not have discovered a collision [9]. The results of Table 4 show once
again that deep random search is superior to depth-first search (Open-Kronos)
in finding deep counter-examples. DRS’s performance is similar to that of Uppaal

Deep Random Search for Efficient Model Checking of Timed Automata 123

on this benchmark. For 6 senders, the results reported for DRS are those for one
out of 20 executions of the model checker; the other 19 ran out of memory.

6 Conclusions

We have presented the DRS deep-random-search algorithm for model checking
timed automata. DRS performs random walks up to a prescribed depth within
the TA’s simulation graph. Nodes along these walks are then used to construct a
random fringe, which is the starting point of additional deep random walks. DRS
is complete, and optimal to within a specified depth increment. Our experimen-
tal results show that it is able to find extremely deep counter-examples while
consistently outperforming the Open-Kronos and Uppaal model checkers. Our
DRS algorithm is not restricted to timed automata; it may be beneficially applied
to the model checking of safety properties of any concurrent system.

A version of DRS that is more in line with classic depth-first or breadth-first
search, would put all the non-accepting, non-generated interior children (except
for the one randomly selected) in the fringe and not the node itself. Intuitively,
this version should perform less work, as it explores the children of a node only
once. We have implemented this version too, but found that it performed worse in
terms of finding counter-examples. The reason for the performance degradation
may be the fact that more nodes are inserted in the fringe with each deep random
walk and therefore the chance of selecting the right deep candidate node may
decrease, at least for the examples that we have tested.

The expected time complexity of DRS is related to the random variable X , the
number of states visited before an accepting state is found. Getting a closed-
form expression for the mean and variance of X is difficult due to the intricate
interdependence between the random walks taken by the algorithm. This is a
subject for future work. Experimental results for a guided-search algorithm,
where randomization is used to select a successor among the first n elements in
a priority queue, showed that X follows a normal distribution [11]. Increasing n
was shown to increase both the variance and the mean of X . Randomization im-
proved the search performance because the probability of observing a small value
of X increased logarithmically with the variance, provided the mean remained
unchanged.

We also plan to investigate how to extend the deep-random-search technique
to liveness properties. The main issue here is deciding when a deep random walk
has formed a lasso. It is not enough to terminate such a walk when a previously
visited state is re-encountered; rather one must correctly distinguish cross-edges
from back-edges in the simulation graph. This would probably require storing
parent edges, which are also useful in determining the path from the initial state
to the accepting state.

Acknowledgments. We thank the anonymous reviewers for their valuable
comments.

124 R. Grosu et al.

References

1. Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126,
183–235 (1994)

2. Bouajjani, A., Tripakis, S., Yovine, S.: On-the-fly symbolic model checking for
real-time systems. In: RTSS 1997. 18th IEEE Real-Time Systems Symposium, San
Francisco, CA, pp. 25–34. IEEE, Los Alamitos (1997)

3. Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfia-
bility solving. Formal Methods in System Design 19(1), 7–34 (2001)

4. Courcoubetis, C., Yannakakis, M.: Minimum and maximum delay problems in real-
time systems. In: Larsen, K.G., Skou, A. (eds.) CAV 1991. LNCS, vol. 575, Springer,
Heidelberg (1992)

5. Daws, C., Olivero, A., Tripakis, S., Yovine, S.: The tool Kronos. In: Alur, R.,
Sontag, E.D., Henzinger, T.A. (eds.) Hybrid Systems III, Verification and Control.
LNCS, vol. 1066, pp. 208–219. Springer, Heidelberg (1996)

6. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems.
In: Sifakis, J. (ed.) Automatic Verification Methods for Finite State Systems.
LNCS, vol. 407, pp. 197–212. Springer, Heidelberg (1990)

7. Grosu, R., Smolka, S.A.: Monte carlo model checking. In: Halbwachs, N., Zuck, L.D.
(eds.) TACAS 2005. LNCS, vol. 3440, pp. 271–286. Springer, Heidelberg (2005)

8. Haslum, P.: Model checking by random walk. In: Proc. of 1999 ECSEL Workshop
(1999)

9. Havelund, K., Skou, A., Larsen, K.G., Lund, K.: Automated analysis of an au-
dio control protocol. In: Proc. of 18th IEEE Real-Time Systems Symposium, San
Francisco, California, USA, pp. 2–13 (December 1997)

10. Ho, P.-H., Wong-Toi, H.: Automated analysis of an audio control protocol. In:
Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 381–394. Springer, Heidelberg
(1995)

11. Jones, M., Mercer, E.: Explicit state model checking with Hopper. In: Graf, S.,
Mounier, L. (eds.) Model Checking Software. LNCS, vol. 2989, Springer, Heidelberg
(2004)

12. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal Methods
in System Design 19(3), 291–314 (2001)

13. Larsen, K., Petterson, P., Yi, W.: Uppaal in a nutshell. Software Tools for Tech-
nology Transfer 1(1/2) (October 1997)

14. Larsen, K.G., Pettersson, P., Yi, W.: Model checking for real-time systems. In:
Reichel, H. (ed.) FCT 1995. LNCS, vol. 965, pp. 62–88. Springer, Heidelberg (1995)

15. Mihail, M., Papadimitriou, C.H.: On the random walk method for protocol testing.
In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 132–141. Springer, Heidelberg
(1994)

16. Pelánek, R., Hanžl, T., Černá, I., Brim, L.: Enhancing random walk state space
exploration. In: FMICS 2005. Proceedings of the 10th international workshop on
Formal methods for industrial critical systems, pp. 98–105. ACM Press, New York
(2005)

17. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn.
Prentice-Hall, Englewood Cliffs (2002)

18. Tripakis, S., Yovine, S., Bouajjani, A.: Checking timed Büchi automata emptiness
efficiently. Formal Methods in System Design 26(3), 267–292 (2005)

19. Tronci, E.G., Penna, D., Intrigila, B., Venturini, M.: A probabilistic approach to
automatic verification of concurrent systems. In: APSEC. Proc. of 8th IEEE Asia-
Pacific Software Engineering Conference (2001)

OASiS: A Service-Oriented Architecture for

Ambient-Aware Sensor Networks�

Xenofon Koutsoukos, Manish Kushwaha, Isaac Amundson,
Sandeep Neema, and Janos Sztipanovits

Institute for Software Integrated Systems
Department of Electrical Engineering and Computer Science

Vanderbilt University
Nashville, Tennessee 37235, USA

{xenofon.koutsoukos,manish.kushwaha,isaac.amundson
sandeep.neema,janos.sztipanovits}@vanderbilt.edu

Abstract. Heterogeneous sensor networks are comprised of ensembles
of small, smart, and cheap sensing and computing devices that permeate
the environment, as well as resource intensive sensors such as satellite
imaging systems, meteorological stations, and security cameras. Emer-
gency response, homeland security, and many other applications have
a very real need to interconnect these diverse networks and access in-
formation in real-time. Web service technologies provide well-developed
mechanisms for exchanging data between heterogeneous computing de-
vices, but they cannot be used in resource-constrained wireless sensor
networks. This paper presents OASiS, a lightweight service-oriented ar-
chitecture for sensor networks, which provides dynamic service discov-
ery and can be used to develop ambient-aware applications that adapt
to changes in the network and the environment. An important advan-
tage of OASiS is that it allows seamless integration with Web services.
We have developed a middleware implementation that supports OASiS,
and a simple tracking application to illustrate the approach. Our results
demonstrate the feasibility of a service-oriented architecture for wireless
sensor networks.

1 Introduction

Wireless sensor networks (WSNs) consist of small, inexpensive computing de-
vices which interact with the environment and communicate with each other
to identify spatial and temporal patterns of physical phenomena [1]. A sen-
sor web is a heterogeneous collection of such networks, and can also include
resource-intensive sensing platforms such as satellite imaging systems, meteo-
rological stations, and security cameras. Such heterogeneous sensor networks
can greatly benefit applications ranging from emergency response to homeland
security [2], [3], [4].
� This work is partially supported by ARO MURI W911NF-06-1-0076, Microsoft Ex-

ternal Research, and by NSF Grant CCR-0225610.

F. Kordon and O. Sokolsky (Eds.): Monterey Workshop 2006, LNCS 4888, pp. 125–149, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

126 X. Koutsoukos et al.

At present, users wishing to deploy WSN applications must be adept at
low-level sensor network programming, as well as implementing the necessary
domain-specific functionality. These applications must be able to run on large
networks with nodes that have varying capabilities, are manufactured and oper-
ated by different vendors, and are accessed by multiple clients exercising different
functionalities. A service-oriented architecture (SOA) offers flexibility in the de-
sign of WSN applications since it provides accepted standards for representing
and packaging data, describing the functionality of services, and facilitating the
search for available services which can be invoked to meet application require-
ments [5]. SOA deployment has already proved successful on the World Wide
Web, however Web service technologies have been developed assuming standard
Internet protocols and are not realizable in resource-constrained sensor networks.

This paper presents OASiS, an Object-centric, Ambient-aware, Service-ori-
ented Sensornet programming model and middleware implementation for WSN
applications. In the object-centric paradigm, the application programmer is pre-
sented with a layer of abstraction in which the phenomenon monitored by the
sensor network is represented by a unique logical object which drives the appli-
cation [6]. The model is ambient-aware, which enables the application to adapt
to network failures and environmental changes by employing a dynamic service
discovery protocol. OASiS is a lightweight framework which avoids the use of
bulky XML-based messages found in Web service standards, however, it still
provides a simple mechanism for Web service integration.

We have implemented a suite of middleware services for the Mica2 mote hard-
ware platform [17] running TinyOS [18] to support OASiS. Key characteristics
of our approach that can benefit the design of sensor network applications are:

– Dynamic service discovery and configuration for reacting to changes in the
network due to failures and unreliable communication links.

– Application reconfiguration for reacting to changes in the behavior of the
monitored phenomenon.

– Service deployment onto heterogeneous platforms using well-defined inter-
faces enabling a seamless integration.

– Real-world integration by incorporating spatial service constraints that are
necessary to monitor physical phenomena.

– Data aggregation by using services which accept input from multiple sensor
nodes.

The OASiS programming model can be used to build a wide variety of dataflow
applications such as target tracking, fire detection and monitoring, and dis-
tributed gesture recognition. To demonstrate the feasibility and utility of OA-
SiS, we have developed a simplified indoor tracking experiment, which monitors
a heat source as it travels through the sensor network region. The application is
comprised of services provided by several resource-constrained sensor nodes, but
it also invokes a Web service provided by a remote server. By providing access
to the Web service, we incorporate functionality into our WSN application that
would otherwise be unattainable.

OASiS 127

This paper is organized as follows. Section 2 overviews our programming
model and Section 3 describes dynamic service configuration. Our middleware
implementation is presented in Section 4. Section 5 presents a case study followed
by a scalability analysis in Section 6. In Section 7, we compare our research to
similar work that has recently appeared in the literature. Section 8 concludes.

2 The OASiS Programming Model

This section presents the OASiS programming model. To illustrate the model, we
use an environmental monitoring example in which a network of chemical sensor
nodes is deployed for detecting and tracking chemical clouds. Upon detection,
the sensor network begins estimating the speed and heading of the cloud, and
continues to do so until the cloud leaves the sensing region. This tracking data is
forwarded to a base station, which alerts local emergency management officials.

2.1 The Object-Centric Paradigm

The entity that drives an object-centric application is the physical phenomenon
under observation. In OASiS, the physical phenomenon is represented by a logi-
cal object, which is comprised of a finite state machine (FSM), a service graph for
each FSM mode, and a set of state variables. Figure 1 illustrates this representa-
tion in the context of the chemical cloud example. The estimated position of the
chemical cloud is maintained by the logical object using the state variables (e.g.
the mean and variance of the center of the chemical cloud). Each FSM mode
represents a specific behavior of the chemical cloud, (e.g. stationary or moving),
and contains a service graph that represents a dataflow algorithm. The algorithm
is executed periodically, and its output is used to update the state. When the
behavior of the physical phenomenon changes, the logical object transitions to
a new mode containing a different service graph.

The logical object is instantiated upon detection of a physical phenomenon of
interest. This is achieved by comparing sensor data with an object context, which
defines the detection conditions for the physical phenomenon. This comparison
is made periodically at a frequency specified by a refresh rate. Because multiple
nodes may detect the same physical phenomenon at roughly the same time, a
mechanism is required to ensure that only one logical object is instantiated.
To provide this guarantee, OASiS employs an object-owner election algorithm
similar to that of [6], which is executed by each candidate node.

After object instantiation completes, exactly one node, referred to as the ob-
ject node, is elected owner of the logical object. The logical object initiates in
the default mode of the FSM and starts the process of dynamic service con-
figuration (described below), after which the application begins execution. The
object maintenance protocol evaluates the mode transition conditions every time
the object state is updated. If a mode transition condition evaluates true, the
protocol makes the transition to the new mode. The mode transition involves
resetting any logical object state variables, if applicable, and configuring the new

128 X. Koutsoukos et al.

Fig. 1. OASiS: Programming Model

service graph corresponding to the new logical object mode. Because OASiS is
a programming model for resource constrained WSNs, the FSM is intended to
contain only a small number of modes representing a few broad behaviors of the
physical phenomenon. We also assume the frequency of mode transitions will be
much slower than the sampling rate required for tracking the phenomenon.

The logical object has a migration condition, which if evaluates true, invokes
the object migration protocol. The selection policy for the migration destination
is tied to the condition that triggers the migration protocol. In the above exam-
ple, an increase in the variance of the location estimate can serve as a migration
condition, and the owner selection policy will choose the node that is currently
closest to the chemical cloud. Another migration condition could be a low power
reading on the object-node, in which case the selection policy chooses a nearby
node with a sufficient power reserve. The migration process consists of running
the owner election algorithm to select the migration destination based on the
selection policy and transferring the object state to the new object node. In
this way the logical object follows the physical phenomenon through the sens-
ing region. When the sensor network is no longer able to detect the physical

OASiS 129

phenomenon, the logical object must be destroyed. This is a simple matter of
resetting the logical object state to null. After an object has been destroyed, the
sensor network begins searching for a new physical phenomenon.

The goal of an object-centric programming model is to provide abstractions
focusing on the physical phenomena being monitored, thus bypassing the com-
plex issues of network topology and distributed computation inherent to sensor
network application programming. This effectively transfers ownership of com-
mon tasks such as sensing, computation, and communication from the individual
nodes to the object itself. In addition, object-centric programming in OASiS fa-
cilitates dynamic service discovery and configuration by considering only a single
neighborhood in the network and solving a localized constraint satisfaction prob-
lem. Details are discussed in Section 3.

2.2 Services in Sensor Networks

In OASiS, each mode in the logical object FSM contains a service graph whose
constituent services provide the functionality necessary to update the state.
Specifically, a service graph contains a set of services, a set of bindings, and
a set of constraints, where a binding is a connection between two services, and a
constraint is a restrictive attribute relating one or more services. We assume that
the service graph is known a priori for each mode. Note that the service graph is
simply a specification of an application and not the actual implementation. The
implementation is provided by the services themselves, which may or may not be
provided by the object node. Services are resources capable of performing tasks
that form a coherent functionality from the point of view of provider entities
and requester entities [7]. They are the basic unit of functionality in OASiS, and
have well-defined interfaces which allow them to be described, published, discov-
ered, and invoked over the network. Each service can have zero or more input
ports and zero or one output port. Services are modular and autonomous, and
are accessible by any authorized client application. For these reasons, services
are typically stateless.

Figure 2 depicts the service graph for tracking a moving chemical cloud. Our
localization algorithm requires chemical concentration measurements from sen-
sor nodes surrounding the center of the cloud, and the current wind velocity in
the region. Therefore, the service graph consists of Chemical Sensor services and
one Wind Velocity service whose outputs are connected to the inputs of a Local-
ization service. The Localization service uses a Kalman filter [8], and therefore
requires current state variables obtained via an input port connected directly to
the object. Similarly, the Localization service passes the updated coordinates of
the chemical cloud back to the logical object. The Localization service is also
connected to a Notification service, which informs the emergency management
agency of the cloud’s current position.

Because services can be publicly accessible, an attempted invocation might
be blocked due to mutual exclusion if the service is currently executing some
shared resource. Our programming model accounts for this with a globally
asynchronous, locally synchronous (GALS) model of computation [9]. GALS

130 X. Koutsoukos et al.

Fig. 2. Service Graph for Chemical Cloud Tracking Application

guarantees that communication between services will occur asynchronously (i.e.
non-blocking), while intra-service communication such as method calls will ex-
hibit synchronous (blocking) behavior. In this manner, a service never has to
wait for its output to be consumed before processing data arriving on an input
port. As such, GALS is an important and desirable paradigm for service-oriented
applications for sensor networks.

Application services can run on the resource-constrained nodes of the sensor
network or they may be executed on more powerful sensor nodes in a high-
bandwidth network. In our work, these resource-intensive services are imple-
mented as Web services. We elect to use Web services due to their well-defined
and documented standards. By taking advantage of Web services, applications
have access to a wide range of functionality which would otherwise be unattain-
able. For example, our Localization service requires the wind velocity in the
region. One option for obtaining the wind velocity is to equip a subset of sensor
nodes with anemometers, however this approach can be cost-prohibitive and dif-
ficult to implement. Instead, we rely on an Internet-based Wind Velocity service,
for example, one provided by the U.S. National Weather Service. The service in-
terface definition is provided in a Web Service Definition Language (WSDL) file
available on the host server. This provides us with the information necessary to
access the Web service, including input and output parameters and their data
types.

The modular and autonomous properties of services facilitate application
programming and provide an efficient mechanism for application reconfigura-
tion during runtime. Because services provide an interface describing their func-
tionality in terms of inputs and outputs, the programmer does not have to be

OASiS 131

concerned with their physical placement, hardware platform, or implementation
language. Furthermore, services allow new functionality to be easily inserted into
the network without having to redeploy the underlying WSN application.

2.3 Service Constraints

It is often undesirable for multiple services in an application to be running con-
currently on the same node. Conversely, there arise situations in which two ser-
vices must be running on the same node. Many localization algorithms require
sensing services to be situated in a precise spatial configuration. Other sensor
node properties such as power level and physical position may also be impor-
tant when deciding where to run a service. The ability to specify these types of
constraints is a necessary aspect of composing service graphs at run-time.

Typical constraints associated with a service graph can be categorized as
either property or resource-allocation constraints. Property constraints specify
a relation between the properties of services (or the nodes providing the ser-
vices) and some constant value. The Enclose property constraint, for example,
specifies that nodes providing services a, b, and c must surround the physical
phenomenon of interest. The Enclose constraint is very important for track-
ing spatial phenomena and is discussed in more detail in Section 3. Resource-
allocation constraints define a relationship between the nodes that provide the
services. For example, a resource-allocation constraint can specify that services
a, b, and c must run on different nodes (or must all run on the same node).

Constraints can further be categorized as being either atomic or compositional
based on their cardinality, or arity. Hence, a constraint involving a single service
is an atomic (unary) constraint, while constraints involving two (binary) or more
(n-ary) services are compositional constraints.

In the following, we formally define the constraints considered in our frame-
work. A method for determining a service configuration which satisfies such
constraints is presented in Section 3.
(1) Atomic property constraint:

service.provider.p op K

where p is a property of the node providing service, op is a relational operator
(op ∈ {>, ≥, <, ≤, ==, �=}), and K is some constant value. For example, the
constraint that service a must be provided by a node at least one meter above
the ground is written as a.provider.z ≥ 1.
(2) Compositional property constraint:

F (provider.p) op K over S

where p and op are defined above, and F is a composition function on property
p for all services in the set S. For example, to specify that the average power
level of nodes providing services a, b, and c must be greater than or equal to
85% is written as average(provider.power) ≥ 85 over {a, b, c}.

132 X. Koutsoukos et al.

(3) Atomic resource-allocation constraint:

service.provider.type op type set

where op ∈ {==, �=, ∈, /∈}. For example, a.provider.id /∈ {NODE1, NODE2,
NODE3} is used to ensure that service a does not run on a set of nodes with
particular IDs.
(4) Compositional resource-allocation constraint:

F (provider.type) over S

where F ∈ {allSame, allDifferent}. For example, the constraint that services
a and b must run on the same node, and c must run on a different node can be
written as allSame(provider.id) over {a, b} && allDifferent(provider.id) over
{a, c}. Similarly, more complex compositional resource-allocation constraints can
be specified by using combinations of allSame and allDifferent.

2.4 Service Discovery and Composition

There are three types of events that will trigger service discovery and composi-
tion: object instantiation, mode transition, and migration. Object instantiation
and mode transition are similar in that the logical object enters a new (possi-
bly default) mode containing a service graph. For migration, the mode may not
change, but the logical object is transferred to a new provider, which must parse
the service graph in the current mode in order to execute it.

Before an object can start executing the service graph, a Service Discovery
Protocol (SDP) is invoked to determine which nodes in the network provide
which services. Our model employs passive service discovery, in which a provider
advertises a service only when a request for that service has been received [10].
The SDP is provided as a service by each node and maintains a local service
repository (SR) which catalogs application services running both locally and
remotely. Should an entry become stale due to communication failure or node
dropout, for example, or a new service request arrives for a service that is not
present in the SR, the SDP locates a new provider for that service. The service
discovery algorithm receives as input a service ID, which if not present in the
service repository, will prompt the SDP to broadcast a service request to other
nodes in the network, up to a specified number of hops. The outgoing service
discovery message contains the ID of the requested service and the node ID of the
sender. Nodes providing the requested service will send a service discovery reply
message, which includes information such as physical location and remaining
power level. The SDP caches the provider node information in the SR, and
forwards the message to the Composer.

The objective of the Composer is to instantiate the configuration that satisfies
the constraints specified in the service graph. These services are then bound
together and eventually invoked. The ID of each service in the service graph is
passed to the SDP. Because several instances of the same service could be residing
on multiple nodes across the network, the Composer can expect multiple replies.

OASiS 133

As replies arrive, the Composer checks to see that any atomic service graph
constraints are satisfied, and if so, the node information is stored. Compositional
constraint satisfaction commences after all replies have been received. Finally,
the connections between the services in the service graph are examined, and a
service binding message is created for each. The binding message contains the
service and node IDs of the connection source, as well as the service and node
IDs of the connection destination. The message is sent to the connection source
node so that it may properly direct the output of its service to the input of
the service specified by the connection destination. The Composer will not reuse
bindings in the event a mode had been entered previously, because service graph
constraints may no longer be valid.

Dynamic network behavior in WSNs can cause problems during application
execution such as service unavailability and violation of constraints. Querying a
centralized service repository each time a new service instance is needed can be
expensive, especially when the repository is located multiple transmission hops
away. The passive service discovery approach was found to be the most energy
efficient for mobile ad hoc networks with limited power resources [10]. Requests
are flooded a limited number of hops throughout the network, and all providers
of the requested service respond with a message that follows a direct path back
to the object node. The Composer is then provided with a list containing only
those services requested.

Service discovery over multiple hops is achieved using a protocol similar to
DSR [11]. There are three types of messages that require routing information: (i)
service discovery reply messages, (ii) service binding messages, and (iii) service
access messages. Service discovery request messages are flooded throughout the
network, and therefore do not require any routing information. Routing infor-
mation is maintained in a next-hop table, which stores the node ID of a known
service provider, along with the ID of the next node along the multi-hop path
to that provider. As a service discovery message travels from the object node to
the service provider nodes, each intermediate node along the path records the
ID of the preceding node. This gives the service provider a direct path back to
the object node for service discovery reply messages.

A service discovery request message will flood the network up to a maximum
number of hops, specified a priori by the domain-service or application devel-
oper. At each intermediate node, a hop-number counter in the message header
is incremented, and the message will not be forwarded once the counter reaches
the maximum number allowed. Note that this maximum is the largest number
of hops from the object node to a service provider. This implies that service-to-
service communication could possibly travel twice as many hops, if each service
provider were the maximum number of hops from the object node on opposite
sides. Rather than expending energy by sending out numerous path-probing mes-
sage transmissions, the shortest path between two service providers is estimated
by using the knowledge of the physical location of the service provider and the
maximum physical distance a message can be transmitted. This method does

134 X. Koutsoukos et al.

not guarantee that the shortest path selected will be a feasible one, in which
case another path should be selected.

3 Dynamic Service Configuration

This section describes dynamic service configuration that is required for reacting
to changes in the network or in the behavior of the physical phenomenon.

3.1 Constraint Satisfaction

Service graph instantiation can be modeled as a constraint satisfaction problem
[12], where services in the abstract service graph are the constraint variables,
and the nodes that provide a particular service constitute the domain.

A finite CSP P = (X, D, C) is defined as a set of n variables X = {x1, ..., xn},
a set of finite domains D = {D1, ..., Dn} where Di is the set of possible val-
ues for variable i, and a set of constraints between variables C = {C1, ..., Cm}.
A constraint Ci is defined on a set of variables (xi1 , ..., xij) by a subset of the
Cartesian product Di1 × ... × Dij . A solution is an assignment of values to all
variables which satisfy all the constraints. The design space for a constraint sat-
isfaction problem is the set of all possible tuples of constraint variables. Formally,
D = {(v1, v2, ..., vn)|v1 ∈ D1, v2 ∈ D2, ..., vn ∈ Dn}

Constraint satisfaction prunes the design space as much as possible for all dif-
ferent types of constraints until a feasible solution is found. The specific pruning
method depends on the constraint under consideration, specifically the constraint
property, constraint operator, and composition function.

1) Atomic Constraint Satisfaction: Atomic constraints are straightforward to
satisfy. Because each atomic constraint is defined on a single variable, pruning
the domain of that variable will leave the domain consistent, and hence satisfy
the constraint.
2) Compositional Constraint Satisfaction

a) Compositional Property Constraints: The compositional property con-
straints are defined in Section 2, and involve the use of a composition function.
OASiS includes several composition functions for aggregation, such as sum, av-

erage, and median. In addition, we have defined a composition function called
enclose for specifying the spatial configuration of sensor nodes. Many tracking
applications employ localization algorithms which require measurement data to
come from multiple sensors surrounding the physical phenomenon. The quality
of the localization estimate often depends on how well the spatial configura-
tion of these sensors is described. In the chemical cloud tracking example, three
chemical concentration sensors are required, and they must be positioned such
that they enclose the cloud. The constraint enclose(L) over S = {s1, s2, s3},
specifies that the location L must be enclosed by the sensor nodes which provide
services s1, s2, and s3. For example, enclose(s4.location) over S = {s1, s2, s3}
specifies that the location of the node providing service s4 must be enclosed by
sensor nodes that provide services s1, s2, and s3.

OASiS 135

In general, higher-level, complex constraints are more difficult and demanding
to satisfy. However, such constraints can be transformed into lower-level, simple
constraints that provide the desired result, while minimizing the power and re-
sources expended in satisfying it. We model the enclose constraint based on
the am i surrounded query described in [13]. The two-dimensional definition
of enclose is as follows: L is surrounded by {s1, s2, s3} if there is no line in
the plane that can separate L from all of {s1, s2, s3}. For this definition, the
constraint can be reduced to enclose(L) over {s1, s2, s3} ⇒ ccw(L, s1, s2) &
ccw(L, s2, s3) & ccw(L, s3, s1), where ccw(a, b, c) specifies that locations a, b,
and c form a counter-clockwise-oriented triangle in 2-D. The geometric constraint
ccw(L, s3, s1) is easy to check by simple computation [13].

The definition of enclose varies for different sensor domains. For example,
one domain can define an enclosed region to be the overlap of member sensing
ranges. Consider another example of camera sensors with orientation and limited
field-of-view. The enclosed region in this case is the intersection of fields of view
recorded by all member cameras. Figure 3 illustrates different enclosed regions.

Fig. 3. Various definitions of Enclose

b) Compositional Resource-Allocation Constraints: There are two types of
composition functions for compositional resource-allocation constraints, allSame
and allDifferent. Satisfying the allSame constraint is straightforward; the design
space is the intersection of domains of all the participating constraint variables.
To satisfy the allDifferent compositional constraint, a value is picked from the
domain for each constraint variable. If the current set of values satisfy the con-
straint, a valid solution has been found. Otherwise, a backtracking algorithm
[14] is used. The backtracking algorithm performs a depth-first search on the
design space. Each leaf vertex represents a possible solution, assigning all con-
straint variables to a value. Non-leaf vertices are decision-points for constraint
variables, where each path from the vertex assigns a value to the constraint vari-
able. At the end of the backtracking step, either a solution has been found or
the entire design space has been searched without finding any valid solution.

Algorithm 1 outlines the process of compositional constraint satisfaction.
Lines 1-3 solve for constraints such as allSame as described above. The resulting
pruned set is an exact set of solutions with respect to that constraint. In general,
the pruned design space is an over-approximation that needs to be searched for a

136 X. Koutsoukos et al.

valid solution. Lines 4-14 solve for other compositional constraints by exploring
the design space and backtracking. Although solving CSPs can be computa-
tionally expensive, by limiting the scope of the service discovery protocol in a
neighborhood of the object node and by keeping the constraint specification
syntax simple, the problem can be solved on resource-constrained sensor nodes.
The constraint specification syntax still permits the user to accurately specify
desired application behavior. OASiS implicitly assumes constraint satisfaction
will terminate with a valid configuration. This assumption holds when services
are redundantly distributed throughout the sensor network, and is reasonable
for WSNs because redundancy is one of their main characteristics. Note that
OASiS does not attempt to find an optimal configuration, because this can be
too computationally expensive. Instead, the first feasible configuration that sat-
isfies all the constraints is selected. If a better solution is desired, it must be
specified in the form of additional constraints on the service graph.

Algorithm 1. Compositional Constraint Satisfaction
1: for all Ci ∈ C do
2: D̃ = prune design space(Ci, D)
3: end for
4: okay = false

5: while !okay do
6: sol = {(vindex1 , vindex1 , ..., vindex1)|∀i vindexi ∈ D̃i}
7: okay = true

8: for all Cj ∈ C do
9: if !satisfy(Cj , sol) then

10: okay = false

11: backtrack()
12: end if
13: end for
14: end while

4 The OASiS Middleware

We have developed a suite of middleware services which support the features
of our programming model. The middleware provides a layer of network ab-
straction, shielding the application developer from the low-level complexities of
sensor network operation such as resource management and communication. It
gracefully handles the decomposition of desired application behavior to pro-
duce node-level executable code for an object-centric, service-oriented WSN
application.

4.1 Middleware Services

The middleware services include a Node Manager, Object Manager, and Dynamic
Service Configurator. Figure 4 illustrates the relationship between the middle-

OASiS 137

Fig. 4. Middleware

Fig. 5. Middleware architecture

ware and the sensor network, while Figure 5 illustrates the relationship between
the application and middleware services at the sensor node level.

The Node Manager is responsible for message routing between services, both
local and remote. This includes maintaining the multi-hop routing table and
forwarding messages appropriately. The first eight bytes of any message han-
dled by the Node Manager consist of a control structure which contains source
and destination node IDs (2 bytes each), source and destination service IDs
(1 byte each), message type (1 byte), and hop number (1 byte). The Node
Manager examines the control structure and determines the appropriate des-
tination for the message. For efficiency, it has short circuit functionality that
allows it to catch outgoing messages bound for local services and reroute them
directly.

Three key types of messages are handled by the Node Manager. Service dis-
covery messages come from neighboring nodes inquiring if a specific service is
available. The Node Manager passes these messages to the local Service Discov-
ery Protocol. An incoming service binding message indicates that a local service
has been registered for use by an object, and includes information on where to

138 X. Koutsoukos et al.

send its output data when complete. A service access message is a request to
run a local service, and may also contain input data. The Node Manager invokes
the specified service and passes in the data.

The Dynamic Service Configurator contains the SDP and Composer, and
functions as described in Section 2. Dynamic service configuration is a relatively
energy-intensive operation, due to the number of message transmissions involved
in service discovery and composition. A node performing these operations will
transmit 2S messages, where S is the number of services in the service graph.
Nodes responding to service discovery requests transmit at most S replies, one
for each service they provide. However, these transmissions only occur during
configuration, and not during service graph execution, thus power consumption
is kept to a minimum.

The Object Manager is responsible for 1) parsing the object-code byte string,
2) detecting the object context and evaluating the object creation condition at
each sample period, 3) invoking the object creation protocol and owner elec-
tion algorithm, and 4) maintaining the object state variables and evaluating the
migration and FSM mode transition conditions.

4.2 WWW Gateway

In order to take advantage of high-bandwidth Web services, the sensor network
must have access to at least one World Wide Web Gateway. The Gateway resides
on a sensor network base station and provides access to Web services by translat-
ing node-based byte sequence messages to the comparatively bulky XML-based
messages used in Web service standards. As such, it is the job of the Gateway to
speak the language of Web services. When a service discovery message arrives,
the Gateway must locate this service on the Internet. This is accomplished by
using the Universal Description, Discovery and Integration (UDDI) protocol, a
Web service standard used for locating and accessing services [15]. Given the
proper keys, a UDDI inquiry returns the access point for a specific service as an
URL string. Service access is achieved by means of XML-based SOAP messages
[16]. If the service returns a value, it is also enclosed in a SOAP message. The
Gateway composes and parses these XML messages and marshals the data ap-
propriately when translating between the sensor network and the World Wide
Web.

The role of the Gateway is transparent to the rest of the network. It appears
simply as another node, running identical middleware services and providing
a set of application services. That the available application services happen to
be remotely located is of no interest to the object node making the request.
Similarly, other application services inputting data from, or outputting data
to a Web service believe the Web service is being provided by the Gateway
node. Note also that communication between the sensornet and Internet is bi-
directional. Not only can OASiS WSN applications access Web services, but
OASiS services can be accessed from the World Wide Web. This permits users

OASiS 139

who have no experience with wireless sensor networks to retrieve sensor data
or run sensor network applications from a website with access to the OASiS
Gateway.

To return to our tracking example, while the application is running on the
sensor network, the Gateway receives a service discovery message for the Wind-
Velocity service. It receives this message because one of the nodes in the sensor
network is attempting to bind a service graph requiring this service. If the Gate-
way does not already have the WindVelocity service in its cache of recently
accessed services, it makes a UDDI inquiry to a registry at a known location,
which returns the WindVelocity accesspoint URL, if available. The Gateway
stores this information, then responds to the SDP of the requesting node that
the WindVelocity service is available.

The Gateway may then receive a service binding message, indicating that the
WindVelocity service may be accessed in the near future. The message contains
the IDs of the node and service to send the wind velocity data to. This infor-
mation is cached for rapid future access. When the Gateway receives a service
access message from the sensor network, it packages the input data into a SOAP
message and invokes the WindVelocity service. The reply is parsed using an
XML parser and forwarded to the next service specified in the service binding
repository.

4.3 Implementation

Our middleware1 is implemented on the Mica2 mote hardware platform [17]
running TinyOS [18]. Our main objective in developing the middleware was to
minimize resource requirements while maintaining a robust component-based ar-
chitecture. The code was developed using galsC [19], a GALS-enabled extension
of nesC [20], the de facto programming language for the motes. The Gateway
application was developed in Java. Our Web service implementation was realized
using a suite of Apache services [21], including the Tomcat 5.5 web server, Axis
1.4 SOAP implementation, and jUDDI 0.9rc4, a Java-based UDDI implementa-
tion. MySQL 5.0 was used for the UDDI repository.

Table 1 lists each middleware service, with its code size and memory require-
ments. These memory sizes are suitable for executing applications on the motes,
which have approximately 64 KB of programming memory and 4 KB of RAM.
It should be noted that these components can be optimized to further reduce
memory size, however there is a trade-off between an application’s compactness
and its robustness.

5 Case Study

We demonstrate the features of the OASiS programming model and middleware
by developing a simplified indoor experiment which tracks a heat source.
1 The source code for OASiS can be found on our project website at
http://www.isis.vanderbilt.edu/Projects/OASiS/.

http://www.isis.vanderbilt.edu/Projects/OASiS/

140 X. Koutsoukos et al.

Table 1. Implementation Memory Requirements

Service Program memory (bytes) Required RAM (bytes)

Node Manager 8500 367
Dynamic Service Configurator 11894 822
Object Manager 3560 151
TinyGALS queues & ports 702 1013
Total 24656 2353

5.1 Experimental Setup

Our experimental setup is shown in Figure 6. Five sensor nodes equipped with
thermistors are placed in a region, each providing a set of pre-loaded services,
and a heat source passes through the region. A sixth node is connected to a
Web server that provides a Velocity service. For this simple indoor experiment,
the velocity provided by the Web service is set to a constant 5 m/s which is
approximately the velocity of heat source. Table 2 summarizes the sensor node
attributes. The Localization service, implemented using an extended Kalman
filter, estimates the position of the heat source from the sensor data. This esti-
mate is then sent to the Notification service. The application is represented by
a service graph as in Figure 2 with three temperature services that must reside
on different nodes in a spatial configuration that encloses the heat source.

Table 2. Experimental Setup

Node id Position Preloaded Services

101 [400 800] Temperature, Notification

109 [700 400] Temperature, notification

113 [0 500] Temperature, notification, Localization

143 [200 0] Temperature, notification

169 [800 1000] Temperature, notification

base station N/A velocity estimation

5.2 Performance Evaluation

The feasibility and effectiveness of OASiS was evaluated by performing a set of
experiments using the simple tracking application.

Experiment 1: Object creation and application execution. The number of mes-
sage transmissions for object creation and application configuration is summa-
rized in Table 3. The delay for object creation and application configuration is
2000 and 3000 ms, respectively, and depends on pre-defined timeout values; an
owner-election timeout for object creation and a service-configuration timeout
for service graph configuration.

OASiS 141

Fig. 6. Experimental setup

Table 3. Experiment 1 results

number of messages description

object creation 5 owner-election

service graph configuration 15 service request (3)
service information (9)
service binding (3)

Experiment 2: Service disruption / Object migration. Once the physical object
goes beyond the enclosure of nodes 109, 113, and 143, the variance in the location
estimate starts to grow, which triggers object migration. As part of the migra-
tion protocol, node 143 begins a new owner election procedure by broadcasting
a migration message. Nodes reply with their most recently sampled tempera-
ture values. The current owner elects the node with the highest temperature
value as the migration destination, sends the object to it, and unbinds all pre-
viously bound services. In our experiment, node 143 sends the object to node
109. The number of messages communicated for object migration and service
graph unbinding are summarized in Table 4. The delay for object migration is
approximately 2000 ms. This experiment indicates that OASiS incurs an over-
head on the number of messages required and the time delay for object creation,
maintenance, migration and service graph maintenance. Table 4 indicates that
the number of messages communicated is reasonably small.

Experiment 3: Tracking. Tracking performance was evaluated by comparing
the actual heat source trajectory with the estimated trajectory. The tracking

142 X. Koutsoukos et al.

Table 4. Experiment 2 results

number of messages description

object migration 8 migration (5)
object-migration (1)
object-migration ack (1)
object-migration notification (1)

service graph unbinding 3 un-binding

Fig. 7. Tracking results

accuracies for cases with and without estimated velocity data (ux = uy = 0) was
also measured, and is summarized in Figure 7.

In all experiments, message transmissions were kept to a minimum due to
the passive service discovery protocol. The service message size for this applica-
tion requires only one transmission per message. Service discovery and binding
required a total of 14 transmissions, while a complete execution of the service
graph required only six transmissions.

Response times for various operations were also obtained, and are displayed
in Table 5. The service discovery response time is provided with and without the
Web service. Additionally, Web service access is not included in the service graph
execution time, but instead is provided separately to illustrate the overhead
imposed on the system by adding Web service capability. It should be noted
that our Web service implementation is not optimized for speed; however, the
current service discovery and constraint satisfaction latency is quite acceptable
for performing dynamic service configuration.

OASiS 143

Table 5. Operation Response Times

Operation Response Time (ms) Standard Deviation

Service discovery 4092 113
Service discovery w/o Web service 1400 0.01
Constraint satisfaction 15 0
Service graph execution w/o Web service 81 13
Web service access 502 65
Localization service access 11 0

6 Scalability

To measure the effectiveness of our multi-hop service discovery protocol, we
performed a scalability analysis using Prowler [22], a simulator for WSN appli-
cations. We simulated both grid and uniform random topologies. For each, we
measured the message overhead of the service discovery protocol by considering
(i) the number of message transmissions, (ii) the number of nodes discovered,
and (iii) the time required for completing the service discovery.

When queried, each sensor node replies with a list of the services it pro-
vides. For our analysis, we measured the number of unique replies, which is
an implicit measure of the number of services discovered. After service discov-
ery completed, the total number of messages sent by all the nodes was tallied,
along with the total number of discovered nodes and the total time required
for service discovery. Figure 8 shows the number of message transmissions for
n-hop service discovery, figure 9 shows the number of sensor nodes discovered,
and figure 10 shows the time taken for n-hop service discovery for each of the
network topologies. As expected, the number of message transmissions and dis-
covered nodes increases quadratically with the number of hops, while the time
taken for service discovery increases linearly. In addition, the number of mes-
sage transmissions and discovered nodes increases linearly with node density
in the network, while time taken for service discovery remains approximately
constant.

We define the discovery ratio as the ratio of service discovery messages to the
number of discovered nodes. Figure 11 shows the discovery ratio for different
network topologies. From the results above, we can make some general useful
observations. The discovery ratio increases linearly with the number of hops (i.e.
the protocol requires approximately n discovery messages per discovered node
for n-hop service discovery). Interestingly, the discovery ratio remains mostly
constant with respect to node density. These results indicate that the service
discovery protocol performs linearly for the number of discovery messages per
discovered node with respect to the number of hops. Hence, the optimal number
of hops for service discovery can be selected based on the distribution and number
of services in the network.

144 X. Koutsoukos et al.

Fig. 8. Number of message transmissions for (a) grid and (b) random topology

Fig. 9. Number of discovered nodes for (a) grid and (b) random topology

Fig. 10. Time taken for n-hop service discovery for (a) grid and (b) random topology

OASiS 145

Fig. 11. Discovery ratio with number of hops for all four network topologies

7 Related Work

Design principles for traditional distributed computing middleware are not di-
rectly applicable to WSNs because sensor nodes are small-scale devices with lim-
ited resources, properties which directly affect computation, sensing, and com-
munication. Recently, the WSN community has seen the emergence of a diverse
body of macroprogramming languages, frameworks, and middleware that pro-
vide solutions to overcome these limitations (see [23] and the references therein).
In the following, we focus on models and frameworks similar to OASiS.

SONGS [5] is a service-oriented programming model, similar to ours in many
respects. However, unlike our object-centric approach to driving application
behavior, SONGS dynamically composes a service graph in response to user-
generated queries. While this technique works well as an information retrieval
system, SONGS lacks the ability to alter its behavior based on a change in
environmental conditions.

The object-centric paradigm has been successfully used in the EnviroSuite
programming framework [6]. EnviroSuite and OASiS provide a similar level
of network abstraction to the application developer, however by employing a
service-oriented architecture, OASiS is able to incorporate aspects of modular
functionality, resource utilization, and ambient-awareness more efficiently.

The Abstract Task Graph (ATaG) [24] is a macroprogramming model which
allows the user to specify global application behavior as a series of abstract tasks
connected by data channels for passing information between them. Currently, the
ATaG is only a means for describing application behavior. A model interpreter
must be employed to decompose this behavior to node-level executable code.

146 X. Koutsoukos et al.

In addition, the ATaG provides no means for delegating tasks to sensor nodes
which satisfy specific property or resource constraints.

The Agilla framework [25] adopts a mobile agent-based paradigm. However,
unlike most other frameworks, Agilla does not require the sensor network appli-
cation to be deployed statically. Instead, autonomous agents, each with a specific
function, are injected into the network at run-time, a technique referred to as
in-network programming. This approach allows the underlying network applica-
tion to only be uploaded once onto the node hardware, after which applications
can be swapped out or reconfigured at any time. The primary disadvantage of
using an Agilla network, compared with our middleware, is that all nodes must
be executing the Agilla run-time application. This rules out access to a variety
of devices operating on different architectures.

Ambient-aware computing [26] is an emergent technology in which applica-
tions are given the ability to interact with their environment such that all de-
vices and services within a fixed geographical range are known at all times.
However, for sensor networks consisting of resource-constrained nodes, commu-
nication with neighboring devices is often costly. Hence a tradeoff exists between
the rate at which a node can update its understanding of the surrounding en-
vironment and the amount of time the node can run before depleting its power
supply.

Bridging a sensornet-based service-oriented architecture with the Internet has
been realized with the CodeBlue project [27] in which sensors used for healthcare
monitoring relay data to a Web service. This provides a convenient mechanism
for transferring a patient’s vital signs, obtained through an embedded sensor
device, to a medical records system or monitoring station. CodeBlue’s Gateway
application is similar to our own, with the exception that it translates sensor data
into the HL7v3 format, a standard used for communicating medical information.

Dynamic software reconfiguration in sensor networks has been achieved in
[28] by expressing system requirements as constraints on design space quality-
of-service parameters. A run-time search of the design space is made possible
by situating the reconfiguration controller on a powerful base station, a strategy
which cannot be realized in resource-constrained sensor nodes.

MiLAN [29] is a middleware for WSN application development that optimizes
the trade-off between application QoS and network resource utilization. Quality
of service constraints are specified in graphs, which MiLAN interprets and uses
to maintain a minimum set of active devices which provide the functionality
required by the application. Although MiLAN employs a dynamic service con-
figuration mechanism similar to that of OASiS, it only assists the application
developer in managing QoS, and is not a complete programming framework.

Spatial Programming [30] is a programming model for distributed embedded
systems that abstracts the network into a single virtual address space. Nodes
are referenced based on their location and provided functionality rather than
ID, providing the application programmer with greater design flexibility in the
presence of dynamic network topology. The authors implemented the spatial
programming model using the Smart Messages [31] architecture in Java, and

OASiS 147

deployed the application on Linux PDAs. It is unclear how such a model will
perform on sensor nodes with tighter resource constraints.

8 Conclusion

We have developed OASiS, an object-centric, service-oriented programming mo-
del and middleware for ambient-aware sensor network applications. Upon de-
tection of an external event, the sensor network instantiates a unique logical
object which then drives the application. Application functionality is bundled
in modular, autonomous services distributed across the network, and dynamic
service configuration is employed at run-time to locate and bind these services.
This process involves an efficient search of the design space to ensure all con-
straints have been satisfied. In addition, a Gateway application, deployed on a
base station, permits the sensor network to discover and access Web services.
This capability provides a substantial benefit to WSN applications, as they are
able to perform computations and access information using methods unavailable
to resource-constrained sensor nodes. The utility of our programming model was
demonstrated with a simple indoor heat-source tracking application. Our results
indicate service-oriented architectures are feasible and can benefit the design of
sensor network applications.

The ambient-aware behavior of our programming model can be further de-
veloped to react gracefully to communication failures and node dropout during
application execution. This will involve failure detection, isolation, and recovery
mechanisms that restore the network application to a stable configuration both
quickly and efficiently.

References

1. Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless Sensor Net-
works: A Survey. IEEE Computer 38(4), 393–422 (2002)

2. Yarvis, M., Kushalnagar, N., Singh, H., Rangarajan, A., Liu, Y., Singh, S.: Ex-
ploiting Heterogeneity in Sensor Networks. In: INFOCOM. Proceedings of the 24th
Annual IEEE International Conference on Computer Communiation (March 2005)

3. Duarte-Melo, E., Liu, M.: Analysis of Energy Consumption and Lifetime of Hetero-
geneous Wireless Sensor Networks. In: Globecom. Proceedings of the 45th Annual
IEEE Global Communications Conference (2002)

4. Lazos, L., Poovendran, R., Ritcey, J.A.: Probabilistic Detection of Mobile Targets
in Heterogeneous Sensor Networks. In: IPSN. Proceedings of the 6th International
Conference on Information Processing in Sensor Networks (2007)

5. Liu, J., Zhao, F.: Towards Semantic Services for Sensor-rich Information Systems.
In: BaseNets. Proceedings of the 2nd IEEE/CreateNet International Workshop on
Broadband Advanced Sensor Networks (2005)

6. Luo, L., Abdelzaher, T., He, T., Stankovic, J.: EnviroSuite: An Environmentally
Immersive Programming System for Sensor Networks. ACM Transactions on Em-
bedded Computing Systems 5(3), 543–576 (2006)

7. Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., Or-
chard, D.: Web Services Architecture, http://www.w3.org/TR/ws-arch/

http://www.w3.org/TR/ws-arch/

148 X. Koutsoukos et al.

8. Welch, G., Bishop, G.: An Introduction to the Kalman Filter. Technical Report TR
95-041, Department of Computer Science, University of North Carolina at Chapel
Hill (2004)

9. Cheong, E., Liebman, J., Liu, J., Zhao, F.: TinyGALS: A Programming Model for
Event-driven Embedded Systems. In: SAC. Proceedings of the 18th Annual ACM
Symposium on Applied Computing (2003)

10. Engelstad, P., Zheng, Y.: Evaluation of Service Discovery Architectures for Mo-
bile Ad Hoc Networks. In: WONS. Proceedings of the 2nd Annual Conference on
Wireless On Demand Network Systems and Services (2005)

11. Johnson, D.B., Maltz, D.A.: Dynamic Source Routing in Ad Hoc Wireless Net-
works. In: Imielinski, T., Korth, H. (eds.) Mobile Computing, Kluwer Academic
Publishers, Dordrecht (1996)

12. Regin, J.C.: A Filtering Algorithm for Constraints of Difference in CSPs. In: Pro-
ceedings of the 12th National Conference on Artificial Intelligence, vol. 1 (1994)

13. Guibas, L.J.: Sensing, Tracking, and Reasoning with Relations. IEEE Signal Pro-
cessing Magazine (March 2002)

14. Baase, S., Gelder, A.V.: Computer Algorithms: Introduction to Design and Anal-
ysis, 3rd edn. Addison-Wesley, Reading (1999)

15. Universal Description, Discovery, and Integration, http://www.uddi.org
16. SOAP, http://www.w3.org/TR/soap/
17. Mica2, http://www.tinyos.net/scoop/special/hardware/#mica2
18. Levis, P., Madden, S., Gay, D., Polastre, J., Szewczyk, R., Woo, A., Brewer, E.,

Culler, D.: The Emergence of Networking Abstractions and Techniques in TinyOS.
In: NSDI. Proceedings of the 1st Symposium on Networked Systems Design and
Implementation (2004)

19. Cheong, E., Liu, J.: galsC: A Language for Event-driven Embedded Systems. In:
DATE. Proceedings of the Conference on Design, Automation and Test in Europe
(2005)

20. Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., Culler, D.: The nesC
Language: A Holistic Approach to Networked Embedded Systems. In: PLDI. Pro-
ceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation (2003)

21. Apache Web Services, http://ws.apache.org/
22. Simon, G., Volgyesi, P., Maroti, M., Ledeczi, A.: Simulation-based Optimization

of Communication Protocols for Large-scale Wireless Sensor Networks. In: IEEE
Aerospace Conference (2003)

23. Hadim, S., Mohamed, N.: Middleware: Middleware Challenges and Approaches for
Wireless Sensor Networks. IEEE Distributed Systems Online 7 (2006)

24. Bakshi, A., Prasanna, V., Reich, J., Larner, D.: The Abstract Task Graph: A
Methodology for Architecture-independent Programming of Networked Sensor Sys-
tems. In: EESR. Workshop on End-to-end, Sense-and-respond Systems, Applica-
tions, and Services (2005)

25. Fok, C.L., Roman, G.C., Lu, C.: Rapid Development and Flexible Deployment of
Adaptive Wireless Sensor Network Applications. In: ICDCS. Proceedings of the
25th International Conference on Distributed Computing Systems (2005)

26. Dedecker, J., Cutsem, T.V., Mostinckx, S., D’Hondt, T., Meuter, W.D.: Ambient-
oriented Programming. In: OOPSLA. Proceedings of the 20th Annual Conference
on Object-oriented Programming, Systems, Languages, and Applications (2005)

http://www.uddi.org
http://www.w3.org/TR/soap/
http://www.tinyos.net/scoop/special/hardware/#mica2
http://ws.apache.org/

OASiS 149

27. Baird, S., Dawson-Haggerty, S., Myung, D., Gaynor, M., Welsh, M., Moulton, S.:
Communicating Data from Wireless Sensor Networks Using the hl7v3 Standard. In:
BSN. International Workshop on Wearable and Implantable Body Sensor Networks
(2006)

28. Kogekar, S., Neema, S., Eames, B., Koutsoukos, X., Ledeczi, A., Maroti, M.:
Constraint-guided Dynamic Reconfiguration in Sensor Networks. In: IPSN. Pro-
ceedings of the 3rd International Symposium on Information Processing in Sensor
Networks (2004)

29. Heinzelman, W.B., Murphy, A.L., Carvalho, H.S., Perillo, M.A.: Middleware to
Support Sensor Network Applications. IEEE Network 18(1), 6–14 (2004)

30. Borcea, C., Iyer, D., Kang, P., Saxena, A., Iftode, L.: Spatial Programming Using
Smart Messages: Design and Implementation. In: ICDCS. Proceedings of the 24th
International Conference on Distributed Computing Systems (2004)

31. Borcea, C., Iyer, D., Kang, P., Saxena, A., Iftode, L.: Cooperative Computing for
Distributed Embedded Systems. In: ICDCS. Proceedings of the 22nd International
Conference on Distributed Computing Systems (2002)

F. Kordon and O. Sokolsky (Eds.): Monterey Workshop 2006, LNCS 4888, pp. 150–167, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Composing and Decomposing QoS Attributes for
Distributed Real-Time Systems: Experience to Date and

Hard Problems Going Forward

Richard Schantz and Joseph Loyall

BBN Technologies
March 31, 2007

Abstract. Distributed real-time embedded (DRE) systems combine the
stringent quality of service (QoS) requirements of embedded systems and the
dynamic conditions of distributed systems. In these DRE systems, QoS
requirements are often critical, and QoS must be managed end-to-end, from the
mission layer down to the resource layer, across competing applications, and
dynamically as conditions change. In this paper, we discuss issues in providing
QoS management in DRE systems and some middleware- and component-
based solutions that we have developed to enable QoS management. We
illustrate these in the context of a live flight demonstration of DRE systems,
discuss the experience gained from the application of the technology to this
context, and discuss some future directions for further research.

1 Introduction

Distributed real-time embedded (DRE) systems combine the stringent quality of
service (QoS) requirements of traditional closed embedded systems with the
challenges of the dynamic conditions associated with being widely distributed across
an often volatile network environment. Traditionally, embedded systems have been
able to rely on their closed environments and self-contained bus architectures to limit
the dynamic inputs possible and could rely on static resource management techniques
to provide the QoS and reliable performance they need. The environment of
distributed, networked systems is more open with heterogeneous platforms, where
inputs can come from external devices and platforms, and dynamic, in which
conditions, resource availability, and interactions can change. Because of this,
achieving the necessary predictable real-time behavior in these DRE systems has
many diverse aspects and is a very large problem area. This places extra emphasis on
both the decomposition of the problem space and the compositional approach toward
solving it.

2 Issues in Providing QoS Management in DRE Systems

In DRE applications, quality of the service provided is as important as functionality,
i.e., how well an application performs its function is as important as what it does. QoS

 Composing and Decomposing QoS Attributes 151

management is a key element of the design and runtime behavior of DRE systems, but
it is often defined in terms of management of individual resources, e.g., the admission
control provided by network management or CPU scheduling mechanisms or
services. While individual resource management is necessary, it is not sufficient in
DRE systems. QoS management for DRE systems must derive and relate the
individual QoS management to the specific mission requirements, simultaneously
manage all the resources that could be or become bottlenecks, mediate varying and
conflicting demands for resources, efficiently utilize allocated resources, and
dynamically reconfigure and reallocate as conditions change.

We can decompose the discussion of issues in providing QoS management in DRE
systems into the following four major separate, but related subissues:

• End-to-end QoS management – The management of QoS for an individual end-to-

end information stream, from information sources to information consumers. That
is, managing the resources associated with information collection, processing, and
delivery to satisfy a particular use of information.

• Multi-layer, scaleable QoS management – The management of QoS for a mission
or set of high-level operational goals, which includes the mapping of high-level,
system-wide concepts into policies driving QoS at the lower levels, followed by
enforcement at the lowest level.

• Aggregate QoS management – The mediation of demands and negotiation for
resources between multiple end-to-end streams that are competing for resources.

• Dynamic QoS management – Adapting to changes in resource availability, mission
and application needs, and environmental conditions (e.g., scale, number of
elements under QoS management, failure and damage management, cyber attacks)
to maintain, improve, or gracefully degrade delivered QoS.

With enough time and budget, intelligent engineers could likely produce a system
with QoS management that fulfills each of these characteristics for a specific system.
However, our vision is more ambitious. We need to develop QoS management not for
a single instance of a specific system, but to develop commonly accepted and used
tools and techniques that enable QoS management to be developed in many systems
repeatedly, so that they are well designed, reusable, and maintainable. Accordingly,
QoS management dovetails with and reinforces extended software engineering
practices that support these goals:

• Separation of concerns, to support the separation of programming application code

(which is the purview of a domain expert) and QoS code (which is the purview of a
systems engineer).

• Components and composition, to support the encapsulation of QoS management
code into reusable bundles and the construction of new systems by composing,
specializing, and configuring existing components.

• Service orientation, supporting the loose integration of whole subsystems, enabling
large DRE systems of systems to be constructed from existing DRE systems.

152 R. Schantz and J. Loyall

3 A Solution for Providing QoS Management in DRE Systems

3.1 Middleware for Dynamic QoS Management

Although it is possible to provide end-to-end QoS management by embedding QoS
control and monitoring statements throughout a software system, such an approach
leads to additional code complexity, reduced maintainability, and non-reusable
software. A better approach is to separate the QoS concerns from the functional
concerns of an application and combine the two into a QoS-managed software system
through integration at a middleware layer.

An approach that we have taken to do this is providing extensions to standards
based middleware that allow aspects of dynamic QoS management to be programmed
separately and then integrated into distributed object or component-based systems.
The solution is based in middleware, because QoS management largely falls in that
space where the applications interact with the platforms and environments in which
they are deployed, and can more easily be made part of a common infrastructure.

3.1.1 Quality Objects
Quality Objects (QuO) is a distributed object framework that supports the separate
programming of (1) QoS requirements, (2) the system elements that must be
monitored and controlled to measure and provide QoS, and (3) the behavior for
controlling and providing QoS and for adapting to QoS variations that occur at
runtime [26]. By providing these features, QuO separates the role of functional
application development from the role of developing the QoS behavior of the system.

As shown in Fig. 1, a QuO application inserts additional steps in the path between
elements of distributed applications. The QuO runtime monitors the state of QoS
before remote operations through the use of System Condition Objects that provide a
standard interface to observable and controllable parameters in a platform, such as
CPU utilization or bandwidth usage. Delegates intercept remote operations and a QoS
contract decides the appropriate behavior to apply. The contract defines the set of
possible states of QoS in the system using predicates of system condition object
values. Based upon the current QoS state, the contract could (1) allow the call to
proceed as is; (2) specify additional processing to perform; or (3) redirect the
invocation to a different method; or (4) invoke a callback on the application to alter its
execution.

3.1.2 Qoskets and Qosket Components
One goal of QuO is to separate the role of QoS programmer from that of application
programmer. A complementary goal of this separation of programming roles is that
QoS management code can be encapsulated into reusable units that are not only
developed separately from the applications that use them, but that can be reused by
selecting, customizing, and binding them to an application program. To support this
goal, we have defined Qoskets as a unit of encapsulation and reuse in QuO
applications [20]. Qoskets are used to bundle in one place all of the specifications and
objects for controlling systemic behavior, as illustrated in Fig. 2. Qoskets encapsulate
the following QoS aspects:

 Composing and Decomposing QoS Attributes 153

• Adaptation and control policies – As expressed in QuO contracts and controllers
• Measurement and control interfaces – As defined by system condition objects and

callback objects
• Adaptive behaviors – Some of which are partially specified until they are

specialized to a functional interface
• QoS implementation – Defined by qosket methods.

A Qosket Component [21] is an executable unit of encapsulation of Qosket code
wrapped inside standards-compliant components, such as the CORBA Component
Model (CCM) [16], which can be assembled and deployed using existing tools. They
expose interfaces, so they can be integrated between functional components and
services to intercept and adapt the interactions between them. Each Qosket
component offers interception ports that can be used to provide in-band adaptation
along the functional path. Qosket components can also provide ports to support out-
of-band adaptation and interact with related QoS management mechanisms.

Qosket components provide all the features of Qoskets and all the features of
components to provide lifecycle support for design, assembly, and deployment. Each
qosket component can have as many adaptive behaviors as desired. However,

Helper
Methods

Delegate Delegate Delegate DelegateDelegate Delegate Delegate Delegate
Contract Contract ContractContractContract ContractContract ContractContract

CLIENT

NetworkNetwork

operation()
in argsin args

out args + return value

IDL
STUBS

OBJECT
ADAPTER

IDL
SKELETON OBJECT

ADAPTER

IDL
SKELETON

ORB

CLIENT OBJ OBJECT
(SERVANT)

OBJECTOBJECT
(SERVANT)

OBJECTOBJ
REF

ORB

IDL
STUBS

OBJECT
ADAPTER

IDL
SKELETON OBJECT

ADAPTER

IDL
SKELETON

OBJECT
(SERVANT)

OBJECTOBJECT
(SERVANT)

OBJECT

ORBNetworkNetwork

CLIENT

NetworkNetwork

operation()
in argsin args

out args + return value

IDL
STUBS

OBJECT
ADAPTER

IDL
SKELETON OBJECT

ADAPTER

IDL
SKELETON

ORB

CLIENT OBJ OBJECT
(SERVANT)

OBJECTOBJECT
(SERVANT)

OBJECTOBJ
REF

ORB

IDL
STUBS

OBJECT
ADAPTER

IDL
SKELETON OBJECT

ADAPTER

IDL
SKELETON

OBJECT
(SERVANT)

OBJECTOBJECT
(SERVANT)

OBJECT

ORBNetworkNetwork

CLIENT

NetworkNetwork

operation()
in argsin args

out args + return value

IDL
STUBS

OBJECT
ADAPTER

IDL
SKELETON OBJECT

ADAPTER

IDL
SKELETON

ORB

CLIENT OBJ OBJECT
(SERVANT)

OBJECTOBJECTOBJECTOBJ
REF

ORB

IDL
STUBS

OBJECT
ADAPTER

IDL
SKELETON OBJECT

ADAPTER

IDL
SKELETON

OBJECT
(SERVANT)

OBJECTOBJECT
(SERVANT)

OBJECT

ORBNetworkNetwork

Qosket

Contracts System
Condition
Objects

Callback
Objects

Qosket
Implementation

Delegate
Templates

SysCond

SysCondSysCond
SysCond

SysCond
SysCond

SysCond

SysCondSysCond
SysCond

SysCond
SysCond

Fig. 2. Qoskets encapsulate QuO objects into reusable behaviors

CLIENT

Delegate
Contract

SysCond

Contract

NetworkNetwork

MECHANISM/PROPERTY
MANAGER

operation()
in argsin args

out args + return value

IDL
STUBS

Delegate

SysCond

SysCond

SysCond

IDL
SKELETON OBJECT

ADAPTER

ORB IIOPORB IIOP ORBIIOP ORBIIOP

CLIENT OBJECT
(SERVANT)
OBJECT
(SERVANT)
OBJECT
(SERVANT)
OBJECT
(SERVANT)

OBJ
REF

Fig. 1. QuO adds components to control, measure, and adapt to QoS aspects of an application

154 R. Schantz and J. Loyall

encoding each qosket with one and only one adaptive behavior decouples different
adaptive behaviors and increases the reusability of each. The tradeoff is between the
assembly time flexibility allowed by the separation of QoS behaviors versus the
performance overhead of having additional components to assemble. This is the same
design versus performance tradeoff that exists in functional component based
applications and which can be alleviated by assembly tools and component
implementations that optimize component and container instantiations.
Implementations that encapsulate a single QoS behavior in each qosket component
can provide an aggregate, end-to-end behavior by combining qosket components.
Additionally, there can be side effects associated with specific combinations of
individual Qoskets.

3.2 Composition and Composition Patterns

A DRE application often consists of many components―both functional and QoS. In
the rare case in which these components are independent, the order of assembly or
composition can be unimportant. However, in the usual case, the order of execution of
these components must be carefully crafted to achieve the desired end-to-end,
aggregate behavior (ordering sensitivity is one of the component composition side-
effects mentioned earlier which are under investigation). In some cases the way in
which components are assembled is the difference between correct and incorrect
behavior:

• Some qosket components must coordinate to implement a desired behavior. For

example, a compression qosket must frequently be paired with a decompression
qosket. These must be assembled in the correct order, since decompressing prior to
compressing can result in undesired behavior. “Undo” QCs usually need to be
composed in reverse order of the composition of their paired QCs.

• Some qosket components interfere with one another in a contradictory manner. For
example, compressing or encrypting data might result in the inability to scale, crop,
or tile data because it changes the data into a format that can no longer be
manipulated. These qosket components must be composed in a compatible way,
e.g., scale or crop prior to compression (a variant of order sensitivity), or composed
using a decision, e.g., a contract determines whether to crop or compress, but not
both.

• Some qosket components can affect the dynamics of one another. For example, any
qosket component that includes processing, such as compression or encryption, can
affect the dynamics of a CPU management qosket.

There are a few general composition techniques that we have extracted that serve as
patterns of composition [22], illustrated in Fig. 3:

• Layered Composition – In this pattern, qosket components that make higher level
decisions (such as a System Resource Manager, SRM, a QoS management
component of larger scope and granularity) are layered upon qosket components
that enforce these decisions (such as Local Resource Managers, LRMs, QoS
management components of smaller scope and finer granularity), which in turn are

 Composing and Decomposing QoS Attributes 155

•••

SRM

LRM LRM

mech
QC

mech
QC

mech
QC

mech
QC•••

•••

(a) Hierarchical composition – Each layer manages a set of QCs below it, pushing
policy and control down and receiving status up.

LRM

LRM

SRM

CPU
QC

NW
QC

DS
QC

LRM

(b) Parallel composition – A set of QCs needs to be invoked in parallel.

Crop
QC

Scale
QC

Compress
QC

Pacing
QC

DePacing
QC

Decompress
QC

Image
Receiver/
Display

Data Shaping QCs

Image
Sender

Network

(c) Sequential composition – A set of QCs form a chain of composed QoS behavior.

Fig. 3. Composition patterns driving our uses of qosket components

layered upon mechanism qosket components that control resources and QoS
behaviors. Key challenges with this composition pattern include selecting the
appropriate abstraction and granularity for the layers, as well as the number of
layers, under assumptions of system evolution and growth. Inevitably, what is
today considered a “system” is often embedded into another context which often
adds additional layering concerns. The ability to introduce and/or coordinate with
additional scopes of control and/or decision making is a significant consideration
for multi-layered design.

• Parallel Composition – When qosket components receive data simultaneously and
perform their QoS behaviors independently, they can be composed in parallel. Key
challenges with this composition pattern include the need to establish and maintain
the independence, non-interference and/or coordination of the parallel branches.
This is especially difficult under real-time conditions, when parallel patterns are of
most value.

156 R. Schantz and J. Loyall

• Sequential Composition – In some cases, a set of components must be tightly
integrated such that a set of QoS behaviors are performed sequentially, with the
output of each component becoming the input to the next component. This is
probably the simplest and most often used composition pattern, comparable to the
simplicity of straightline code over more complex branching behavior. Key
challenges with this pattern include selecting appropriate granularity of an
individual component, merging/splitting individual components especially as new
techniques emerge which may not exactly line up within existing boundaries, and
identifying and managing side-effects of component order.

4 An Example of Providing and Integrating Elements of Dynamic
QoS Management

As part of DARPA's Program Composition for Embedded Systems (PCES) program,
BBN, Boeing, and Lockheed Martin developed a capstone flight demonstration of
advanced capabilities for time critical missions [13]. It was a medium scale DRE
application, consisting of several communicating airborne and ground-based
heterogeneous nodes in a dynamic environment with changing mission modes,
requirements, and conditions. It consisted of a set of Unmanned Air Vehicles (UAV)
performing theater-wide surveillance and target tracking, and sending imagery to, and
under the control of, a control center. Specific UAVs could be reconfigured on
demand to effect different roles which in turn placed different QoS requirements on
the delivery of their sensor output.

To manage the multiple dimensions of QoS in the PCES capstone demonstration,
we developed a multi-layered, dynamic QoS management architecture [15], illustrated
in Fig. 4. The System Resource Manager (SRM) is a supervisory controller
responsible for allocating resources among the system participants and for
disseminating system and mission wide policies to local resource managers. These
policies include the resource allocation, the relevant mission requirements and
parameters, and tradeoffs.

In order to determine which QoS behaviors to employ, the LRM uses a system
dynamics model to predict the effect of employing each QoS behavior and
combination of QoS behaviors. In Fig. 4, we separately indicate the control and
prediction parts of the LRM, the former illustrated as a Controller and the latter as a
QoS Predictor. The system dynamics (i.e., effect) of some QoS behaviors can be
determined analytically, e.g., the results of cropping an image (i.e., the amount of data
in the resulting image) or reserving an amount of bandwidth (i.e., the amount of
bandwidth available to the application. Other behaviors have no analytical model (or
less accurate ones), e.g., some compression algorithms or setting a network priority
(the results of which are difficult to determine analytically without global knowledge
of many other external factors). With the former, the QoS predictor contains the
model, equation, or formula to predict the behavior. With the latter, the QoS predictor
is initialized with experimental data produced in test runs, and updated at runtime
with more accurate monitored information.

 Composing and Decomposing QoS Attributes 157

System Participant
Local Resource Manager

System Repository

Model of Shared
System Resources,
Participants

Mission goals,
requirements,
trade-offs

System Resource Manager

System
Participant

System
Participant

Policy Status Policy Status

Policy Status

Controller

Status

QoS
behavior

Resource

Control

QoS
behavior

QoS
mechanism/

manager

Status Control

QoS
behavior

Application
component

Status Adapt

QoS
behavior

Application
component

Status Adapt

QoS
Predictor

• • • • • •

Configure

Constraints

QoS levels

Feedback

Fig. 4. Elements of Multi-Layer QoS Management

The QoS mechanism layer consists of encapsulated QoS behaviors that control and
monitor the following:

• Resources, such as memory, power, or CPU, which can be monitored and

controlled through knobs exposed by the resource.
• Specific QoS mechanisms, such as network reservation [25] or network priority

services [10] that expose interfaces to resource monitoring and control; or QoS
managers, such as bandwidth brokers [6] or CPU brokers [8], that provide higher
level management abstractions.

• Application or data adaptation, such as changing the rate of tasks, algorithms or
parameters of functional routines, or shaping the data used or produced by
application components.

4.1 Construction Techniques

We constructed the multi-layered QoS management for the end-to-end imagery
streams by composing it from reusable QoS and functional components. We
implemented the elements of our end-to-end QoS management architecture as qosket
components so that they can be assembled with the components of the functional
application, as illustrated in Fig. 5. The SRM qosket component includes decision
making code to decide how resources should be allocated among participants and
wraps that allocation into a policy, with some monitoring code to determine the

158 R. Schantz and J. Loyall

Local
Resource
Manager

Local
Resource
Manager

Local
Resource
Manager

mission
requirements

System
Resource
Manager

System
Resource
Manager

Information
Supplier

Information
Consumer

Data
shaping
qosket

Data
shaping
qosket

QoS
mechanism
qosket

Local
Resource
Manager

Local
Resource
Manager

Local
Resource
Manager

QoS
mechanism
qosket

Local
Resource
Manager

Local
Resource
Manager

Local
Resource
Manager

Local
Resource
Manager

mission
requirements

System
Resource
Manager

System
Resource
Manager

System
Resource
Manager

System
Resource
Manager

Information
Supplier
Information
Supplier

Information
Consumer
Information
Consumer

Data
shaping
qosket

Data
shaping
qosket

Data
shaping
qosket

Data
shaping
qosket

QoS
mechanism
qosket

QoS
mechanism
qosket

Local
Resource
Manager

Local
Resource
Manager

Local
Resource
Manager

Local
Resource
Manager

QoS
mechanism
qosket

QoS
mechanism
qosket

Fig. 5. End-to-end QoS management elements are instantiated as qosket components and
assembled with the functional components

number of current participants, the amount and type of shared resources, and other
information affecting the policy decision, such as mission states, requirements, and
conditions.

The LRM qosket components include decision making code to decide local actions
based on the policy, monitoring code to measure the effects of the QoS management,
and control code to adjust levels to satisfy the policy. The LRM's control code is
typically limited to setting the proper attributes on the QoS behavior for the lower
level qosket components and invoking them in the proper order.

The assembly also includes as many QoS behavior qosket components as
necessary. In the example in Fig. 5, we illustrate two types of QoS behavior qosket
components, one that does data shaping and another that interfaces to an infrastructure
QoS mechanism.

A DiffServ QoS mechanism qosket component is responsible for setting DiffServ
codepoints (DSCPs) [10] on component containers. The LRM uses the network
priority from the SRM policy to configure the Diffserv component to ensure that all
packets going out have their DSCP set correctly. Routers configured to support
Diffserv ensure that the packets get queued according to their DSCP priorities.

A CPU Broker QoS mechanism qosket component is responsible for reserving
CPU cycles over a period of time for a component container. The LRM uses the
minimum and maximum CPU reservation and the relative importance from the SRM
policy to configure the CPU Broker component. The underlying CPU mechanisms
(CPU Broker and TimeSys Linux) guarantee that the container gets at least the
minimum CPU cycles it needs. In the case of CPU contention, no more than the
maximum CPU cycles are allocated to the container.

Once the available CPU and network resources have been allocated across UAV
streams, each stream must shape its data to use the allocated resources effectively.
Data Shaping Qosket Components are a collection of individual data shaping
capabilities. We assemble several data shaping qoskets that the LRM uses to
accomplish matching available data transmission resources with effective use.

Assuming there are sufficient resources, the SRM ensures that every end-to-end
image stream gets at least the minimum it needs and that the more important streams
get the majority of the resources. In cases where there are not enough resources for all
the streams, the SRM ensures that the most important streams get the resources that

 Composing and Decomposing QoS Attributes 159

are available. The LRMs in turn ensure that the allocated resources for each end-to-
end stream are used most effectively for the UAV's particular role in the system. They
utilize specific lower level mechanism qoskets to affect, control, and enforce these
behaviors.

5 Early Experience and Challenges with Applying and Using the
QC Composition Approach

We successfully built, configured, ran and evaluated the demonstration system
described briefly in the previous section. Here we briefly discuss aspects of what was
accomplished against the QoS management issues articulated in section 2, evaluate
the derived benefits of the compositional approach, and discuss new, more detailed
issues that arose in the context of the evaluation..

Our evaluation exemplar incorporated elements of each of the aspects of QoS
management.

End-to-end QoS management – Management of end-to-end chains was based on the
principal of establishing specific roles for end users of QoS managed products. From
these end user roles, we can derive the appropriate QoS specifications needed to meet
those expectations. We propagate the QoS specifications to the source of the end-to-
end chain and apply a control strategy to the production and delivery of information
to enforce them. This is done for each end-to-end chain operational at the time.
.
Multi-layer, scaleable QoS management – Our multi-layer management solution
approach calls for higher layers providing the allocation policy to the lower level
configuration, monitoring and enforcement mechanisms. So, in effect, higher levels of
management determine the constraints under which the end-to-end chains previously
mentioned operate. Additionally it provides the lower layer enforcement components
with the means to appeal to the higher levels when they are unable to sustain their
objectives. Although our evaluation example used a 2 layer approach, we believe the
general approach to be applicable to additional scopes and granularities associated
with much larger systems.

Aggregate QoS management – When all current demands do not deplete available
resources, meeting all role dependent expectations is feasible. However, when
demand would exceed supply, high level policy components provide the means to
determine who gets what, by estimating allocations that serve to maximize utility,
according to pre-determined utility functions. Aggregation across these multiple
competing end-to-end uses for shared resources is handled through the multi-layered
design with high level components using estimating techniques to develop policies
that share resources in accord with importance and utility measures driving those
allocation policies. The lower level end-to-end components are then responsible for
setting up and keeping within those bounds, or providing status indications that this is
not feasible.

160 R. Schantz and J. Loyall

Dynamic QoS management – The principles of dynamic reconfiguration were applied
to each of these three aspects of QoS management to address the changes and
shortfall against expectations that regularly occurred or were induced in our exemplar.
All of the aspects are wired together via status and control linkages to provide for the
automated reconfiguration of all or parts of the process on selected events (e.g.
additional users, loss of available resources, or significant changes in importance)
Although quite complicated in its linkages, there are a number of heuristics which
drive the process and are intended to prevent reconfiguration thrashing. Although
maximizing utility is an important longterm goal, the emphasis of the experiments
reported here had a focus on the software engineering aspects of tying together the
diverse elements of the overall solution, while adequately and effectively meeting
QoS demands in a domain consistent manner.

5.1 Observed Benefits of QC Composition

As expected, there were a number of benefits that were realized with our experience
building systems using embedded QCs, rather than as a one-of-a-kind, custom crafted
stove-piped system, including the following:

• Reusability – Many of the QCs that were used in this demonstration were

reused or adapted from earlier contexts and are members of our QC library.
Part of our ongoing work involves exploring the tradeoffs associated with
decoupling a QC from functional interfaces (thereby increasing its
reusability in different contexts) but increasing the work associated with
composing it in a specific context.

• Simplified development – Using the embedded QC approach, providing QoS
management in a DRE system becomes more of a configuration issue rather
than a programming exercise. One can, therefore, assemble the components
required for QoS management into an existing or developing component-
based distributed application. In our demonstration system, this allowed us to
rapidly prototype versions of the system with or without specific QoS
behaviors and with specific combinations of QCs, simply by assembling the
system using available CCM assembly tools

• Supporting Integrated QoS management at different epochs – Traditional
embedded systems rely on static QoS provisioning, at design time or system
configuration time. Our approach supports QoS provisioning at several
different lifecycle epochs of an application as follows:

o At configuration time, one can set the default values of QC
attributes. For example, the attributes of an LRM QC can be set to
define the default strategy for selecting and activating a QC.

o At assembly time, one can compose QCs to provide a desired
aggregate or end-to-end QoS.

o At deployment time, the placement of QCs and their monitoring
sources affects the provided QoS. Prior knowledge of the host and
network load can facilitate the process of selecting suitable hosts.

o At runtime, QCs facilitate the dynamic control of QoS and
adaptation to changing conditions.

 Composing and Decomposing QoS Attributes 161

5.2 Continuing Challenges

While in the large we have had success in developing a significant working artifact
using QCs and in composing them to create a real working example of a DRE system,
there are still many short term “nuts and bolts” type issues that remain only partially
addressed on the path toward more widespread practice and operational use.

Data-specific QCs. There is a tradeoff to be made in developing a QC that is specific
to a particular data format versus one that is not. A QC that is not specific to a
particular data format should be more widely reusable. However, this might not
always be feasible. For example, an attempt to develop a format-neutral compression
QC leads to the following pitfalls:

• A useless QC – Trying to remove code that understands specific data formats

from a QC might result in an empty shell that contains little behavior and requires
everything to be specified at assembly time or compensated for elsewhere.

• A bloated QC – Including a wide variety of algorithms that work with many
different formats might create an unwieldy QC that is too heavyweight for any
specific context.

• An inefficient QC – There are format neutral compression algorithms, such as
gzip, that could be used. However, in many cases, data specific algorithms are
more useful. JPEG compression, for example, is more useful for imagery because
it compresses efficiently and comes with display software. Over time, emerging
standards, de facto or de jure, are likely to help alleviate some of these issues, if
for no other reason than to reduce the space of acceptable choices.

In much of our work we have made QCs as format-neutral as possible, even while
continuing to work on additional solutions, such as QC interface templates. This can
lead to the problem of QC data incompatibility, in which data emitted from one set of
QCs may not be compatible as input to another set of QCs. Currently, we have no
way to specify this or annotate the QCs to aid the assemblers. The assemblers need
knowledge of the domain’s data types and functional components, and therefore must
either work with domain experts or possess domain expertise. This problem does not
propagate to application code because each QC that alters the output data is paired
with a QC that undoes the alteration.

Need for hardware and system support. QCs that provide system-level controls and
monitoring require support from the system infrastructure to work correctly. For
instance, a DiffServ QC that provides network prioritization requires universal
support for DiffServ capabilities at all intermediate routers. This becomes difficult
over an uncontrolled network, such as the Internet. A solution to this problem is to use
only more controlled subsets, to emphasize traffic shaping techniques instead, or to
use a reactive approach that adjusts to the provided QoS, even in a “best effort”
environment such as the Internet.

Maintaining QoS while integrating with other middleware services. It is tricky to
provide end-to-end QoS dynamically when the QCs need to interoperate with other

162 R. Schantz and J. Loyall

middleware services such as the Joint Battlespace Infosphere (JBI) [1], a
publish/subscribe oriented service or the CORBA Notification Service [17]. While
these other middleware services are individually compliant with the standards, there
is, as yet, no uniform protocol for communicating among them, or maintaining QoS
while doing so. Our solution has been to provide as much QoS as possible, up to the
boundaries of entering uncontrolled services and introducing QCs that react to the
observed QoS in uncontrolled environments, while at the same time promoting and
helping to develop QoS management awareness and capabilities for these other
middleware services.

Exposing and Resolving Explicit and Implicit Dependencies – There are
dependencies between QCs that can be useful to guide the composition or that can
restrict the circumstances in which they can be usefully composed. Explicit
dependencies can be reflected in QC interfaces, such as the policy interface provided
by the LRM and used by the SRM, or type matching, such as the cropping QC
working only with specific, uncompressed data types. Other implicit dependencies
can be due to semantic or algorithmic factors, and can be more difficult to detect and
manage. For example, some encryption and compression algorithms might not
compose well, since encrypting might restrict the ability to compress data very much
and compressing data might produce a result that cannot be properly encrypted. We
are still investigating methods to incorporate this type of information so that
automated tools can verify appropriate composition.

Effective and Optimized Configuration and Placement of QCs – The host
boundaries on which QCs are deployed can play a crucial role in the effectiveness of
the aggregate QoS management. Placing data shaping QCs closest to the data source
makes the most sense unless the data is used by multiple consumers demanding
different qualities. Some QCs are only effective when separated by host boundaries.
For example, compression can only reduce network traffic if the compression and
decompression QCs are placed on different hosts. In addition, because our
demonstration was based on a military scenario, there was a defined central authority
in the C2 center and, therefore, an obvious place to put the SRM managerial QC. A
peer-to-peer or ad hoc system, however, might need a different number and placement
of managerial QCs. We are still experimenting with understanding and how to express
the relationships between placement of QCs and outcome of the end-to-end
compositions.

6 Related Work

A key area of related work is in providing QoS support in component models and
instantiations of CCM. The Component Integrated ACE ORB (CIAO) [5] is an open-
source implementation of the CCM standard based upon the open-source TAO ORB
[23]. There are efforts underway to include QoS support in OMG component and
specification standards [18, 2]. We have utilized CIAO extensively in the work
described in this paper. Containers in component-based middleware frameworks
provide a means for inserting QoS enforcement and control in component

 Composing and Decomposing QoS Attributes 163

middleware, as described in [24]. de Miguel [7] enhances EJB containers to support
the exchange of QoS-related information with component instances. This differs from
our approach in that our approach assembles the QoS control transparently to the
component implementations. In their dynamicTAO project, Kon and Campbell [11]
apply adaptive middleware techniques to extend TAO so it can be reconfigured at
runtime by dynamically linking selected modules. Their work is similar to ours in that
both support realizing dynamic QoS provisioning with middleware, but ours offers a
more comprehensive QoS provisioning abstraction, whereas Kon and Campbell’s
work concentrates on configuring middleware capabilities.

Other research projects have tackled the issues of end-to-end QoS management.
Many of these concentrate only on network QoS, where end-to-end means managing
the reservations or queues along network paths [3, 19]. Others look at the problem
more broadly, as we do, from the middleware and application perspective. The
BRENTA architecture [14] describes contract-based negotiation of network QoS, but
with the addition that applications should adapt to the available resources, even while
realizing that some legacy applications might not have that flexibility. QARMA [9] is
a centralized QoS architecture, including a resource manager and system repository,
provided as CORBA services. Li et al [12] propose a task control model approach in
which they add a monitoring task and an adaptation task for each functional task in
the system. The monitoring task recognizes QoS violations and the adaptation task
adjusts application behavior to compensate. The Adapt project [4] provides
middleware that supports the dynamic reconfiguration and composition of object
implementations. It includes support for QoS properties, management, and
monitoring. Adapt proposes a new middleware, whereas our approach is applied to
existing middleware standards.

7 Moving Forward from Here

The work described here has already gone beyond the laboratory setting and has been
used in demonstrations, field tests and systems for military and industrial
organizations. Applying the QoS management middleware research to these
transitions has served to validate the research results and encourage its use as a base
for further increasing the capabilities while reducing the risk associated with
developing the complex DRE systems emerging in real-world domains.

However, there is still a long way to go before the concepts developed and
described here can become standard operating procedure or normal best practice for
constructing DRE systems. In addition to the short range issues mentioned earlier,
there are a number of longer range issues as well. Among these are the following:

• Easy to use tools to automate the design process
• Expanded shelves of reusable QoS mechanisms and management components and

policies that can reasonably cover the common situations
• Automated conflict identification and resolution across various QoS dimensions
• Approaches and tools for evaluating, verifying and certifying correct dynamic

decision making operation

164 R. Schantz and J. Loyall

• Methods and techniques for combining and analyzing different (integrated) QoS
aspects with sufficient flexibility to manage simultaneous requirements for
guaranteed service and safe operation.

7.1 New Branches: Assessment and Certification of Dynamic Behavior in DRE
Systems

Many DRE systems serve mission critical needs and domains which have in place
careful evaluation procedures before they can be deployed. These procedures are
currently deeply wedded to static design approaches. We have observed first hand the
autonomic avoidance reaction to many/any forms of dynamic resource management
from those involved with the certification process. This represents another critical
hurdle for the general acceptance of the dynamic behavior approaches to constructing
real-time systems.

The goal of certification is to document (to the satisfaction of the certification
authority) that the system exhibits correct behavior during all operational situations
and in all operational environments. Traditionally, certification has involved a
combination of adherence to documented processes, testing, and formal analysis.
Established approaches to software certification commonly involve exhaustive state
exploration and code coverage. Certification standards based on exhaustive testing
and evaluation are generally infeasible for distributed real-time embedded systems
because the size of the state space of a composed system can be exponential in the
number of components. Distributed real-time embedded systems typically have a
richer set of extensible inputs (including environment conditions and nondeterministic
decisions) that affect dynamic system behavior that can be difficult to quantify
formally, and hence affect certifiability. Additionally, a particular certification
problem focus area involves the large scale systems of systems approaches being
taken today. Much of the focus is on certification of an individual part, operating in
isolation. No attention (or at best little) is focused on the problems of certifying the
aggregate, integrated package, which of necessity shares some common base, and on
recertifying a complete package when only a single (or a few) elements have actually
changed.

We are integrating a focus on these subproblems around the design of multi-
layered resource management (MLRM) capabilities, similar to that previously
described. An MLRM allows for the dynamic adjustment of the allocation of
resources provided to computational tasks. It is a hierarchical resource control system
that uses the system’s measured application utility as a feedback control signal to
dynamically adjust the system’s allocation of resources at multiple levels of
abstraction.

We define a utility function, called the Application Utility function, which is
focused on user-perceived elements of derived external value to assess the ability of
the system to effectively allocate resources. The utility function is computed in real-
time as the system performs its diverse computation jobs. Every computation job that
is completed successfully causes an increase in the system’s utility, while every
failure to complete a computation job causes a decrease in the system’s utility.
Hence, when partial system failures or a change in operating mode occurs, in order to

 Composing and Decomposing QoS Attributes 165

avoid decreases in the computed utility, the system should make adjustments to the
resource allocation.

Decreases in the calculated utility can be an indication that failures have occurred
which cause the current resource allocation to be insufficient and the system may
need to redeploy its resources to accommodate possible failures. By redeploying
resources, the system utility would increase if the new allocation allows the system to
better accomplish its computation tasks. Consequently, we are using the utility
measure as an evidentiary artifact to evaluate how well the system dynamically
adjusts system resources.

There is a discernable relation between the assessment utility measures we are
developing, their use in control of DRE systems, and certification processes for these
systems. Traditional testing and formal analysis methods face difficulties when being
applied to dynamic systems because it is more difficult to identify a finite set of tests
that would cover system operation. We believe that utility measures and utility-driven
control functions can be used as a tool for certification of dynamic systems.

• Utility functions can capture all the attributes (or a large set of them) of higher or

lower utility, without needing to capture all the factors contributing to them. For
example, a utility measure can recognize that utility is negatively affected by
missing deadlines, without needing to identify what can cause missed deadlines
(such as network outages, denial of service attacks, improper scheduling, resource
overload, hardware or software failures, and so on). This provides a quantitative
measure for certification that is achievable even in highly open and dynamic
environments.

• Feedback controllers driven by system utility lend themselves to Monte Carlo
simulations to gain statistical evidence of the system’s ability to maintain correct
behavior under different conditions.

• Application utility is a measure of the user-perceived value derived from using the
MLRM and gives evidence for how well the MLRM can respond to changes in
system operating modes. We can combine that with mission-derived limits on
system operating modes, which focuses the certification effort on verifying the
controller’s ability to enforce correct behavior within these limits. A controller
based design provides convenient and easy to understand places within the
architecture to implement simplified control “limiters” which may be amenable to
be certified by inspection or formal methods.

• Evidence of properly restricted feedback interactions between a controller and a
system ease the difficulty of certifying the overall controlled system.

References

1. AFRL JBI Reference Implementation 1.2.6, http://www.rl.af.mil/programs/jbi/
2. ARTIST, http://www.artist-embedded.org/artist/QoS-Aware-Components.html
3. Bai, H., Atiquzzaman, M., Ivancic, W.: Achieving End-to-End QoS in the Next Generation

Internet: Integrated Services Over Differentiated Service Networks. NASA/TM-2001-
210755 (March 2001)

166 R. Schantz and J. Loyall

4. Blair, G., Coulson, G., Robin, P., Papathomas, M.: An Architecture for Next Generation
Middleware. In: Proceedings of the IFIP International Conference on Distributed Systems
Platforms and Open Distributed Processing, The Lake District, England (1998)

5. CIAO, http://www.cs.wustl.edu/ schmidt/CIAO.html
6. Dasarathy, B., Gadgil, S., Vaidyanathan, R., Parmeswaran, K., Coan, B., Conarty, M.,

Bhanot, V.: Network QoS Assurance in a Multi-Layer Adaptive Resource Management
Scheme for Mission-Critical Applications using the CORBA Middleware Framework. In:
RTAS 2005. 11th IEEE Real Time and Embedded Technology and Applications
Symposium, pp. 246–255 (2005)

7. deMiguel, M.: QoS-Aware Component Frameworks. In: IWQoS. Proceedings of the 10th
International Workshop on QoS, Miami Beach, Florida (May 2002)

8. Eide, E., Stack, T., Regehr, J., Lepreau, J.: Dynamic CPU Management for Real-Time,
Middleware-Based Systems. In: RTAS. 10th IEEE Real-Time and Embedded Technology
and Applications Symposium, Toronto, ON (May 2004)

9. Fleeman, D., Gillen, M., Lenharth, A., Delaney, M., Welch, L., Juedes, D., Liu, C.:
Quality-based Adaptive Resource Management Architecture (QARMA): A CORBA
Resource Management Service. In: International Parallel and Distributed Processing
Symposium, Santa Fe, NM (April 2004)

10. IETF, An Architecture for Differentiated Services, http://www.ietf.org/rfc/rfc2475.txt
11. Kon, F., Costa, F., Blair, G., Campbell, R.: The Case for Reflective Middleware. In:

CACM (June 2002)
12. Li, B., Xu, D., Nahrstedt, K., Liu, J.: End-to-End QoS Support for Adaptive Applications

Over the Internet. In: SPIE Proceedings on Internet Routing and Quality of Service,
Boston, Massachusetts (November 1-6, 1998)

13. Loyall, J., Schantz, R., Corman, D., Paunicka, J., Fernandez, S.: A Distributed Real-time
Embedded Application for Surveillance, Detection, and Tracking of Time Critical Targets.
In: RTAS. Real-time and Embedded Technology and Applications Symposium, pp. 88–97
(March 2005)

14. Mandato, D., Kassler, A., Valladares, T., Neureiter, G.: Handling End-To-End QoS in
Mobile Heterogeneous Networking Environments. In: International Symposium on
Personal, Indoor and Mobile Radio Communications (October 2001)

15. Manghwani, P., Loyall, J., Sharma, P., Gillen, M., Ye, J.: End-to-End Quality of Service
Management for Distributed Real-time Embedded Applications. In: WPDRTS 2005. The
Thirteenth International Workshop on Parallel and Distributed Real-Time Systems,
Denver, Colorado (April 4-5, 2005)

16. Object Management Group, CORBA Component Model, V3.0 formal specification,
http://www.omg.org/technology/documents/formal/components.htm

17. Object Management Group, Notification Service Specification, Version 1.1, formal/04-10-
11 (October 2004)

18. Object Management Group, UML Profile for Modeling Quality of Service and Fault
Tolerance Characteristics and Mechanisms, OMG document ptc/2005-05-02 (May 20,
2005)

19. Sander, V., Adamson, W., Foster, I., Roy, A.: End-to-End Provision of Policy Information
for Network QoS. In: HPDC. 10th IEEE Symposium on High Performance Distributed
Computing (August 2001)

20. Schantz, R., Loyall, J., Atighetchi, M., Pal, P.: Packaging Quality of Service Control
Behaviors for Reuse. In: ISORC 2002. Proceedings of the 5th IEEE International
Symposium on Object-Oriented distributed Computing, Washington DC (April 29-May 1,
2002)

 Composing and Decomposing QoS Attributes 167

21. Sharma, P., Loyall, J., Heineman, G., Schantz, R., Shapiro, R., Duzan, G.: Component-
Based Dynamic QoS Adaptations in Distributed Real-Time and Embedded Systems. In:
DOA. International Symposium on Distributed Objects and Applications, Agia Napa,
Cyprus (October 25-29, 2004)

22. Sharma, P., Loyall, J., Schantz, R., Ye, J., Manghwani, P., Gillen, M., Heineman, G.:
Using Composition of QoS Components to Provide Dynamic, End-to-End QoS in
Distributed Embedded Applications - A Middleware Approach. IEEE Internet
Computing 10(3), 16–23 (2006)

23. Schmidt, D., Levine, D., Mungee, S.: The Design and Performance of the TAO Real-Time
Object Request Broker. Computer Communications 21(4) (April 1999)

24. Wang, Schmidt, Kircher, Parameswaran.: Towards a Reflective Middleware Framework
for QoS-enabled CORBA Component Model Applications. IEEE Distributed Systems
Online 2 (July 2001)

25. Zhang, L., Deering, S., Estrin, D., Shenker, S., Zappala, D.: RSVP: A New Resource
ReSerVation Protocol. IEEE Network (September 1993)

26. Zinky, J., Bakken, D., Schantz, R.: Architectural Support for Quality of Service for
CORBA Objects. Theory and Practice of Object Systems (April 1997)

Recent Additions on the Application

Programming Interface of the TMO Support
Middleware

K.H. (Kane) Kim, Juan A. Colmenares�, Liangchen Zheng, Sheng Liu,
Qian Zhou, and Moon-Cheol Kim

DREAM Lab
Department of Electrical Engineering and Computer Science

University of California, Irvine
Irvine, CA, USA

{khkim,jcolmena,lzheng,shengl,qianz,mckim}@uci.edu

Abstract. Developing distributed real-time systems with high degrees of
assurance on the system reliability is becoming increasingly important, yet
remains difficult and error-prone. The Time-triggered Message-triggered
Object (TMO) scheme is a high-level distributed object-oriented program-
ming approach that has proved to be effective in developing such systems.
The TMO programming scheme allows real-time application developers
to explicitly specify temporal constraints in terms of global time in simple
and natural forms. TMOSM is a middleware model that provides the exe-
cution support mechanisms for TMOs and TMOSL is a C++ class library
that provides a convenient application programming interface (API) for
developing TMO applications. The TMO scheme, TMOSM, and TMOSL
have evolved during these years in order to support complex distributed
real-time applications more effectively. This paper presents some recent
additions on the TMOSM API that resulted from this evolution.

1 Introduction

In the last decade distributed real-time applications have become common and
essential, but the state of the art in engineering large-scale distributed real-time
computing application systems remains inadequate. Such application systems are
still produced without accompanying any tight bounds on the service or response
time that the system will yield. In addition, the real-time distributed computing
programs are implemented using low-level languages which dictate the develop-
ers to directly manipulate low-level program constructs such as threads, task
priorities, and sockets [1,2,3]. Extensive research has been performed on timing
analysis of simple single-threaded programs running on hardware without in-
tervention of an operating systems [4,5,6,7,8,9,10,11,12]. However, such research

� Also with the Applied Computing Institute, School of Engineering, University of
Zulia.

F. Kordon and O. Sokolsky (Eds.): Monterey Workshop 2006, LNCS 4888, pp. 168–186, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Recent Additions on the Application Programming Interface 169

has not been extended yet to cover the cases of real-time distributed computing
programs.

A major challenge is the difficulty of programming such applications while
maintaining timing guarantees. The first co-author established the initial skele-
ton of a distributed real-time computing object programming model, called TMO
(Time-Triggered Message-Triggered Object) [13,14,15,16,17], 15 years ago and
since then he and his collaborators have been enhancing the model and support
tools.

TMO is a syntactically simple and natural but semantically powerful exten-
sion of the conventional object structure. It is also considered one of the most
ambitious real-time programming approaches in terms of the level of abstraction
at which programmers are allowed to exercise their logic. TMO combines the
complexity management benefits of the object-oriented structuring paradigm
with the ability of explicitly specifying temporal constraints in terms of global
time [18] in natural forms.

To enable programming and execution of TMOs, the TMO Support Mid-
dleware (TMOSM) was developed [19,16,20]. TMOSM is a middleware model
that provides the execution support mechanisms for TMOs and can be easily
adapted to a variety of commercial, industry standard kernel, and hardware
platforms. Prototype implementations of TMOSM currently exist for Windows
XP, Windows CE, and Linux 2.6.1 Along with TMOSM, the TMO Support
Library (TMOSL) has been developed [15,14,17,21]. It provides a friendly appli-
cation programming interface (API) that wraps the execution support services
of TMOSM. TMOSL defines a number of C++ classes and enables convenient
high-level programming by approximating a programming language directly sup-
porting TMO as a basic building block. Other research teams have also developed
TMO execution engines based on different kernel platforms [22,23].

The TMO programming scheme and supporting tools have been used in a
broad range of basic research and application prototyping projects in a num-
ber of research organizations [24,25,26,27,28]. They have also been used in an
undergraduate course on real-time distributed computing programming at UCI
for some years.2 Since its first introduction, the TMO programming model has
been enhanced in several steps along with TMOSM and TMOSL. In the last few
years, new-generation application demos have also been developed, e.g., cars that
can be driven by drivers located thousands of miles away, tiled display capable
of playing high-definition movies, digital music ensemble, and high-QoS multi-
media streaming synchronization. These applications have required: i) enabling
the activation and deactivation of time-triggered methods, ii) the specification of
the release time of service requests, iii) a more adequate interaction mechanism
between threads outside TMOSM and TMO methods, iv) an enhanced multicast
communication scheme among TMOs, and v) the use of the local time-stamp
counter in addition to global time. Thus, this paper presents the improvements
on the TMOSM API that resulted from these efforts.

1 Available at: http://dream.eng.uci.edu/TMOdownload/
2 http://dream.eng.uci.edu/eecs123/learn.htm

http://dream.eng.uci.edu/TMOdownload/
http://dream.eng.uci.edu/eecs123/learn.htm

170 K.H. Kim et al.

The paper is structured as follows. Section 2 gives an overview of the TMO
programming scheme and the TMOSM. Section 3 describes the improvements
on the API of TMOSM. Finally, the paper concludes in Section 4.

2 Overview of the TMO Programming Scheme

TMO is a natural, syntactically minor, and semantically powerful extension of
conventional object structure. As depicted in Fig. 1, the basic TMO structure
consists of four parts:

1. ODS-sec (Object-data-store section). This section contains the data-
container variables shared among methods of a TMO. Variables are grouped
into ODS segments (ODSSs), which are units that can be locked for exclu-
sive use by a TMO method in execution. Access rights of TMO methods
for ODSSs are explicitly specified and the execution engine (a composition
of networked hardware, node OS, and middleware) analyzes them to exploit
maximal concurrency.

2. EAC-sec (Environment access capability section). This section contains
“gate objects” that provide efficient call-paths to remote TMO methods,

Fig. 1. Basic TMO structure (adapted from [13]).

Recent Additions on the Application Programming Interface 171

logical multicast channels called Real-time Multicast and Memory Replica-
tion Channels (RMMCs) [14,17], and I/O device interfaces.

3. SpM-sec (Spontaneous method section). It contains time-triggered (TT)
methods whose executions are initiated within user-specified time-windows.

4. SvM-sec (Service method section). It contains service methods which can
be called by other TMOs.

The major features of the TMO programming scheme are reviewed below.

– Use of a Global Time Base. All time references in a TMO are references
to global time [18] in that their meaning and correctness are unaffected by the
location of the TMO. If GPS receivers are incorporated into the TMO execu-
tion engine, then a global time base of microsecond-level precision can easily
be established. Within a cluster computer or a LAN-based distributed com-
puting system a master-slave scheme, which involves time announcements
by the master and exploitation of the knowledge on the message delay be-
tween the master and the slave, can be used to establish a global time base
of sub-millisecond level precision [29].

– Distributed Computing Component. A TMO is a distributed comput-
ing component and thereby TMOs distributed over multiple nodes may inter-
act via remote method calls. Non-blocking remote method calls are supported
to allow concurrent execution of client methods in one node and server TMO
methods in different nodes or the same node.
TMOs can use another interaction mode in which messages are exchanged
over logical multicast channels. The channel facility is called the Real-time
Multicast and Memory-replication Channel (RMMC) [14,17]. The RMMC
scheme facilitates real-time publisher-subscriber channels in a versatile form.
It supports not only conventional event messages but also state messages
based on distributed replicated memory semantics [18].

– Autonomously Activated Distributed Computing Component. The
autonomous-action capability of the TMO stems from one of its unique parts,
called the time-triggered (TT) methods or spontaneous methods (SpMs),
which are clearly separated from the conventional service methods (SvMs).
The SpM executions are triggered upon reaching of the global time at specific
values determined at design time whereas the SvM executions are triggered
by service request messages from clients. For example, the triggering times
of an SpM may be specified as:

FOR t = FROM 10:00am TO 10:50am
EVERY 30min
START-DURING (t,t+5min)
FINISH-BY (t+10min)

This specification of the execution-time window of an SpM is called the
Autonomous Activation Condition (AAC) of the SpM and has the same
effect as the following does:

{[START-DURING (10:00am,10:05am) FINISH-BY 10:10am],
[START-DURING (10:30am,10:35am) FINISH-BY 10:40am]}

172 K.H. Kim et al.

By using SpMs, global-time-based coordination of distributed computing ac-
tions (TCoDA), a principle pioneered by Kopetz [30,18], can be easily de-
signed and realized.

– Basic Concurrency Constraint (BCC). BCC is a major execution rule
intended to reduce the designer’s efforts in guaranteeing timely service ca-
pabilities of TMOs and it prevents potential conflicts between SpMs and
SvMs. Basically, activation of an SvM triggered by a message from an ex-
ternal client is allowed only when potentially conflicting SpM executions are
not in place. The full set of data members in a TMO is called an object data
store (ODS). An ODS is declared as a list of ODS segments (ODSSs), each
of which is thus a subset of the data members in the ODS and is accessed by
concurrently running object-method executions in either the concurrently-
reading mode or the exclusive-writing mode. Thus, an SvM is allowed to
execute only if no SpM that accesses the same ODSSs to be accessed by
this SvM has an execution time-window that will overlap with the execution
time-window of this SvM. However, the BCC rule does not stand in the way
of either concurrent SpM executions or concurrent SvM executions.

– Natural-form Specification of Timing Requirements and Guaran-
tees. TMO has been devised to contain only high-level intuitive and yet
precise expressions of timing requirements. Start-time-windows and comple-
tion deadlines for object methods are used but no specification in indirect
terms (e.g., priority) are required. A completion deadline may be specified
in the form of a global time instant (e.g., 09:45am) or a bound on execu-
tion time (e.g., 130 milliseconds) spent after a signal triggering the method
execution activation arrives at the host node. The latter bound is called
the guaranteed execution duration bound (GEDB). GEDBs associated with
a TMO are taken as guaranteed service-time bounds by the designers of the
clients of the TMO. Deadlines for result arrivals can also be specified in the
client’s calls for service methods.

– Power of TMO Network Structuring. An underlying design philosophy
of the TMO scheme is that an real-time computing application system will
always take the form of a network of TMOs, which may be produced in
a top-down multi-step fashion [13]. All conceivable practical real-time and
non-real-time applications can be built as TMO networks.

3 Improvements on the TMOSM API

3.1 Activation and Deactivation of Spontaneous Methods

In the last few years the TMO programming scheme was extended to enable
dynamic activation and deactivation of execution of SpMs at runtime. Such dy-
namic control of SpM executions allows application programs to easily adapt to
changing functional and temporal requirements as the execution environment
changes, which is an important requirement for many real-time distributed com-
puting applications. For instance, in a multi-party video-conferencing applica-
tion, a local participant receives video frames from other remote participants

Recent Additions on the Application Programming Interface 173

and plays them. Video playback can be naturally realized by an SpM (e.g.,
Video Play SpM). The local participant may stop or resume video playback at
any time responding to an application user’s input or on-line control commands
from the remote participants. If the local participant is supposed to stop play-
ing, executions of the Video Play SpM can be deactivated at run-time. Sim-
ilarly, when the local participant wants to resume playing, executions of the
Video Play SpM can be dynamically activated.

Furthermore, this feature allows TMO applications to support: i) transitions
between different operation modes initiated either automatically or by an oper-
ator (e.g., passage between autonomous mode, manual mode, and tele-operation
mode of an autonomous vehicle [31]), and/or ii) different levels of quality of
service (QoS) under various network conditions characterized by performance
metrics such as bandwidth, delay, jitter, and packet-loss rate.

Two different mechanisms are provided by TMOSM for supporting dynamic
activation and deactivation of SpM executions. The mechanism introduced most
recently to the TMO scheme defines two SpM execution modes: active mode
and idle mode. When the mode of an SpM execution is set to “active”, which is
the default mode for every SpM execution, the execution of the SpM is sched-
uled according to the timing specifications of its AACs. If the mode of an SpM
execution is set to “idle”, TMOSM does not schedule executions of the SpM.

TMOSL provides four methods for changing the mode of SpMs; they are:

– BOOL PutSpMinIdleMode(int SpM ID, tms& idling start time, tms&
idling end time), which puts the SpM with SpM ID into the idle mode
from idling start time to idling end time.

– BOOL PutSpMinIdleMode(int SpM ID, tms& idling start time), which
puts the SpM with SpM ID into the idle mode from idling start time until
the method WakeSpMfromIdleMode is called to wake the SpM from the idle
mode.

– BOOL WakeSpMfromIdleMode(int SpM ID), which wakes the SpM with
SpM ID from the idle mode.

– BOOL WakeSpMfromIdleMode(int SpM ID, tms& idling end time),
which wakes the SpM with SpM ID from the idle mode at the time specified
by idling end time.

All these methods return SUCCESS when they succeed; otherwise, they return
FAIL.

Thus, in the the multi-party video-conferencing application described above,
when a user orders the application to stop video playback, the TMO method
handling user commands will call the method:

PushSpMinIdleMode(Video_Play_ID, TMO::now());

to put the method Video Play SpM into idle mode. Similarly, when the user
tells the application to resume video playback, the TMO method handling user
commands will invoke the method:

WakeSpMfromIdleMode(Video_Play_ID);

174 K.H. Kim et al.

to wake Video Play SpM up back in active mode. Here Video Play ID is an in-
teger variable that represents the identifier of Video Play SpM and it is obtained
when the SpM is registered to TMOSM.

In addition, the TMO programming scheme already has the mechanism for
allowing application programs to dynamically activate and deactivate candidate
AACs of an SpM. An SpM can have two different types of AACs: permanent and
candidate. A permanent AAC is always used for triggering an SpM. Permanent
AACs, as the name implies, cannot be dynamically activated or deactivated at
runtime whereas candidate AACs can. Another difference is that every candi-
date AACs has a name (or label) whereas permanent AACs do not. Based on
this difference TMOSM is able to discriminate among permanent and candidate
AACs. Thus, an AAC created with a name will be a candidate AAC, and an
AAC created with its name equal to NULL will be a permanent AAC.

Run-time activation and deactivation of candidate AACs provide greater con-
trol over specifying temporal behavior of SpM executions than the active/idle
mechanism that only allows for a binary execution mode selection of SpMs (i.e.,
active or idle). This versatility in specifying various timing requirements comes
in two-fold. First, because each SpM can have multiple candidate AACs, the
range of timing specification selections has been broadened. Second, multiple
instances of the same SpM can be execute according to the currently active can-
didate AACs of the SpM. However, application programmers must be aware of
any possibility of resource contention or anomaly due to concurrent executions
of the same SpMs with different AAC specifications.

Two methods for supporting dynamic activation and deactivation of candidate
AACs are provided by TMOSL; they are:

– BOOL activate AAC(TCHAR* cand label, tms& activation time),
which activates the candidate AAC identified by the name cand label at
the time specified by activation time. The cand label of an AAC in the
same TMO must be unique.

– BOOL deactivate AAC(TCHAR* cand label, tms& deactivation time),
which deactivates the candidate AAC identified by the name cand label at
the time specified by deactivation time.

Both methods return SUCCESS when succeed, and FAIL otherwise.
For example, the following code fragment of the main function of a TMO

application creates a candidate AAC, called aac1, with the label CAND-AAC, and
a permanent AAC, called aac2 (with no label). The constructor of MyTMO class
receives both aac1 and aac2 as parameters in order to create the object myTMO
and register its SpM along with the AACs to TMOSM.3

Fragment

#include "TMOSL.h"
#include "MyTMO.h"

3 The registration is not shown in the code.

Recent Additions on the Application Programming Interface 175

using namespace TMO;
. . .
const MicroSec MILLISECOND = 1000;
const MicroSec SECOND = 1000 * 1000;
const MicroSec MINUTE = 60 * 1000 * 1000;
. . .
int main(int argc, char* argv[]) {

StartTMOengine();
tms tmoStartTime = tm4_DCS_age(2*SECOND);
. . .
// Candidate AAC
AAC aac1(_T("CAND-AAC"),

tm4_DCS_age(2 * SECOND), // from
tm4_DCS_age(60 * MINUTE), // until
1 * SECOND, // every
100 * MILLISECOND, // est
150 * MILLISECOND, // lst
200 * MILLISECOND); // by

// Permanent AAC
AAC aac2(NULL,

tm4_DCS_age(2 * SECOND), // from
tm4_DCS_age(60 * MINUTE), // until
. . .);

MyTMO myTMO(_T("TMO1"), aac1, aac2, tmoStartTime);
MainThrSleep();
return 0;

}

Then, aac1 can be deactivated by invoking the method:

deactivate_AAC(_T("CAND-AAC"), TMO::now());

3.2 Use of the Local Time-Stamp Counter in Addition to Global
Time

Coordination of distributed actions in a real-time distributed computing en-
vironment can extensively benefit from a global time base established among
distributed computing nodes. Several ways of establishing global time bases
with various degrees of precision are currently available. These days commercial
global positioning systems (GPS) provide sub-microsecond accuracy. Alterna-
tively, clock synchronization protocols among cooperating distributed comput-
ing nodes (e.g., [32,29,33]) can create a global time base among themselves with
the precision of tens of microseconds without using special hardware equipment
such as GPS.

TMOSM provides a global time base to TMO applications. TMOSL defines
four types for representing time in TMOSM [21]:

176 K.H. Kim et al.

Fig. 2. TMOSM Architecture (adapted from [20])

– MicroSec is a 64-bit integer that represents a number of microseconds.
– C21 age is the same as MicroSec except that it represents the number of

microseconds past since January 1, 2000 in UTC.
– The tms class is a wrapper class of the C21 age type.
– The tml class is derived from tms class and represents calendar time.

The precision of the global time base provided by TMOSM can be set by
application programmers in the variable CredibleGPPrecision in the configu-
ration file config.ini. The unit of the CredibleGTPrecision variable is mi-
crosecond. When a TMO application obtains a time value from TMOSL (e.g.,
by calling now()), the time value is truncated and returned with significant
bits matching with the specified precision. TMO applications can obtain the
CredibleGTPrecision value by calling the function

MicroSec GetGTprecision();

One execution engine model that we have adopted for enabling programming
and execution of TMOs is based on the TMO Support Middleware (TMOSM).
TMOSM has been implemented to be easily adapted to a variety of commercial,
industry standard OS kernel + hardware platforms. As shown in Fig. 2, our
TMOSM implementation includes 3 virtual machines (VMs) [20], each managing
a set of threads and using them to perform certain specialized functions as parts
of executing TMOs. The VMs are:

1. VMAT (VM for Main Application Threads), which maintains the applica-
tion threads dedicated to executing methods of TMOs (i.e., SpMs and SvMs)
with maximal exploitation of concurrency.

Recent Additions on the Application Programming Interface 177

2. VCT (VM for Communication Threads), which maintains the application
threads dedicated to sending and receiving middleware messages.

3. VAT (VM for Auxiliary Threads), which maintains a pool of threads called
auxiliary threads. Some auxiliary threads are designed to be devoted to con-
trolling certain peripherals under orders from TMO methods (executed by
main application threads). Others wait for orders for executing certain ap-
plication program-segments and such orders come from main application
threads in execution of TMO methods.

The processor and memory resources are leased to VMAT, VCT, and VAT in
a time-sliced and periodic manner. Thus, each VM can be viewed conceptually
as being periodically activated to run for a time-slice. For example, VCT-VMAT-
VAT-VMAT can be an iteration of the specified execution cycle of the VMs, called
TMOSM cycle.

With the advent of dual-core processors as de facto standard hardware plat-
form for desktop and laptop computers, we can dedicate one CPU core to VMAT.
If there is only a TMO method active at a certain time, that method can mo-
nopolize the CPU core and finer-precision real-time control activities can be
performed inside the method, even at precision greater than that of the global
time base. This is particularly useful for controlling special hardware devices
that require high-frequency control signals. Therefore, we believe that it is con-
venient for TMO applications to be able to determine the elapsed time during
the execution of a piece of code by reading the processor’s Timestamp Counter
(TSC) and obtaining the frequency of the TSC, both in a standard manner.
Thus, TMOSL currently provides the function

__int64 Read_LTSC();

for reading the value of TSC. The TSC’s frequency is also specified by ap-
plication programmers in the variable LTSCFrequency of the configuration file
config.ini. The type of the LTSCFrequency variable is int and its unit is MHz.
TMO applications can call the function

int Get_LTSC_Frequency();

to obtain the LTSCFrequency value.

3.3 Service Requests with Official Release Time

A TMO can invoke methods in another TMO executing on the same or a different
node. These methods are called Service Methods (SvMs) and client TMOs send
service requests (carried in the form of messages by TMOSM) when invoking
SvMs in server TMOs.

SvMs are declared as ordinary member functions of a TMO class (i.e., a class
inherited from the CTMOBase class). In order for a server TMO to make an SvM
available to other TMOs, the server TMO must register the SvM to TMOSM
with at least the following parameters:

178 K.H. Kim et al.

– The external name of the SvM, which is a globally recognized symbolic name
to the world outside the enclosing TMO.

– The guaranteed execution duration bound (GEDB) of the SvM (in microsec-
onds).

– Set of identifiers and access modes (i.e., read-only and read-write) of the
ODSSs that the SvM intends to use.

TMO application developers can also provide: i) the maximum allowed number
of concurrent executions of the SvM (pipeline degree), and ii) the maximum
invocation rate of the SvM, in terms of the maximum number of service re-
quests (max invocations) in a specified period of time (basic period), that
the SvM will honor. If TMO application developers do not specify the parame-
ters pipeline degree, max invocations and basic period, they are assigned
default values.

A client TMO must invoke an SvM through a locally accessible proxy called
SvM gate, which is an SvMGateClass instance. An SvMGateClass object is cre-
ated with three parameters: i) the name of the server TMO, ii) the external name
of the SvM to be invoked, and iii) a tms object4 that represents the service start
time. For example, the following line of code:

SvMGateClass mySvMGate(_T("MyTMO"), _T("MySvM"),
tm4_DCS_age(7*1000*1000));

creates the object mySvMGate, which a SvM gate for sending service requests to
the SvM with the external name MySvM of the TMO called MyTMO. The service
start time is 7 seconds after the instant the distributed computing system started
operating. The tms object that represents the service start time is obtained from
the function tm4 DCS age.

Once an SvM gate is created and the service start time elapses, the SvM gate
is able to send service requests to the specified SvM. The SvMGateClass provides
different methods for invoking an SvM; some examples are:

– int BlockingSR(void* pParam, int size, MicroSec dra1, MicroSec
ort1), which sends a service request to the SvM and waits until the reply
returns from the server or the deadline for result arrival (dra1) expires. The
method returns SUCCESS if the service request was sent successfully and the
the server’s reply arrives before the expiration of the deadline for result
arrival (DRA). If the DRA expires and the server’s reply has not arrived
yet, then the method returns DRA MISSED. If the operation fails on sending
the service request, the method returns FAIL.

– int OnewaySR(void* pParam, int size, MicroSec ort1), which sends
a service request to the SvM and immediately returns the control to the
caller; there is no reply from the server. The method returns SUCCESS if the
service request was sent successfully; FAIL otherwise.

– int NonBlockingSR(void* pParam, int size, tmsp& timestamp,
MicroSec ort1), which sends a service request to the SvM and immedi-
ately returns the control to the caller. The parameter timestamp is returned

4 The tms type is described briefly in Section 3.2.

Recent Additions on the Application Programming Interface 179

and can be used later in the methods specifically defined to check the result
of the service request (e.g., BlockingGetResultOfNonBlockingSR). The
method NonBlockingSR returns SUCCESS if the service request was sent
successfully; FAIL otherwise.

In these methods, the parameter pParam is a pointer to the data structure that
contains the input and output parameters of the SvM, and size indicates the
size of that structure. Additionally, there are variations of those methods whose
time parameters (i.e., ort1 and dra1) are of tms type. Note that local and
remote client TMOs call an SvM exactly in the same way.

The addition of the Official Release Time (ORT) as an input parameter in the
methods above is a refinement in the API of the SvMGateClass that was adopted
some time ago. The ORT of a service request indicates that the service request
message will be read at the server side at or after the ORT and the invoked SvM
will be subject to the deadline of ORT+GEDB.

The ability to specify the release time of an SvM allows us to delay and
synchronize the execution of the SvM with some other events. For example, in
distributed real-time fault-tolerant applications TMOs are replicated in different
nodes. A client that sends a service request to an SvM of a server TMO should
also send an identical service request to the same SvM of each replica of the
server TMO.5 By specifying the same ORT in the service requests sent to the
TMO replicas, the TMO execution engine guarantees that the execution of the
SvM of each replica will start at or after the time, ensuring replica consistency.

Moreover, the ORT can sometimes be used to control the order of execution
of different SvMs.

3.4 Interaction between Non-TMO Threads and TMO Methods

There are TMO applications requiring that non-TMO programs running on
threads not managed by TMOSM interact with TMO methods. An example
is a TMO-based two-party video conference application. In each node, a TMO
method needs to get the video data from a web camera and transfer the data
to the other node via an RMMC (Real-time Multicast and Memory Replica-
tion Channel). However, the video data can only be obtained by a device call-
back function running on a non-TMO thread and cannot be passed to the TMO
method directly. Therefore, a communication mechanism between non-TMO pro-
grams and TMO methods is needed.

TMOSL provides the class CGate 4 NonTMO that has the following member
function for passing messages from non-TMO threads to TMO methods:

– BOOLOnewaySR(TCHAR*tmoName,TCHAR*svmName,void*pParam,intsize).
This method is invoked from a non-TMO thread to send a service request
to the specified SvM of the specified TMO. The parameters tmoName and

5 An alternative approach that enables the invocation of SvMs via a multicast channel
is discussed in Section 3.5.

180 K.H. Kim et al.

svmName indicate the names of the target TMO and the target SvM, respec-
tively. The parameter pParam is a pointer to the buffer that contains the
message to be sent, and the parameter size specifies the size of the mes-
sage. The method returns TRUE if the service request was sent successfully;
FALSE otherwise.

The next fragments of C++ code exemplify the use of this function on TMOSM
running on Microsoft Windows XP. This simple TMO program contains a TMO
class, called TMO1, that implements an SvM, called SvM1. SvM1 sends video frames
captured by a web camera to other TMOs executing in remote nodes. A callback
function, called videoCallBack, is registered to a video library which only con-
tains non-TMO threads. The callback function executing on a non-TMO thread
gets the video raw data and then sends the data to SvM1 through a non-TMO-to-
TMO service call.

– Fragment 1 contains the definition of the data structure VideoFrame that
represents the format of the message sent by videoCallBack to SvM1. It
also includes the implementation of the TMO1 class. The constructor of TMO1
class registers SvM1 and the TMO1 instance to TMOSM. Moreover, the TMO1
class includes the member function Init Capture Device which initializes
the web camera and registers videoCallBack to the video library in order
to obtain the video data.

Fragment 1

#include "TMOSL.h"

// Message
struct VideoFrame {

unsigned int nBytes;
unsigned int nID;
char data[MAXIMUM_FRAME_SIZE];
. . .

}

// Definition of the TMO class
class TMO1: public CTMOBase {
private:

int SvM1(VideoFrame* pFrame) {
. . .
char* frame_data = pFrame->data;
// Send the video frame to remote TMOs
. . .
return 1;

};
public:

TMO1(TCHAR* TMO_name, TCHAR* SvM_name,

Recent Additions on the Application Programming Interface 181

const tms& TMO_start_time) {
// Register SvM1 to TMOSM
SvM_RegistParam svm_regist_param;
_tcscpy(svm_regist_param.name, SvM_name);
RegisterSvM((PFSvMBody)&TMO1::SvM1, &svm_regist_param);

// Register this TMO instance to TMOSM
TMO_RegistParam tmo_regist_param;
_tcscpy (tmo_regist_param.global_name, TMO_name);
tmo_regist_param.start_time = TMO_start_time;
RegisterTMO(&tmo_regist_param);

};

void Init_Capture_Device() {
. . .
// Create a window for video capturing
. . .
// Set parameters for video capturing
. . .
// Register the callback function
// to the video library
capSetCallbackOnVideoStream(m_hWnd, videoCallBack);
. . .

};
};

– Fragment 2 first includes the files TMOSL.h and NonTMO2TMO.h and
creates a CGate 4 NonTMO instance. Then it defines the callback function
videoCallBack. Fragment 2 also contains the main function of the program.
This function first starts the TMO execution engine, next creates a TMO1 in-
stance, and finally makes the main application thread sleep to prevent early
termination of the program.

Fragment 2

#include "TMOSL.h"
#include "NonTMO2TMO.h"

CGate_4_NonTMO gate;

LRESULT CALLBACK videoCallBack(HWND hWnd, LPVIDEOHDR lpVHdr) {

VideoFrame currentVideoFrame;

// Get video frame data and copy the data
// in currentVideoFrame.data
. . .

182 K.H. Kim et al.

// Set the other fields of currentVideoFrame
. . .
gate.OnewaySR(_T("TMO1"),

_T("SvM1"),
(void*)¤tVideoFrame,
sizeof(VideoFrame));

return (LRESULT)TRUE;
}

void main() {
StartTMOengine();
tms TMO_start_time1 = tm4_DCS_age(3*1000*1000);
// Create the TMO instance
TMO1 tmo1(_T("TMO1"),_T("SvM1"),TMO_start_time1);
. . .

MainThrSleep();
}

3.5 Invocation of Service Methods Via RMMC

A number of real-time distributed applications fits very naturally into the
publisher-subscriber model; in these applications the constituent nodes exchange
event messages over (logical or actual) multicast channels. For example, in a
multi-party video-conferencing application each node multicasts the video and
audio streams to the nodes participating in the session.

The TMO programming scheme provides a multicast facility called the Real-
time Multicast and Memory-replication Channel (RMMC) [17]. RMMC sup-
ports not only conventional event messages but also state messages based on
distributed replicated memory semantics [18].

Very often TMO subscribers are implemented using an SpM that periodically
checks whether new event messages have been received through the RMMC or
not. If there are new messages the current execution of the SpM processes them;
otherwise, the SpM execution (possibly does other job) and finishes, and another
SpM execution will re-attempt in the next period. Moreover, to avoid buffer
overflow subscriber SpMs usually execute at a frequency somewhat higher than
that at which the publishers sends the messages. Thus, under these circumstances
executions of subscriber SpMs will recurrently find no new message and will be
in vain.

In the last few years we have incorporated in TMOSM another multicast
scheme that allows for more efficient implementation of RMMC subscribers.
This new multicast scheme, called RMMC2SvM, enables the invocation of SvMs
via a multicast channel.

A TMO must access the RMMC2SvM channel through a local proxy
called RMMC2SvM gate, which is an instance of a derived class of the

Recent Additions on the Application Programming Interface 183

RMMC2SvM GateBaseClass. After being created, the gate must be registered to
TMOSM by invoking the method:

BOOL RegisterRMMC2SvM_gate(const TCHAR* rmmcName);

Two distinctive methods of the RMMC2SvM GateBaseClass are:

– void build register info SvM(TCHAR* svnName), which allows a sub-
scriber TMO to bind an SvM (with the name svnName) to the multicast
channel. Thus, the specified SvM will be executed upon the reception of a
message on the channel. This method must be invoked before registering the
RMMC2SvM gate to TMOSM.

– int SRmulticast(void* pParam, int size, MicroSec ort1), which is
used by a TMO to announce (i.e., multicast) a message. The parameter
pParam is a pointer to the message to be announced and size indicates the
size of the message. The parameter ort1 is the Official Release Time (ORT)
and indicates that the announced message will be read by the receiver TMOs
at or after the ORT and the invoked SvMs of the receiver TMOs will be sub-
ject to the deadline of ORT+GEDB. This method returns SUCCESS if the
message was sent successfully; FAIL otherwise.

A message sent by the method SRmulticast creates the effect of a one-way call
on the SvM that has been bound to the RMMC2SvM channel in each subscriber
TMO (including the announcing subscriber).

Subscribers which receive SRmulticast messages must go through BCC
checks before activating called SvMs. Therefore, application designers must be
aware of the possible effects of the BCC rule on the application’s response time.
That is, the execution of a subscriber SvM may be delayed by a conflicting SpM
execution when both need write-access to a common ODSS. This means that
the application’s response time may increase.

Finally, note that the support for state messages in RMMC2SvM is identical
to the original RMMC.

4 Conclusion

In recent years the TMO programming model and the TMO Support Middle-
ware (TMOSM) have been enhanced along with the extension of the TMO Sup-
port Library (TMOSL). The newly-introduced classes and methods of TMOSL
reinforce TMOSM by providing more flexibility and convenience via dynamic ac-
tivation and deactivation of time-triggered methods, an interaction mechanism
between threads outside TMOSM and TMO methods, an enhanced multicast
communication scheme among TMOs, the specification of the release time of
service requests, and the standardized access to the CPU’s time-stamp counter.

The recent additions on the TMOSM API have proved to be effective in fa-
cilitating the development of prototype implementations of new-generation dis-
tributed real-time applications (e.g., digital music ensemble, cars controlled by
drivers located thousands of miles away, and high-definition tiled display). In

184 K.H. Kim et al.

the future, we will continue demonstrating the power of the TMO programming
model and TMOSM by developing more complex distributed real-time appli-
cations. This effort will also help validate and refine even more the TMOSM
API.

Acknowledgments

The work reported here was supported in part by the NSF under Grant Num-
bers 03-26606 (ITR) and 05-24050 (CNS) and under Cooperative Agreement
ANI-0225642 to the University of California, San Diego for “The OptIPuter”.
Juan A. Colmenares also thanks the University of Zulia (LUZ) for supporting
his participation in this research. No part of this paper represents the views and
opinions of any of the sponsors mentioned above.

References

1. Audsley, N.C., Burns, A., Davis, R.I., Tindell, K.W., Wellings, A.J.: Fixed priority
pre-emptive scheduling: An historical perspective. Real-Time Systems 8(2), 173–
198 (1995)

2. Fay-Wolfe, V., DiPippo, L.C., Cooper, G., Johnson, R., Kortmann, P., Thurais-
ingham, B.: Real-time CORBA. IEEE Transactions on Parallel and Distributed
Systems 11(10), 1073–1089 (2000)

3. Object Management Group: RealTime-CORBA Specification, v 2.0. Object Man-
agement Group. OMG Document formal/03-11-01 edn (November 2003)

4. Lim, S.S., Bae, Y., Jang, C., Rhee, B.D., Min, S., Park, C., Shin, H., Park, K., Ki,
C.: An accurate worst-case timing analysis for risc processors. IEEE Transactions
on Software Engineering 21(7), 593–604 (1995)

5. Puschner, P., Schedl, A.: Computing maximum task execution times - a graph-
based approach. Real-Time Systems 13(1), 67–91 (1997)

6. Li, Y.T.S., Malik, S.: Performance analysis of embedded software using implicit
path enumeration. IEEE Transactions on Computer-aided Design of Integrated
Circuits and Systems 16(12), 1477–1487 (1997)

7. Li, Y.T.S., Malik, S., Wolfe, A.: Performance estimation of embedded software with
instruction cache modeling. ACM Transactions on Design Automation of Electronic
Systems 4(3), 257–279 (1999)

8. Burns, A., Edgar, A.: Predicting computation time for advanced processors ar-
chitectures. In: ECRTS 2000. Proceedings of the 12th Euromicro Conference on
Real-Time Systems, p. 89 (June 2000)

9. Stappert, F., Ermedahl, A., Engblom, J.: Efficient longest executable path search
for programs with complex flows and pipeline effects. In: CASES 2001. Proceedings
of the 4th Int’l Conference on Compilers, Architecture, and Synthesis for Embedded
Systems, pp. 132–140 (November 2001)

10. Colin, A., Bernat, G.: Scope-Tree: a program representation for symbolic worst-case
execution time analysis. In: ECRTS 2002. 14th Euromicro on Real-Time Systems,
pp. 50–59 (June 2002)

11. Ermedahl, A., Stappert, F., Engblom, J.: Clustered worst-case execution-time cal-
culation. IEEE Transactions on Computers 54(9), 1104–1122 (2005)

Recent Additions on the Application Programming Interface 185

12. Burguière, C., Rochange, C.: History-based schemes and implicit path enumera-
tion. In: WCET 2006. Proceedings of the 6th Workshop on Worst-Case Execution
Time Analysis, pp. 17–22 (July 2006)

13. Kim, K.H.: Object structures for real-time systems and simulators. IEEE Com-
puter 30(9), 62–70 (1997)

14. Kim, K.H.: APIs for real-time distributed object programming. IEEE Com-
puter 33(6), 72–80 (2000)

15. Kim, K.H.: Real-time object-oriented distributed software engineering and the tmo
scheme. International Journal of Software Engineering and Knowledge Engineer-
ing 9(2), 251–276 (1999)

16. Kim, K.H.: Commanding and reactive control of peripherals in the TMO pro-
gramming scheme. In: ISORC 2002. Proceedings of the 5th IEEE International
Symposium on Object-Oriented Real-time Distributed Computing, pp. 448–456
(May 2002)

17. Kim, K.H., Li, Y., Liu, S., Kim, M.H., Kim, D.H.: RMMC programming model
and support execution engine in the TMO programming scheme. In: ISORC 2005.
Proceedings of the 8th IEEE International Symposium on Object-Oriented Real-
Time Distributed Computing, pp. 34–43 (May 2005)

18. Kopetz, H.: Real-Time Systems: Design Principles for Distributed Embedded Ap-
plications. Kluwer Academic Publishers, Dordrecht (1997)

19. Kim, K.H., Ishida, M., Liu, J.: An efficient middleware architecture supporting
time-triggered message-triggered objects and an NT-based implementation. In:
ISORC 1999. Proceedings of the 2nd IEEE International Symposium on Object-
Oriented Real-time Distributed Computing, pp. 54–63 (May 1999)

20. Jenks, S.F., Kim, K.H., Henrich, E., Li, Y., Zheng, L., Kim, M.H., Lee, K.H., Seol,
D.M., Youn, H.Y.: A linux-based implementation of a middleware model support-
ing time-triggered message-triggered objects. In: ISORC 2005. Proceedings of the
8th IEEE International Symposium on Object-Oriented Real-Time Distributed
Computing, pp. 350–358 (May 2005)

21. Kim, K.H.: TMO Support Library (TMOSL): Facilities for C++ TMO Program-
ming. Version 4.2.1. DREAM Laboratory, University of California, Irvine (January
2007)

22. Kim, H.J., Park, S.H., Kim, J.G., Kim, M.H., Rim, K.W.: TMO-Linux: A linux-
based real-time operating system supporting execution of TMOs. In: ISORC 2002.
Proceedings of the 5th IEEE International Symposium on Object-Oriented Real-
Time Distributed Computing, pp. 288–294 (April 2002)

23. Kim, J.G., Kim, M.H., Kim, K., Heu, S.: TMO-eCos: An eCos-based real-time
micro operating system supporting execution of a TMO structured program. In:
ISORC 2005. Proceedings of the 8th IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing, pp. 182–189 (May 2005)

24. Kim, M.H., Kim, J.G., Kim, K.H., Lee, M.S., Park, S.Y.: Time-triggered message-
triggered object modeling of a distributed real-time control application for its real-
time simulation. In: COMPSAC 2000. Proceedings of the 24th Annual Int’l Com-
puter Software and Applications Conference, pp. 549–556. IEEE Computer Society,
Los Alamitos (2000)

25. Jo, E.H., Kim, M.H., Kim, J.G.: Modeling of multimedia streaming services based
on the TMO structuring scheme. In: ISORC 2001. Proceedings of the 4th IEEE
Int’l Symposium on Object-Oriented Real-Time Distributed Computing, pp. 420–
427. IEEE Computer Society Press, Los Alamitos (2001)

186 K.H. Kim et al.

26. Kim, M.H., Lim, S.H., Kim, J.G.: Modeling of a real-time distributed network
management based on TMN and the TMO model. In: WORDS 2003. Proceedings
of the 8th Int’l Workshop on Object-Oriented Real-Time Dependable Systems, pp.
56–63. IEEE Computer Society Press, Los Alamitos (2003)

27. Kim, K.H., Henrich, E., Im, C., Kim, M.C., Kim, S.J., Li, Y., Liu, S., Yoo, S.M.,
Zheng, L.C., Zhou, Q.: Distributed computing based streaming and play of music
ensemble realized through tmo programming. In: WORDS 2005. Proceedings of the
10th IEEE Int’l Workshop on Object-Oriented Real-Time Dependable Systems, pp.
129–138 (February 2005)

28. Lee, H., Hwang, J., Lee, J., Park, S., Lee, C., Nah, Y., Jeon, S., Kim, M.H.:
Long-term location data management for distributed moving object databases.
In: ISORC 2006. Proceedings of the 9th IEEE Int’l Symposium on Object and
Component-Oriented Real-Time Distributed Computing, IEEE Computer Society,
Los Alamitos (2006)

29. Kim, K.H., Im, C., Athreya, P.: Realization of a distributed OS component for
internal clock synchronization in a LAN environment. In: ISORC 2002. Proceed-
ings of the 5th IEEE Int’l Symposium on Object-Oriented Real-Time Distributed
Computing, pp. 263–270. IEEE Computer Society, Los Alamitos (2002)

30. Kopetz, H., Ochsenreiter, W.: Clock synchronization in distributed real-time sys-
tems. IEEE Transactions on Computers 36(8), 933–940 (1987)

31. Kemner, C.A., Peterson, J.L.: Remote control system and method for an au-
tonomous vehicle. US Patent No. 5448479 (September 1995)

32. Veŕıssimo, P., Rodrigues, L.: A posteriori agreement for fault-tolerant clock syn-
chronization on broadcast networks. In: FTCS 1992. Proceedings of the 22th Int’l
Symposium on Fault-Tolerant Computing, pp. 527–536. IEEE Computer Society
Press, Los Alamitos (1992)

33. Elson, J., Girod, L., Estrin, D.: Fine-grained network time synchronization using
reference broadcasts. In: OSDI 2002. Proceedings of the 5th USENIX Symposium
on Operating Systems Design and Implementation, pp. 147–163. ACM Press, New
York (2002)

Integrating Automotive Applications Using

Overlay Networks on Top of a Time-Triggered
Protocol

Roman Obermaisser

Vienna University of Technology, Austria
romano@vmars.tuwien.ac.at

Abstract. The integration of multiple automotive subsystems (e.g., pow-
ertrain, safety, comfort) on a single distributed computer system can
significantly reduce the number of Electronic Control Units (ECUs) and
networks for in-vehicle electronic systems. The benefits of this integration
include reduced hardware cost and reliability improvements due to fewer
connectors. However, a major challenge in such an integrated automotive
architecture is the management of access to the shared communication re-
sources (i.e., the common network). In order to support a seamless inte-
gration of application subsystems from different vendors and to permit
the integration of application subsystems with different criticality levels,
a fault in one application subsystem should not have an adverse affect on
the resources that are available to other application subsystems. For this
reason, we devise a solution for encapsulating the communication activi-
ties of application subsystems in this paper. Each application subsystem is
provided with a dedicated overlay network on top of an underlying time-
triggered network. Such an overlay network has predefined temporal prop-
erties (i.e., latencies, bandwidths), which are independent from the
communication activities on the overlay networks of other application sub-
systems. An exemplary configuration of the overlay networks in a proto-
type implementation demonstrates that the encapsulated overlay networks
can handle the communication load of a present day car with the additional
time-triggered traffic of future X-by-wire subsystems.

1 Introduction

A steady increase in automotive electronics has occurred during the past years.
While this trend has lead to significant improvements concerning safety and
comfort, a side-effect has been a growth of the deployed in-vehicle hardware and
software. In conjunction with the prevalent “1 Function – 1 ECU” strategy [1],
present day luxury cars can contain more than 70 ECUs and multiple networks
with different communication protocols (e.g., CAN, MOST, ByteFlight) [2]. Fur-
thermore, the increase in automotive electronics is likely to continue its growth
due to customers expectations. Cars are no longer simple means of transporta-
tion but rather need to convince customers with respect to design, performance,
driving behavior, safety, infotainment, comfort, maintenance, and cost.

F. Kordon and O. Sokolsky (Eds.): Monterey Workshop 2006, LNCS 4888, pp. 187–206, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

188 R. Obermaisser

To circumvent the increase of ECUs and networks, the automotive industry
is currently evolving towards integrated system architectures [3, 4]. Integrated
system architectures promise a reduction of ECUs, networks, and connectors
by using the ECUs and networks as shared resources for multiple application
subsystems. Each ECUs can execute jobs from multiple application subsystems
and different vendors. Likewise, a network supports message exchanges of more
than one application subsystem.

The challenge in moving from today’s federated automotive architectures to
this new architectural paradigm is the management of the increasing complex-
ity in the emerging integrated automotive systems. In order to manage this
complexity, system architects are forced to follow a divide-and-conquer strategy
that enables a reduction of the mental effort for understanding a large system
by structuring the system into smaller subsystems that can be developed and
analyzed in isolation.

Composability is a concept that refers to the stability of component properties
across integration, thus enabling the correctness-by-construction of component-
based systems [5]. A system is composable with respect to a particular property,
if the integration does not invalidate the property when it has already been
established at the subsystem level. For example, temporal composability is an
instantiation of the general notion of composability. A system is temporally
composable, if timeliness is not refuted by the system integration [6]. Tempo-
ral composability facilitates the construction of temporally predictable systems,
because the temporal properties of subsystems can be analyzed in isolation.
Temporal composability can be supported at the communication system by con-
trolling the possible interactions of subsystems in order to prevent unintended
side effects. An example for an unintended side effect is resource contention
between subsystems on the communication system. Consider for example an
exemplary scenario with two application subsystems. If the two application sub-
systems share a common CAN bus [7], then both application subsystems must
be analyzed and understood in order to reason about the correct behavior of
any of the two application subsystems. Since the message transmissions of one
application subsystem can delay message transmissions of the other application
subsystem, arguments concerning the correct temporal behavior must be based
on an analysis of both application subsystems.

A federated architecture (e.g., as used in present day automotive systems [8])
trivially rules out unintended side effects by assigning to each application sub-
system separate computational and communication resources, i.e., ECUs and
networks for the exclusive use by the application subsystem. In an integrated
architecture (without encapsulation mechanisms), however, the communication
system could extend the inherent complexity of application subsystems with an
additional accidental complexity [9] due to integration-induced interference at
the communication system. Therefore, the communication system of an inte-
grated architecture should ensure that interactions between subsystems occur
only via the specified message-based interfaces.

Integrating Automotive Applications Using Overlay Networks 189

Motivated by the need to avoid accidental complexity as a side-effect of inte-
gration, this paper presents a solution for providing to each application subsys-
tem its own protected communication infrastructure that is free of interference
with other application subsystems. The communication infrastructure of an ap-
plication subsystem is realized as an encapsulated overlay network on top of
a time-triggered communication protocol, thus exploiting the upcoming time-
triggered communication networks that will be deployed in the automotive do-
main [10]. Based on the Time Division Multiple Access (TDMA) scheme of a
time-triggered communication network (e.g., FlexRay [11], Time-Triggered Pro-
tocol (TTP) [12], or Time-Triggered Ethernet (TTE) [13]), temporal partitioning
mechanisms ensure predefined temporal properties (i.e., latency, bandwidth) of
each overlay network.

The paper is structured as follows. Section 2 describes the construction of time-
triggered and event-triggered overlay networks on top of a time-triggered com-
munication network. A prototype implementation based on a TDMA-controlled
Ethernet network is presented in Section 3. Section 4 shows an exemplary con-
figuration of the prototype implementation for handling the communication re-
quirements of a future X-by-wire car. An overview of related work is the content
of Section 5. The paper concludes with a discussion in Section 6.

2 Overlay Networks on Top of a Time-Triggered Physical
Network

Based on the requirements and functional coherence of automotive applications,
the functionality of the electronic systems aboard a car can be structured into
a set of application subsystems (e.g., powertrain subsystem, comfort subsystem,
passive safety subsystem, etc.). On its behalf, each application subsystem con-
sists of smaller functional elements called jobs (e.g., in the powertrain subsystem:
engine control job, automatic gear job, etc.).

Today, the implementation of automotive electronic systems typically follows
the “1 Function – 1 ECU” philosophy [1], where each ECU exclusively hosts
a single job from a respective application subsystem. In contrast, we focus on
integrated system architectures, where each ECU supports the coexistence of
multiple jobs from one or more application subsystems.

In order to provide the communication infrastructure for the exchange of mes-
sages between the jobs of an application subsystem, this section describes the
construction of event-triggered and time-triggered overlay networks on top of
a time-triggered physical network. After defining the required services of the
underlying time-triggered communication network, the allocation of communi-
cation resources based on a hierarchic subdivision of TDMA slots is explained.
Finally, this section explains the exploitation of the communication resources on
the time-triggered communication network for the exchange of state and event
messages.

190 R. Obermaisser

2.1 Time-Triggered Physical Network

Time-triggered networks (e.g., SafeBus [14], the Time-Triggered Protocol [12],
FlexRay [11]) have become generally preferred for safety-critical systems [15,16].
For example, in the automotive industry a time-triggered network will provide
the ability to handle the communication needs of by-wire cars [17]. In addition
to hard real-time performance, time-triggered networks help in managing the
complexity of fault-tolerance and corresponding formal dependability models, as
required for the establishment of ultra-high reliability (failure rates in the order
of 10−9 failures/hour). The predetermined points in time of the periodic message
transmissions allow error detection and establishing of membership information.
Redundancy can be established transparently to applications [18], i.e., without
any modification of the function and timing of application systems. A time-
triggered network also supports replica determinism [19], which is essential for
establishing fault-tolerance through active redundancy.

Since the presented system architecture with its overlay networks targets
mixed-criticality applications with application subsystems up to the highest con-
sidered criticality class (e.g., level A in RTCA DO-178B [20] or SIL4 in EN
ISO/IEC 61508 [21]), we use a time-triggered physical network as the basis for
the establishment of the encapsulated overlay networks. The time-triggered phys-
ical network provides a clock synchronization service in order to establish a global
time base. In addition, the time-triggered network offers a time-triggered mes-
sage transport service for the periodic exchange of state message at predefined
instants with respect to the global time base. At each ECU the communica-
tion controller (e.g., TTP controller C2 [22], FlexRay Controller MFR4200 [23])
provides a memory element with outgoing state messages that are written by
the application and read by the communication controller prior to broadcasting
them on the time-triggered network. In addition, the memory element contains
incoming state messages that are read by the application and updated by the
communication controller with state messages read from the time-triggered net-
work (i.e., information broadcast by other ECUs). This memory element, which
is denoted Communication Network Interface (CNI) in TTP and Controller Host
Interface (CHI) in FlexRay, is provided by most time-triggered networks with
syntactic differences of state messages (e.g., header format) and protocol-specific
constraints (e.g., only one message sent by an ECU per communication round
in TTP [12], same size for all state messages in FlexRay [11]).

2.2 Hierarchic Subdivision of Communication Slots

For the realization of overlay networks, we use the time-triggered physical net-
work and perform a hierarchic temporal subdivision of the communication re-
sources (see Figure 1). The media access control strategy of the time-triggered
physical network is TDMA. TDMA statically divides the channel capacity into
a number of slots and controls access to the network solely by the progression
of time. Each ECU is assigned a unique ECU slot that periodically recurs at a
priori specified global points in time. An ECU sends messages during its ECU

Integrating Automotive Applications Using Overlay Networks 191

TDMA Slot of ECU 1

ECU 2 ECU 3ECU 1

real time

TDMA Slot of ECU 2 TDMA Slot of ECU 3

Job
1

Ph
ys

ic
al

 N
et

w
or

k
O

ve
rla

y
N

et
w

or
ks

TT
Po

rt
s

TT
 P

or
ts

TT
 P

or
ts

TT
 P

or
ts

TT
 P

or
ts

TT
 P

or
ts

ET
 P

or
ts

ET
Po

rt
s

Application
Subsystem 3

Application
Subsystem 2

Application
Subsystem 1

slot belonging
to an ECU

slot belonging
to an overlay

network
slot belonging

to a job

Job
1

Job
2

Job
1

Job
1

Job
1

Job
2

Job
1

Job
1

Job
1

Job
2

Job
3

Job
3

Job
3

ET
 P

or
ts

Overlay Network TT1
Overlay Network ET1
Overlay Network TT2

Subslot
TT1

Subslot
TT1

Subslot
ET1

Sub-
slot 1

Sub-
slot 2 Subslot 1 Sub-

slot 2
Sub-
slot 3

Sub-
slot 1

Sub-
slot 3

Sub-
slot 3

Sub-
slot 2

Subslot
ET1

Subslot
TT2

Subslot
TT1

Subslot
TT2

Fig. 1. Hierarchic Subdivision of Communication Resources

slot and receives messages during the ECU slots of other ECUs. A sequence of
ECU slots, which allows every ECU in an ensemble of ECUs to send exactly
once, is called a TDMA round.

We further subdivide each ECU slot in correspondence to the functional struc-
turing of the overall system. In a first step, the ECU’s slot is subdivided into
subslots for the overlay networks. Such a subslot contains those messages that are
produced by the jobs in the ECU that are connected to a particular overlay net-
work. By using a one-to-one mapping between overlay networks and application
subsystems, these subslots are also specific to a particular application subsystem.
On its part, a slot belonging to an overlay network consists of smaller subslots
belonging to individual jobs. When an ECU hosts multiple jobs of an application
subsystem that send messages to the overlay network, then each of these jobs is
assigned a corresponding slot carrying the messages sent by that job.

The assignment of the slots within a TDMA round to ECUs, as well as the
further subdivision into slots for overlay networks and jobs is fixed at design time.
This static allocation ensures that the network resources are predictably available
to jobs. In particular, this static strategy facilitates complexity management,
because for understanding the behavior of a job, the consumption of network
resources by other jobs need not be considered.

2.3 Time-Triggered and Event-Triggered Overlay Networks

An overlay network is a network which is built on top of another network. For
the Internet, several solutions for overlay networks have been designed in the
past. For example, Virtual Private Networks (VPNs) [24] have been realized
in order to improve security. Another example of overlay networks is the re-
silient overlay network described in [25], which aims at improving robustness of
Internet applications in the presence of path outages and periods of degraded
performance.

In this paper, we build overlay networks for encapsulating the communication
activities of application subsystems in an integrated embedded system. When

192 R. Obermaisser

moving from a federated to an integrated architecture, each overlay network
serves as a substitute for a respective physical network.

We distinguish between two fundamentally different types of overlay networks:
event-triggered and time-triggered overlay networks. A time-triggered overlay
network is designed for the periodic exchange of state messages. The access
point between a time-triggered overlay network and a job is a memory element
denoted as a time-triggered port. As depicted in Figure 2, the sender job acts
according to the information push paradigm [26] and writes information into

Sender
Job

TT Port Receiver
Job

TT Port
Time-Triggered (TT)

Overlay Network

7 56

1211
10

8 4

2
1

9 3

Control
Flow

Memory
Element

Memory
Element

Data
Flow

Information Push
Ideal for Sender

Information Pull
Ideal for Receiver

Control
Flow

Data
Flow

Fig. 2. Message Exchange between two Jobs through a Time-Triggered Overlay Net-
work

the memory element at its output port (update-in-place). The receiver job must
pull information out of the input port by reading the memory element in the
input port. Using the job slot of the sender, the time-triggered overlay network
autonomously carries the state information from the memory element of the
sender to the memory element(s) of the receiver(s) at a priori determined global
points in time. Since no control signals cross the ports, temporal fault propa-
gation is prevented by design. Time-triggered overlay networks employ implicit
flow control [27]. A job’s ability for handling received messages can be ensured
at design time, i.e., without acknowledgment messages. Implicit flow control
makes time-triggered overlay networks well-suited for multicast communication
relationships, because ports offer elementary interfaces [28], i.e., a unidirectional
data flow involves only a unidirectional control flow.

Event-triggered overlay networks are designed for the sporadic exchange of
event messages, combining event semantics with external control [27]. In order
to support exactly-once processing of event messages, the access point between
an event-triggered overlay network and a job is a message queue (denoted as an
event-triggered port). Thereby, the overlay networks provides bandwidth elas-
ticity. Due to the queues at the output ports, a job can pass more message to
the overlay network than can be transmitted in a single TDMA round using the
underlying time-triggered network. Overlay networks can handle such a burst as
long as the average bandwidth consumption can be bounded to dimension the
job slots in the TDMA scheme, and the maximum message load of a burst is
known in order to dimension the queue sizes.

The interactions between a sender and a receiver via an event-triggered over-
lay network are depicted in Figure 3. At the sender side, event messages are
inserted into the message queue at the output port via an explicit transmission
request from the job (information push with external control) or as a result of

Integrating Automotive Applications Using Overlay Networks 193

Sender
Job Message

Queue

Output Port Receiver
JobMessage

Queue

Input Port

Event-Triggered
Overlay Network

Information Push
or Information Pull

Information Push
or Information Pull

Control

Flow

Data
Flow

Control

Flow

Data
Flow

Fig. 3. Message Exchange between two Jobs through an Event-Triggered Overlay Net-
work

the reception of a request message (information pull, e.g., a client/server interac-
tion). The event-triggered overlay network exploits the bandwidth available via
the sender’s job slot for transporting the event messages to the message queue
at the receiver. At the receiver side, the job either fetches the incoming message
from the input port (information pull via polling for messages) or the event-
triggered overlay network presses received messages into the job (information
push via interrupt mechanism).

2.4 Encapsulation of Overlay Networks

Encapsulation confines the effects of a job failure that results in the transmissions
of incorrect messages. In case of such a job failure, one can distinguish between
message timing and message value failures. A message sent at an unspecified time
is denoted as a message timing failure. Examples for specific message timing fail-
ures are crash/omission failures and babbling idiot failures [29, 30]. A message
value failure occurs in case the contents of a transmitted message do not com-
ply with the interface specification. In general, the detection of message value
failure requires application-specific knowledge either through a priori knowledge
or redundant computations. An example for the latter case is active redundancy
(e.g., Triple Modular Redundancy (TMR) [31]), which supports the detection
and masking of message value failures by majority voting. In the scope of this
work, we focus on the encapsulation in the time domain by means of temporal
partitioning.

Providing a dedicated port for each overlay network at all receivers and the
reservation of dedicated slots in the underlying TDMA scheme are the two key
elements for temporal partitioning of overlay networks.

In case of event ports, separate ports and thus separate queues ensure that the
queuing delays for messages received from one job do not depend on the com-
munication activities of other jobs (see Figure 4). In addition, separate message
queues prevent a sender job that violates its message interarrival time speci-
fication [32] from causing the loss of messages sent by other jobs. A message
omission failure caused by a queue overflow at an input port only affects the
messages sent by a single job.

In addition to providing separate ports, we also need to prevent interference
between messages from different senders prior to the arrival at the respective
ports. For this purpose, the overlay network performs a separation of applica-
tion subsystems and jobs via statically reserved slots in the underlying TDMA

194 R. Obermaisser

ECU i

Job 1

ECU k

Job 4Job 3Job 2

Event-triggered Event-triggered Event-triggeredEvent-triggered

ECU s

Job 2Job 1

Time-triggered Time-triggered

IN INOUT IN INOUT

Application Subsystem
with a Time-Trigged

Overlay Network

Application Subsystem
with an Event-Trigged

Overlay Network

Event-triggered
Overlay Network

Time-triggered
Overlay Network

P
or

t

Fig. 4. Encapsulation of Overlay Networks

scheme. Thereby, guardians can protect the access to these slots based on the
a priori knowledge concerning the delimiting points in time of TDMA slots and
the associations between TDMA slots and the structural elements of the inte-
grated system (i.e., application subsystems and jobs). While several solutions
for the protection of ECU slots on a time-triggered network are already avail-
able (e.g., [33,34,35]), middleware services for the protection of the subslots for
application subsystems, and jobs have been realized in the scope of this work.

Due to encapsulation, developers need not look at all possible interactions
between jobs and application subsystems in order to understand the temporal
behavior of an overlay network. In particular, upon the occurrence of faults of
individual jobs and application subsystems, the encapsulation of overlay net-
works preserves the modularization of the overall system. The primary purpose
of encapsulation is the prevention of adverse effects on the message exchanges
of a particular overlay network induced by the message exchanges on overlay
networks of other application subsystems. In addition, overlay networks are de-
signed for encapsulation at the level of jobs by preventing adverse effects on the
message exchanges of a job induced by the message exchanges of other jobs in
the same application subsystem.

3 Communication Middleware for the Realization of
Overlay Networks

This section describes a realization of encapsulated time-triggered and event-
triggered overlay networks on top of an exemplary time-triggered physical net-
work. The time-triggered physical network is a TDMA-controlled Ethernet net-
work that interconnects a set of five ECUs (see Figure 5). Each ECU is imple-
mented on a Soekris net4801 [36] embedded single-board computer, which con-
tains the 586 class processor SC1100 clocked at 266MHz. The software within
an ECU encompasses a real-time operating system, a real-time Ethernet driver,
communication middleware for the establishment of overlay networks, and mul-
tiple jobs of one or more application subsystems.

Although the prototype implementation uses a TDMA-controlled Ethernet
network, the presented solution of a communication middleware for the estab-

Integrating Automotive Applications Using Overlay Networks 195

Fig. 5. Setup for Implementation of Encapsulated Overlay Networks

lishment of overlay network is also compatible with other time-triggered com-
munication protocols. For example, the ECUs can be deployed with FlexRay
or TTP communication controllers and the real-time Ethernet driver can be re-
placed with a driver for interfacing FlexRay or TTP. Except for protocol-specific
constraints (e.g., maximum message size), these time-triggered communication
protocols offer the same type of interface to the host: a memory element that
contains state messages that are sent or received by the communication system
at predefined global points in time.

3.1 Operating System

The real-time Linux variant RTAI/LXRT [37] serves as the operating system
of the ECUs. Each job executes as a Linux Real-Time (LXRT) user mode task
and the Memory Management Unit (MMU) of the SC1100 processor provides
memory protection. Furthermore, a time-triggered task scheduler ensures that
jobs cannot delay other jobs by blocking the CPU. A static round-robin schedule
uses predefined time intervals for the execution of all jobs on an ECU.

3.2 Real-Time Ethernet Driver

Time-triggered communication on top of Ethernet is a solution capable of ensur-
ing predictable real-time behavior, while employing Commercial-Off-The-Shelf
(COTS) hardware [13]. For the implementation of overlay networks, we have
employed a software-based implementation of a TDMA-controlled Ethernet net-
work. In each ECU a real-time Ethernet driver performs a master/slave clock
synchronization and periodic time-triggered transmissions and receptions of state
messages. The real-time Ethernet offers to the higher layers (i.e., communica-
tion middleware and application) a global time base with a precision of 50μs. In
addition, the real-time Ethernet driver provides a memory region with five state
messages. One state message can be written by the communication middleware
and is broadcast on the TDMA-controlled Ethernet network. The other four
state messages contain information received from the TDMA-controlled Ether-
net network and can be read by the communication middleware.

We have used a homogeneous configuration with a communication round con-
sisting of five communication slots. The communication round allows each of the

196 R. Obermaisser

1 [] // the overall system provides multiple overlay networksS O system :

network2 [] , , paradigm : | // comm. infrastructure for the jobs of an appl. subsystemO M id tt et overlay network :

job3 , [], // associated with input and output portsout inM P P id job :

partial4 buffer: variable | queue , // access point of an overlay network for a job to send msgs.outP msg output port :

job partial5 buffer: variable | queue , , // access point of an overlay network for a job to receive msgs.inP sender msg input port :

6 [] // - provides a msg. for each nodeEthN msg time triggered physical network :
7 [] // - data segments for overlay networksEth overlay networkmsg segment msg. on time triggered physical network :

overlay-network job network8 [] , // data segment belonging to a specific overlay networksegment segment id overlay network segment :

job job9 data , // data segment that belongs to a specific jobsegment id job segment :

10 // - transfer msgs. from output ports to data segmentspre transmission invocation :

node11 () :pretransm it id

node overlay-network job12 []. , . :ethx msg id segment y x segment

13 if (.paradigm TT) // time-triggered overlay networkx

network job14 .data . [.]. [.]. .buffer // update-in-place of data segment with data from portouty S O x id M x id P

15 // event-triggered overlay networkelse

16 .data empty msg. // dequeue as many msgs. from output ports as fit into the segmenty

17 while (space available in .data)y

partial partial network job18 () dequeue(. [.]. [.].)outif msg empty msg S O x id M x id P

partial19 extract packet fromp msg

20 .data |y p

21 end

22 end

23 // - transfer received msgs. into input portspost reception invocation :
24 () :nodepostreception id

node overlay-network job25 []. , . :ethx msg id segment y x segment

26 if (.paradigm TT) // time-triggered overlay networkx

in job job27 . [.]. []. with . : . .data // update-in-place of port with data from segmentnetworkz S A x id M P z sender id z buffer y

28 // event-triggered overlay networkelse

in job job29 . [.]. []. with . : // assemble msgs. and enqueue in input portsnetworkz S A x id M P z sender id

30 .data:p y

partial31 . |z msg p

partial32 if (completely assembled)msg

partial33 .dataz msg

partial34 empty messagemsg

35 end

36 end

Fig. 6. Pseudo Code Description of Communication Middleware

five ECUs to send exactly once and has a duration of 2 ms. The size of a state
message that is broadcast within a communication slot has been set to 1500
bytes. Note, however, that the size of a message on the time-triggered physical
is configurable, i.e., the size of 1500 bytes is only an example configuration. Us-
ing the hierarchical subdivision of the communication resources (as described in
Section 2.2), the 1500 bytes per message are used by the communication middle-
ware for disseminating information from multiple jobs attached to one or more
overlay networks.

3.3 Communication Middleware

The communication middleware is a Linux kernel module that establishes the
ports, which enable the jobs to access the overlay network of the respective
application subsystem. As introduced in Section 2, a port is either a memory
element storing a single state message (i.e., with updates-in-place) or a queue for

Integrating Automotive Applications Using Overlay Networks 197

multiple event messages. The ports of each job are located in a corresponding
shared memory between the communication middleware in Linux kernel mode
and the jobs in user mode. Each shared memory has a unique shared memory
identifier. A job possesses only knowledge of the identifier of the shared memory
containing the job’s own ports. In contrast to the jobs, the communication mid-
dleware possesses all shared memory identifiers, because a single communication
middleware on each ECU serves all jobs on the ECU.

Figure 6 describes the behavior of the communication middleware in pseudo
code. Lines 1 to 9 capture the configuration information that parameterizes the
communication middleware according to a specific application. The overall sys-
tem S provides a set of overlay networks O, each serving as the communication
infrastructure of a respective application subsystem. An overlay network exhibits
a corresponding control paradigm (i.e., time-triggered or event-triggered) and is
connected to a set of jobs via output and input ports (Lines 3ff). Both types of
ports contain a buffer, which is either a message queue for an event-triggered
overlay network or a state variable with update-in-place semantics for a time-
triggered overlay network. Ports, which are attached to an event-triggered over-
lay network, also contain a partially transmitted or received message msgpartial
for message fragmentation. In addition, an input port stores an identification of
the sending job, i.e., the job from which messages are stored in the input port.

The structure of the messages that are exchange on the TDMA-controlled
Ethernet work is defined in Lines 6–9. An Ethernet message exchanged on the
TDMA-controlled Ethernet network is a compound structure, which results from
the hierarchic subdivision of the TDMA slots. At the finest granularity in Line 9,
each data segment is uniquely associated with an overlay network and a sending
job.

After the configuration data structures, the reception and transmission han-
dlers follow in Figure 6. The activation of the communication middleware occurs
time-triggered, either prior to the periodic transmission of an Ethernet message
(Line 10) or after the a priori known receive instants of Ethernet messages (Line
23). Both handlers go through the segments of all overlay networks and all jobs
(Lines 12 and 24). The processing of such a data segment depends on the control
paradigm of the overlay network.

– Data segment of a time-triggered overlay network. Prior to the pe-
riodic transmission of an Ethernet message, the communication middleware
overwrites the data segment in the Ethernet message with the contents of
the state variable at a job’s port (Line 14). Consequently, the communication
middleware samples the current value of the port and causes the dissemina-
tion of the value at the sampling point.

After the reception of a periodic Ethernet message, each data segment
belonging to a time-triggered overlay network is used for an update-in-place
in the ports of the jobs. In order to determine which input ports need to
be updated, the communication middleware exploits the a priori knowledge
concerning the identity of the sender that is uniquely associated with each
data segment in the Ethernet message. For each job, which is located on

198 R. Obermaisser

the ECU and possesses an input port that accepts messages from the sender
of the data segment, the communication middleware overwrites the state
variable at the port with the contents of the data segment (Line 27).

– Data segment of an event-triggered overlay network. Prior to the pe-
riodic transmission of an Ethernet message, the communication middleware
fills each data segment with event messages retrieved from the queue at the
ports of the respective job (Lines 16ff). To efficiently use the bandwidth, the
communication middleware not only transfers complete messages, but also
fragments messages into slices so they fit into the data segment. Depending
on the size of the event messages relative to the size of the data segment, it
can be possible for multiple event messages to fit into the data segment or
it may be necessary to fragment an event message into packets to be sent
during multiple consecutive rounds.

After the reception of a periodic Ethernet message, the communication
middleware reads event messages from the data segment and forwards them
to corresponding ports of the jobs (Lines 29ff). For each job, which is lo-
cated on the ECU and possesses an input port that accepts messages from
the sending job of the data segment, the communication middleware inserts
the event messages from the data segment into the port’s message queue.
If messages are fragmented over multiple rounds, the communication mid-
dleware reassembles the event messages out of the parts retrieved from the
data segment.

4 Exemplary Overlay Networks based on Automotive
Communication Requirements

This section describes an exemplary configuration of overlay networks for the
prototype implementation, which is based on the requirements of present day
automotive network infrastructures. In addition, the configuration provides a
time-triggered overlay network, e.g., for X-by-wire functionality [38, 39].

Table 1. SAE Network Classes

Network Class Exemplary Protocols Bandwidth Exemplary Application Domains

Class A LIN < 10 kbps sensor/actuator access
Class B CAN 10kbps-125kbps comfort domain
Class C CAN 125kbps-1Mbps powertrain domain
Class D FlexRay, Byteflight > 1 Mbps multimedia, X-by-wire

4.1 Present Day Network Infrastructure

Based on the performance four classes of in-vehicle networks can be distinguished
(see Table 1) according to the Society of Automotive Engineers (SAE) [40]. In
present-day luxury cars, networks belonging to all four classes can be found. For
example, in the BMW 7 series [2] two class B networks (peripheral CAN and
body CAN) interconnect the ECUs of the comfort domain. A class C network

Integrating Automotive Applications Using Overlay Networks 199

Time-Triggered Overlay Network (X-by-Wire)

ECU 1

Time-Triggered Overlay Network (Powertrain)

Event-Triggered Overlay Network (Diagnosis)

Event-Triggered Overlay Network (Multimedia)

ECU 2ECU 0Comfort 1 Powertrain

Event-Triggered Overlay Network (Comfort B)

Gateway Event-Triggered Overlay Network (Comfort A)

Comfort 2 Passive Safety Infotainment

Integration

ECU in federated system

ECU in Integrated System

Virtual network replacing a physical
network of the federated system

Job replacing an ECU of the
federated system

Fig. 7. Mapping Physical Networks to Overlay Networks in the Integrated Architecture

(powertrain CAN with 500kbps) serves as the communication infrastructure of
the powertrain domain. In addition, the BMW 7 series is equipped with class D
networks for multimedia (MOST [41]) and safety functions (Byteflight [42]). LIN
fieldbus networks [43] for accessing low-cost sensors/actuators belong to SAE
class A. Similarly, the communication architecture of the Volkswagen Phaeton
comprises LIN fieldbus networks, two class B CAN networks for the comfort
domain, a class C CAN network for drivetrain, and a class D network for mul-
timedia [44].

4.2 Exemplary Configuration of Overlay Networks

The exemplary overlay networks are based on the communication architecture
of a typical present day automotive system. The overlay network configuration,
which is depicted in Figure 7, enables the transition from a collection of physical
networks towards an integrated architecture with overlay networks. Each overlay
network serves as a substitute for a respective physical network.

The overlay network configuration supports two class B networks, one class
C network, and two class D networks (see Table 2). Two overlay networks with
a bandwidth of 117kbps (named comfort A and comfort B) support on-demand
event message exchanges, e.g., as deployed as medium-speed CAN networks for
the comfort subsystem in a car. An overlay network with a bandwidth of 492kbps
provides the communication infrastructure of the powertrain subsystem of a car,
thus replacing a high-speed CAN network.

Since CRC checks are handled by the underlying time-triggered communica-
tion protocol, the net bandwidths of the overlay networks exceed the net band-
widths of physical CAN networks with a raw bandwidth of 125 kbps or 500kbps
respectively. A further difference to a physical CAN network is that the 117kbps
or 492 kbps are simultaneously available to all jobs. Effectively, the entire overlay
network has the ten-fold bandwidth (1170kbps or 4920kbps) in case of the 10
jobs in the overlay network configuration. The reason for this bandwidth multi-
plication is that in a physical CAN network, the total system-wide bandwidth is
available to a single ECU. In an overlay network, however, the available band-

200 R. Obermaisser

Table 2. Overlay Network Configuration

Overlay Network

Job 0 (117kbps) Job 1 (117kbps) Job 2 (117kbps) Job 3 (117kbps) Job 4 (117kbps)
Job 5 (117kbps) Job 6 (117kbps) Job 7 (117kbps) Job 8 (117kbps) Job 9 (117kbps)
Job 0 (117kbps) Job 1 (117kbps) Job 2 (117kbps) Job 3 (117kbps) Job 4 (117kbps)
Job 5 (117kbps) Job 6 (117kbps) Job 7 (117kbps) Job 8 (117kbps) Job 9 (117kbps)
Job 0 (492kbps) Job 1 (492kbps) Job 2 (492kbps) Job 3 (492kbps) Job 4 (492kbps)
Job 5 (492kbps) Job 6 (492kbps) Job 7 (492kbps) Job 8 (492kbps) Job 9 (492kbps)

Diagnosis Job 0 (70kbps) Job 1 (70kbps) Job 2 (70kbps) Job 3 (70kbps) Job 4 (70kbps)
Multimedia Job 0 (1496kbps) Job 1 (1496kbps) Job 2 (492kbps) Job 3 (492kbps) Job 4 (492kbps)

Job 0 (617kbps) Job 1 (617kbps) Job 2 (617kbps) Job 3 (617kbps) Job 4 (617kbps)
Job 5 (617kbps) Job 6 (617kbps) Job 7 (3117kbps) Job 8 (3117kbps) Job 9 (3117kbps)

Node 2Node 1Node 0

X-by-Wire

Comfort A

Comfort B

Powertrain

Node 4Node 3

width via a job slot is not shared and only available to a single ECU. However,
in case of a priori knowledge of the fraction of the overall bandwidth used by a
job, this overhead can be significantly reduced.

An overlay (named diagnosis) with a bandwidth of 70 kbps serves for the
exchange of event messages carrying diagnostic information. Such a diagnostic
overlay network is required for the online analysis of observed errors, which is
a promising strategy for reducing the numbers of cannot duplicate failures in
future car generations [45].

The multimedia cluster is frequently based on a protocol with support for
streaming audio and video (e.g., MOST [41]). For this purpose, we have pro-
vided an overlay network (named multimedia) with a bandwidth of 492kbps
or 1496kbps (depending on the job). A non-uniform bandwidth allocation is
chosen, since some jobs may only transmit audio information, while other jobs
also transmit audio and video information. Finally, the configuration includes
an overlay network (named X-by-wire) for the time-triggered exchange of state
messages as required for safety-critical application subsystems.

No overlay networks are provided for class A networks, because low-cost field-
bus networks (e.g., LIN) are assumed to remain as separate physical networks
despite the shift to an integrated architecture.

5 Related Work

This section describes related work on integrated architectures in the automo-
tive domain. In addition, we point out the differences of the proposed overlay
networks compared to other solutions for the integration of event-triggered and
time-triggered communication.

5.1 Integration of Automotive Application Subsystems

The Automotive Open System Architecture (AUTOSAR) [46] is a system archi-
tecture and development methodology for automotive electronic systems, which
also addresses the sharing of communication resources among application subsys-
tems and software components. For interactions between software components,

Integrating Automotive Applications Using Overlay Networks 201

Cycle k

Time-Triggered Intervals Event-Triggered Intervals
(Dynamic Requests)

Cyclek+1 Cyclek+2

Fig. 8. Integration of Control Paradigms at MAC Layer: Time Intervals for Event-
Triggered and Time-Triggered Communication

AUTOSAR provides a so-called Virtual Function Bus (VFB) with support for
unidirectional message exchanges (called sender-receiver communication) and
bidirectional interactions (called client-server communication).

The implementation of the virtual function bus occurs using the runtime
environment, which acts as a communication switch and ensures location trans-
parency. Communication between software components on the same ECU is
realized by passing arguments directly to the respective runnables. Communica-
tion between software components on different ECUs exploits the services layer
of the ECU in order to establish a mapping to the communication network (e.g.,
CAN).

In contrast to the proposed solution of overlay networks on top of a time-
triggered physical network, AUTOSAR currently does not specify mechanisms
for encapsulation of the communication activities of application subsystems and
software components.

Nevertheless, the presented overlay networks for an integrated architecture can
also serve for improving the communication system in an AUTOSAR system.
Encapsulated overlay networks could provide the communication infrastructure
of AUTOSAR software components. To accomplish this goal, future work will
have to address the mapping of the proposed overlay network to the VFB inter-
face that is part of the AUTOSAR runtime environment.

5.2 Integration of Control Paradigms

The proposed solution of layering event-triggered and time-triggered overlay
networks on top of an underlying time-triggered physical network significantly
differs from other solutions that combine these two communication paradigms.
For example, event-triggered and time-triggered communication have been inte-
grated at the MAC layer using two types of periodically recurring time intervals
in the protocols FlexRay [11], TTCAN [48], and FTT-Ethernet [47]. These proto-
cols employ a MAC layer that supports both event-triggered and time-triggered
message transmissions. The start and end instants of the periodic time-triggered
message transmissions, as well as the sending ECUs are specified at design time.
For this class of messages, contention is resolved statically. Within each cycle,

202 R. Obermaisser

the time that is not reserved for time-triggered message exchanges is available
for event-triggered communication. Consequently, time is divided into two types
of intervals: event-triggered and time-triggered intervals. In event-triggered in-
tervals, message exchanges depend on external control and the start instants of
message transmissions can vary. This difference with respect to the start instants
of event-triggered and time-triggered intervals is depicted in Figure 8 (arrows
mark the start instants of the message transmissions in Figure 8). Furthermore,
event-triggered intervals can be assigned to multiple (or all) ECUs of the sys-
tem. For this reason, the MAC layer needs to support the dynamic resolving
of contention when more than one ECU intends to transmit a message. Dur-
ing event-triggered intervals a sub-protocol (e.g., CSMA/CA, CSMA/CD) takes
over that is not required during time-triggered intervals in which contention is
prevented by design.

The main benefit of the two types of intervals at the MAC layer is the ability
to combine temporal predictability in the time-triggered intervals with resource
efficiency and flexiblity in the event-triggered intervals. Within the latter type of
interval, ECUs can dynamically share communication resources since bandwidth
that is not used by one ECU becomes available to other ECUs.

On the negative side, the event-triggered intervals at the MAC layer can
introduce dependencies in the temporal domain between ECUs. The message
transmission latencies at an ECU can no longer be computed in isolation. Upon
system integration, the addition of ECUs will lead to more messages competing
for transmission in the event-triggered intervals, thus increasing the transmission
latencies. In addition, at run-time the latencies of the messages transmitted by
a ECU can vary depending on the transmission behavior of the other ECUs.
This variability of the transmission latency is disadvantageous for jitter-sensitive
applications, e.g., in control loops where jitter impairs the quality of control.

In contrast to these MAC layer solutions, the presented overlay networks
exhibit an invariant temporal behavior (i.e., bandwidth, latency, latency jitter)
during system integration. The layering of event-triggered and time-triggered
overlay networks on top of an underlying time-triggered physical network ensures
that the temporal properties of independently developed components (i.e., jobs)
remain invariant upon integration, thus enabling a seamless system integration
without unintended side effects (i.e., temporal composability [6]).

Furthermore, the use of an underlying time-triggered physical network facil-
itates replica determinism [19] by preventing the occurrence of race conditions
between jobs at the communication system.

Finally, the static schedule of the time-triggered physical network can be ex-
ploited for error detection and error containment, e.g., using bus guardians [33,
34,35]. Thereby, the communication system improves the robustness of the over-
all system by providing error containment for the consequences of physical faults
(e.g., single event upsets, single event transients) and software faults (e.g., design
fault of a job).

On the negative side, this rigid design with a static communication sched-
ule results in lower resource efficiency. Firstly, large communication loads that

Integrating Automotive Applications Using Overlay Networks 203

dynamically vary between ECUs can lead to an inefficient use of the overall
bandwidth. The presented overlay networks support no global sharing of band-
width, i.e., communication slots that are not used by one ECU do not become
available to the other ECUs. Secondly, the static resource allocation decreases
flexibility w.r.t. extensions and modifications of the communication system. For
the addition of messages or ECUs, either free slots need to be reserved at design
time or a new time-triggered communication schedule needs to be computed and
programmed into the ECUs.

6 Discussion

This paper has shown that a time-triggered physical network is an effective foun-
dation for establishing multiple overlay networks, each tailored to a respective ap-
plication subsystem via its control paradigm (event-triggered vs. time-triggered).
Overlay networks exhibit predefined temporal properties for the messages trans-
mitted by a job, independently from the transmission behavior of other jobs
and other application subsystems. A prototype implementation has yielded evi-
dence that the inherent mechanisms for encapsulation do not prevent the overlay
networks from meeting the bandwidth requirements imposed by present-day au-
tomotive applications and those envisioned for the future (e.g., X-by-wire).

Encapsulation is particularly important in the context of the increasing com-
plexity of embedded systems. System architects are forced to follow divide-and-
conquer strategies that permit a reduction of the mental effort for developing and
understanding a large system by partitioning the system into smaller subsystems
that can be developed and analyzed in isolation.

The temporal encapsulation of the communication resources belonging to sub-
systems, such as application subsystems or jobs, is a key requirement for the
constructive integration of integrated computer systems. By ensuring guaranteed
temporal properties (e.g., bandwidth, latencies) for the messages transmitted by
each job, prior services are not invalidated by the behavior of newly integrated
jobs at the communication system. This quality of an architecture, which is de-
noted as temporal composability, relates to the ease of building systems out of
subsystems. A system, i.e., a composition of subsystems, is considered tempo-
rally composable, if the temporal correctness is not invalidated by the integration
provided that temporal correctness has been established at the subsystem level.

Overlay networks on top of a time-triggered network support temporal com-
posability by ensuring that temporal properties at the communication system
are not invalidated upon system integration. Furthermore, in the context of up-
coming time-triggered technology in the automotive domain, the availability of a
time-triggered communication network with high bandwidth (e.g., FlexRay [11])
enables the elimination of some of the physical networks deployed in present day
cars. The communication resources of a single time-triggered network can be
shared among different application subsystems. In conjunction with integrated
ECUs, i.e., ECUs for the execution of application software from different appli-
cation subsystems, the sharing of communication and computational resources

204 R. Obermaisser

not only reduces the number of ECUs, but also results in fewer connectors and
wires. Fewer connectors and wires not only decrease hardware cost, but also lead
to improved reliability.

Acknowledgments

This work has been supported in part by the European IST project ARTIST2
under project No. IST-004527 and the European IST project DECOS under
project No. IST-511764.

References

1. Bouyssounouse, B., Sifakis, J. (eds.): Embedded Systems Design. LNCS, vol. 3436.
Springer, Heidelberg (2005)

2. Deicke, A.: The electrical/electronic diagnostic concept of the new 7 series. In:
Convergence Int. Congress & Exposition On Transportation Electronics, Detroit,
MI, USA, SAE (October 2002)

3. Heinecke, H., Schnelle, K.-P., Fennel, H., Bortolazzi, J., Lundh, L., Leflour, J.,
Maté, J.-L., Nishikawa, K., Scharnhorst, T.: AUTomotive Open System ARchitec-
ture - An Industry-Wide Initiative to Manage the Complexity of Emerging Au-
tomotive E/E-Architectures. In: Proceedings of the Convergence Int. Congress &
Exposition On Transportation Electronics, Detroit, MI, USA, SAE (October 2004)

4. Obermaisser, R., Peti, P., Huber, B., El Salloum, C.: DECOS: An inte-
grated time-triggered architecture. e&i journal (journal of the Austrian profes-
sional institution for electrical and information engineering) 3, 83–95 (2006),
http://www.springerlink.com

5. Sifakis, J.: A framework for component-based construction. In: SEFM 2005.
Proc. of 3rd IEEE Int. Conference on Software Engineering and Formal Methods,
pp. 293–300 (September 2005)

6. Kopetz, H., Obermaisser, R.: Temporal composability. Computing & Control En-
gineering Journal 13, 156–162 (2002)

7. Robert Bosch Gmbh, Stuttgart, Germany. CAN Specification, Version 2.0 (1991)
8. Leen, G., Heffernan, D., Dunne, A.: Digital networks in the automotive vehicle.

Computing & Control Engineering Journal 10(6), 257–266 (1999)
9. Brooks, F.P.: The Mythical Man-Month. Addison-Wesley, Reading (1975)

10. Analysis of the European automotive in-vehicle network architecture markets.
Technical report, Frost & Sullivan (October 2004)

11. FlexRay Consortium. BMW AG, DaimlerChrysler AG, General Motors Corpora-
tion, Freescale GmbH, Philips GmbH, Robert Bosch GmbH, and Volkswagen AG.
FlexRay Communications System Protocol Specification Version 2.1 (May 2005)

12. TTTech Computertechnik AG, Schönbrunner Strasse 7, A-1040 Vienna, Austria.
Time-Triggered Protocol TTP/C – High Level Specification Document (July 2002)

13. Kopetz, H., Ademaj, A., Grillinger, P., Steinhammer, K.: The Time-Triggered Eth-
ernet (TTE) design. In: ISORC. Proc. of 8th IEEE Int. Symposium on Object-
oriented Real-time distributed Computing (May 2005)

14. Hoyme, K., Driscoll, K.: SAFEbus. IEEE Aerospace and Electronic Systems Mag-
azine 8, 34–39 (1993)

http://www.springerlink.com

Integrating Automotive Applications Using Overlay Networks 205

15. Rushby, J.: Bus architectures for safety-critical embedded systems. In: Henzinger,
T.A., Kirsch, C.M. (eds.) EMSOFT 2001. LNCS, vol. 2211, pp. 306–323. Springer,
Heidelberg (2001)

16. Kopetz, H.: Why time-triggered architectures will succeed in large hard real-time
systems. In: Proc. of the 5th IEEE Computer Society Workshop on Future Trends
of Distributed Computing Systems, Cheju Island, Korea (August 1995)

17. Bretz, E.: By-wire cars turn the corner. IEEE Spectrum 38(4), 68–73 (2001)

18. Bauer, G., Kopetz, H.: Transparent redundancy in the time-triggered architecture.
In: DSN 2000. Proc. of the Int. Conference on Dependable Systems and Networks,
NY, USA, pp. 5–13 (June 2000)

19. Poledna, S.: Fault-Tolerant Real-Time Systems: The Problem of Replica Deter-
minism. Kluwer Academic Publishers, Dordrecht (1995)

20. Radio Technical Commission for Aeronautics, Inc. (RTCA), Washington, DC. DO-
178B: Software Considerations in Airborne Systems and Equipment Certification
(December 1992)

21. IEC: Int. Electrotechnical Commission. IEC 61508-7: Functional Safety of Elec-
trical/Electronic/Programmable Electronic Safety-Related Systems – Part 7:
Overview of Techniques and Measures (1999)

22. TTTech Computertechnik AG, Schönbrunner Strasse 7, A-1040 Vienna, Austria.
TTP/C Controller C2 Controller-Host Interface Description Document, Protocol
Version 2.1 (November 2002)

23. Freescale Semiconductor. MFR4200 datasheet FlexRay communication controllers.
Technical report (August 2005)

24. Venkateswaran, R.: Virtual private networks. IEEE Potentials 20(1), 11–15 (2001)

25. Andersen, D., Balakrishnan, H., Kaashoek, F., Morris, R.: Resilient overlay net-
works. In: SOSP 2001. Proceedings of the eighteenth ACM symposium on Oper-
ating systems principles, pp. 131–145. ACM Press, New York (2001)

26. Deline, R.: Resolving Packaging Mismatch. PhD thesis, Computer Science Depart-
ment, Carnegie Mellon University, Pittsburgh (June 1999)

27. Kopetz, H.: Real-Time Systems, Design Principles for Distributed Embedded Ap-
plications. Kluwer Academic Publishers, Dordrecht (1997)

28. Kopetz, H.: Elementary versus composite interfaces in distributed real-time sys-
tems. In: Proc. of the 4th Int. Symposium on Autonomous Decentralized Systems,
Tokyo, Japan (March 1999)

29. Cristian, F.: Understanding fault-tolerant distributed systems. Communications of
the ACM 34(2), 56–78 (1991)

30. Temple, C.: Avoiding the babbling-idiot failure in a time-triggered communication
system. In: Proc. of 28th Int. Symposium on Fault-Tolerant Computing, Munich,
Germany, pp. 218–227 (1998)

31. Randell, B., Lee, P., Treleaven, P.C.: Reliability issues in computing system design.
ACM Computing Surveys 10(2), 123–165 (1978)

32. Kleinrock, L.: Queuing Systems Volume I: Theory. John Wiley and Sons, New York
(1975)

33. Ferreira, J., Pedreiras, P., Almeida, L., Fonseca, J.: Achieving fault tolerance in
FTT-CAN. In: Proc. of the 4th IEEE Int. Workshop on Factory Communication
Systems (2002)

34. Bauer, G., Kopetz, H., Steiner, W.: The central guardian approach to enforce fault
isolation in a time-triggered system. In: ISADS 2003. Proc. of the 6th Int. Sympo-
sium on Autonomous Decentralized Systems, Pisa, Italy, pp. 37–44 (April 2003)

206 R. Obermaisser

35. FlexRay Consortium. BMW AG, DaimlerChrysler AG, General Motors Corpora-
tion, Freescale GmbH, Philips GmbH, Robert Bosch GmbH, and Volkswagen AG.
Node-Local Bus Guardian Specification Version 2.0.9 (December 2005)

36. Soekris Engineering. net4801 series boards and systems. Technical report (April
2004), www.soekris.com

37. Beal, D., Bianchi, E., Dozio, L., Hughes, S., Mantegazza, P., Papacharalambous,
S.: RTAI: Real-Time Application Interface. Linux Journal (April 2000)

38. Hedenetz, B., Belschner, R.: Brake-by-wire without mechanical backup by using
a TTP-communication network. In: Proceedings of SAE Congress, Daimler-Benz
AG (1998)

39. Heitzer, H.D.: Development of a fault-tolerant steer-by-wire steering system. Auto
Technology 4, 56–60 (2003)

40. Leen, G., Heffernan, D.: Expanding automotive electronic systems. Com-
puter 35(1), 88–93 (2002)

41. MOST Cooperation, Karlsruhe, Germany. MOST Specification Version 2.2
(November 2002)

42. Berwanger, J., Peller, M., Griessbach, R.: Byteflight a new protocol for safety
critical applications. In: Proc. of the FISITA World Automotive Congress, Seoul
(2000)

43. Audi AG, BMW AG, DaimlerChrysler AG, Motorola Inc., Volcano Communication
Technologies AB, Volkswagen AG, and Volvo Car Corporation. LIN specification
and LIN press announcement. SAE World Congress Detroit (1999)

44. Leohold, J.: Communication requirements for automotive systems. In: Keynote
Automotive Communication – 5th IEEE Workshop on Factory Communication
Systems, Vienna, Austria (September 2004)

45. Peti, P., Obermaisser, R.: A diagnostic framework for integrated time-triggered
architectures. In: Proc. of the 9th IEEE Int. Symposium on Object-oriented Real-
time distributed Computing (April 2006)

46. AUTOSAR GbR. AUTOSAR – Technical Overview V2.0.1 (June 2006)
47. Pedreirasand, P., Gai, P., Almeidaand, L., Buttazzo, G.C.: Ftt-ethernet: a flexi-

ble real-time communication protocol that supports dynamic qos management on
ethernet-based systems. IEEE Transactions on Industrial Informatics 1(3), 162–172
(2005)

48. Führer, T., Müller, B., Dieterle, W., Hartwich, F., Hugel, R.: Time-triggered CAN -
TTCAN: Time-triggered communication on CAN. In: ICC6. Proc. of 6th Int. CAN
Conference, Torino, Italy (2000)

www.soekris.com

F. Kordon and O. Sokolsky (Eds.): Monterey Workshop 2006, LNCS 4888, pp. 207–219, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Reliability Properties of Models for Flexible Design and
Run-Time Analysis

Luqi, V. Berzins, and P.M. Musial

Naval Postgraduate School
Monterey, CA 93943, USA

luqi@nps.edu

Abstract. Development and analysis of complex systems embedded in physical
environments requires special modeling techniques. Development aids involve
abstraction on multiple levels of representation in order to connect cross-cutting
constraints and facilitate involvement of various stakeholders. Alternatively,
run-time analysis requires type of modeling that is based on representation of
interactions and behaviors. We discuss the Documentation Driven Development
(DDD) approach for software development and Agent Based Systems for run-
time analysis. We show that despite differences in architectures and functions
both approaches possess important properties of reliability and flexibility and
allow easy upgrading of their elements.

1 Introduction

The design and implementation process and run-time analysis of contemporary soft-
ware are accompanied by numerous assisting development tools. The functions of
these tools include facilitation of system design and satisfaction of multiple con-
straints from disparate stakeholders. Further development of embedded systems and
systems of embedded systems (SoES) require even greater supporting capabilities.
First, SoES demand a new type of programming aids that are capable of representing
physical devices with which software interacts; second, development of SoES demon-
strates the shortcomings of existing software tools: poor means of representation of
interactions in the system, lack of support for managing concurrency, as well as inter-
operability and scalability issues. To cope with these problems contemporary means
of design and analysis of SoES incorporate modeling of the system under develop-
ment and its interactions with the external environment.

The process of modeling inextricably involves some degree of abstraction. Ab-
straction as any simplification has its own pros and cons, but if properly managed can
lead to a good compromise between efficiency and reliability. In this work, we exam-
ine how two types of modeling affect robustness, reliability and flexibility of complex
systems. In particular, we consider a Documentation Driven Development (DDD) [1]
approach to development and Agent Based System (ABS) approach [9,15] for run-
time analysis of SoES.

The structure of this paper is as follows. Section 2 provides an overview of the
state of the art on model-driven development and analysis. Section 3 describes on the

208 Luqi, V. Berzins, and P.M. Musial

Documentation Driven Approach (DDD) as an example of a method for development
of safety critical embedded systems. Section 4 reviews the Agent Based System
(ABS) methodology. Finally, Section 5 concludes the paper.

2 Model-Driven Development and Analysis

The aforementioned context is characterized by increased complexity of tasks, com-
munication throughput, multiplicity of software platforms and protocols, as well as
complexity of embedded physical devices. These complexities contribute to qualita-
tively new requirements for modern software design and analysis practices. In short,
the challenge is to find a good compromise between various constraints and require-
ments that have different scope, timescale, and priority. Since it is hard to express all
these constraints and requirements on an equal footing, a framework is needed that is
able to express and connect constraints and requirements. Model-driven approaches
are an example of such a framework and are widely applied to both design and analy-
sis of complex systems. Fig. 1 summarizes the common functions of modeling.

Automatic
Prototyping

Representations
for stakeholders

Requirements
at different levels

Run-time testing,
prediction

Interpretation,
validation

Representing
environment

of SoES

System
Modeling

Design stage Run-time

Fig. 1. Various functions of modeling

In system design, multi-level representations play a crucial role. For example, large
systems are usually described hierarchically and composite component can be viewed
at two levels: as a single component, or as a subsystem composed of interacting lower
level components. In this context, requirements from the higher level are allocated to
some subset of the lower level components, and reformulated in terms of concepts
that match the principles of operation at the lower level, but that may not be visible or
meaningful at the higher level of abstraction. In general, multi-level representation
allows presentation of software elements to stakeholders at different levels of abstrac-
tion. In addition, a multi-level approach facilitates means for imposing constraints of
various scopes and means for automated prototyping. In comparison, more dynamic
types of modeling may be appropriate for run-time analysis. Exploring the parameter
space of a system and testing various deployment scenarios against all possible input
domains can be quite tedious if at all computationally feasible. Thus a simplified
model of interactions that limits the number of behaviors and groups events in a fixed

 Reliability Properties of Models for Flexible Design and Run-Time Analysis 209

set of categories streamlines the analysis process. An architecture consists of a con-
nection pattern that identifies system’s components and their interactions, together
with a set of constraints that define the intended behavior of the system as a whole
and the standards and properties to which the components and their interactions must
conform to ensure they will work together to realize the intended behavior of the
system as a whole. In particular, the preferable architectures are ones that manage
interactions and are suited for describing system behaviors. In such architectures, the
complexity of the principles of operation is manageable since the architecture descrip-
tion addresses the interplay of well-specified behaviors in addition to system struc-
ture. This allows easy experimentation with run-time models and clear understanding
of their properties, hence making experimentation with run-time models easier and at
the same time makes interpretation of the results easier. As depicted in Fig. 1 a run-
time analysis includes testing, predicting, and interpretation of the results. In the
following two sections we describe two modeling approaches that are applied to the
design and analysis of complex embedded systems.

3 Documentation Driven Approach (DDD)

Documentation is an integral part in software and system engineering. Although sig-
nificant effort has been applied toward improving documentation technology [1, 2, 3,
4], there are still open challenges that hinder use of documentation as means for pro-
viding efficient support for complex real-time systems development. Documentation
formats are numerous, for instance diagrams, informal natural language descriptions,
multi-media presentations are only a few examples. Maintaining consistency of in-
formation across the different documentation representations is still an unresolved
problem. A related and equally challenging issue is the extraction of information
relevant to the stakeholders and its presentation in a comprehensive and concise way.
Extraction of information from the various documentation formats requires transfor-
mations that are tedious and error prone when carried out manually. Some rigorous
formal representations are conducive to machine manipulation, but are difficult for
human understanding. Informal representations such as natural language are comfort-
able for the human stakeholders, but are too vague and ambiguous for direct use by
computer tools [13]. To guarantee software quality in the end product, the informa-
tion in documents of successive development phases must be kept consistent. Tradi-
tional documentation technologies do not solve this problem. In the description that
follows, we present our approach to solve the aforementioned problems.

We propose an approach where models and simulations are included as documen-
tation that is used to directly drive computer-aided design tools, and to provide infor-
mation needed by human stakeholders. Typically system models include computa-
tional models and design models, where these serve as the basis to support develop-
ment activities such as requirements analysis, architecture design, validation, and
verification. Simulation and prototyping are examples of computer aided processes
used to validate the correctness of the requirements for the system under develop-
ment. With this shift from passive to active representations, documentation can pro-
vide more effective support for the entire development process. The DDD approach
addresses needs to promptly adapt to new requirements and support participation of

210 Luqi, V. Berzins, and P.M. Musial

diverse stakeholders, while preserving high confidence and timing constraints. This
significantly improves the agility of software development and supports partial auto-
mation.

All of the above concerns will become more prominent as systems of systems be-
come increasingly integrated and serve even more complex purposes. It is possible
that software components are deployed in dynamic systems where hardware, periph-
eral systems, and communication networks may change over time. In such domains
the idea that system requirements can be determined once and then remain unchanged
is unrealistic. Hence, a successful integration of the system components depends on
being able to accommodate requirements changes and system extensions to address
the emerging requirements that could not be anticipated in the original design. In
particular, as systems become more integrated, subsystems impact larger groups of
stakeholders in larger numbers of contexts. This multiplies the number of viewpoints
affecting requirements and constraints, complicates analysis, and makes it potentially
error prone. However, this flexibility must not compromise the dependability of the
system.

In DDD, documentation is computationally active structured information with au-
tomated decision support and representations in multiple formats. Documentation can
be classified into two categories: documentation for tools and documentation for hu-
mans. Formats of documentation for tools include mathematical notations, design
languages, programming languages, system models, requirements/design specifica-
tions, source code, test cases, and application data (such as biomedical databases,
results of measurements, medical records, financial databases, tables of properties of
physical materials, and any other reference information relevant to system design).
Formats of documentation for humans are typically graphical or in easily understood
text annotations in natural language, decision tables, spread sheets, or computed at-
tributes. In addition the documentation formats can be expanded to include video and
audio clips, live simulations, queries, etc.
 The DDD approach uses a Document Management System (DMS) and a Process
Measurement System (PMS). Next we describe the two systems in more detail.

3.1 Document Management System (DMS)

DMS creates, organizes monitors, analyzes, manipulates, and displays documentation.
These are the basic operations on documents associated with system development. In
addition, DMS must handle many types of documentation including requirement
specifications, abstracted models, stakeholder input, design rationale, project man-
agement information, source code, etc. Moreover, it extracts relevant information
from all development activities such as requirements analysis, prototyping, architec-
tural design, software composition, system verification and validation, and system
deployment. DMS has three main components, see Fig 2.

1. The Documentation Repository (DR) stores the information in a structured

format with a well defined meaning, which enables finding appropriate subsets
and projections of the documents for particular purposes, and extracting com-
puted attributes of documents.

 Reliability Properties of Models for Flexible Design and Run-Time Analysis 211

2. The Representation Converters are used to transform and present documenta-
tion in DR to different stakeholders and tools.

3. The transition drivers transform information from one development process
into forms suitable for the next.

Fig. 2. Structure of documentation management system

To give a concrete example of one of the DMS’s components, consider a Repre-
sentation Converter that works on the level of software requirements and facilitates
requirement management for various stakeholders. Requirement specifications that
are written in natural language (NL) are converted into resource description frame-
work (RDF) representations. This conversion is accomplished by NL processing tools
and includes several stages: syntactic parsing, reference resolution and construction of
object-predicate-subject triples. Terms and relations in the triples are standardized
according to W3C recommendations for URI (universal resource identifier) with
possible employment of user-defined terminology. Importantly RDF representations
constitute a basis for creating semantic networks that not only represent formal rela-
tions between system’s components but also provide functionalities for flexible
search, summarization and prioritization of information encoded [14]. The automated
conversion to RDF is followed by validation processes that use multiple representa-
tions for human review, to find and correct errors and resolve ambiguities.

To close the loop in software development, we have introduced a set of metrics to
measure the effort and the risk in an evolutionary software project [5, 6]. These met-
rics can be automatically obtained early in the requirements phase, based on informa-
tion contained in the DMS. They accommodate changes in requirements, process,
technology, and resources of a project. Based on the set of metrics, a measurement
model for effort and risk of failure of a project has been proposed [7]. With respect to

212 Luqi, V. Berzins, and P.M. Musial

the high confidence measurement model, we developed an Instantiated Activity
Model (IAM) that supports a formal approach for safety analysis by providing precise
metrics [8].

3.2 Process Measurement System (PMS)

The functions of PMS are to monitor the frequent changes in system requirements,
assess the effort and success possibility of the project, and measure the high confi-
dence properties of the system. PMS obtains necessary information from the docu-
mentation repository. The analysis results are intended to provide feedback to the
developers, managers and users as feedback. Note that quick communication and
analysis are the key factor for agile system development. Feedback is most useful
when it can be delivered while the relevant aspect of the system is still in the process
of being created, rather than after it has been completed and other system decisions
have been made based on a faulty version of that aspect.

PMS consists of two parts: (i) a measurement model for effort and risk of a project,
and (ii) a measurement model for high confidence. We introduced a set of metrics to
measure the effort and risk in a software project design phase [16, 18]. These metrics
can be automatically obtained early in the requirements phase, and accommodate
changes in requirement, process, technology, and resources allocated for the project.
Following is a list of the defined metrics [1]:

1. Requirements volatility characterizes fluctuations in project’s requirements. This
metric measures the rate at which existing requirements are removed and new
ones are added to the specification of the developing system.

2. Organization efficiency is an estimated measure of the correspondence between
the involved in the project and their roles in the software process. Specifically,
for each individual what is the skill match between the job requirements and the
ability of the individual to process the provided information and the rate of ex-
pectations fulfillment.

3. A product complexity metric is based on the requirements phase and is defined
by a hybrid complexity measure that properly accounts for data flow and the
properties associated with each operator and data stream.

4. Technology maturity is measured for each technology utilized in project’s design
to determine its degree of diffusion. Specifically, these metrics indicate where
the given technology is on the spectrum between innovation and routine engi-
neering practice.

In addition to the above metrics, project indicators for risk assessment [19] are
computed. For example, project risk is affected by organizational, operational, mana-
gerial, and contractual parameters, such as outsourcing, personnel, time, and budget.

We proposed a measurement model that is based on Weibull distribution [1],
where parameters in this distribution are matched with the quantitative metrics de-
scribed above. The matching was calibrated via a large number of empirical experi-
ments. The model works well for real-time applications [19]. Based on the provided
input, the development effort and success probability of the project can be estimated
by our model.

 Reliability Properties of Models for Flexible Design and Run-Time Analysis 213

3.3 Application Example

An example of implementation and application of the DDD approach is the CAPS-PC
system [1]. CAPS-PC is composed of five parts: Software Specification Editors,
Software Project Management, Automatic Code Generation, Software Quality Facili-
ties, and Software Execution Support. Each part is supported by extended facilities.
The interface of the CAPS-PC system is depicted in Fig 3.

Fig. 3. The interface of the CAPS-PC environment

In CAPS-PC, a unified internal knowledge representation of software requirements
is formalized and designed for supporting automatic materialization of multiple views
for different purposes. To the extent that the processes supported by documentation
are performed manually, its representation should be understandable by humans. To
the extent the processes are performed by tools, the representation should be tractable
by software. CAPS-PC provides both kinds of views.

The internal representation used in CASP-PC can be transformed into a graphical
view of a prototype design that is suitable for designers and for supporting explana-
tions of the system structure in review meetings. Designers can use this representa-
tion, illustrated in Fig. 2, to make adjustments to the prototype behavior using de-
clarative control constraints. The system can automatically transform this representa-
tion into executable code that can support prototype demonstrations and it is capable
of simulating execution on specified hardware configurations in linearly scaled real
time. Such simulations can be used to assess whether the design will meet its timing
requirements in the target execution environment. The system also provides tools that
can generate graphical user interfaces suitable for demonstrating the behavior of the
prototype to the system stakeholders and gathering feedback to adjust and firm up the
requirements. A comprehensive description of DDD and CAPS-PC are found in [1].

214 Luqi, V. Berzins, and P.M. Musial

4 Agent Based Systems (ABS)

Software agents have been studied by the research community, where agents are
viewed as semi-autonomous software components that can be used in a distributed
information environment. A comprehensive survey of the ABS area can be found in
[15]. Representation of software components as agents allows modeling of complex
systems and interaction between its components.

There are different definitions of agents some of which emphasize behavioral and
some structural features. Before introducing further details, we briefly describe why
agents are needed and their advantages over conventional software programs are.
Decomposing a system into agents has the advantages of: (i) clarity in mapping be-
tween agents and physical entities/concepts with improved understanding of system
dynamics; (ii) simple and well defined information exchange inherited in autonomous
agents makes them structurally simple; and (iii) universal character of agent services
can be used by many other agents and thus contributes to effective decomposition of
tasks and problems.

The challenge of testing software is that it is often done in multidimensional space
and thus is computationally difficult. To cope with the curse of dimensionality, one
may use agents that autonomously (independently) deal with well defined and simple
actions/tasks and effectively reduce the dimensionality of a system.

There are different ways to define agents. According to DARPA [9], agents should
possess the following behaviors: (i) agents act autonomously to accomplish objec-
tives, (ii) agents adapt to their environment, and (iii) agents cooperate to achieve
common goals. These behaviors are illustrated in Fig. 4.

Fig. 4. Characteristics of Software Agents

 Reliability Properties of Models for Flexible Design and Run-Time Analysis 215

4.1 Real-Time System Design

Design of real-time systems where scheduling of events is imperative can benefit
from use of agents in the following ways. There are two possible options for to sche-
dule activities of agents: (i) a global schedule, or (ii) a distributed schedule. In (i)
agents perform local actions while considering collaboration with external resources
and the global schedule is obtained through the merging of local schedules. Alterna-
tively [20, 21, 22, 23], in (ii) where agents may act as a single resource, each agent is
responsible for negotiation deadlines with other agents [24, 25, 26, 27].

4.2 IMPACT Development Platform

IMPACT [10], is a software development platform for creating and deploying au-
tonomous, collaborating agents. This platform is useful for development of real-time
systems as it supports constraint annotation on the agents. These annotations can
express constraints on deadlines, geographical locations, concurrency restrictions, etc.

A structural description used in IMPACT specifies agents as consisting of (i) a set
of data types, (ii) a set of API functions implemented in any language manipulating
those types, (iii) a set of actions implemented in any language, (iv) a notion of concur-
rency, (v) a set of action constraints, (vi) a set of integrity constraints, and (vii) an
agent program. Examples of actions that agents can perform include: execute request,
modify request and execute, send message(s), clone agent, move to remote site, do-
nothing, post web page, create file, create bar graph, construct route, and update data-
base. The ABS advantages include [11]:

1. Rich mathematical foundation.
2. Hierarchical development. Agents can be built on legacy data/code and special-

ized data structures. The general structure of an ABS involves two parts: a set of
agents and a platform for their interaction and execution (e.g., applications on
Army Logistics data, Army JANUS simulation data, ARL CIP servers, Oracle
data, etc.).

3. Dynamic execution. ABS can couple arbitrary actions to changes in agent envi-
ronment (e.g., features based on coupling of send-mail, creation of Web pages, and
file synthesis actions to changes in agent state when new messages are received.).

4. Open interaction. ABS can interact with other agent platforms. For example,
IMPACT can connect to arbitrary IBM Aglets, and IMPACT security agents can
interact with security agents built by Lockheed (ATIRP Consortium) and ARL’s
LTC.

5. Security. IMPACT agents can be used to make other applications more secure
(e.g., ARL-ATIRP-IMPACT security agents).

6. Intelligence. IMPACT agents are capable of the following actions:
− Collaborating with one another as well as agents in other agent platforms

(e.g., bookstore procurement features).
− Creating sophisticated plans. For example, noncombatant evacuation
− Reasoning about time and uncertainty.
− Making decisions based on agent objectives (expressed via objective func-

tions).

216 Luqi, V. Berzins, and P.M. Musial

7. Heterogeneous information integration. IMPACT agents support heterogeneous
information integration (e.g., Army War Reserves Logistics application integrating
Oracle and LOGTAADS data).

8. Rapid generation and deployment. IMPACT agents can be rapidly created and
deployed via AgentDE, the IMPACT agent development environment.
− Meta agent programs allow agents to reason about other agents’ states (what

does the other agent know?) and actions (what is the other agent going to do?)
− Temporal agent programs allow agents to make commitments over time.
− Probabilistic agent programs allow agents to make decisions in the presence

of uncertainty.
− Secure agent programs give the methods by which agents may provide da-

ta/services only to authorized agents.

Examples of types of agents include:

1. Meta Agents. Agents that reason about the beliefs and actions of other agents.
2. Temporal Agents. Agents that execute actions that have temporal extent and sche-

dule actions for the future; those agents may reason about the past.
3. Probabilistic Agents. Agents that reason about uncertainty in the world.

As indicated in [28] use of agents is a good way of building complex software sys-
tems. Although use of agents as wrappers for legacy software is theoretically appeal-
ing, there are some documented limitations [29] to this approach.

Since agents are abstract entities with specified characteristics, testing of agents’
state evolution and messaging behavior patterns can be done off line using any of the
established formal methods, such as Hoare logic [30], Lambda Calculus[31], TIOA
[32], provided that the agent representation can be successfully translated into tar-
geted formal model.

4.3 Department Store Example

The following example is from the e-commerce domain; however, it is a much sim-
pler vehicle to describe use of ABS than a more complicated real-time example.

Consider a large department store that uses a web-based marketing site. Today, the
Internet contains a whole host of such sites, offering on-line shopping services.

As illustrated in [12], intelligent agent technology may be used to accomplish these
goals through a simple architecture. This architecture is shown in Fig. 5 and involves
the following agents:

1. A Credit Database Agent: This agent provides access to a credit database.
2. Product Database Agent: This agent provides access to product databases reflect-

ing the merchandise that the department store sells. The agent may be used to re-
trieve tuples associated with a product description (e.g., ‘‘leather shoes’’).

3. A Profiling Agent: This agent takes as input the identity of a user (who is inter-
acting with the Department Store Interface agent described below). It then re-
quests the credit database agent for information on the user’s credit history. Us-
ing the credit information on individual’s spending habits, the profiling agent
may classify the user as a ‘‘high’’, ‘‘average’’, or ‘‘low’’ spender. More detailed
classifications are also possible (e.g., ‘‘high’’ spender on clothing).

 Reliability Properties of Models for Flexible Design and Run-Time Analysis 217

Fig. 5. Interactions between agents in the STORE example, adapted from [12]

4. A Content Determination Agent: This agent tries to determine what to show to
the user by analyzing and filtering the information provided by the profiling
agent to show key data (e.g., if the user is classified as a ‘‘high spender,’’ it may
select the ten most expensive pairs of leather shoes).

5. Interface Agent: This agent weaves a multimedia presentation using objects iden-
tified by the Content Determination Agent. This might be accompanied by fo-
cused advertising information.

Note that implementation details of each agent are irrelevant, as the system design
is based on the interaction between agents. Hence, the agent paradigm provides a
level of abstraction and reduces complexity of the overall system design.

5 Conclusion

In this paper we considered reliability and flexibility properties of DDD and ABS
architectures. DDD that serves to design and upgrade complex systems emphasizes
hierarchical representations and is well suited for satisfaction of a range of con-
straints. Alternatively, the function of ABS is to model system performance with an
emphasis on interactions and behaviors of independent entities. Both architectures
are well suited for upgrading either through automatic prototyping (DDD) or through
rewriting certain agents without changing the overall system (ABS). Also, both archi-

218 Luqi, V. Berzins, and P.M. Musial

tectures introduce some redundancy which makes them robust in the case of require-
ment conflict or uncertainty/incomplete information. In particular, multi-level DDD
architecture duplicates constraints on at least three levels, so that certain inconsisten-
cies on the lower level can be tolerated by the virtue of satisfaction high-level con-
straints. In such a way external conflicts due to cross-cutting constraints can be man-
aged in the same way as internal inconsistency of requirements. Analogously, ABS
agents handle uncertainty in the same way as incomplete information, namely using
simple probabilistic reasoning and maintaining a system of beliefs. All these proper-
ties make DDD and ABS architectures well suited for the purposes of SoES design
and analysis.

References

1. Luqi, Zhang, L., Berzins, V., Qiao, Y.: Documentation Driven Development for Complex
Real-Time Systems. IEEE Transaction on Software Engineering 30(12), 936–952 (2004)

2. Luqi, Zhang, L.: Documentation Driven Agile Development for Systems of Embedded
Systems. In: Monterey Workshop Series: Workshop on Software Engineering for Embed-
ded Systems: From Requirement to Implementation, Chicago, IL (September 24-26, 2003)

3. Luqi, Liang, X., Zhang, L., Berzins, V.: Software Documentation-Driven Manufacturing.
In: COMPSAC 2003. Proceedings of The 27th Annual International Computer Software
and Applications Conference, Dallas, Texas (November 3-6, 2003)

4. Berzins, V., Qiao, Y., Luqi: Information Consistency Checking for Documentation Driven
Development for Complex Embedded Systems. In: Monterey Workshop Series: Workshop
on Software Engineering for Embedded Systems: From Requirement to Implementation,
Chicago, IL (September 24-26, 2003)

5. Jacoby, G., Luqi: Intranet Portal Model and Metrics: A Strategic Management Perspective,
IT Professional (January/February 2005)

6. Luqi, Zhang, L.: Quantitative Metrics for Risk Assessment in Software Projects. In: SEA
2003. Proceedings of IASTED International Conference on Software Engineering and Ap-
plications, Marina del Rey, pp. 76–81 (2003)

7. Jacoby, G., Luqi: Critical Business Requirements Model and Metrics for Intranet ROI.
Journal of Electronic Commerce Research 6(1), 1–30 (2005)

8. Luqi, Liang, X., Brown, M.: Formal Approach for System Safety Analysis and Assessment
via an Instantiated Activity Model. In: Proc. of 21st International System Safety Confer-
ence, Ottawa, Canada, August 4-8, 2003, pp. 1060–1069 (2003)

9. AFRL/IF, Control of Agent Based Systems (CoABS), AFRL/IF Information Directorate,
http://www.rl.af.mil/tech/programs/coabs/coabs.html

10. Arisha, K., Ozcan, F., Ross, R., Subrahmanian, V.S., Eiter, T., Kraus, S.: IMPACT: A
Platform for Collaborating Agents. IEEE Intelligent Systems 14, 64–72 (1999)

11. Shen, W., Norrie, D.H.: Agent-Based Systems for Intelligent Manufacturing: A State-of-
the-Art Survey, http://198.20.44.104/wshen/papers/survey-abm.htm

12. Subrahmanian, V.S., Bonatti, P., Dix, J., Eiter, T., Kraus, S., Ozcan, F., Ross, R.: Hetero-
geneous Agent Systems. The MIT Press, Cambridge (2000), http://mitpress.mit.edu/
catalog/item/default.asp?ttype=2&tid=3370&mode=toc

13. Charniak, E.: Statistical parsing with a context-free grammar and word statistics. In: Pro-
ceedings of the Fourteenth National Conference on Artificial Intelligence, AAAI Press,
MIT Press, Menlo Park (1997)

 Reliability Properties of Models for Flexible Design and Run-Time Analysis 219

14. Leskovec, J., Grobelnik, M., Milic-Frayling, N.: Learning Sub-structures of Document
Semantic Graphs for Document Summarization. In: LinkKDD. Workshop on Link Analy-
sis and Group Detection, Seattle, WA, USA (2004)

15. Shen, W., Norrie, D.H.: Agent-Based Systems for Intelligent Manufacturing: A State-of-
the-Art Survey. Knowledge and Information Systems, an International Journal 1(2), 129–
156 (1999)

16. Boehm, B.: Software Engineering Economics. Prentice-Hall, Englewood Cliffs (1981)
17. Karolak, D.: Software Engineering Management. IEEE CS Press, Los Alamitos (1996)
18. Garlan, D., Khersonsky, S., Kim, J.: Model Checking Publish-Subscribe Systems. In: Proc.

of 10th Int’l SPIN Workshop Model Checking of Software, pp. 166–180 (2003)
19. Murrah, M.: Enhancements and Extensions of Formal Models for Risk Assessment in

Software Projects. PhD Thesis, Naval Postgraduate School (September 2003)
20. Sadeh, N., Fox, M.S.: CORTES: An Exploration into Micro-Opportunistic Job-Shop

Scheduling. In: IJCAI 1989. Proc. of Workshop on Manufacturing Production Scheduling
(1989)

21. Sycara, K.P., Roth, S.F., Sadeh, N., Fox, M.S.: Resource Allocation in Distributed Factory
Scheduling. Intelligent Scheduling, pp. 29–40. Morgan Kaufman Publishers, San Fran-
cisco (1991)

22. Murthy, S., Akkiraju, R., Rachlin, J., Wu, F.: Agent-Based Cooperative Scheduling. In:
Proc. of AAAI Workshop on Constrains and Agents, pp. 112–117 (1997)

23. McEleney, B., O’Hare, G.M.P., Sampson, J.: An Agent Based System for Reducing
Changeover Delays in a Job-Shop Factory Environment. In: Proc. of PAAM 1998 (1998)

24. Smith, R.G.: The Contract Net Protocol: High-Level Communication and Control in a Dis-
tributed Problem Solver. IEEE Transactions on Computers C-29(12), 1104–1113 (1980)

25. Fordyce, K., Sullivan, G.G.: Logistics Management System (LMS): Integrating Decision
Technologies for Dispatch Scheduling in Semiconductor Manufacturing. In: Intelligent
Scheduling, pp. 473–516. Morgan Kaufman Publishers, San Francisco

26. Saad, A., Biswas, G., Kawamura, K., Johnson, M.E., Salama, A.: Evaluation of Contract
Net-Based Heterarchical Scheduling for Flexible Manufacturing Systems. In: IJCAI 1995.
Proc. of Intelligent Manufacturing Workshop, pp. 310–321 (1995)

27. Ouelhadj, D., Hanachi, C., Bouzouia, B.: Multi-Agent System for Dynamic Scheduling
and Control in Manufacturing Cells. In: Working Notes of the Agent-Based Manufacturing
Workshop (1998)

28. Jennings, N.R.: An Agent-based Approach for Building Complex Software Systems.
Communications ofthe ACM 44(4), 35–41 (2001)

29. Gawinecki, M., Kruszyk, M., Paprzycki, M., Ganzha, M.: Pitfalls of agent system devel-
opment on the basis of a Travel Support System. In: BIS 2007, vol. 4439, pp. 488–499.
Springer, Heidelberg (2007)

30. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications of the
ACM 12(10), 576–585 (1969)

31. Church, A.: The Calculi of Lambda Conversion. Princeton University Press, Princeton
(1941)

32. Kaynar, D.K., Lynch, A., Segala, R., Vaandrager, F.: The Theory of Timed I/O Automata.
In: Series Synthesis Lectures on Computer Science. Morgan and Claypool Publishers
(2006)

Author Index

Amundson, Isaac 125

Berzins, Valdis 207

Colmenares, Juan A. 168
Corman, David 97

Ermagan, Vina 53

Grosu, Radu 111

Huang, Xiaowan 111
Hugues, Jérôme 35

Karsai, Gabor 1
Kim, K.H. (Kane) 168
Kim, Moon-Cheol 168
Koutsoukos, Xenofon 125
Krüger, Ingolf 53
Kuehl, Markus 19
Kushwaha, Manish 125

Liu, Sheng 168
Loyall, Joseph 150
Luqi 207

Menarini, Massimiliano 53
Müller-Glaser, Klaus D. 19
Musial, P.M. 207

Narayanan, Anantha 1
Neema, Sandeep 125

Obermaisser, Roman 187

Paunicka, James 97
Pautet, Laurent 35
Poulhiès, Marc 75
Pulou, Jacques 75

Reichmann, Clemens 19
Rippert, Christophe 75

Schantz, Richard 150
Sifakis, Joseph 75
Smolka, Scott A. 111
Sztipanovits, Janos 125

Tan, Wenkai 111
Tripakis, Stavros 111

Zalila, Bechir 35
Zheng, Liangchen 168
Zhou, Qian 168

	Title Page
	Preface
	Organization
	Table of Contents
	On the Correctness of Model Transformations in the Development of Embedded Systems
	Model Based Development of Embedded Systems
	The Problem with Model-Based Approaches

	Towards Verified Transformations
	Certification Via Bisimilarity
	Certification by Semantic Anchoring

	Case Study 1: Statechart to EHA Transformation
	Extended Hierarchical Automata
	Transformation Steps
	Verifying the Transformation

	Case Study 2: Transformation between Variants of Statecharts
	Variants of Statecharts
	Semantic Anchoring
	Transformation Steps
	Verification by Weak Bisimilarity

	Case Study 3: Code Generation from Stateflow Models
	Step 1: Collect the Flattened Active State Configurations
	Step 2: Add Transitions to Complete the Finite Automaton
	Bisimilarity Checking

	Summary and Future Work
	References

	Supporting System Level Design of Distributed Real Time Systems for Automotive Applications
	Introduction
	Case Tool Integration Platform
	Meta Modeling
	Integration Platform
	Code Generation
	Simulation and Emulation

	Model to Model Transformation
	Model to Model Transformation Technology
	Model to Model Transformation Sequences

	Design Space Exploration
	Requirements for Methods in Early Design Phases
	Meta Model for e/e-Architecture
	E/E-Architecture Meta Model Construction
	E/E-Architecture Evaluation Metrics
	E/E-Architecture Evaluation
	Tool implementation in Cooperation
	Current Work: Extension for Test Activities

	Conclusion
	References

	From MDD to Full Industrial Process: Building Distributed Real-Time Embedded Systems for the High-Integrity Domain
	Introduction
	MDD in Action: An Analysis
	Challenges in the Definition of a MDD Process for DRE or HI Systems
	An Ideal Model-Driven Suite for DRE Systems
	An Overview of the AADL
	Using AADL in an Ideal MDE Process
	From AADL Models to DHI Systems
	An Integrated MDE Toolsuite for DHI Systems
	Assessing an AADL Model
	Generating Executable Code

	Case Study
	Scenario
	Schedulability Analysis and Model Checking
	Generated Code
	Assessment of the Process

	Conclusions

	Model-Based Failure Management for Distributed Reactive Systems
	Introduction
	A Case Study
	Failure Taxonomy
	Services
	Failure Aware Service Model
	Interaction Model

	Deriving Detectors
	Discussion
	Related Work
	Conclusion
	References

	A Methodology and Supporting Tools for the Development of Component-Based Embedded Systems
	Introduction
	The BIP Component Model
	Atomic Components
	Connectors and Interactions
	Priorities
	Compound Components
	Implementation

	The Think Framework
	The BIP to Think Compiler
	Atomic Components
	Connector Components
	The Priority Component
	The Engine
	Deployment

	Evaluation
	Conclusion and Future Work
	References

	Industrial Challenges in the Composition of Embedded Systems
	Summary
	Embedded System Challenges
	Dynamic Operation in a Networked SoS Environment
	Software Engineering Challenges

	Some Successes
	Summary
	References

	Deep Random Search for Efficient Model Checking of Timed Automata
	Introduction
	Timed Büchi Automata
	Simulation Graphs
	The Deep Random Search Algorithm
	Experimental Results
	Conclusions
	References

	OASiS: A Service-Oriented Architecture for Ambient-Aware Sensor Networks
	Introduction
	The OASiS Programming Model
	The Object-Centric Paradigm
	Services in Sensor Networks
	Service Constraints
	Service Discovery and Composition

	Dynamic Service Configuration
	Constraint Satisfaction

	The OASiS Middleware
	Middleware Services
	WWW Gateway
	Implementation

	Case Study
	Experimental Setup
	Performance Evaluation

	Scalability
	Related Work
	Conclusion
	References

	Composing and Decomposing QoS Attributes for Distributed Real-Time Systems: Experience to Date and Hard Problems Going Forward
	Introduction
	Issues in Providing QoS Management in DRE Systems
	A Solution for Providing QoS Management in DRE Systems
	Middleware for Dynamic QoS Management
	Composition and Composition Patterns

	An Example of Providing and Integrating Elements of Dynamic QoS Management
	Construction Techniques

	Early Experience and Challenges with Applying and Using the QC Composition Approach
	Observed Benefits of QC Composition
	Continuing Challenges

	Related Work
	Moving Forward from Here
	New Branches: Assessment and Certification of Dynamic Behavior in DRE Systems

	References

	Recent Additions on the Application Programming Interface of the TMO Support Middleware
	Introduction
	Overview of the TMO Programming Scheme
	Improvements on the TMOSM API
	Activation and Deactivation of Spontaneous Methods
	Use of the Local Time-Stamp Counter in Addition to Global Time
	Service Requests with Official Release Time
	Interaction between Non-TMO Threads and TMO Methods
	Invocation of Service Methods Via RMMC

	Conclusion
	References

	Integrating Automotive Applications Using Overlay Networks on Top of a Time-Triggered Protocol
	Introduction
	Overlay Networks on Top of a Time-Triggered Physical Network
	Time-Triggered Physical Network
	Hierarchic Subdivision of Communication Slots
	Time-Triggered and Event-Triggered Overlay Networks
	Encapsulation of Overlay Networks

	Communication Middleware for the Realization of Overlay Networks
	Operating System
	Real-Time Ethernet Driver
	Communication Middleware

	Exemplary Overlay Networks based on Automotive Communication Requirements
	Present Day Network Infrastructure
	Exemplary Configuration of Overlay Networks

	Related Work
	Integration of Automotive Application Subsystems
	Integration of Control Paradigms

	Discussion
	References

	Reliability Properties of Models for Flexible Design and Run-Time Analysis
	Introduction
	Model-Driven Development and Analysis
	Documentation Driven Approach (DDD)
	Document Management System (DMS)
	Process Measurement System (PMS)
	Application Example

	Agent Based Systems (ABS)
	Real-Time System Design
	IMPACT Development Platform
	Department Store Example

	Conclusion
	References

	Author Index

