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Preface

Networked Systems: Realization of Reliable Systems on Unreliable
Networked Platforms

The Monterey Workshops series was initiated in 1993 by David Hislop with the purpose
of exploring the critical problems associated with cost-effective development of high-
quality software systems. During its 12-year history, the Monterey Workshops have
brought together scientists that share a common interest in software development re-
search serving practical advances in next-generation software-intensive systems. Each
year is dedicated to a given topic such as "Software Engineering Tools: Compatibil-
ity and Integration" (Vienna in 2004), "Engineering for Embedded Systems: From Re-
quirements to Implementation" (Chicago in 2003), "Radical Innovations of Software
and Systems Engineering in the Future" (Venice in 2002), "Engineering Automation
for Software Intensive System Integration" (Monterey in 2001), etc.

This 12th Monterey Workshop was held in Laguna Beach, CA during September
22–24, 2005.

Context of the 12th Workshop

Networked computing is increasingly becoming the universal integrator for large-scale
systems. In addition, new generations of wireless networked embedded systems rapidly
create new technological environments that imply complex interdependencies amongst
all layers of societal-scale critical infrastructure, such as transportation, energy distri-
bution and telecommunication. This trend makes reliability and safety of networked
computing a crucial issue and a technical precondition for building software-intensive
systems that are robust, fault tolerant, and highly available.

The 12th Monterey Workshop on "Networked Systems: Realization of Reliable Sys-
tems on Unreliable Networked Platforms" focused on new, promising directions in
achieving high software and system reliability in networked systems.

All presentations at the workshop were by invitation upon the advice of the Program
Committee.

Invited Speakers

Myla Archer Naval Research Lab, USA
Barrett Bryant University of Alabama, Birmingham, USA
David Corman Boeing, St Louis, USA
Nick Dutt UCI, USA
Holger Giese University of Paderborn, Germany
Chris Gill Washington University at St Louis, USA
Helen Gill NSF, USA
Klaus Havelund NASA, USA
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David Hislop Army Research Office, USA
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Vana Kalogeraki UC Riverside, USA
Gabor Karsai Vanderbilt University, USA
Kane Kim University of California at Irvine, USA
Moon-Hae Kim Konkuk University, Korea
Raymond Klefstad UCI, USA
Hermann Kopetz Vienna University of Technology, Austria
Fabrice Kordon University of Pierre & Marie Curie, Paris, France
Ingolf Krueger UCSD, USA
Akos Ledeczi Vanderbilt University, USA
Edward Lee UC Berkeley (Keynote Presentation), USA
Chenyang Lu Washington University, USA
Luqi Naval Postgraduate School, USA
Zohar Manna Stanford University, USA
Oliver Marin University of Pierre & Marie Curie, Paris, France
Nenad Medvidovic USC, USA
Laurent Pautet Télécom Paris, France
Raj Rajkumar Carnegie Mellon University, USA
Martin Rinard, MIT, USA
Man-tak Shing Naval Postgraduate School, USA
Janos Sztipanovits Vanderbilt University, USA
Wei-Tek Tsai Arizona State University, USA
Andre Van der Hoek UCI, USA
Nalini Venkatasubramanian UCI, USA
Ben Watson Lockheed Martin, USA
Albert Wavering NIST, USA
Victor Winter University of Nebraska at Omaha, USA
Feng Zhao Microsoft Research (Keynote Presentation), USA

Papers included in this volume were selected among the submissions from the work-
shop’s discussions.

Workshop Topics

Software is the new infrastructure of the information age. It is fundamental to economic
success, scientific and technical research and national security. Our current ability to
construct the large and complex software systems demanded for continued economic
progress is inadequate.

The workshop discussed a range of challenges in networked systems that require
further major advances in software and systems technology:

– System Integration and Dynamic Adaptation. A new challenge in networked
systems is that stable application performance needs to be maintained in spite of
the dynamically changing communication and computing platforms. Consequently,
the run-time architecture must include active control mechanisms for adapting the
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Preface VII

system/software components to changing conditions. Global system characteristics
need to be achieved by increased run-time use of reflection (systems that
utilize their own models), advanced interface modeling, self-adaptation, and self-
optimization.

– Effects of Dynamic Structure. The structure of networked systems is complex
and highly dynamic. Because systems are formed by ad hoc networks of nodes and
connections, they lack fine-grain determinism for end-to-end behaviors that span
subsystem and network boundaries. In addition, there are end-to-end system qual-
ities such as timeliness and security that can only be evaluated in this dynamically
integrated context.

– Effects of Faults. Faults and disruptions in the underlying communication and
computing infrastructure are the normal events. Since well-understood techniques
for fault-tolerant computing, such as n-modular redundancy, are not applicable in
the dynamically changing networked architecture, new technology is required for
building safe and reliable applications on dynamic, distributed platforms.

– Design for Reliability. Although there are varieties of metrics and established prac-
tices for characterizing the expected failure behavior of a system after it is fielded
and there are established practices for specifying the desired reliability of a sys-
tem, the evaluation of system or software reliability prior to fielding is a significant
problem.

– System Certification. The process for certifying that a system meets specified
reliability goals under the range of conditions expected in actual use currently
involves exhaustive analysis of a system, including its development history and
extensive testing. Current methods do not give systems engineers the confidence
they would like to have in concluding that a system will have particular reliability
characteristics.

– Effects of Scale. Another risk that overlays all proposed solutions is scale. Scale
also addresses both run-time and design-time concerns. Typically, demonstrations
are the convincing drivers to technology adoption. Demonstrations of new tech-
nologies however are usually small-scale, focused efforts. It is an open problem
how to scale up a demonstration that addresses the number of nodes and connec-
tions, and the number of software developers, analysts, and integrators to provide
enough proof to justify technology transition.

These challenges are exaggerated in networked-embedded software systems, where
computation and communication are tightly integrated with physical process.

Approaches

There have been important new developments during the past five years that improve
our chance to meet the new challenges listed above. Contributions at the workshop
identified and discussed research approaches that have direct and immediate relevance
to the new challenges. Listed below are the major themes that came up in many forms
in the presentations and captured in the contributions of these proceedings.
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VIII Preface

Model-based software development of network-centric system-of-systems. Model-
based design is rapidly becoming one of the prominent software/system development
paradigms. Models with precisely defined syntax and semantics capture system/soft-
ware invariants that can be formally analyzed and used for predicting/ verifying
system behavior and for generating code. A new challenge in network-centric system-
of-systems is that design invariants need to be maintained actively during run-time due
to the dynamically changing communication and computing platforms. Consequently,
the relationship between design-time modeling and model analysis and run-time behav-
ior needs to be fundamentally different: emphasis needs to be shifted toward correct-
by-construction approaches that can guarantee selected behavioral properties without
the need for system-level verification, and the run-time architecture must include active
control for adapting the system/software to changing conditions. Global system charac-
teristics need to be achieved by increased run-time use of reflection (systems that utilize
their own models), advanced interface modeling, self-adaptation, and self-optimization.

Foundations of future design and programming abstractions. Programming abstrac-
tions have a crucial role in the design of highly concurrent, dynamic, and time-critical
networked systems. Today’s abstractions have been developed for programs with static
structure, closed architectures, and stable computing platforms that are not scalable,
understandable, and analyzable in complex, networked, real-time systems. We need
abstractions that go beyond a narrow view of programming languages to integrate mod-
eling, design, and analysis. They must satisfy the need for blending solid formal founda-
tions with domain-specific expressions and must yield behavior that is predictable and
understandable to system designers, even in the face of uncertain or dynamic system
structure. To accomplish this, they must serve both the modeling role and the design
role, leveraging generators, visual notations, formal semantics, probabilistic modeling,
and yet-to-be-developed techniques for gaining an effective multiplicity of views into a
design. And they must effectively express concurrency, quality-of-service constraints,
and heterogeneity.

Active fault management in network-centric systems. It is important to recognize that
software will never be perfect large-scale, networked systems-of-systems. Software and
platform components may fail at any time. The notion of active fault management ac-
cepts this as a fact and instead of attempting to mask the faults, it focuses on their
containment, mitigation, and management. Active fault management is a novel tech-
nique that is gaining acceptance in complex engineering systems (e.g., aerospace ve-
hicles) and promises reliability through detecting, isolating and recovering from faults
using algorithmic techniques for contingency management. The software engineering
community took notice of these engineering techniques and applies them to software
artifacts. The resulting fault management architectures are layered, as different methods
may be needed on different levels of abstractions in systems and, preferably, they have
to be proactive, so that they detect early precursors to larger problems (e.g., memory
leak in dynamically allocated memory, or memory fragmentation) such that the system
will have sufficient time to take preventive action.

Intelligent, robust middleware. Complexity of large-scale networked systems requires
careful consideration on reusability of code. Middleware technologies offer architec-
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Preface IX

tural solutions for separating application code from highly reusable components or lay-
ers in software stacks. We need to develop and validate a new generation of intelligent
middleware technologies that can adapt dependably in response to dynamically chang-
ing conditions for the purpose of always utilizing the available computer and network
infrastructure to the highest degree possible in support of system needs. Emerging archi-
tectures, such as service-oriented architecture (SOA), provide focus for this new gen-
eration of middleware research that will ultimately enable software whose functional
and QoS-related properties can be modified either statically, (e.g., to reduce footprint,
leverage capabilities that exist in specific platforms, enable functional subsetting, and
minimize hardware/software infrastructure dependencies) or dynamically (e.g., to op-
timize system responses to changing environments or requirements, such as changing
component interconnections, power-levels, CPU/network bandwidth, latency/jitter, and
dependability needs).

Model-based development of certifiable systems. Systems that are safety certified are
arguably some of the most costly to develop. As a result, software architectures for such
systems are typically very deterministic in order to enable provable mitigation of safety
hazards. The limitations of these approaches are quickly becoming unacceptable due
to the advent of ad-hoc mobile networks requiring a much more dynamic structure and
expected unavailability of certain resources for these safety critical systems. Model-
based development approaches must be applied to enable the development of these
systems within reasonable cost. These approaches should include the development of
modeling syntax and semantics to express safety-critical aspects and perhaps constrain
dynamism, the provision of design-time and run-time analysis that leverages this model
and addresses the concerns of the safety community in the context of a network-centric
system of systems, the automatic generation of artifacts that are proven by analysis
to be safe, and the establishment of trust in such tools and techniques by the safety
community as a whole.
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Reinventing Computing for Real Time

Edward A. Lee and Yang Zhao

University of California, Berkeley
{eal,ellen zh}@eecs.berkeley.edu

Abstract. This paper studies models of computation, software tech-
niques, and analytical models for distributed timed systems. By “timed
systems” we mean those where timeliness is an essential part of the be-
havior. By “distributed systems” we mean computational systems that
are interconnected on a network. Applications of timed distributed sys-
tems include industrial automation, distributed immersive environments,
advanced instrumentation systems, networked control systems, and many
modern embedded software systems that integrate networking. The
introduction of network time protocols such as NTP (at a coarse granu-
larity) and IEEE 1588 (at a fine granularity) makes possible time coher-
ence that has not traditionally been part of the computational models
in networked systems. The main question we address in this paper is:
Given time synchronization with some known precision, how does this
change how distributed applications are designed and developed? A sec-
ond question we address is: How can time synchronization help with
realizing coordinated real-time events.

1 Introduction

Despite considerable progress in software and hardware techniques, when embed-
ded computing systems absolutely must meet tight timing constraints, many of
the advances in computing become part of the problem, not part of the solution.
Although synchronous digital logic delivers precise timing determinacy, advances
in computer architecture and software have made it difficult or impossible to esti-
mate or predict the execution time of software. Moreover, networking techniques
introduce variability and stochastic behavior, and operating systems rely on best
effort techniques. Worse, programming languages lack time in their semantics,
so timing requirements are only specified indirectly. This paper studies methods
for programming ensembles of networked real-time, embedded computers where
time and concurrency are first-class properties of the program.

This contrasts with established software techniques, where time and concur-
rency are afterthoughts. The prevailing view of real-time appears to have been
established well before embedded computing was common. Wirth reduces real-
time programming to threads with bounds on execution time, arguing that “it is
prudent to extend the conceptual framework of sequential programming as little
as possible and, in particular, to avoid the notion of execution time” [30]. In this
sequential framework, “computation” is accomplished by a terminating sequence
of state transformations. This core abstraction underlies the design of nearly all

F. Kordon and J. Sztipanovits (Eds.): Monterey Workshop 2005, LNCS 4322, pp. 1–25, 2007.
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2 E.A. Lee and Y. Zhao

computers, programming languages, and operating systems in use today. But
unfortunately, this core abstraction does not fit embedded software very well.

This core abstraction fits reasonably well if embedded software is simply “soft-
ware on small computers.” In this view, embedded software differs from other
software only in its resource limitations (small memory, small data word sizes,
and relatively slow clocks). In this view, the “embedded software problem” is an
optimization problem. Solutions emphasize efficiency; engineers write software
at a very low level (in assembly code or C), avoid operating systems with a
rich suite of services, and use specialized computer architectures such as pro-
grammable DSPs and network processors that provide hardware support for
common operations. These solutions have defined the practice of embedded soft-
ware design and development for the last 25 years or so. In an analysis that
remains as valid today as 18 years ago, Stankovic laments the resulting mis-
conceptions that real-time computing “is equivalent to fast computing” or “is
performance engineering” [29].

Of course, thanks to the semiconductor industry’s ability to follow Moore’s
law, the resource limitations of 25 years ago should have almost entirely evapo-
rated today. Why then has embedded software design and development changed
so little? It may be that extreme competitive pressure in products based on em-
bedded software, such as consumer electronics, rewards only the most efficient
solutions. This argument is questionable, however. There are many examples
where functionality has proven more important than efficiency. It is arguable
that resource limitations are not the only defining factor for embedded software,
and may not even be the principal factor.

Stankovic argues that “the time dimension must be elevated to a central
principle of the system. Time requirements and properties cannot be an af-
terthought” [29]. But in mainstream computing, this has not happened. The
“time dimension,” of course, is inextricably linked to concurrency, and prevail-
ing models of concurrency (threads and message passing) are in fact obstacles
to elevating time to a central principle.

In embedded software, several recent innovations provide unconventional ways
of programming concurrent and/or timed systems. We point to six cases that
define concurrency models, component architectures, and management of time-
critical operations in ways significantly different from prevailing software engi-
neering techniques. The first is nesC with TinyOS [8], which was developed for
programming very small programmable sensor nodes called “motes.” The second
is Click [16], which was created to support the design of software-based network
routers. These first two have an imperative flavor, and components interact prin-
cipally through procedure calls. The third is Simulink with Real-Time Workshop
(from The MathWorks), which was created for embedded control software and
is widely used in the automotive industry. The fourth is SCADE (from Esterel
Technologies, see [2], which was created for safety-critical embedded software
and is used in avionics. These two have a more declarative flavor, where compo-
nents interact principally through messages rather than procedure calls. The fifth
is the family of hardware description languages, including Verilog, VHDL, and
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Reinventing Computing for Real Time 3

SystemC, which express vast amounts of concurrency, principally using discrete-
event semantics. The sixth example is LabVIEW, from National Instruments,
a dataflow programming environment with a visual syntax designed for embed-
ded instrumentation applications. The amount and variety of experimentation
with alternative models of computation for embedded systems is yet a further
indication that the prevailing software abstractions are inadequate.

The approach in this paper leverages the concept of actor-oriented design
[20], borrowing ideas from Simulink and from Giotto [12], an experimental real-
time programming language. However, it addresses a number of limitations in
Simulink and Giotto by building similar multitasking implementations from
specifications that combine dataflow modeling and distributed discrete-event
modeling. In discrete-event models, components interact with one another via
events that are placed on a time line. Some level of agreement about time across
distributed components is necessary for this model to have a coherent seman-
tics. While distribution of discrete-event models has long been used to exploit
parallel computing to accelerate execution [31], we are not concerned here with
accelerating execution. The focus is instead on using a model of time as a bind-
ing coordination agent. This steers us away from conservative techniques (like
Chandy and Misra [3]) and optimistic techniques (like Time Warp [15]). One in-
teresting possibility is based on distributed consensus (as in Croquet [28]). In this
paper, we focus on techniques based on distributing discrete-event models, with
functionality specified by dataflow models. Our technique allows out of order
execution without sacrificing determinacy and without requiring backtracking.
The use of dataflow formalisms [26] supports mixing untimed and event-triggered
computation with timed and periodic computation.

2 Embedded Software

There are clues that embedded software differs from other software in quite fun-
damental ways. If we examine carefully why engineers write embedded software
in assembly code or C, we discover that efficiency is not the only concern, and
may not even be the main concern. The reasons may include, for example, the
need to count cycles in a critical inner loop, not to make it fast, but rather to
make it predictable. No widely used programming language integrates a way
to specify timing requirements or constraints. Instead, the abstractions they of-
fer are about scalability (inheritance, dynamic binding, polymorphism, memory
management), and if anything further obscure timing (consider the impact of
garbage collection on timing). Counting cycles, of course, becomes extremely
difficult on modern processor architectures, where memory hierarchy (caches),
dynamic dispatch, and speculative execution make it nearly impossible to tell
how long it will take to execute a particular piece of code. Embedded software
designers may choose alternative processor architectures such as programmable
DSPs not only for efficiency reasons, but also for predictability of timing.

Another reason engineers stick to low-level programming is that embedded soft-
ware has to interact with hardware that is specialized to the application.
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4 E.A. Lee and Y. Zhao

In conventional software, interaction with hardware is the domain of the operat-
ing system. Device drivers are not typically part of an application program, and
are not typically created by application designers. But in the embedded software
context, generic hardware interfaces are rarer. The fact is that creating interfaces
to hardware is not something that higher level languages support. For example,
although concurrency is not uncommon in modern programming languages (con-
sider threads in Java), no widely used programming language includes in its se-
mantics the notion of interrupts. Yet the concept is not difficult, and it can be
built into programming languages (consider for example nesC [8] and TinyOS [13],
which are widely used for programming sensor networks).

It becomes apparent that the avoidance of so many recent improvements in
computation is not due to ignorance of those improvements. It is due to a mis-
match of the core abstractions and the technologies built on those core abstrac-
tions. In embedded software, time matters. In the 20th century abstractions of
computing, time is irrelevant. In embedded software, concurrency and interac-
tion with hardware are intrinsic, since embedded software engages the physical
world in non-trivial ways (more than keyboards and screens). The most influen-
tial 20th century computing abstractions speak only weakly about concurrency,
if at all. Even the core 20th century notion of “computable” excludes all in-
teresting embedded software, since to be “computable” you must terminate. In
embedded software, termination is failure.

Embedded systems are integrations of software and hardware where the soft-
ware reacts to sensor data and issues commands to actuators. The physical
system is an integral part of the design and the software must be conceptualized
to operate in concert with that physical system. Physical systems are intrin-
sically concurrent and temporal. Actions and reactions happen simultaneously
and over time, and the metric properties of time are an essential part of the be-
havior of the system. Prevailing software methods abstract away time, replacing
it with ordering. In imperative languages such as C, C++, and Java, the order
of actions is defined by the program, but not their timing. This prevailing imper-
ative abstraction is overlaid with another, that of threads or processes, typically
provided by the operating system, but occasionally by the language (as in Java).

The lack of timing in the core abstraction is a flaw, from the perspective of
embedded software, and threads as a concurrency model are a poor match for
embedded systems. They are mainly focused on providing an illusion of paral-
lelism in fundamentally sequential models, and they work well only for modest
levels of concurrency or for highly decoupled systems that are sharing resources,
where best-effort scheduling policies are sufficient. Indeed, none of the six exam-
ples given above include threads or processes in the programmer’s model.

Embedded software systems are generally held to a much higher reliability
standard than general purpose software. Often, failures in the software can be life
threatening (e.g., in avionics and military systems). The prevailing concurrency
model in general-purpose software that is based on threads does not achieve ade-
quate reliability [19]. In this prevailing model, interaction between threads is ex-
tremely difficult for humans to understand. The basic techniques for controlling
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Reinventing Computing for Real Time 5

this interaction use semaphores and mutual exclusion locks, methods that date
back to the 1960s [5] and 1970s [14]. These techniques often lead to deadlock or
livelock. In general-purpose computing, this is inconvenient, and typically forces
a restart of the program (or even a reboot of the operating system). However,
in embedded software, such errors can be far more than inconvenient. Moreover,
software is often written without sufficient use of these interlock mechanisms,
resulting in race conditions that yield nondeterministic program behavior. In
practice, errors due to misuse (or no use) of semaphores and mutual exclusion
locks are extremely difficult to detect by testing. Code can be exercised for years
before a design flaw appears. Static analysis techniques can help (e.g. Sun Mi-
crosystems’ LockLint), but these methods are often thwarted by conservative
approximations and/or false positives, and they are not widely used in practice.

It can be argued that the unreliability of multithreaded programs is due at
least in part to inadequate software engineering processes. For example, better
code reviews, better specifications, better compliance testing, and better plan-
ning of the development process can help solve the problems. It is certainly
true that these techniques can help. However, programs that use threads can be
extremely difficult for programmers to understand. If a program is incompre-
hensible, then no amount of process improvement will make it reliable. Formal
methods can help detect flaws in threaded programs, and in the process can
improve the understanding that a designer has of the behavior of a complex
program. But if the basic mechanisms fundamentally lead to programs that are
difficult to understand, then these improvements will fall short of delivering re-
liable software. Incomprehensible software will always be unreliable software.

Prevailing practice in embedded software relies on bench testing for concur-
rency and timing properties. This has worked reasonably well, because programs
are small, and because software gets encased in a box with no outside connec-
tivity that can alter the behavior. However, applications today demand that
embedded systems be feature-rich and networked, so bench testing and encasing
become inadequate. In a networked environment, it becomes impossible to test
the software under all possible conditions. Moreover, general-purpose networking
techniques themselves make program behavior much more unpredictable.

What would it take to achieve concurrent and networked embedded software
that was absolutely positively on time, to the resolution and reliability of digital
logic? Unfortunately, everything would have to change. The core abstractions
of computing need to be modified to embrace time. Computer architectures
need change to deliver precisely timed behaviors. Networking techniques need to
change to provide time concurrence. Programming languages have to change to
embrace time and concurrency in their core semantics. Operating systems have
to change to rely less on priorities to (indirectly) specify timing requirements.
The separation of operating systems from languages has to be rethought. Soft-
ware engineering methods need to change to specify and analyze the temporal
dynamics of software. What is needed is nearly a reinvention of computer science.

No individual project, obviously, could possibly take all of this on. Fortunately,
there is quite a bit of prior work to draw on. To name a few examples, architecture
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techniques such as software-managed caches promise to deliver much of the ben-
efit of memory hierarchy without the timing unpredictability [1,6]. Operating
systems such as TinyOS [13] provide simple ways to create thin wrappers around
hardware. Programming languages such as Lustre/SCADE [2,11] provide under-
standable and analyzable concurrency. Embedded software languages such as
Simulink provide time in their semantics. Our own prior work shows how to
generate hard-real time code from dataflow graphs [27].

In this paper, we focus on programming languages, pursuing abstractions that
include time and concurrency as first-class properties, creating mechanisms for
programming ensembles of networked embedded computers, rather than just pro-
gramming individual computers, and creating mechanisms for tightly integrating
hardware behavior into programs. We focus on applications in instrumentation
and in distributed gaming; the first of these requires more precise timing syn-
chronization, so we will leverage the new IEEE 1588 standard, which provides
time synchronization across ethernet networks at resolutions down to tens of
nanoseconds. The second requires time synchronization at more human scales,
large fractions of a second, and may be able to effectively use time synchroniza-
tion protocols such as NTP (network time protocol).

3 Concurrency and Time

We will focus on ways of giving programs where concurrency and time are es-
sential aspects of a design, and most particularly on ways of compiling such
programs to produce deployable real-time code. Time is a relatively simple is-
sue, conceptually, although delivering temporal semantics in software can be
challenging. Time is about the ordering of events. Event x happens before event
y, for example. But in embedded software, time also has a metric. That is, there
is an amount of time between events x and y, and the amount of time may be
an important part of the correctness of a system.

In software, it is straightforward to talk about the order of events, although in
concurrent systems it can be difficult to control the order. For example, achiev-
ing a specified total ordering of events across concurrent threads implies interac-
tions across those threads that can be extremely difficult to implement correctly.
Research in distributed discrete-event simulation, for example, underscores the
subtleties that can arise (see for example [15]).

It is less straightforward to talk about the metric nature of time. Typically,
embedded processors have access to external devices (timers) that can be used
to measure the passage of time. Programs can poll for the current time, and
they can set timers to trigger an interrupt at some time in the future. Using
timers in this way implies immediately having to deal with concurrency issues.
Interrupt service routines typically preempt currently executing software, and
hence conceptually execute concurrently.

Concurrency in software is a challenging issue because the basic software
abstraction is not concurrent. The basic abstraction in imperative languages is
that the memory of the computer represents the current state of the system, and
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instructions transform that state. A program is a sequence of such transforma-
tions. The problem with concurrency is that from the perspective of a particular
program, the state may change on its own at any time. For example, we could
have a sequence of statements:

x = 5;
print x;

that results in printing the number “6” instead of “5”. This could occur, for
example, if after execution of the first statement an interrupt occurred, and the
interrupt service routine modified the memory location where x was stored. Or
it could occur if the computer is also executing a sequence of statements:

x = 6;
print x;

and a multitasking scheduler happens to interleave the executions of the in-
structions of the two sequences. Two such sequences of statements are said to be
nondeterminate because, by themselves, these two sequences of statements do
not specify a single behavior. There is more than one behavior that is consistent
with the specification.

Nondeterminism can be desirable in embedded software. Consider for example
an embedded system that receives information at random times from two distinct
sensors. Suppose that it is the job of the embedded software to fuse the data
from these sensors so that their observations are both taken into account. The
system as a whole will be nondeterminate since its results will depend on the
order in which information from the sensors is processed. Consider the following
program fragment:

y = getSensorData(); // Block for data
x = 0.9 * x + 0.1 * y; // Discounted average
print x; // Display the result

This fragment reads data from a sensor and calculates a running average using a
discounting strategy, where older data has less effect on the average than newer
data.

Suppose that our embedded system uses two threads, one for each sensor,
where each thread executes the above sequence of statements repeatedly. The
result of the execution will depend on the order in which data arrives from the
sensors, so the program is nondeterminate. However, it is also nondeterminate
in another way that was probably not intended. Suppose that the multitasking
scheduler happens to execute the instructions from the two threads in interleaved
order, as shown here:

y = getSensorData(); // From thread 1
y = getSensorData(); // From thread 2
x = 0.9 * x + 0.1 * y; // From thread 1
x = 0.9 * x + 0.1 * y; // From thread 2
print x; // From thread 1
print x; // From thread 2
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The result is clearly not right. The sensor data read by thread 1 is ignored.
The discounting is applied twice. The sensor data from thread 2 is counted twice.
And the same (erroneous) result is printed twice.

A key capability for preventing such concurrency problems is atomicity. A
sequence of instructions is atomic if during the execution of the sequence, no
portion of the state that is visible to these instructions changes unless it is
changed by the instructions themselves.

Atomicity can be provided by programming languages and/or operating sys-
tems through mutual exclusion mechanisms. These mechanisms depend on low-
level support for an indivisible test and set. Consider the following modification:

acquireLock(); // Block until acquired
y = getSensorData(); // Block for data
x = 0.9 * x + 0.1 * y; // Discount old value
print x; // Display the result
releaseLock(); // Release the lock

The first statement calls an operating system primitive that tests a shared,
boolean-valued variable, and if it is false, sets it to true and returns. If it is
true, then it blocks, waiting until it becomes false. It is essential that between
the time this primitive tests the variable and the time it sets it to true, that no
other instruction in the system can access that variable. That is, the test and
set occur as one operation, not as two. The last statement sets the variable to
false.

Suppose we now build a system with two threads that each execute this se-
quence repeatedly to read from two sensors. The resulting system will not exhibit
the problem above because the multitasking scheduler cannot interleave the exe-
cutions of the statements. However, the program is still not correct. For example,
it might occur that only one of the two threads ever acquires the lock, and so
only one sensor is read. In this case, the program is not fair. Suppose that the
multitasking scheduler is forced to be fair, say by requiring it to yield to the
other thread each time releaseLock() is called. The program is still not correct,
because while one thread is waiting for sensor data, the other thread is blocked
by the lock and will fail to notice new data on its sensor. This seemingly trivial
problem has become difficult. Rather than trying to fix it within the thread-
ing model of computation, we will show that alternative models of computation
make this problem easy.

Suppose the program is given by the diagram in figure 1. Suppose that the
semantics are those of Kahn process networks (see [21]) augmented with a nonde-
terministic merge, as done in the YAPI model of computation [4]. In that figure,
the components (blocks) are called actors. They have ports (shown by small
triangles), with input ports pointing into the blocks and output ports pointing
out. Each actor encapsulates functionality that reads input values and produces
output values.

In PN semantics, each actor executes continually in its own thread of control.
The Sensor1 and Sensor2 actors will produce an output whenever the correspond-
ing sensors have data (this could be done directly by the interrupt service routine,
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Fig. 1. Process network realization of the sensor fusion example

Fig. 2. Discrete event realization of an improved sensor fusion example

for example). The connections between actors represent sequences of data values.
The Merge actor will nondeterministically interleave the two sequences at its input
ports, preserving the order within each sequence, but yielding arbitrary ordering
of data values across sequences. Suppose it is “fair” in the sense that if a data
value appears at one of the inputs, then it will “eventually” appear at the output
[25]. The remaining actors simply calculate the discounted average and display it.
The SampleDelay actor provides an initial “previous average” to work with (which
prevents this program from deadlocking for lack of data at the input to the Ex-
pression actor). This program exhibits none of the difficulties encountered above
with threads, and is both easy to write and easy to understand.

We can now focus on improving its functionality. Notice that the discounting
average is not ideal because it does not take into account how old the old data are.
That is, there is no time metric. Old data is simply the data previously observed,
and there is no measure of how long ago it was read. Suppose that instead of
Kahn process networks semantics, we use discrete-event (DE) semantics [18].
A modified diagram is shown in figure 2. In that diagram, the meaning of a
connection between actors is slightly different from the meaning of connections
in figure 1. In particular, the connection carries a sequence of data values as
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before, but each value has a time stamp. The time stamps on any given sequence
are nondecreasing. A data value with a time stamp is called an event.

The Sensor1 and Sensor2 actors produce output events stamped with the time
at which their respective interrupt service routines are executed. The Merge actor
is no longer nondeterministic. Its output is a chronological merge of the two input
sequences. The TimeGap actor produces on its output an event with the same
time stamp as the input but whose value is the elapsed time between the current
event and the previous event (or between the start of execution and the current
event if this is the first event). The expression shown in the next actor calculates
a better discounted average, one that takes into account the time elapsed. It
implements an exponential forgetting function.

The Register actor in figure 2 has somewhat interesting semantics. Its output
is produced when it receives a trigger input on the bottom port. The value of
the output is that of a previously observed input (or a specified initial value if
no input was previously observed). In particular, at any given time stamp, the
value of the output does not depend on the value of the input, so this actor
breaks what would otherwise be an unresolvable causality loop.

Even with such a simple problem, threaded concurrency is clearly inferior.
PN offers a better concurrency model in that the program is easier to construct
and to understand. The DE model is even better because it takes into account
metric properties of time, which matter in this problem.

In real systems, the contrasts between these approaches is even more dramatic.
Consider the following two program fragments:

acquireLockA();
acquireLockB();
x = 5;
print x;
releaseLockB();
releaseLockA();

and

acquireLockB();
acquireLockA();
x = 5;
print x;
releaseLockA();
releaseLockB();

If these two programs are executed concurrently in two threads, they could
deadlock. Suppose the multitasking scheduler executes the first statement from
the first program followed by the first statement from the second program. At
this point, the second statement of both programs will block! There is no way
out of this. The programs have to be aborted and restarted.

Programmers who use threads have tantalizing simple rules to avoid this prob-
lem. For example, “always acquire locks in the same order” [17]. However, this
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rule is almost impossible to apply in practice because of the way programs are
modularized. Any given program fragment is likely to call methods or procedures
that are defined elsewhere, and those methods or procedures may acquire locks.
Unless we examine the source code of every procedure we call, we cannot be sure
that we have applied this rule.

Deadlock can, of course, occur in PN and DE programs. If in figure 1 we had
omitted the SampleDelay actor, or in figure 2 we had omitted the Register actor,
the programs would not be able to execute. In both cases, the Expression actor
requires new data at all of its input ports in order to execute, and that data
would not be able to be provided without executing the Expression actor.

The rules for preventing deadlocks in PN and DE programs are much easier
to apply than the rule for threads. For certain models of computation, whether
deadlock occurs can be checked through static analysis of the program. This is
true of the DE model used above for the improved sensor fusion problem, for
example. So, not only was the model of computation more expressive in practice
(that is, it more readily expressed the behavior we wanted), but it also had
stronger formal properties that enabled static checks that prove the absence of
certain flaws (deadlock, in this case).

We will next examine a few of the models of computation that have been used
for embedded systems and that form the basis for the work described here.

4 Imperative Concurrent Models

TinyOS has an imperative flavor. What this means is that when one component
interacts with another, it gives a command, “do this.” The command is imple-
mented as a procedure call. Since this model of computation is also concurrent,
we call it an imperative concurrent models of computation.

In contrast, when components in Simulink and SCADE interact, they simply
offer data values, “here is some data.” It is irrelevant to the component when (or
even whether) the destination component reacts to the message. These models of
computation have a declarative flavor, since instead of issuing commands, they
declare relationships between components that share data. We call such models
of computation declarative concurrent models of computation.

TinyOS is a specialized, small-footprint operating system for use on extremely
resource-constrained computers, such as 8 bit microcontrollers with small
amounts of memory [8]. It is typically used with nesC, a programming language
that describes “configurations,” which are assemblies of TinyOS components.

A visual rendition of a two-component configuration is shown in figure 3,
where the visual notation is that used in [8]. The components are grey boxes
with names. Each component has some number of interfaces, some of which it
uses and some of which it provides. The interfaces it provides are put on top of
the box and the interfaces it uses are put on the bottom. Each interface consists of
a number of methods, shown as triangles. The filled triangles represent methods
that are called commands and the unfilled triangles represent event handlers.
Commands propagate downwards, whereas events propagate upwards.
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Fig. 3. A representation of a nesC/TinyOS configuration

After initialization, computation typically begins with events. In figure 3,
Component 2 might be a thin wrapper for hardware, and the interrupt service
routine associated with that hardware would call a procedure in Component
1 that would “signal an event.” What it means to signal an event is that a
procedure call is made upwards in the diagram via the connections between the
unfilled triangles. Component 1 provides an event handler procedure. The event
handler can signal an event to another component, passing the event up in the
diagram. It can also call a command, downwards in the diagram. A component
that provides an interface provides a procedure to implement a command.

Execution of an event handler triggered by an interrupt (and execution of any
commands or other event handlers that it calls) may be preempted by another
interrupt. This is the principle source of concurrency in the model. It is poten-
tially problematic because event handler procedures may be in the middle of be-
ing executed when an interrupt occurs that causes them to begin execution again
to handle a new event. Problems are averted through judicious use of the atomic
keyword in nesC. Code that is enclosed in an atomic block cannot be interrupted
(this is implemented very efficiently by disabling interrupts in the hardware).

Clearly, however, in a real-time system, interrupts should not be disabled for
extensive periods of time. In fact, nesC prohibits calling commands or signaling
events from within an atomic block. Moreover, no mechanism is provided for an
atomic test-and-set, so there is no mechanism besides the atomic keyword for
implementing mutual exclusion. The system is a bit like a multithreaded system
but with only one mutual exclusion lock. This makes it impossible for the mutual
exclusion mechanism to cause deadlock.

Of course, this limited expressiveness means that event handlers cannot per-
form non-trivial concurrent computation. To regain expressiveness, TinyOS has
tasks. An event handler may “post a task.” Posted tasks are executed when
the machine is idle (no interrupt service routines are being executed). A task
may call commands through the interfaces it uses. It is not expected to signal
events, however. Once task execution starts, it completes before any other task
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Fig. 4. A sketch of the sensor fusion problem as a nesC/TinyOS configuration

execution is started. That is, task execution is atomic with respect to other
tasks. This greatly simplifies the concurrency model, because now variables or
resources that are shared across tasks do not require mutual exclusion protocols
to protect their accesses. Tasks may be preempted by event handlers, however,
so some care must be exercised when shared data is accessed here to avoid race
conditions. Interestingly, it is relatively easy to statically analyze a program for
potential race conditions [8].

Consider the sensor fusion example from above. A configuration for this is
sketched in figure 4. The two sensors have interfaces called “reading” that accept
a command a signal an event. The command is used to configure the sensors.
The event is signaled when an interrupt from the sensor hardware is handled.
Each time such an event is signaled, the Fuser component records the sensor
reading and posts a task to update the discounted average. The task will then
invoke the command in the print interface of the Printer component to display
the result. Because tasks execute atomically with respect to one another, in the
order in which they are posted, the only tricky part of this implementation is in
recording the sensor data. However, tasks in TinyOS can be passed arguments
on the stack, so the sensor data can be recorded there. The management of
concurrency becomes extremely simple in this example.

In effect, in nesC/TinyOS, concurrency is much more disciplined than with
threads. There is no arbitrary interleaving of code execution, there are no block-
ing operations to cause deadlock, and there is a very simple mechanism for
managing the one nondeterministic preemption that can be caused by inter-
rupts. The price paid for this, however, is that applications must be divided into
small, quickly executing procedures to maintain reactivity. Since tasks run to
completion, a long-running task will starve all other tasks.

5 Declarative Concurrent Models

Simulink, SCADE, LabVIEW and hardware description languages all have a
declarative flavor. The interactions between components are not imperative in
that one component does not “tell the other what to do.” Instead, a “program”
is a declaration of the relationships among components.
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Simulink was originally developed as a modeling environment, primarily for
control systems. It is rooted in a continuous-time semantics, something that
is intrinsically challenging for any software system to emulate. Software is in-
trinsically discrete, so an execution of a Simulink “program” often amounts to
approximating the specified behavior using numerical integration techniques.

A Simulink “program” is an interconnection of blocks where the connections
are the “variables,” but the value of a variable is a function, not a single value.
To complicate things, it is a function defined over a continuum. The Integrator
block, for example, takes as input any function of the reals and produces as
output the integral of that function. In general, any numerical representation
in software of such a function and its integral is an approximation, where the
value is represented at discrete points in the continuum. The Simulink execution
engine (which is called a “solver”) chooses those discrete points using sometimes
quite sophisticated methods.

Although initially Simulink focused on simulating continuous dynamics and
providing excellent numerical integration, more recently it acquired a discrete
capability. Semantically, discrete signals are piecewise-constant continuous-time
signals. A piecewise constant signal changes value only at discrete points on
the time line. Such signals are intrinsically easier for software, and more precise
approximations are possible.

In addition to discrete signals, Simulink has discrete blocks. These have a
sampleTime parameter, which specifies the period of a periodic execution. Any
output of a discrete block is a piecewise constant signal. Inputs are sampled at
multiples of the sampleTime.

Certain arrangements of discrete blocks turn out to be particularly easy to
execute. An interconnection of discrete blocks that all have the same sampleTime
value, for example, can be efficiently compiled into embedded software. But even
blocks with different sampleTime parameters can yield efficient models, when the
sampleTime values are related by simple integer multiples.

Fortunately, in the design of control systems (and many other signal pro-
cessing systems), there is a common design pattern where discrete blocks with
harmonically related sampleTime values are commonly used to specify the soft-
ware of embedded control systems.

Figure 5 shows schematically a typical Simulink model of a control system.
There is a portion of the model that is a model of the physical dynamics of the
system to be controlled. There is no need, usually, to compile that specification
into embedded software. There is another portion of the model that represents
a discrete controller. In this example, we have shown a controller that involves
multiple values of the sampleTime parameter, shown as numbers below the dis-
crete blocks. This controller is a specification for a program that we wish to
execute in an embedded system.

Real-Time Workshop is a product from The MathWorks associated with
Simulink. It takes models like that in figure 5 and generates code. Although
it will generate code for any model, it is intended principally to be used only on
the discrete controller, and indeed, this is where its strengths come through.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Reinventing Computing for Real Time 15

discrete controller

A ZOH B Unit
Delay

C

ZOH
Physical

Dynamics

0.02 0.020.1

Fig. 5. A representation of a Simulink program

U
n
it
D

e
la

y
C A C A C A C A C A

B
 (

s
ta

rt
)

B
 (

c
o
n
t)

B
 (

c
o
n
t)

B
 (

e
n
d

)

preempted idle

low

high

priority

Z
O

H
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The discrete controller shown in figure 5 has fast running components (with
sampleTime values of 0.02, or 20 ms) and slow running components (with sam-
pleTime values of 0.1, or 1/10 of a second). In such situations, it is not unusual
for the slow running components to involve much heavier computational loads
than the fast running components. It would not do to schedule these computa-
tions to execute atomically, as is done in TinyOS and Click (and SCADE). This
would permit the slow running component to interfere with the responsivity (and
time correctness) of the fast running components.

Simulink with Real-Time Workshop uses a clever technique to circumvent
this problem. The technique exploits an underlying multitasking operating sys-
tem with preemptive priority-driven multitasking. The slow running blocks are
executed in a separate thread from the fast running blocks, as shown in figure 6.
The thread for the fast running blocks is given higher priority than that for the
slow running blocks, ensuring that the slow running code cannot block the fast
running code. So far, this just follows the principles of rate-monotonic scheduling
[23]. But the situation is a bit more subtle than this, because data flows across
the rate boundaries. Recall that Simulink signals have continuous-time seman-
tics, and that discrete signals are piecewise constant. The slow running blocks
should “see” at their input a piecewise constant signal that changes values at the
slow rate.To guarantee that, the model builder is required to put a zero-order
hold (ZOH) block at the point of the rate conversion. Failure to do so will trigger
an error message. Cleverly, the code for the ZOH runs at the rate of the slow
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block but at the priority of the fast block. This makes it completely unnecessary
to do semaphore synchronization when exchanging data across these threads.

When rate conversions go the other way, from slow blocks to fast blocks,
the designer is required to put a UnitDelay block, as shown in figure 5. This
is because the execution of the slow block will typically stretch over several
executions of the fast block, as shown in figure 6.

To ensure determinacy, the updated output of the block must be delayed by
the worst case, which will occur if the execution stretches over all executions of
the fast block in one period of the slow block. The unit delay gives the software
the slack it needs in order to be able to permit the execution of the slow block
to stretch over several executions of the fast one. The UnitDelay executes at the
rate of the slow block but at the priority of the fast block.

This same principle has been exploited in Giotto [12], which constrains the
program to always obey this multirate semantics and provides (implicitly) a unit
delay on every connection. In exchange for these constraints, Giotto achieves
strong formal structure, which results in, among other things, an ability to per-
form schedulability analysis (the determination of whether the specified real-time
behavior can be achieved by the software).

The Simulink model has weaknesses, however. The sensor fusion problem that
we posed earlier does not match its discrete multitasking model very well. While
it would be straightforward to construct a discrete multitasking model that polls
the sensors at regular (harmonic) rates, reacting to stimulus from the sensors at
random times does not fit the semantics very well. The merge shown in figure 2
would be challenging to accomplish in Simulink, and it would not benefit much
from the clever code generation techniques of Real-Time Workshop.

In figure 2, we give a discrete-event model of an improved sensor fusion
algorithm with an exponential forgetting function. Discrete-event modeling is
widely used in electronic circuit design (VHDL and Verilog are discrete-event
languages), computer network modeling and simulation (OPNET Modeler and
Ns-2, for example), and many other disciplines. In discrete-event models, the
components interact via signals that consist of events, which typically carry
both a data payload and a time stamp. A straightforward execution of these
models uses a centralized event queue, where events are sorted by time stamp,
and a runtime scheduler dispatches events to be processed in time order. Com-
pared to the Simulink/RTW model, there is much more flexibility in DE because
discrete execution does not need to be periodic. This feature is exploited in the
model of figure 2, where the Merge block has no simple counterpart in Simulink.

A great deal of work has been done on efficient and distributed execution of
such models, much of this work originating in either the so-called “conservative”
technique of Chandy and Misra [3] or the speculative execution methods of Jef-
ferson [15]. More interesting is the work in the Croquet Project, which focuses
on optimistic techniques in the face of unreliable components. Croquet has prin-
cipally been applied to three-D shared immersion environments on the internet,
similar to the ones that might be used in interactive networked gaming. Much
less work has been done in adapting these models as an execution platform for
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embedded software, but there is some early work that bears a strong seman-
tic resemblance to DE modeling techniques [24][9]. A significant challenge is to
achieve the timed semantics efficiently while building on software abstractions
that have abstracted away time.

6 Discrete-Event Runtime Framework

The ability of TinyOS and nesC to create thin wrappers around hardware pro-
vides a simple and understandable mechanism for creating event-triggered, fine-
grained, atomic reactions to external events. When these external events trigger
significant computations, nesC programs will “post tasks” that are executed
later. These tasks, however, all execute atomically with respect to one another,
and hence a long-running task will block other tasks. This can create unac-
ceptable latencies, and often forces software designers to manually divide long-
running tasks into more fine-grain ones.

Simulink and Giotto, by contrast, freely mix long-running tasks with
hard-real-time fine-grained tasks by exploiting the properties of an underlying
priority-driven multitasking real-time operating system. They do this without
requiring programmers to specify priorities or use mutexes or semaphores. How-
ever, these tasks are required to be periodic, and their latencies are strongly
related to their periods, so they lack the event-triggered, reactive nature of nesC
programs.

These two ideas can be combined within a dataflow framework with elements
borrowed from discrete-event models to specify timing properties. Dependen-
cies within the dataflow model can be statically analyzed, and with a carefully
chosen variant of dataflow called heterochronous dataflow (HDF) [10], schedula-
bility becomes decidable and synthesis of efficient embedded software becomes
possible. We believe that the resulting language will prove expressive, efficient,
understandable, and analyzable.

We are building a prototype of this combination of HDF and DE using the
Ptolemy II framework [7]. This prototype can synthesize multitasking C code for
execution on embedded processors or general-purpose processors. That is, the
target language for the compiler will be C. The source language will be graphical,
exploiting the graphical syntaxes supported by Ptolemy II. We will specifically
target instrumentation applications, and, at coarser temporal granularity, dis-
tributed games. We leverage a C code generator for Ptolemy II that supports
HDF [10], built by Jackie Mankit Leung and Gang Zhou, for code generation.

The overall architecture of an application is a distributed discrete-event
model of interactions of concurrent real-time components (which we call actors).
The components themselves have functionality that can be specified either by
dataflow models, combinations of dataflow and state machines (heterochronous
dataflow), or conventional programming languages (C or Java, in this case).

Discrete-event semantics is typically used for modeling physical systems where
atomic events occur on a time line. For example, hardware description languages
for digital logic design, such as Verilog and VHDL, are discrete-event languages.
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So are many network modeling languages, such as OPNET Modeler1 and Ns-22.
Our approach is not to model physical phenomena, but rather to specify coordi-
nated real-time events to be realized in software. Execution of the software will
first obey discrete-event semantics, just as done in DE simulators, but it will
do so with specified real-time constraints on certain actions. Our technique is
properly viewed as providing a semantic notion of model time together with a
relation between the model time of certain events and their physical time.

Our premise is that since DE models are natural for modeling real-time sys-
tems, they should be equally natural for specifying real-time systems. Moreover,
we can exploit their formal properties to ensure determinism in ways that evades
many real-time software techniques. Network time synchronization makes it pos-
sible for discrete-event models to have a coherent semantics across distributed
nodes. Just as with distributed DE simulation, it will be neither practical nor
efficient to use a centralized event queue to sort events in time order. Our goal
will be to compile DE models for efficient and predictable distributed execution.

We emphasize that while distributed execution of DE models has long been
used to exploit parallel computation to accelerate simulation [31], we are not
interested in accelerated simulation. Instead, we are interested in systems that
are intrinsically distributed. Consider factory automation, for example, where
sensors and actuators are spread out physically over hundreds of meters. Multiple
controllers must coordinate their actions over networks. This is not about speed
of execution but rather about timing precision. We use the global notion of time
that is intrinsic in DE models as a binding coordination agent.

For accelerated simulation, there is a rich history of techniques. So-called
“conservative” techniques advance model time to t only when each node can be
assured that they have seen all events time stamped t or earlier. For example, in
the well-known Chandy and Misra technique [3], extra messages are used for one
execution node to notify another that there are no such earlier events. For our
purposes, this technique binds the execution at the nodes too tightly, making it
very difficult to meet realistic real-time constraints.

So-called “optimistic” techniques perform speculative execution and back-
track when the speculation is incorrect [15]. Such optimistic techniques will also
not work in our context, since backtracking physical interactions is not possible.

Our method is called PTIDES, Programming Temporally Integrated Dis-
tributed Embedded Systems [32]. It is conservative, in the sense that events
are processed only when we are sure it is safe to do so. But we achieve signifi-
cantly looser coupling than Chandy and Misra using a new method that we call
relevant dependency analysis. We leverage the concept of causality interfaces in-
troduced in [22], adapting these interfaces to distributed discrete-event models.
We have developed the concept of “relevant dependency” to formally capture the
ordering constraints of temporally ordered events that have a dependency rela-
tionship. This formal structure provides an algebra within which we can perform
schedulability analysis of distributed discrete-event models.

1 http://opnet.com/products/modeler/home.html
2 http://www.isi.edu/nsnam/ns
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Our emphasis is on efficient distributed real-time execution. Our framework
uses model time to define execution semantics, and constraints that bind certain
model time events to physical time. A correct execution will simply obey the
ordering constraints implied by model time and meet the constraints on events
that are bound to physical time.

6.1 Motivating Example

We motivate our programming model by considering a simple distributed real-
time application. Suppose that at two distinct machines A and B we need to
generate precisely timed physical events under the control of software. Moreover,
the devices that generate these physical events respond after generating the event
with some data, for example sensor data. We model this functionality with an
actor that has one input port and one output port, depicted graphically as
follows:

This actor is a software component that wraps interactions with device drivers.
We assume that it does not communicate with any other software component
except via its ports. At its input port, it receives a potentially infinite sequence
of time-stamped values, called events, in chronological order. The sequence of
events is called a signal. The output port produces a time-stamped value for
each input event, where the time stamp is strictly greater than that of the input
event. The time stamps are values of model time. This software component
binds model time to physical time by producing some physical action at the
real-time corresponding to the model time of each input event. Thus, the key
real-time constraint is that input events must be made available for this software
component to process them at a physical time strictly earlier than the time
stamp. Otherwise, the component would not be able to produce the physical
action at the designated time.

Figure 7 shows a distributed DE model to be executed on a two-machine,
time-synchronized platform. The dashed boxes divide the model into two parts,
one to be executed on each machine. The parts communicate via signal s1. We
assume that events in this signal are sent over a standard network as time-
stamped values.

The Clock actors in the figure produce time-stamped outputs where the time
stamp is some integer multiple of a period p (the period can be different for each
clock). Upon receiving an input with time stamp t, the clock actor will produce
an output with time stamp np where n is the smallest integer so that np ≥ t.
There are no real-time constraints on the inputs or outputs of these actors.

The Merge actor has two input ports. It merges the signals on the two input
ports in chronological order (perhaps giving priority to one port if input events
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Fig. 7. A simple distributed instrumentation example

have identical time stamps). A conservative implementation of this Merge re-
quires that no output with time stamp t be produced until we are sure we have
seen all inputs with time stamps less than or equal to t. There are no real-time
constraints on the input or output events of the Merge actor.

The Display actor receives input events in chronological (time-stamped) order
and displays them. It also has no real-time constraints.

A brute-force implementation of a conservative distributed DE execution of
this model would stall execution in platform B at some time stamp t until an
event with time stamp t or larger has been seen on signal s1. Were we to use the
Chandy and Misra approach, we would insert null events into s1 to minimize
the real-time delay of these stalls. However, we have real-time constraints at the
Device actors that will not be met if we use this brute-force technique. Moreover,
it is intuitively obvious that such a conservative technique is not necessary. Since
the actors communicate only through their ports, there is no risk in processing
events in the upper Clock-Device loop ahead of time stamps received on s1. Our
PTIDES technique formalizes this observation using causality analysis.

To make this example more concrete, we have in our lab prototype systems
provided by Agilent that implement IEEE 1588. These platforms include a Linux
host and simple timing-precise I/O hardware. Specifically, they include a device
driver API where the software can request that the hardware generate a digital
clock edge (a voltage level change) at a specified time. After generating this
level change, the hardware interrupts the processor, which resets the level to
its original value. Our implementation of the Device actor takes input events as
specification of when to produce these level changes. That is, it produces a rising
edge at physical time equal to the model time of an input event. After receiving
an input, it outputs an event with time stamp equal to the physical time at which
the level is restored to its original value. Thus, its input time stamps must precede
physical time, and its output events are guaranteed to follow physical time. This
physical setup makes it easy to measure precisely the real-time behavior of the
system (oscilloscope probes on the digital I/O connectors tell it all).
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The feedback loops around the two Clock and Device actors ensure that the
Device does not get overwhelmed with requests for future level changes. It may
not be able to buffer those requests, or it may have a finite buffer. Without the
feedback loop, since the ports of the Clock actor have no real-time constraints,
there would be nothing to keep it from producing output events much faster
than real time.

This model is an abstraction of many realistic applications. For example,
consider two networked computers controlling cameras pointing at the same
scene from different angles. Precise time synchronization allows them to take
sequences of pictures simultaneously. Merging two synchronous pictures creates
a 4D view for the scene (three physical dimensions and one time).

PTIDES programs are discrete-event models constructed as networks of
actors, as in the example above. For each actor, we specify a physical host to
execute the actor. We also designate a subset of the input ports to be real-time
ports. Time-stamped events must be delivered to these ports before physical-
time exceeds the time stamp. Each real-time port can optionally also specify a
setup time τ , in which case it requires that each input event with time stamp t
be received before physical time reaches t − τ . A model is said to be deployable
if these constraints can be met for all real-time ports. Causality analysis can
reveal whether a model is deployable.

The key idea is that events only need to be processed in time-stamp order
when they are causally related. We defined formal interfaces to actors that tells
us when such causal relationships exist.

6.2 Summary of Relevant Dependency Analysis

A formal framework for analyzing causality relationships to determine the mini-
mal ordering constraints on processing events is given in [32]. We give a summary
of the key results here. The technique is based on causality interfaces [22], which
provide a mechanism that allows us to analyze delay relationships among ac-
tors. The interface of actors contains ports on which actors receive or produce
events. Each port is associated with a signal. A causality interface declares the
dependency that output events have on input events.

A program is given as a composition of actors, by which we mean a set of
actors and connectors linking their ports. Given a composition and the causality
interface of each actor, we can determine the dependencies between any two
ports in the composition. However, these dependencies between ports do not tell
the whole story. Consider the Merge actor in figure 7. It has two input ports,
and the dependency analysis tells that there is no path between these ports.
However, these ports have an important relationship, noted above. In particular,
the Merge actor cannot react to an event at one port with time stamp t until
it is sure it has seen all events at the other port with time stamp less than or
equal to t. This fact is not captured in the dependencies. To capture it, we use
relevant dependencies. Based on the causality interface of actors, the relevant
dependency on any pair (p1, p2) of input ports specifies whether an event at p1
will affect an output signal that may also depend on an event at p2. Given the
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Fig. 8. The motivating example with a delay actor

relevant dependency interfaces for all actors in a composition, we can establish
the relevant dependency between any two input ports in the composition.

When the relevant dependency from input port p1 to p2 is r, r ∈ R0, this
means that any event with time stamp t2 at p2 can be processed when all events
at p1 are known up to time stamp t2 − r. When the relevant dependency from
p1 to p2 is ∞, this means that events at p2 can be processed without knowing
anything about events at p1.

What we gain from the dependency analysis is that we can specify which
events can be processed out of order, and which events have to be processed
in order. Recall that p2 is designated as a real-time port. Relevant dependency
analysis tells us that events at p2 can be processed without knowing anything
about events at p3 or p4. This is the first result we were after. It means that the
arrival events over the network into p3 need not interfere with meeting real-time
constraints at p2. This would not be achieved with a Chandy and Misra policy.
And unlike optimistic policies, there will never be any need to backtrack.

If we modify the model in figure 7 by adding a Delay actor with a delay
parameter d, we get a new model as shown in figure 8. Relevant dependency
analysis now tells us that an event with time stamp t at p4 can be processed
if all events with time stamps smaller than or equal to t − d at p3 have been
processed. With the same assumptions as discussed in section 6.1 (an event with
model time t is produced at physical time t by the Device process, and the
network delay is bounded by C), at physical time t − d + C we are sure that we
have seen all events with time stamps smaller than t − d at p3. Hence, an event
e at p4 with time stamp t can be processed at physical time t − d + C or later.
Note that although the Delay actor has no real-time properties at all (it simply
manipulates model time), its presence loosens the constraints on the execution.

In [32] we show that relevant dependencies induce a partial order (called the
relevant order) on events. We use notation <r for the relevant order. We interpret
e1 <r e2 to mean that e1 must be processed before e2. Two events e1 and e2 are
not comparable, denoted as e1||re2, if neither e1 <r e2, nor e2 <r e1. If e1||re2,
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then e1, e2 can be processed in any order. What we mean by “processed” is that
the actor that is the destination of the event is fired, meaning that it is executed
and allowed to react to the event. It is then straightforward to show that any
execution that respects the relevant order correctly implements discrete-event
semantics.

We further show in [32] that this technique can be adapted to distributed
execution if we are given bounds on the communication latency and on the
timing synchronization order.

7 Conclusion

Existing methods for addressing real-time computation typically deal with a por-
tion of the problem of constructing and executing real-time programs. Real-time
operating systems (RTOSs) provide mechanisms for prioritizing tasks and trig-
gering computations in response to timer interrupts. Time-triggered networking
techniques such as the Time Triggered Architecture (TTA) provide determin-
istic sharing of networking resources and insulation from faults. Network time
synchronization protocols such as NTP and IEEE 1588 provide a common time
base across computers on a network. All of these technologies, however, are used
with relatively conventional concurrency models (threads and processes) and
conventional programming languages. This paper elevates timing and distribu-
tion to the level of the programmers model, so that applications are built by
directly expressing timing and distribution properties. The objective is a frame-
work for designing deployable timed distributed systems. Our technique adapts
discrete-event semantics, traditionally used for modeling and simulation, for use
as a programmers’ model for distributed real-time software.
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Abstract. Complex distributed systems with control parts are difficult
to develop and maintain. One reason of the complexity is the high degree
of interaction and parallelism in these systems. Systematic, architecture-
centric approaches are required to model, implement and verify such sys-
tems. To manage complexity, we apply a service-oriented development
process, yielding manageable and flexible architecture specifications. We
specify interaction patterns defining services using an extended Message
Sequence Chart notation. We model a portion of the BART system as
a case study, demonstrating the applicability of our methodology to this
domain of complex, distributed, reactive systems. Our approach allows
us to separate the problem of orchestrating the interactions between
distributed components and developing the control algorithms for the
various control tasks. We provide a brief overview of service-oriented
development and service-oriented architectures, as well as a detailed de-
scription of our results for the BART case study.

1 Introduction

Distributed, reactive systems are notoriously difficult to develop – especially
when they are interaction- and control-intensive. The Bay Area Rapid Transit
(BART) system with its Advanced Automatic Train Control (AATC) as con-
trolling software is a telling example; another such area, which is increasingly
recognized across academia and industry as a challenging application area for
advanced software technologies is the automotive domain with its mix of safety-
critical and comfort functions. The shift from monolithic to highly networked,
heterogeneous, interactive systems, occurring across application domains, has
led to a dramatic increase in both development and system complexity. At the
same time the demands for safety, reliability, and other quality attributes have
increased.

The major challenge in developing such systems is to manage the complex-
ity induced by the distribution and interaction of the corresponding components.
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Model-based development techniques and notations have emerged as an
approach to dealing with this complexity, in particular during the analysis, spec-
ification and design phases of the development process; popular examples are
UML, SysML, ROOM and SDL. Each of these examples proposes managing
the complexity of software development by separating the two major modeling
concerns: system structure and system behavior.

In application domains such as process control, automotive, avionics, telecom-
munications and networking, the logical and physical component distribution
has introduced the additional challenge of modeling, analysis and handling of
cross-cutting concerns such as security and Quality-of-Service. Because system
functions are scattered across modeling and implementation entities, the cross-
cutting concerns in the system are increasingly difficult to trace and to ensure
during all steps of the development process.

Service-Oriented Development (SOD) and Architectures (SOA) have been
suggested as an approach to system development and architecture that helps
address both system complexity and cross-cutting concerns, including the men-
tioned quality properties. Because services typically emerge from the interplay
of multiple system components, SOD places particular focus on the interaction
between components and system-wide functions.

1.1 Service-Oriented Architectures and Development

The center of concern in model-based design has so far mostly been individ-
ual components rather than their interplay. In contrast, service-oriented design
emphasizes the interaction among components by using the notion of service to
decouple abstract behavior from implementation architectures supporting it. The
term “service” is used in multiple different meanings and on multiple different
levels of abstraction throughout the Software and Systems Engineering commu-
nity. Web Services currently receive a lot of attention from both academia and
industry. Figure 1 shows a typical “layout” of applications composed as a set of
(web) services. Often such systems consist of at least two distinct layers: a do-
main layer and a service layer. The domain layer houses all domain objects and
their associated logic. The service layer acts as a façade to the underlying do-
main objects - in effect, offering an interface that shields the domain objects from
client software. Typically, services in this sense coordinate workflows among the
domain objects; they may also call, and thus depend on, other services. Some of
the services, say Service 1 and Service 2 in our example, may reside on the same
physical machine, whereas others, such as Service n may be accessible remotely
via the Internet.

The layout shown in Figure 1 is prototypical not only of the typical situation
we find for applications structured in terms of web services, but also for other
domains where complex, often distributed applications are expected to offer
externally accessible interfaces. Abstracting from the domain-specific details we
observe that services often encapsulate the coordination of sets of domain objects
to implement “use cases”. We focus on the coordination aspect of each use case
and define services as partial interaction specifications.
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Fig. 1. Service-Oriented Architectures

Fig. 2. Service-Oriented Development Process

Our approach to service-oriented development rests on the observation that
services orchestrate a set of entities, each of which makes a partial contribution
to the execution of the service. Whereas in traditional, component-oriented de-
velopment approaches, component interplay is often treated as an afterthought,
we place the orchestration aspect of services in the center of the development
process from the outset. We have developed a two-phase, iterative development
process as shown in Figure 2[15,13]. In the following, we first give a brief overview
of this process as we have applied it, among others, to the development of service-
oriented automotive software; then we describe the extensions we introduce in
this paper to deal with complex, control-intensive systems.

Phase (1), Service Elicitation, consists of defining the set of services of inter-
est - we call this set the service repository. Phase (2), Architecture Definition,
consists of mapping the services to component configurations to define deploy-
ments of the architecture.

In phase (1) we identify the relevant use cases and their relationships in the
form of a use case graph. This gives us a relatively high-level, scenario-based
view on the system. From the use cases we derive sets of roles and services as
interaction patterns among roles. Roles describe the contribution of an entity to
a particular service independently of what concrete implementation component
will deliver this contribution. An object or component of the implementation may
play multiple roles at the same time. The relationships between the roles, includ-
ing aggregations and multiplicities, develop into a role domain model. Together
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with a data domain model, indicating the types of data being manipulated by the
system under consideration, the role domain model and the service specification
are the foundation for the abstract core of the service-oriented architecture.

In phase (2) the role domain model is refined into a component configuration,
onto which the set of services is mapped to yield an architectural configuration.
These architectural configurations can be readily implemented and evaluated as
target architectures for the system under consideration.

This process is iterative both within the two phases, and across: Role and ser-
vice elicitation feeds back into the definition of the use case graph; architectures
can be refined and refactored to yield new architectural configurations, which
may lead to further refinement of the use cases.

The process of transferring house-ownership between two parties (also known
as the escrow process) is a good example to better illustrate the utility of roles,
services and components. Typically, the escrow process involves a number of
players, including the seller, the buyer, a mortgage company, multiple real-estate
agents, notary-publics, house inspectors, insurance agents and an escrow and title
company. The process itself is precisely defined; the various actions of negotiating
the price, signing an offer document, provisioning the money, providing proof
of insurance, etc. are partially ordered, culminating in the transfer of title if all
actions are performed within the required time and ordering – the process can be
described properly without mentioning of any concrete players, such as a specific
buyer, seller or bank. Instead, we can define the escrow service as the proper
interplay among the set of players (which we call roles). An instance of the service
emerges by mapping the roles to concrete players (which we call components).
The service captures the deployment-independent aspects of the system under
consideration; a concrete deployment (mapping of roles to components) defines
an architecture configuration.

Following the process presented above allows us to specify system-wide ser-
vices separately and map them subsequently to a given deployment architec-
ture. Integration-complexity is addressed early in the development process by
focusing on component interactions as the defining element of services. In the
following section we show how we can also address control complexity in our
apporach.

1.2 Contribution

To be successful in applying SOD and SOA to complex distributed systems with
control challenges, software engineers need a thorough understanding of how to
identify services and a corresponding architecture systematically, how to specify
the services and architecture, how to implement, validate and verify the resulting
specifications, and how to address the control requirements. In this paper, we
present our approach to SOD/SOA based on a clear understanding of services
as partial interaction patterns, combined with a systematic, flexible, iterative
development process for services and service-oriented architectures. Using the
BART case study, we explain the benefits of our notations and process, as well
as the tool-chain we have developed.
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{
public:
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class  CLS_SM_i:
{
public:

//Constructor
CLS_SM_i(void);
//Destructor
~CLS_SM_i(void
void tick();

....

class  CLS_SM_i:
{
public:

//Constructor
CLS_SM_i( void);
//Destructor
~CLS_SM_i( void);
void tick();

....

Local Actions
Implementation

Fig. 3. Service-Oriented Development Process with Control

The main contribution of this paper is to show the applicability and efficacy
of service-oriented development for complex distributed systems with control
parts. We show how service-oriented development helps to develop effective ar-
chitectures for complex distributed systems and how control algorithms can be
independently developed and integrated into this approach. This helps us to
manage the integration complexity that is caused by the high degree of distri-
bution and thus parallelism of the system. Figure 3 depicts the development
process and how we deal with control. The control problem is reduced to a set
of local actions, the algorithms are developed and implemented independently
from the service-oriented architecture and are called from the various roles in
their local actions.

2 Complex Systems with Reactive and Control Parts

The systems we are addressing with our service-oriented approach are complex
distributed systems. The complexity we refer to here stems from the need to
integrate multiple different parts whose interplay is difficult to grasp with tradi-
tional techniques. Rather than treating component interplay as an afterthought,
addressed only during late stages of deployment and integration, we focus on
services, defined as the interaction patterns among roles, throughout the devel-
opment process.

Complex reactive systems are often used in control applications. In this field,
often the control is applied to actuators and sensors that interact with the phys-
ical world. Some of the complexity arises then from the fact that part of the
domain (the physical world to be controlled) is best modeled using continuous
data types and behavior, wheres the remainder of the domain can best be char-
acterized using discrete data types and behavior. This system class is known as
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hybrid systems [2]. Particularly challenging are complex hybrid systems where
the complexity of the distributed communication is increased by real time re-
quirements of control algorithms. For instance, control algorithms can impose
tight constraints on the latency and jitter of the communication infrastructure.
Furthermore, if an algorithm has to deal with continuous measures the task
of sampling and discretizing the control can transform a simple set of differ-
ential equations into a storm of messages that needs to be exchanged between
components.

Distributed control systems, if developed in an ad-hoc fashion, result in tight
coupling between modules and complex, inflexible data exchange to establish and
maintain global state. To alleviate these problems, various software infrastruc-
tures and middlewares [24,7] have been developed. The complexity of developing
new control application from scratch time and again has led to the introduction
of reusable standard platforms [17]. For instance, in industrial control the use of
Function Blocks (IEC 61499) allows isolation of the control algorithms from the
distributed interaction.

Because of what Leveson defines as the “curse of complexity” [16] it is, how-
ever, difficult and error-prone to separate the control blocks from the distributed
communication infrastructure. The real challenge is to keep a system-level view
while breaking down the problem into subproblems of a manageable size. To
this end, our service-oriented approach permits breaking down the system into
services capturing the interaction patterns among roles. Role states and their
transitions capture the partial state-based behavior of any component that par-
ticipates in the execution of this service.

Our way of integrating the hybrid aspects into a system specification is to
associate the control parts with local activities of the roles. These activities are
invoked as the corresponding service is executed.

In the remainder of this paper we focus on the analysis of the interactions
between system entities. The control algorithms can be modeled and developed
using well-established techniques and be called via local activities upon the re-
ception of some message by a role.

2.1 The BART Case Study

The BART case study [25] describes parts of the Advanced Automatic Train
Control (AATC) system of the Bay Area Rapid Transit (BART) system. BART
is the San Francisco area, heavy commuter rail train system. The case study
describes the part of the train system that controls spreed and acceleration of
the trains. Certain other parts such as communication error recovery and train
routing have been left out for the purposes of the case study. The part of the
AATC system described here is suitable as a case study, because it provides a
relevant level of detail and shows the complexity and interdependencies of the
entire system, yet still remains of manageable size. BART was previously used as
a case study in the area of distributed systems and for the application of formal
methods [9].
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The BART system automatically controls over 50 trains on a large track
network with several different lines. Manual operation of the train control is
limited mostly to safety issues and to cases of emergency or malfunction. Tracks
are unidirectional. Certain sections of the track network are shared by trains of
different lines. The system needs to operate switches and gates to ensure correct
traffic flow. Tracks are separated into track segments, which may be protected
by gates. Gates operate similar to traffic lights and establish the right-of-way
where tracks join or merge at switches.

The AATC system controls the train movement – switch and gate handling
will transparently be provided by another system. One important AATC require-
ment is to optimize train speeds and the spacing between the trains to increase
the throughput on the congested parts of the network, while constantly ensur-
ing train safety. The AATC system operates computers at the train stations
which each control a local part of the track network. A station is responsible for
controlling all trains in its area. Stations communicate with the trains via a ra-
dio network and with neighboring stations using land-based network links. Each
train has two AATC controllers on board with one being the master. Trains re-
ceive acceleration and brake commands from the station computers via the radio
communication network and feed back information about train speed and other
engine status values. The radio network has the capability to track the trains’
positions.

The case study concentrates on the parts of the AATC system that controls
the trains’ acceleration and braking. Controlling the trains must occur efficiently
with a high throughput of trains, while ensuring certain safety regulations and
conditions. The specification strictly defines certain safety conditions that must
never be violated, such as a train must never enter a segment closed by a gate,
or, the distance between trains must always exceed the safe stopping distance of
the following train under any circumstances.

The system operates in 1/2 second cycles. In each cycle the station control
computers receive train information, compute commands for all trains under
their control and forward these commands to the trains. All information and
commands are time-stamped. Commands to trains become invalid after 2 sec-
onds. If a train does not receive a valid command within 2 seconds, it goes into
emergency braking. The control algorithm needs to take this delay, track in-
formation and train status into account to compute new commands that never
violate the safety conditions. To ensure this, each station computer is attached
to an independent safety control computer (VSC) that validates all computed
commands for conformance with the safety conditions.

Computing the trains’ commands is a complex control problem. Inputs to
the corresponding algorithm include the train position estimates, train speeds
and accelerations, static track data (track grades, maximum speeds), switch and
gate information from the interlocking system, information from the neighboring
stations, interceptions from the safety control computer. The control algorithm
needs to balance and optimize train throughput, adherence to the schedule, pas-
senger comfort (not too strong braking and acceleration changes), engine wear
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and most importantly safety. In normal operations, the station computer com-
putes the train commands in fixed time cycles. However, in case of a detected
emergency condition, the system needs to react immediately and take appropri-
ate measures to ensure maximum safety of passengers and equipment.

We focus on modeling the reactive behavior of a station computer and the
trains, the safety control computer and the interlocking system as well as certain
other external interfaces, as described, in detail, below. We apply our service-
oriented development approach to distinguish the different services of the system
and to specify a service model than will help us to design a service-oriented ar-
chitecture. This architecture needs to be effective in supporting the requirements
that are listed in the case study. We show how we can abstract from the actual
control problems and integrate the necessary computation results and trigger
conditions into our reactive model.

Our approach enables rapid architecture design for the AATC; this results in a
high level design model that can systematically be refined into an implementable
system. We can ensure the correctness of the reactive behavior and integrate the
required control parts that trigger the reactive behavior.

3 Applying Service-Oriented Development to the BART
Case Study

We have applied our previously introduced service-oriented development
approach to the cross-cutting interaction aspects of the BART case study [25].
We have followed the process described above to elicit use cases and an initial role
domain model and subsequently have identified and specified the basic services
of the system. It is interesting to notice that in the BART case study the set of
requirements include very specific information about the prescribed deployment
of the system. We used the requirements, which are part of the architecture def-
inition, as part of the input to our service elicitation phase as suggested by our
iterative development process. This allowed us to refine our model for a suitable
target architecture and to generate prototypic executable code to test the system
under development.

In the following, we will explain the steps of the process we have followed in
more detail.

3.1 Use Case Elicitation

From the requirements that are present in form of the BART case study docu-
ment, we came up with a list of use cases:

1. A train determines its current status from different sensors in a consist
(group of cars in a train).

2. A train communicates its current status (position, speed, acceleration value)
to the responsible control station

3. A control station receives status messages from all trains in the controlled
area in regular time intervals
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Fig. 4. High Level BART Role Domain Model

4. A control station receives external input for the controlled area from the
interlocking system (gate&switch) control and manual speed limit settings

5. A control station computes speed and acceleration commands for each train
in the controlled area

6. A control station forwards all commands of an interval cycle to the VSC for
a reliable safety check

7. The VSC relays all safe commands via the comlink to the trains in the area
8. A train receives a command from its responsible control station, and checks

the command validity (timestamp). It applies the command to all actuators
in the consist.

Each use case, of course, can be broken down into more detailed steps, leading
to a comprehensive use case view of the BART system. Analyzing these use
cases leads to a first list of basic actors, or roles, which we depict in form of a
structure diagram. From the use cases, we identify Train, Control Station, the
Safety Computer (VSC) and an External Data Source as actors. This leads us
to an initial role domain model where we depict the connections between the
different actors. Fig. 4 shows the initial role model.

3.2 Modeling Services and Roles

We model roles and services together. We start with the initial role domain
model of Fig. 4. We systematically go though the list of use cases and identify
interaction patterns defining services. In a sense, the services we identify are
a refinement of the elicited use cases. In the process of identifying interaction
patterns, we may identify further actors; we add these as roles to the role domain
model. Finally, after modeling all services the resulting role domain model looks
as depicted in Fig. 5.

For specifying the services, we use the extended MSC notation of [10,15].
This notation is based on the Message Sequence Chart [8] standard and provides
an intuitive graphical language for specifying interaction patterns and is well-
accepted among engineers. Extensions to the standard notation were cautiously
made based on a formal semantics to provide increased expressiveness and more
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Fig. 5. BART Role Domain Model

powerful operators suitable for modeling service-oriented systems. To model the
services, we can make use of our tool-chain introduced in [12].

In our service model, we capture the interactions between the station com-
puter (and its subcomponents) with a train (and its subcomponents). Other
entities, such as external data sources, are part of the interactions as well. In
modeling the interactions, we concentrate on specific use cases and abstract
from any concrete deployment architectures. In particular, we do not yet take
any multiplicities of the entities into account. We specify the interactions be-
tween a train and the station computer, for instance, no matter of how often
this specific interaction happens subsequently or in parallel.

Good design principles suggest a hierarchic design of the service model. The
requirements imply a continuous, cyclic operation of a station computer unless
an emergency happens. The High Level MSC (HMSC) in Fig. 6 specifies this
concept. Intuitively, an HMSC is a graph depicting a roadmap, or flow, through
a set of services. The HMSC in Fig. 6 shows an infinite flow of activities of
normal train operation, preempted by exceptional behavior in case of an emer-
gency situation, which needs to be solved after which the situation returns to
normal operations. This MSC shows how we model infinite flows of behavior,
hierarchic MSCs and preemptive behavior; we introduce each of these aspects
now in more detail. Our notation allows us to specify preemptive behavior based
on the occurrance of a preemptive message (indicated on the dashed arrow) in
an interaction. In this case the interaction at the tail end of the dashed arrow is
preempted and continues with the interaction referred to at the tip of the dashed
arrow; this can be seen as a preemption handler.
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Fig. 6. TrainLoop HMSC for the BART specification

Fig. 7. TrainOperation HMSC for the BART specification

The MSC in Fig. 6 does not yet specify any detailed interaction behavior. MSC
references, depicted by the labeled rounded boxes, indicate that more detailed
specifications of parts of the behavior are to be found in further MSCs. The
functionality for “TrainOperation”, referenced in Fig. 6, for instance, is specified
in the MSC shown in Fig. 7. This HMSC shows a composition of four services
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by means of the “join”-Operator, depicted as ⊗ . The semantics attached to
the join of two services is the interleaving of the two behavior specifications,
synchronized on common messages.

The join operator is a powerful means to combine and synchronize over-
lapping services – this ability to disentangle service specifications is central in
our approach. We call services overlapping if they share at least two roles and at
least one message between shared roles. join synchronizes its operands on shared
messages, while imposing no ordering on all others; in other words, a join is the
parallel composition of its operands, with the restriction that the operands syn-
chronize on shared messages. Interactions that are shared in both services will
occur only once in the resulting service. This means that all interactions causally
before a shared interaction within both services must have occurred before the
shared interaction can itself happen. The join operator does not change the or-
der of interactions in any of the operands. It only restricts the occurrence of
shared messages. For a formal definition of the join semantics, see [10,14].

In general, the operators available in HMSCs are as follows:

– Sequence, by connecting two MSC references with an arrow. This operator
expresses that the behaviorat the tail end of the arrow precedes the behavior
at the tip of the arrow.

– Non-deterministic choice is indicated by means of multiple paths leading
out of a reference (or a small circle, used for graphical convenience). At
execution time the path to follow is chosen nondeterministically.

– Join*, represented by ⊗ , which joins two or more services as described
above.

– Parallel, which represents the interleaving of its operands.
– Preemption*; the preemptive message (or set of messages) is indicated as

a label to the dashed arrow. The service at the tail of the arrow is preempted
if and when the preemptive message occurs; in that event, the execution of
the service at the tip of the arrow commences.

Operators marked by * are extensions of the MSC standard. All operators
have a precisely defined semantics, which is given in detail in [10]. HMSCs can
be transformed into Basic MSCs by applying the algorithm given in [10]. This
algorithm transforms an HMSC into a finite state automaton. Subsequently,
using the well-known algorithm for translating finite state machines into regular
expressions, this automaton is transformed into an expression using only basic
interactions (message exchanges) and operators for Basic MSCs. Therefore, in
our methodology we do not distinguish between HMSCs and Basic MSCs.

Fig. 8 shows the specification of the functionality of a train sending current
status values to the nearest station, processing this information. This specifi-
cation uses the syntax of an extended Basic MSC, which shows an interaction
among roles. Messages are depicted as horizontal arrows between two roles (rep-
resented as vertical axes labeled with the name of the role). Messages can have
parameters to indicate transmission of data values. The roles visible in this di-
agram are a subset of the roles of the entire system. Furthermore, some of the
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Fig. 8. MSC TrainSendPosition

roles are specializations of previously introduced roles. The role NearestStation,
for instance, is a specialization of the Station role, which represents the exter-
nal interface of a station computer for interactions. NearestStation represents
the station computer of the station, in whose area of responsibility the train
currently is. How this distinction is implemented, is irrelevant at this level of
abstraction. The EnvModel role in this MSC represents an entity responsible for
managing all data related to conditions in the environment of a station. Fig. 5
shows the dependencies of roles in the role domain model.

We make use of MSC operators, depicted as labeled boxes, to express repe-
tition and choice in the interaction flow. The LOOP< ∗ > box around all the
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interactions in the MSC expresses repetitive behavior. In our case we are in-
terested in specifying an infinite loop of interactions for activities required to
submit a train’s position to the responsible station. The ALT boxes indicate al-
ternative or optional behavior. Different alternatives are separated by horizontal
dashed lines through the box. To indicate optional behavior, we leave one of the
alternatives empty. By means of state markers at the top of each compartment
we indicate the conditions determining which alternative is chosen. In Fig. 8, a
station only processes a train’s information if the train is in the station’s area of
responsibility.

In general, we use the following operators in Basic MSCs:

– ALT to express choice, guarded by conditions. If conditions are omitted, the
choice between the alternatives is non-deterministic.

– LOOP to express repetitive behavior. Loops can be limited to a certain
number of repetitions, can be infinite or or can be guarded by a loop con-
dition. If the loop condition is true, the interaction behavior in the box will
occur.

– PAR to express interleaving. The interactions in both compartments occur
independently of one another.

– JOIN* to express interleaved composition synchronized on common mes-
sages. Common messages are equally named messages between the same
two roles.

– PREEMPT* to express preemptive behavior. The behavior in the upper
compartment is preempted if the specified preemptive message occurs. In
this case, the behavior resumes as specification in the lower compartment.

– TRIGGER* to express liveness conditions. Whenever the behavior in the
upper compartment occurs, it is followed, eventually, by the behavior speci-
fied by the lower compartment.

Similar to HMSC operators, all Basic MSC operators marked by * are ex-
tensions of the MSC standard. All operators have a precisley defined semantics
explained in [10].

We integrate control aspects into reactive interaction specifications by means
of local actions. Local actions are depicted as labeled boxes on role axes. The
meaning of this syntax is that a role performs an activity based on the informa-
tion available until this point in time. Information can be local variables, data
previously received via messages and the role state. The local activity may have
a duration, but does not include any communication with other roles while it
executes. Activities may change local variables and the role state, which can be
used in further interactions or to determine alternative branches of behavior. For
instance, the local action CheckParams is executed by the role NearestStation.
The local action can be engineered and implemented independently, given its
interface (such as the variables it accesses and controls) is well defined.

ProvideNewCommands (Fig. 9(a)), SafetyCheckCommands (Fig. 9(c)) and
ReceiveTrainCommand (Fig. 9(b)) show other examples of services specified
in the BART case study. The ProvideNewCommands MSC, for instance, con-
tains the ComputeTrainCommand local action. It implements a complex control
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(a) ProvideNewCommands (b) ReceiveTrainCommand

(c) SafetyCheckCommand

Fig. 9. Some of the BART specification MSCs

algorithm that is based on the position and state of all trains, knowledge of
the physical constraints the train is subject to and other requirements, such as
the maximization of travelers’ comfort. The TrainSendPosition MSC guarantees
that the data required will be delivered to the EnvModel role, and the Commit-
TrainsParams action persists the data to the role-local state, to be available to
the ComputeTrainCommand action.

3.3 Mapping the Service Model to Components

The first step in transitioning from a service model with roles and interactions
to an implementable architecture is to define the component types of the archi-
tecture. Component types are blueprints of component instances in the archi-
tecture. We have to define component types, their communication interfaces to
other component types and the services they implement.

It is required that the component model is a refinement of the structural role
model introduced above. Fig. 1 shows an example role-to-component mapping
for the BART case study.
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Table 1. BART Role Mapping

Component Type Role Description

FastCPU
Station A fast CPU computer
EnvModel for operative station
StationDispatcher control

SlowCPU SafetyComputer
A slow CPU computer with high
reliability (MTBF) used for
checking safety conditions

Train

Train
TrainMotor Train computing unit on board
EmergenyTimer of a train
EngineCtrl

InterlockingSystem
UpdateSrc The interlocking system, which
TrainMotor controls switches and gates

The behavior of the component types can be derived from the service
specifications with the following procedure (described in detail in [18]):

1. For each role that a component implements, project the interaction behav-
ior into a state machine. This state machine will be enabled for all incom-
ing messages that the role will receive as part of the interaction, and it
will produce all messages that the role is sending. Furthermore, it will im-
plement the local actions and control the role’s local variable and control
state.

2. Compose all particular role state machines for that component type into a
single product state machine. Perform minimization and optimization steps
to produce a result with a manageable number of states.

Repeating these two steps for all component types results in state machine
specifications for each of the component types. Each component type com-
bines the behaviors of all the services it is involved in according to the role-
to-component mapping. These state machine specifications fulfill the reactive
behavior specified by the services and perform the required local actions. A con-
crete algorithm efficiently implementing these steps in the component synthesis
algorithm is described in [10,11].

3.4 Defining a Component Architecture

Fig. 10 shows a simple sample architecture, which can implement the service
model that we have specified above.

The component architecture shows the structure of the system’s components
and their connections. Components are instances of a certain component type
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Fig. 10. BART Components Architecture

and can be present multiple times in a system configuration. Each instance has
a defined name and a specific type.

3.5 Designing an Efficient Component Architecture Using Services

Our process distinguishes between roles and components, and provides method-
ological steps to map a set of roles to a component type. An interesting question
is how to design the underlying architecture. The process is iterative in nature.
This means that the system modeler can start with a high level, simple view
of the system through all steps of the development process and later iteratively
refine the respective models.

It is important to structure the service model and similarly the component
architecture so that they can be extended and modified efficiently, and are also
intuitive to understand and communicate. These are basic principles of architec-
ture design. For component architectures we know several structuring patterns
and best practices, described, for instance, in [5,3,4,22]. Layered architectures
and pipes-and-filters architectures are well-known examples.

For service-oriented architectures, the question of how to structure a service
model and its roles arises. In our approach, we basically follow the same proven
principles for designing component architectures with extensions required for
handling our more powerful model of roles. Roles capture structural dependencies
(decomposed subroles, communication links to other roles); in addition, they
can also assume a certain state or condition (such as the NearestStation or
ConnectedStation vs. the Station roles). One heuristic we apply in modeling roles
is to let the structural decomposition be the guiding principle. The arrangement
of roles then follows the classic rules of architecture design. Within the structural
framework, we allow for a further refinement of roles with guard conditions and
the states roles assume. This heuristic works particularly well, in deployment
contexts that are component- rather than service-oriented. If the deployment
platform supports service implementations, as exemplified by the web services
platform, then the structural decomposition need not be the guiding principle
– rather, services are the components in such platforms; the roles the can be
chosen to represent the external interface of the service, i.e. the behavior of the
environment in which the service operates.

Another use for roles relating to the specification of complex control systems is
to let them represent operational modes of components – in the BART example,
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for instance, we have used this to describe interactions with the “nearest station”.
These operational roles represent predicates on the state space of the component
implementing the respective role in a service execution.

4 Evaluation and Discussion

The service-oriented methodology introduced in this paper enables us to sepa-
rate system structure and behavior, as well as interaction behavior and control
aspects. We model the computations that need to be carried out to fulfill certain
environmental constraints (such as the Worst Case Stopping Profile mentioned
in the BART requirements specification) as local activities of system entities
that produce output conditions and data – provided that sufficient hardware
is in place and all required input data is present. Thereby, we abstract from
the actual computations while still being able to react to the pertinent system
states. This allows us to separate the development of the communication infras-
tructure, the system level orchestration of components and the development of
control algorithms for the various parts of the system.

For instance, in case the system identifies a hazardous condition requiring
immediate attention, it transitions into an emergency state that immediately
triggers appropriate reactions. All affected trains get immediately notified of
the emergency situation and are commanded to perform emergency braking;
all surrounding control stations get notified as well. This behavior preempts
the regular operation of cyclically computing the appropriate train movement
commands and communicating them to the trains.

In presenting this case study, we have shown how to model the recurrent
(cyclic), reactive and continuous behavior of the AATC part of the BART
system. We have shown how to interface computational results and interac-
tion and state-based behavior of the system. We ave demonstrated how the
service-oriented development process can be applied for complex systems that
are precisely specified and where extensive safety, convenience and interface
constraints need to be met to ensure the reliable, correct operation of the
system.

The experience we had in working on the BART case study and on other
complex systems, such as in the automotive domain, helped us in refining the
service-oriented technique we are developing. To cope with problems where there
is a complex control component we developed a way to isolate the control part in
local actions of roles. We then just need to guarantee that enough information is
available in the role state to enable independent development of the correspond-
ing control algorithms. We found that decomposing the problem using services
allows us to focus on the various scenarios separately and address control issues
independently by most of the high level system integration effort. Of course, the
application of a new service-oriented approach to control problems has the usual
drawback of any new methodology: there is a learning curve involved in adopting
it. However, we believe that the benefits in tackling complexity that the use of
SOA grants is well worth the effort.
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The work we have presented in this paper has connections with the work
on monitoring end-to-end deadlines we presented in [1] and on the exploration
of service-oriented architectures using aspects [13]. In fact, in [1] we used a
template-based code generation technique to create code that monitors the
deadlines in an implementation of a distributed system starting from a service-
oriented specification. The code generator inserts ad-hoc calls to procedures
implemented independently by the specific system to verify message deadline
expirations. A similar approach can cater to our control problem by calling
procedures explicitly named in local actions. The aspect-oriented approach de-
scribed in [13] converts services to aspects (using AspectJ), defines a component
architecture using classes and weaves the aspects into an executable that can be
used to evaluate different architectures. This aspect-oriented approach can be
used to weave implementations for the control parts into the interaction-oriented
framework derived from the service specifications as illustrated in this paper.

5 Related Work

Our approach is related to the Model-Driven Architecture (MDA) [19] and
architecture-centric software development (ACD) [23]; similar to MDA and ACD
we also separate the software architecture into abstract and concrete models. In
contrast to MDA and ACD, however, we consider services and their defining
interaction patterns as first-class modeling elements of both the abstract and the
concrete models. Furthermore, we do not apply a transformation from abstract
to concrete models. Our work is related to the work of Batory et al [20]; we
also identify collaborations as important elements of system design and reuse.
Our approach, in particular, makes use of MSCs as the notation for interaction
patterns and is independent from any programming language constructs.

Often, the notion of service-oriented architectures is identified with technical
infrastructures for implementing services, including the popular web-services
infrastructure [21]. Our work, in contrast, supports finding the services that can
later be exposed either as web-services, or implemented as “internal” services of
the system under consideration. Because our entire approach is interaction-based
it is perfectly general with respect to the types of architectures we can model.

In contrast to [6], we associate the hybrid behavior with local actions rather
than with local states of the roles; this enables us to reuse the automaton syn-
thesis algorithms we have developed in [11] almost verbatim – we just have to
introduce transition annotations to represent the calls to the evaluation functions
for the control functions.

6 Summary and Outlook

We have applied a service-oriented development process and corresponding no-
tations to a portion of the BART system as a case study, demonstrating the
applicability of our methodology to this domain area as well as the power of our
approach to manage the complexity of this distributed, reactive system. In the
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paper we have addressed the problem of creating a service-oriented architecture
using a suitable specification language, to describe systems where distributed
control is required. Using our interaction-oriented service notion we were able
to disentangle the concerns of describing the interactions between entities in the
system and the development of control strategies for the various entities. We
found our technique to be successful in tackling the complexity of the system
class we have explored.

As future work mention updating the existing tools to support a complete and
automated development approach for service-oriented systems with substantial
control parts, following the process outlined in this paper.
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Abstract. Based on our investigations of a case study of controllers for
train systems [6,7,13,14], we present a model of reactive systems which
emphasizes dynamic partitioning of system behavior into normal and
abnormal. The class of reactive systems considered are non-strict in the
sense that their behavior is not entirely governed by past events; instead,
future events must also be considered in the design of controllers for such
systems.

1 Overview

Motivated by the increasing complexity and oftentimes critical nature of software-
based controllers for reactive systems we have been studying the problem of devel-
oping reactive system models and accompanying domain-specific languages
suitable for certain classes of reactive systems [6]. Our goal is to develop a frame-
work that facilitates the specification, verification, and transformation-based de-
velopment of software-based control functions for these reactive systems [13][14].
Towards this end, we have been using the BART Case Study [11] to provide con-
crete details of a reactive system indicative of the class of reactive systems in which
we are interested.

In general, a reactive system can be modelled in terms of a vector of monitored
variables quantified over a set M and a vector of controlled variables quantified
over a set C [5,10]. The state space of a reactive system can then be defined as
the cartesian product of the values of the monitored and controlled variables.

State = {(
→
m,

→
c ) | →

m ∈ M ∧ →
c ∈ C} (1)

A transition function on states is defined capturing how the system state
changes in response to changing values of one or more controlled variables and
environmental factors. In this context, the control problem entails the discovery
of a sequence of allowable assignments to the controlled variables such that the
resulting system behavior satisfies a set of primary requirements, often couched
in terms of a safety policy and optimizes, to the extent possible, an additional set
of secondary requirements such as throughput. Central to the notion of primary
and secondary requirements is the notion of conflict. In particular, situations can
arise where primary and secondary requirements cannot be satisfied simultane-
ously. In such situations, primary requirements take precedence over secondary
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requirements. There are two important assumptions that we make in the context
of the control problem.

1. The values that can be assigned to controlled variables are capable of realiz-
ing a wide range of behaviors, including behaviors that are prohibited from
the perspective of secondary requirements. For example, a train may engage
its emergency brake when needed to satisfy a primary (safety) requirement
(e.g., to avoid a collision). However, a train should never use the emergency
brake as a means for satisfying secondary requirements.

2. Environmental events can force the control function to make unexpected
changes to the values of one or more controlled variables in order to satisfy
a particular set of system requirements (e.g., safety requirements).

Our key observation is that system behaviors should not be treated alike (e.g.,
a train engaging its emergency brake to avoid a collision vs. a train coming to
a gradual halt at a station). Instead, the behaviors should be partitioned into
two sets normal and abnormal. Furthermore, this partitioning should be based
on some criterion related to the expected behavior of a given reactive system.

The static partitioning of system states is not new and has been used in the
design of a variety of systems [12]. However, the contribution of this paper is a
definition of partitioning that is (1) behavior-centric rather than state-centric,
and (2) is dynamic in nature in the sense that the partition can vary over time.

The rationale for dynamic partitioning is based on the belief that adopting
a strictly reactive classification scheme may be too rigid for systems in which
nondeterministic events leading to abnormal states are extremely rare and/or
the normal behavioral capabilities of the system are significantly restricted. It
may be worthwhile instead to consider a dynamic classification scheme (driven
by expected system behavior) that enables a greater number of behaviors and
thus gives the control function more flexibility in how it can go about satis-
fying its requirements. In turn, this flexibility may make it possible for the
control function to more satisfactorily address competing sets of secondary
requirements.

The remainder of the paper is as follows: Section 2 describes a basic domain-
specific reactive system model suitable for modelling train systems and defines
the notion of feasible train behavior in this setting. Section 3 states the control
problem we want to solve and discusses how dynamic partitioning of system
behavior impacts the solution to this problem. Section 4 extends the basic system
model described in Section 2 so that the control problem must take into account
the transmission of messages over an unreliable medium. Section 5 discussed how
message-buffers may be effectively used to mask the effects of unreliable message
transmission. Section 6 discusses the relationship between message-buffers and
other nondeterministic events (e.g., an automobile stalled on the track). Section 7
discusses some related work in the area of train acceleration control, and Section
8 concludes.
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2 A Basic Domain-Specific Reactive System Model

We are interested in developing reactive system models, of the kind described
in the previous section, for train systems having characteristics similar to the
BART system [11]. These systems contain a variety of components including a
track, switches, signals and stations, and trains.

The train systems under consideration must satisfy a variety of constraints. A
primary set of constraints concern themselves with system safety. A secondary set
of constraints concern themselves with issues like passenger comfort, minimiza-
tion of wear and tear on mechanical components, optimization of throughput,
and so on. Figure 1 gives an example of the kinds of constraints that influence
the behavior of trains within such systems.

Primary Constraints (Safety):

– A train should never get so close to its leading train that if the leading
train stops abruptly (e.g., derails) a collision becomes unavoidable.

– A train should stop at signals when told to do so.
– A train should not exceed the speed limit of the track segment on which

it is travelling.

Secondary Constraints:

– System throughput should be optimized.
– Large and frequent changes in speed and acceleration should be avoided.
– Changing from acceleration to braking (or vice versa) should be avoided.

Fig. 1. An example of system constraints

2.1 A Description of System Components

A track is modelled as a connected acyclic graph having labelled directed edges
and whose overall structure has the characteristics of a tree (the in-degree of every
node is less-than 2). In this graph, edges correspond to track segments and can vary
in length, where the length of a track segment is given in some unit of measure
(e.g., feet). The nodes and edges in the graph form a relation R where (n, e) ∈ R
implies that the node n is the beginning (i.e., the source node) of the directed edge
e. Each track segment also has an associated speed denoting the maximum speed
a train may travel on the track segment. If a train exceeds the maximum speed of
a track segment, its risk of derailment becomes unacceptably high.

For a given track, the directed path taken by a train is determined by switches.
Switches are the mechanism used to route trains to particular destinations. In
the model, every node may have a corresponding switch. A switch can be in
a number of distinct states, and the state of a switch can vary over time. The
purpose of the switch is to select, from the set of directed edges associated with
the node, that edge which belongs to the directed path the train should follow.
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track segment --

train                --

(length, speed)

(position,speed)

legend

position

speed

(600 feet, 45 mph)

(500 feet, 25 mph)

(700 feet, 35 mph)

(300,35)

(700,20)

Fig. 2. A projection of trains and route onto a 2-dimensional coordinate system

A signal is a mechanism for controlling the flow of trains within a track. For
example, if a node on a route has a switch that is in an inappropriate state, a
signal can be used to stop a train from passing over this node until the switch
is in the proper state. Conceptually speaking, a signal plays a role similar to
a traffic light. A signal may be associated with any node in the system whose
in-degree is equal-to 1. In the framework presented, a station can essentially be
modelled as a signal. In reality, stations represent points on the track where a
train may stop for the purpose of taking on or letting off passengers.

A train is modelled as a point mass (having no length) that travels along the
edges of the track. The path followed by a train is called its route. In order for a
route to be well-formed, it must form a directed path with respect to the layout
of the track. For a given route, points along the route are uniquely defined in
terms of an absolute 1-dimensional coordinate system (e.g., the x-axis). This
enables the position of a train to be unambiguously expressed using a single
variable quantified over this coordinate system.

The control problem that we are considering assumes that switches and signals
are set by the environment. Because of this assumption we can, without loss of
generality, view the track as consisting of a single route. For such a route, a
train state is modelled by a triple of the form (position,speed,acceleration). The
diagram in Figure 2 is a projection of two train states, onto a 2-dimensional
coordinate system. The x-axis represents position and the y-axis represents speed
(acceleration information is not present in the projection). We would like to
point out that in Figure 2, the speed attribute of track segments is displayed as
a (discontinuous) step function. In order to remain is a safe state, the speed of
a train must be below this step function.

A train system consisting of n trains can now be defined as a tuple of the form:

System = (track, train1, train2, ..., trainn, signals, stations, switches) (2)
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In the train systems considered, the relationship between an object train and
its corresponding lead train is of central importance. Specifically, an object train,
which we denote by OT, is a train whose behavior we are (currently) considering.
A lead train, which we denote LT, is the train immediately in front of the object
train. In general, the behavior of OT can be significantly effected by the behavior
of LT. For example, if LT derails then OT may need to take drastic actions to
avoid a collision with LT.

2.2 Feasible Train Behavior

In this framework, a train behavior is function from time to train states over a
given time interval. In the physical world, time is a continuous quantity. However,
if one is willing to accept certain behaviorial approximations, time can be mod-
elled in discrete terms. Specifically, one unit of time corresponds to the interval
between between two temporally adjacent sense-react steps in the system. For
proper values of n, a time interval t1..n can be modelled as a discrete sequence
t1, t2, ..., tn where each ti corresponds to a sense-react step. Given this model
of time, a train behavior over a period t1, ..., tn can be modelled as a discrete
sequence of train states 〈stt1 , stt2 , ..., sttn〉. In this model, train state sequences
have an implicit notion of time associated with them. In such a sequence, mov-
ing from a train state at time ti to the train state at time ti+1 is referred to as
a state transition. Figure 3 shows the behavior of a train (not to scale) over a
period of 8 consecutive sense-react steps.

While it is true that train state sequences can be used to adequately model
the salient behavioral characteristics of train, not all such sequences constitute
an actual train behavior. For a given physical train system (irrespective of sys-
tem requirements such as safety, etc.) only a subset of train state sequences are
actually feasible. In this context, feasibility is determined by a number of factors.
These factors can be broadly categorized as (1) basic laws of physics, (2) oper-
ational capabilities of the train system, and (3) environmental factors. In order
for a train state sequence to be feasible it must be consistent with the aforemen-
tioned items. Given a set of system requirements, consistency with respect to
these various items can be defined in a conservative manner. For example, the
derailment of a train might be modelled as a behavior in which a train comes to

position

speed

(600 feet, 45 mph)

(500 feet, 25 mph)

(700 feet, 35 mph)

(200,35)

(650,20)

(350,30)

(550,25)

(900,20)
(1100,22)

(1300,27)

(1500,30)

Fig. 3. The behavior of a train (not to scale) over a period of 8 sense-react steps
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Basic Laws of Physics
Behavioral Element Condition Feasibility Comment
(p1, s1, a1), (p2, s2, −) p2 ≈ p1 + s1Δt + 1

2a1Δt2 Feasible Laws of physics.

(p1, s1, a1), (p2, s2, −) s1 > 0 ∧ p1 > p2 Infeasible Train should be
moving forward.

Operational Capabilities
Behavioral Element Condition Feasibility Comment
(p, s, a) 0 < s < MAX SPEED Feasible Train motor can

cause the train to
travel within a
certain speed range.

(p1, s1, a1), (p2, 0, a2) a1 ∗ a2 < 0 Infeasible The acceleration
cannot change sign
(i.e., mode) without
first passing through
an acceleration value
of zero.

Environmental Factors
(p1, s1, a1), (p2, 0, −) p1 = p2 ∧ s1 = 40 mph Feasible A derailed train

can instantly halt.

(p, s, a) s < 0 Infeasible Environmental factors
cannot cause a train
to move backwards.

Fig. 4. Examples of feasible and infeasible behaviors

an instantaneous halt – a behavioral approximation with respect to the laws of
physics that is driven by safety requirements.

While a completely formal characterization of feasible behavior lies beyond
the scope of this paper we nevertheless would like to give the reader a semi-formal
understanding of what constitutes feasible behavior. Figure 4 gives some exam-
ples of feasible and infeasible behaviors. (Recall that a train state is modelled as
a position, speed, acceleration triple (p, s, a).)

When viewed at the system-level, there are a number of additional constraints
restricting feasible behavior. For example, the trains travelling along a given
route must form a total order, and (during normal behavior) this ordering must
be preserved over time. The total ordering constraint implies that an object train
cannot move from a position behind its lead train to a position in front of its
lead train. The total ordering constraint also implies that trains may not move
past a train that has derailed. Thus, all trains enroute behind a derailed train
must eventually come to a halt.

We now describe the set of feasible train behaviors in a semi-formal fashion.
Let M denote the position and speed variables of a train state and let C denote
the acceleration variable. In the context of a given train system, a transition
function next : M × C → M for an individual is defined that models how a
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train state changes, under ideal circumstances, from one sense-react step to the
next. The function next accounts for all train behaviors that respect the laws of
physics as well as the operational capabilities of the train. However, next does
not account for behaviors resulting from environmental factors – a deficiency
that will be addressed shortly.

Let (p1, s1, a0) denote the initial state of a train and let 〈a1, a2, . . . , ak〉 denote
a sequence of acceleration values. With the help of the function next, we can suc-
cessively combine train states and acceleration values to generate the following
behavioral model:

〈(p1, s1, a1), (p2, s2, a2), . . . , (pk, sk, ak)〉

where ∀i : 0 < i < k → next(pi, si, ai) = (pi+1, si+1)
(3)

In an ideal setting, the behavior of a train model will be identical to the ac-
tual behavior of the corresponding physical train. However, due to a number of
environmental factors (e.g., the derailment of a train) the behavior of a model,
operating without the benefit of sensor updates, will over time diverge from the
behavior of its corresponding physical system. Within the context of our mod-
elling framework, sensor updates can be seen as functions that modify the set of
feasible behaviors in a manner that reflects environmental factors. Our definition
of the set of feasible behaviors should include this new class of behaviors.

To account for environmental impact on train behavior, we will model envi-
ronmental factors as a finite set of nondeterministic events: Ω = {e1, e2, ..., en}.
The elements of Ω denote explicit kinds of events that we believe the envi-
ronment is capable of producing (e.g., derailment, positional drift, unexpected
blockage of the track, and so on). Each of these events can alter the state of a
train in a particular way. Furthermore, combinations of events can take place
simultaneously. Thus, a given environmental state Env is modelled as a subset
of Ω. Environmental states can be given a formal semantics by defining them
in terms of a function on train states. Given these assumptions, the set of all
possible non-empty environmental conditions can now modelled as P(Ω) − {∅}.

The generation of feasible train behaviors via next can now be modified to
account for environmental factors as follows:

〈(p1, s1, a1), (p2, s2, a2), . . . , (pk, sk, ak)〉

where ∀i : 0 < i < k → Envi(next((pi, si, ai))) = (pi+1, si+1)
and where Envi denotes the environmental conditions in effect during the
transition from state i to state i + 1.

(4)
We can now define the notion of state transition at the system level for a system

of n trains as the composition of the state transitions of each individual train.

2.3 Predictive Behavior

In a traditional approach, a train acceleration control function is developed whose
goal at every sense-react step is to calculate the acceleration value needed for one
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(i.e., the very next) state transition. However, under certain circumstances, it is
worth considering the consequences of generalizing the acceleration control func-
tion so that it calculates and stores the next k state transitions 〈a1, a2, . . . , ak〉. In
this approach, the control function of an object train can factor in to its control al-
gorithm the sequence of accelerations 〈a1, a2, . . . , ak〉 that has been calculated for
its lead train. We say that control functions that make use of such future expected
behavior are non-strict from a strictly reactive viewpoint.

In this section, we are considering a basic system model in which train control
functions assign a single value to the acceleration variable of their respective
trains during each sense-react step. In Section 4, we consider a variation of the
basic train model in which acceleration values must be transmitted to the train
over an unreliable medium.

A fundamental question now arises whether such calculations are useful. For
trains whose operational capabilities are unrestricted by behavioral requirements
(e.g., the emergency brake may be used at any time), the number k of unsuper-
vised steps that a train can make while still preserving safety properties can be
increased by simply slowing trains down. Though this comes at the expense of
optimizing secondary requirements (e.g., a stopped object train will never collide
with its lead train though such a behavior will not satisfy important secondary
requirements such as throughput). However, for trains whose operational ca-
pabilities are restricted by behavioral requirements (e.g., the emergency brake
may only be used under abnormal conditions) the impact of pre-computing k
state transitions on the optimization of secondary requirements becomes more
interesting.

3 The Train Acceleration Control Problem

We are interested in developing software controllers capable of controlling the be-
havior of trains in systems having the characteristics of the kind described in the
previous section.Specifically,weare interested in systemswhoseproperties include:

1. The system contains multiple trains.
2. The state of an individual train can be modelled by a triple of the form

(p, s, a) where p, s, and a are variables that respectively denote the
position, speed, and acceleration of the train.

3. For a given train, the value of the position and speed variables are
provided via sensors and are periodically updated.

4. The acceleration is the only variable that the control function can set.
5. The acceleration variable may only be assigned to a new value in a

periodic fashion.
6. At all times, train behavior must satisfy a set of primary requirements

(i.e., a safety policy).
7. Train behavior should strive to optimize a set of secondary require-

ments.
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The train acceleration control problem described above is a classic example
of a reactive control problem. In this problem, the position and speed variables
of a train state are the monitored variables, and the acceleration variable is the
controlled variable or actuator. The value of a monitored variable is periodically
updated using information obtained from sensors, and the value of a controlled
variable is periodically updated with values computed by a control function. All
updates occur during a cyclic process known as a sense-react step. A sense-react
step can be decomposed into two parts: a sense step and a react step. During
the sense step, monitored variables are updated using information obtained from
various sensors, and during the react step, controlled variables are updated with
values resulting from various computations.

In Figure 5, an interaction diagram is given, in the UML, showing the flow
of information between a train, its corresponding control function, and the rest
of the system (e.g., other trains). In our model, we assume each train has a
corresponding control function which accepts as input a relevant description of
the system state, performs some calculations, and then transmits a message to
its corresponding train. The content of these messages control the behavior of
the train.

In most reactive systems, it is tacitly assumed that the delay between the sense-
step and the react-step is negligible and that a sense-react step can therefore be
treated as a single point in time. In our framework, we also make this assumption.

The train acceleration control problem assumes that switches and signals are
a benign part of the environment. Specifically, it is assumed that the environ-
ment sets switches and signals in a manner that does not prohibit a train from
satisfying a given set of objectives (e.g., a train should travel on a particular
route and satisfy a variety of safety properties).

tr : train

sensor_info()

c : control function

set_actuator()

calculation()

sensor_info()

set_actuator()

calculation()

s : system

sensor_info()

sensor_info()

Fig. 5. An interaction diagram showing the flow of information between a train, its
corresponding control function, and the rest of the system
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Given the above assumptions and by making use of the function Envi ◦ next,
introduced in Section 2.2, the acceleration control problem for a single train can
be reduced to a search problem whose goal is to find a sequence of acceleration
values 〈a1, a2, . . . , ak〉 realizing a feasible train behavior over a given time interval
that satisfies a given set of properties under the set of environmental conditions
P(Ω).

3.1 A State-Centric Partitioning of Train Behavior

In the BART system, maximum braking is achieved using open-loop braking and
non-maximum braking is achieved using closed-loop braking [11]. Influenced by
this paradigm, we are interested in solving the train acceleration control problem
for trains having two braking capabilities – the first braking capability is to be
used under normal conditions and the second braking capability is to be used
(exclusively) in emergency situations and then only when absolutely necessary.
As a result, we assume the following assumption and constraint holds for the
class of train system we considering.

Assumption 1. The distance it takes a train to come to a full stop is signif-
icantly shorter when using the train’s maximum braking capabilities than it is
when using the train’s normal braking capabilities.

Constraint 1. Use of a train’s maximum braking capabilities should be avoided
and should be reserved only for emergency situations.

The constraint above results in a fundamental shift in how one views train states
and train behavior. In particular, it suggests that train behaviors should be
partitioned into two sets, which we will call normal and abnormal. Maximum
braking may not be employed in the context of normal behaviors. Thus, all train
states having acceleration values belonging to the set of maximum braking values
may only be an element of an abnormal behavior. We refer to this state-based
determination of normal and abnormal behavior as being state-centric.

A system of trains is considered to be in a normal behavior if all of its trains
are exhibiting normal behavior. Under what conditions then can a train system
transition from a normal behavior to an abnormal behavior? We believe that it is
only in response to a nondeterministic event that a system should be permitted
to (as a last resort) transition to an abnormal behavior – a behavioral context
in which maximum braking is permitted.

3.2 A Behavior-Centric Partitioning of Train Behavior

The basic partitioning scheme described in Section 3.1 is static in nature: maxi-
mum braking indicates an abnormal behavioral context. According to the safety
constraint given in Section 3.1, a transition from a normal system behavior to
an abnormal system behavior may only be initiated by a nondeterministic event
(e.g., an object train engages its emergency brake in response to the derailment
of its lead train).
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In this paper we propose using a dynamic partitioning scheme to define the
conditions under which a system is permitted to transition from a normal be-
havior to an abnormal behavior. The main objective of a dynamic partitioning
scheme is to create a model in which there is more flexibility with respect to
the normal/abnormal transition. In practice, there are a number of reasons why
it may be beneficial to take a more refined view of the partitioning of train ac-
celerations and their implied behaviors. For example, in a train system where
trains have a wide range of diverse acceleration capabilities it may be possible
to exercise a more optimal control over train behavior using a dynamic parti-
tioning scheme. Such a heterogeneous system of trains is implicitly suggested in
[3]. Similar conclusions may also be drawn for systems in which train behavior is
dependent upon an unreliable transmission medium – an issue which is discussed
in detail in Section 4.

In a dynamic partitioning scheme, abnormal conditions can be inferred from
certain train behaviors, that would otherwise be considered normal. As a result,
this type of partitioning can be viewed as being behavior-centric. The intuition
behind this perspective is that, in a dynamic partitioning scheme, trains advertise
a portion of their intended future behavior. The control function of one train
(an object train) can then factor the advertised behavior of another train (a lead
train) into its behaviorial calculations. Deviations from an advertised behavior
should only be permitted in response to a forcing nondeterministic event which,
in turn, provide the justification for the allowing system to transition into an
abnormal state.

We propose a control framework where message-buffers are used to implement
sequences of acceleration commands. Specifically, the contents of a message-
buffer contains acceleration commands that a train is expected to carry out in
the future. A more detailed discussion of message-buffers is given in Section 5.

The behavioral dependency of one train on the message-buffer of another
raises a question as to the assumptions underlying message-buffer changes. In
particular, how can message-buffer contents be changed in such a way that safety
properties are not violated? In Section 5.1 a message-buffer change policy is
described that is based on the notion of refinement. This policy defines conditions
that are necessary for message-buffer changes to satisfy our safety policy.

4 System Architecture

In this paper, we consider a system architecture where the computational re-
sources of the system are centrally located. In particular, control functions do
not reside on the trains themselves. As a result, sensor information and actua-
tor commands must be transmitted respectively from the train and the system
to the control function and from the control function to the train. It is worth
mentioning that from the perspective of the control function, the decoupling of
a train from its controller only needs to be modelled only if, in the physical
system, the transmission of messages is not reliable (e.g., message transmissions
are missed from time to time).
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4.1 An Analysis of the Effects of Unreliable Transmission

In a reactive system, there is a limit to the number of transitions that a system
can make without receiving new sensor information. (If such a limit did not
exist, the system would not be reactive.) We use the term predictive capability
to refer to this limit. In practice, this limit is determined by the ability of the
system to satisfy a set of constraints. For example, a train may need to stop at a
particular signal. A train should not exceed the speed limit of the track segment
on which it is travelling, and so on. By definition then, the predictive capability
of a state in a reactive system is the number of unsupervised transitions that may
be made from this state while still guaranteeing that a given set of constraints
are satisfied. We are interested in a control function that yields train behaviors
in which each state in the behavior has a predictive capability that equals or
exceeds a globally defined predictive capability value.

Figure 6 shows the behavior of a train (not to scale) as it moves from a
track segment having a maximum speed of 45 mph to a track segment having a
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Fig. 6. Optimal deceleration (not to scale) under error-free transmission
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Fig. 7. Optimal acceleration (not to scale) under error-free transmission
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maximum speed of 15 mph. In this figure, the transmission of actuator commands
is assumed to be error-free. As a result, the control function is able issue the
actuator commands a1, a2, a3, and a4 respectively during the sense-react steps
occurring at times t1, t2, t3, and t4. Thus, the train slows down “just in time”
as it enters the track segment whose maximum speed limit is 15 mph. Figure 7
is similar to Figure 6 and shows an optimal acceleration as a train enters a new
track segment whose maximum speed limit is greater than the maximum speed
limit of the track segment on which the train is currently travelling.

For systems in which a control function must transmit a message to the entity
it controls (e.g., a train), the loss of a message due to transmission noise results
in a situation where the entity is forced to make an unsupervised transition.
Similarly, the loss of a second message would force the entity to make a second
unsupervised transition. The impact of an environment, in which transmission is
unreliable, on a traditional control function is that it constrains the behavioral
space of the entity. In other words, one way for a control function to compensate
for transmission noise is to compute behaviors that are more conservative.

In the case where the entity is a train, the control function needs to com-
mand the train to slow down earlier than would be the case if the transmission
was error-free. However, simply computing such anticipatory behaviors is not
sufficient to address the effects of unreliable transmission. A decision must be
made as to the value of an actuator during an unsupervised transition. A super-
ficial analysis may suggest that the value of an actuator during an unsupervised
transition should simply be a repetition of the most recent value that had been
assigned to the actuator. However, further analysis shows that such an approach
(even if physically possible) leads to behaviors that are extremely conservative.
Furthermore, if control messages are frequently lost, such a model can also lead
to erratic train behavior.

A second possibility is to set the value of an actuator to some “neutral” value
during unsupervised transitions. The determination of what value is neutral is
highly dependent on the set of properties (e.g., safety properties) that the sys-
tem should satisfy. For example, in the context of the train acceleration control
problem, an acceleration value of 0 that might arguably be considered neutral.
However, this neutral value leads to extremely conservative behavior. Suppose
one is considering a train system where 1 in n messages is guaranteed to arrive.
Furthermore, let us assume that one message may be sent during each sense-
react step. Under such an assumption, a worst-case analysis shows that it will
take control function n sense-react steps to achieve what would otherwise be
achieved in a single-sense react step. In general then, this approach will yield
train behaviors that are “stretched” by a factor of n.

A third possibility is to modify the content of the message sent by the control
function. One possibility is to have the control function send messages of the form
(next acceleration,final speed) where next acceleration is the value to which the
actuator should be set and final speed is the final speed the train should reach.
After reaching the final speed the train should then make adjustments to its accel-
eration, independently from the control function in order to maintain this speed.
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Fig. 8. A scenario (not to scale) where anticipatory messages are used to mitigate
unreliable transmission

It is worth noting that complex messages like (next acceleration,final speed)
require that the train itself be given some control intelligence. It is this intelli-
gence then that allows the train to undertake unsupervised transitions.

While messages of the form (next acceleration,final speed) represent a signifi-
cant improvement over the previously mentioned alternatives, they nevertheless
still result in behaviors that are overly conservative. For example, suppose we
have system where it is guaranteed that at least 1 in 4 messages will arrive (i.e.,
if a message is sent during the course of four consecutive transmissions, we as-
sume it has arrived). To simplify the discussion, let us further assume that the
transmission of sensor information to the control function is error-free. Thus, in
this setting the notion of transmission noise only applies to messages sent by the
control function. Figure 8, shows a scenario (not to scale) that highlights the
nature of the conservative behaviorial approximation. To mitigate the effects of
unreliable transmission the control function anticipates reductions in track speed
limits and sends messages early. If the message is received after its first trans-
mission the train reduces in speed resulting in a behavior whose throughput is
not optimal.

4.2 The Relationship Between Predictive Capability and
Transmission Reliability

The model that best captures transmission reliability is dependent on a number
of domain-specific assumptions. Reasonable models might include binomial or
poisson distributions. An important factor that must be considered is the number
of message transmissions that an acceleration command is dependent upon. For
example, a control function for a given train OT will need information about (1)
the state of OT, and (2) the state of the train LT that is immediately in front
of OT. A control function may also be dependent on other information such as
the current state of various signals in the system.
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Let us assume that the type of information mentioned in the previous para-
graph is transmitted in several distinct messages. It is worth mentioning that
if any of these messages fails to arrive, the acceleration control function will
be unable to compute the next acceleration command. The point here is that
the relationship between transmission reliability and predictive capability (as
defined in Section 4.1) is nontrivial. In contrast, the decision on how a train
should respond to missed message is a binary one. That is, in response to a
missed message, a train either believes that it has enough information to make
a given unsupervised transition under normal conditions or it believes that the
missed message has transitioned the train into an abnormal state, in which case
the train engages its emergency brake.

A detailed analysis of the issues mentioned in the previous paragraphs lies be-
yond the scope of this paper. For our purposes, it suffices to assume that the ab-
stractionprovidedby the predictive capability captures all of the issuesmentioned.

5 Using Message Buffers to Mask the Effects of
Unreliable Transmission

We present a solution to the train acceleration control problem for a system
of the kind described in Section 4 where the transmission of messages, both to
and from the control function, is not reliable, and where reliability is indirectly
captured by the value of predictive capability for the system. The solution pre-
sented here extends a solution we have developed for a similar system in which
transmission was assumed to be 100% reliable [14]. The extension makes use of a
message buffer that resides on a train and stores expected future actuator com-
mands. Messages are computed by the control function after the proper sensor
information has been received. A computed message consists of a sequence of
actuator commands that the train should carry out over a given time interval.
For example, if the current time is ti+1, then a message would contain accelera-
tion commands for the times ti+1, ..., ti+k where k is the predictive capability of
the system.

In the general case, during each sense-react step a train consumes the next
actuator command from its message buffer and carries out the command. An ex-
ceptional condition is reached when an attempt is made to consume an actuator
command from an empty message buffer. This condition transitions the system
into an abnormal state and the train initiates an emergency stop sequence.

Messages are transmitted during every sense-react step in which a control
function has received sufficient sensor information to compute a message. In the
expected case, this usually means that a message will be transmitted and received
every sense-react step. Note that there is a significant amount of redundancy
that exists between a message mi sent at time ti and a message mi+1 sent at
time ti+1. It is this redundancy that is the mechanism used to mask the effects
of unreliable transmission. The basic principle here is that if one can assume
that under normal conditions 1 in n messages will arrive, then if one sends an
acceleration command n times then, under normal conditions, it will arrive.
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Message buffers are overwritten with the contents of newly arriving messages.
However, it is important that such overwriting yield a new buffer whose contents
refines the previous buffer contents; otherwise safety violations can result.

An important property of our solution is that it is able to handle a message
arrival model that is non-uniform. By this we mean that, during a message
broadcast associated with a given sense-react step, some trains may receive mes-
sages while messages to other trains may be lost.

5.1 Message Refinement

In our framework, a control function can be abstractly viewed as a function that
computes a sequence of messages m1, m2, m3, ..., mn. Given a non-uniform mes-
sage arrival model, the message sequence computed by the control function must
satisfy certain properties in order to assure that safety properties are satisfied.
In particular, let bi denote the contents of a train’s message buffer at time ti
and let mi denote a message that has been sent to the train at time ti. In our
model, the contents of the train’s message buffer will be overwritten by mi. We
will show that bi 
 mi (for the definition of 
 given below) is necessary to assure
that safety properties are satisfied.

In the discussion that follows, we write 〈ai+1, ai+2, ..., ai+n〉 to denote a se-
quence of acceleration commands to be carried out at times ti+1, ti+2..., ti+n.
Sequences of acceleration commands are used to model both messages sent from
control functions to trains as well as the contents of a train’s message buffer. In
this context, we use the symbol E to denote the emergency stop sequence. We
also use Greek symbols, such as α and β, to denote sequences consisting of 0 or
more acceleration commands. We now define refinement as follows:

Definition 1. ∀α, β : α 
 αβ

Definition 2. ∀α, β : αβ 
 αE

Definition 1 states that extending sequences of acceleration commands consti-
tutes a refinement. Definition 2 states that the truncated form of a message
extended with the emergency stop sequence also constitutes a refinement.

In this setting, we will show that if one permits messages to overwrite the
contents of message buffers in a manner that is not consistent with 
, then it
becomes possible to reach system states where safety properties are violated. An
example of such a state is one where there exists a train that cannot avoid a
collision with its lead train should the lead train derail.

Let eval : train state ∗ sequence → behavior denote a function that takes
a train state and a sequence of acceleration commands as input and returns
a sequence of train states as its output. Let st1 and st2 denote the states of
two distinct trains, and let seq1 and seq2 denote two sequences of acceleration
commands. We write safe(eval(st1, seq1), eval(st2, seq2)) to denote that the be-
havior eval(st1, seq1) is safe with respect to the behavior eval(st2, seq2)). If we
assume that the train behaviors that are compared by the safe predicate begin
with initial states that are safe (e.g., a lead train is in front of its object train),
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then without loss of generality the arguments to safe may be commuted. That
is, safe(A, B) = safe(B, A).

As as aside, we would like the reader to note that, due to the effects of un-
reliable transmission, it is possible for a situation to arise where every move in
a message buffer is completed (i.e., the message buffer becomes empty) before a
new message arrives. Along similar lines, a non-uniform message arrival model
will give rise to situations where the message buffer of one train is overwritten
by a sequence of acceleration commands from a newly arriving message while
another train must carry out acceleration commands belonging to an older mes-
sage that was received sometime in the past. It is precisely because of these
issues that unsafe conditions can arise if messages do not refine the contents of
message buffers.

Theorem 1. Let stXi , bX
i , and mX

i respectively denote the state, non-empty
message buffer, and current message (computed by the control function) for train
X. Our refinement theorem can then be stated as follows:

∀ stXi , bX
i , ∃ mX

i , stYi , bY
i , mY

i :

bX
i 
 mX

i ∧
safe(eval(stXi , bX

i ), eval(stYi , bY
i ))∧

safe(eval(stXi , mX
i ), eval(stYi , mY

i ))∧
¬safe(eval(stXi , mX

i ), eval(stYi , bY
i ))

Proof

1. Case 1: mX
i implies a behavior that is faster than that implied by bX

i .
(a) In this case, let X denote the object train and Y denote its lead train.
(b) Choose stYi and bY

i in such a manner that the behavior implied by bX
i is op-

timal (from the perspective of speed) with respect to the behavior implied
by bY

i . From this it follows that ¬safe(eval(stXi , mX
i ), eval(stYi , bY

i )).
(c) NowchoosemY

i in such amanner that safe(eval(stXi , mX
i ), eval(stYi , mY

i ))
holds.

(d) Suppose conditions exist such that the control functions for X and Y
respectively compute the messages mX

i and mY
i .

(e) Further suppose, that X receives the message mX
i but Y does not receive

its corresponding message mY
i . Q.E.D.

2. Case 2: mX
i implies a behavior that is slower than that implied by bX

i .
(a) In this case, let Y denote the object train and X denote the lead train.
(b) Choose stYi and bY

i in such a manner that the behavior of bY
i is optimal

(from the perspective of speed) with respect to the behavior implied by
bX
i . From this it follows that ¬safe(eval(stXi , mX

i ), eval(stYi , bY
i )).

(c) NowchoosemY
i in such amanner that safe(eval(stXi , mX

i ), eval(stYi , mY
i ))

holds.
(d) Suppose conditions exist such that the control functions for X and Y

respectively compute the messages mX
i and mY

i .
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(e) Further suppose, that X receives the message mX
i but Y does not receive

its corresponding message mY
i . Q.E.D.

Corollary 1. ∀ bi, mi, mi+1 : bi 
 mi → mi 
 mi+1

6 Message Buffers and “other” Nondeterministic Events

Section 5 discussed how message buffers can be used to mask the effects of unre-
liable transmission – a source of nondeterminism. In this section we take a look
at the interaction between message buffers and other sources of nondeterminism
in the system. The major issue that we are concerned with here is a situation
where there is a forced reduction in the speed of a lead train. Such a reduction in
speed can be abrupt in the case of a derailment, or somewhat abrupt in the case
of an emergency brake, or may simply represent a deviation from the behavior
implied by the acceleration commands belonging to a previous message buffer
(e.g., an automobile is stalled on the track and the operator of the lead train
brings the train to a gradual halt). In all cases a forced reduction in speed has,
as its root cause, a nondeterministic event. Thus, the system is transitioned into
an abnormal state where the message buffer of the object train can be refined
by emergency brake commands if need be.

Figure 9 highlights the properties that a message buffer-based behavior of
an object train OT must satisfy in order to assure that safety properties are
met. Specifically, it must be the case that after carrying out all the acceleration
commands in the message buffer the object train will be in a state where an
emergency brake brings it to a halt at a position that is behind the last known
position of the lead train LT. Recall that the unreliable nature of the message
transmission implies that situations can arise where every acceleration command
in the message buffer of the object train is carried out before a new message
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arrives. If, at this time, a new message does not arrive the object train initiates
an emergency brake. On the other hand it is possible, under abnormal conditions,
for the newly arriving message to itself contain an emergency brake command.
In either case, a collision with the lead train will be avoided and the transition
to an abnormal system state was the result of a nondeterministic event.

7 Related Work

Over the years, a variety of techniques and methodologies have been applied to
the BART case study. The objective of these investigations is to demonstrate
how a given technique, combination of techniques, or methodology might be
effectively used to address one or more of the challenges faced during the de-
velopment of BART’s train acceleration control function. In such a “proof of
concept”, it is reasonable to expect that certain simplifications may be made to
the BART system requirements. These simplifications typically consist of mak-
ing modifications to the basic system model or relaxing various constraints. For
example, the behavioral model of a train may be simplified or various assump-
tions about the system (e.g., noisy transmission of messages) may be relaxed or
removed.

In [6,7,13,14], we developed a domain-specific language in which it is possible
to formally specify train acceleration control functions. In these specifications it
is possible to directly express, using specification language primitives, a variety
of safety properties that a train behavior must satisfy. This is made possible by
modelling various portions of the system in unifying framework called a profile.
In particular, train behaviors are modelled as profiles, track routes are modelled
as profiles, and signals (and stations) are modelled as profiles. The specifica-
tion language provides an overloaded relational operator � on profiles. Using
this primitive operator, safety properties can be expressed in terms of boolean
expressions involving relational comparisons between profiles. For example, if
pf denotes the profile of a train and track denotes the profile of a track route,
then the expression pf � track denotes that the speed of the train should never
exceed the speed limit of the track segment on which it is travelling.

By providing a concrete semantics for various domain-specific language con-
structs in ML a framework is created where rewrite rules, whose application is
properly controlled, can be used to transform a specification into an executable
ML program. In this translation process, a number of transformations can be
added for the purpose of optimizing the resultant ML program. These optimiz-
ing transformation result in an executable program that is significantly more
efficient than its unoptimized counterpart.

To facilitate experimentation we developed a simulator in which the behav-
ior of various train acceleration control functions can be studied. Within the
simulator, it is possible to generate a variety of track and signal configurations.
A train acceleration control function can be placed within a generated system
model and run for a given number of sense-react steps. During the course of
simulation, each system state is checked for safety violations against a set of
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static properties. For example, a train may not exceed the speed limit of the
track segment on which it is travelling and an object train may not be in front
of its lead train.

In [4], the SCR (Software Cost Reduction) tabular notation is used to for-
mally specify a train acceleration control function. In SCR, a system is modelled
in terms of a collection of monitored and controlled variables. Historical sys-
tem information is modelled through auxiliary variables called mode classes and
terms. In SCR, requirements are organized and managed with the help of dictio-
naries and tables. Dictionaries describe the various static elements of the system
such as: (1) system constants, (2) variable types, (3) variable attributes, and (4)
system properties. Tables, on the other hand, are used to describe dependen-
cies between variables. These dependencies are typically in first-order logic. The
SCR* Toolset, developed by the NRL, provides a variety of tools that can be
used to analyze SCR artifacts.

In [1], techniques based on relational programming are used to develop a
train acceleration control function for the BART system. The system is decom-
posed in an incremental fashion into four major subcomponents: (1) Safety-Stop,
(2) Safety-Speed, (3) Smoothness, and (4) Time-Optimization. In contrast to a
functional paradigm, the relational nature of the decomposition results in set of
system components whose composition can be easily reasoned about.

In [8], a train control function is developed in ADA using the Hierarchical
Object-Oriented Design (HOOD) technique. The semantics of the relevant sub-
set of ADA is then developed in a denotational fashion and implemented in
Prolog. The result is an ADA interpreter that is capable of executing the train
control function. Within the logic framework provided by Prolog, a precondi-
tion/postcondition approach to verification is taken to verify that a minimum
safe distance between trains is maintained and that the track speed limit is never
exceed. Partial evaluation is used to improve the ability of the Prolog system to
complete the verification.

In [9], a methodology called the Evolutionary Methodology is used to develop
a trusted System Requirements Document (SRD) for a train acceleration control
function. The methodology consists of an initial specification of the system in
UML followed a translation of this specification into Z. Along the way, a variety
of V & V activities are performed. The reason for moving from UML to Z is that
Z has a formal semantics and there are a variety of tools available for analyzing
the consistency and completeness of Z specifications. The Object Constraint
Language (OCL) was also considered as a translational target, but at the time
of writing, the authors choose Z due to the maturity of its analytical tool set.

In [2], a model-based development language called Lf P (language for pro-
totyping) is used to specify a train control function and verify certain safety
properties. Lf P is a graphical Architecture Description Language focusing on
embedded distributed systems. Two primary goals of this language are to (1)
provide a framework in which software artifacts can be formally verified, and (2)
to support automated program generation. Within Lf P, a primary approach
to verification is to translate an Lf P specification into a corresponding Data
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Decision Diagram (DDD). (DDD’s are an extension of Binary Decision Diagrams
(BDD) in which non-boolean values can be considered.) Within the framework
of DDD’s, the set of reachable states can now be explored. Safety properties like
“trains should not collide with one another” can now be formally verified for
a given DDD model. Simplifying assumptions about the train model include a
limited set of possible accelerations, and reliable transmission of messages.

In [3], a train system is considered whose system architecture is significantly
different from the BART system architecture. In particular, a train system is
viewed as a collection of trains which operate in an autonomous fashion. The
computational resources needed to control a train are located on the train itself
and the track’s switching system is made passive (i.e., though steering alone a
train can determine which route it will follow). The acceleration control function
for the train is dependent on a variety of sensor information which it receives
via radio transmission. The proposed train system also has the property that
train cars can be connected and disconnected from one another while the train
cars are in motion. Thus, trains can have different lengths at different times.
Furthermore, in such a model the notion of a train being “too close” to another
train is no longer a concern.

8 Conclusion

In this paper we presented a reactive system paradigm where a dynamic state
classification scheme is used to identify system states as being either normal
or abnormal. This classification of states is driven by the assumption that the
range of capabilities permitted when the system is in a normal state is more
restricted than when it is in an abnormal state. It is further assumed that system
requirements are such that the system should avoid abnormal states.

The dynamic component of our state classification scheme is based on the
behavioral context of the system. Specifically, the current state of the system
together with the expected future behavior of the system. In this framework,
it is assumed that a control function may not transition the system from a
normal state to an abnormal state in an unrestricted manner. In particular,
control functions must be constructed in such a fashion that departures from
expected behavior may only take place when forced to do so by nondeterministic
events. Furthermore, the behavior of the system must be such that when a
departure from expected behavior occurs, safety properties are nevertheless still
maintained.

We demonstrated the ideas of dynamic partitioning by applying them to a
train system having characteristics similar to the BART system. A key charac-
teristic of the kind system architecture we considered is that a train acceleration
control function exercises control over its train via messages sent over an unre-
liable medium. The unreliable transmission of messages gives rise to situations
where a train is forced to perform state transitions in an unsupervised fashion.
In this setting, the primary nondeterministic events responsible for triggering a
transition from a normal state to an abnormal state are: (1) a train exceeds its
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threshold of unsupervised transitions, and (2) a forced reduction in speed (e.g.,
the response of an object train to the derailment of its lead train).

In this system, message redundancy is used to mitigate the impact of an un-
reliable medium. Specifically, a message buffer is employed to store the sequence
of actuator commands that one would expect the acceleration control function
to issue in the future. In this paradigm, safety properties are maintained by
assuring that message buffers are only modified in a manner that constitutes a
refinement. The definition of refinement is dependent upon what assumptions
one is willing to make regarding the transmission medium. In particular, the
definition of refinement that we developed assumes that message arrival is non-
uniform. That is, during any given sense-react step, some trains may receive
their message while message to other trains may be lost.
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Abstract. The emergence of small, mobile, inexpensive computing plat-
forms has made computation possible virtually anywhere, and has
opened up countless opportunities for distributed and decentralized col-
laboration and information sharing among a wide range of actors. The
software-intensive systems of today are increasingly shaped by their de-
centralized, resource-constrained, embedded, autonomic, and mobile
(DREAM) computing environments. In this paper we present GridLite,
a software architecture-based grid platform suitable for deployment in
DREAM environments. Our prototype implementation of GridLite rep-
resents an effective and highly efficient marriage of our OODT data grid
and Prism-MW architectural middleware solutions. The ultimate goal
of GridLite is to extend the reach of the grid all the way to people’s
“pockets”. Our initial experience suggests that this goal is achievable
and worthy of further active pursuit.

1 Introduction

The emergence of small, mobile, embedded, inexpensive computing platforms
(e.g., PDAs, cell phones, GPS receivers) has made computation possible vir-
tually anywhere. In turn, this has opened up countless possibilities for dis-
tributed and decentralized collaboration and information sharing among a wide
range of individuals and organizations, including engineers, scientists, health
and humanitarian workers, emergency response teams, law enforcement agen-
cies, and average citizens. Fleets of mobile devices are, or will soon be, employed
in complex scenarios such as land and sea exploration, environment monitor-
ing, traffic management, fire fighting, and damage surveys in times of natu-
ral disaster. The software-intensive systems of today are increasingly shaped
by their decentralized, resource-constrained, embedded, autonomic, and mobile
(DREAM ) computing environments.

In parallel with this development, another exciting and promising direction
in modern computing has emerged the grid. Grid computing connects dynamic
collections of individuals, institutions, and resources to create virtual organiza-
tions, which support sharing, discovery, transformation, and distribution of data
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and computational resources. Distributed workflow, massive parallel computa-
tion, and knowledge discovery are only some of the applications of the grid. Grid
applications involve large numbers of distributed devices executing large num-
bers of computational and data components. As such, they require techniques
and tools for supporting their design, implementation, and dynamic evolution.

The grid has revolutionized the manner in which both computation-intensive
and data-intensive software systems are constructed and deployed. The grid
paradigm, however, makes a number of limiting assumptions that curtail its
adoption, utility, and deployment in the emerging DREAM computing envi-
ronments. These assumptions include availability of powerful processors, large
amounts of memory, capacious and reliable network links, and stability of soft-
ware systems deployed on the grid. Two independently conducted studies [13,20]
to date have indicated that existing grid technologies suffer from several recurring
shortcomings, which are particularly magnified in the context of the emerging
DREAM environments. We will highlight several of the shortcomings for illus-
tration. First, existing grid solutions are implemented using technologies (e.g.,
CORBA, Web services) that are unsuitable for DREAM environments. Second,
grid protocols (e.g., Grid Resource Allocation Management, GridFTP, Meta Di-
rectory Service) require heavy-weight processing and memory resources to poll
and monitor nodes in a grid-based system. Third, the grid solutions assume
stable network connectivity and bandwidth. Fourth, the topology of a deployed
grid-based system is essentially static, and any modification to an existing de-
ployment may require a (manual) restart of the entire system. Finally, the ex-
isting grid technologies provide no system design, implementation, deployment,
and evolution guidance to their users; instead, they implicitly assume that the
users will somehow “figure it out”. This is particularly problematic when one
considers that the systems deployed on the grid may be highly complex, and
that the typical users of the grid (e.g., scientists, health workers) may have no
formal training in software development.

While most of the above difficulties may be overcome by engineering more effi-
cient underlying infrastructure, the lack of development guidance for grid-based
software systems also requires enriching grid computing with an appropriate
body of software development concepts, constructs, principles, and techniques.
We believe that the area of software architecture [25] provides such a body
of knowledge. Software architectures are high-level abstractions for modeling
the structure, behavior, and key properties of software systems. These abstrac-
tions involve descriptions of elements from which systems are built, interactions
among the elements, patterns that guide their composition, and constraints on
those patterns. In general, a system is defined as a set of components (elements
that encapsulate computations and state in a system), connectors (elements that
embody interactions), and a configuration (overall organization of components
and connectors). Furthermore, software architectural styles are key design id-
ioms that embody best practices in the design of systems in specific domains
(e.g., DREAM).
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Software architecture plays an important role in our proposed research agenda,
as we illustrate throughout the rest of this paper. We will argue for an architecture-
based approach to use grid computing as a means of constructing software systems
in the DREAM environments. Our position is that, in order to address the afore-
mentioned limitations of the grid paradigm, a new type of software solution must
be constructed. To that end we propose, and have implemented an early prototype
of, GridLite, a software architecture-based grid platform suitable for deployment
in DREAM environments[19]. GridLite is heavily influenced by, and its early de-
sign and implementation directly rely on, our OODT data grid[18] and Prism-MW
architectural middleware[17] platforms. The ultimate goal of GridLite is to extend
the reach of the grid all the way to people’s “pockets”.

The remainder of the paper is organized as follows. Section 2 provides the
background and related work in the areas of grid computing, software architec-
ture, and the relationship of each to DREAM environments. Section 3 lays out
the architecture of GridLite, including its objectives and architectural principles.
Section 4 describes and evaluates the current status of the GridLite research and
the prototype implementation and infrastructure of GridLite that we have con-
structed called GLIDE. Section 5 rounds out the paper with our conclusions and
an overview of future work.

2 Background and Related Work

Our work on GridLite has been inspired by a set of related projects and draws
upon three fundamental areas of research: computational and data grid com-
puting, light-weight middleware and protocols, and implementation support for
software architectures. We discuss GridLite and its relationship to each area be-
low. We then describe representative approaches to large-scale data sharing, with
a specific focus on OODT, the grid technology in whose development we have
participated and which is used by NASA and the National Cancer Institute.
Finally, we summarize Prism-MW, our light-weight middleware platform that
explicitly focuses on implementation-level support for software architectures in
DREAM environments; we also overview a cross-section of representative light-
weight middleware platforms.

2.1 Computational Grid Technologies

The Globus Toolkit [7,8] is an open-source, research-off-the-shelf middleware
framework for constructing and deploying grid-based software systems. It com-
bines a middleware transport layer (reified in the form of the Simple Object
Access Protocol (SOAP)[9]), a suite of Grid-services and protocols (e.g. Grid
Resource Allocation Management or GRAM [7], GridFTP[7], and so on) and a
web services-based implementation infrastructure for constructing and deploy-
ing grid-based software systems using various programming languages, including
Java, C++, and Perl.

The adoption of Globus has to date primarily been at the level of scientific
and research institutions, although commercial adoption of Globus is currently
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occurring at IBM, Sun, and Microsoft[4]. In the large, Globus realizes the basic
goal of grid systems: the establishment of virtual organizations (VOs) sharing
computing, data, metadata, and security resources. In the small, however, Globus
lacks many of the salient features that would ease its adoption and use across
a more widespread family of software systems and environments. These salient
features include (1) the marriage of architecture-based software development
(which has been shown to facilitate and improve large-scale, distributed software
construction), with the great promise and potential provided by the grid and (2)
the decoupling of Globus protocols and services, such as GridFTP and GRAM,
from their heavyweight origins, File Transfer Protocol (FTP) and Lightweight
Directory Access Protocol (LDAP) respectively.

In addition to Globus, several other grid technologies have emerged recently.
Alchemi[1] is based on the Microsoft .NET platform and allows developers to
aggregate the processing power of many computers into virtual computers. Al-
chemi is designed for deployment on personal computers: computation cycles are
only shared when the computer is idle. JXTA[16] is a framework for developing
distributed applications based on a peer-to-peer topology. Its layered architec-
ture provides abstractions of low-level protocols along with services such as host
discovery, data sharing, and security.

2.2 Data Grid Technologies

GridLite is directly motivated by our own work in the area of data-grids, specif-
ically on the Object Oriented Data Technology (OODT) system[18]. We have
adopted an architecture-centric approach in OODT, in pursuit of supporting
distribution, processing, query, discovery, and integration of heterogeneous data
located in distributed data sources. Additionally, OODT provides methods for re-
source description and discovery[14] based on the ISO-11179 data model
standard[15], along with the Dublin Core standard for the specification and
standardization of data elements[5].

There are several other technologies for large-scale data sharing. Grid Data
Farm[10] project is a parallel file system created for researchers in the field of
high energy acceleration. Its goal is to federate extremely large numbers of file
systems on local PCs and, at the same time, to manage the file replication across
those systems, thus creating a single global file system. Similar to OODT, the
SDSC Storage Resource Broker[6] is a middleware that provides access to large
numbers of heterogeneous data sources. Its query services attempt to retrieve
files based on logical information rather than file name or location, in much the
same way that OODT maintains profile data.

2.3 Prism-MW

Prism-MW[17] is a middleware platform that provides explicit implementation-
level support for software architectures. The key software architectural
constructs are components (units of computation within a software system),
connectors (interaction facilities between components such as local or remote
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method calls, shared variables, message multicast, and so on), and configura-
tions (rules governing the arrangements of components and connectors)[22,25].
Prism-MW’s core object model consists of several canonical classes allowing for
the expression of complex architectures using a well-defined set of architectural
primitives. Brick is an abstract class that encapsulates common features of its
subclasses (Architecture, Component, and Connector). The Architecture class
records the configuration of its components and connectors, and provides facil-
ities for their addition, removal, and reconnection, possibly at system runtime.
A distributed application is implemented as a set of interacting Architecture
objects, communicating via DistributionConnectors across process or machine
boundaries. Components in an architecture communicate by exchanging Events,
which are routed by Connectors. Finally, Prism-MW associates the IScaffold in-
terface with every Brick. Scaffolds are used to schedule and dispatch events using
a pool of threads in a decoupled manner. IScaffold also directly aids architectural
self-awareness by allowing the runtime probing of a Brick ’s behavior.

Prism-MW enables several desired features of software development in
DREAM domains. First, it provides the needed low-level middleware services,
including decentralization, concurrency, distribution, programming language ab-
straction, and data marshalling and unmarshalling. Second, unlike the support
in current grid-based middleware systems (including OODT), Prism-MW en-
ables the definition and (re)use of architectural styles, thereby providing design
guidelines and facilitating reuse of designs across families of DREAM systems.
Third, Prism-DE[23], an architecture-based (re-)deployment environment that
utilizes Prism-MW, can be extended to aid users in constructing, deploying, and
evolving grid-based DREAM systems.

A number of additional middleware technologies exist that support either ar-
chitectural design or mobile and resource constrained computation, but rarely
both [18]. An example of the former is Enterprise Java Beans, a popular com-
mercial technology for creating distributed Java applications. An example of
the latter is XMIDDLE[11], an XML-based data sharing framework targeted at
mobile environments.

3 The GridLite Architecture

In order to address the above-stated shortcomings of existing grid technologies
and bring the grid “to your pocket”, a new type of grid must be developed, which
we dub “GridLite”. GridLite is an adaptable, light-weight grid platform that is
equipped with the appropriate support for application design, implementation,
deployment, and evolution. To realize GridLite, we have drawn upon our experi-
ence in the areas of distributed computing[17], software architecture and in partic-
ular its role in DREAM environments[21], and distributed data management[19].
In this section, we describe the architecture of GridLite, including the three key
objectives that motivated its separation into three distinct layers. GridLite is a
layered solution comprising facilities for software architecture-based application
development that leverage a set of core grid services, both of which are
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Fig. 1. The GridLite Architecture

implemented on top of a light-weight middleware platform, as depicted in
Fig. 1. In the subsequent sections, we will explain each of GridLite’s layers (and
each layer’s relationship to the objectives) in detail.

3.1 Middleware Layer (GLM)

GridLite’s architectural objectives were directly inspired by the need to address
the aforementioned shortcomings of the grid. To attack the first shortcoming (the
current grid technologies’ heavy-weight nature), we arrive at the first objective
of the GridLite architecture:

Objective 1. (Light-weight) Middleware Support – Create an efficient
and adaptable middleware platform to support implementation, deployment,
and runtime monitoring and evolution of GridLite systems.

The middleware support in GridLite requires several features including:

1. Decentralization – since fleets of mobile devices are highly dynamic and dis-
tributed, and since network links are inherently unreliable in DREAM envi-
ronments, the GridLite architecture should include middleware that directly
aids a system’s loose-coupling and decentralization.

2. Concurrency – grid systems typically involve massive amounts of parallel
computation and data distribution. As such, any middleware support for
the GridLite architecture needs the ability to support concurrency that takes
advantage of the large amounts of hosts and services available.

3. Distribution – DREAM environments are characterized by highly mobile,
dynamic, and distributed applications, unlike the existing grid environments
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which are comparatively stable and stationary. The GridLite architecture
needs to have the ability to support distribution at the architectural level,
including distributed deployment.

4. Programming Language Abstraction – Both DREAM and grid environments
typically involve software systems communicating via protocols across pro-
gramming language (PL) boundaries (e.g., Java and C++ communicating
via SOAP). Thus, GridLite should natively abstract away the underlying
PL.

5. (Un-)Marshalling of Data – Large amounts of scientific data are typically
exchanged in grid-based software systems. Consequently, the large amount
of data transferred by GridLite applications operating in DREAM environ-
ments needs first-class services. Such services include packaging and un-
packaging data using standard formats (e.g., XML).

To summarize, the middleware layer (GLM) builds on our prior work in the area
of light-weight middleware[17], and encapsulates low-level communication on de-
vices whose connectivity is limited and unstable. GLM is intended to abstract
different communication protocols (e.g., Internet, Bluetooth) to enable transpar-
ent connections; different operating systems (e.g., PalmOS, WindowsCE, Sym-
bian) to ensure platform portability; and different programming languages (e.g.,
J2ME, EVC++, Brew) to foster development flexibility and interoperability.
GLM should also leverage light-weight software components (e.g., “tiny” XML
parsers) to provide application extensibility, resource discovery, and data con-
version. Ultimately the GLM layer should provide compatibility with existing
grids, extending the reach of grid computing to pocket-sized devices. Design,
implementation, and evaluation of GLM have been the early focus of our work
on GridLite.

3.2 Services Layer (GLS)

We needed a means of empowering GridLite systems with native, light-weight
grid services for use in DREAM environments. From this need was born our
second major objective for the GridLite architecture:

Objective 2. Grid Service Development – Support development of an ex-
tensible set of grid services (e.g. resource discovery, system monitoring, and
so forth).

GridLite requires several key grid services that are provided by the GLS layer.
We briefly summarize each of them below:

1. Resource Discovery – this service enables GridLite to discover resources in its
given deployment environment. A resource is defined as a unit of computation
(e.g., an object or component), data, metadata, data-producing software, or
is a computation-providing system. Resource discovery should support peer-
to-peer (see [12]) or client-server based resource discovery.

2. System Monitoring – this service will provide the capability of monitoring
data and metadata within a GridLite system. Such data has the ability to
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shape the way in which a system is configured. We have recently shown[17]
that monitoring data can affect a mobile software system’s dependability
given a particular deployment of its components. The system monitoring
service uses both the data and metadata it collects to affect a GridLite
software system’s deployment providing maximum quality of service.

3. Resource Wrapping – this service allows structured retrieval of data from
semi-structured resources (e.g., resources that do not necessarily adhere to
a single data model and software interface) via the well-known technique of
software wrapping[26]. In the information integration community this service
is offered at the level of returning XML-formatted data from heterogeneous
web sites [24].

4. Run-time Dynamism – this service is responsible for accepting requests
and understanding how to dynamically change a running GridLite software
application given its modeled architecture. The service provides an inter-
face for the addition, removal, replacement, and redeployment of running
application-level components exported by the GLAS layer above it. Its task
includes ensuring component “quiescence” before disconnection, logging re-
quests intended for components that are temporarily unavailable, updating
a reinserted component’s state before allowing it to engage in interactions
with other components in the system, rolling back (i.e., “undoing”) changes
that cannot be completed because of new system events, and ensuring system
integrity throughout this process.

5. Deployment Support – this service is responsible for physically distributing
both GridLite components (e.g., different GLS components, including the
deployment service itself) as well as application components to GridLite-
enabled hosts. This service is a consumer of deployment commands from
GridLite’s GLAS architectural layer.

In summary, the services layer (GLS) encapsulates the lower-level interfaces of
GLM into a set of basic GridLite services. The services include discovering re-
sources on the grid (such as data or computation provision), monitoring grid and
grid node performance, wrapping structured resources to enable access in a het-
erogeneous setting, dynamically “morphing” deployed system architectures, and
deploying uniform grid software components in the face of different execution plat-
forms. Experience in resource and metadata description[19] and software architec-
tures[17] is necessary to enable GLS to utilize GLM effectively and efficiently.

3.3 Software Architectural Support Layer (GLAS)

The final, and what we would argue to be the most important, limitation of exist-
ing grid systems is the lack of any (native) support for architectural abstractions
and their relationship to a grid-based software system’s implementation. This
issue has been identified by two independently conducted studies [13,20], and
has directly motivated our third objective with the GridLite architecture:

Objective 3. Software Architectural Support – Formulate a set of software
architectural principles for constructing GridLite-based applications.
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Fig. 2. The GridLite Architectural Support Layer

The software architectural support layer (shown in detail in Fig. 2) of GridLite
is reified in the form of three critical services:

1. Architecture-based Integrated Development Environment (IDE) – the IDE
provides a visual interface for system design of GridLite software applications
using the systematic primitive services detailed in the preceding sections. The
IDE also provides facilities for (partially) automated system implementation
from an architectural description.

2. Architectural Styles – in order to provide support to application developers
for effective architectural compositions, GLAS must be able to model, ensure
adherence to, and implement appropriate architectural styles for DREAM
environments. An architectural style is a set of design heuristics and guide-
lines for composing and constructing a family of software systems [25,22].
Our discussion thus far may have implied that peer-to-peer (P2P) is the ideal
style for DREAM systems. However, P2P does not enforce topological con-
straints on applications and may result in “component soup” architectures.
We postulate that there may be (a number of) other architectural styles that
are well suited to DREAM environments, and it is the primary responsibility
of the architectural styles service to provide support for designing GridLite
software systems with a multitude of different architectural styles.

3. Architectural Verification – analysis of architectural models allows engineers
to discover or verify critical system properties early in the development
life cycle. GridLite leverages an architecture-description language (ADL)[22]
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as the basis for architectural analysis of GridLite systems. Analysis should
be conducted both in the traditional manner, at architecture specification-
time[22], and by leveraging (meta-level) architectural model events, at sys-
tem run-time.

In summary, the top-most (GLAS) layer of GridLite provides software architec-
tural support. We believe that a software architecture-based approach is essen-
tial in deploying successful applications onto hundreds or thousands of DREAM
nodes. GLAS should enable the expression of application architectures using a
number of systematic primitives (e.g., component, connector, port, communi-
cation event, data stream) that are directly implemented in the GLM. From
these primitives, complex architectures could be shaped and then dynamically
reshaped based on environment events, changing requirements, dynamically dis-
covered resources, and so on.

4 Current Status

4.1 GLIDE – A Reference Implementation of GridLite

Our reference implementation of the GridLite architecture is called “GLIDE”,
which stands for a grid-based, l ightweight, infrastructure for data-intensive
environments. GLIDE is a hybrid grid middleware which combines the key archi-
tectural facilities of Prism-MW and core data grid services provided by OODT.
The implementation-level class diagram of GLIDE is shown in Figure 3. At first
blush, it appears that this design does not correspond directly to the GridLite
architecture from Fig 1. However, that is only a by-product of our intent to reuse
the facilities provided by Prism-MW and OODT to the greatest intent possible.
In fact, the OODT components, placed along the periphery of the diagram, pro-
vide the GLS-level grid services (recall Section 3.2), while the Prism-MWCore
section provides both the GLM-level infrastructure support and, due to Prism-
MW’s native support for architectural constructs, part of the GLAS-level archi-
tectural support (other aspects of the GLAS layer within GLIDE are discussed
in Section 4.3).

We specialized Prism-MW to implement the core components of GLIDE
shown in Fig. 3. Our intent was to retain the key properties and services of Prism-
MW and provide basic grid services (recall the GLS layer described in Section
3.2) across dynamic and mobile virtual organizations. Additionally, we desired
GLIDE to support architecture-based design, implementation, deployment, and
evolution of data-intensive grid applications in DREAM environments. Finally,
we desired that GLIDE at least partially interoperate with a heavy-weight grid
counterpart: because of our prior experience with the OODT data grid platform,
it seemed the most appropriate choice; indeed, OODT directly influenced our
design of the key grid services provided by GLIDE. Below we describe GLIDE’s
realization in light of these goals and the description of the GridLite architecture
from Section 3.
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Fig. 3. GLIDE’s design

Inspired by OODT’s architecture, GLIDE’s Data Components include the Re-
source Profile, a data structure which describes the location and classification of
a resource available within a grid-based software system. Resources include data
granules (such as a File), data-producing software systems (including the below
described profile servers, product servers, query servers, and so on), computation-
providing software systems, and resource profiles themselves. Resource profiles
may contain additional resource-describing metadata [14]. Resource profiles di-
rectly address the GridLite grid service development objective, including resource
discovery (recall Section 3.2). The Query Object is a data structure which con-
tains a query expression. A query expression assigns values to a predefined set
of data elements that describe resources of interest to the user and a collection
of obtained results.

Again, inspired by OODT’s architecture, GLIDE’s Processing Components
include Product Servers, which are responsible for abstracting heterogeneous
software interfaces to data sources (such as an SQL interface to a database, a
File System interface to a set of images, an HTTP interface to a set of web
pages, and so on) into a single interface that supports querying for retrieval of
data and computational resources. Users query product servers using the query
object data structure. Product Clients connect and send queries (via a query
object) to product servers. Product clients and servers are implementation-level
artefacts of grid service deployment, including resource wrapping. A query results
in either data retrieval or use of a remote computational resource. Profile Servers
generate and deliver metadata[14] in the form of resource profile data structures,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



The GridLite DREAM: Bringing the Grid to Your Pocket 81

which are used for making informed decisions regarding the type and location
of resources that satisfy given criteria. Profile Clients connect and send queries
to profile servers. After sending a query, a profile client waits for the profile
server to send back any resource profiles that satisfy the query. Query Servers
accept query objects, and then use profile servers to determine the available data
or computational resources that satisfy the user’s query. Once all the resources
have been collected, and processing has occurred, the data and processing results
are returned (in the form of the result list of a query object) to the originating
user. Query Clients connect to query servers, issue queries, and retrieve query
objects with populated data results.

GLIDE contains one key software connector type. The Messaging Layer con-
nector is a data bus which marshals resource profiles and query objects between
GLIDE client and server components.

Each GLIDE processing component was implemented by subclassing Prism-
MW’s ExtensibleComponent class, using the asynchronous mode of operation.
Asynchronous interaction directly resulted in lower coupling among GLIDE’s
processing components. For example, the dependency relationships between
GLIDE’s Client and Server processing components, which existed in OODT,
was thereby removed. GLIDE’s components use Prism-MW’s Events to exchange
messages. GLIDE data components are sent between processing components by
encapsulating them as parameters in Prism-MW Events, directly addressing the
GridLite (light-weight) middleware support objective, including (un-)marshalling
of data. Leveraging Prism-MW’s Events to send and receive different types of
data enables homogenous interaction among the possibly heterogeneous process-
ing components.

We found OODT’s connectors not to be suitable for DREAM environments
because of their heavy-weight (they are implemented using middleware such as
RMI and CORBA). Furthermore, they only support synchronous interaction,
which is difficult to effect in highly decentralized and mobile systems character-
ized by unreliable network links. To this end, we have leveraged Prism-MW’s
asynchronous connectors to implement the messaging layer class in GLIDE.
GLIDE’s connector leverages Prism-MW’s port objects that allow easy addi-
tion or removal of TCP/IP connections. This allows the system’s topology to
be adapted at runtime, directly addressing objectives 1 and 2 of the GridLite
architecture ((light-weight) middleware services and run-time dynamism, respec-
tively). GLIDE’s connector also implements event filtering such that only the
requesting client receives responses from the server.

Lack of ability to easily adapt a system’s software architecture is a key limi-
tation of current grid systems, including OODT. If present, such a facility could
be leveraged to improve a system’s functionality, scalability, availability, latency,
and so on. For example, our recent studies[17] have shown that the availability
and latency of software systems in DREAM environments can be improved sig-
nificantly via dynamic adaptation.

Finally, to support interoperability of GLIDE with OODT, we provide two
additional utility classes: XMLProfileReader and XMLQueryObjReader parse
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Fig. 4. Mobile Media Application Architecture

an XML representation of a resource profile and query object data structure,
respectively. For brevity, we do not provide a detailed example of the XML
Profile structure here, but its full treatment can be found in [14]. Each string is
parsed into a GLIDE data object. Similarly, resource profiles and query objects
can be serialized into XML. Thus, the level of interoperability with OODT is
at the level of resource description and retrieval, and currently resource profiles
and data can be exchanged between GLIDE and OODT. As part of our current
work, we are investigating the Web Services Resource Framework (WS-RF) as
a means of enabling interoperability between GLIDE and Globus, which uses
WS-RF in its latest release (GTK 4.0).

4.2 Sample Application Using GLIDE

In order to evaluate the feasibility of GLIDE, we designed and implemented
several representative applications. Here we discuss a prototype M obile M edia
Sharing application (MMS), shown in Fig. 4. MMS allows a user to query, search,
locate, and retrieve MP3 resources across a set of mobile, distributed, resource-
constrained devices. Users query mobile media servers for MP3 files by specifying
values for genre and quality of the MP3 (described below), and if found, the
MP3s are streamed asynchronously to the requesting mobile media client.
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Fig. 4 shows the overall distributed architecture of the MMS application. A
mobile device can act as a server, a client, or both. MobileMediaServer and
MobileMediaClient correspond to the parts of the application that are running
on the server and the client devices.

MobileMediaClient contains a single component called MediaQueryGUI, which
provides a GUI for creating MP3 queries. MP3 queries use two query parameters,
MP3.Genre (e.g., rock) and MP3.Quality (e.g., 192 kb/s, 128 kb/s). MediaQue-
ryGUI is attached to a QueryConn, which is an instance of GLIDE’s messaging
layer connector that forwards the queries to remote servers and responses back to
the clients.

MobileMediaServer is composed of three component types: MediaQueryServer,
MediaProductServer, andMediaProfileServer.MediaQueryServer parses thequery
received from the client, retrieves the resource profiles that match the query from
MediaProfileServer, retrieves the mp3 file(s) in which the user was interested from
the MediaProductServer, and sends the MP3 file(s) back to the client.

The MMS application helps to illustrate different aspects of GLIDE: it has
been designed and implemented by leveraging most of GLIDE’s processing and
data components and its messaging layer connector, and has been deployed on
DREAM devices. In the next section we evaluate GLIDE using MMS as an
example.

4.3 Architecture-Based Development and Deployment Support in
GLIDE

GLIDE inherits architecture-based development and deployment capabilities, in-
cluding style awareness, from Prism-MW and deployment support, from PRISM-
DE. Unlike most existing grid middleware solutions (e.g. OODT), which provide

Fig. 5. Peer-to-Peer variation of the Mobile Media Application
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support for either peer-to-peer or client-server styles, GLIDE does not impose
any particular (possibly ill-suited) architectural style on the developers of a grid-
based application. As a proof of concept, we have implemented several variations
of the MMS application in different architectural styles including client-server,
layered client-server, peer-to-peer, and C2 [27]. The variations of MMS lever-
aged existing support for these styles and were created with minimal effort. For
example, changing MMS from client-server to peer-to-peer required addition of
three components and a connector on the server side, and one component and
one connector on the client side. Fig. 5 shows the peer-to-peer variant of MMS.

Table 1. Memory Footprint of Mobilemedia Server and Mobilemedia Client in GLIDE

MobileMediaServer Java Packages #Live
Objects

Total Size
(bytes)

Java java.lang 36 2016

glide.product 1 24
glide.profile 1 24

GLIDEs Implementation of
OODT components

glide.query 1 32

glide.queryparser 1 160
glide.structs 8 232

Application mobilemedia.prod-
uct.handlers

1 32

mobileme-
dia.profile.handlers

1 8

glide.prism.core 26 1744
prism.extensions.p-
ort

1 40

Prism-MW extensions.port.dis-
tribution

4 216

glide.prism.handler 2 32
glide.prism.util 18 1200

Total size 5760

MobileMediaClient
Java java.lang 28 1568

GLIDEs implementation of
OODT components

glide.structs 7 208

Application mobilemedia 2 384

glide.prism.core 18 1304
extensions.port 1 40

Prism-MW extensions.port.dist-
ribution

3 136

glide.prism.handler 1 16
glide.prism.util 7 480

Total size 4136
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4.4 DREAM Support

Resource scarcity poses the greatest challenge to any grid solution for DREAM
environments. We have leveraged Prism-MW’s efficient implementation of archi-
tectural constructs [17] along with the following techniques to improve GLIDE’s
performance and minimize the effect of the computing environment’s heterogene-
ity: (1) MinML[3], a lightweight XML parser, to parse the resource profiles and
query object data structures; (2) W3C’s Jigsaw Web Server Base64 Encoding
Library[2] to compress (at the product server end) and uncompress (at the prod-
uct client end) the exchanged data; (3) Filtering inside the Messaging Layer to
ensure event delivery only to the interested parties, thus minimizing propagation
of events with large data loads (e.g., MP3 files). Specifically, GLIDE tags out-
going request events from a client with a unique ID, which is later used to route
the replies appropriately; and (4) Incremental data exchange via numbered data
segments for cases when the reliability of connectivity and network bandwidth
prevent atomic exchange of large amounts of data.

As an illustration of GLIDE’s efficiency, Table 1 shows the memory footprint
of MobileMediaServer ’s and MobileMediaClient’s implementation in GLIDE.
The total size of the MobileMediaServer was 5.7KB and MobileMediaClient was
4.1KB, which is two orders of magnitude smaller than their implementation in
OODT (707KB and 280KB, respectively). The memory overhead introduced by
GLIDE on the client and server devices was under 4KB.

5 Conclusion

The GridLite architecture that we describe in this paper has the potential to
shape the role and utility of existing mobile computing platforms such as PDAs,
cell phones, and laptops used in everyday life. As networked computing systems
must operate in DREAM environments, several avenues of research must be sig-
nificantly advanced. In this paper, we have argued that grid computing provides
a promising approach for engineering some classes of networked computing sys-
tems, but several limitations of the grid must be addressed before its widespread
deployment and use as a computing platform for future networked environments.

In addition to proposing the architecture for GridLite, we described a ref-
erence implementation of GridLite, called GLIDE that addresses many of the
described limitations of the grid using the proposed objectives of the GridLite
architecture as a guide. We summarized the current status of GLIDE, and iden-
tified further avenues of research that must be explored in order to ultimately
“bring the grid to one’s pocket”. These future avenues include assessing GLIDE’s
suitability, as well as possible shortcomings, as the reference implementation for
GridLite; studying the limits of the envisaged GridLite architecture’s adaptabil-
ity, scalability, and efficiency; and, finally, expanding this work to other domains,
such as computational grids, high-performance computing, and ubiquitous and
embedded systems.
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Abstract. This paper presents DARX, our framework for building failure-
resilient applications through adaptive fault tolerance. It relies on the fact that
multi-agent platforms constitute a very strong basis for decentralized software
that is both flexible and scalable, and makes the assumption that the relative
importance of each agent varies during the course of the computation. DARX
regroups solutions which facilitate the creation of multi-agent applications in a
large-scale context. Its most important feature is adaptive replication: replication
strategies are applied on a per-agent basis with respect to transient environment
characteristics such as the importance of the agent for the computation, the net-
work load or the mean time between failures.

Firstly, the interwoven concerns of multi-agent systems and fault-tolerant so-
lutions are put forward. An overview of the DARX architecture follows, as well
as an evaluation of its performances. We conclude, after outlining the promising
outcomes, by presenting prospective work.

1 Introduction

Nowadays it barely seems necessary to emphasize the tremendous potential of de-
centralized software solutions. Their main advantage lies in the distributed nature of
information, resources and action. One software engineering technique for building
such software has lately emerged in the artificial intelligence research field, and ap-
pears to be both promising and elegant: distributed agent systems [BDC00] [MCM99]
[NS00].

Intuitively, multi-agent systems appear to represent a strong basis for the construction
of distributed applications. The general outline of distributed agent software consists in
autonomous computational entities which interact with one another towards a common
goal that is beyond their individual capabilities.

F. Kordon and J. Sztipanovits (Eds.): Monterey Workshop 2005, LNCS 4322, pp. 88–105, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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In addition, the multi-agent paradigm bears two attractive notions: flexibility and
scalability. By definition, agents have the ability to adapt in order to meet new context
requirements. A software consisting of multiple agents can therefore be dynamically
modified: objectives of specific agents may be altered, new agents can be brought in
to collaborate towards a computation, agents that have become partly useless for the
application can be adapted or set aside, and so on... Moreover, multi-agent systems
are based on communicating, autonomous entities; it ensues that there is no theoreti-
cal limit to the number of agents involved, nor is there any bound on the number of
hosting machines. Distributing such systems over large scale networks may therefore
tremendously increase their efficiency as well as their capacity.

However, large-scale distribution also brings forward the crucial necessity of apply-
ing dependability protocols. For instance, the greater the number of agents and hosts,
the higher the probability that one of them will be subjected to failure. Multi-agent
applications rely on collaboration amongst agents, hence the failure of one of the in-
volved agents might bring the whole computation to a dead end. Therefore it appears
that fault tolerance is a necessary paradigm for the design of such applications. In par-
ticular, software replication techniques provide for a range of recovery guarantees and
delays [GS97]. However, replicating every agent in systems comprising up to millions
of agents may not be affordable given the important time and resources consumption
implied. Also, several replication strategies exist and the efficiency of each strategy de-
pends heavily upon both the application context and the computing environment. One
solution might be to design and implement mechanisms for (1) the analysis of both the
context and the environment in order to single out the agents which are vital for the
system, and (2) the application and the dynamic adaptation of replication schemes with
respect to context and environment variations.

In this paper, we depict DARX, our architecture for fault-tolerant agent comput-
ing [MSBG01]. DARX uses the flexibility of multi-agent systems in order to offer
adaptive fault tolerance by means of dynamic replication mechanisms: software ele-
ments can be replicated and unreplicated on the spot and it is possible to change the
ongoing replication strategies on the fly. We have developed a solution to intercon-
nect this architecture with two existing multi-agent platforms, namely MadKit[GF00]
and DIMA [GB99], and in the long term to other platforms. The originality of our
approach lies in two major orientations. Firstly, the choice of the fault tolerance pro-
tocol – which computational entities are to be made fault-tolerant, to which degree,
and at what point of the execution – is not entirely incumbent upon the application
developer; DARX offers automated observation and control functionalities to address
these issues. And secondly, the overall architecture is conceived with a view to being
scalable.

The paper is organized as follows. In section 2, the main existing approaches towards
solving the fault tolerance problems in the multi-agent systems context are presented.
Section 3 depicts the general design of our framework dedicated to bringing adaptive
fault tolerance to multi-agent systems through selective replication. Section 4 reports
on the issues raised by the implementation of DARX-compliant applications, and sec-
tion 5 evaluates the performances of the resulting software. Finally, the conclusion and
perspectives are drawn in section 6.
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2 Related Work

Research on fault tolerance in multi-agent systems mainly focuses on the ability to guar-
antee the continuity of every agent computation. This approach includes the resolution
of consistency problems amongst agent replicas. Other related solutions address the
complex problems of maintaining agent cooperation [KCL00], providing reliable mi-
gration for independent mobile agents and ensuring the exactly-once property of mobile
agent executions [PS01].

Several solutions use specific entities to protect the computational elements of multi-
agent systems [H96] [KIBW99] [KCL00]. The principal contribution of these
approaches is in separating the control of the agents from the functionalities of the
multi-agent system.

In [H96], sentinels represent the control structure of the multi-agent system. Each
sentinel is specific to a functionality, handles the different agents which interact to pro-
vide the corresponding service, and monitors communications in order to react to agent
failures. Adding sentinels to a multi-agent system seems to be a good approach, how-
ever the sentinels themselves represent bottle-necks as well as failure points for the
system.

A similar architecture is that of the Chameleon project [KIBW99]. Chameleon is an
adaptive fault tolerance system using reliable mobile agents. The methods and tech-
niques are embodied in a set of specialized agents supported by a fault tolerance man-
ager (FTM) and host daemons for handshaking with the FTM via the agents. Adaptive
fault tolerance refers to the ability to dynamically adapt to the evolving fault toler-
ance requirements of an application. This is achieved by making the Chameleon in-
frastructure reconfigurable. Static reconfiguration guarantees that the components can
be reused for assembling different fault tolerance strategies. Dynamic reconfiguration
allows component functionalities to be extended or modified at runtime by changing
component composition, and components to be added to or removed from the system
without taking down other active components. Unfortunately, through its centralized
FTM, this architecture suffers from the same objections as the previous approach.

[KCL00] presents a fault tolerant multi-agent architecture that regroups agents and
brokers. Similarly to [H96], the agents represent the functionality of the multi-agent
system and the brokers maintain links between the agents. [KCL00] proposes to orga-
nize the brokers in hierarchical teams and to allow them to exchange information and
assist each other in maintaining the communications between agents. The brokerage
layer thus appears to be both fault-tolerant and scalable. However, the implied overhead
is tremendous and increases with the size of the system. Besides, this approach does not
address the recovery of basic agent failures.

In order to solve the overhead problem, [FD02] proposes to use proxies. This ap-
proach tries to make transparent the use of agent replication; that is, computational
entities are all represented in the same way, disregarding whether they are a single
application agent or a group of replicas. The role of a proxy is to act as an interface
between the replicas in a replicate group and the rest of the multi-agent system. It han-
dles the control of the execution and manages the state of the replicas. To do so, all the
external and internal communications of the group are redirected to the proxy. A proxy
failure isn’t crippling for the application as long as the replicas are still present: a new
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proxy can be generated. However, if the problem of the single point of failure is solved,
this solution still positions the proxy as a bottle-neck in case replication is used with a
view to increasing the availability of agents. To address this problem, the authors pro-
pose to build a hierarchy of proxies for each group of replicas. They also point out the
specific problems which remain to be addressed: read/write consistency and resource
locking, which are discussed in [SBS00] as well.

3 The Architecture of the DARX Framework

This section presents DARX, our Dynamic Agent Replication eXtension, and depicts
its features.

3.1 System Model and Failure Model

A distributed system is assumed, in which processes/agents communicate through mes-
sages. Communication channels are considered to be quasi-reliable. Our model fol-
lows that of partial synchrony, proposed by Chandra and Toueg in their generalization
of failure detectors [CT96]. This model stipulates that, for every execution, there are
bounds on process speeds and on message transmission times. However, these bounds
are not known and in our model they hold only after some unknown time: the global
stabilization time.

Processes are assumed to be fail/silent. Once a specific process is considered as hav-
ing crashed, it cannot participate to the global computation anymore. Byzantine be-
haviours might be resolved with DARX, but are not yet integrated in the failure model.

Host A.1 Host A.2

Domain B

Host B.2

Domain A

Host A.3

Host C.2

Host C.1 Host C.3

Host B.1

Domain C

Fig. 1. A hierarchic topology aimed at scalability

Finally, for scalability issues, a hierarchic structure is imposed for the logical net-
work topology. As shown in Figure 1, sets of hosts are organized in groups. Broadly
connected machines are regrouped in domains, and a higher inter-domains level called
the nexus is constructed. Within each domain, a single host is elected so as to participate
to the higher level.
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Fig. 2. DARX service-oriented architecture

3.2 Overview

Figure 2 gives a service-oriented overview of the logical architecture of DARX.

– A failure detection service [BMS02][BMS03] maintains dynamic lists of all the
running hosts as well as of the valid software elements which participate to the
supported application, and notifies the latter of suspected failure occurrences.

– A naming and localisation service generates a unique identifier for every agent in
the system, and returns the addresses for all agent replicas in response to an agent
localisation request.

– A system observation service monitors the behaviour of the underlying distributed
system: it collects low-level data by means of OS-compliant probes and diffuses
processed trace information so as to make it available for the adaptive replication
control process.

– An application analysis service builds a global representation of the supported
agent application in terms of fault tolerance requirements.

– A replication service brings all the necessary mechanisms for replicating agents,
maintaining the consistency between replicas of a same agent, and automating repli-
cation scheme adaptation for every agent according to the data gathered through
system monitoring and application analysis.

– An interfacing service offers wrapper-making solutions for agents, thus rendering
the DARX middleware usable by various multi-agent systems and even making it
possible to introduce interoperability amongst different systems.

The following describes how DARX services interact in order to supply adaptive
fault tolerance to agent applications. The fault tolerance features are brought to agents
from various platforms through their corresponding adaptor by an instance of a DARX
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server running on every location1. Each DARX server implements the required repli-
cation services, backed by a common global naming/location service enhanced with
failure detection (see 3.3). Concurrently, a scalable observation service (see 3.4) is in
charge of monitoring the system behaviour at every level of the hierarchic topology –
local, domain, nexus. The information gathered through both means is used thereafter to
adapt the fault tolerance schemes on the fly: an event-driven decision module combines
system-level information and application-level information to determine the criticity2

of each agent, and to apply the most suitable replication scheme.
DARX includes transparent replication management. While the supported applica-

tion deals with agents, DARX handles replication groups. Each of these groups consists
of software entities – replicas – which represent the same agent. Thus in the event of
failures, if at least one replica is still up, then the corresponding agent isn’t lost to the
application. A more detailed explanation of a replication group, of its internal design
and of its utilization in DARX can be found in 3.5.

For portability and compatibility issues, DARX is Java-based. Indeed, the Java lan-
guage and more specifically the JVM provide – relative – hardware independence, an
invaluable feature for large-scale distributed systems. Moreover, a great number of the
existing multi-agent platforms are implemented in Java. In addition to all this, the re-
mote method invocation (RMI) facility offers many useful high-level abstractions for
the elaboration of distributed solutions.

3.3 Failure Detection and Naming Service

As part of the means to supply adequate support for large-scale agent applications, the
DARX platform includes a hierarchical, fault-tolerant naming service. This distributed
service is deployed over a failure detection service based on an adaptable implementa-
tion of the unreliable failure detector [BMS02][BMS03].

The failure detection and naming layer serves a major goal: to maintain dynamic lists
of the valid sites and of the valid agents, as well as their casual replicas, participating to
the application. Specific agents can thus be localized through this service. Failure de-
tectors exchange heartbeats and maintain a list of the processes which are suspected of
having crashed. Therefore, in an asynchronous context, failures can be recovered more
efficiently. For instance, the failure of a process can be detected before the impossibility
to establish contact arises within the course of the supported computation.

The service aims at detecting both hardware and software failures. Each DARX
server integrates an independent thread which acts as failure detector/name server.
Software failure is detected by monitoring the running processes on each server. Hard-
ware failures are suspected by exchanging heartbeats among groups of servers. For

1 A location is an abstraction of a physical location. It hosts resources and processes, and pos-
sesses its own unique identifier. DARX uses a URL and a port number to identify each location
that hosts a DARX server.

2 The criticity of a process defines its importance with respect to the rest of the application.
Obviously, its value is subjective and evolves over time. For example, towards the end of a
distributed computation, a single agent in charge of federating the results should have a very
high criticity; whereas at the application launch, the criticity of that same agent may have a
much lower value.
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large-scale integration purposes, this structure maps the hierarchic topology presented
in 3.1, which comprises two levels: a local one – domains – and a global one – the nexus.
The logical topology ought to reflect the physical topology as much as possible: every
domain is mapped onto a highly-connected cluster of workstations, or constituted inside
it. Local groups bind themselves together by electing exactly one representative which
will participate to the nexus. At this global level, each representative name server main-
tains a list of the known agents within the application – the replication group leaders
(see 3.5) in the DARX context. This information is shared and kept up-to-date through
a consensus algorithm implying all the representative name servers. When a new agent
is created, it is registered locally as well as by the representative name server; like-
wise in the case of an unregistration. At the local level, the name servers maintain the
list of all the replicas supported in their local group, disregarding whether these are
leaders or not.

In this architecture, the ability to provide different qualities of service to the local
and the global detectors is a major asset of our implementation. Thus on the global
level, failure suspicion can be loosened with respect to the local level. This distinction
is important, since a failure does not have the same interpretation in the local context
as in the global one. A local failure corresponds to the crash of an agent or of a host,
whereas in the global context a failure represents the crash of an entire domain.

Figure 3 shows how the naming service makes use of the failure detection to convey
its communications. The information is exchanged between name servers via piggy-
backing on the failure detection heartbeats. The local lists of replicas which are sus-
pected to be faulty are directly reused to maintain the global view of the application.
With respect to DARX, this means that the list of running agents is systematically up-
dated. When a DARX server is considered as having crashed, all the agents it hosted
are removed from the list and replaced by replicas located on other hosts. The election
of a new leader within an agent replication group is initiated by a failure notification
from the naming service.

failure
detector

Piggy−backing

processes
list

Network

Name Server

messages
to send

failed received

Local / Global

messages

Fig. 3. Usage of the failure detector by the name server
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3.4 Observation Service

DARX aims at providing decision-making support so as to fine-tune the fault tolerance
for each agent with respect to its evolution and that of its context. Decisions of this type
may only be reached through a fairly good knowledge of the dynamic characteristics of
the application and of the environment. In order to obtain such knowledge, a scalable
observation service has been designed and implemented, yet remains to be integrated
in DARX.

Similarly to the naming service, the observation service piggybacks its communi-
cations on the existing flow created by the regular heartbeat emissions of the fail-
ure detection service. Moreover, it is also hierarchic; it distinguishes local and global
levels.

The data collected at the local level consists in transient information such as the cur-
rent memory load of a host, the overall execution time of an agent since it was created,
the number of messages exchanged between two agents, . . . This type of data is shared
within local groups; broadcasting it or enabling subscription to it on a large scale does
not appear worthwhile. Indeed, the validity of such information over a long period of
time is highly questionable. Besides, its diffusion on a great number of distant loca-
tions bears a heavy cost, even though it would be diluted in the failure detection flow.
Nonetheless, it may be needed to gain instantaneous information on a specific machine
outside the local domain. For example, it may be necessary to determine the feasibility
of creating a new replica in a remote domain. The observation service therefore allows
for point-to-point subscription to data collection on distant hosts.

Statistical information, however, possesses a longer lifespan in the DARX context.
Such material encompasses all the data derived by processing the local information: the
average CPU load of a host over a long period of time, the failure rate of a host or of a
local group, their average network load, their meantime between failures, . . . It is shared
at the global level. Every local group elects a member responsible for the aggregation
of the statistical information, as well as for its diffusion at the global level. Statistical
information about other groups can thus be retrieved at the elected local workstation.

Each local DARX server integrates an observation module. It comprises three ele-
ments: a data collection module (DCM), a data processing module (DPM) and a data
exchange module (DEM). The DCM extracts the information available from the op-
erating system, such as the CPU load or the swap activity, therefore it is chosen to
be host-compliant. The DPM is Java-based and gathers application-level information;
the state of an agent, for example. The DPM also interfaces with the DCM to recover
system-level data, and renders it into a directly usable format for the DARX platform.
On a periodic basis, the DEM broadcasts the accumulated instantaneous information to
the DPMs of its local group, and contributes to the diffusion of the statistical informa-
tion at the global level if it belongs to a leading observation module.

3.5 Replication Management

DARX provides fault tolerance through software replication. It is designed in order to
adapt the applied replication strategy on a per-agent basis. This derives from the fun-
damental assumption that the criticity of an agent evolves over time; therefore, at any
given moment of the computation, all agents do not have the same requirements in terms
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of fault tolerance. On every server, some agents need to be replicated with pessimistic
strategies, others with optimistic ones, while some others do not necessitate any repli-
cation at all. The benefit of this scheme is double. Firstly the global cost of deploying
fault tolerance mechanisms is reduced since they are only applied to a subset of the
elements which constitute the distributed application. Secondly the chosen replication
strategies ought to be consistent with the computation requirements and the environ-
ment characteristics, as the choice of every strategy depends on the execution context
of the agent to which it is applied. If the subset of agents which are to be replicated is
small enough then the overhead implied by the strategy selection and switching process
may be of low significance.

In DARX, agent-dependent fault tolerance is enabled by the notion of replication
group (RG): the set of all the replicas which correspond to a same agent. At its creation
every replica is given a unique identifier provided by the naming service and built from
the original name of the corresponding agent in the application context. An RG contains
at least one active replica so as to ensure that messages destined to a specific agent will
indeed be processed. Starting from this point, any replication strategy can be enforced
within the RG. To allow for this, several replication strategies are made available by
the DARX framework. The strategies offered can be classified in two main types: (1)
active, where all replicas process the input messages concurrently, and (2) passive, in
which only one replica – a primary – is in charge of the computation while periodically
transmitting its state to the other replicas – its standbies. A practical example of a DARX
off-the-shelf implementation is the semi-active strategy where a single leading replica
forwards the received messages to its followers.

One of the noticeable aspects of DARX is that several strategies may coexist inside the
same RG. As long as one of the replicas is active, meaning that it executes the associated
agent code and participates in the application communications, there is no restriction on
the activity of the other replicas. These replicas may either be standbies or followers of an
active replica, or even equally active replicas. Furthermore, it is possible to switch from
a strategy to another with respect to a replica: a follower may become a standby, a new
leader with its followers may be selected amongst active replicas, and so on . . .

Throughout the computation, a particular variable is evaluated continuously for every
replica: its degree of consistency (DOC). The strategy applied in order to keep a replica
consistent is the main parameter in the calculation of this variable; the more pessimistic
the strategy, the higher the DOC of the corresponding replica. The other parameters
emanate from the observation service; they include the load of the host, the date of
creation of the replica, the latency in the communications with the other replicas of
the group, . . . The DOC has a deep impact on failure recovery; among the remaining
replicas after a failure has occured, the one with the highest DOC is the most likely to
be able of taking over the abandoned tasks of the crashed replicas.

The following information is necessary to describe a replication group:

– the criticity of its associated agent,
– its replication degree – the number of replicas it contains –,
– the list of these replicas, ordered by DOC,
– the list of the replication strategies applied inside the group,
– the mapping between replicas and strategies.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



DARX - A Self-healing Framework for Agents 97

The sum of these pieces of information constitutes the replication policy of an RG. A
replication policy must be reevaluated in three cases:

1. when a failure inside the RG occurs,
2. when the criticity value of the associated agent changes,
3. and when the environment characteristics vary considerably, for example when

CPU and network overloads induce a prohibitive cost for consistency maintenance
inside the RG.

Since the replication policy may be reassessed frequently, it appears reasonable to cen-
tralize this decision process. A leader is elected among the replicas of the RG for this
purpose. Its objective is to adapt the replication policy to the criticity of the associ-
ated agent as a function of the characteristics of its context – the information obtained
through the observation service. As mentioned earlier, DARX allows for dynamic mod-
ifications of the replication policy. Replicas and strategies can be added to or removed
from a group during the course of the computation, and it is possible to switch from
a strategy to another on the fly. For example if a standby crashes, a new replica can
be added to maintain the level of reliability within the group; or if the criticity of the
associated agent decreases, it is possible either to suppress a replica or to switch the
strategy attached to a replica from an active form to a passive one. The policy is known
to all the replicas inside the RG. When policy modifications occur, the leader diffuses
them within its RG. Except when the modification results from the failure of the leader:
a new election is then initiated by the naming service through a failure notification to
the remaining replicas.

Figure 4 depicts the composition of a replica. In order to benefit from fault toler-
ance abilities, each agent gets to inherit the functionalities of a DarxTask object,

ReplicationPolicy

TaskShell

DarxTaskdiscard

RemoteTask

handling of
duplicates

TaskShell

TaskShell

TaskShell

replication group

reply buffer

reply

DarxMessage

Agent

ReplicationManager

(replication group consistency)

(external communication)

(execution control)

− serial number
− message content

− sender ID

(group proxy)

(replication group management)
(group leader only)

Fig. 4. Replication management scheme
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enabling DARX to control the agent execution. Each task is itself wrapped into a
TaskShell, which handles the agent inputs/outputs. Hence DARX can act as an in-
termediary for the agent, committed to deciding when an agent replica should really
be started, stopped, suspended or resumed, and exactly when and which message re-
ceptions should take effect. Leaders are wrapped in enhanced shells, comprising an ad-
ditional ReplicationManager. This manager exchanges information with the ob-
servation module (see 3.4) and performs the periodical reassessment of the replication
policy. It also maintains the group consistency by sending the relevant information to the
other replicas, following the policy requirements. Implementation-wise, there is an in-
dependent thread for every DarxTask as well as for every ReplicationManager.

Since replication must be transparent to the application, the DARX middleware is in
charge of handling all communications between agents. To allow this, every replication
group binds itself to proxies which channel incoming messages. These proxies imple-
ment the RemoteTask interface, thus referencing replication groups; it is the naming
service which keeps track of every replica to be referenced, and provides the corre-
sponding RemoteTask.The latter contains the addresses of all the replicas inside the
associated RG, with a specific tag for the currently active replicas. A RemoteTask is
obtained by a lookup request on the naming service using the application-relevant agent
identifier as parameter.

Figure 5 shows a tiny agent application as seen in the DARX context. An emitter,
agent B, sends messages to be processed by a receiver, agent A. At the moment of the
represented snapshot, the value of the criticity of agent B is minimal; therefore the RG
which represents it contains a single active replica only. The momentary value of the
criticity of agent A, however, is higher. The corresponding RG comprises three repli-
cas: (1) an active replica A elected as the leader, (2) a follower A’ to which incoming
messages are forwarded, and (3) a standby A” which receives periodical state updates
from A.

In order to transmit messages to A, B requested the relevant RemoteTask RTA
from the naming service. Since replication group A contains only one active replica,
RTA references replica A and no other.

If A happens to fail, the failure detection service will ultimately monitor this event
and notify A’ and A” by means of the localization service. Both replicas will then modify
their replication policies accordingly. The replica associated to the highest potential of
leadership will become the new group leader – most probably A’ in this case as semi-
active replication provides stronger consistency than passive replication –, thus ending
the recovery process.

semi−active
strategy

passive
strategy

A

A’’

A’

RTAB Replication Group A

Replication Group B

Fig. 5. A simple agent application example
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4 Application Building with DARX

This section describes how a multi-agent application may be built over DARX, and
hence benefit from its fault tolerance features.

At this point of our research, the application developer must respect a few guide-
lines and constraints which are given in this section in order for applications to benefit
from DARX services. We feel it is important to point out that this constraint can easily
be bypassed. Notwithstanding the possibility of generating the agent application code
through model-driven architectures, an automated analysis of the original agent source
code might provide the required information to enable DARX support without further
modifications of the original program; the latter corresponds to undergoing research
started out in [BGCAMS02].

In the meantime, our solution comprises facilities designed to make application
building as painless as possible. As a Java framework, DARX includes several generic
classes which assist the developer through the process of implementing a reliable multi-
agent application. The choice of those generic classes comes from the study of the OMG
MASIF [MASIF98] specifications, as well as that of the most recurrent aspects of vari-
ous multi-agent systems, therefore DARX-compliant application building is very close
to most agent developing environments.

Every agent class must extend a DarxTask for several reasons.
Firstly because, although it is not the only factor, the role of an agent [BGCAMS02]

is essential in determining its criticity. For every agent, the roles it may assume must be
explicitly listed by the developer. Any number of roles can be defined for an agent; each
of these roles ought to be mapped to a corresponding static criticity in the code of the
ReplicationManager. A static criticity is the importance of an agent taken out of
its computation context. At runtime, a dynamic criticity will be evaluated in conjunction
with the characteristics of the environment. Consequently, the role of the agent is part
of the variables present in the DarxTask.

Secondly, the DarxTask provides a boolean for differentiating whether the agent is
deterministic or not. This arises from the fundamental definition of agentry: it comprises
the notion of proactivity, which is closely related to non-determinism. It follows that
some agents may present non-deterministic behaviours such as unpredictable internal
state changes. This complicates consistency maintenance inside RGs: for example it
becomes indispensable to propagate the state changes of a leader to its followers if
they do not depend entirely on the incoming messages. The provided boolean enables
developers to specify the behaviour of a non-deterministic replica with respect to its
role inside the RG. In the continuity of the semi-active strategy example, a leader may
take stochastically funded decisions whereas its followers cannot.

Finally, the DarxTask is the point where DARX handles the execution of an agent:
application-specific control methods to start, stop, suspend and resume the agent have
to be defined for this purpose. Such methods would be very hard to implement in a
general context, where the application developer would not have to intervene, without
modifying the JVM: the resulting efficiency loss would be considerable. It ought to be
pointed that, technically, it is the serialized DarxTask of the RG leader which is sent
to the TaskShell of the passive replicas in order to perform state updates.
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Since DARX overrides the localization and naming services of the agent platforms
it supports, it has to take on the responsibility of channelling communications between
agents. In order to emit messages, agents must declare themselves to the framework
by instantiating a DarxCommunicationInterface; messages to other agents are
emitted through this interface, built around the RemoteTask reference of the destina-
tions. Messages sent to a group by means of a RemoteTask are thus rerouted to the
group leaders, where duplicates are discarded and ordering is guaranteed. Additionally,
this scheme allows tracking of the message flows by the observation service.

Also, fault tolerance protocols that are specific to the application can be developed.
DARX provides a generic ReplicationStrategy class which may be extended
to fulfill the needs of the programmer. Basic methods allow to define the consistency
information within the group, as well as the way this information ought to be propagated
in different cases, such as synchronous or asynchronous messages for example. A few
common strategies, such as the passive and the semi-active one, are already built in
DARX; others are undergoing research, like quorum-based strategies for instance.

5 Performances

This section presents performance evaluations established with DARX. Measures were
obtained using JRE 1.4.1 on the Distributed ASCI Supercomputer 2 (DAS-2). DAS-
2 is a wide-area distributed computer of 200 Dual Pentium-III nodes. The machine is
built out of clusters of workstations, which are interconnected by SurfNet, the Dutch
university Internet backbone for wide-area communication, whereas Myrinet, a popular
multi-Gigabit LAN, is used for local communication.

5.1 Agent-Oriented Dining Philosophers Example

A first experiment aims at checking that there is indeed something to be gained out of
adaptive fault tolerance. For this purpose, an agent-oriented version of the classic dining
philosophers problem [H85] has been implemented over DARX.

In this application, the table as well as the philosophers are agents; the correspond-
ing classes inherit from DarxTask. The table agent is unique and runs on a spe-
cific machine, whereas the philosopher agents are launched on several distinct hosts.
Figure 6 represents the different states in which philosopher agents can be found. The

cannot eatcan eat

can eat

cannot eat

Hungry

Thinking

Eating

Fig. 6. Dining philosophers over DARX: state diagram
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agent states in this implementation aim at representing typical situations which occur
in distributed agent systems:

– Thinking: the agent processes data which isn’t relevant to the rest of the application,
– Hungry: the agent has notified the rest of the application that it requires resources,

and is waiting for their availability in order to resume its computation,
– Eating: data which will be useful for the application is being treated and the agent

monopolizes global resources – the chop-sticks.

In order to switch states, a philosopher sends a request to the table. The table, in charge
of the global resources, processes the requests concurrently in order to send a reply.
Depending on the reply it receives, a philosopher may or may not switch states; the
content of the reply as well as the current state determine which state will be next.
It is arguable that this architecture may be problematic in a distributed context. For a
great number of philosophers, the table will become a bottleneck and the application
performances will degrade consequently. Nevertheless, the goal of this experimentation
is to compare the benefits of adaptive fault tolerance with respect to fixed strategies.
It seems unlikely that this comparison would suffer from such a design. Besides, the
experimentation protocol was built with these considerations in mind.

Table 1. Dining philosophers over DARX: replication policies

Agent state RD3 Replication policy

Thinking 1 Single active leader
Hungry 2 Active leader replicated passively
Eating 2 Active leader replicated semi-actively

Since the table is the most important element of the application, the associated RG
policy is pessimistic – a leader and a semi-active follower – and remains constant
throughout the computation. The RGs corresponding to philosophers, however, have
adaptive policies which depend on their states. Table 1 shows the mapping between the
state of a philosopher agent and the replication policy in use within the correspond-
ing RG. RD is used as an abbreviation for replication degree: the total number of RG
members, leader included. The choices for the replication policies in this example are
arbitrary. They correspond to the minimal fault tolerance scheme required in order to
bring the computation to its end should scarce failures occur. A thinking philosopher
may be restarted from scratch without any loss for the application, whereas a the disap-
pearance of either a hungry philosopher or an eating philosopher might interfere with
or even block the execution of the application.

5.2 Results Analysis

The experimentation protocol is the following. Eight of the DAS-2 nodes have been
reserved, with one DARX server hosted on every node. The leading table replica and

3 RD: Replication Degree.
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its follower each run on their own server. In order to determine where each philosopher
leader is launched, a round robin strategy is used on the six remaining servers. The
measure can start once all the philosophers have been launched and registered at the
table.

Two values are being measured. The first is the total execution time: the time it takes
to consume a fixed number of meals (100) over all the application. The second is the
total processing time: the time spent processing data by all the active replicas of the
application. Although the number of meals is fixed, the number of philosophers isn’t: it
varies from two to fifty. Also, the adaptive – “switch” – fault tolerance protocol is com-
pared to two others. In the first one the philosophers are not replicated at all, whereas in
the second one the philosophers are replicated semi-actively with a replication degree
of two – one leader and one follower in every RG.

Every experiment with the same parameter values is run six times in a row. Execu-
tions where failures have occurred are discarded since the application will not necessar-
ily terminate in the case where philosophers are not replicated. The results shown here
are the averages of the measures obtained.

Figure 7 shows the total execution times obtained. At first glance it demonstrates
that adaptive fault tolerance may be of benefit to distributed agent applications in terms
of performance. Indeed the results are quite close to those obtained with no fault toler-
ance involved, and are globally much better than those of the semi-active version. In the
experiments with two philosophers only, the cost of adapting the replication policy is
prohibitive indeed. But this expense becomes minor when the number of philosophers
– and hence the distribution of the application – increases. Distribution may also justify
the notch in the plot for the experiments with the unreplicated version of the applica-
tion: with six philosophers there is exactly one replica per server, so each processor is
dedicated to its execution. In the case of the semi-active replication protocol, the cost of
the communications within every RG, as well as the increasing processor loads, explain
the poor performances.
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Fig. 7. Comparison of the total execution times with various fault tolerance protocols
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Fig. 8. Comparison of the total processing times with various fault tolerance protocols

It is important to note that, in the case where the strategies inside RGs are switched,
failures will not forbid the termination of the application. As long as there is at least
one philosopher to keep consuming meals, the application will finish without deadlock.
Besides it is possible to simply restart philosophers which weren’t replicated, since
these replicas had no impact on the rest of the application: no chop-sticks in use, no
request for chop-sticks recorded. This is not true in the unreplicated version of the
application as failures that occur while chop-sticks are in use will have an impact on the
rest of the computation.

Figure 8 accounts for the measured values of the total processing time in each sit-
uation. Those results also concur to show that adaptive fault tolerance is a valuable
protocol. Of course, the measured times are not as good as in the unreplicated version.
But in comparison, the semi-active version induces a lot more processor activity. It
ought to be remembered that in this particular application, the switch version is as reli-
able as the semi-active version in terms of raw fault tolerance: the computation will end
correctly. However, the semi-active version obviously implies that the average recovery
delays will be much shorter in the event of failures. In such situations, the follower can
directly take over. Whereas with the adaptive protocol, the recovery delay depends on
the strategy in use: unreplicated philosophers will have to be restarted from scratch and
passive standbies will have to be activated before taking over.

6 Conclusion and Perspectives

The framework presented in this paper enables the building of fault-tolerant distributed
multi-agent systems. The resulting software is flexible: it possesses the ability to decide
which parts of the computation are more critical than the others, and hence should be
made to bypass failures through replication. DARX offers control over the way the
application safeguards its components, enabling the fault tolerance of the computation
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to be automatically fine-tuned on the fly. This feature proves to be quite powerful: it
allows adaptive fault tolerance whilst preserving software efficiency, as demonstrated
by the performances shown in this paper. Moreover, the architecture of the middleware
is designed to be scalable.

However, there are still some issues left unsolved: for instance, the observation ser-
vice mentioned in section 3.4 remains to be integrated in the framework. It works as a
stand-alone application, and the API for exchanging commands and data with DARX
is set. But the modifications of the DARX classes which shall make use of the obser-
vation service are being coded, and the dynamic usage of the observation data is still
research material. Hence the current field of investigation is the analysis of the dynamic
criticity of agents and the adaptation of the replication policy. The heuristics used up to
now are mainly driven by the user, due to the lack of a functional observation system.
Once it is fully integrated in DARX, that is once the real characteristics of the hosts
and of the network are acquired, those heuristics will be enhanced for further efficiency
and adequateness. Paving the way for optimal heuristics, [GFB05] presents an extended
range of simulations aimed at studying the behaviour of an agent application on top of
DARX, as well as its resilience to failures.

In order to validate the work achieved up until now, applications are currently being
developed. Those include a basic crisis management system destined to test the viability
and the utility of our architecture in terms of such software.

References

[BDC00] H. Boukachour, C. Duvallet and A. Cardon, “Multiagent systems to prevent
technological risks” In Proceedings of IEA/AIE’2000, Springer Verlag 2000.

[BGCAMS02] J.-P. Briot, Z. Guessoum, S. Charpentier, S. Aknine, O. Marin and P. Sens “Dy-
namic Adaptation of Replication Strategies for Reliable Agents” In Proc. 2nd
Symposium on Adaptive Agents and Multi-Agent Systems (AAMAS-2), London,
UK, April 2002.

[BMS02] M. Bertier, O. Marin and P. Sens, “Implementation and performance evaluation
of an adaptable failure detector” In Proc. of the International Conference on
Dependable Systems and Networks, Washington, DC, USA, 2002.

[BMS03] M. Bertier, O. Marin and P. Sens, “Performance analysis of hierarchical failure
detector” To be published in Proc. of the International Conference on Depend-
able Systems and Networks, San Francisco, CA, USA, June 2003.

[CT96] T. D. Chandra and S. Toueg “Unreliable Failure Detectors for Reliable Dis-
tributed Systems” In Journal of the ACM, 43:2, March 1996, pp. 225-267.

[FD02] A. Fedoruk and R. Deters, “Improving Fault-Tolerance by Replicating Agents”,
In Proceedings of 1st International Joint Conference on Autonomous Agents
and Multi-Agent Systems, Bologna, Italy, July 2002.

[GB99] Z. Guessoum and J.-P. Briot, “From active objects to autonomous agents” In
Special Series on Actors and Agents, edited by Dennis Kafura and Jean-Pierre
Briot, IEEE Concurrency, 7(3):68-76, July-September 1999.

[GFB05] Z. Guessoum, N. Faci and J-P. Briot, “Adaptive Replication of Large-Scale
Multi-Agent Systems - Towards a Fault-Tolerant Multi-Agent Platform”, In
Software Engineering for Large-Scale Multi-Agent Systems (SELMAS05), St.
Louis, USA, May 2005.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



DARX - A Self-healing Framework for Agents 105

[GF00] O. Gutknecht and J.Ferber, “The MadKit agent platform architecture”, In
1st Workshop on Infrastructure for Scalable Multi-Agent Systems, Barcelona,
Spain, June 2000.

[GS97] R. Guerraoui and A. Schiper, “Software-Based Replication For Fault Toler-
ance” In IEEE Computer, 30(4):68-74, 1997.
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Abstract. The Carrier Strike Group (CSG) and the Expeditionary
Strike Group (ESG) are two common types of US Naval units consisting
of multiple ships traveling as a group. All vessels within the CSG/ESG
transmit and receive data via satellite, even when those vessels are within
radio frequency line of sight (RFLOS). Within the CSG/ESG, satellite
communications (SATCOM) are clearly necessary for vessels well for-
ward of the main body, but could be augmented by RFLOS wireless
communications for some members of the CSG/ESG. The goal of this
research is to identify software technology that minimizes the barriers to
employing affordable, commercially available technology (i.e., 802.11x)
for ship-to-ship communications at sea. Some of the existing barriers
to 802.11x communications at sea result from communication protocols
that do not support the varying topologies or human network interven-
tion one would expect to encounter within the CSG/ESG. This paper
advances the concept for a predictive routing protocol that proactively
addresses the topological and human issues unique to the DANN. Proac-
tive routing will re-route the transmissions prior to interruptions, thus
preventing interruption of open communication sessions.

1 CSG/ESG Communications Issues

Currently, passing data from ship-to-ship requires four separate transmissions [1].
Delays associated with signal propagation over long distances, communications
protocols, network prioritization, dropped packets and other overhead issues can
produce excessive delays and are often inadequate for VTC or VOIP sessions.
The challenges and risks associated with some ship-to-ship data communications
can be mitigated with predictive routing that eliminates the requirements for
SATCOM and associated processing by the remote network operations center
(NOC). The challenge of establishing and maintaining RFLOS communications
at sea, with an acceptable quality of service, is rather unique. This research uses
the Washington State Ferries (WSF) Wireless Internet Project as a baseline
and advances that work to address a fully ad-hoc mobile network at sea. WSF
research demonstrated the feasibility of pushing 802.11a up to 20 miles over
water, identifying 802.11a as the baseline backhaul evaluated for the DANN [2].
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1.1 Problem Modeling

Nautical communication requirements are modeled as a time-dependent graph
where each vertex represents a vessel within the CSG/ESG, and each arc rep-
resents a communications link. Some of the unique challenges facing the DANN
are summarized below.

1.2 Topological Challenges

Vertices move out of range:

– Vessel may move out of range due to course, speed, currents and wind, or
to avoid obstacles and localized weather patterns. This could sever a link
between vertices or disconnect the entire network.

– Vessels may move out of range in response to direction from the CSG/ESG
commander.

– The NPRP will predict when the arc between two vertices will break con-
nectivity, calculate course and speed data needed for vessels to maintain
connectivity and find an alternative route for use in case repositioning the
vessels is not possible.

Localized Weather Patterns:

– Localized weather patterns and sea states on or near the arc linking two
vertices may indicate that more complex routing would provide a higher
quality of service.

– The NPRP will calculate the best route around localized weather patterns. If
an alternate route does not exist, the NPRP will calculate course and speed
data needed for vessels to establish an alternate route.

RF Shadowing:

– Vertices in direct communication with each other may experience a break
in signal if both nodes pass on either side of a obstacle, such as an island.
This obstacle can cast an RF shadow and block the signal from reaching the
vertices.

– Vertices in direct communication with each other may experience a break
in signal if a vessel without the ability to relay the wireless traffic passes
between the two vertices. The vessel would essentially cast an RF shadow
and block the signal.

– Obstacles are modeled as circular regions with a radius 1.10 times the phys-
ical radius. The additional ten percent provides an extra measure of security
when calculating the time from the arc to the obstruction.

– The NPRP will predict when an obstacle will sever an arc, and determine
an alternate route. If an alternate route does not exist, the NRPR will cal-
culate course and speed data needed for vessels to establish an alternate
route.
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1.3 Human Intervention

DANN performance issues arising from vertices specified ”out of service” due to
human intervention are summarized below.

– Vessel is in emission control (EMCON) status that prohibits RF communi-
cations.

– Vessel is in maintenance status and some communications systems may be
shut down for service.

– Vessel is designated ”no-relay” by the CBG/ESG Commander to provide
additional bandwidth for higher priority communications.

– Vessel is involved in a drill that requires the discontinuation of power to the
DANN system.

– If any of these states exist, the NPRP will calculate an alternative route and,
if necessary, calculate course and speed corrections for vessels to move them
to locations to maintain connectivity.

2 Adaptive and Non-adaptive Protocols

Most mobile ad-hoc network routing protocols are reactive in nature. These
protocols are also called ”adaptive” because they change routing decisions ”on-
the-fly” to compensate for network traffic and topology. Adaptive routers receive
information from other routers and use this information to adapt routes to the
traffic and topology snapshot. An example of such a protocol is the Ad-Hoc On
Demand Distance Vector (AODV) [3]. This and other reactive protocols capture
variables such as signal strength, signal-to-noise ratio, and number of hops as
input to routing algorithms. Data capture of these variables occurs in real-time
or near real-time, causing the protocol to re-calculate the optimal routes. Non-
adaptive routing protocols, sometimes called static routing protocols, generally
do not base routing decisions on measurements, traffic or topology. Non-adaptive
routing protocols calculate the route in advance and download the data to the
router prior to the router coming on-line. Because static routing protocols are
more likely to address fixed topologies, they can be more predictive in nature
than adaptive protocols. The predictive nature of the NPRP should assist in
maintaining network connectivity. This protocol anticipates and prevents degra-
dations in quality of service (QOS) before they occur. For example, at distances
of 20 nautical miles vessel maneuverability, i.e., the ability of a vertex to move
to a new location to re-establish connectivity, is relatively slow. Once a vertex
loses connectivity, it may take an unacceptable period of time to re-establish
RFLOS communications. In anticipation of this state, NPRP has the ability to
proactively move a vertex to a new location as it senses an impending break in
communications. The system can also provide a vessel (or vessels) with course
and speed to re-establish communications within the DANN after a break has
occurred. The development and employment of a Nautical Predictive Routing
Protocol would compensate for the unique topological and human issues sur-
rounding the DANN. Essentially, NPRP is a hybrid of adaptive and non-adaptive
protocol features, and might be called an ”adaptive-static” protocol.
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3 NPRP Approach

NPRP requires data from the CBG/ESG as a whole, and from each vessel in the
group. The essential data available to NPRP is as follows: Each vessel broadcasts
unique data to shore facilities via SATCOM. The data includes:

– position in latitude and longitude
– course in degrees
– speed in nautical miles per hour

Additionally, each vessel publishes a plan of the day that often includes planned
drills, system maintenance and other activities that would generate an ”out of
service” state for that vertex. Other data available from the CBG/ESG includes
maps showing locations of fixed obstacles and weather information identifying
both regional and localized weather patterns. A localized pattern will generally
display as a geographic center of activity with an effective radius and a displace-
ment vector.

3.1 DANN Routing Metrics

Each vertex routes the signal based upon information calculated by the DANN
application. Each vertex also has full-duplex capability, since transmission is
achieved via an amplified sector antenna (eight to fifteen degrees on the main
lobe) and reception is via an omnidirectional high-gain antenna. With this in-
frastructure, each vertex can transmit and receive simultaneously, eliminating
the bandwidth degradation normally associated with multi-hop routing. Since
the vessels communicate their position, course and speed, each router knows
the distance to each vertex, calculated via the Haversine Formula [4]. Standard
Great Circle calculations typically apply to distances greater than those found
in the CBG/ESG. For very long distances, such as from New York to Los Ange-
les, an arc more accurately describes the distance. For long distances, spherical
trigonometry follows the Law of Cosines:

cos(c) = cos(a)cos(b) + sin(a)sin(b)cos(C) (1)

where a, b and c represent three sides of a spherical triangle and C represents
the angle opposite side c. For short distances such as those found in the DANN,
the Law of Cosines produces a rounding error that can be eliminated by using
the Haversine Formula. Since this research addresses linear communication paths
(RFLOS), the Haversine Formula provides a realistic and sufficiently accurate
distance, d, between two vertices.

In the following equations, R represents the radius of the earth in kilometers.

dlon = lon2 − lon1 (2)

dlat = lat2 − lat1 (3)

a = (sin(dlat/2))2 + cos(lat1)cos(lat2)sin(dlon/2))2 (4)
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c = 2(atan2(
√

a,
√

1 − a)) (5)

d = R ∗ c (6)

In some regards, routing within the DANN takes on the appearance of a modified
distance vector routing protocol, mainly because each router knows the distance
to its neighboring routers. [5] Common metrics found in vector routing proto-
cols, such as delay, are not critical for the DANN. Given two dynamic vertices
connected by an arc, a few of the key considerations and metrics for the DANN
are given below, expressed in terms of the arc length between the two vertices.

– Is the length of an arc 20 NM or less?
– If the arc length is 20 NM or less, is the length increasing?
– If the length of the arc is increasing, at what time will it reach 20 NM?
– What course and speed corrections should be recommended for which vertex

or vertices to ensure the arc remains less than 20 NM?

Given obstacles that might break the arc i.e., land masses, other vessels or lo-
calized weather patterns:

– Will the vertices’ movements cause them to pass on opposing sides of an
obstacle?

– Is the obstacle large enough to cast an RF shadow to break the arc?
– If the obstacle is large enough to break the arc, at what time will this happen?
– If the obstacle is large enough to break the arc, what are the course and

speed corrections for which vertex or vertices to avoid having the obstacle
break the arc?

Human Intervention.

– Is a vertex scheduled to be unavailable?
– If a vertex is scheduled to be unavailable, at what time will this occur?
– If a vertex is scheduled to be unavailable, what are the course and speed

corrections for which vertex or vertices to remain connected?
– If a vertex suddenly becomes unavailable, what are the course and speed

corrections for which vertex or vertices to re-establish communications?

In all cases described earlier where the vessel’s DANN system is out of service
due to human intervention, this intervention is scheduled and generally known
by other vessels within the CBG/ESG. Unexpected unavailability generally cor-
responds to equipment failure. In these cases, the NPRP can track the events
and update the routing table to exclude those vertices that will experience out of
service conditions. In cases where the out of service vertices are critical to con-
necting the digraph, NPRP will calculate the next-best routing path and any
vertices’ course and speed changes necessary to connect the digraph. If there is
no next-best solution, the NPRP will identify the vertex or vertices required to
connect the digraph and calculate the course/speed changes necessary to position
the vertices within backhaul range.
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4 The Communication Graph

The dynamic nature of the CBG/ESG subnet is accurately described by three-
dimensional vector physics. [6] The formation of vessels forms a communication
graph consisting of mobile vertices and arcs that exhibit the topological and
human variables described earlier in this paper. Since each vertex reports current
location in latitude and longitude, as well as course and speed, the NPRP will
calculate when a vertex will move beyond the range of the 802.11a backhaul
system. This capability is most important when the vessel moving out of range
will disconnect the graph. The NPRP will also calculate a course/speed change
that will keep the vessel within range and will also calculate any appropriate
course/speed changes for other vertices to provide connectivity redundancy. The
communication graph has n vertices numbered 1 to n. Each vertex K has a
displacement vector RK , a velocity vector VK .

The displacement vector RK points from an arbitrary origin to the location
of the vertex. The selection of the arbitrary origin should attempt to minimize
the complexity of the software required to perform the calculations relative to
the DANN. Examples of convenient arbitrary origins include the center of the
earth, the centroid of the geometric shape formed by the CSB/ESG, or the vertex
performing the calculation.

A velocity vector relative to the arbitrary origin for vertex K is defined by

VK =
dRK

(dt)
(7)

A displacement vector from vertex J to vertex K is

AJK = RK − RJ (8)

with an arc length of

LJK = |AJK | =
√

AJK · AJK (9)
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The derivative of the arc length is

dLJK

dt
= 1/2 −2

√
AJK · AJK2AJK · dAJK

dt
=

AJK

|AJK | · dAJK

dt
(10)

Using equations (7) and (8), this becomes

dLJK

dt
=

AJK

|AJK | · (VK − VJ ) (11)

Within the DANN, the arc length is increasing if

dLJK

dt
> 0 (12)

Based upon WSF research, reliable connectivity between two vertices exists if
and only if the length of the arc between the two vertices is less than less than a
maximum distance M. For the 802.11x implementation discussed above, M is 20
nautical miles (NM). We can use a linear approximation for short time periods
t to express the loss of connectivity condition as

M = LJK +
dLJK

dt
t (13)

If expression (11) shows the arc length to be increasing, equation 14 below es-
timates the time until vertex movement produces an arc of maximum allowable
length (i.e., 20 NM) and ends reliable communication along the arc.

t =
M − LJK

dLJK

dt

(14)

5 The Obstacle Problem

As an arc between two vertices moves about the ocean’s surface, it may move
over a land mass that can produce an RF shadow, blocking the signal from
reaching the intended receiver. Additionally, other moving vessels passing be-
tween two vertices may break the link and cause a loss of communication. These
situations will, at a minimum, break RF communications with one vessel, and
could disconnect a larger portion of the communication graph. Land masses such
as islands and localized weather patterns are depicted both on nautical charts
and are visible via radar. Vessels on the ocean’s surface are also identified and
charted via radar. NPRP will plan for such shadowing conditions and calculate
ship movements to compensate for the break in the arc, and to keep the digraph
connected. To accomplish this, NPRP must measure and track, over time, the
perpendicular distance from the arc to the shadowing object. The algorithm as-
sumes the shadowing object is a sphere, and adds a safety zone of ten percent
to the actual radius to ensure the signal can be routed around the shadowing
object before the link breaks.
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Given two vertices J and K, to calculate the perpendicular distance, let RO be
the displacement vector of an obstacle with radius r, and let BJ = RO - RJ

represent the position of the obstacle relative to vertex J.

Let

VO =
dRO

dt
(15)

be the velocity of the obstacle. The perpendicular distance from the arc AJK to
the obstacle is

DJK = |ÂJK × BJ | =
|AJK × BJ |

|AJK | (16)

Where Â is the unit vector parallel to AJK . The derivative of the perpendicular
distance is

dDJK

dt
=

d

dt

|AJK × BJ |
|AJK | =

d

dt

√
(AJK × BJ ) · (AJK × BJ)

AJK · AJK
(17)

This equation becomes

2 |AJK×BJ |
|AJK |2 · d

dtAJK × BJ − 2 |AJK×BJ |2
|AJK |3

d
dtLJK

2|AJK×BJ |
|AJK |

(18)

Note:
d

dt
AJK ×BJ =

dAJK

dt
×BJ +AJK × dBJ

dt
= (VK −VJ )×BJ +AJK × (VO −VJ)

(19)
Then, based upon the equation

dLJK

dt
=

AJK

|AJK | · (VK − VJ ) (20)

d

dt
DJK =

AJK ×BJ

|AJK ×BJ | ·
(VK − VJ)×BJ + AJK ×(VO − VJ )

|AJK | − |AJK ×BJ |
|AJK |3

AJK ·(VK−VJ )

(21)
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In this equation, all quantities on the right hand side of the equation can be
calculated from the positions and velocities of the vertices and obstacle. Occlu-
sions are a concern only when the closest point of the approach to the obstacle
is between the end points of the arc. This happens when both of the following
conditions hold:

(RK − RJ) · (RO − RJ) > 0 (22)

(RJ − RK) · (RO − RK) > 0 (23)

Using a linear approximation

r = DJK +
d

dt
DJKt (24)

The time to occlusion by the obstacle’s edge can be calculated as follows:

t +
r − DJK

dDJK

dt

(25)

Normally, DJK > r and this constraint is only of concern when

d

dt
DJK < 0 (26)

This means the obstacle is getting closer to the line of sight.
The routing algorithm will perform these calculations periodically and an arc

will be dropped from the routing tables if the time t from equation 12 or equa-
tion 24 is less than two periods. In order to economize on the hardware, we
have proposed a configuration in which each node is connected to its nearest
neighbors satisfying the constraints implied by the above, up to a maximum of
two connections for each node. If the ships are close enough so that both nearest
neighbors satisfy the constraints, this connection policy results in a ring that en-
ables all of the nodes to communicate even if one of the links is severed. Since the
constraints are re-evaluated periodically, new connections can be formed when
weak connections are dropped, and the identity of the two nearest neighbors can
change as the ships change their relative positions, with corresponding changes
to the routing patterns.

6 Relevant Research

The research surveyed in this section supports, either directly or indirectly, the
NPRP concept. As with any software, NPRP architecture, interoperability, qual-
ity of service and reliability must be well-planned and optimal. The research
abstracts below provide a window into each graduate’s unique research along
with a brief explanation of the relevance to NPRP.
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6.1 Integrating Stand-Alone Systems

Dr. Paul Young’s research identified a method for meeting the need for interop-
erability among independently developed heterogeneous operating systems, host
languages and data models. [7]

The approach articluated in the research has applicability to nautical predic-
tive routing protocol for the dynamic ad-hoc naval network. It is expected that
the integrated ships’ systems required to host and maintain the NPRP software
are likely to be from a variety of independent development contracts and would
reflect the developer’s strengths, the age of the ship and the technology avail-
able at that time. The Object Oriented Method for Interoperability provides a
potential methodology for enabling operations among the various systems that
may be used in the NPRP and DANN architecture.

Abstract. [7] Meeting future system requirements by integrating exist-
ing stand-alone systems is attracting renewed interest. Computer
communications advances, functional similarities in related systems, and
enhanced information description mechanisms suggest that improved ca-
pabilities may be possible; but full realization of this potential can only
be achieved if stand-alone systems are fully interoperable. Interoperabil-
ity among independently developed heterogeneous systems is difficult to
achieve: systems often have different architectures, different hardware
platforms, different operating systems, different host languages and dif-
ferent data models. The Object-Oriented Method for Interoperability
(OOMI) introduced in this dissertation resolves modeling differences in
a federation of independently developed heterogeneous systems, thus
enabling system interoperation. First a model of the information and
operations shared among systems, termed a Federation Interoperability
Object Model (FIOM), is defined. Construction of the FIOM is done
prior to run-time with the assistance of a specialized toolset, the OOMI
Integrated Development Environment (OOMI IDE). Then at runtime
OOMI translators utilize the FIOM to automatically resolve differences
in exchanged information and in inter-system operation signatures.

6.2 Layered Abstraction Approach

Dr. Michael Dabose proposes a component-based layered abstraction approach to
software development that creates an environment for porting software from one
platform to another. [8] Given the expected disparity in sensors and computing
platforms existing among warships of various classes and vintages, the layered
abstraction approach can be considered for the implementation phase following
successful proof-of-concept exercises and demonstrations.

Abstract. [8] The current state of the art techniques to describe and
implement a hard real time embedded software architecture for missile
systems range from inadequate to totally nonexistent. Most of the exist-
ing software implementations within such systems consist of hand coded
functionality, optimized for speed, with little or no thought to long term
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maintainability, and extensibility. Utilizing current state of the art soft-
ware development technology, the first ever software architecture for hard
real time missile software has been designed and successfully demon-
strated. This component based layered abstraction pattern approach to
software architecture revolutionizes reduced development time, cost, pro-
vides an order of magnitude decrease in error, and is the first such soft-
ware architecture to function within the hard time constraints of the most
extreme cases related to missile systems. Additionally, componentization
of functionality allows for porting of software developed for one missile
to any other missile with no modification. Hardware obsolescence is over-
come by software abstraction layers which isolate the hardware instance
from the software functionality providing a rapid, low cost transition of
software from one instance of missile hardware to another. The end result
of this research is a software architecture demonstrating the capability
of managing complex functionality in an accurate, quantifiable, and cost
effective manner.

6.3 Quality of Service Execution Path

The quality of service execution path defined by Dr. John Drummond addresses
a weakness in wireless QoS by identifying and mitigating QoS conflicts that occur
during program execution. [9] Quality of service goals, such as network latency,
jitter and dropped packets may not necessarily result from physical network
issues. Improving quality of service is one of the motivations for the DANN. It
is important to optimize the program execution path to maximize quality of
service prior to adding the network itself to the environment.

Abstract. [9] The substantial complexity and strict requirements of dis-
tributed command & control systems creates an environment that places
extreme demands upon system resources. Furthermore, inconsistent re-
source distribution also introduces the distinct possibility of potential
errors, and process failures. Many of these potential difficulties can be
understood and addressed through a practical analysis of the resource
management and distribution procedures employed within these systems.
This analysis should include a direct focus upon the essential quality of
service that is shared among the software programs that operate within
this environment. However, the current approaches to this analysis are
lacking in that there is no accurate method to determine precisely what
quality of service based conflicts take place during program execution.
This problem can be addressed through examination of specific quality of
service actions during program execution. To achieve a precise analysis of
quality of service actions this dissertation research has implemented an
approach to examine the exact quality of service execution path during
program operation.

6.4 Architecture Readiness Levels

Dr. Kevin Greaney’s research proposes a software architecture based approach
for simulation model representations.[10] As the current NPRP simulation model
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grows in complexity, it is important to ensure its interoperability with other
network and communication models. The approach described in Dr. Greaney’s
dissertation provides a baseline for building simulation models with a higher
degree of interoperability certainty.

Abstract. [10] National- and Department-level decision-makers expect
credible Department of Defense models and simulations (M&S) to pro-
vide them confidence in the simulation results, especially for mission-
critical and high-risk decisions supporting National Security. Many of
these large-scale, software-intensive simulation systems were
autonomously developed over time, and subject to varying degrees of
funding, maintenance, and life-cycle management practices, resulting in
heterogeneous model representations and data. Systemic problems with
distributed interoperability of these non-trivial simulations in federa-
tions persist, and current techniques, procedures, and tools have not
achieved the desired results. The Software Architecture-Based Prod-
uct Line for simulation model representations, employing Architecture
Readiness Levels presented in this dissertation provides an alternative
methodology. The proposed four-layered M&S software architecture-
based product line model enables the development of model represen-
tations supported by readiness levels. Each layer reflects a division of
the software architecture-based product line. The layer represents a hor-
izontal slice through the architecture for organizing viewpoints or views
at the same level of abstraction while the software architecture-based
product line represents a vertical slice. A layer may maintain multiple
views and viewpoints of a software architecture-based product line. A
Domain Metadata Repository prescribes the interaction between lay-
ers. We introduce the Domain Integrated Product Development Team
concept.

6.5 Efficiency and Effectiveness Model

Dr. Grant Jacoby’s Intranet efficiency and effectiveness model [11] directly sup-
ports the NPRP approach in that NPRP is a predictive routing protocol for a
wireless intranet servicing a formation of ships at sea. The evaluation of critical
business requirements maps directly to the network ”human intervention” de-
scribed earlier in this paper. A process to identify and measure critical business
requirements and their associated variables has the potential to increase intranet
quality of service within DANN nodes, as well as throughout other intranet
applications.

Abstract. [11] This research provides the first theoretical model – the
Intranet Efficiency and Effectiveness Model (IEEM) – for the Family of
Measures approach to measure Web activity as well as a holistic frame-
work and multi-disciplinary quality paradigm approach not previously
derived in viewing and measuring intranet contributions in the context
of a corporations overall critical business requirements. This is accom-
plished by applying a balanced baseline set of metrics and conversion ra-
tios linked to business processes as they relate to knowledge workers, IT
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managers and business decision makers seeking to increase value. It also
outlines who should conduct these measurements and how in the form of
a business intelligence team and provides a means in which to calculate
return on intranet metrics investment (ROIMI) with a common unit of
analysis for both aggregate and sub-corporate levels through forms of
the Knowledge Value Added (KVA) and Activity Based Costing (ABC)
methodologies.

6.6 Hoslistic Framework for Software Architecture

Dr. Joseph Puett proposes a software engineering holistic framework that iden-
tifies interoperable synergies among software development tools and models.[12]
NPRP modeling for the DANN is an essential step towards live testing at sea.
The expense associated with live testing must be mitigated by proof-of-concept
modeling, and Dr. Puett’s research supports enhanced modeling among the vari-
ous subsystems that will ultimately comprise the DANN. The identification and
quantification of synergistic dependencies described in this research provide a
potential framework for developing NPRP solutions for multiple topographies.

Abstract. [12] This dissertation presents a Holistic Framework for Soft-
ware Engineering (HFSE) that establishes collaborative mechanisms by
which existing heterogeneous software development tools and models will
interoperate. Past research has been conducted with the aim of develop-
ing or improving individual aspects of software development; however,
this research focuses on establishing a holistic approach over the entire
development effort where unrealized synergies and dependencies between
all of the tools’ artifacts can be visualized and leveraged to produce both
improvements in process and product. The HFSE is both a conceptual
framework and a software engineering process model (with tool support)
where the dependencies between software development artifacts are iden-
tified, quantified, tracked, and deployed throughout all artifacts via mid-
dleware. Central to the approach is the integration of Quality Function
Deployment (QFD) into the Relational Hypergraph (RH) Model of Soft-
ware Evolution. This integration allows for the dependencies between
artifacts to be automatically tracked throughout the hypergraph repre-
sentation of the development effort, thus assisting the software engineer
to isolate subgraphs as needed.

6.7 Software System Safety Index

Dr. Christopher Williamson’s research provides a software engineering method-
ology for identifying software system weaknesses and for preventing potential
catastrophic system failures.[13] This correlates directly with NPRP and the
DANN in that software system failures in times of armed conflict, although per-
haps not catastrophic, may have catastrophic results. Dr. Williamson’s approach
identifies ways to improve software safety and reliability, both necessary for a
system such as that supported by NPRP.
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Abstract. [13] The current state of the art techniques of Software Engi-
neering lack a formal method and metric for measuring the safety index
of a software system. The lack of such a methodology has resulted in
a series of highly publicized and costly catastrophic failures of highas-
surance software systems. This dissertation introduces a formal method
for identifying and evaluating the weaknesses in a software system using
a more precise metric, counter to traditional methods of development
that have proven unreliable. This metric utilizes both a qualitative and
quantitative approach employing principles of statistics and probability
to determine the level of safety, likelihood of hazardous events, and the
economic costbenefit of correcting the flaws through the lifecycle of a
software system. This dissertation establishes benefits in the fields of
Software Engineering of highassurance systems, improvements in Soft-
ware Safety and Software Reliability, and an expansion within the disci-
pline of Software Economics and Management.

6.8 Mass-Spring Application to Network Connectivity

Dr. William Roof’s research into predictive signal routing and communication
graph node positioning inserts mass-spring theory NPRP into the system to
maintain node connectivity.[14] This approach decentralizes the network control
by identifying a methodology by which each node operates as an independent
agent. The distributed approach improves the robustness of the system, relieves
network traffic and enhances network quality of service.

Abstract. [14] The truly unique contribution within NPRP is the ap-
plication of Mass-Spring theory to maintain connectivity between the
vertices in the DANN. This is the first ever application of this methodol-
ogy to mobile ad-hoc wireless networks at sea. The approach, algorithms,
and object classes developed to model the approach constitute new con-
tributions as well. The goal of this research is to leave the WiFi standards
in place, and to handle key network issues such as load balancing and
quality of service by identifying system constraints and by developing
software routing that predicts network connection problems and adjusts
the topology prior to the problems occurring. The identification of the
topology and the hardware constraints that keep the system extremely
simple provide a means to model and test low-cost, commercial 802.11x
equipment without extensive software engineering rework of the existing
protocol stack.

7 Conclusions

The Dynamic Ad-Hoc Nautical Network presents unique challenges to signal
routing over a wireless network. The ability to employ a protocol that is predic-
tive, that encompasses the best attributes of both static and dynamic protocols,
and that can calculate course and speed to position vertices properly before they
lose connectivity, should increase network QOS beyond that available through
standard wireless routing protocols.
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Abstract. Heterogeneous non-functional requirements of Distributed Real-Time
Embedded (DRE) system put a limit on middleware engineering: the middleware
must reflect application requirements, with limited runtime impact. Thus, build-
ing an application-tailored middleware is both a requirement and a challenge.

In this paper, we provide an overview of our work on the construction of mid-
dleware. We focus on two complementary projects: the definition of middleware
that provides strong support for both tailorability and verification of its internals;
the definition of a methodology that enables the automatizing of key steps of
middleware construction.

We illustrate how our current work on PolyORB, Ocarina and the use of Petri
Nets allows designer to build the middleware that precisely matches its applica-
tion requirements and comes with precise proof of its properties.

1 Introduction

Middleware first emerged as a general solution to build distributed applications. Models
and abstractions such as RPC, distributed objects hide the intrinsic of distribution from
the user, and provide a programming model close to the local case.

In the meantime, the need for Distributed Real-Time Embedded systems (DRE) in-
creases regularly. Such systems require execution infrastructures that have specific ca-
pabilities, some of which conflict with “plain old middleware technology”:

– Distribution cannot remain hidden from the developer. The semantics of the dis-
tribution models must be adapted to real-time application needs. For instance, the
application entity should be well adapted to scheduling analysis such as the pub-
lish/subscribe model [RGS95]. Besides the impact of runtime entities (e.g. com-
munication channels, memory management) on timeliness or determinism must be
fully assessed.

– Real-Time engineering guidelines must be supported by the middleware. This mid-
dleware follows a clear and precise design so as to guarantee its determinism and
its temporal properties; it comes with complete proofs that it does not withdraw
the properties of the application [Bud03]. Finally, a methodological guide, support

F. Kordon and J. Sztipanovits (Eds.): Monterey Workshop 2005, LNCS 4322, pp. 121–142, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



122 J. Hugues et al.

tools and Quality of Service (QoS) policies help to tailor the middleware with re-
spect to the application requirements.

– Embedded targets that have strong constraints on their resources (e.g. CPU, mem-
ory, bandwidth) or limited run-time support by a real-time kernel (no exception, no
dynamic memory, limited number of threads, etc). So, middleware must cope with
strong limitations; and scale down to small targets. In some cases, new functions or
QoS policies are added to cope with platform limitations, e.g. data compression for
systems with a narrow bandwidth.

So, there is a need to 1/ make available to the developer some internals of the mid-
dleware to allow its tailoring and adaptation; 2/ define a development process and sup-
porting tools to ease this adaptation and ensure its is correct with respect to middleware
constraints.

Let us note a DRE is usually composed of several components for with differ-
ent requirements. Therefore, both functional interoperability and compatibility of non-
functional policies must be contemplated. Such assessment capability is seldom con-
templated by middleware architects.

Another common pitfall when designing DRE is the use of “Commercial Off-The-
Shelf” (COTS) components. This allows to reduce costs and potential errors by reusing
already tested components. But this puts a strong limit on middleware tuning, verifica-
tion and performance capabilities.

Engineers of DRE systems require middleware that have good performance (includ-
ing efficient marshaling), real time (use only deterministic constructs), fit embedded
constraints. Besides, they also need to ensure their use of the middleware is correct (no
deadlock, deadline are respected, etc). Hence, this calls not only for a middleware, but
also for a design process and tools that allow the user to carefully tune the middleware
it to needs, instead of selecting a “best effort” middleware.

The objective of the PolyORB project is to elaborate both a middleware and a design
process. We propose an innovative architecture that aims at providing better control on
the configuration of the middleware, and enables the careful analysis of its properties.
This paper presents an overview of our work in this area for the past years.

In the next section, we motivate our work by reviewing major issues when designing
middleware for DRE systems, revolving around tailorability and verification concerns.
Then, we present our current results in middleware architecture, and how we efficiently
address both concerns by defining an original architecture. We note that another limit to
the adoption of middleware is the lack of tool support; we then discuss our current re-
search work around Architecture Description Language to build tool that help building
and verifying application-specific middleware configurations.

2 Tailorable and Verifiable Middleware: State of the Art

In this section, we discuss limits and trade-offs when considering tailorable and ver-
ifiable middleware. Even though both capabilities are of interest for the application
designers, we note that there is usually little support provided by the middleware.
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2.1 From Tailorability to Verification

The many and heterogeneous constraints of distributed applications deeply impact the
development of distribution middleware. Middleware should support developers when
designing, implementing and deploying such systems in heterogeneous environments
and evaluate so called “non functional” requirements (such as QoS or reliability).

The design and implementation of tailorable middleware is now a (almost) mastered
topic. Design patterns, frameworks have proved their value to adapt middleware to a
wide family of requirements [SB03].

In the mean time, middleware platforms have shown in various projects they can
meet stringent requirements. They are now used in many mission-critical applications,
including space, aeronautics and transportation.

Building distribution platform for such systems is a complex task. One has to cope
with the restrictions enforced to achieve high integrity standards, or to meet certifica-
tion requirements, such as DO-178B. Thus, one has to be able to assert middleware
properties, e.g. functional behavioral properties such as absence of deadlocks, request
fairness, or correct resource dimensioning; but also temporal properties.

Hence, verifying middleware is now becoming a stringent requirement in many DRE
systems. The developer must ensure beforehand that its application design is compatible
with middleware capabilities.

We claim middleware engineering should now provide provisions for some verifica-
tion mechanisms as defined by the ISO committee [ISO94] as “[the] confirmation by
examination and provision of objective evidence that specified requirements have been
fulfilled. Objective evidence is information which can be proved true, based on facts
obtained through observation, measurement, test or other means.”

However, we note there is a double combinatorial explosion when considering mid-
dleware as a whole: the number of possible execution scenarios for one middleware
configuration increases with the interleaving of threads and requests; the number of
possible configurations increases with middleware adaptability and versatility. Finally,
the behavior of a middleware highly depends on the configuration parameters selected
by the user. Thus, verifying a middleware is a complex task.

Some projects consider testing some scenarios, on multiple target platforms. The
Skoll Distributed Continuous Q&A project [MPY+04] relies on the concepts of dis-
tributed computing to test TAO many configurations and scenarios on computers around
the world. This provides some hints on the behavior of the middleware, but cannot serve
as a definite proof of its properties.

One may instead contemplate the verification of middleware properties. Yet this is
usually done on a limited scale, restricted to the very specific scenarios of the applica-
tion to be delivered and the semantics of the distribution model used (e.g. RT CORBA),
for instance using the Bogor model checker [DDH+03]. But the middleware must be
considered as part of the application and must not be discarded from the verification
process as a blackbox would be.

However, middleware implementations of the same specifications may behave dif-
ferently [BSPN00]. Some properties may be withdrawn by implementation issues, such
as the use of COTS, that are hidden by this modeling process, or by different inter-
pretation of the same specifications. Besides, such a verification process usually does
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not take into account implementation-defined configuration options, and target capabil-
ities. Finally, such methods may be limited by combinatorial explosion that arise when
building the system state-space.

Thus, we note it is hard (if not infeasible) to verify existing middleware as a whole.
One should go forward and integrate verification to the design of middleware.

2.2 Addressing Verification Concerns

The formal-based verification of distributed application behavioral properties is usually
the domain of verification-domain experts, using specific verification techniques, e.g.
calculi, formal methods. However, such a verification process is usually used only to
verify the semantics of the application (e.g. set of correct message sequences) [Jon94].

Turtle-P [AdSSK03] defines a UML profile for the validation of distributed ap-
plications, linked with code generation engines and validation tools built around RT-
LOTOS [LAA04]. Validation is done either through simulation or verification of timed
automata. However, this provides no information on the underlying distribution frame-
work or middleware integrated to the system; and thus reduces the scope of the proper-
ties proved for the application under study.

Finally, it should be noted that complex semantics of distribution models is difficult
to model and usually reduced: complex request dispatching policies, I/O or memory
management are simplified. This reduces verification cost but also interest in the mid-
dleware modeled that looses many configuration capabilities.

Thus, we claim the verification process of a distributed application should also focus
on the middleware as a building block, and thus middleware architecture should be
made verification-ready so as to ease this process, without impeding its configurability.

Still, this increases the complexity of the verification process: one should focus on
the actual configuration being used. This means that models of the configuration should
be built “on demand”, and that a strong link between model and implementation exists.

From the previous analysis, we conclude that a dedicated process to build and verify
tailorable middleware is required. This process should be defined around well-grounded
engineering methods and foster reusable and tailorable software components. Besides,
verification techniques should be included in the process to assert strong properties of
complex configurations, using the most suitable methods, depending on the nature of
the property (causal, time, dependability, etc.).

3 The Schizophrenic Architecture: A Tailorable and Verifiable
Middleware

In this section, we discuss our approach to design middleware dedicated to the require-
ments of a given application. This approach can be viewed as a co-design between the
application and its supporting middleware. As an illustration of the feasibility of this
design process, we provide a highly generic middleware architecture (also known as
the “schizophrenic” architecture) and a methodological guide to instantiate it.
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3.1 From System Requirements to a Dedicated Middleware

Actual middleware has to fulfill the system requirements. Some solutions are based on
standardized “rigid” specifications; this is the case for most CORBA implementations
and its many extensions (RT-, FT-, minimum CORBA. . . ). Such middleware architec-
tures are targeted to a certain application domain, and usually add many configuration
parameters to partially control its resource or request processing policies.

Yet, implementations are not as efficient as specifically designed middleware [KP05].
The cost to deploy specific features is high due to the API to manipulate. Many opti-
mization options cannot be implemented because of the heterogeneity of requirements
and the number of (possibly useless) functions to support. Besides, verification or test-
ing is not addressed and under the control of the middleware vendor. It is a direct con-
sequence of the absence of a “one size fits all" middleware architecture.

Therefore, one should not contemplate middleware as a whole, but instead design
middleware components and the process to combine them as a safe and affordable solu-
tion to system requirements. Thus, it becomes possible to build the distribution infras-
tructure built for specific requirements.

In the following, we describe the different steps we followed to define one such
process built around a highly tailorable middleware architecture, a set of middleware
components.

3.2 Defining a New Tailorable Middleware Architecture

Solutions have been proposed to design tailorable middleware. Configurable middle-
ware defines an architecture centered on a given distribution model [SLM98] (e.g. dis-
tributed objects, message passing, etc.); this architecture can be tuned (tasking policy,
etc.). Generic middleware [DHTS98] provides a general framework, which components
have to be instantiated to create middleware implementations. Those implementations
are called personalities. Generic middleware is not bound to a particular middleware
model; however, various personalities seldom share a large amount of code.

Generic functions propose a coarse grain parametrization (selection of components).
Configuration is fine grain parametrization (customization of a component). Verification
is possible through behavioral descriptions (attached to components).

Configurable and generic middleware architectures address the tailorability issue, as
they ease middleware adaptation. However, they do not provide complete solutions, as
they are either restricted to a class of distribution model; or their adaptation requires
many implementation levels, thus becomes too expensive.

3.3 Decoupling Middleware Components

To enhance middleware adaptation at a reduced implementation cost, we proposed
the “schizophrenic middleware architecture” [VHPK04]. Its architecture separates con-
cerns between distribution models, API, communication protocols, and their implemen-
tations by refining the definition and role of personalities.

The schizophrenic architecture consists of three layers: application and protocol
personalities built around a neutral core. Application interacts with application
personalities; protocol personalities operate with the network.
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Application personalities constitute the adaptation layer between application com-
ponents and middleware through a dedicated API or code generator. They provide APIs
to interface application components with the core middleware; they interact with the
core layer in order to allow the exchange of requests between entities. Application per-
sonalities can either support specifications such as CORBA, the Java Message Service
(JMS), etc. or dedicated API for specific needs.

Protocol personalities handle the mapping of personality-neutral requests (represent-
ing interactions between application entities) onto messages exchanged using a chosen
communication network and protocol. Protocol personalities can instantiate middleware
protocols such as IIOP (for CORBA), SOAP (for Web Services), etc.

The neutral core layer acts as an adaptation layer between application and proto-
col personalities. It manages execution resources and provides the necessary abstrac-
tions to transparently pass requests between protocol and application personalities in
a neutral way. It is completely independent from both application and protocol
personalities.

The neutral core layer enables the selection of any combination of application and/or
protocol personalities. Several personalities can be collocated and cooperate in a given
middleware instance, leading to its “schizophrenic” nature.

3.4 PolyORB, a Schizophrenic Middleware

In [VHPK04], we present PolyORB our implementation of a schizophrenic middleware.
PolyORB a free software middleware supported by AdaCore1, PolyORB’s research
activities are hosted by the ObjectWeb consortium2.

We assessed its suitability as a middleware platform to support general specifications
(CORBA, DDS, Ada Distributed Systems Annex, Web Applications, Ada Messaging
Service close to Sun’s JMS) as well as profiled personalities (RT-CORBA, FT-CORBA)
and as a COTS for industry projects.

In the remainder of this section, we provide a review of the key elements of Po-
lyORB’s architecture, implementation, and its capabilities to address middleware tai-
lorability and verification.

3.5 A Canonical Middleware Architecture

Our experiments show that a reduced set of services can describe various distribution
models. We identify seven steps in the processing of a request, each of which is defined
as one fundamental service. Services are generic components for which a basic imple-
mentation is provided. Alternate implementation may be used to match more precise
semantics. Such an implementation may also come with its behavioural description for
verification purposes. Each middleware instance is one coherent assembling of these en-
tities. The µBroker component coordinates the services : it is responsible for the correct
propagation of the request in the middleware instance. Figure 1 illustrates the coopera-
tion between PolyORB services.

1 http://www.adacore.com
2 http://polyorb.objectweb.org
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Fig. 1. Request propagation in the schizophrenic middleware architecture

First, the client looks up server’s reference using the addressing service (1), a dic-
tionary. Then, it uses the binding factory (2) to establish a connection with the server,
using one communication channels (e.g. sockets, protocol stack).

Request parameters are mapped onto a representation suitable for transmission over
network, using the representation service (3), this is a mathematical mapping that con-
vert a data into a byte stream (e.g. CORBA CDR).

A protocol (4) supports transmissions between the two nodes, through the trans-
port (5) service; it establishes a communication channel between the two nodes. Both
can be reduced to finite-state automata. Then the request is sent through the network
and unmarshalled by the server.

Upon the reception of a request, the middleware instance ensures that a concrete
entity is available to execute the request, using the activation service (6). Finally, the
execution service (7) assigns execution resources to process the request. These services
rely on the factory and resource management patterns.

Hence, services in our middleware architecture are pipes and filters: they compute
a value and pass it to another component. Our experiments with PolyORB showed all
implementations follow the same semantics, they are only adapted to match precise
specifications. They can be reduced to well-known abstractions.

The µBroker handles the coordination of these services: it allocates resources and
ensures the propagation of data through middleware. Besides, it is the only component
that controls the whole middleware: it manipulates critical resources such as tasks and
I/Os or global locks. It holds middleware behavioral properties.

Hence, the schizophrenic middleware architecture provides a comprehensive de-
scription of middleware. This architecture separates a set of generic services dedicated
to request processing from the µBroker.

3.6 µBroker: Core of the Schizophrenic Architecture

The µBroker component is the core of the PolyORB middleware. It is a refinement of
the Broker architectural pattern defined in [BMR+96]. The Broker pattern defines the
architecture of a middleware, describing all elements from protocol stack to request
processing and servant registration.

The µBroker relies on a narrower view of middleware internals: the µBroker coop-
erates with other middleware services to achieve request processing. It interacts with
the addressing and binding services to route the request. It receives incoming requests
from remote nodes through the transport service; activation and execution services en-
sure request completion.
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Fig. 2. Overview of the µBroker

Hence, the µBroker manages resources and coordinates middleware services to en-
able communication between nodes and the processing of incoming requests. Specific
middleware functions are delegated to the seven services we presented in previous sec-
tion. The µBroker is the dispatcher of our middleware architecture.

Several “strategies” have been defined to create and use middleware resources: in
[PSCS01], the authors present different request processing policies implemented in
TAO; the CARISM project [KP04], allows for the dynamic reconfiguration of commu-
nication channels. Accordingly, the µBroker is configurable and provides a clear design
to enable verification. Figure 2 describes the basic elements of the µBroker.

The µBroker Core API handles interactions with other middleware services.
The µBroker Tasking Policy controls task creation in response to specific events

within the middleware, e.g. new connection, incoming requests;
The µBroker Controller manages the state automaton associated to the µBroker. It

grants access to middleware internals (tasks, I/O and queues) and schedules tasks to
process requests or run functions in the µBroker Core. Several policies control it: the
Asynchronous Event Checking policy sets up the polling and data read strategies to re-
trieve events from I/O sources; the Broker Scheduler schedules tasks to process middle-
ware jobs (polling, processing an event on a source or a request). The Request Scheduler
controls the specific scheduling of requests; the Lane_Root controls request queueing;
the Request Scheduler controls thread dispatching to execute requests.

These elements are defined by their interface and a common high-level behavioral
contract. They may have multiple instances, each of which refines their behavior, al-
lowing for fine tuning. We implemented several instances of these policies to support
well-known synchronization patterns.

The schizophrenic middleware architecture proposes one comprehensive view of one
middleware architecture. This architecture is defined around a set of canonical compo-
nents, one per key middleware’s function, and the µBroker component that coordinate
and allocates resources to actually execute them.

This allows for an iterative process to build new distribution feature and support new
models: one can build new services and bind them to the µBroker. These services form
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Fig. 3. Designing new personalities

the root of the distribution feature, exported to the user through dedicated API or code
generator. We detail the later in the next section.

3.7 A Methodology to Design New Personalities

A methodological guide details the different steps to instantiate PolyORB (figure 3)
from a specific set of application requirements and the implied distribution model (step
1). It is intended to give the user the proper knowledge to tailor PolyORB. There are
several ways to adapt PolyORB to the application requirements (step 2):

– Use an existing personality. PolyORB already comes with CORBA, RT-CORBA,
DSA, MOMA (Ada-like JMS), DDS and the existing configuration parameters;

– Design a new personality: design or refine some of the fundamental components,
by re-using fundamental components already developed from existing personalities
or from the neutral core; overloading them or designing new variant of fundamental
components from scratch.

Note that when a new personality is designed, we get back to the generic ar-
chitecture (step 3) to decide whether the new features would be useful for other
personalities. In this case, there are two possible policies:

– This feature has a simple and generic enough implementation that can be reused by
other personalities, then the feature is integrated in the pool of neutral core layer
components, e.g. concurrency policies, low-level transport;

– This feature is intrinsically specific to a personality, the implementation enhance-
ment is kept at the level of the protocol or application personalities, e.g. GIOP
message management, DDS specific API.

Finally the user derives one assembly of components: the fine-tuned middleware
adapted to its initial needs (step 4).

This procedure may also be repeated to adapt more precisely components, allowing
for evolving design of some core elements without impeding the whole assembly.

In this section, we have defined the middleware architecture and associated method-
ology used to implement middleware. We enforce a strong separation of concerns
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Fig. 4. Steps of the µBroker modeling

between the different functions involved in the middleware and we combine them to
form the required implementation. Such a process proved its efficiency when imple-
menting DDS on top of PolyORB [HKP06].

3.8 Formal Verification

In this section, we discuss the formal techniques used to model the µBroker, and then
verify some of its expected properties using model-checking.

Modeling one middleware configuration. We propose to use formal methods to model
and then verify our system. We selected Well-formed colored Petri nets [CDFH91] as
an input language for model checking. They are high-level Petri nets, in which tokens
are typed data holders. This allows for a concise and parametric definition of a system,
while preserving its semantics. Using these methods, we can now model our architecture
using Petri nets as a language for system modeling and verification (figure 4).

Step 1: we build one Petri net for each middleware components variation. Petri net
transitions represent atomic actions; Petri net places are either middleware states or
resources. Common places between different modules define interactions between Petri
nets modules, they act as channel places [Sou89].

Step 2: for one configuration of the µBroker, some Petri net modules are selected
to produce the complete model. Communications places (outlined in black) represent
links to other µBroker functions or to middleware services.

Step 3: the selected modules are merged to produce a global model, it represents one
middleware configuration. This model and one initial marking enable the verification
of the middleware properties.

Then, middleware functions can be separately verified and then combined to form
the complete Petri net model. Many models can be assembled from a common library
of models. Thus, we can test for specific conditions (policies and settings).

The initial marking of the Petri Net defines available resources (e.g. threads, I/Os);
or sets up internal counters. Its state space covers all possible interleaving of atomic
actions; thus all possible execution orders are tested.

µBroker configurations and models. In this section, we review the key parameters
that characterize the µBroker, and some of the properties one might expect from such a
component.
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The µBroker is defined by the set of policies and the resources it uses. These settings
are common to a large class of applications. We consider one middleware instance,
in server mode, that processes all incoming requests. We study two configurations of
the µBroker: Mono-Tasking (one main environment task) and Multi-Tasking (multiple
tasks, using the Leader/Followers policy described in [PSCS01]). The latter allows for
parallel request processing.

We assume that middleware resources are pre-allocated: we consider a static pool of
threads; a bounded number of I/O sources and one pre-allocated memory pool to store
requests. This hypothesis is acceptable: it corresponds to typical engineering practices
in the context of critical systems. Our implementations and the corresponding models
are controlled by three parameters:

Smax is the upper bound of I/O Sources listening for incoming data;
Tmax is the number of Threads available within the middleware;
Bsize is the size of the Buffer allocated to read data from I/O sources.
Smax and Tmax define a workload profile for the middleware node, Bsize defines con-

straints on the memory allocated by the µBroker to process requests. These parameters
control middleware throughput and execution correctness.

We list three essential properties of our component. They represent basic key prop-
erties our component must verify to fulfill its role.

P1, no deadlock the system process all incoming requests;
P2, consistency there is no buffer overflow;
P3, fairness every event on a source is detected and processed.
P1, P3 are difficult to verify only through the execution of some test cases: one has

to examine all possible execution orders. This may not be affordable or even possible
due to threads and requests interleaving. Besides, the adequate dimensioning of static
resources to ensure consistency (P2) is a strong requirement for DRE systems, yet it is
a hard problem for open systems such as middleware. Thus, we propose to verify them
for some configuration of the µBroker: each property is expressed as a LTL formula,
then verified by model-checker tools.

Achieving formal analysis. One known limit to the use of Petri Nets as model checker
is the combinatorial explosion when exploring the system’s state space.

We tackle this issue using recent works carried out at the LIP6. By detecting of
the symmetries of a system [TMDM03], and exploiting the symmetries allowed by a
property [BHI04]. In most favorable cases, these methods require exponentially smaller
memory space than traditional method based on full enumeration, and thus more
amenable to computations within reasonable delays.

Thus, we claim that the analysis of PolyORB could not have been performed without
the use of model checking because of the large number of states. As an illustration,
even for common middleware configurations (up to 17 threads) the system presents
over 6.56 × 1017 states, but we could compute and evaluate its properties on the model
using advanced tools.

This verification experience is a proof of feasibility. New tools are a prerequisite to
ease the structuring, and production of a formal specification of a middleware dedicated
to application requirements. Such a specification would enable both the verification and
the code generation the corresponding implementation.
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In the following, we illustrate how an architecture definition language such as the
AADL enables us to define such a process and support tools.

4 A Process to Build Tailorable and Verifiable Middleware

The schizophrenic architecture allows for a fine tailoring of the middleware. It also per-
mits formal verification on a given middleware instance. In order to help the configura-
tion of the middleware, we need a way to capture the application needs and then build
the corresponding middleware. In this section we explain our methodology to design
and build a distributed application with its particular middleware, using the AADL.

4.1 Overview of the AADL

A few ADLs explicitly deal with real-time systems. Examples are ROOM [RSRS99]
and AADL [Lew03]. An AADL model can incorporate non-architectural elements:
embedded real-time characteristics of the components (execution time, memory foot-
print. . . ), behavioral descriptions, etc. Hence it is possible to use AADL as a backbone
to describe all the aspects of a system.

“AADL” stands for Architecture Analysis & Design Language. It aims at describing
DRE systems [FLV00] by assembling blocks separately developed. In this section we
describe the AADL and show how it can be used to describe application components.

The AADL [SAE04b] allows for the description of both software and hardware parts
of a system. It focuses on the definition of clear block interfaces, and separates the im-
plementations from these interfaces. It can be expressed using graphical and textual syn-
taxes; an XML representations is also defined to ease the interoperability between tools.

An AADL description is made of components. The AADL standard defines software
components (data, threads, thread groups, subprograms, processes), execution platform
components (memory, buses, processors, devices) and hybrid components (systems).
Components model well identified elements of the actual architecture. Subprograms
model procedures like in C or Ada. Threads model the active part of an application
(such as POSIX threads). Processes are memory spaces that contain the threads. Thread
groups are used to create a hierarchy among threads. Processors model micro-processors
and a minimal operating system (mainly a scheduler). Memories model hard disks,
RAMs, etc. Buses model all kinds of networks, wires, etc. Devices model sensors, etc.
Unlike other components, systems do not represent anything concrete; they actually
create building blocks to help structure the description.

Component declarations have to be instantiated into subcomponents of other com-
ponents in order to model an architecture. At the top-level, a system contains all the
component instances. Most components can have subcomponents, so that an AADL
description is hierarchical. A complete AADL description must provide a top-level sys-
tem that will contain the other components, thus providing the root of the architecture
tree. The architecture in itself is the instantiation of this system.

The interface of a component is called component type. It provides features (e.g.
communication ports). Components communicate one with another by connecting their
features. To a given component type correspond zero or several implementations. Each
of them describe the internals of the components: subcomponents, connections between
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those subcomponents, etc. An implementation of a thread or a subprogram can specify
call sequences to other subprograms, thus describing the execution flows in the archi-
tecture. Since there can be different implementations of a given component type, it is
possible to select the actual components to put into the architecture, without having
to change the other components, thus providing a convenient approach to configure
applications.

The AADL defines the notion of properties that can be attached to most elements
(components, connections, features, etc.). Properties are attributes used to specify con-
straints or characteristics that apply to the elements of the architecture: clock frequency
of a processor, execution time of a thread, bandwidth of a bus, etc. Some standard prop-
erties are defined; but it is possible to define one’s own properties.

Refining Architectures. The AADL syntax allows for great flexibility in the precision
of the descriptions. In the listing 1.1, we describe a process that receives messages
(modeled by an event data port). Such a description is very vague, since we do not
give any details about the actual structure of the process (e.g. how many threads?). Yet
it is perfectly correct regarding the AADL syntax, and provides a first outline of the
architecture specification.

1 data message
2 end message;
3

4 process receiver_process
5 features
6 msg : in event data port message;
7 end receiver_process;

Listing 1.1. Simple example of an AADL description

We can refine the architecture by providing an implementation of the process. Here
we choose a very simple implementation, with one single thread that calls the user ap-
plication (listing 1.2). We use an AADL standard property to indicate that the thread is
dispatched aperiodically. The thread is to be executed upon the reception of a message.

We could also define other implementations, with several threads to process the in-
coming messages or perform other tasks. This facilitates the refinement of a given ar-
chitecture: We can start by defining the outline of the architecture (listing 1.1), and then
create implementations of the components (listing 1.2).

9 process implementation receiver_process.implem
10 subcomponents
11 thr1 : thread receiver_thread.implem;
12 connections
13 connect1 : event data port msg -> thr1.msg;
14 end receiver_process.implem;
15

16 thread receiver_thread
17 features
18 msg : in event data port message;
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19 properties
20 dispatch_protocol => aperiodic;
21 end receiver_thread;
22

23 thread implementation receiver_thread.implem
24 calls
25 {user_app : subprogram application};
26 connections
27 parameter msg -> user_app.msg;
28 end receiver_thread.implem;
29

30 subprogram application
31 features
32 msg : in parameter message;
33 end application;

Listing 1.2. Implementation of the process

Our model is partial and does not include any hardware component: we do not spec-
ify on what processor the process is running, etc. Such information should be provided
when designing the complete architecture: the processes that send messages, the pro-
cessors, associated memories and potential buses if there are several processors. The
model is precise enough for the scope of this paper, though. In the following sections,
we focus on the receiver thread.

4.2 Overview of the Methodology

Given its ability to describe both software and hardware components, the AADL per-
fectly fits our needs. We can use it to completely describe distributed architectures and
capture all the necessary parameters. In addition, it has the ability to support a step-
by-step design process based on the refinement of architecture. Thus it allows for a
progressive approach in the architecture modeling.

The figure 5 illustrates our approach to design the middleware. We use the AADL to
describe the application. From the application description, we can deduce the required

AADL 
description

expanded AADL 
description

actual source code or 
formal description

behavioral 
descriptions

AADL 
expansion

application 
generation

Fig. 5. Application generation based on the AADL
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parameters for the middleware (scheduling policy, data types, etc.) and extract an ade-
quate configuration; it is then possible to create an AADL description of the underlying
middleware. We can then generate formal description from the AADL model and per-
form model checking. Once verifications have been performed, we can generate the
code for the application and the middleware.

4.3 Modeling the Middleware Architecture Using the AADL

The schizophrenic architecture provides a clear structure to create tailorable middle-
ware. A notation such as the AADL syntax can be used to describe a schizophrenic
middleware instance, in order to rapidly configure and deploy a tailored middleware
that meets the application requirements.

Architectural description of the middleware components. Middleware is the lower
part of an application; it can be viewed as a software component (or a set of soft-
ware components) on which the user application relies. Given its modular structure, the
schizophrenic architecture shall be modeled by a set of AADL software components.

Overall design. Middleware is a part of the application. Hence a middleware architec-
ture shall be described using software components: a set of subprograms called by one
or more threads (depending on the middleware configuration); data components model
the data structures exchanged between the subprograms.

The subprograms should be organized so that they reflect the seven canonical ser-
vices and the µBroker of the schizophrenic architecture.

Subprograms cannot be subcomponents of a system, since they do not model “au-
tonomous” components. Hence the schizophrenic architecture cannot be represented
as a set of systems. Consequently, the description is to be organized as a collection
of packages containing subprograms and data; the packages should reflect the logical
organization of the architecture.

Basically, the model should then have seven packages containing the subprograms as-
sociated with the seven basic services; the components of the µBroker, which constitutes
the middleware “heart”, should also be materialized as a package. Finally, the different
subprograms and data modeling the personalities should be defined into separate pack-
ages. Other “tools”, such as socket managers, could be defined into separate packages.

Each service can actually be modeled as a few main subprograms that are called
from other parts of the architecture. Such subprograms shall be placed into the public
sections of the packages, while more internal subprograms shall be defined into the
private part.

Middleware configuration. The middleware configuration is either given by its archi-
tectural description, or by some properties associated to the components.

The personalities to use for a given configuration are materialized by the actual pack-
ages and components used to describe the architecture. The actual number of threads to
use is set by describing them in the architecture.

Some configuration elements such as the tasking policy deal with the behavioral
description of the system, not its architecture; yet it is possible to specify them within
the µBroker, using user-defined properties.
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The configuration of some services can be specified by providing a particular com-
ponent implementation. For example, the activation service can either be a mere list as-
sociating references to procedures, or or more evolved mechanism with priorities, like
CORBA’s POA. Those two possibilities correspond to two different implementations of
the same subprogram type.

4.4 Using AADL to Verify the Middleware

We now explain how to convert the AADL description into a Petri net and in source
code; we show how to integrate existing behavioral descriptions associated with AADL
components into the generated Petri net.

Using the AADL to support the construction of verifiable systems. The AADL in
itself only focuses on the description of the system architectures. Hence, unlike the
UML, it does not aim at providing a complete and integrated set of syntaxes to describe
all aspects of a model. Instead, the AADL facilitates the integration of other description
paradigms within the architectural description, the latter one providing containers for
the former ones. This allows for the reuse of “legacy” paradigms instead of imposing a
specific syntax.

The integration of third-party languages within the AADL is done through properties
or annexes. We privilege the use of AADL properties since it facilitates the use of a
repository of behavioral descriptions that can be referenced by the AADL components.
This allows for a clear separation between the architectural and behavioral descriptions.

Mappings must be defined in order to describe how to merge behavioral description
into the AADL elements. The AADL standard defines mappings for Ada and C lan-
guages [SAE04a]. Translations have also been defined between the AADL error model
and Petri nets [RKK06], thus allowing the use of existing verification and dependability
evaluation tools.

Our approach focuses on the integration of behavioral descriptions within AADL ar-
chitectures. Thus, behavioral implementations are controlled by the runtime built from
AADL descriptions, which helps ensure the consistency between AADL model and re-
sulting application. The figure 6 illustrates the principles of our mappings: behavioral

AADL runtime

behavioral 
description

behavioral 
description

behavioral 
description

Fig. 6. Principle of an architecture-driven mapping for the AADL
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descriptions (in white) are encapsulated by a runtime generated from the AADL de-
scription (in grey). We now give an overview of a mapping from AADL constructions
to Petri nets and Ada.

Mapping AADL constructions to Petri Nets and source code. We aim at using the
AADL to coordinate formal verification and code generation. To do so, we defined rules
to produce a Petri net or Ada code from AADL descriptions. Using these mappings we
can generate a complete Petri net from the assembly of AADL components, each of
them characterized by its own Petri net (such the nets described in section 3.8); once
we ensure the architectural constructions are valid, we can generate the correspond-
ing source code. This allows to perform verification on the whole system before code
generation.

The AADL elements to map into Petri nets are the software components. Indeed, ex-
ecution platform components are used to model the deployment of the software compo-
nents; such deployment information is not to in the scope of Petri nets. AADL threads
and AADL subprograms are the most important components, since they describe the
actual execution flows in the architecture. AADL processes and systems are actually
boxes containing threads or other components, and do not provide any “active” seman-
tics; data components are not active components either.

The mapping for source code takes the same components into account. However,
some components, such as AADL threads and processes, represent the AADL runtime.
Thus they do not exactly correspond to code generation; the configuration of the AADL
runtime is set from the information provided by these components. The table 1 lists the
main rules of the mappings.

The Petri net mapping mainly consists of translating the AADL execution flows.
Components that do not have any subcomponents nor call sequences are modeled by a
transition that consumes inputs and produces outputs. Component features are modeled
by places.

We model a place per feature. This systematic approach help the user identify the trans-
lation between AADL models and corresponding Petri nets. In addition, it facilitates the
expansions of the feature places. For example, we might want to describe the queue pro-
tocols defined by the AADL properties: in this case we would replace each place by Petri
nets modeling FIFOs or whatever type of queue is specified by the AADL properties.

Connections between features are modeled by transitions. We distinguish connec-
tions between subprograms parameters and between other component ports.

Tokens stored in input features are to be consumed by component or connection
transitions; tokens produced by component or connection transitions are stored in output
features. Components that have subcomponents are modeled by merging the component
transition with the subcomponent nets.

If an AADL port is connected to several other ports at a time, the Petri net transition
shall be connected to all the corresponding places: a token will be sent to each target place,
thus modeling the fact that each destination port receives the output of the initial port.

Call sequences are made of subprograms that are connected. We use an extra token
to model the execution control. There is a single execution control token in each thread
or subprogram, thus reflecting the fact that there is no concurrency in call sequences,
and in threads and subprograms in general.
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Table 1. Main patterns of the mapping between the AADL Petri nets and source code

AADL corresponding Petri net corresponding Ada code
data data_type
end data_type ;

not translated in Petri nets type data_type is null record;

subprogram a_subprogram
features

input_1 : in parameter;
input_2 : in parameter;
output : out parameter;

end a_subprogram;

component_operation

input_1control_entry

control_exit output

input_2

procedure a_subprogram
( input_1 : in data_type ;
input_2 : in data_type ;
output : out data type)

is
begin

null ;
end;

process a_process
features

input_1 : in data port data_type ;
input_2 : in data port data_type ;
output : out data port data_type ;

end a_process ;

component_operation

input_1

output

input_2

correspond to a middleware instance

connection :
data port output −> input;

<v>

<v>

input

output

connection handled by the middleware

connection :
connect : parameter output −> input;

<v>
<v2>

output_var

1

<c,v>

<c,v>

<c,v>

subprogram

input

output

connection

−− procedure subprogram_a (output: out data_type );
−− procedure subprogram_b (input: in data_type);
subprogram_a (connect );
subprogram_b (connect );

It is important to note that this mapping only provides a solution to transform AADL
construction into Petri nets. Therefore it cannot produce accurate description of the
behaviors of the components, since it is out of the scope of the AADL. Proper behavioral
description is achieved by inserting existing Petri nets into the framework generated
from the AADL description. It consists of merging the descriptions of the components
and the net generated, thus merging the transitions and places of the AADL threads
and subprograms with the ones contained in the behavioral Petri net. The Petri net
descriptions that corresponds to the behaviors of the AADL components should be set
using AADL properties.

Defining a mapping between AADL constructions and Petri nets allows to perform ver-
ification on the structure of the architecture. Yet, it is mandatory to ensure the actual source
code of the system will conform to the Petri net. This implies that the mapping between
AADL and programming languages must be consistent with the Petri net mapping.

To ensure this consistency, the mapping we provide for source code relies on the
same principles as for Petri nets [VZ06]. We only only give a very brief and incomplete
overview of it in table 1. The source code mapping is basically a translation between the
AADL subprogram constructions and Ada. Using both mappings in conjunction ensure
that the Petri net used for the model checking of the AADL architecture effectively
reflects the actual source code implementation of the architecture.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



A Factory to Design and Build Tailorable and Verifiable Middleware 139

4.5 Using AADL to Generate the Middleware

We showed how the AADL and the definition of mappings from AADL to formal no-
tations allow us to define a prototyping-based process of DRE system conception.

The initial AADL description can then be refined, according to the feedback pro-
vided by the model checking performed on the Petri nets. Once the behavior has been
validated, we can generate the corresponding source code and then perform tests on the
actual system. The AADL architecture can again be refined, according to the results of
the tests.

In order to validate our approach, we created a complete AADL tool suite, Oca-
rina [VZ06], which can be used as a compiler for the AADL. As a support tool for
verifying AADL model, Ocarina can take AADL descriptions as input and perform
various operations, such as the expansion of architectural descriptions or the genera-
tion of Petri net description as well as compilable source code. It can also be integrated
within other applications to provide AADL functionalities.

The code generator of Ocarina can produce Petri net models described in PetriScript
[HR]. PetriScript is a text language that facilitates the description of Petri nets and
allows to automate building operations, such as fusion of places or transitions, etc.

Ocarina can generate Ada source code that can be run by an instance of PolyORB. It
also generates a tailored application personality and configures PolyORB to embed all
the required features. We use PolyORB as an AADL runtime and allows one to build
distributed applications defined as an AADL model.

Hence, Ocarina helps us to support the generation of tailored middleware, as illus-
trated on figure 5: from the AADL description of a distributed application, we can infer
the description of the middleware instances for each application node, and then produce
the corresponding Petri net and source code.

5 Conclusions and Perspectives

Although middleware is now a well-established technology that eases the development
of distributed applications, many challenges remain opened. We noted that two key
issues are the tailorability of the middleware to versatile application requirements, and
the capability of the middleware to provide full proofs of its properties. In this paper,
we provided an overview of our ongoing research work on these two aspects.

We first noted that middleware architecture impedes tailorability and verification.
Therefore, we proposed and validated the “schizophrenic” middleware architecture.
This architecture is a high-level model of middleware that gathers key concepts in mid-
dleware, addressing the definition of the key functions and the way to combine them.

Its genericity allows one to derive specific distribution models. PolyORB, our imple-
mentation demonstrates how this architecture can help designer to easily build middle-
ware. This middleware is now used as a COTS in industrial projects, providing support
for CORBA, DDS and still providing a high level of tailorability.

A methodological guide exists to help this adaptation work. Our measures show that
the performance of the adapted middleware are close to existing middleware. Besides,
the adaptation work is greatly reduced by the high-level of code reuse.
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Finally, the schizophrenic architecture allows formal verification techniques. We il-
lustrated how Petri nets allowed us to provide the first formal proofs of the behavioral
properties of our COTS middleware. We consider that The middleware is not a blackbox
that should be discarded from the verification process.

However, this remains a complex task that belongs to middleware or verification
expert domains. Then, we noted that tools are required to conduct these two important
steps in building tailored middleware.

We chose the AADL as a backbone language to help the user specify its applica-
tion requirements. Dedicated tools are applied to the model to 1/ verify it is correct,
2/ generate the corresponding code and configuration of the support middleware. This
provides a first step towards the definition of a “middleware factory” that would enable
application designers to instantiate the middleware they actually need. This would re-
duce complexity in the design of distributed applications by removing the complexity
in configuring and using middleware APIs.

Future work will complete and evaluate the benefits of such middleware factory as a
supporting process to build specific middleware configuration for DRE systems.
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Abstract. The prevailing paradigm in the regime of resource-constrained
embedded devices is event-driven programming. It offers a lightweight yet
powerful concurrency model without multiple stacks resulting in reduced
memory usage compared to multi-threading. However, event-driven pro-
grams need to be implemented as explicit state machines, often with no
or limited support from the development tools, resulting in ad-hoc and
unstructured code that is error-prone and hard to debug. This paper
presents TinyVT, an extension of the nesC language that provides a vir-
tual threading abstraction on top of the event-driven execution model
of TinyOS with minimal penalty in memory usage. TinyVT employs
a simple continuation mechanism to permit blocking wait, thus allow-
ing split-phase operations within C control structures without relying on
multiple stacks. Furthermore, it provides fine-grained scoping of variables
shared between event handlers resulting in safer code and allowing for
optimizations in compile-time memory allocation. TinyVT source code
is mapped to nesC with a source-to-source translator, using synchronous
communicating state machines as an intermediate representation.

1 Introduction

Most programming environments for wireless sensor nodes are based on one of
the two dominating programming abstractions for networked embedded systems:
event-driven or multi-threaded programming. In the event-driven paradigm, pro-
grams consist of a set of actions that are triggered by events from the environ-
ment or from other software components. Actions are implemented as event
handlers: functions that perform a computation and then return to the caller.
Event handlers run to completion without blocking, hence, they are never in-
terrupted by other event handlers. This eliminates the need for locking, since
event handlers are atomic with respect to each other. Furthermore, because of
run-to-completion semantics, all event handlers can use a single shared stack.

In the multithreaded approach, execution units are separate threads with
independent, linear control flow. Threads can block, yielding control to other
threads that execute concurrently. Since the execution of threads is interleaved,
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data structures that are accessed by multiple threads may need locking. Each
thread has its own stack and administrative data structures (thread state, stack
pointer, etc.) resulting in memory usage overhead which may become prohibitive
in resource-constrained systems.

Although the two abstractions were shown to be duals [1], there has been
a lot of discussion about the advantages and drawbacks of both approaches in
the literature [2][3][4]. Multithreading, especially preemptive multithreading, is
commonly criticized for the nondeterministic interleaved execution of concep-
tually concurrent threads [5]. Various locking techniques are used to reduce (or
eliminate) nondeterminism from multithreaded programs. Unfortunately, identi-
fying critical sections, as well as choosing the appropriate lock implementations
for the critical sections are error prone tasks. Suboptimal locking may lead to
performance degradation, while omitting locks or using the wrong kind of locks
result in bugs that are notoriously hard to find.

The most compelling advantage of multithreading is that the thread ab-
straction offers a natural way to express sequential program execution. Since
threads can be suspended and resumed, blocking calls are supported: when a
long-running operation is invoked, the thread is suspended until the operation
completes and the results are available. The event-driven approach, in contrast,
does not have this feature. Consequently, sequential execution involving multi-
ple event handler invocation contexts is hard to express, and the corresponding
event-driven code is hard to read.

The sensor network community is slightly biased toward the event-driven
paradigm. The reason behind this tendency is twofold. First, the event-driven
model reflects intrinsic properties of the domain: sensor nodes are driven by in-
teraction with the environment in the sense that they react to changes in the
environment, rather than being interactive or batch oriented. Second, the limited
physical memory inhibits the use of per thread stacks, thus limiting the applica-
bility of the multi-threaded approach. It is important to note here that Moore’s
law has an unorthodox interpretation here: it is applied toward reduced size
and cost, rather than increase in capability, therefore, the amount of available
physical resources is not expected to change as the technology advances.

The event-driven paradigm, nevertheless, has its caveats [2]. Real-time re-
sponse to interrupts is not possible in traditional event-driven systems, since
events cannot be preempted, thus interrupts must be stored and executed later.
Relaxing this requirement would violate the atomicity of events, and could in-
troduce race conditions necessitating locking. Events are required to complete
quickly, because long-running computations can deteriorate the responsiveness
of the system. To avoid this, complex CPU-intensive operations have to be split
up into multiple event handlers. This constraint, however, hinders the portability
of code that is not written in this event-aware style.

We have identified three issues that can have significant implications on the
reliability and maintainability of event-driven code. First of all, unlike the thread
abstraction, the event-driven paradigm does not offer linear control flow. The
program execution is split up into actions that are executed in response to events.
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It is often required, however, that an event triggers different actions depending
on the program state. Traditional programming languages do not support dis-
patching different actions depending on both event type and program state. To
tackle this issue, programs have to be implemented as state machines. Without
explicit language support, these state machines are implemented in an unstruc-
tured, ad-hoc manner. As a result, the program code is often incomprehensible,
error-prone and hard to debug. Second, sharing information between actions also
lacks language support, and hence, programmers tend to use global variables,
which is also error-prone and often suboptimal with respect to static memory
usage. Third, since the event-driven paradigm does not allow blocking wait, com-
plex operations must be implemented in a split-phase style: an operation request
is a function that typically returns immediately, and the completion is signaled
via a callback. This separation of request and completion, however, renders the
use of split-phase operations impossible from within C control structures (such
as if, while, etc.).

To address the above limitations, this paper introduces TinyVT, an extension
of the nesC [6] language that provides a thread-like programming abstraction
on top of the execution model of TinyOS [7]. The novelty of this approach
is that threading is ”compiled away:” programs that are expressed in a linear,
thread-like fashion are compiled into event-driven nesC code. TinyVT has several
important features that increase the expressiveness of the code and help improve
the reliability of TinyOS components and applications:
Threads. The thread abstraction allows programs to be written in a linear
fashion without sequencing event handler executions via explicit state machines.
TinyVT threads are static in the sense that they are defined compile-time and
they cannot be dynamically spawned. TinyVT threads are non-reentrant and
stackless, thus very lightweight: only one byte is required to store the current
state of the thread.
Blocking Wait. TinyVT employs a simple continuation mechanism, allowing
threads to block on events. Blocking is also allowed within C control structures.
Blocking on an event yields control to other threads or to the TinyOS scheduler,
therefore, the execution of multiple concurrent threads is interleaved. Note that
TinyVT does not require any scheduler other than the standard one provided
by TinyOS.
Automatic Variable Allocation. TinyVT offers C-style scoping and auto-
matic allocation of variables local to a thread, eliminating the need for global
variables for information sharing between related actions. TinyVT does not re-
quire per thread stacks: local variables within a scope that includes at least
one yield point (i.e. blocking wait) are statically allocated, while automatic local
variables that are not shared between event handlers are allocated on the (single,
shared) stack. To optimize memory usage, statically allocated shared variables
use the same memory area if their lifetimes do not overlap.
Synergy with NesC. Since TinyVT is an extension of the nesC language,
mixing nesC code and threading code is allowed. The TinyVT compiler, a
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source-to-source translator that maps TinyVT code to the nesC language, only
processes the threading code within the modules, leaving any event-based nesC
code unmodified. The generated code is subject to static analysis (data-race
detection) and optimization by the nesC compiler.
Static Program Analysis. TinyVT code, due to the static nature of the lan-
guage, lends itself to program analysis. The TinyVT compiler decomposes the
threading code into communicating finite state machines. This FSM-style decom-
position allows for static checking of safety properties, such as deadlock-freeness.
Run-Time Safety. Depending on the program state, some input events may
not always be enabled. While nesC does not explicitly offer language support to
manage component state, TinyVT does address this issue: the TinyVT compiler
knows which events are enabled at a given point of program execution. If an
unexpected event occurs, an exception handler is invoked. If no exception handler
is specified, the execution of the program is halted to avoid nondeterministic
behavior.

The rest of the paper is structured as follows. Section 2 provides a brief
overview of TinyOS and nesC, introducing the terminology used in subsequent
sections and setting the context for the rest of the paper. Then, we present the
motivation of our work showing that the inherent complexity of event-driven
software is difficult to manage. In section 4 we introduce the syntax of TinyVT
and demonstrate the expressiveness of the threading abstraction through an
example. Section 5 discusses how threading code is mapped to the event-based
execution model of TinyOS. Since there is a large semantic gap between the
levels of abstraction, the mapping is implemented in two phases. We describe
an intermediate representation of component-based event-driven programs using
synchronous communicating state machines as a vehicle, and explain how it maps
to nesC. Then, we describe the challenges of translating threading code to the
intermediate representation. Finally, we discuss the advantages, as well as the
limitations of our approach, comparing it to related work in the field of sensor
network operating systems.

2 TinyOS and the NesC Language

This section describes TinyOS [7], a representative event-driven operating sys-
tem for networked embedded systems, and its implementation language, nesC
[6]. NesC and TinyOS have been adopted by many research groups worldwide.
TinyOS has been ported to a dozen hardware platforms, and a rich collection
of software components is available. TinyOS and nesC provide low-level access
to hardware, a flexible, event-based concurrency model, and a component-based
architecture promoting modularization and reuse.

2.1 Concurrency Model

Though TinyOS is and event-based operating system, its concurrency model dif-
fers from that of the traditional event-driven paradigm. Based on the observation
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that data processing and event arrival from the environment are intrinsically
concurrent activities in sensor nodes, TinyOS models concurrency with tasks
and events. A task represents deferred computation that runs to completion
without being interrupted by other tasks. Events represent interrupt contexts:
they can preempt tasks as well as other events. Tasks are scheduled by a FIFO
scheduler. Posting tasks is allowed from both task and event contexts.

Obviously, the two levels of parallelism in TinyOS may result in race con-
ditions, and thus, variables that are accessed from interrupt context may need
locking. However, the static nature of the nesC language (i.e. no function point-
ers or dynamic memory allocation is allowed) allows for compile-time data-race
detection providing an adequate solution to this issue.

2.2 Component-Oriented Architecture

TinyOS provides a set of reusable system components, with well-defined, bidi-
rectional interfaces. Common OS services are factored out into software compo-
nents, which allows applications to include only those services that are needed
In fact, the core OS requires just a few hundred bytes of RAM. There are two
kinds of components in nesC: modules and configurations. Modules contain exe-
cutable code, while configurations define composition by specifying encapsulated
components and static bindings between them. A nesC application is defined as
a top-level configuration.

Bidirectional interfaces provide a means to define a set of related (possi-
bly split-phase) operations. Interfaces declare commands and events, both of
which are essentially function declarations. A component providing an interface
must provide the implementations of the interface’s commands, and may signal
events through the interface. A component that uses an interface can call the
commands, and must implement callback functions for the events.

3 Managing the Complexity in Event-Driven Software
Development

To demonstrate the inherent complexity of event-oriented programming, we
present two examples. The first example, a packet-level I2C driver, shows that
managing control flow manually can be challenging, even in simple applications.
The second example, a matrix multiplication, suggests that it is nontrivial to
port code that implements a long-running computation, such as encryption key
generation or data compression, to an event-driven platform.

3.1 Example: I2C Packet Level Interface

Let us consider the implementation of a packet-level interface for the I2C bus that
operates above the byte-oriented hardware interface. The corresponding module
should provide split-phase operations to write a packet to, and to read a packet
from the bus. We only present packet sending; reading a packet works analogously.
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The hardware interface provides the following operations. Starting of the send
operation is requested with the sendStart command, to which the hardware
responds with a sendStartDone event. Sending a byte is also implemented in a
split-phase style: the hardware signals the completion of the write command with
a writeDone event. After all the bytes are written, the bus has to be relinquished
with a sendEnd command, the completion of which is acknowledged with the
sendEndDone event.

The following pseudocode describes the procedure that writes a variable-
length packet to the bus, using the byte-oriented hardware interface:

Algorithm 1. Pseudocode of the writePacket command in a packet-level I2C
interface
1: procedure I2CPacket.writePacket(length, data)
2: call I2C.sendStart
3: wait for I2C.sendStartDone
4: for index = 0 to length do
5: call I2C.write(data[index])
6: wait for I2C.writeDone
7: index = index + 1
8: end for
9: call I2C.sendEnd

10: wait for I2C.sendEndDone
11: signal writePacketDone
12: end procedure

Expressing this behavior in a linear fashion, however, is not possible in an
event-driven system. The code must be broken up into a writePacket command
and three event handlers, and the control flow must be managed manually. Vari-
ables that are accessed from more than one event handlers (length, data, and
index) must be global and statically allocated. Typically, manual control flow
is implemented with a state machine: a global static variable stores the compo-
nent state, while the transitions of the state machine are coded into the event
handlers. Commonly, only a restricted subset of input events is allowed at a
given point of execution. Because of this, actions in the event handlers must be
protected against improper invocation patterns (e.g. writePacket can only be
called again after the previous packet sending is finished).

Manual management of control flow can become particularly tedious and
error-prone as the complexity of the task increases. Breaking up the code into
event handlers inhibit the use of loops and conditionals with blocking wait. As
a result, even a simple control flow that can be expressed linearly with a few
nested loops, may result in very complex state machines. Moreover, the resulting
event-driven code will most probably be suboptimal, unclear, hard to debug, and
often incorrect.

Efficient allocation of variables that are shared between multiple event han-
dlers is also a challenging task in the presence of resource constraints. Notice that
variables associated with sending a packet, and variables used when reading a
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packet might never be used at the same time. In a thread-oriented programming
model, such variables are created on the local stack, and destroyed when they
go out of scope. A similar, manual stack management approach appears in some
event-driven components: variables with non-overlapping lifetime can be placed
into a union allocated in static memory, thus the component consumes no more
static memory than the memory required by the maximal set of concurrently
used variables. However, such optimizations can be extremely tedious when the
component logic is complex.

3.2 Example: Matrix Multiplication

Long-running computations may deteriorate the responsiveness of event-driven
systems, since events are atomic with respect to each other and cannot be
preempted.

This problem also manifests itself in cooperative multi-threading, however,
such systems commonly provide a yield operation, by which the running com-
putation may relinquish control and let other threads execute. This, however, is
not possible in an event-driven programming paradigm.

Consider the multiplication of two fairly large matrices, a computation that
is prohibitive in an event-driven system that has to handle various other events
(e.g. message routing) concurrently. The most straightforward solution to this
problem is to break up the outermost loop of the matrix multiplication algorithm,
and to manage the control flow with a state machine emulating the loop.

This workaround, although typically tedious, will always work. However, this
has serious implications: since it is cumbersome to emulate yield in event-driven
systems, existing code which is not structured in an event-aware fashion can be
extremely complex to port. This applies to computationally intensive algorithms,
such as encryption key generation or data compression.

4 The TinyVT Language

In this section we overview the syntax and operational semantics of TinyVT,
and through an example, we illustrate how TinyVT simplifies the development
of event-driven applications.

4.1 Language Constructs

TinyVT extends the nesC language with two basic construct: threads and
blocking await statements. Threads describe sequential blocks of computation
with independent, linear control flow. The execution of concurrent threads is in-
terleaved. A thread may pass control to another thread by signaling an event on
which the other thread blocks, or, in TinyVT terminology, upon which the other
thread awaits. Blocking wait can be expressed with the await statement. The
await statement specifies one or more events, with the corresponding event han-
dling code inlined, on which the thread blocks. Await has OR semantics: if the
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thread blocks on multiple events, the occurrence of any one of them resumes the
execution of the thread. Thread execution continues with the execution of the
body of the event handler of the triggering event, and the thread keeps running
the code following the event handler till the next blocking statement is reached.

Event handlers cannot contain blocking code. The body of the event handler
must be a valid nesC compound statement (i.e. function body), with the ex-
ception that either dreturn or ireturn should be used instead of the standard
C return statement. Deferred return, or dreturn, means that after the execu-
tion of the event handler finishes, the control is not passed immediately back to
the caller, instead, the thread continues running until the next blocking state-
ment. In contrast, immediate return, or ireturn, returns to the caller ”almost
immediately”: before actually returning, it posts a task which when scheduled,
resumes the execution of the thread with the code following the await state-
ment in which the event handler resides. Hence, ireturn defines an implicit yield
point after the await statement. Using both deferred and immediate return is
allowed within the same event handler. For clarity, it is required that functions
with no return value should explicitly specify their return style with deferred or
immediate return statement(s).

Threads may contain yield statements that explicitly transfer the control back
to the caller of the event that invoked the currently running computation. Yield
is syntactic sugar: it is essentially equivalent to posting a task and then blocking
on it.

Threads react to events from the environment by executing a series of actions
until the execution reaches a yield point (await, yield or ireturn statement). With
each accepted event, the execution of the thread progresses. In fact, TinyVT
threads can be thought of as state machines that are described in a linear, thread-
like fashion, where the states are associated with yield points, and actions are
associated with the code between them.

Since actions run in the execution contexts of the triggering events, there
is no dedicated execution context associated with a TinyVT thread. In tradi-
tional multi-threading, there is a stack associated with each thread. In contrast,
TinyVT threads use a common, shared stack, which is unrolled every time the
thread blocks. Because of this, variables with lifetime spanning multiple ac-
tions must be statically allocated. TinyVT shields this from the programmer:
automatic variables are allowed within threads and allocated in static memory.
Because of the static nature of the language, call graphs are known compile
time, thus further optimizations are possible: automatic variables that cannot
be active concurrently are allocated at the same memory area.

TinyVT threads are not reentrant. A thread reacts an event only if it explicitly
blocks on it. If an event is received when the thread is executing an action, or,
if the thread is blocked, but the input event is not among the ones the thread is
awaiting, an exception occurs. The default behavior on an exception is to halt
the execution of the program, in order to prevent nondeterministic behavior.
However, the programmer can implement a custom exception handler per event
type, and may choose to recover from the error. This behavior may seem as a
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restriction, but it is in face equivalent to the behavior of event-driven systems:
without extra logic, a program cannot handle a new message, for example, while
the previous one is still being processed.

Structurally, threads reside within nesC modules. One module may contain
multiple threads. Threads can access the local state of the module (i.e. global
variables), can invoke functions at the module scope as well as through the
module’s interfaces (in nesC terminology: call commands and signal events),
and can react to function calls through the interfaces. Threads are static in
the sense that they are known at compile time, and cannot be dynamically
spawned. Hence, threads are statically instantiated when the application starts.
Instead of transferring control to the threads immediately after the application
is bootstrapped, we require that the first statement in a thread be an await
statement. This way, modules containing threading code are not bound to us-
ing a TinyVT specific interface. As a result, the fact that a module contains
threading code is not visible from outside: they can be used in component
specifications equivalently to standard nesC modules. This limitation reflects
the event driven programming practice that components do not start execut-
ing immediately at boot-up time, instead, they initialize in response to an init
command.

4.2 Example

We illustrate the expressiveness of TinyVT by rewriting the I2C packet-level
interface example using the thread abstraction.

In the idle state, i.e. when no client request is being processed, the thread
blocks on the writePacket command. If a client request comes in, the inlined
implementation of the command is executed, requesting access to the bus by call-
ing the sendStart command. The thread blocks as the next await statement is
reached. The occurrence of the sendStartDone event, signaled by the byte-level
hardware interface, resumes the thread execution. Since the corresponding event
handler returns with a deferred return statement, the return value will be saved
in an automatic temporary variable, and the same event context will continue
running the code up to the next blocking statement. That is, the initialization
of the index variable, the evaluation of the loop condition, as well as writing the
first byte to the I2C bus will take place before the thread blocks again.

Notice that the execution of the thread is driven by the incoming events.
TinyVT generalizes the concept of events to nesC commands, TinyOS tasks, as
well as to local functions: a thread can block on any of these. Mixing multiple
event types in one await statement is also allowed.

TinyVT supports run-time safety checking through exception handlers. For
example, if a writePacket call comes in from the client while there is another
packet being processed, the control is passed to an exception handler. The default
behavior of the exception handler is to halt the execution of the application.
However, the programmer may define custom exception handling code. In this
example, we can assume that the hardware adheres to the contract defined by
the I2C interface, but we need to prepare for handling client calls at any time.
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uint8_t *packet_data; uint8_t packet_length; uint8_t index;
await result_t command I2CPacket.writePacket(

uint8_t length, uint8_t* data)
{

packet_data = data;
packet_length = length;
call I2C.sendStart();
dreturn SUCCESS;

}
await result_t event I2CP.sendStartDone() {

dreturn SUCCESS;
}
for(index=0; index<packet_length; ++index) {

call I2C.write(packet_data[index]);
await result_t event I2C.writeDone()
{

dreturn SUCCESS;
}

}
call I2C.sendEnd();
await result_t event I2C.sendEndDone() {

dreturn SUCCESS;
}
signal I2CPacket.writePacketDone(SUCCESS);

Fig. 1. Excerpt from the packet-level I2C interface module implemented with TinyVT
threads. Notice how this code resembles the pseudocode presented in Alg. 1.

Therefore, the thread has to be protected with an exception handler, which is a
nesC function definition with the unexpected qualifier:

unexpected result_t command I2CPacket.writePacket(
uint8_t length, uint8_t* data)

{
return FAIL;

}

Fig. 2. Exception handler in TinyVT

5 Mapping of the Threading Abstraction to Event-Driven
Code

Although TinyVT offers a thread-like programming abstraction capable of
expressing linear control flow, it is important to note that TinyVT threads are
very much unlike threads in the traditional sense: there is no explicit execu-
tion context associated with a thread. Furthermore, the resulting event-driven
code requires no multi-threading OS support nor does it introduce dependence
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upon a threading library. TinyVT threads are virtual in the sense that they only
exist as an abstraction to express event-driven computation in a sequential fash-
ion, and are transformed into (non-sequential) event-driven code by the TinyVT
compiler.

While in traditional threading, context management and continuation sup-
port comes from the operating system or from the hardware essentially for free,
TinyVT has to address these issues at the compiler level. Since there is a sig-
nificant semantic gap between the thread abstraction and event driven-code, we
introduce an intermediate representation, based on synchronous communicating
state machines, that establishes an execution model on top of an event-driven
system, and serves as a compilation target for the TinyVT compiler.

5.1 Operational Semantics of the Intermediate Representation

The execution model of TinyVT is based on tightly coupled, synchronous com-
municating state machines (SCSM), providing an expressive vehicle to capture
the structure, the control flow, the state, and the communication patterns of
event-driven software components. Although the SCSM representation is influ-
enced by communicating finite state machines [8], instead of being a modeling
language with well-defined denotational semantics, it primarily focuses on exe-
cutability of the model rather than providing a mathematically sound foundation
for creating correct-by-construction systems. As SCSMs are used exclusively as
an intermediate representation, we do not define a concrete syntax for the lan-
guage here.

An SCSM is defined by a finite set of states, input events, and transitions that
map states and events to other states. Transitions are associated with actions,
which are units of computation defined in the host language. To reduce state
space, SCSM allows for the definition of state variables, which, depending on
their scope, may be accessed from multiple actions. Actions typically read and
update shared state variables, and generate output events.

It is valid to omit the triggering event from the definition of a transition. If
the event is omitted, the transition fires immediately after the source state of
the transition is entered. Transitions without events are allowed to have guard
conditions, which are predicates over the state variables and are evaluated when
the source state of the transition is reached. A transition can fire only if the
predicate holds. SCSM does not allow specifying both a guard and a triggering
event for a transition. Furthermore, mixing event-triggered and guarded output
transitions from the same state is also not allowed: for any given state in a
well-formed SCSM, either all or none of the output transitions are defined with
events. These limitations partition the states into two sets: blocking states, in
which the state machine is waiting for an external event, and transitory states,
that are immediately exited after being entered.

SCSMs are deterministic: if a state has multiple out-transitions the same
event cannot be assigned to more than one transition. Alternatively, for tran-
sitory states, the guards corresponding to the transition must be mutually
exclusive.
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Unlike traditional FSM models, SCSM does not assume that transitions are
instantaneous. Therefore, input events are disabled during the execution of
actions, and are re-enabled only after the action completes and the target state
is reached. If an input event occurs when the state machine cannot handle it
(referred to as an exception), the state machine immediately transitions to a
(terminal) error state.

SCSMs communicate with their environment through input and output events.
Communication between state machines is synchronous: if an action in machine A
generates an output eventwhich is accepted by machineB, B starts executing, and
the action in A that generated the event blocks until B relinquishes control. That
is, control flow is synchronously passed between communicating state machines.
Multiple state machines may react to the same event. The execution of the corre-
sponding event handlers is serialized, but their execution sequence is undefined.

The SCSM language supports hierarchical composition. The composition of
state machines A and B is defined as a SCSM, such that the state set of the
composite state machine is the Cartesian product of the states of A and B, and
the input and output events of the constituent state machines are matched by
name. Composition allows for event renaming, thus supporting arbitrary associ-
ations of input and output events, including fan-in and fan-out. Furthermore, it
allows for event hiding, forbidding the propagation of the hidden input or output
events over the composite state machine’s boundary.

5.2 Mapping the State Machine Model to Event-Driven Code

The SCSM representation is conceptually an extension of the event-driven ex-
ecution model of TinyOS, with a structure that resembles that of component-
oriented nesC programs.

The nave way of implementing an SCSM in nesC is as follows. The state is
stored in a global integer variable. Actions are implemented as functions at the
nesC module scope. The transition system, i.e. the control logic that maps events
and state to actions, is factored out to a scheduler function. When an input
event occurs, to which the state machine reacts, it is handled by a generated
event handler that calls the scheduler with the event type as a parameter. The
scheduler decides which action to call depending on the event type and the
current state. After the event handler completes, the scheduler updates the state.
If the new state is a transitory state, the scheduler evaluates the guard conditions
and invokes an action accordingly, again, updating the state when the action
completes. This is iterated until a blocking state is reached. After entering a
blocking state, the scheduler returns control to the generated event handler,
which then returns to its caller.

The mapping of SCSM to nesC, as described above, is simple, it has limi-
tations. Events commonly have formal parameters, as well as a return value.
Passing parameters and return values between the generated event handlers and
the actions is cumbersome, because every call has to go through the scheduler
function, which has a fixed signature. Instead of trying to find a workaround
for this issue (e.g. packing parameters into a variable length untyped array), we
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factored out the scheduler functionality into the generated event handlers and
into the actions.

The generated event handler does the dispatching depending on the value of
the state variable. Since the signature of the generated event handler and the
corresponding actions are identical, the issue of parameter passing is eliminated.
After the action returns, the generated event handler saves the returned value
into a temporary local variable, and updates the state. If the resulting state is
transitory, the actions and the state updates are executed iteratively, until a
blocking state is reached. Then the generated event handler returns with the
return value that was saved in the temporary variable.

5.3 Transforming Threading Code to the Intermediate
Representation

TinyVT threads that do not declare automatic variables nor use branching or
loops (i.e. C control constructs such as if, while, etc.) can easily be translated
into SCSM. Await statements mark blocking states, the inlined event handlers
are the corresponding actions. Immediate return statements in the event handlers
are translated into three statements: setting a global thread-specific return type
flag to IRETURN, posting the thread-specific continuation task, and a standard
C return statement with the given return value. In the case of deferred returns,
the return type flag is set to DRETURN, no continuation task is posted, and the
standard C return statement is generated. The next state for all event handlers
is a transitional state with two output transitions guarded by the return type
flag: on IRETURN, the next state is a blocking state, awaiting the thread specific
continuation task, which when executed, transitions the state machine into a
transient join state. On DRETURN, the next state is the join state. Code following
the await statement but before the next blocking statement is wrapped into an
action, which is assigned to a transition from the join state to the blocking state
marked by the next blocking statement.

C control structures that contain blocking statements are implemented with
transient states branching based on the evaluated condition expression. We ex-
plain the translation of the while statement; other control structures (for, if,
etc.) are implemented similarly. The while statement is translated to a transi-
tory initial state that unconditionally transitions to a branching state, executing
an action that evaluates the loop condition. The branching state is a transitory
state that transitions to the transitory join state with an empty action if the
loop condition evaluated to FALSE. On TRUE, the next state is the initial state of
the state machine that corresponds to the body of the while loop. The final state
of the enclosed state machine is linked to the initial state of the while statement
with an empty action. The body of the while loop is processed recursively: the
corresponding SCSM is built similarly as described a paragraph earlier, resolving
C control structures if needed.

It is important to note that not all C control structures need to be converted
to SCSM representation. If a control structure does not include any blocking
code, it can be treated as a primitive statement, which is allowed within actions.
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The compiler can decide if a control structure has blocking code by post-order
traversing the abstract syntax tree and marking the nodes of statements with
blocking descendants.

Automatic local variables declared within primitives can be allocated on the
shared stack, since their lifetime is limited to a compound statement that will
execute within one event context. However, if the scope of the variable is a
compound statement that contains blocking code, the variable has to be allo-
cated in static memory, since the shared stack is unrolled every time the thread
blocks.

It is easy to see that compiler-managed variables with non-overlapping scopes
can be allocated at the same static memory address. The compiler solves this
by creating a struct for each compound statement, which contains the local
variables, and a union containing the struct-s of non-overlapping child scopes,
recursively.

6 Discussion and Future Work

We believe that the execution model of TinyOS coupled with the nesC
programming model is a good level of abstraction for developing sensor node
applications. In the presence of severe resource constraints, language support for
low-level interfacing with the hardware is imperative. Although nesC provides
a sophisticated component-oriented programming model that helps manage the
structural complexity of sensor node applications, the inherent complexity of
event-driven control flow may persist at the module level.

The virtual threading that TinyVT provides helps mitigate this complexity.
It must be emphasized, however, that the goal of TinyVT is not to provide an
abstraction that shields the event-driven nature of the OS from the programmer.
Instead, it serves as a tool that improves code readability, reduces development
time, yet retains the low-level hardware access and flexible control of resources
provided by the host language. Indeed, it is imperative that the programmer be
aware that a TinyVT thread is just a virtual thread, and have an understanding
of the compilation process.

TinyVT is not a silver bullet. It is widely known that not all patterns of
sequential control flow can be expressed in a thread-like fashion. Analogously,
the behavior of some nesC modules is cumbersome, if not impossible, to ex-
press in TinyVT. This particularly holds for components operating on top of
a hardware presentation layer with nested interrupts. Since TinyVT threads
are not reentrant, the programmer has to assure that asynchronous events are
handled in a timely manner, alternately, unexpected events have to be handled
adequately. Nevertheless, the programmer can always fall back to using plain
event-driven nesC code in such cases, and write TinyVT modules only when it
is convenient.

Our compiler prototype, though it processes the whole application to resolve
symbols and wirings, considers only the scope of the shared variables when opti-
mizing memory allocation, and does not detect if variables in different threads (or
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modules) can be allocated to the same memory address. That is, the optimization
is local to a thread. Extending this functionality with whole-program analysis
to facilitate global optimization is subject of further research.

Currently, we do not support all nesC features in TinyVT threads. For ex-
ample, goto is not allowed, and switch statements containing blocking code
are also not handled. It is primarily because the C standard is very permissive
regarding labels, and the compilation of such code can be complicated. We con-
sider eliminating these limitations in the future only if there is a demand for the
currently unsupported language features.

Another exciting future direction is extending the compiler with a more thor-
ough interface compatibility checking, based on the communication patterns
exhibited/supported by the components through their interfaces. Since TinyVT
threads express computation in a linear fashion, the communication patterns of
modules are encoded in the control flow. Though TinyVT actions allow for data-
dependent behavior, we suspect that some errors, such as violations initialize-
before-use constraints, might be able to be detected via static analysis.

7 Related Work

Contiki [9] is a multitasking operating system for memory-constrained devices
built around a small event-driven kernel. Unlike traditional operating systems,
the Contiki kernel does not provide explicit support for multithreading. Instead,
multithreading is implemented as an external library, which is linked into the
application only if explicitly needed. Since each thread requires its own stack,
traditional multithreading is expensive on memory-constrained platforms. As an
alternative, Contiki promotes the use of protothreads [10]. Protothreads achieve
threading without per thread stacks using a lightweight continuation mechanism,
called local continuations, implemented as a set of C macros. The use of contin-
uations is limited to a C function block, consequently, protothreads cannot span
multiple functions. Protothreads in Contiki are similar to threads in TinyVT
in that both approaches provide a threading context on top of an event-driven
execution model. Protothreads take an opportunistic approach by exploiting eso-
teric or non-standard features of the C language, while in the TinyVT language
a thread is a first class object with explicit compiler support. In contrast to
TinyVT, automatic local variables in a protothread are not preserved when the
protothread blocks, which can result in potentially unsafe code.

MANTIS [11] is a multithreaded operating system for wireless sensors built
around classical concepts, such as preemptive scheduling with time slicing,
kernel-level support for synchronization, etc. MANTIS provides a familiar API
which is easy to use, making it particularly suitable for experimentation with
new algorithms or rapid prototyping of sensor network applications. However,
because of the need for per thread stacks, traditional multithreading is costly:
MANTIS trades RAM usage for flexibility and ease of use.

TinyOS [7] is probably the most popular operating system in the wireless
sensor networks domain. In TinyOS, the event-driven model was chosen over

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



158 J. Sallai, M. Maróti, and Á. Lédeczi

the multithreaded approach due to the memory overhead of the threads. TinyOS
defines two kinds of execution contexts: tasks and events. Tasks are scheduled
by a FIFO scheduler, have run-to-completion semantics, and are atomic with
respect to other tasks. TinyOS models interrupt service requests as asynchronous
events: events can interrupt tasks, as well as other asynchronous computations.
This duality provides a flexible concurrency model, and easy interfacing with the
hardware, however, it can introduce race conditions and may necessitate locking.

nesC [6], the implementation language of TinyOS addresses this issue by pro-
viding language support for atomic sections and by limiting the use of potentially
”harmful” C language features, such as function pointers and dynamic memory
allocation. nesC is a ”static” language in the sense that program structure, in-
cluding the static call graph and statically allocated variables, are known compile
time, allowing for whole-program analysis and compile-time data-race detection.
TinyVT inherits these features from nesC, while extending the language with
support for threading and blocking wait. TinyVT overcomes the problem that
complex operations have to be implemented using explicit state machines in
nesC, hence, improving code maintainability and safety. nesC has a component
oriented design that allows partitioning the applications, which is largely orthog-
onal to the execution model of TinyOS. This gives flexibility to the programmer
and promotes reuse.

TinyGALS [12] defines a globally asynchronous and locally synchronous a pro-
gramming model for event-driven systems. Software components are composed
locally through synchronous method calls to form modules, modules communi-
cate through asynchronous message passing. Local synchrony within a module
refers to the flow of control being instantaneously transferred from caller to
callee, while asynchrony means that the control flow between modules is serial-
ized through the use of FIFO queues. However, if modules are decoupled through
message passing, sharing global state asynchronously would incur performance
penalties. To tackle this, the TinyGALS programming model defines guarded
synchronous variables that are read synchronously and updated asynchronously.

The galsC [13] language, an extension of nesC, provides high-level construct,
such as ports and message queues, to express TinyGALS concepts. TinyGALS/
galsC and our approach attack the same substantial problem, namely that man-
aging concurrency with the event-driven paradigm lacks explicit language sup-
port. TinyGALS ensures safety through model semantics. In contrast, TinyVT
promotes static analysis and runtime safety checking instead. While in Tiny-
GALS modules are decoupled through message passing, and synchronous con-
trol flow is limited to the module scope, TinyVT does not impose limitations on
the allowable communication styles. We believe that our approach gives more
flexibility to the programmer with respect to choosing the right structural decom-
position for a problem, whereas galsC could impose limitations on the program
structure. For example, control flow from an interrupt context cannot propagate
outside the module: hence, all tasks that are timing critical must be implemented
within the module.
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SOS [14] is a general-purpose operating system for sensor nodes with an event-
driven kernel and dynamically loadable modules. SOS strictly adheres to the
event-driven paradigm: events are atomic with respect to each other. To handle
interrupts in a timely manner without operating in an interrupt context, the
SOS kernel uses priority queues to schedule the serialized execution of events.
Since interrupt contexts do not propagate into application code, applications
can fully leverage the benefits of the atomicity assumption. SOS, similarly to
TinyOS, would be an ideal compilation target for TinyVT.

The Object State Model (OSM) [15] employs attributed state machines to
express event-based program behavior. The application of FSM concepts is a
natural choice for the domain: actions are executed depending on the input
event and the actual state, whereas imperative languages, such as C, lack ex-
plicit support to associate actions with both events and program state. OSM
specification is translated to Esterel [16], a synchronous language, which then
can be compiled into efficient C code by the Esterel compiler. The most signifi-
cant contribution of OSM, however, is that it offers efficient allocation of shared
variables based on their lifetime making this approach particularly suitable for
programming resource-constrained devices. TinyVT employs a similar approach
to allocate automatic local variables. An important difference is that our lan-
guage constructs do not allow explicit association of shared variables with states
(since the state machine model is used only as an intermediate representation,
and the concrete syntax is less expressive), hence OSM can achieve slightly bet-
ter memory usage. However, our approach offers excellent code readability, while
OSM should rather be used as a target for automatic code generation.

8 Conclusion

The novelty of this work is that it provides language support to describe event-
based computation in a well structured, linear fashion without compromising
the expressiveness of the implementation language. The event-driven execution
model of TinyOS remains exposed to the TinyVT programmer, along with all the
features of the nesC language from supporting component-oriented programming
to compile time data-race detection.

The ”virtual thread” that TinyVT introduces is a simple language extension
that provides a means to express linear control flow and blocking operations.
Yet, these threads do not suffer from the problem of nondeterminacy which
multithreading is commonly criticized for. First, TinyVT implements a variant
of non-preemptive multithreading by sequencing the execution of atomic event
handlers. Non-preemptive multithreading offers significantly more determinism
and better analyzability than its preemptive counterpart. Second, the syntax
of TinyVT ensures that the programmer is aware of the control flow between
conceptually concurrent threads. Calls to split phase operations explicitly state
which thread the control is passed to; similarly, the await statement explicitly
specifies the thread which the control is received from. This stands in contrast to
the approach of general-purpose multithreading, where control flow is governed
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by the scheduling policies of the operating system or a user-space threading
library, and the programmer has no insight into inter-thread control flow (except
for locking decisions).

The TinyVT compiler automates the tasks that programmers traditionally
do manually. As the complexity of applications keeps growing even in the sensor
network domain, such tasks are becoming hard to manage. However, the TinyVT
compiler can easily cope with this complexity, and thus, produce better quality
and more reliable code than an average programmer.
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Abstract. In this paper, we exemplify outdoor distributed computing
and point out the key challenges. We present Split Smart Messages, a
lightweight, portable, network failure resilient and relatively secure mid-
dleware that enables a large subset of outdoor distributed computing
applications. We also present a Service Discovery, Interaction and Pay-
ment Protocol (SDIPP) tailored for mobile phones. We evaluate our
middleware and protocol on Sony Ericsson P900 phones and present
experimental results.

1 Introduction

Traditional distributed computing techniques were designed specifically for the
client/server paradigm. In this approach, a connection is established with one
or more stationary servers and messages are exchanged to complete a task. The
connection needs to be maintained during the entire lifetime of a task. The com-
putation is distributed among the different servers for the purpose of optimiz-
ing performance. The key properties of typical distributed systems are resource
sharing, concurrency, scalability and openness. The machines and the underlying
networking medium are assumed to be fairly robust and trustworthy. Failures
are treated as anomalies. Consequently, distributed systems are designed with
a robust, secure and fairly static infrastructure in mind. While failures and dis-
connections are taken care of, they are not considered part of normal operation.

In contrast, outdoor distributed computing systems have to be designed to
cope with frequently occurring failures and disconnections due to dynamically
changing topologies. Failures have to be treated as part of normal operation
and therefore, systems have to be designed with a weakly connected challenged
network in mind. This network is typically composed of heterogeneous nodes that
join and leave the network dynamically and are better identified by properties
than by statically assigned names (e.g IP addresses). Nodes typically act as
both clients and servers, and can potentially exhibit malicious behavior. Ad-hoc
wireless connections with short life-times are dominant. Mobility is common.
Prior knowledge of the configuration of the system is limited. While the goal of
resource sharing is common with traditional distributed computing, the kind of
resources that are shared and the mechanisms used for sharing those resources
are quite different.

F. Kordon and J. Sztipanovits (Eds.): Monterey Workshop 2005, LNCS 4322, pp. 161–183, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



162 N. Ravi and L. Iftode

Properties apart, the goals of outdoor distributed computing are fundamentally
different from the goals of traditional distributed computing. While traditional
distributed computing is focused primarily on optimization of performance
through sharing of resources, outdoor distributed computing enables new func-
tionalities and applications. In this paper, we identify the set of applications
that define this new form of computing (Section 2.1) and point out the chal-
lenges common to most applications (Section 2.2). We then present the de-
sign and implementation of a middleware for outdoor distributed computing
(Sections 3 and 4).

2 Outdoor Distributed Computing

What is outdoor distributed computing? We answer this question by identifying
the set of applications that motivate this new form of computing and identifying
the challenges synonymous with this class of applications.

2.1 Motivating Applications

Vehicular Computing. There is growing interest in equipping vehicles with
portable computers to enable applications such as real-time congestion estima-
tion, collision avoidance, route planning, content sharing, etc. Vehicles form a
mobile ad-hoc network and disseminate information among themselves. Various
data propagation models can be conceived, such as broadcast, geographical rout-
ing and publish/subscribe. Vehicles typically exchange information about each
other (e.g location and speed) and about the environment (e.g accidents and
signs). The information can be exchanged proactively (e.g through broadcast)
or queried on demand and routed between the source and destination. Fur-
thermore, the information can be collected and dissipated incrementally using
store-and-forward mechanisms.

Social Networking. Akin to vehicular computing, which involves informa-
tion exchange in a mobile ad-hoc network of vehicles, social networking involves
information exchange in a mobile ad-hoc network of people. For example, re-
searchers at a conference may wish to exchange profiles, or invite people with
similar research interests for lunch. A distributed application that executes on
the handhelds of researchers and finds people with similar research interests is
a typical example of a social networking application. Yet another example is
ad-hoc carpooling, where a user initiates a request to carpool to a certain desti-
nation and his neighbors answer the query if they are interested. We can extend
this class of applications to include distributed information exchange between
handhelds of soldiers on a battlefield, or firemen on duty.

Location-based Services. There is great value in making information services
highly personalized. Using location information is one of the best ways of person-
alizing services. Emergency services led by E911 in North America and E112 in
Europe have motivated the wireless carriers to deploy localization technologies.
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Tracking personnel (e.g patients in a hospital) and assets (e.g objects in a store)
using location is predicted to become fairly popular. A typical example is a
friend-tracking application, where a group of friends keep track of each other’s
locations using their handhelds while traveling or when in a museum. Provision-
ing information to the user’s handheld (such as list of restaurants) or sending
notifications (such as a sale on men’s suits in the proximity) based on user’s
location can enable new business models. Location-based billing is yet another
example. A user can establish personal zones, such as a home zone or work
zone and arrange preferential billing with his wireless service provider. Simi-
larly, telematics-centered location-based services can aid traffic monitoring and
congestion avoidance. It is speculated that location-based services will create a
multi-billion dollar market.

Environment Query. Deployment of sensors that gather information about
the environment has already begun. Cameras on New York streets, temperature
sensors in forests of California, pressure sensors in bridges are just a few ex-
amples. RFID tags and readers are commonly used today in many applications.
Networking these sensors and then linking them to more powerful devices such as
car PCs or handhelds can enable plethora of distributed computing applications.

2.2 Challenges and Requirements

Numerous research challenges need to be overcome in order to realize the appli-
cations described above. In this section, we point out some of the key challenges
that are common to these applications.

Opportunistic Networking. Mobility leads to periods of disconnection. Net-
working infrastructure may only be intermittently available. This makes the de-
sign of outdoor distributed computing applications challenging. An ideal design
should treat disconnection as part of normal operation, and look for opportuni-
ties to pass information/data along. IP is clearly insufficient; delay tolerant net-
working solutions [28], store-and-forward mechanisms, and opportunistic routing
algorithms [34] are needed. Since the network is not pre-configured, protocols are
needed for resource and service discovery [14,43,16,4]. For this to happen, new
naming conventions are needed to uniquely identify resources and services, as
IP addresses do not scale well to highly dynamic scenarios.

Portable Middleware. Devices over which distributed computing applications
execute will range from tiny sensor nodes to mobile phones to car PCs. In other
words, we are looking at a network of nodes with different operating systems,
varying computation power and heterogeneous networking capabilities. For such
heteregeneous devices to successfully cooperate in the execution of a common
task, there is a pressing need for designing middleware that can hide the un-
derlying software abstractions from the applications and create a homogeneous
virtual environment for applications to execute in [56]. At the same time, such
middleware should be easily portable to different operating systems in order to
maximize code reuse and minimize development effort. For performance reasons,
the middleware should impose low computation and networking overheads.
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Context Awareness. User context can be helpful in personalizing services and
applications [57]. Examples of context information include location, time of day,
user activity, user profile, available networking interfaces, environment, etc. There
are numerous challenges in creating context-awareness for outdoor distributed
computing applications. Active research is being carried out in sensing user activ-
ity and location [61,50,18,54,20,52]. Context information from different sensors
needs to be fused and reasoned with to obtain directly usable information. On-
tologies are being developed to reason with context information [9,25]. Practical
problems, such as storage and retrieval of context, cannot be overlooked.

Security and Privacy. Outdoor distributed computing relies on cooperation
between alien devices. Some of these devices would interact with each other for
a few seconds, a few minutes at the most, and would likely not cross paths
again ever after. Personal data in the form of context information would be
heavily shared. In such a computing model, both user devices and data are
prone to attacks. Reputation-based security schemes are hard to devise, due
to the ad-hoc nature of the network. Also, reputation schemes require strong
identities which exacerbate the privacy problem. Novel security models that
induce trust in the network are needed. Privacy mechanisms that restrict flow
of sensitive information need to be devised. Location information, in particular,
is very sensitive. Users would not like their location to be known to others all
the time. The US government realized the seriousness of the this problem and
released the Location Privacy Protection Act [5] in 2001. Since then, there has
been some research focused on safeguarding location privacy [32,53].

Energy Optimization. Due to mobility, majority of the devices on which
outdoor distributed computing applications execute, are battery powered. This
includes mobile phones, laptops, PDAs and sensors. Battery has a limited life-
time, and therefore energy optimization mechanisms need to be applied at all lev-
els, including hardware, operating system and compiler. The applications them-
selves need to be designed with this constraint in mind and should be inherently
lightweight. One way to accomplish this is to offload computing to a wall-powered
server whenever opportunities to connect to the server are available. This ap-
proach is called cyber foraging [19]. Another approach is to trade the fidelity of
applications for energy [44]. Such mechanisms need to be applied during appli-
cation design phase, as opposed to compiler or OS based energy optimization
mechanisms, which are hidden from the applications.

Incentive for Cooperation. Cooperation is the key to outdoor distributed
computing applications. Why should devices cooperate? Why should a device
forward packets for another device? What if a device exhibits selfish, reserved
or parasitic behavior? Although the symbiotic nature of these applications pro-
motes cooperation, there is a need for devising incentive models so that devices
can benefit from cooperating with other nodes, even if other nodes refuse to
cooperate. Such models will drive the equilibrium towards cooperation. A good
starting point is to follow the design of reputation-based schemes, which are
used to promote trust in peer-to-peer networks, and tailor them to work for
short-lived interactions.
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Human-Computer Interaction. Human-computer interaction issues will play
a big role in the success or failure of these applications. Since user attention is a
limited resource, the complexity of using and interacting with such applications
has to be minimized. Novel user interfaces are needed. Speech recognition, ges-
ture recognition and vision-based solutions can be very helpful. The applications
have to be robust and reliable even in the presence of network failures to ensure
satisfactory user experience.

Bootstrapping. Bootstrapping of outdoor distributed applications is a hard
problem, and there are numerous reasons for it. First, while these applications
are assumed to be ad-hoc in nature, there is a minimal amount of configuration
required on every device to bootstrap these applications. The configuration effort
may outweigh the convenience that a user gets in return. There is a need to hide
this configuration effort from the users. Second, the users have to carry with
them a minimal amount of hardware and software to avail of such services and
applications. This contradicts the spontaneous nature of these applications. The
solutions should be designed around hardware that users already carry. Also,
the software layer required for bootstrapping these applications should be bare
minimum. Third, a certain amount of infrastructure is required to support many
of these applications/services. For such an infrastructure to exist, right economic
models are needed. While these applications have a lot of utility, users must be
willing to pay a price for using these applications. There is a need to minimize
the infrastructure requirement to improve chances of deployment. Fourth, due
to the fact that these applications rely on cooperation between devices, a user
may not be convinced about paying a price for a technology that he/she cannot
use unless others have it too. The dependencies need to be minimized. Fifth,
technology is not matured enough to support robust, secure and distraction-free
distributed applications in ad-hoc networks. The research challenges pointed out
in this section need to be overcome before such applications can become a reality.

2.3 Technology Enablers

As mentioned before, in order to make bootstrapping easier, it is important to
design solutions around devices that have the greatest potential of becoming
ubiquitous. Here we identify such devices.

Mobile Phones. Mobile phones are carried by almost everyone. Hitherto, they
were mostly used for the purpose of making and taking phone calls on the move.
With advances in hardware and improving storage trends, mobile phones are
evolving into personal computing devices. Sony Ericsson P900, which is a com-
monly used phone today, runs Symbian OS, an operating system designed specifi-
cally for mobile phones, and comes equipped with two different versions of Java:
Personal Java [10] and J2ME CLDC/MIDP [1]. It also supports C++ in or-
der to provide low-level access to the system. The phone has 16MB of internal
memory and upto 128MB external flash memory, which is small compared to
newer phones that have GBs of storage capacity. What is particularly note-
worthy about these phones, is the hybrid wireless networking capabilities that
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they come equipped with, which includes Bluetooth, WLAN, IR and internet
connectivity via GPRS. These phones can serve as personal computers for all
practical purposes, if only the display could be made bigger and battery lifetime
improved. There is already some research initiative in exploring the potential of
mobile phones as next generation personal computers [35,55].

Car PCs. Cars have carried on-board computers for decades and modern mobile
microprocessors control everything from engine performance to car’s instrument
cluster. There is ongoing effort in making car PCs more popular and sophisti-
cated than they are today. There are numerous vendors that assemble and sell
car PCs (e.g Xenarc, Logisys etc). Several cars already come equipped with full
car PCs that run Windows XP (e.g Nissan 350Z and Peugeot 307 XSi). So far
these systems are used for stand-alone applications such as navigation systems.
DSRC is a block of spectrum in the 5.850 to 5.925 GHz band allocated by US
FCC to enable communication between cars. Several car manufacturers, includ-
ing Toyota, Daimler Chrysler and GM are funding research for the development
of distributed applications based on car-to-car communication.

Sensors. GPS, thermometer, calorimeter, multi-meter, magnetic compass,
barometer, RADAR sensor, infra-red sensor, RFID reader, camera are just a
few examples of sensors that we use in our daily life. Sensors are the ”eyes and
ears” of outdoor distributed computing applications. They gather information
about the environment, which serves as context and aids in provisioning ser-
vices to the user. Location sensors, activity sensors, RFID readers, temperature
sensors, cameras, are some of the more directly usable sensors for distributed
applications. The size of these sensors varies and so does their cost and utility.
Many of these sensors are programmable and can be networked together and
linked to more powerful computing devices to enable many interesting outdoor
distributed computing applications. While some of them are meant to be wall-
powered, others are meant to be scattered in the environment and survive on
batteries.

3 Split Smart Messages: A Middleware for Outdoor
Distributed Computing

In this section, we describe the design of Split Smart Messages, a middleware
for outdoor distributed computing. Split Smart Messages is an extension of the
Smart Message [37] model and has been tailored to suit the requirements of re-
source constrained devices such as Smart Phones which come with a pre-installed
JVM. In the design of SSM, we have payed special attention to opportunistic
networking, portability, security and lightweightness.

The design of Split Smart Messages has been inspired by mobile agents. A Split
Smart Message (SSM) is a user-defined application whose execution is distributed
over a series of nodes using execution migration. The nodes on which SSMs exe-
cute, called nodes of interest, are named by properties and discovered dynamically
using application controlled routing. To move between two nodes of interest, an
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Fig. 1. Split Smart Messages Architecture

SSM calls explicitly for execution migration, and routes itself without any under-
lying routing support. An SSM consists of code bricks(e.g Java class files) and data
bricks(e.g Java objects which store data and execution state). SSMs in addition to
being lightweight, provide the functionality to support service execution, discov-
ery, and migration in highly volatile mobile ad hoc networks. SSMs are resilient to
network failures, as they carry the code for routing themselves, and can therefore
store-and-forward themselves opportunistically.

3.1 SSM Middleware Architecture and Implementation

Every participating node has to be equipped with the SSM middleware. The
SSM middleware is written completely in Java (using J2ME CDC and CLDC),
and can be ported to the common JVMs. It consists of the following components
(as shown in Figure 1):

Tag Space. Tag space is name-based virtual memory. It is composed of tags
which are (name, data) pairs. These tags are Java objects that can be created,
deleted, read from, or written into by SSMs. Nodes are identified by properties
that are stored in tags. Also, services running on these nodes create tags for
advertising themselves. Tags are, therefore, integral to content-based routing
and service discovery over SSMs.

In addition to providing storage, tags also provide inter-SSM communication
and synchronization. Commonly, a blocked SSM is woken up by the interpreter
when the tag is written by another SSM. Each time an SSM blocks on a tag, its
corresponding Java thread is terminated. Each time an SSM is unblocked (and
consequently dispatched for execution), a new Java thread is created for it.
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Admission Manager. The admission manager is responsible for receiving and
admitting incoming SSMs over different network interfaces. Our admission man-
ager listens on the TCP/IP socket interface (for receiving SMs over 802.11b) as
well as Bluetooth L2CAP interface (for receiving SMs over Bluetooth). While
admitting SSMs into the system, the admission manager verifies the data bricks
and state against certain verification policies.

Code Downloader. Smart Phones are equipped with multiple network inter-
faces: WLAN, Bluetooth, GPRS/3G. Future car PCs are believed to have mul-
tiple network interfaces too. By virtue of these hybrid networking capabilities,
these devices are capable of communicating with each other over short-range
wireless (Bluetooth or WLAN), while being connected to the internet at the
same time (via GPRS/3G). SSMs have been designed with this feature in mind.

As mentioned before, an SSM is composed of: code bricks (which are Java
class files in our implementation) and data bricks (which are Java objects in our
implementation). During migration, if internet connectivity is available, only
data bricks are transferred across the local network (using WLAN/Bluetooth),
while code bricks are uploaded to and downloaded from a trusted web server
(using GPRS/3G)1. This helps security as described later in this section. If
internet connectivity is not available, then code bricks are transported along
with data bricks.

The component that downloads code from the trusted web server is imple-
mented as a MIDlet that runs over MIDP [1]. MIDP supports OTA (Over-The-
Air) Provisioning, which is used for implementing dynamic downloading of code.
The code downloader is invoked by the Admission Manager everytime code needs
to be downloaded.

Code Cache. Code cache stores frequently used code bricks. In order to imple-
ment Code cache, we exploit Java’s classloader. The Java dynamic class loading
mechanism is used to load a class representing a code brick. In the process, a
new Class instance of the corresponding class is created. The classloader will
not unload the class as long as there is a live reference to the Class instance.
References to the cached classes are stored such that these classes are not un-
loaded by the classloader. When the caching policy chooses a class for eviction,
we just remove the stored reference for that class.

Scheduler. The scheduler is responsible for dispatching SSMs (from the SSM
ready queue) for execution on the JVM. The SSM scheduler is implemented
as a Java thread that extracts an SSM from the ready queue in FIFO or-
der, dispatches it for execution as a Java thread, and goes to sleep. When the
SSM completes its execution, it wakes up the scheduler using the Java’s thread
synchronization mechanism.

3.2 Example

To illustrate the SSM distributed computing model, let us consider a network of
handhelds belonging to people attending a conference. At the beginning of the
1 Hence, the name Split Smart Messages.
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i=0; /* i stored in data brick */
while(i<N){

migrate("Ubiquitous");
/* ask attendee to join */
if (readTag("Joined"))

i++;
}
migrate("Initiator");

Fig. 2. Example of Split Smart Message Code: Ad hoc Creation of a Research
Discussion Group at a Conference
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migrate("Ubiquitous") migrate("Ubiquitous")

Ubiquitous

code downloadcode download

Fig. 3. Execution Path for the Split Smart Message Presented in Figure 2

conference, people download on their handhelds a simple SSM that creates tags for
their research interests. These tags can be used by other SSMs to identify people
with certain research interests. For instance, a certain person can download an
SSM that sets up a discussion with N people interested in ubiquitous computing
(i.e., identified by a tag named Ubiquitous) or invites them to have lunch together.
This SSM works in an ad hoc fashion over short range wireless links and achieves
its task even if the attendees do not know each other beforehand.

Each time an attendee wants to start a discussion on a given research topic, or
invite people for lunch, she injects this SSM in the network from her handheld.
The SSM migrates through the network until it finds N people willing to have
such a discussion or meet for lunch. Once the group is set, it returns and informs
the initiator. For instance, Figure 2 presents the code for an SSM that creates a
group discussion for Ubiquitous computing. Figure 3 depicts the execution path
of this SSM over five nodes.

The key operation in the SSM programming model is migration, which imple-
ments content-based routing using tags [21]. An SSM names the nodes of interest
by tags, and then calls migrate to route itself to a node that has the desired tags.
In our example, migrate(“Ubiquitous”) routes the SSM to people interested in
ubiquitous computing using other handhelds (i.e., belonging to people who may
or may not be interested in ubiquitous computing), as intermediate nodes. The
migrate function uses the sys migrate primitive for transferring the SM to the
next hop. After migration, the SM resumes from the next instruction following
the migrate call.
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3.3 Portability

For implementing migratory applications or services, it is important that they be
portable and transferable with minimal overhead. The original Smart Message
architecture [37] was implemented by modifying Sun’s Java Kilobyte virtual ma-
chine (KVM). The whole architecture was implemented inside the VM because
of the need for VM support in capturing the execution state and restoring it
at destination to resume the execution. This implementation, although power-
ful and efficient, is not portable. Since devices like Smart Phones and Smart
Watches come with a pre-installed Java VM, (and most of the time users do
not want to or cannot modify the system software on their devices), we have
designed SSM middleware such that it can execute on top of unmodified Java
virtual machines.

The main issue to be solved in a pure Java implementation of a migration-
based middleware is performing migration without requiring the VM to capture
and restore the execution state. The execution state is located inside the VM
and is not directly accessible to the external world. In order to provide migra-
tion without modifying the VM, we have designed a mechanism for capturing
and restoring the execution state by incorporating all the necessary operations
in the SSM itself. The heart of our approach lies in instrumenting the SSM
bytecode in such a way that the SSM can save its state before migration and
restore it before resumption with a minimal overhead. Using this mechanism,
the state is encoded in the data bricks, and no explicit state information is
shipped. Being resource and bandwidth constrained, mobile ad hoc networks
impose constraints on the amount of data that can be transferred for reliable
communication. With this in mind, we have focussed on making the migration
mechanism extremely lightweight and efficient. Our Java bytecode instrumen-
tation mechanism increases the Java bytecode size by only 3% as opposed to
previously proposed portable Java migration mechanisms, which increase the
bytecode size by as much as 400%. The mechanism is generally applicable to
any system based on execution migration of Java programs For details on our
instrumentation mechanism, refer to [45].

3.4 Security

The security issues associated with SSMs are the same as those associated with
mobile agents. As mentioned in [36], the security threats for mobile agents can
roughly be classified into four categories: agent to platform, platform to agent,
agent to agent, others to agent. The others to agent threat is not specific to
mobile agents, but in general applies to any form of data transfer between two
untrusted peers. Broadly speaking, the other three categories contain two differ-
ent security threats: snooping/changing/dropping data, and running malicious
code. When we look at a mobile agent as composed of code and data, the security
threats specific to them involve malicious code running on a certain platform.
Protecting data against threats like replay attacks, middleman attacks, snooping
or changing data, is a problem common to any form of network communication.
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Therefore, we assume that state-of-the-art solutions can be applied to protect
mobile agents’ data, and in the following, we focus on protecting against mali-
cious code.

The agent-to-platform category represents the set of threats in which agents
exploit security weaknesses of an agent platform or launch attacks against an
agent platform. This set of threats includes denial of service or unauthorized
access. Mobile agents can launch denial of service attacks by consuming an ex-
cessive amount of the agent platform’s computing resources. Mobile agents can
gain unauthorized access to confidential data on the platform if they can bypass
the platform’s security policy. Several techniques have been proposed for pro-
tecting the agent platform, namely Signed Code [22], Proof Carrying Code [42],
Path Histories [46], Authorization Certificates [59], Safe Code Interpretation [47],
State Appraisal [29], and Software-based Fault Isolation [60]. Some of these tech-
niques aim at authenticating the mobile agent or the source of the agent, while
others are focused on safe code execution.

The solution that we propose for SSM aims at inducing trust between the
agent and the platform by establishing trust between the target platform and the
agent source. As mentioned before, devices such as Smart Phones and Car PCs
support dual connectivity. Dual connectivity provides a simple infrastructure
for establishing trust in the local ad hoc network. An SSM is composed of two
essential components: data bricks (Java objects) and code bricks (Java class
files). To protect devices against malicious code, the SSM middleware transfers
data bricks over the ad hoc network, while code bricks are downloaded from a
trusted web server (when internet connectivity is available). Trusted code bricks
ensure a certain level of security, which can be improved upon by using one of
the aforementioned techniques in conjunction.

Downloading code from a trusted web server is safer than relying on authen-
tication certificates presented by an incoming SSM because the SSM could have
been tampered with. No safe assumptions can be made about the data/code com-
ing from a machine, unless the machine follows the trusted computing model [17].

In our current architecture, the code bricks are uploaded to the web server be-
forehand. The web server would make the code available after suitable authenti-
cation, which may involve manual analysis or abstract interpretation of the code
to ensure that it is safe. To support on-the-fly uploading of code bricks, Proof-
carrying-code technique or Microsoft’s Authenticode [7] could be employed. We
assume the existence of an authentication web service.

There are many reasons for not migrating the whole SSM over the internet.
First, our current design is opportunistic in nature and exploits a web service
only when available, but does not depend on it. If the web service is not available,
the code bricks can be fetched from the source over short range wireless. Having
an architecture that migrates the whole SSM over the internet would make it
strongly coupled with internet availability. Second, code bricks can be uploaded
to the web server beforehand offline and downloaded on demand, because an
SSM always uses the same code bricks. This is an upload-once-download-many
strategy. Data bricks keep growing and shrinking in size and number as the SSMs
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travel across the network. Uploading and downloading data bricks from a web
server on the fly, restricts the level of authentication that can be provided by the
web server. Third, it is important to minimize internet usage as there is a cost
associated with downloading data from the internet. Many 3G/GPRS service
providers charge an amount proportional to the amount of data downloaded
from the internet.

3.5 Performance

We evaluated the SSM middleware on Smart Phones as well as HP iPAQs to get
an insight into the performance of SSMs on resource constrained devices. Our
goals in conducting the experimental evaluation were threefold : (1) quantify the
impact of bytecode instrumentation on the SSM bytecode size, (2) compare the
costs of basic SSM operations on Smart Phones with that on HP iPAQs, (3)
compare single-hop round-trip time of an SSM on Smart Phones with that on
HP iPAQs to get an estimate of communication costs. Our testbed consists of
Sony Ericsson P800 and P900 phones communicating over Bluetooth, and HP
iPAQs communicating over 802.11b.

Table 1 shows the increase in bytecode size as a result of instrumenting four
of our SSM test cases. We have used Soot1.2.5 [2] to do off-line bytecode in-
strumentation. On average, we observe an increase of 2.9% in the bytecode size,
which is negligible as compared to existing approaches (see Section 5 for details).

Table 2 shows the cost of tag space operations. Table 3 compares the cost of
SSM execution (including migration) on Smart Phones with that on HP iPAQs.
The results indicate that for establishing a Bluetooth connection it takes on
an average a constant of 1 second, and the round-trip time varies from 300ms
to 1600ms(excluding the cost of establishing a Bluetooth connection) as data
brick size is varied from 1KB to 16KB. For all practical purposes, this is good

Table 1. Increase in SSM Bytecode Size Due to Instrumentation

Unmodified Byte-
code(KB)

Modified Byte-
code(KB)

1084 1122

1230 1266

1527 1564

2330 2395

Table 2. Cost of SSM Tag Space Operations

Time(μs)
Operation

HP iPAQ Sony Ericsson P800/P900

readTag 78 188

createTag 89 578

writeTag 71 203

deleteTag 98 156
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Table 3. Effect of Data Brick Size on Single-Hop SSM Round-Trip Time

Round-Trip Time(ms)
Size(Bytes)

HP iPAQ Sony Ericsson P800/P900

1044 150 1450

2088 177 1600

4056 196 1790

8010 234 2120

16010 301 2630

performance. The performance on iPAQs is much better compared to that on
Smart Phones, which is expected because iPAQs have more computation power
than Smart Phones and 802.11b offers a much higher bandwidth than Bluetooth.
The cost of downloading code from the web server has a lower bound of 3 seconds,
which is determined by the size of the corresponding jad file, which is at least
250 bytes.

4 SDIPP: Service Discovery, Interaction and Payment
Protocol

In this section, we describe the design and implementation of a protocol for
provisioning services on devices with dual connectivity (e.g smart phones). The
services execute on top of the SSM middleware as Service SSMs, and can there-
fore migrate themselves. For advertising themselves, the services create tags on
the nodes they execute on, which can be discovered using Discovery SSMs. In
addition, they register themselves with a web server that is publicly known.
When Bluetooth is available on the device, the services can also be discovered
using the Bluetooth Service Discovery Protocol(SDP).

4.1 Architecture

Bluetooth engine, GPRS Engine and Cache are the building blocks of the pro-
tocols. Bluetooth Engine is invoked by the protocols to discover or interact with
the services in the proximity. It is a layer above the Bluetooth stack and pro-
vides a convenient Java API similar to JSR-82 for accessing the Bluetooth stack.
GPRS Engine is invoked to carry out the communication with the web services
over GPRS.

Cache is persistent storage. The personal information of the user along with
her preferences regarding services are stored in the cache. Personal information
of the user may include name, age, address, credit card number etc. Storing
personal information serves two purposes: first, it provides a way of identifying
the user and authenticating her if need be; second, personal information along
with preferences and location help in identifying the best suited service for the
user during service discovery phase thereby making SDIPP context-aware. Cache
also stores the interface/protocol downloaded by the interaction protocol and the
data needed across protocols or across sessions.
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Fig. 4. SDIPP Discovery Model

4.2 Discovery Protocol

Bluetooth SDP provides service browsing without apriori knowledge of the ser-
vice characteristics. It does not include functionality for accessing services, how-
ever, it can be used in conjunction with some other protocol for accessing ser-
vices. Our discovery protocol is hierarchical in nature, and is a 3-step process as
summarized below:

One-hop Discovery. Services in the proximity (one-hop) are discovered using
Bluetooth SDP. If the list of services discovered by Bluetooth SDP includes the
desired service, the discovery phase is over. If it does not include the desired
service, but instead lists a Service Discovery Service(SDS), the SDS is invoked
to locate the desired service in a multi-hop fashion.

Multi-hop Discovery. In our implementation, SDS is implemented using Split
Smart Messages. Discovery SSMs broadcast themselves in the ad-hoc network
and look for tags with the desired properties. These tags are created by services
for the purpose of advertising themselves. When a desired tag (i.e service) is
found, the requester is informed.

Web-Based Discovery. Services also register themselves with a public web ser-
vice and periodically update their information. If internet connectivity via GPRS
is available, the public web service is contacted and requested for information
about the desired service (e.g location).

4.3 Interaction Protocol

In outdoor distributed computing scenarios, the interaction of the user with a
service is assumed to be spontaneous, and therefore the protocol for interacting
with the service would need to be learnt on the fly. Our interaction protocol is
inspired by Jini [4]. Every service registers itself with a web server, which assigns
it a unique id and stores the interface which can be downloaded for interacting
with the service. Figure 5 shows the interaction protocol. The protocol can be
summarized as follows:

– The device lists the services discovered during discovery phase. The desired
service is requested for its id over short-range wireless.

– The service responds with its id.
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Fig. 5. SDIPP Interaction Protocol

– The id along with the personal information of the user stored on the device
is sent over to a trusted web server over the GPRS connection. The personal
information of the user would be used for authenticating them if the service
requires that.

– The web server, after authenticating the request, responds with the code and
data needed for interacting with the service. The code is a Java program that
contains the protocol and interface for interacting with the service.

– Since the code is obtained from a trusted server it is assumed to be safe
and is dispatched for execution on the device. All further communication
between the device and the service takes place as a result of executing the
downloaded code.

Note that the web server(s) for storing the downloadable interface for the
services may be different from the web server(s) that act as service directories.
We implement downloading of code from the internet using OTA (Over-The-Air)
provisioning [8].

4.4 Payment Protocol

Our protocol for paying services is based on the electronic cash representation
proposed by the Millicent protocol [30]. Millicent proposes the idea of using
accounts based on scrip and brokers to sell scrip. A piece of scrip represents an
account the user has established with a vendor. At any given time, a vendor
has outstanding scrip (open accounts) with the recently a users. The balance
of the account is kept as the value of the scrip. When the customer makes a
purchase with scrip, the cost of the purchase is deducted from the scrip’s value
and new scrip (with the new value/account balance) is returned as When the
user has completed a series of transactions, he can ”cash in” the remaining
value of the scrip (close the account). Brokers serve as accounting intermediaries
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between users and vendors. Customers enter into long-term relationships with
broke the same way as they would enter into an agreement with a bank, credit
card company, or internet service provider. Brokers buy vendor scrip as a service
to users and vendors. Broker scrip serves as a common currency for customers
to use when buying vendor scrip, and for vendors to give as a refund for unspent
scrip.

We try to satisfy the design principals described in [48]. In our model, the
broker is a web service that the user already has an account with. The vendor
is the service that the user wishes to use and pay for.

Figure 6 illustrates the payment protocol. It as can be summarized as
following:

– The device requests the service for its broker’s URL and the bill over short-
range wireless.

– The service responds with its broker’s URL and the bill.
– The service id, broker’s URL and bill amount is sent over to the user’s broker

over GPRS along with the personal information of the user stored on the
device.

– User’s broker buys service scrip from service’s broker on user’s behalf. The
amount of scrip bought is greater than or equal to the bill amount.

– User’s broker responds to the device with the service scrip .
– User pays the service using the service scrip.

Brokers are assumed to be trusted services that have service providers as
their clients and other brokers as their peers. Even if the broker tries to cheat,
the customer and the service provider can independently check the scrip and
detect broker fraud. Service provider fraud consists of not providing service for
valid scrip or deducting more amount from the scrip than is valid. If the service
provider tries to cheat, the customer can detect the fraud and complain to the
broker who will take care of it.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Outdoor Distributed Computing with Split Smart Messages 177

If the customer is cheating, then the service provider’s only loss is the cost of
detecting the bad scrip and denying service. Every transaction requires that the
customer knows the secret associated with the scrip. The protocol never sends
the secret in the clear, so there is no risk due to eavesdropping. No piece of scrip
can be reused, so a replay attack will fail. Each request is signed with the secret,
so there is no way to intercept scrip and use the scrip to make a different request.

This payment protocol provides a security model that is well suited for profit-
based services, where the service and the user need to be authenticated to each
other and anonymity maintained at the same time.

4.5 Evaluation

The SDIPP protocol was implemented and tested on Sony Ericsson P900 phones
which have both Personal Java and MIDP in addition to C++. We used MIDP
and JSR-82 (Java Bluetooth API) to implement the architecture. Table 4 shows
the time of completion for the different phases of the SDIPP protocol. The
time of completion of the Interaction Protocol depends on the size of the code
downloaded from the internet. The lower bound is determined by the size of
the jad file of the corresponding code which is typically 250 Bytes. The time of
completion of the ad-hoc service discovery over Split Smart Messages depends
on the number of nodes (hops) involved.

Table 4. Performance Evaluation of SDIPP

Operation
Average Time of
Completion

Bluetooth Service Discovery 22.5 sec

Ad-hoc Service Discovery 2 sec × No. of Hops

Web directory lookup 2.5 sec

Interaction Protocol(Lower Bound) 3 sec

Payment Protocol 6 sec

We have implemented and tested a few applications on top of this protocol.
We have also gained some experience in the process. For details refer to [55].

5 Related Work

Split Smart Messages (SSMs) share the idea of code migration with mobile agents
[38,31], and active networks [26,41], as well as the security and portability issues.

Unlike mobile agents, SSMs are defined to be responsible for their own routing
in a network. This feature combined with content-based routing allows SSMs to
adapt quickly to changes that may occur both in the network topology and the
availability of resources at nodes. Furthermore, the SSM system architecture
is lightweight and defines a node architecture suitable for resource constrained
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devices. Services can be executed, discovered and migrated on top of the SSM
middleware.

SSMs differ from active networks (AN) in several key features. Primary differ-
ence comes from the problems they try to solve: AN target improved performance
for end-to-end data transfers in relatively stable networks, while SSMs help the
development of distributed applications on top of a new computing infrastruc-
ture that is unreliable and under-utilized due to the lack of programmability.
Unlike AN, we define a computing model whereby several SSMs can cooperate,
exchange data, and synchronize with each other through the tag space. In terms
of migration, AN do not transfer the execution state from node to node whereas
the SSM model does.

Tag Space bears resemblance with tuple spaces [24,40]. While both offer per-
sistent shared memory for applications, the essential difference is that the tag
space is local to every node.

To implement execution migration (i.e., transfer of the execution state), two
approaches can be used: VM-based or compiler-based. The first approach implies
designing new VMs or modifying existing ones to support the capturing and
restoring of the execution state. The second approach works for unmodified
VMs, but it involves either a modified compiler, or other tools that insert new
pieces of code in the source code or directly in the executable program in order
to capture and restore the execution state.

Similar to the original SM implementation, a number of systems [51,49,23]
have modified the Java VM (JVM) to provide the required state capturing and
restoring. Unlike SMs, which were designed specifically for networks of resource
constrained devices, these systems are too heavy for devices such as cell-phones
or PDAs.

Numerous service discovery protocols(SDPs) have been proposed. Each has
its own infrastructure requirements and target audiences. Bluetooth SDP [14]
follows the client-service model and enables nearby devices to discover services
on each other. Bluetooth is a low power protocol making it suitable for energy-
constrained devices. Bluetooth SDP is query based, which means that clients
query for available services rather than services pro-actively announcing their
presence. It uses unicast and broadcast as the communication mechanism and
does not provide any service invocation mechanism. DEAPspace [43] proposed
by IBM research, is aimed for single-hop ad hoc environments. Nodes cache
service information and periodically broadcast it to share the information with
each other. DEAPspace follows the client-service model. INS [16] is a hierar-
chical resource discovery and service location protocol that uses a late binding
mechanism to provide resilience against name-to-location mapping changes. INS
follows the client-service-directory model where the directory is distributed. INS
is scalable and targets peer-to-peer networks.

Salutation [13] follows the client-service-directory model and uses RPC for ser-
vice invocation. Salutation provides a transport-independent interface to
applications making it very flexible. Effort has been made to map Salutation
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APIs to Bluetooth Service Discovery Layer [27]. Service Location Protocol [33] is
a lightweight protocol that targets service discovery within a site. It uses URL-
based service invocation mechanism. Directories are optional. SLP supports both
service announcements and client queries. Universal Plug and Play(UPnP) [6]
is a device oriented service discovery protocol that targets home and office envi-
ronments. UPnP follows the client-service model and uses XML for service in-
vocation. UPnP is being actively advocated by Microsoft. Splendor [62] follows
a client-service-proxy-directory model, where proxy is used to achieve privacy,
authentication and load-sharing. Jini [4] follows client-service-directory model,
where the directory not only provides service look-up but also downloadable Java
code/objects for interacting with the service using RMI. Jini targets enterprise
environments. UDDI [12] uses a web-based distributed directory that enables
profit-based web services to list themselves on the internet and discover each
other, similar to yellow pages.

Aalto et al [15] describe a system for Bluetooth and WAP Push based adver-
tising for Smart Phones. They utilize Bluetooth for positioning the end-user’s
handheld and obtaining the Bluetooth address. The advertisements are then
pushed to the phone over WAP. Scott et al [58] propose machine readable visual
tags for bypassing Bluetooth service discovery on phones. Visual tags can be
recognized by phone cameras and can improve device discovery time. However,
this restricts discovery to only devices that are visible and increases human-
intervention (for scanning the environment with phone camera).

Cooltown [39] and Splendor [62] utilize the idea of associating devices and ser-
vices with the web. UDDI [12] is a web-based distributed directory that enables
profit-based web services to list themselves on the internet and discover each
other, similar to yellow pages. NTT DoCoMo’s I-mode [3] makes web service
provisioning on Smart Phones easier. Recently, they adopted Sony’s contact-
less smart card technology called Felica [11], which can be used for electronic
payment. Felica implements RF functions for wireless communication and is
therefore extremely short-range.

6 Conclusions

In this paper, we exemplified outdoor distributed computing and identified the
key challenges. We presented a middleware, called Split Smart Messages, that
enables a large subset of outdoor distributed computing applications. We evalu-
ated it on a testbed of HP iPAQs and Sony Ericsson P900 phones and found it
lightweight, portable, resilient to network failures and relatively secure. We also
presented a protocol, called SDIPP, which exploits dual connectivity on devices
(e.g smart phones) for service provisioning (discovery, interaction and payment);
and evaluated its performance on Sony Ericsson P900 phones.

Acknowledgements. This material is based upon work supported by NSF
under grants ANI-0121416 and CNS-0520123.
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Abstract. Current coordination models offer limited support for applications in
which mobile hosts not only must coordinate their actions, but must also coordi-
nate when those actions will be taken. This paper describes the design of TNM,
a new coordination model based on timed futures — a novel extension to cur-
rent coordination models through which mobile hosts can propose and negotiate
which actions they will take and when. We discuss the use and advantages of this
new coordination model in the context of the automatic motorway application
challenge problem posed for the 2005 Monterey Workshop.

1 Introduction

Mobile computing has experienced rapid growth in recent years due to both advances
in technology and societal trends toward greater adoption of technology into peoples
daily lives. These trends are occurring both on the individual scale, with mobile de-
vices becoming the norm for personal communication, data storage and processing,
and entertainment; and on larger scales as mobile network centric architectures are be-
ing designed to replace previously monolithic segments of transportation systems [1],
military command and control systems [2], and other critical infrastructure.

The physical mobility of agents, which are people or programs performing actions
that unless otherwise constrained are asynchronous and autonomous with respect to the
actions of other agents in the system, is of particular importance in these systems. Phys-
ical mobility results in ad hoc networks, which create many challenges for application
developers. These challenges include:

– frequent unannounced disconnections,
– message delay and loss, and
– intermittent connectivity between hosts.

To address these challenges, a number of coordination models have been developed
to decouple the interactions between agents from the computations and other actions
performed by each agent. This decoupling promotes rapid application development,
flexible application deployment, and formal reasoning about interactions between mo-
bile hosts. However, for some mobile computing applications (e.g., the transportation
and military command and control systems mentioned above), these capabilities are
not enough: the timing of actions by the mobile hosts is also critical to their correct
operation, and new coordination models are needed to support temporal coordination
of agents actions explicitly.

F. Kordon and J. Sztipanovits (Eds.): Monterey Workshop 2005, LNCS 4322, pp. 184–202, 2007.
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This paper presents the design of TNM1, a new coordination model that facilitates
negotiation and execution of time-constrained actions across logically mobile agents
and physically mobile hosts. TNM extends previous coordination models by providing
new primitive tuple space operations and semantics for negotiating temporal actions,
while preserving application flexibility and ease of deployment. TNM first provides fu-
ture operation primitives to allow agents to propose and negotiate the future creation
and removal of information from a shared tuple space. TNM then refines the seman-
tics of those future operation primitives to include a quantitative notion of time under
which explicit timing of actions can be asserted and requested. Finally, TNM defines
semantics for binding proposals to requests, semantics for determining when proposals
and requests for actions have been satisfied, and semantics for whether (and if so how)
proposals and requests can be retracted if necessary.

The rest of this paper is structured as follows. Section 2 surveys previous related work
on centralized, distributed, and timed coordination models upon which TNM builds, and
which TNM extends. Section 3 describes a motivating example from the 2005 Monterey
Workshop automatic motorway challenge problem, and highlights several challenges
that previous coordination models do not address. Section 4 presents the TNM coordi-
nation model in detail, and identifies the main contributions of our approach: support for
futures, timed futures, and semantics for satisfaction and retraction. Section 5 discusses
how the TNM coordination model can address the challenges posed by the motivating
example discussed in Section 3, through an example scenario. Finally, Section 6 offers
concluding remarks and summarizes remaining open problems for future work.

2 Related Work

We now summarize related research on coordination models that precedes our work on
TNM, explain how TNM builds upon and extends those previous advances, and high-
light the novel aspects of our approach within that context. We first consider centralized
coordination models in which agents interact through a single common tuple space that
has no quantitative notion of time, in Section 2.1. In Section 2.2, we describe coordina-
tion models that add support for coordination in distributed and mobile settings. Finally,
in Section 2.3 we consider coordination models that add notions of relative and absolute
time. Taken together, these coordination models form the foundation upon which which
we have developed our extensions in the TNM model, which we discuss in greater detail
in Section 4.

2.1 Centralized Coordination Models

First,weconsider thecoordinationprimitivesneededforcentralizedcommunicationwith-
out consideration of time. The basic tuple space operations provided by LINDA [3] are:

– out(t), which places tuple t into the tuple space;
– in(p), which removes a tuple matching pattern p from the tuple space and returns

it to the agent that issued the in operation; and

1 TNM is an abbreviation of the Latin phrase tempus neminem manet, which translates into
English as time waits for no one.
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– rd(p), which copies a tuple matching pattern p but does not remove the tuple from
the tuple space, and returns the copy to the agent that issued the rd operation.

If no matching tuple is present when an in or rd operation is issued, the call to the
operation will not return until a matching tuple is added to the tuple space. Therefore,
both in and rd are blocking operations from the perspective of an agent invoking them.

A react(p,s) primitive is provided by LIME [4]. This primitive offers a natural exten-
sion to the operation primitives provided by the LINDA coordination model, in which
a reaction containing pattern p and code fragment s is registered with the tuple space,
and the call to the react operation then returns. When a tuple matching pattern p sub-
sequently appears in the tuple space, the code fragment s is invoked. Reactions allow
tuples to be handled asynchronously from the actions of the agents that register the
reactions. Reactions help to protect agents from unbounded blocking.

2.2 Distributed and Mobile Coordination Models

Many distributed and mobile applications require bounds on blocking times and/or the
ability to determine the success or failure of tuple space operations. A variety of coor-
dination models have added variations on the in and rd primitives that are better suited
to distributed coordination such as probing operations inp(p) and rdp(p), which re-
turn null if no tuple matching pattern p is found; group blocking primitives ing(p) and
rdg(p), which return all tuples matching pattern p as opposed to only returning one
matching tuple; and probing group operations ingp(p) and rdgp(p), which return either
all matching tuples or null if none are found.

LIME [4] also extends the centralized coordination model discussed in Section 2.1
by supporting transiently shared tuple spaces, to accommodate mobility of agents and
hosts. LIMONE [5] adds a policy-driven acquaintance list so that agents can share tuple
spaces selectively with other agents.

Again, while these extensions address many of the concerns of distributed and mo-
bile coordination, they do not support reasoning about whether a particular tuple, once
produced by an agent, will be visible to another agent. The TNM coordination model
extends current distributed and mobile coordination models to include the ability to rea-
son about when a proposal or request has been satisfied, as well as whether a proposal
or request can be retracted if necessary.

2.3 Timed Coordination Models

Quantitative notions of relative and absolute time have appeared in several coordination
models [6,7,8,9]. In these models, time is explicitly represented in the expression of
tuples, patterns, and other coordination model features. For example, [6] defines the
equivalent of an out(t,d) operation2, in which the appearance of tuple t in the tuple
space is subject to a relative delay d from when the operation is invoked.

2 The operation signature notation we use in this paper assumes that a language that supports
overloading, such as Java or C++, is used to specify a different operation definition for each
distinct operation signature. In languages that do not support overloading, the same effect can
be achieved through mangling of the operation names.
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These timed coordination models also add further semantics to operation primitives,
based on the explicit representation of time. For example, time-outs are used in the
equivalent of a rdp(p,w) operation provided by Timed Linda [7] where parameter w
determines how long the operation will wait before returning either a tuple matching
pattern p, or null if no matching tuple appears before the time-out.

The CAST [9] coordination model provides operation primitives that take into ac-
count hosts motions in space and time. Our extensions in the TNM coordination model
(described in Section 4) are based on the operations in the CAST coordination model,
but only consider time and not space. To simplify discussion in the rest of this paper,
we therefore abstract the CAST operations as follows:

– out(t,start,end), which places tuple t into the tuple space — start and end are times
that delimit the lifetime of tuple t in the tuple space;

– in(p,start,end), which removes a tuple matching pattern p from the tuple space and
returns it to the agent that issued the in operation — start is the time at which the
operation will first attempt to match a tuple in the tuple space, and end is the time
at which the operation will return null if it has not matched a tuple before then;

– rd(p,start,end), which copies a tuple matching pattern p (but does not remove the
tuple from the tuple space) and returns the copy to the agent that issued the rd
operation — start is the time at which the operation will first attempt to match a
tuple in the tuple space, and end is the time at which the operation will return null
if it has not matched a tuple before then;

– ing(p,start,end), which has the same semantics as in(p,start,end) except that it re-
moves and returns all matching tuples if any are present;

– rdg(p,start,end), which has the same semantics as rd(p,start,end) except that it
returns copies of all matching tuples if any are present; and

– react(p,s,start,end), which at time start registers a reaction containing pattern p
and code fragment s with the tuple space and at time end unregisters that same
reaction.

Adding quantitative time to coordination models is an important first step towards
real-time coordination, as it makes it possible to reason about when tuples can be
matched (if at all). However, these timed coordination models are still unable to rea-
son about whether tuples will be matched. The TNM coordination model addresses this
limitation by extending current timed coordination models to include timed futures that
can be bound to other timed futures and to timed tuples, and thus can be used to rea-
son about (and make guarantees regarding) whether tuples will be produced, read, and
consumed (and if so, when).

3 Motivating Example

The automatic motorway application presented in the 2005 Monterey Workshop chal-
lenge problems [10] is an important example that serves to illustrate the motivation for,
and potential impact of, our work on TNM. It also serves to establish criteria for de-
termining where features provided by TNM are needed, versus where features of other
existing coordination models are sufficient.
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Fig. 1. Vehicles Approaching a Hazard

In this application, vehicles enter and leave an automatic motorway through regular
entrances and exits, and navigate autonomously along the motorway3 To support this
activity safely and with suitable performance, the vehicles’ on-board computing and
communication capabilities must be used to coordinate lane changes and other actions
with nearby vehicles, and to propagate information about congestion, obstacles and
other contextual features to other vehicles throughout the motorway.

A key problem for this system is how to ensure that traffic moves steadily throughout
the system while avoiding collisions between vehicles. Consider for example a scenario
illustrated in Figure 1 in which five vehicles are traveling as a platoon [11], occupying
all three lanes of a segment of an automatic motorway. A software agent hosted by the
leading vehicle in one of the lanes (vehicle E in Figure 1) detects hazards, such as a
large piece of debris or other obstacle, ahead in its lane. When a hazard is detected, this
agent immediately alerts software agents hosted on the other vehicles and considers
actions that will allow it to avoid a collision with the hazard.

The difficulty is that an agent’s appropriate actions may depend not only on current
spatio-temporal factors (such as its vehicle’s speed, the trajectories of the lanes in the
motorway, the distance to the hazard, and the relative positions and speeds of the other
cars in the platoon) but also on the potential future actions of the other agents. For ex-
ample, vehicle E may be unable to move left one lane unless vehicle C decelerates,
providing room for vehicle E to merge into the middle lane. However, vehicle C’s de-
celeration may inhibit vehicle D’s ability to merge left as well, to avoid the hazard. To
avoid collisions (the primary concern) while preferring a smooth flow of the vehicles
around the hazard (an important secondary concern), the vehicles’ respective agents
must therefore coordinate which actions each will take, and also at what times they will
take them.

The rest of this section considers how such coordination can be realized in the context
of this example scenario. In Section 3.1 we first describe relevant assumptions we make
about the motorway example itself. In Section 3.2 we discuss to what extent existing
coordination models address this example scenario. In Section 3.3 we then describe
the remaining unaddressed issues posed by this application, which motivate the TNM
coordination model that is discussed in detail in Section 4.

3 The original application scenario proposes a two-lane motorway. We generalize this problem to
have three or more lanes, in order to highlight TNM’s handling of more complex coordination
scenarios.
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3.1 Assumptions About the Automatic Motorway Example

As a foundation for discussion in the rest of this paper, we now note and justify relevant
assumptions we make about the automatic motorway example itself. First, we assume
that accurate information about the speed and position of each vehicle can be obtained
and communicated among the vehicles within a local region. Obtaining accurate posi-
tioning information is a challenging problem in its own right; but since this capability
is fundamental to the safe operation of such an automatic motorway, we assume that it
can be addressed through other techniques, as in [11].

Second, as stated in [10], we assume that it will not be cost-effective to deploy servers
and other fixed infrastructure along the entire stretch of the motorway. For example, the
cost of placing servers at motorway entrances and exits may be justified by the safety-
critical nature of those junctures and by the potential for cost recovery, e.g., through
collecting tolls at those servers. However, it is neither possible to anticipate all places
along the motorway that a hazard could occur (e.g., where a vehicle might lose a portion
of its cargo) nor would it be affordable to deploy enough servers for complete coverage
of the motorway.

Third, we assume that an accurate and consistently defined view of time is avail-
able to every agent within each context: i.e., end-to-end among the servers deployed at
crucial motorway intersections, within a platoon of vehicles moving along the motor-
way, etc. Scenarios in which previously distinct contexts merge (e.g., a platoon of cars
reaches an intersection where a server is deployed) will necessarily require additional
mechanisms (e.g., clock synchronization protocols) to merge the relative views of time.
However, a detailed discussion of those issues is beyond the scope of this paper.

3.2 Applicability of Existing Coordination Models

We now consider the applicability of existing coordination models to the automatic
roadway example. We first examine which features of centralized coordination models
can be applied to this example. We then examine which features of distributed and
mobile coordination models are required by the example, and finally which features of
timed coordination models are also necessary.

Centralized coordination models. A server at each on-ramp and off-ramp could pro-
vide a tuple space through which agents hosted on vehicles entering and departing the
motorway can exchange information through wireless communication. For example,
the server at an on-ramp could provide and update a standard set of tuples describing
known hazards in the motorway, current weather conditions, etc., into the tuple space.
Vehicles entering the roadway could then perform rd operations to obtain that infor-
mation, and as they encounter other servers along the motorway issue subsequent rd
operations to refresh that information.

Agents hosted on vehicles exiting the motorway could also perform out operations
to report information they have obtained while in transit. For example, an agent that has
observed a hazard in the motorway could report it to the server. Each server registers
reactions for various important kinds of information, such as hazard reports; when a tu-
ple is injected into the tuple space, the associated code fragment can perform additional
necessary actions (such as corroborating hazard reports, or notifying other servers along
the affected segment of the motorway).
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Distributed and mobile coordination models. In addition to the tuple space maintained
on each server, we assume each vehicle would also have one or more tuple spaces (e.g.,
one private tuple space and one public tuple space) of its own. When a vehicle comes
into wireless range of a server or another vehicle, their public tuple spaces would be fed-
erated automatically (as in LIME) so that tuples would be pooled among all connected
agents. Note that for brevity we do not consider security issues, which are beyond the
scope of this paper. For a sample treatment of password protection for tuples and tu-
ple spaces and other relevant issues, we refer to our previous work on secure service
provision in ad hoc networks [12].

Federating tuple spaces provides a way for vehicles to exchange information among
themselves either directly or through copying tuples into the server’s tuple space. For
example, agents on vehicles in the roadway may supplement server-provided informa-
tion with “gossip” from other vehicles. For example, uncorroborated hazard reports,
which though they might be treated with lower confidence than a corroborated report
issued by the server itself, would allow an agent to prepare for the possibility that a
given report is in fact correct.

Furthermore, servers may themselves offer additional “quality of experience” ser-
vices such as downloading information feeds for news and entertainment media from
the wired network to a vehicle. Because vehicles may not know of these services a pri-
ori, the server could advertise these services by placing additional advertisement tuples
in its tuple space. When the server’s tuple space is federated with vehicles tuple spaces,
those advertisements would become available to those vehicles’ agents.

Other features of distributed and mobile coordination models are also needed to sup-
port the automatic motorway example. For example, the rdp operation primitive allows
agents to query for tuples without blocking, which is necessary when matching tuples
may or may not be present in the tuple space. Furthermore, for service discovery an
agent may want to obtain the entire set of service advertisement tuples matching a ser-
vice request pattern, which requires operation primitives such as rdgp.

Timed coordination models. The discussion so far has focused on coordination mod-
els that do not offer an explicit representation of time. However, there are many cases
where the ability to represent the lifetimes of tuples, and to support timeouts and other
features of operation primitives that depend on an explicit representation of time, is use-
ful. For example, reports of current weather conditions are time sensitive, so bounding
the lifetimes of tuples that report those conditions can help to avoid agents receiving
out-of-date information.

Also, as vehicles move along the motorway their tuple spaces will be federated with
tuple spaces on servers and other vehicles for finite intervals during which the appear-
ance of new information may be of interest. Instead of using blocking rd or rdg opera-
tions, or transient rdp or rdgp operations, an agent on the vehicle could specify a wait
time during which it would like to receive information matching a given pattern, using
the timed rdp or rdgp operations.

Servers may also use timed operations to control when information is added to or
removed from their tuple spaces. For example, a news feed service may be priced higher
during peak hours than during off-peak hours, so that the server would specify different
lifetimes for tuples advertising peak and off-peak versions of a service. The server could
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also schedule the creation of service advertisement tuples by using timed out operations,
which delay the tuple’s creation until a specified time.

3.3 Remaining Challenges

Although a number of important coordination requirements for the automatic motor-
way can be met, as we have discussed in Section 3.2, several challenges still remain for
which current coordination models do not offer adequate support. Specifically, agents
need to be able to propose and request future actions, to be notified when proposals and
requests are bound, to reason about when those actions will occur, and to manage re-
traction of proposals if subsequently available information reveals them to be infeasible
or sub-optimal.

Representing sequences of operations. Although service discovery is supported by cur-
rent coordination models, agents have no way to propose to provide a certain piece of
information in the future. This constrains the scope of possible interactions significantly,
as all aspects of an interaction between two agents must be handled one operation at a
time, rather than allowing agents to coordinate entire sequences of operations.

For example, in the scenario presented in Figure 1, it would be at least inefficient
— and due to time constraints on making decisions could possibly lead to a collision
— if the vehicles had to coordinate sequentially. For example, consider the following
partially ordered sequence of operations, in which the operations within each step are
executed concurrently but all changes to the tuple space by those operations are com-
pleted before the next step begins:

1. Vehicle E injects a tuple alerting other vehicles to a detected hazard, and also injects
a tuple with its proposal to move left one lane.

2. Vehicle D reads the alert tuple, and injects a tuple with its own proposal to move
left one lane; vehicle C reads the proposal from vehicle E, determines that it must
decelerate to avoid a collision with vehicle E, and injects a tuple with its proposal
to decelerate.

3. Upon seeing the proposal from vehicle D, vehicle C determines that if it decelerates
vehicle D may collide with it, retracts its proposal to decelerate and injects a new
proposal to move left one lane.

4. Vehicle A detects that if it accelerates or maintains its velocity vehicle C may col-
lide with it, and injects a tuple with its proposal to decelerate; vehicle B detects that
if it decelerates or maintains its velocity vehicle C may collide with it, and injects
a tuple with its proposal to accelerate.

5. All vehicles determine that the proposed actions will avoid collisions and the vehi-
cles take their proposed actions.

Timing data. Even if agents were able to coordinate entire sequences of operations
concurrently, the coordination model still would not provide a means for them to reason
about whether a given sequence of operations would complete within a specified time
limit (e.g., before vehicle E came too close to the hazard to be able to steer around it).
To perform this kind of reasoning, agents must be able to propose not only sequences
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of actions to be taken, but the times at which each of the actions in a sequence would be
taken. Therefore, the coordination model needs to incorporate an explicit quantitative
representation of time into its support for coordinating sequences of actions.

Proposals, requests, and binding. While it is necessary for vehicles to add timing
data to the tuples they inject, this alone is not sufficient to allow efficient and reli-
able coordination. For example, if during step 1 vehicle A had decided to change lanes
(e.g., to be able to exit the roadway at an upcoming exit) and during step 2 read vehi-
cle C’s proposal to decelerate, then vehicle C’s retraction of its proposal to decelerate
would violate vehicle A’s dependence on that proposal and furthermore vehicle C would
have no indication of that violation. What is needed, therefore, is a way for timed tu-
ples to be both proposed and requested, and for proposals and requests to be bound
so that reliable coordination involving inter-dependent sequences of operations can be
achieved.

Retraction. Anticipating and addressing all combinations of events that may have sig-
nificant consequences is notoriously difficult in complex inter-connected applications,
even within a single mobile host, as the Mars Pathfinder [13] example demonstrates.
Should an unanticipated condition arise on a host during coordination involving se-
quences of actions, an agent may need to retract a proposed sequence of actions. How-
ever, the implications of such a retraction must be handled carefully since other agents
may have made their own decisions based on the assumption that the proposed sequence
of operations would occur. Two distinct forms of retraction are needed:

– strong retractions in which the proposed sequence of operations is retracted uncon-
ditionally (e.g., if a vehicle enters a mode of failure after which it is impossible for
it to perform an expected action); and

– weak retractions in which the proposed sequence of operations is retracted only if
another agent does not depend on the sequence already (e.g., if a vehicle discovers
a potential optimization to an already sufficient maneuver that it has proposed).

Although the addition of timing data to tuples has been achieved in other coordi-
nation models as we have discussed in Section 2, explicit mechanisms for proposing,
requesting, binding, and retracting future operations are still needed. In Section 4 we
discuss our proposed approach to address these outstanding issues.

4 The TNM Coordination Model

This section describes the main contributions of this work, which address the unmet
challenges described in Section 3.3: (1) extending coordination models with future
primitives to let agents propose and request the future availability of information within
a shared tuple space, which we discuss in Section 4.1; (2) extending untimed futures
to include a quantitative notion of time, which we discuss in Section 4.2, so that ex-
plicit real-time constraints can be asserted, evaluated, and assured; and (3) extending
the semantics of untimed and timed futures to address when futures are bound and
when futures may or may not be retracted, which we discuss in Sections 4.3 and 4.4,
respectively.
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4.1 Futures

We first provide a new extension to existing coordination models: “future” primitives
that propose and request basic tuple-space operations which would take place in the fu-
ture. Five future primitives are provided by the TNM coordination model, which agents
can use to propose to inject, remove, or copy tuples into or from the tuple space:

– future out(p) proposes to put a tuple matching pattern p into the tuple space at
some point in the future;

– future in(p) requests to remove a tuple matching pattern p from the tuple space at
some point in the future;

– future rd(p) requests to copy a tuple matching pattern p from the tuple space at
some point in the future;

– future ing(p) requests to remove all tuples matching pattern p from the tuple space
at some point in the future; and

– future rdg(p) requests to copy all tuples matching pattern p from the tuple space
at some point in the future.

Each of these operations puts a special future tuple of the form

<future_type, id, pattern, bound_list>

into the tuple space. The future type field indicates what type of future it is (i.e., fu-
ture out, future in, future rd, future ing, or future rdg). The id field contains a unique
identifier that is assigned automatically to that tuple by the tuple space. The pattern field
contains a copy of the pattern that was passed as a parameter to the future operation. The
bound list field is initially empty and is updated automatically according to the binding
rules discussed in Section 4.3. After the tuple is placed in the tuple space and its id and
bound list fields are filled in, each of these future operations then returns a copy of the
newly created and initialized future tuple. The agent may then use that tuple’s identifier
at a later time to request retraction of that future tuple, as we discuss in Section 4.4.

4.2 Timed Futures

As we discussed in Section 3.3, not only must a real-time coordination model support
agents’ ability to reason about sequences of actions, but it must also allow them to
reason about when those actions would occur. To provide this capability, the TNM co-
ordination model includes explicit representations of time in the future operations, and
adds temporal semantics to the binding and preference rules for timed futures.

We first introduce timed versions of the future in, future rd, and future out primi-
tives. These primitives are similar to the corresponding untimed future operation prim-
itives, except that they specify temporal parameters in addition to a pattern:

– timed future out(p,start,end), proposes that a timed out operation will put a timed
tuple matching pattern p into the tuple space — the lifetime of the tuple will be de-
limited by the times given by the start and end parameters to the timed future out
operation;
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– timed future in(p,start,end), requests a timed in operation that will attempt to
remove a tuple matching pattern p from the tuple space at the time given by the
start parameter, and will wait until the time given by the end parameter before
returning null if no tuple is matched by then;

– timed future rd(p,start,end), requests that a timed rd operation will attempt to
copy a tuple matching pattern p from the tuple space at the time given by the start
parameter, and wait until the time given by the end parameter before returning null
if no tuple is matched by then;

– timed future ing(p,start,end), requests a timed ing operation that will attempt to
remove all tuples matching pattern p from the tuple space at the time given by
the start parameter, and will wait until the time given by the end parameter before
returning null if no tuple is matched by then; and

– timed future rdg(p,start,end), requests that a timed rdg operation will attempt to
copy all tuples matching pattern p from the tuple space at the time given by the start
parameter, and will wait until the time given by the end parameter before returning
null if no tuple is matched by then.

Each of these operations puts a special future tuple of the form

<future_type, start, end, id, pattern, bound_list>

into the tuple space. The future type field again indicates what type of future it
is (i.e., timed future out, timed future in, timed future rd, timed future ing, or
timed future rdg). The start and end fields contain the values of the temporal parame-
ters passed to the timed future operation primitive. The id, pattern, and bound list fields
are equivalent to the corresponding fields in the untimed future tuples, and uniqueness
of id field values is maintained across both timed and untimed future tuples.

4.3 Binding

A novel and important feature of the TNM coordination model is its support for binding
future tuples so that dependences of requested tuples on proposed tuples can be repre-
sented and reasoned about. We first consider the semantics of binding untimed futures,
and then discuss the semantics of binding timed futures. For both untimed and timed
futures, we present rules for which tuples can be bound and then present preference
rules which govern the order in which tuple bindings are performed among those that
can be bound.

Semantics of binding. We say that a future in, future ing, future rd or future rdg tu-
ple with a pattern p, and a future out tuple with a pattern p′, can be bound automat-
ically by the tuple space if p is no more specific than p′, i.e., {t | t matches p′} ⊆
{t | t matches p}. A bound future in, future ing, future rd or future rdg tuple with pat-
tern p constitutes a guarantee that a subsequent in, ing, rd, or rdg operation (respec-
tively) with pattern parameter q will succeed as long as pattern q is no more specific
than pattern p. In fact, the operation can succeed if any future out operation produces a
tuple that matches pattern q. However, it is impossible to reason about such a guarantee
unless q is no more specific than p.
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Timed future tuples can be used to determine if there will be a timed out opera-
tion that is guaranteed to satisfy a timed in, ing, rd, or rdg operation, and to bind
timed future tuples in a manner similar to the binding of untimed future tuples. We
say that a timed future in tuple, a timed future ing tuple, a timed future rd tuple, or
timed future rdg tuple, with a pattern p and start time s and end time e, and a
timed future out tuple with a pattern p′ and start time s′ and end time e′, can be bound
automatically by the tuple space if p is no more specific than p′, and the time inter-
val delimited by s and e overlaps the time interval delimited by s′ and e′. We define
the temporal intersection of two timed future tuples to be the intersection of the time
intervals delimited by their respective start and end fields.

Binding rules. Binding of untimed future tuples is a directed relation from future out
tuples to future in, future rd, future ing, and future rdg tuples. The list in the bound list
field of a future out tuple may only contain identifiers of other kinds of future tuples,
and the list in the bound list field of all other kinds of future tuples may only contain
identifiers of future out tuples. Because it is possible for multiple future tuples to have
patterns matching the pattern in a newly injected future tuple, the tuple space respects
the following rules when binding future tuples, to preserve appropriate semantics of the
future operations.

– A future in or future rd tuple may be bound by exactly one future out tuple.
– A future ing or future rdg tuple may be bound by any number of future out tuples.
– A future out tuple that is bound to a future in or future ing tuple may not be bound

to any other future tuple.
– A future out tuple may be bound to any number of future rd or future rdg tuples.

The binding rules for timed future tuples are similar to those for untimed future
tuples, but with the addition of temporal semantics. With timed future tuples binding
is a directed relation from timed future out tuples to timed future in, timed future rd,
timed future ing, and timed future rdg tuples.

– A timed future in or timed future rd tuple may be bound by exactly one
timed future out tuple.

– A timed future ing or timed future rdg tuple may be bound by any number of
timed future out tuples.

– A timed future out tuple that is bound to a timed future in or timed future ing tu-
ple may not be bound to another timed future in or timed future ing tuple.

– A timed future out tuple can only be bound to future rd or future rdg tuples whose
end times are earlier than the start time of any timed future in or timed future ing
tuple to which the timed future out tuple is bound, but the timed future out tuple
can be bound to any number of such future rd or future rdg tuples.

Preference Rules. When a new future tuple is injected into the tuple space, the tuple
space will perform a sequence of tuple bindings made one-at-a-time according to the
rules given above, until no more allowed bindings can be made. At each step of that
sequence, the following preference rules are applied (in the order they are given) to the
set of all allowed bindings, to choose the next binding to be made by the tuple space.
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– Preference is first given for binding a future out tuple to a future in, future rd, fu-
ture ing or future rdg whose pattern is no less specific to its pattern than any other
future in, future rd, future ing or future rdg tuple. This preference rule is designed
to increase specificity of the bindings performed.

– Preference is then given for binding a future out tuple to an unbound future in, fu-
ture rd, future ing or future rdg tuple over binding it to an already bound future ing
or future rdg tuple. This preference rule is designed to decrease the number of un-
bound requests for tuples.

– Preference is then given for binding a future out tuple to an unbound future rd or
future rdg tuple over binding it to an unbound future in or future ing tuple. This
preference rule is designed to increase the number of requests that can be satis-
fied by each proposal by binding it preferentially to requests that leave the tuple
available to other requests rather than consuming it.

– If more than one binding has been selected after the previous preference rules have
been applied, then one binding is chosen non-deterministically from that selected
set. This preference rule is designed to ensure that binding progresses even when
the preceding preferences have not distinguished a unique binding.

Preference rules for timed future operation primitives are similar to those for untimed
future operation primitives, though both pattern specificity and temporal specificity are
considered.

– The first preference is for binding a timed future out tuple to a timed future- in,
timed future rd, timed future ing or timed future rdg whose pattern is no less spe-
cific to its pattern than any other matching timed future in, timed- future rd,
timed future ing or timed future rdg tuple. Like the corresponding preference rule
for untimed futures, this preference rule is designed to increase specificity of the
bindings performed in terms of the tuples’ patterns.

– The next preference is to bind a timed future out tuple to a timed future in,
timed future rd, timed future ing or timed future rdg whose temporal intersection
no smaller than that for any other matching timed future in, timed -future rd,
timed future ing or timed future rdg tuple. This preference rule is designed to in-
crease specificity of the bindings performed in terms of the tuples’ temporal
intervals.

– Preference is then given for binding a timed future out tuple to an unbound
timed future in, timed future rd, timed future ing or timed future rdg tuple over
binding it to an already bound timed future ing or timed future rdg tuple. Like the
corresponding preference rule for untimed futures, this preference rule is designed
to decrease the number of unbound requests for tuples.

– Preference is then given for binding a timed future out tuple to an unbound
timed future rd or timed future rdg tuple over binding it to an unbound
timed future in or timed future ing tuple. Like the corresponding preference rule
for untimed futures, this preference rule is designed to increase the number of re-
quests that can be satisfied by each proposal by binding it preferentially to requests
that leave the tuple available to other requests rather than consuming it.

– If more than one binding has been selected after the previous preference rules have
been applied, then one binding is chosen non-deterministically from that selected
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set. Like the corresponding preference rule for untimed futures, this preference rule
is designed to ensure that binding progresses even when the preceding preferences
have not distinguished a unique binding.

4.4 Satisfaction and Retraction

Because each future tuple represents a proposed future operation on the tuple space,
two additional concerns must be addressed: when is a future considered to have been
satisfied by another operation on the tuple space, and when may a future tuple that
has not been satisfied be retracted from the tuple space by the agent that proposed it?
We augment the structure of timed and untimed future tuples to contain two additional
boolean fields labeled satisfied and retracted, which are both valued false when the
future tuple is created. The satisfied field indicates whether or not a future tuple has been
satisfied by a subsequent basic tuple space operation, and the retracted field indicates
whether or not a future tuple has been retracted by an agent.

Satisfaction. Each basic tuple space operation can satisfy only one previously unsatis-
fied future tuple corresponding to that operation type: an out operation can only satisfy
a future out or timed future out tuple, an in operation can only satisfy a future in or
timed future in tuple, and so on. Furthermore, a basic tuple space operation can only
satisfy a future tuple whose pattern is no more specific than the pattern or tuple it was
given, and can only satisfy a timed future tuple whose start and end times delimit an
interval within which the basic tuple space operation was performed.

If multiple future tuples could be satisfied by a basic tuple space operation, the fol-
lowing rules are applied (in the order they are given) to determine which future tuple
is marked as being satisfied, taking into account the pattern and temporal specificity of
the basic tuple space operation to the future tuples that it could potentially satisfy.

– Preference is given first to future tuples whose pattern is most specific to the pattern
or tuple given to the basic tuple space operation.

– Preference is then given to timed future tuples over untimed future tuples and to
timed future tuples with an earlier end time over timed tuples with a later end time.

– If more than one future tuple has been selected after the previous satisfaction rules
have been applied, then one future tuple is chosen non-deterministically from that
selected set.

The future tuple thus selected is then updated automatically by the tuple space by setting
the tuple’s satisfied field to true.

Retraction. The final issue we address in the TNM coordination model is the ability for
agents to retract future tuples. This ability supports re-negotiation of (timed or untimed)
sequences of actions among agents, to allow sequences that are no longer feasible to be
discarded, or to allow more optimal sequences to be chosen, as the agents’ operating
contexts change, or as agents obtain more accurate information about their operating
contexts, over time.

However, the ability of an agent to retract a proposed operation has important impli-
cations for other agents whose actions depend on the operation that would be retracted.
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For example, retracting a future out tuple takes back the proposal it has made that a
suitable tuple would be provided by a subsequent out operation, upon which another
operation requested by a future in, future ing, future rd or future rdg operation may
depend. This can have cascading effects on agents expecting the no-longer-guaranteed
tuples to be available which could then prevent them from providing tuples they had
proposed. Despite the potentially adverse consequences of retraction, possibilities such
as the anticipated failure of a host4 motivate having operation primitives for both strong
and weak forms of retraction in the TNM coordination model:

– retract(id), where the future tuple whose unique id field value matches the passed
id parameter is simply marked as having been retracted, if it is present in the tuple
space; and

– retractp(id), where the matching future tuple is only marked as having been re-
tracted if that will not affect other agents, i.e., if it has already been satisfied or its
bound list field is empty.

The retract(id) operation returns a copy of the future tuple that was marked as having
been retracted, or null if no tuple with the given id was present in the tuple space. The
retractp(id) operation returns a copy of the future tuple that was marked as having been
retracted, or null if no future tuple with the given id was present in the tuple space or if
the tuple was bound to any other tuples.

To ensure that appropriate semantics for the future tuples can be enforced entirely
within the future and retraction operation primitives, we place one restriction on the
out, in, and ing tuple space operations of the TNM coordination model: they can be
applied to any kind of tuple except the timed and untimed future tuples described in
Sections 4.1 and 4.2. An out operation that is given a tuple whose first field contains
a future tuple type will simply return without modifying the tuple space. An in or ing
operation with a pattern that can match a future tuple will ignore all future tuples. The
rd and rdg operations have the same semantics for future tuples as they would to any
other tuples, however, so that an agent may query for copies of future tuples existing in
the tuple space.

5 Discussion

A crucial feature of the TNM coordination model is that agents can propose and request
when tuples will be produced, read, and consumed, which can be mapped directly onto
spatio-temporal properties of the context within which agents will propose and take
their actions. For example, in the hazard avoidance scenario shown in Figure 1 and
discussed in Section 3, agents running on each vehicle could propose timed future out
operations and request timed future rd operations for tuples describing timed sequences
of acceleration, deceleration, and lane change actions. In the following discussion we
assume that agents exchange information about the vehicles’ motions frequently, so that

4 For the sake of discussion we assume hosts can detect and announce their failure prior to its
occurrence - this assumption can be weakened in practice through periodic heartbeats, failure
detectors, and other means.
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each maintains an accurate picture of the spatio-temporal structure of the platoon, and
can compute potential actions accordingly.

When the agents on the vehicles in the platoon receive the hazard alert from the agent
on vehicle E, each generates plausible sequences of actions that it could take to make
room for other vehicles, or to avoid the hazard itself. The crux of negotiating a plausible
maneuver that will avoid collisions is the position of vehicle C among the other vehicles,
and the inter-dependence of vehicles actions that this entails. For example, one plausible
sequence of actions would be for vehicle C to accelerate and for vehicles D and E
to decelerate and then change lanes, with the resulting configuration of the platoon
illustrated in Figure 2. Another plausible sequence of actions would be for vehicle C to
maintain its current trajectory, for vehicle E to accelerate and change one lane left ahead
of vehicle C, and for vehicle D to decelerate and change one lane left behind vehicle
C, with the resulting configuration of the platoon shown in Figure 3. A third plausible
sequence of actions would be for vehicle A to decelerate and for vehicle B to accelerate,
and for vehicles C, D, and E to change one lane left, resulting in the configuration of the
platoon shown in Figure 4. Figure 5 summarizes the set of possible maneuvers by each
of the vehicles, combinations of which produce the platoon configurations illustrated in
Figures 2 through 4:

1. vehicle A would decelerate until time t1;
2. vehicle B would accelerate until time t1;
3. vehicle C would decelerate until time t2 > t1;
4. vehicle C would maintain velocity until time t1 and then change one lane left;
5. vehicle C would accelerate until time t2 > t1;
6. vehicle D would decelerate until time t2 and then change one lane left;

Fig. 2. Vehicle C Accelerates

Fig. 3. Vehicle C Maintains Trajectory
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Fig. 4. Vehicle C Moves Left

Fig. 5. Proposed Vehicle Maneuvers

7. vehicle D would maintain velocity until time t2 and then change one lane left;
8. vehicle E would decelerate until time t2 > t1 and then change one lane left;
9. vehicle E would maintain velocity until time t2 > t1 and then change one lane left;

and
10. vehicle E would accelerate until time t2 > t1 then change one lane left.

Each vehicle’s agent would propose its own actions, and would also request actions
by agents on nearby vehicles. For simplicity we assume that each of the agents can
compute both its own plausible actions and those of the agents on other vehicles5:

– vehicle A would use timed future rd operations to request action 2 of vehicle B (i),
and actions 3 through 5 of vehicle C (ii); vehicle A would then propose action 1 by
using a timed future out operation (iii);

– vehicle B would use timed future rd operations to request action 1 of vehicle A
(iv, which would be bound by vehicle A’s timed future out operation from iii), and
actions 3 through 5 of vehicle C (v); vehicle B would then propose action 2 by using
a timed future out operation (vi, which would bind to vehicle A’s timed future rd
from i);

– vehicle C would use timed future rd operations to request action 1 of vehicle A (vii,
which would be bound by vehicle A’s timed future out operation from iii), action 2
of vehicle B (viii, which would be bound by vehicle B’s timed future out operation

5 This assumption could be relaxed in practice by having agents register reactions for other
agents requests, determine whether or not they can perform those requested actions, and if
they are plausible propose them as well.
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from vi), actions 6 and 7 of vehicle D (ix), and actions 8 through 10 vehicle E (x);
vehicle C would use timed future out operations to propose actions 3 through 5 (xi,
which would bind to vehicle A’s and vehicle B’s timed future rd operations from
ii and v);

– vehicle D would use timed future rd operations to request actions 3 through 5
of vehicle C (xii, which would be bound by vehicle C’s timed future out opera-
tions from xi) and actions 8 through 10 of vehicle E (xiii); vehicle D would use
timed future out operations to propose actions 6 and 7 (xiv, which would bind to
vehicle C’s timed future rd operations from ix);

– vehicle E would use timed future rd operations to request actions 3 through 5 of
vehicle C (xv, which would be bound by vehicle C’s timed future out operations
from xi) and actions 6 and 7 of vehicle D (xvi, which would be bound by vehicle
D’s timed future out operations from xiv); vehicle E would use timed future out
operations to propose actions 8 through 10 (xvii, which would bind to vehicle C’s
and vehicle D’s timed future rd operations from x and xiii).

Each vehicle would issue reactions for bound timed future tuples corresponding to
the actions it has proposed and requested. When an agent’s proposal or request is bound,
the agent can use weak retraction to remove other proposed or requested actions from
consideration, though agents may wait until at least one complete plausible sequence
of inter-dependent actions by all vehicles is decided before pruning the set of potential
sequences by retracting requests or proposals.

6 Concluding Remarks

In this paper we have presented the TNM coordination model, which offers novel coor-
dination features including futures, timed futures, binding, and satisfaction and retrac-
tion semantics, which allow agents to negotiate timed and untimed sequences of actions
explicitly. We have shown how these features can help to address challenges posed by
the 2005 Monterey Workshop automatic motorway example, which other coordination
models do not address. As our experience with avionics mission computing applications
we have studied in previous research [14,15,16] indicates, automating vehicle functions
(including real-time coordination among moving vehicles) to increase each agent’s sit-
uational awareness and responsiveness is likely to be beneficial in practice.

As future work we will examine how the tuple space can automatically rebind future
tuples to preserve guarantees that would otherwise be disrupted by strong retraction se-
mantics, and will study whether this automatic rebinding capability could allow weak
retraction to be realized under a wider set of circumstances, e.g., for automatic optimiza-
tion under control of the tuple space as new future tuples are proposed and retracted. We
will also investigate the complex scheduling issues which arise from placing timing con-
straints on tuple-space operations. Many metrics that are used in real-time scheduling,
such as per-process priorities, have limited applicability in ad-hoc networks of mobile
hosts. Furthermore, centralized scheduling algorithms would be impractical to use in
mobile ad-hoc networks, as hosts move into and out of contact with each other. There-
fore, we plan to investigate new scheduling algorithms for timed future coordination, to
provide resource-limited timing guarantees in a decentralized fashion.
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Abstract. Dependable service-orientedcomputing is challengingbecause
it faces an open, heterogeneous, and dynamic computing environment. In
a service-oriented computing system, services developed by different ven-
dorsondifferentplatformsand indifferentprogramming languagesperform
computations collaboratively throughopen standardprotocols.Thispaper
presents an innovative dynamic reconfiguration technology that can be em-
bedded intoa service-orientedapplication tomake theapplication reconfig-
urable.Traditional reconfigurationalgorithmassumes each component can
independently switchwithout collaboration.Theproposed reconfiguration
agents are embedded in different services, and they communicate via a col-
laborative reconfiguration protocol to achieve a consistent reconfiguration
decision. In addition, the reconfiguration protocol itself is fault-tolerant.

Keywords: Service-oriented architecture, self-reconfiguration, dynamic
composition, and fault tolerance.

1 Introduction

Dependability is the trustworthiness of a computer system such that reliance
can justifiably be placed on the service it delivers [3]. The service delivered
by a system is its behavior, as it is perceived by its users. A user is another
system (human or device) which interacts with the former. Dependability is
often measured by a set of system properties such as reliability, availability,
safety, and security.

A system is dependable if it can complete its mission in a timely manner in
the event of component failures and runtime environment changes. In particu-
lar, dependable service-oriented computing refers to the capability of providing
essential services and functions in the presence of runtime environment changes,
failures, and unavailability of component services. Service-oriented system will
not be reliable if it cannot reconfigure adaptively and dynamically. In this paper,
we focus on the fail-silent failure [14] of the services and components instead of
the arbitrary failures such as Byzantine failures.

Service-Oriented Architecture (SOA) has received significant attention re-
cently as major computer and software companies such as HP, IBM, Intel, Mi-
crosoft, and SAP, have all embraced SOA, as well as government agencies such

F. Kordon and J. Sztipanovits (Eds.): Monterey Workshop 2005, LNCS 4322, pp. 203–224, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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as DoD (US Department of Defense). The initial focus on SOA has been the
development of interoperability standards and protocols, such as WSDL, SOAP,
UDDI, and recently numerous SOA standards have been proposed including
ebSOA, ebXML, CPP, CPA, BPEL, OWL-S, and RDF.

SOA based computing is emerging as computing paradigm and is changing
the way software and even hardware is developed [9] [29], including

– Service-oriented requirement engineering (model-based, architecture-based,
reuse-oriented, framework-oriented analysis, simulation-based analysis with
formal analysis);

– Service-oriented architecture and design (enterprise computing, dynamic col-
laboration, system composition, dynamic system analysis);

– Service-oriented programming languages (model-based development, sup-
port automated code generation);

– Service-oriented implementation (by dynamic discovery, composition, and
model-based architecture, and automated code generation);

– Dynamic testing, verification, evaluation, simulation, reliability analysis of
services;

– Dynamic policy construction, verification, simulation, enforcement of secu-
rity and other policies using formal policy languages;

– System maintenance and update will be via service re-composition and
possibly architectural reconfiguration.

SOA may look inherently reliable because it has a loosely coupled architecture,
and any service can be replaced by another service if a former fails or becomes
unavailable. The replacement in theory is just like a re-composition process.
Furthermore, it looks like possible to replace a collection of services and change
the overall application architecture at runtime. However, this is actually much
more complex than it appears to be.

This paper introduces a Development and Runtime Service (DRS) framework
for developing reconfigurable applications in a SOA via service composition [27].
The services are coordinated by a collaboration protocol which enables the run-
time distributed reconfiguration and re-composition.

The applications are specified and composed with the PSML model [26][28].
The model defines the service composition logic as well as the reconfiguration
rules, which can be modified and evolved at runtime to adapt to new situations.

The DRS framework includes a closed feedback control loop for runtime moni-
toring, evaluation, and management to support fault-tolerant computing through
reconfiguration. Furthermore, the reconfiguration mechanism proposed is con-
current and collaborative:

– Concurrent: The reconfiguration is concurrent because multiple reconfigu-
rations can interleave and execute simultaneously. They also compete against
each other for the shared resources.

– Collaborative: Collaboration and interoperability are important charac-
teristics of SOA systems between services and services, as well as between
services and applications. During the reconfiguration, participants involved
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will be locked and thus cannot be interrupted by other reconfigurations or
service requests for reconfiguration integrity. Reconfiguration participants
must be coordinated to perform the dynamic reconfiguration, in such a way
that reconfigurations involving multiple collaborative participants either all
succeed or none succeed.

In addition, the reconfiguration protocols and services must be fault-tolerant
too. To do this, the reconfiguration protocol is designed so that failures during
the reconfiguration process, including failures of reconfiguration participants, are
handled. The novelty of the proposed DRS includes a collaboration protocol to
address reconfiguration concurrency and collaboration.

The reconfiguration protocol handles fail-silent failures of application services
and DRS agents during reconfiguration. We prove that the system can converge
to a stable state within a short time period if no service fails in the time period.
Analytical results are given to estimate for the convergence time.

The rest of the paper is organized as follows: Section 2 gives an overview
of the proposed approach. Section 3 describes the DRS collaboration protocol
and elaborates the fault-tolerant design for the reconfiguration protocol. Section
4 evaluates and discusses the performance of the proposed protocol. Section 5
discusses the related work and section 6 concludes the paper.

2 Approach Overview

2.1 Characteristics of Service-Oriented Architecture

SOA participants can be divided into three parties: the application builders
(service requesters), the service brokers (service publishers), and the service
providers (service developers). Service providers develop services independent
of potential applications by following open protocols and standards. Service bro-
kers publish the available services to the public so that the application builders
can look up desired services and compose the target application using the ser-
vices. Thus a target application is built through service discovery and service
composing instead of traditional process of designing and coding software.

SOA has the following characteristics that are different from traditional
software:

– Standard-based Interoperability: SOA emphasizes on stand-based interface,
protocols, communication, coordination, workflow, discovery, collaboration,
and publishing. These standards allow services developed in different com-
puting platforms to interoperate with each other with the knowledge of ser-
vice specifications only.

– Dynamic Composition via Discovery: SOA provides a new way of applica-
tion development by composing services just discovered. Furthermore, the
composition and discovery can be carried out at runtime.

– Dynamic Governance and Orchestration: Execution of services needs to be
controlled and several mechanisms are available for execution control. One is
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service governance by policy. Specifically, policies can be specified, checked,
and enforced during both SOA development time and runtime to ensure the
system complies with the organization requirements. The other is orches-
tration where process execution will be coordinated by a central controller
and it is responsible for scheduling the execution of services that may be
distributed across a connectivity network such as ESB (Enterprise Service
Bus).

Dynamic reconfiguration in SOA is different from traditional reconfiguration as
shown in table 1.

Table 1. SOA versus traditional distributed systems

Features SOA systems Distributed systems

Interoperability Open standard protocols. May use any protocols.

Alternative com-
ponents

Potentially unlimited as
new services may be de-
veloped by any service
providers and made avail-
able at any time.

Limited backup spares are
specified at design time.

Service discovery Backup services can be dis-
covered and the collabora-
tion protocols between the
services can be negotiated
at runtime.

Backup spares and their
interactions to the system
are known at design time.

Verification
& Validation
(V&V)

Atomic services can be pre-
verified by suppliers, but
dynamic composition need
to be verified at runtime.

Reconfiguration is verified
as a part of the initial de-
sign with limited support
of dynamic V&V.

Decision making
in reconfiguration

The algorithm can be
changed.

Often pre-determined by a
reconfiguration algorithm.

SOA systems need specific mechanisms to handle reconfiguration including
an overall new strategy to perform dynamic reconfiguration as well as new sup-
porting technologies.

2.2 Roadmap of Reconfiguration

The dynamic reconfiguration can be classified into three phases:

1. Rebinding with Standby: Rebinding is an action of substituting a standby
service for a service currently running. The standby and current services must
be equivalent, in other words, both must satisfy the same service specification
(including all the interfaces such as parameters and method names, and
computation logic as specified in a service specification language such as
OWL-S), and one can replace the other in all applications, i.e., have identical
service interfaces and functionalities. The reconfiguration action is to use the
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URI (Universal Resource Identifier) or URL (Universal Resource Locator) of
a standby service to replace that of the current service. For example, a client
may request to switch to a replacement encryption service that provides
identical 64-bit encryption algorithm after it detects failure of the current
service.

2. Re-composition with Collaboration: A more complicated situation occurs
when there are no semantically equivalent services available for rebinding.
In such a case, it will be necessary to use a different service, with different
types and/or semantics, to replace an exiting service. In other words, the
application functionality will be different because a different service with
different functionality is now used. The type of re-composition may change
the internal business logic, the partnership and collaboration among the
participating services. For example, a client and a server both are required to
switch from a 64-bit encryption algorithm to a 128-bit encryption algorithm.

3. Fault-tolerant Reconfiguration: In the course of reconfiguration, if the recon-
figuration mechanism is not fault proof from the failure of the reconfiguration
agents, then the application can suffer from the double failures, i.e., the fail-
ure of the application services and that of the underlying reconfiguration
mechanism. To make a SOA system dependable, the dynamic reconfigura-
tion platform must also be dependable. Thus, one of the important goals of
the reconfiguration consensus protocol is to make it fault-tolerant. This is
shown in Fig. 1.

Reconfiguration

with Standby

Collaborative 

Reconfiguration

Fault-tolerant

Collaborative

Reconfiguration

Reconfiguration

with Standby

Collaborative 

Reconfiguration

Fault-tolerant

Collaborative

Reconfiguration

Fig. 1. Reconfiguration Roadmap

2.3 Reconfiguration Strategies and Infrastructure for SOA

The overall strategy for SOA dynamic reconfiguring can be based on the follow-
ing considerations:

1. Runtime Reconfiguration Infrastructure: It is necessary to develop an
infrastructure to support SOA dynamic reconfiguration, and this infrastruc-
ture may have significant overhead compared to those conventional SOA
infrastructures without dynamic reconfiguration. The overhead comes from
monitoring, distributed reconfigurationprotocols, andevaluationmechanisms.
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2. Policy-Driven Reconfiguration: SOA applications are often governed by
policies so that applications can be monitored and managed at runtime [28].
This mechanism requires a policy engine to continuously monitor, schedule,
and enforce appropriate actions at runtime according to pre-specific policies.
In some SOA systems, even the policies can be updated at runtime. As dy-
namic reconfiguration is runtime behavior, policy-driven reconfiguration is a
logical choice, however, this will require another computing infrastructure to
support policy specification, analysis, simulation, verification, enforcement,
and evaluation.

3. Distributed Reconfiguration Protocols: In some SOA applications, ser-
vice orchestration is centralized even though distributed services are used.
In other words, these distributed SOA applications are still managed in a
centralized manner. These applications are certainly easier to manage than
distributed SOA applications with distributed orchestration. Similarly, dy-
namic reconfiguration in SOA can be centrally managed so that it is easier to
manage various dynamic reconfiguration activities such as monitoring, plan-
ning, execution, and evaluation. But dynamic reconfiguration with central-
ized management has a single point of failure. On the other hand, distributed
reconfiguration protocol is important for system reliability, scalability and
maintainability but distributed algorithms are often more complex than their
centralized counterparts.

Dynamic reconfiguration based on the first two considerations have been devel-
oped earlier [27], and this paper proposes dynamic SOA reconfiguration with
distributed control. The first two considerations already demand runtime moni-
toring, situation assessment, and distributed agents to perform dynamic reconfig-
uration. The third consideration requires these distributed agents to collaborate
and coordinate with each other in a completely distributed manner.

An SOA application can be rather complex already, and even adding the
first two considerations into the application can be a enormous tasks. This can
be illustrated using a common 5-layered SOA application architecture [2]. This
5-layered architectural is as illustrated in Fig. 2: Presentation, Business Pro-
cess Choreography, Services, Enterprise Components, and Operational Systems,
and two supporting mechanisms: Integration Architecture and Management &
Monitoring. The supporting mechanisms can be applied to each of the five lay-
ers. The dynamic reconfiguration mechanism added can be the 3rd supporting
mechanism, and can be applied to most of these five layers if needed.

The 5-layered architecture is not the only SOA application architecture, nu-
merous other architectures have been proposed including IBM SOA Founda-
tion architecture [2] [14][25][32], Microsoft’s .Net 2005 (Whitehorse)[24], SAP’s
NetWeaver [33], OASIS’s FERA [6], enterprise SOA applications such as En-
terprise SOA [18] and Service-Oriented Enterprise (SOE) [11] , and self healing
architecture PKUAS [22].

Dynamic reconfiguration can be added into different aspects of SOA too. For
example, it can be added to ESB (Enterprise Service Bus) to make ESB fault-
tolerant, or it can be added to various SOA controllers such as orchestration/
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policy engines to make them fault tolerant [30].This is interesting because as dy-
namic reconfiguration is added to ESB and orchestration and/or policy engines,
an SOA application can have a layer of fault-tolerant mechanisms starting at the
application level down to the infrastructure level, and each layer can has its own
reconfiguration policies. This can be shown by Fig. 3 where the right hand side
shows the SOA engine controller with its own dynamic reconfiguration, and the
communication backbone as the ESB which can be fault-tolerant too, and the
applications running using service 1 to service n can have its own fault-tolerant
architecture too.

Another interesting fact of SOA and SOA infrastructure is that in SOA, the
lifecycle management can be embedded in the operation infrastructure to facil-
itate dynamic software composition. In this way, the SOA application develop-
ment infrastructure and operation infrastructure can be merged together in a
single and unified SOA infrastructure. A development infrastructure may in-
clude: modeling, function and policy specification, analysis, design, code gen-
eration, verification and validation such as model checking and testing. An
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operation infrastructure may include: code deployment, code execution, policy
enforcement, monitoring, communication, and system reconfiguration.

In an SOA environment, it will include features from both infrastructures. Both
IBM and Microsoft take this approach. In IBM SOA Foundation Architecture, de-
velopmentactivities (modelingandassembly)andoperationactivities (deployment
and management) are integrated into a single process as illustrated in Fig. 4.

The architecture consists of four phases: modeling, assembling, deployment,
and management. Furthermore, runtime governance activities are performed to
provide guidance and oversight for the target SOA application. The activities in
the four phases are performed iteratively.

– Modeling: This phase models the user requirements in a system model with
a set of services.

– Assembling: This phase composes applications using services that have been
created or discovered at runtime according the model specified in the previ-
ous phase.

– Deployment: In this phase, the runtime environment is configured to meet
the application’s requirements, and the application is loaded into that envi-
ronment for execution.

– Management: After the application is deployed, the services used in the ap-
plication are monitored. Information is collected to prevent, diagnose, isolate,
and fix any problem that might occur during execution. These activities in
management phase will provide the designer with better knowledge to make
future application better.

– Governance and processes: The entire process will be controlled and orches-
trated by policies.

IBM SOA Foundation Architecture is based on a model-driven application
development process. This back looping process along with the governance and
other processes can be delivered together with the target SOA application to
the user. When there is a need of changing the application architecture, the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Dynamic System Reconfiguration Via Service Composition 211

 

Policy 
enforcement 

Testing 

Deployment 

Reliability 
modeling 

C&C 

Model 
checking 

Simulation 

Data collection 
Data mining 

Policy 
enforcement 

Testing 

Deployment 

Reliability 
modeling 

C&C 

Model 
checking 

Simulation 

Data collection 
Data mining 

Application Application 

Policy 
enforcement 

Testing 

Deployment 

Reliability 
modeling 

C&C 

Model 
checking 

Simulation 

Data collection 
Data mining 

Policy 
enforcement 

Testing 

Deployment 

Modeling 

C&C 

Model 
checking 

Simulation 

Data collection 
Data mining

 

Reasoning 
and  

Reasoning 
and  Reconfiguration

 
Application 

Fig. 5. Process Embedded Service Oriented Reference Architecture for Dynamic Re-
configuration

user needs only to re-specify the system model and the application will be re-
assembled and re-deployed.

Fig. 5 shows an overall framework of combining operation infrastructure and
development infrastructure with dynamic reconfiguration for an SOA applica-
tion. The framework needs the following services:

– Dynamic reconfiguration services,
– Monitoring services,
– Code generation service,
– Deployment services,
– Dynamic V&V (Simulation, Model checking, Consistence and Completeness

etc), and
– Dynamic assessment and analysis services.

The Code generation service generates the application and system code once
the application model is generated. The Deployment service allows the applica-
tion developer to specify the system configuration and then deploys the generated
application service together with infrastructural services according to specified
configuration. The Monitoring service monitors the activities of the services and
their collaboration via ESB reference. The collected data is send to Assessment
service for further evaluation. The Assessment service assesses the data collected
from monitoring service according to service dependability properties such as re-
liability, performance, and security as well as properties of interest. The result
will send to reconfiguration service for service reconfiguration decision making.
The Reconfiguration service reconfigures the service at runtime according to the
assessment of service situation as well as recomposes the application for newly in-
troduced specifications. Before reconfiguration takes place, the readily installed
service configuration and specification are sent to the verification services to ver-
ify the interoperability and integrity of the configuration so that it reduces the risk
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of breaking the application after the reconfiguration. The Verification and testing
services such as simulation, C&C and model checking are deployed at the same
time with application to ensure the integrity of the services during their lifecycle.

An important feature is that the whole process has a feedback loop where data
are collected and evaluated so that the next round of dynamic reconfiguration
can take advantages of latest data and analysis results.

2.4 Reconfiguration Rules

A reconfiguration rule is a tuple of three elements (e, a, c) where e repre-
sents a reconfiguration triggering event, a represents the reconfiguration ac-
tion, and c represents the configuration description, called Service Configura-
tion Profile (SCP), which is similar to the technical description (tModel) in
UDDI service directory [31] of available services found by querying the ser-
vice directory. The service reconfiguration profile includes the fields of type,
service, ID, and reconfiguration indicator of configuration dependency. Two ser-
vices with the same reconfiguration indicator can mutually replace each other
without breaking the application integrity. For example, table 2 shows the
reconfiguration rules for the encryption/decryption services, where 64-bit en-
cryption service has the reconfiguration indicator to that of 64-bit decryption
service. The reconfiguration rules are initially defined during the application
modeling process and are deployed to each individual DRS agent. They can
be updated as data are collected and evaluated with respect to the previous
configuration.

Table 2. Reconfiguration Rules

Event Encryption service failure

Action Replace service

tModel Redundancy: encryption service 64bit: ser-
viceID : 0 Recomposing: encryption service
128bit : serviceID:1

Event Decryption service failure

Action Replace service

tModel Redundancy: decryption service 64bit: ser-
viceID: 0 Recomposing: decryption service
128bit : serviceID:1

Depending on the Service Configuration Profile, the reconfiguration of an en-
cryption service may replace only the failed service with its standby or redundant
service, or it may cause a re-composition of the encryption service, which is co-
ordinated by the collaboration algorithm that ensures the decryption algorithm
at the other side of the communication channel will be recomposed properly.
This is illustrated in the following Fig. 6.
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2.5 Reconfiguration Event Registration and Subscription

In SOA, services can be registered and published, and the DRS agent can take
advantage of this to look up replacement services. During the service registration,
services are categorized accordingly based on their semantic information and
interface definition to form the reconfiguration service farm.

In SOA with dynamic reconfiguration, in addition to services, reconfiguration
events can be registered and published. This is needed because DRS agents are
distributed agents, and they need to receive the news of the reconfiguration
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triggering events. With registration and publishing of reconfiguration events,
DRS can subscribe to these events and received update as new events arrives.
Monitoring agents and deployment agents are responsible to send update to
the broker that maintain the list, and send to appropriate DRS agents so that
they can trigger appropriate reconfiguration. This also requires that DRS agents
register with brokers with specific reconfiguration events so that they can receive
the update when the event arrives. This is illustrated in Fig. 7.

3 DRS Reconfiguration and Collaboration Protocol

DRS reconfiguration collaboration protocol ensures reconfiguration integrity in a
distributed environment. It is based on a consensus protocol with no centralized
control. Due to the space limitation, only the major outline of the protocol will be
presented in this section. The distributed consensus problem is a fundamental
problem in distributed systems [19]. It covers a wide variety of situations in
which processors/agents/players communicate through messages and they must
obtain a consensus regardless of the behaviors of participants. A participant can
display different kinds of failures including fail-silent where a failed component
will simply stop working and will not produce any output after it fails to the
Byzantine failure where a malicious component may generate misleading signals
to disrupt the operation.

The consensus problem needs to address the following properties [7]:

Agreement: No two correct processes decide on different values.
Termination: All correct processes eventually decide.
Validity: Any decision value is the initial value of some processes.

This paper addresses the fail-silent failure model. A failed participant can
be recovered and rejoin the system later. As aforementioned, the DRS agents
are notified of the need to reconfigure after receiving the broadcast of regis-
tered reconfiguration event. The broadcasting message also includes the list of
subscribers to this reconfiguration event. The aim of the reconfiguration collab-
oration is to coordinate the distributed reconfiguration activities of DRS agents.
They must reach consensus to complete the reconfiguration.

During reconfiguration, a DRS agent tries to look up for a redundant service
first for rebinding, because this re-binding approach requires the least amount
of effort and thus this should be initiated first. Only if the rebinding fails, the
DRS agent will start the re-composition process and notify all the participants.
Meanwhile, more DRS agents will be affected. For example, encryption service
reconfiguration event is only subscribed by the DRS agent that interacts with
the encryption service, an encryption service re-composition event are subscribed
by both DRS agents that talk to encryption and decryption services because the
change of either algorithm will affect these parties.

3.1 Reconfiguration with Standby Service

DRS agent sends heartbeat signals periodically to monitor the status of con-
trolled services and their standby services. Whenever an active service crash
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Algorithm 1. Thread 1: Service monitoring thread where H is the threshold
for probing cycles

while true do
for all service in Services set do

Send heartbeat message to services
if no reply from service for H consecutive cycles then

trigger reconfiguration process
wake up reconfiguration thread
insert event into event queue

end if
end for
Sleep cycle timeout

end while

Algorithm 2. Thread 2: Reconfiguration process
while true do

if reconfiguration event queue is not empty then
Grab the event from reconfiguration event queue
Select candidate service
Switch and bind to new service

end if
end while

Algorithm 3. Collaboration Algorithm
if there are standby services available then

use standby service
exit

end if{otherwise start consensus process}
Request the configuration vector from all other DRS agents in the group
if configuration vector is not empty then

for all configuration key do
if the configuration vector has the same configuration key then

configuration counter increments 1
else

set the configuration counter to zero
end if

end for
end if
sort configuration array by counter from max to minimum.
{ The following boolean expression evaluates if every configuration vector contains
this value. }
if configuration counter value of the first element equals to the size of group then

select the configuration key of the first element as the candidate service
perform configuration

else
No agreement reached, fail to perform reconfiguration.

end if

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



216 W.T. Tsai et al.

event is detected, the controlling DRS agent reconfigures the failed service with
their standby services. In this case, no collaboration is needed. The pseudo code
for a basic reconfiguration agent is listed as in Algorithm 1 and Algorithm 2.

3.2 Collaborative Reconfiguration with Consensus Protocol

In a unreliable environment, it is likely that the current active service fails and
none of the standby services can replace the failed service. Furthermore, it is
possible that a new service should replace an existing service as the new service
may have new algorithms and/or performance. In both cases, the application
needs to incorporate a different service to continue. This needs to be done with
close collaboration of DRS agents.

The consensus protocol within a group of DRS agents forces the participating
DRS agents to reach an agreement before they start the reconfiguration process.
The consensus protocol is shown in Algorithm 3.

3.3 Fault-Tolerant Consensus Protocol

During the reconfiguration, if a DRS agent fails, the above algorithm will fail as
no fault-tolerant mechanism is available. To be able to cope with agent failures,
it is important to understand when and how a distributed agent can fail. As
far as the reconfiguration alogrithm is concerned, a DRS agent can fail at three
critical points:

1. It fails before the reconfiguration event is broadcasted, in this case a new
DRS agent can replace the failed one and continue the operation.

2. It fails after the reconfiguration event is broadcasted but before any tModel
information is sent out to others.

3. It fails after the decision is made but before it performs the binding action
and broadcasts its final results.

In addition, the consensus protocol is also vulnerable to the failure of the
messages between DRS agents and between DRS agents and services where they
can be delayed, corrupted or even dropped.

It is important that the reconfiguration consensus protocol can tolerate these
failures. This paper proposes a fault-tolerant reconfiguration consensus protocol
with the following components:

– Both active and standby DRS agents are available. A DRS agent is active if
it engages in the reconfiguration process and monitors other services. A DRS
agent is standby if it monitors only the status of active DRS agents. Note
that active and standby services may both fail during the reconfiguration
process.

– Application log which is a stable storage associated with each application. It
records the critical states for the each DRS agent that serves the application.

– Registration log which is a stable storage in Pool Registry that records the
monitoring association between standby DRS agents and active DRS agents.
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Figure 8 shows the fault-tolerant design of the reconfiguration platform. It
consists of the DRS registry, Standby DRS agent pool and Application log.

The protocol has a pool of standby DRS agents, and the standby agents are
ready to participate in reconfiguration if an active DRS agent fails.

1. All standby DRS agents are created and maintained in this pool.
2. The pool contains a predefined number of standby processes. Whenever a

standby DRS agent becomes active, or a standby DRS agent fails, a new
standby agent is instantiated and put into the pool.

3. Once a standby DRS agent becomes active, it will be removed from the
Standby Agent Pool until it fails or deactivated upon application termina-
tion.

4. Standby DRS agent monitors active DRS agent for failure detection. One
DRS agent sends heartbeat messages to a few active DRS agents at a pre-
defined time interval. Once it detects the failure of an active agent, it sub-
stitutes itself for the failed agent.

5. The list of active DRS agents monitored by a standby DRS agent is stored in
the Pool registry. The replacement standby DRS agent reads from the Pool
Registry for the list and then monitors the agents in the list.

The fault-tolerant design of reconfiguration consensus protocol includes failure-
detection, failure-recovery and critical reconfiguration state checkpointing.

The failure detection consists of service monitoring, active DRS agent moni-
toring and failure status checkpointing.
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– DRS agent monitors the services that it configures.
– Standby DRS agent monitors the active DRS agent it will replace.
– Standby DRS agent monitors each other for failure detection of themselves.
– Monitoring is performed by sending heartbeat message periodically

The critical state checkpointing involves a set of logging activities whenever
the DRS agent reaches a critical state identified that is important to recovery
correctly the reconfiguration consensus protocol. Each DRS agent will log its
own states into the Application log.

Critical state checkpointing includes the actions of:

– DRS agent logs its current configuration to the application log. That is the
services under its monitoring and configuration. It also includes the current
active service binding for each configuration.

– When a service failure is detected, and there is a standby service available.
The controlling DRS agent will first log the newly selected service as the
active configuration and then bind to that service.

– When a service failure is detected, and there is no a standby service available.
Thus it triggers a collaborative reconfiguration. DRS agent logs the following
events:

Notification. It sends the reconfiguration event to register service to initi-
ate a broadcasting of the reconfiguration event.

Computing. It receives the configuration information from all other agents
inside of the group

Reached. It reaches an agreement and they agreed upon configuration
value.

Rebinding. It changes the current configuration and switches to new
configuration.

Failed. It fails to reach an agreement.
Ready. The agreement is verified by all the members of the group by querying

Based on the above design, the new agent monitoring algorithm and configura-
tion algorithm are shown in Algorithm 4 and Algorithm 5 respectively.

3.4 Failure Recovery

The failure recovery includes two recovery processes: the recovery from the failed
active DRS agent and the recovery from the failed standby DRS agent. The for-
mer is a critical recovery process because it involves the failure of active DRS
agent that is in charge of reconfiguration consensus protocol. The recovering pro-
cess reads the recovery information of the failed DRS agent from the application
log. This process can be classified into the following cases:

– If a DRS agent fails before it logs the selected service, the replacement agent
will read old information stored and then it will detect the failure of the
agent, thus proceeds to reconfiguration.
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Algorithm 4. DRS agent fault-tolerant monitoring algorithm
while true do

if logstatus �= READY then
print ”Agent is now performing reconfiguration”

else if currentid = INVALID then
print ”Agent does not have a current service”

else if status = STANDBY then
for i = 0 to i < NumofAgent do

agent.getconfigdata()
if status �= ACTIVE then

getagentlog()
if logstatus = NOTIFY then

print ”Move to state : NOTIFY”
queue.queue(logdata)

else if logstatus = COMPUTING then
print ”Move to state : COMPUTING”

else if logstatus = READY then
print ”Move to state : Ready”

else if logstatus = REBINDING then
print ”Move to state : REBINDING”

end if
end if

end for
else if status = ACTIVE then

if server[currentid] �= ACTIVE then
print ”Current service is no longer active. Performing reconfiguration”
long time = System.currentTimeMillis()
String mytoken=time+”:”+config.id
queue.queue(mytoken);
print ”Move to state : NOTIFY”

else
print ”Current service is running OK!”

end if
end if
t.sleep(TIMEOUT);

end while

– If a DRS agent fails after it logs the new configuration, the replacement
agent reads the updated information, and then continues its operation as
replacement.

– If the DRS agent fails before it logs the broadcasting of the reconfiguration
events. The replacement agent reads in the configuration, and find out it
needs to broadcast a reconfiguration event. It will do so, and continue its
operation as replacement.

– If the DRS agent fails after it logs the reconfiguration event but before it
logs the agreement results, which means it fails in the middle of collecting
tModel information. The replacement agent remedies the failure by resending
the query for tModel information and proceeds normally.
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Algorithm 5. DRS agent fault-tolerant configuration algorithm
while true do

if logstatus = READY then
if queue.isNotEmpty() then

logstatus = NOTIFY;
else

print ”Nothing to Reconfig”
t.sleep(TIMEOUT)

end if
else if logstatus = NOTIFY then

for i = 0 to i < NumofAgent do
if i �= id then

if status = ACTIVE then
agent.startconfig(token)

else
continue

end if
end if

end for
print ”Move to state : COMPUTING”
logstatus = COMPUTING;
queue.dequeue()

else if logstatus = COMPUTING then
bNotfound = true
for i = 0 to i < NumofServer do

bNotfound = false
for j = 0 to j < NumofAgent do

if agent[j].server[i] = INACTIVE then
bNotfound = true;
break;

end if
end for

end for
if !bNotfound then

logstatus = REBINDING;
logdata = i;
print ”Moving to state : REBINDING”

else
logstatus = READY;
print ”Moving to state : Ready”

end if
else if logstatus =REBINDING then

logstatus = READY;
print ”Moving to state : Ready”

end if
end while
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– If the DRS agent fails after it logs the reconfiguration agreement result. If
the result is ”no agreement reached”, it takes no further remedy action. If
the result shows the agreed upon configuration, it will continue to operate
as the replacement using the information logged.

The latter is a less critical because it replaces only a failed standby DRS
agent. The recovery process reads the recovery information of the failed standby
DRS agent from the registration log. The Pool Registry records the IDs of the
active DRS agents that a standby DRS agent monitors. Once a standby DRS
agent fails, it will be replaced by another standby DRS agent. The replacement
standby agent reads data from the Pool Registry and start to monitor the DRS
agent that was monitored by the failed standby agent.

The proof of correctness is omitted due to the space limitation. Major steps
in the proof will show that the proposed protocol can tolerate arbitrary failures
in services and DRS agents including active and standby agents.

4 Evaluation and Analysis

4.1 Algorithm Complexity

Let the number of DRS agents be n, the number of average different configu-
rations for a DRS agent m. The best case for consensus algorithm to reach an
agreement is:

O(n ∗ m + m ∗ log m) (1)

Which is the sum of the time it takes for each individual DRS agent of the
group to collect the configuration information from each other and the time that
it takes to process the information by sorting. The best case scenario is when
there is no lose or delay of communications between the participants and there
are no failures of DRS agent. The worse case could be infinite if the system suffers
constant failures before it ever stabilizes. Note that no system can recover from
constant failures.

4.2 Timing Analysis

Timing analysis determines quantitatively the time span that the system takes
to stable itself after the occurrence of the last failure within the system either it
is a service failure or an active DRS agent failure.

– Let the worst time needed to complete a reconfiguration without failure be
Δt;

– Let μ be the time of the occurrence of the last system failure (either a service
failure or an agent failure). We assume that to replace a failed DRS agent
takes no time.

– System detects the failure after 2T .
– Let p represents the condition that no further system reconfiguration is

required.
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Then we can have a formula in the form of LTL

p <> ∪(μ + Δt + 2T ) (2)

The LTL expression means that eventually the system will reach to a stable
state with no reconfigurations after the elapse of Δt+2T from the time that the
last failure of the system occurs.

5 Related Work

Recently, several studies have focused on dynamic software architecture, i.e.,
the software architecture that modifies its structure during execution [4]. The
current research focuses on the formal specification techniques that can be used
to reason and analyze dynamic architectures. A variety of reconfiguration rules
such as graph rewriting rules, process algebra (such as CCS and CSP), pred-
icate calculus, and architecture modification language (AML) [10] have been
proposed to specify and analyze dynamic architectures. However, these studies
have not focused on the dynamic SOA yet. One significant difference between
existing dynamic architecture and SOA is that the dynamic architecture of SOA
is fully integrated with many aspect of software development, such as service
composition, code generation, and deployment.

Many studies have been conducted to build dynamic reconfigurable system
for fault tolerance. The existing approaches include software architecture based
systems such as Darwin [21], Dynamic ACME [13], Dynamic Wright [1], Rapide
[20], OpenRec [16], C2 [23]. However, they focus on traditional component-based
systems and can not be readily extended to support service-oriented application.

Gravity [8] is a service-oriented component model that introduces auto adap-
tive behavior at runtime as defined in the application composition. However,
once the composition is changed, it cannot dynamic recompose the application.

The Open Grid Services Architecture (OGSA) [12] is a Grid system architec-
ture based on Web services concepts and technologies. OGSA is a grid solution
created to allow applications to share data and computing resources, as well as to
access them across multiple organizations in an efficient way. Similar to OGSA,
DRS shares the same high-level control loop for service management. The DRS
supplements the OGSI to provide a solution for dependable Grid services.

6 Conclusion

This paper discussed dynamic reconfiguration strategies for SOA systems and ap-
plications. Dynamic reconfiguration in SOA is different from traditional dynamic
reconfiguration because SOA systems involve dynamic composition, dynamic
modeling, deployment, policy enforcement, and dynamic architecture. This pa-
per then outlines a distributed protocol to perform distributed dynamic recon-
figuration in an SOA environment.. This protocol is supported by a set of DRS
agents.
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Abstract. In applying Component-Based Software Engineering (CBSE)
techniques to the domain of Distributed Real-time and Embedded (DRE)
Systems, there are five critical challenges: 1) discovery of relevant com-
ponents and resources, 2) specification and modeling of components, 3)
exploration and elimination of design assembly options, 4) automated
generation of heterogeneous component bridges, and 5) validation of
context-related embedded systems. To address these challenges, this pa-
per introduces four core techniques to facilitate high-confidence DRE
system construction from components: 1) A component and resource dis-
covery technique promotes component searching based on rich and pre-
cise descriptions of components and context; 2) A timed colored Petri
Net-based modeling toolkit enables design and analysis on DRE sys-
tems, as well as reduces unnecessary later work by eliminating infeasible
design options; 3) A formal specification language describes all specifi-
cations consistently and automatically generates component bridges for
seamless system integration; and 4) A grammar-based formalism spec-
ifies context behaviors and validates integrated systems using sufficient
context-related test cases. The success of these ongoing techniques may
not only accelerate the software development pace and reduce unneces-
sary development cost, but also facilitate high-confidence DRE system
construction using different formalisms over the entire software life-cycle.

1 Introduction

As the complexity of Distributed Real-Time Embedded (DRE) software sys-
tems continues to increase [11], there is a need to facilitate the construction of
such systems from reusable components that can be configured for the particu-
lar implementation being constructed. Component-Based Software Engineering
(CBSE) [8] addresses this issue, providing the mechanism to leverage existing
artifacts and resources rather than handcraft DRE systems from scratch, as is
often observed in current practice. CBSE techniques, however, only partially ful-
fill the objective of software development. For example, to meet both longevity
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and changeability requirements demands continuous optimizations to the con-
figuration of the component interactions and application logic. Furthermore,
end users’ demands on confidential, high quality, and time-to-market software
products have not yet been completely addressed. Endeavoring to redeem the
promises to both organizations and end users leads to five core challenges:

– Discovery of relevant components and resources: Amid a repository
of available components, discovering relevant components is non-trivial. Par-
ticularly, DRE systems not only require stringent demands on functional
correctness, but also non-functional (i.e., Quality of Service (QoS)) satisfac-
tion. Such QoS demands, however, are not purely influenced by standalone
systems composed by selected components - the context of the system un-
der development also has a major influence. For example, there may be
several implementations of the same functional component with different
run-time features (e.g., battery consumption versus throughput). Addition-
ally, two components may also have functional and/or QoS dependencies
between each other that lead to mutual influence. A manual discovery pro-
cess by embedded system engineers may be time consuming and error prone.
An automated and unified resource discovery process based on component
specifications, component dependencies, and context specifications may ac-
celerate search speed as well as select the best component for specific DRE
system construction.

– Specification and modeling of components and their relevant prop-
erties: As described in the first challenge, in order to discover an appropriate
component, that component must be entered into the repository with an ap-
propriate specification and model that can be detected by the discovery ser-
vice. The specification indicates the relevant functional and non-functional
(i.e., QoS) properties of the component and dependencies between compo-
nents. The model indicates the domain the component belongs to in order
to narrow and expedite the search to the appropriate application domain.
A consistent and understandable specification syntax and semantics may
reduce possible accidental complexity during DRE software development.

– Exploration and elimination of design assembly: Different challenges
faced by embedded systems developers require effective design and fine tun-
ing, crosscutting multiple layers of infrastructure and system logic. Such chal-
lenges result from diverse configuration possibilities, numerous appropriate
component candidates for composition, and highly complex component de-
pendencies in embedded systems. The combination of these challenges results
in abundant design alternatives. Embedded systems engineers must be able to
examine and deploy various design alternatives quickly and easily amid pos-
sible configurations, component candidates, and component dependencies.

– Automatic generation of correct component bridges: Some of the
available components may be applicable only to specific technology plat-
forms, requiring an approach that operates in a heterogeneous manner. The
generation of component wrappers from formally specified behavioral char-
acteristics may offer assistance in verifying the correctness of component
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interactions that are more difficult or impossible to perform in handcrafted
solutions. Furthermore, the specifications of component properties provides
a capability to check if a set of components are assembled in a valid and legal
manner. For example, adjustments made at one layer of the infrastructure
may lead to unforeseen consequences at some other layer of the infrastruc-
ture, or may adversely affect application logic.

– Validation of context-related embedded systems: The factors of vali-
dation emerge from component specifications, component dependencies,
component configurations and system logics, and heterogeneous component
bridges. Such factors are, in fact, all context-related, and thus require the
knowledge of different contexts and sufficient random test cases to cover all
possible states under each given context. For a large number of test cases
in different contexts, efficiently managing and reusing them to address the
regression test problem are required. Cohesively tieing such test cases to the
artifacts of the earlier software life-cycle to cover the quantitative and qual-
itative validation of context-related embedded systems are also imperative.

Although CBSE techniques lift the abstraction to a higher level and use in-
terface description languages to specify the characteristics of composition units
[8], these five accidental complexities still arise. This paper introduces four core
techniques to facilitate high-confidence DRE system construction in the vision
of the UniFrame project [20]: 1) A component and resource discovery technique
promotes component searching based on multi-level descriptions of components
and context; 2) A timed colored Petri Net-based modeling toolkit enables de-
sign and analysis of DRE systems and eliminates infeasible design options to
avoid unnecessary later work; 3) A formal specification language consistently
describes all specifications and automatically generates component bridges for
seamless system integration; and 4) A grammar-based formalism specifies con-
text behaviors and validates integrated systems using sufficient context-related
test cases. The success of these progressive techniques may not only accelerate
software development pace and reduce unnecessary development cost, but also
enable high-confidence DRE system construction by formalizing the static and
dynamic properties of a DRE system, and facilitating validation of the functional
and QoS requirements of the system at component, service, and system levels.

The rest of the paper is organized as follows. Section 2 introduces UniFrame,
the application domain in this paper, and its case study. In Section 3, four core
techniques to address the five challenges are presented. Section 4 discusses the
current CBSE techniques in the DRE domain. Section 5 concludes the paper
and discusses future work stemming from current limitations.

2 Background

This section offers an overview of the UniFrame process and the domain of mobile
augmented reality [22]. A case study, called the Battlefield Training System
(BTS), is also described and applied to four techniques in the later sections.
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Fig. 1. The Overview of the UniFrame Process

2.1 UniFrame

UniFrame is a knowledge-based framework that offers techniques and tools for
composing distributed systems from possibly heterogeneous components [21].
Figure 1 is an overview of the UniFrame process. The process starts from acquir-
ing knowledge from domain experts. As shown in arrows 1.1 and 1.2, UniFrame
engineers collaborate with domain experts to obtain sufficient backgrounds and
knowledge on the application domain, components, component assemblies, com-
ponent dependencies, and their functional and non-functional requirements and
standards. Such information may be converted into an executable formal spec-
ification and stored in the knowledgebase [13]. Component quality measures
concentrate on the evaluation of components according to their functional and
non-functional requirements. Validated components are deployed to the dis-
tributed environment for future acquisition and assembly. Please note that the
descriptions of the deployment environment context are stored in the knowledge-
base for the searching procedure. The distributed resource discovery procedure
searches and locates relevant components using the Unified Meta-component
Model (UMM) [20]. QoS-UniFrame [16], as a design space exploration and elim-
ination toolkit, utilizes timed colored Petri Nets [9] to model possible designs of
DRE systems and analyzes the feasibility of design artifacts in compliance with
their QoS requirements. During the system integration procedure, Two-Level
Grammar (TLG) [4] formally and seamlessly bridges heterogenous components.
Lastly, Attributed Event Grammar (AEG) [1] specifies possible event traces and
provides a uniform method for automatically generating and executing test cases
for quality validation purposes. This paper concentrates on the last four proce-
dures (the right half of Figure 1) for high-confidence DRE system construction
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during the entire software life-cycle. Such procedures may reduce possible acci-
dental complexity and increase confidence of the software development.

2.2 Mobile Augmented Reality Systems

An augmented reality system [7] enriches the environment by merging real and
virtual objects in a real environment. The real-time interactions and the reg-
istration (alignment) for real and virtual objects with each other are also re-
quired. The integrated concepts of augmented reality, mobile computing, wear-
able computing and ubiquitous computing systems enable research into Mobile
Augmented Reality Systems (MARSs) [22].

Generally, a MARS consists of six subsystems: computation, presentation,
tracking and registration, geographical model, interaction, and wireless commu-
nication [22]. The computation subsystem performs specific computational tasks
for the application. The presentation (rendering) subsystem computes and de-
picts virtual multimedia objects. The geographical model stores the geometrical
and detailed hierarchical 3D information of the environment where a demonstra-
tor works. The interaction subsystem offers a user friendly interface that allows a
demonstrator to conveniently input the data for processing as well as see the out-
put generated by the presentation subsystem. Wireless communication provides
the mobile communication between the subsystems. The tracking and registra-
tion subsystem tracks a user’s (or an object’s) position and orientation using
trackers or sensors and registers virtual objects in compliance with the tracking
results. The tracking data can be used both by the rendering and presentation
subsystem to generate the 3D graphics properly aligned with the physical world,
and also could be utilized by the computing subsystem for various tasks such as
spatial queries for location-aware computational tasks.

There are numerous off-the-shelf or custom-built hardware solutions to track-
ing. These often consist of sensors that provide position (2 or 3 dimensions),
orientation (2 or 3 Degrees of Freedom), or a combination. They utilize a variety
of technologies (magnetic, ultrasound, vision-based, infra-red, wireless, ultra-
wide-band, mechanical) to achieve the tracking and have various QoS properties
such as resolution, accuracy, and range. For example, Global Positioning System
(GPS) is a 2-dimensional position tracker that has a world-wide range, but has
a resolution on the order of 1 meter. The Inertia-CubeTM from Intersense Tech-
nologies1, is a self-contained (sourceless) inertial orientation tracker that outputs
three orientation angles and has a 1 degree yaw2 accuracy and 0.25 degree accu-
racy in pitch and roll angles. In a mobile augmented reality system that covers
a wide area, many such trackers may need to be deployed in various locations.

Many challenges exist in utilizing the trackers in such an environment that con-
tains multiple trackers with different characteristics (heterogeneity) and spread
over large spaces, with possible redundancies in their sensing modalities. The first
challenge is the discovery by the tracked object of all the sensors available in a
1 http://www.intersense.com/company/whatismotion.htm
2 Yaw corresponds to how far the object is pointing away from its direction of travel

due to rotation about its vertical axis.
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Fig. 2. The Battlefield Training System Example

given location. The next challenge is to select a subset to be utilized. Finally, the
last challenge is to utilize the selected sensors to fuse the data and provide a sin-
gle, high quality measurement of the pose (position and orientation) of the tracked
object. UniFrame is used to accomplish the discovery and selection tasks.

In order to demonstrate the advantages of the UniFrame process over high-
confidence component-based DRE system construction, a Battlefield Training
System (BTS) example is introduced. Figure 2 shows an overview of the BTS
example.

The following description is an example scenario for the BTS system. Imagine
a soldier who is walking on the street to rescue a virtual hostage hidden in one
of the buildings. The position and orientation sensors on his body send back the
6 Degrees of Freedom (6DOF) data to the tracking subsystem every half-second.
When the soldier is in a certain position and is looking in a particular direction,
the rendering subsystem will display enemy soldiers in certain 3D positions ac-
cording to a training scenario generated by the computational subsystem. This
rendering of enemy soldiers, therefore, is intimately tied to the position and orien-
tation information coming from the tracking subsystem. The soldier has to shoot
the enemies using a specialized rifle whose pose is also tracked. By computing
the bullet trajectory, the system computes if the enemy is killed and updates the
view of the soldier accordingly. The soldier can communicate with the command
center via his headphone. The information of each building and the soldier’s
current position can be displayed on the Head Mounted Display (HMD) by text.
Several movement, light, audio and temperature sensors will periodically send
the physical conditions of the battlefield back to the computation subsystem.
All of this simulation, computation, and rendering depends greatly on accurate
tracking of the various objects such as the soldier, the HMD, and the rifle.
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Several high-level functional and QoS requirements are required to establish
a satisfactory BTS.

– Functional Requirements
• (F1) A soldier should wear both position and orientation sensors on his

body to obtain 6 Degrees of Freedom (6DOF) results: 3 for position and
3 for orientation. The soldier should also wear a hand tracker on his hand
to sense the 6DOF of the hand.

• (F2) Each rifle should contain position and orientation sensors to the
6DOF of an objective that the soldier may target.

• (F3) Audio input and output devices should be provided to the soldier
for communicating with his teammates.

• (F4) An optical see-through Head Mounted Display (HMD) should pro-
vide the interaction subsystem that displays both text and visual objects.
This could be a one-eye, monocular system that leaves the second eye
unobstructed for other tasks.

• (F5) The computation subsystem should compute the scenarios and
strategies for training a soldier.

• (F6) The geographical model should store all the necessary geographical
and geometrical information of the battlefield. Such geographical infor-
mation should be hierarchical in compliance with the three dimensions
of the battlefield.

• (F7) A GPS PDA (Personal Data Assistant) should provide the up-
to-date geographical information of the battlefield obtained from the
geographical model.

• (F8) GPS satellites and relevant wireless communication devices should
transfer tracking results and registered virtual objects between tracking
and registration, geographical model, and computation subsystems.

• (F9) A battlefield training system strategist/trainer should assign train-
ing strategies and adaptable scenarios to the computation subsystem.

– Quality of Service Requirements
• (Q1) Each visual object should be displayed on the correct coordinates

of the HMD. The coordinate inaccuracy should not exceed 5mm.
• (Q2) Each visual object should be displayed and continuously updated

on the HMD. The sampling frequency of each object should be at least
24Hz. The residual visual object that misses the hard deadline should
not be displayed to confuse the soldier.

• (Q3) Each text object should be displayed on the correct coordinates of
the HMD. The coordinate inaccuracy should not exceed 5mm.

• (Q4) Each text object should be displayed on the HMD in real-time.
The sampling frequency of such an object should be at least 24Hz. The
residual text object that misses the hard deadline should not be displayed
to confuse the soldier.

• (Q5) Each audio signal should be transmitted to the soldier in real-time.
The sampling frequency of each signal should be at least 44Hz.
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• (Q6) Each position sensor and orientation sensor on the soldier, the rifle,
and the hand should send at least 120 6DOF sampling information back
to the computation subsystem every second.

• (Q7) The interaction subsystem should display text and visual objects
with a reasonable resolution (e.g., resolutions for position and orientation
sensors should be respectively at least 0.75mm and 0.05 degrees).

• (Q8) The presentation/rendering subsystem should not provide obscure
text and visual objects to the interaction subsystem. For example, 12-
point (or more) proportional spaced bitmap fonts should be provided.

• (Q9) The geographical model should provide the geographical informa-
tion in time upon the request from other subsystems. The query pro-
cessing time of each geographical information should not exceed 0.01
second.

The listed functional and QoS requirements can be classified into three ab-
straction levels in UniFrame: component, service, and system. Functional or QoS
requirements at the component level mean that a specific component correctly
performs a functional task and satisfies how well it should perform as speci-
fied in the corresponding QoS requirements. F1, F2, F4, F6, Q7, and Q8 are
examples of such requirements. To perform a service obeying its functional re-
quirements at the service level, a sequence of components (i.e., a functional path
[30]) collaborates with each other in a specific order. Each component carries
out a specific task (e.g., rendering) and the combination of these tasks fulfills
the overall requirements. Regarding QoS requirements, a QoS path quantita-
tively describes how well the corresponding functional path can be satisfied [30].
For F3, F7, F9, Q1, Q2, Q3, Q4, Q5, and Q6, each of which is achieved by
comprising at least two components that interact with each other. F5 and Q9,
however, can be mistakenly classified into the component level because of the
brief descriptions. From the perspective of the component level, F5 and Q9 are
realized by the computation or the geographical model subsystem. Such a classi-
fication, in fact, does not consider the entire picture of the BTS example. After
obtaining the training strategies, the computation subsystem should compute
and then assign specific tasks to other appropriate subsystems. Such tasks may
request some collaborations among different subsystems. Additionally, because
there may be more than one virtual object displayed on the interaction sub-
system, the computation, tracking and registration, presentation, and wireless
subsystems frequently interact with the geographical model subsystem to ac-
cess the geographical results. Therefore, F5 and Q9 are regarded as system level
requirements.

3 The UniFrame Approach

To tackle accidental complexities as mentioned in Section 1, UniFrame offers
four kernel techniques in the requirements, analysis, design, implementation,
and testing workflows.
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3.1 Distributed Discovery of Components

As indicated previously, the underlying model for the UniFrame approach is
the Unified Meta-component Model (UMM) [20]. The UMM has three parts: a)
Components, b) Service and associated guarantees, and c) Infrastructure [19].
Components in UniFrame are units of independent development and deployment
and offer specific services with associated guarantees about the QoS. The infras-
tructure provides the environment for deploying such independently developed
components and discovering them via the UniFrame Resource Discovery System
(URDS), which is a pro-active and hierarchical discovery service [23].

UniFrame Resource Discovery System (URDS). URDS consists of three
levels: a) registration level, b) pro-active search level, and c) user interaction and
administration level. The registration level is realized by active registries, which
are enhanced versions of the basic publication mechanisms provided by different
component deployment environments (e.g., the built-in registry in Java-RMI3).
The enhancement is in the form of an ability for these basic mechanisms to ac-
tively listen and communicate with the head-hunters (described shortly). Com-
ponent developers are required to use the UniFrame knowledgebase (as indicated
in Figure 1) and create, in addition to the implementation of the components,
comprehensive specifications called the UMM-Specifications. An example of such
a specification is shown in the next section. Once the component and its asso-
ciated specification is ready, both of these are published with the corresponding
local active registry and deployed on the network.

The pro-active search level is implemented by head-hunters. These are spe-
cialized components who are entrusted with the task of pro-actively gathering
component specifications from various active registries. Head-hunters store these
specifications in their local store, called a meta-repository. Head-hunters, in ad-
dition to gathering specifications, carry out the task of matching specifications
stored in their meta-repositories with incoming queries. It is quite conceivable
that any single head-hunter may not contain all the specifications that are de-
ployed over a network, and hence, head-hunters may collaborate with one another
to cover a much larger search space. Various techniques for the collaboration be-
tween head-hunters have been experimented with. These include random, long-
term, short-term, and profile-based. Results of these experiments [24] demon-
strate that such a collaboration allows a selective search, as compared to an
exhaustive search (which may be costly in a large setup), without substantially
sacrificing the quality of the selected components.

The top level of URDS is achieved by the Internet Component Broker, which
is made up of the Domain Security Manager, Query Manager, Link Manager, and
Adapter Manager. The Internet Component Broker is responsible for authenti-
cating head-hunters and active registries (via the Domain Security Manager),
receiving incoming queries and returning results (via the Query Manager) to
the system integrator, for linking different Internet Component Brokers (via the

3 Remote Method Invocation - http://java.sun.com/products/jdk/rmi
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Link Manager), and providing adapter components for bridging the technological
heterogeneities (via the Adapter Manager).

UMM Specification and Discovery of Components. The UMM speci-
fication of components is in accordance with the concept of multi-level speci-
fication [2]. The UMM specification of a component, in addition to its name,
type and informal description, consists of computational attributes, cooperation
attributes, auxiliary attributes, QoS attributes, and deployment attributes.

The computational attributes describe the functional characteristics of a com-
ponent. These include inherent attributes, which contain the book keeping in-
formation (such as the ID and version) of that component and functional at-
tributes. The functional attributes contain the syntactical, semantical, and the
synchronization contracts, along with a few additional fields such as technology
of implementation and the algorithm (if any) used. The cooperation attribute
indicates possible collaborators of a component. The auxiliary attributes provide
information about special features that may be incorporated in a component such
as security. The QoS attributes, which are critical in the case of DRE systems
such as MARS, contain information about the QoS parameters (e.g., latency),
their values (or a range), associated costs and the levels of quality that a com-
ponent provides. The deployment attributes indicate the execution environment
needed for that component and the effects of the environment on the QoS char-
acteristics of the component. For example, the partial UMM specification of an
IS-PCTracker that can be used in the MARS environment for providing the
position and orientation information (6DOF) is shown below (an example of a
complete UMM specification is found in [19]):

Component Name: IS-PCTracker Domain Name: Distributed Tracking
Informal Description: Provides the position and orientation
information.

Computational Attributes
Inherent Attributes:

Id: cs.iupui.edu/ISPCTracker;
...
Validity: 12/1/07
Registration: pegasus.cs.iupui.edu/HH1
Technology: CORBA

Functional Attributes:
Functional Description: Provides the position and

orientation of a tracked object.
Algorithm: Kalman Filter;
Complexity: O(n^6)

Syntactical Contract:
Vector getPosition();
Vector getOrientation();
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Semantic Contract:
Pre-condition: {calibrated (PCTracker)== true}
Post-condition: {sizeof (posVector) == 3) &&

sizeof (orientationVector) == 3}
Synchronization Contract:

Policy: Mutual Exclusion
Implementation Mechanism: semaphore

....

Quality of Service Attributes
QoS Metrics: tracking_volume, resolution_pos,

resolution_orientation, accuracy_pos,
accuracy_pitch, accuracy_yaw,
accuracy_roll, sampling_freq

tracking_volume: 2mx2mx3m
resolution_pos: 0.75mm
resolution_orientation: 0.05 degrees
accuracy_pos: 2-3mm
accuracy_pitch: 0.25 degrees
accuracy_yaw: 0.5 degrees
accuracy_roll: 0.25 degrees
sampling_freq: 100-130 Hz

...

The above specification indicates various important factors: a) it is comprehen-
sive and embodies the multi-level specification concepts, b) it places an emphasis
on functional as well as non-functional (QoS) features of a component, and c)
it is consistent with the concepts of service-oriented approaches for develop-
ing DRE systems. Due to its comprehensive nature and multi-levels, the UMM
specification of a component (such as an IS-PCTracker) allows complicated
matching techniques during the discovery process of the URDS for appropriate
components. For example, a system integrator may specify a subset of typical
attributes (e.g., the type, the syntactical attributes, pre- and post-conditions
associated with the interface, and QoS parameters with specific values) for an
IS-PCTracker. Once this query is received by the Query Manager, it will pass it
on to a subset of the head-hunters to search for appropriate components. URDS
uses multi-level matching, i.e., depending upon the level, a different technique
is used to match the corresponding part of the incoming query with the specifi-
cations stored in the local meta-repository. This approach is an enhancement of
the one discussed in [32]. For example, matchings such as type and technology
use keyword match, syntactical matching uses type relations, semantical match-
ing uses theorem provers, synchronization matching uses keywords and tempo-
ral logic, and QoS matching uses numerical relationships. Thus, the multi-level
matching is more comprehensive than simple attribute-based matching. Also,
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different head-hunters may use different algorithms for discovering components
that match the given query from their local meta-repository. Once appropriate
components are discovered, they are presented back to the system integrator
who can select an appropriate one for his/her current needs.

3.2 Design Space Exploration and Elimination

UniFrame advocates the principles of CBSE [8], design by contract4, and multi-
level contracts [2]. Such principles facilitate URDS to discover relevant compo-
nents from the repository in compliance with their functional and QoS require-
ments. The complexity and magnitude of a design space increases exponentially
as more appropriate components are found for a distributed embedded system.
QoS-UniFrame [16] is a two-level modeling toolkit for designing and analyzing
distributed embedded systems. Such a toolkit explores and eliminates the design
space of a DRE system and assures its QoS requirements. At the first level, QoS-
UniFrame performs design space exploration and elimination using the formalism
of timed colored Petri Nets [9]. A Petri Net graph visually achieves design space
exploration by depicting all relevant components (places in a Petri Net graph)
and design decisions (transitions in a Petri Net graph). Design space elimination
is accomplished by a reachability tree construction of the Petri Net graph. Such
a reachability tree comprises a number of sequences of states (i.e., markings)
that represent selected component status and dynamic behaviors regarding QoS
at given points of execution. A QoS-UniFrame interpreter implements the tree
construction that obeys the formalisms of timed colored Petri Nets and the static
and dynamic properties embedded in the Petri Net graph.

Besides the formalisms, an aspect-oriented programming approach using As-
pectJ [10] is utilized to insert (i.e., weave) statements into the interpreter for an-
alyzing and/or asserting static or strict QoS requirements regarding components,
execution paths, and the system [16]. If the inserted statements are not fulfilled,
QoS-UniFrame stops constructing new nodes in the reachability tree whereas
all the leaves generated are the design space that satisfies static and strict QoS
requirements. Because dynamic QoS information accordingly relates to the de-
ployment environment, a statistical and stochastic approach is exploited at the
second level [16]. The previous state and observations of components can be ac-
cessed from the knowledgebase for the evaluation of dynamic QoS requirements.
QoS-UniFrame utilizes a meta-programmable approach, called PPCEA (Pro-
grammable Parameter Control for Evolutionary Algorithms) [14], that prunes
off less probable design alternatives by means of statistic and stochastic evolu-
tionary algorithms.

Figure 3 (a) shows a partial high-level design of the BTS example represented
by a Petri Net graph using QoS-UniFrame. It describes three execution paths
that perform rendering text on the Head Mounted Display (HMD), rendering a
three dimensional graph on the HMD, and speech processing. White circles (i.e.,
places) are the hardware (e.g., hmd) or software components (e.g., renderPro-
cessing) selected for the design; light colored circles are notations (called stub
4 http://archive.eiffel.com/doc/manuals/technology/contract
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Fig. 3. (a) Timed Colored Petri Net Graph of BTS (at bottom right) (b) Design
exploration for IS-PCTracker (at left) and (c) for renderProcessing (at top right)

places) for decision making complying with the syntax of timed colored Petri
Nets; black bars are the functions performed along the execution paths (e.g.,
getTrackResult) or selection actions exploring the design space (e.g., pickOs4 of
Figure 3 (b)); and arrows are the direction of the execution paths (e.g., all arrows
in Figure 3 (a)) or design decisions (e.g., all arrows in Figure 3 (b) and (c)).

Figure 3 (a) describes the behavioral view of software architecture of the BTS.
The enlarged view of Figure 3 (a) and its details may be found in [17]. Figure 3
(b) is a containment component of Figure 3 (a) that represents all possible
design alternatives of the IS-PCTracker derived from selecting different combi-
nations of orientation sensors (OS) and position sensors (PS). Because of the
non-deterministism of timed colored Petri Nets, tokens flowing along the stub-in
place can be directed to any of seven transitions without preference. Transitions
pickOs1 to pickOs4 and pickPs1 to pickPs3 mean that only one of the sensors
is selected. Transition pickOs&Ps forces all seven sensors to be possible can-
didates, and transitions getOs&Ps1 to getOs&Ps3 choose two sensors from OS
and PS, respectively. There are twelve design alternatives generated due to the
non-deterministism. Figure 3 (c) is also a containment component in Figure 3
(a) that shows four renderProcessing components appropriate for constructing
the BTS. To guarantee high-confidence DRE system construction, analysis and
assertion statements, treated as pre-conditions and/or post-conditions of compo-
nent composition, are written in AspectJ following QoS requirements and woven
into the source code of the QoS-UniFrame interpreter, as shown in Figure 4.
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1  pointcut analyzeQoS() : call(public void *.enableTrans(..)) && 
     args(QoSPar qos);  
2  after (QoSPar qos) : analyzeQoS(qos){ 
3    double qosValue=0.0;  double [] compValue, serviceValue, systemValue; 
4    boolean flag = false; 
5    Object [] obj = thisJoinPoint.getArgs(); 
6    JBuilderAtom tran = (JBuilderAtom)obj[0]; 
7    Vector inConn = tran.getInConnections("Place2Trans"); 
8    for (int i=0;i<inConn.size();i++){ 
9      JBuilderConnection place2Trans = (JBuilderConnection)inConn.get(i); 
10     JBuilderModel place = (JBuilderModel)place2Trans.getSource(); 
11     Vector myToken = place.getAtoms(qos.getName()); 
12     JBuilderAtom token = (JBuilderAtom)myToken.get(0); 
13     if (qos.getAnalysisLevel(“component”)==true){ 
14       flag = token.getAttribute(qos.getName(), compValue); 
15       if (flag) qosValue = compValue[0]; 
16       if (qosValue > qos.getStrictComponentRequirements()) 
17         flag = Global.storeEnableTran.removeElement(tran); 
18     } 
19     if (qos.getAnalysisLevel(“service”)==true){ 
20       flag = token.getAttribute(qos.getName(), serviceValue); 
21       if (flag) qosValue = serviceValue[0] + 

         token.getAttribute("CurrentService",serviceValue); 
22       if (qosValue > qos.getStrictServiceRequirements()) 
23         flag = Global.storeEnableTrans.removeElement(tran); 
24       else token.setAttribute("CurrentService",qosValue); 
25     } 
26     if (qos.getAnalysisLevel("system")==true) 
27     {  /*...similar to the analysis at the service level..*/   } 
28  }} 

Fig. 4. An AspectJ example to analyze and assert QoS requirements

Figure 4 asserts the satisfaction of the lower bound of a QoS parameter at the
component, service, and system levels. enableTrans is a function that verifies if
a transition is enabled to facilitate the reachability tree generation. All enabled
transitions are stored in a global vector, called storeEnableTrans. The loop from
lines 8 to 28 examines all the places connected to the transition. Lines 13 to
18 assure a requirement of the QoS parameter at the component level. If the
requirement is not met, the enabled transition will be removed from the vector,
as shown in line 17. For the service level QoS requirements analysis, line 21 is the
QoS formula computing how well the corresponding functional task performs. If
the requirement is met, the current value of the QoS parameter is updated (line
24). Conversely, line 23 deletes the transition such that the reachability tree will
not generate new nodes related to this transition.

QoS-UniFrame performs design space exploration and elimination during a
DRE system construction. The design space exploration approach visually
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depicts the behavioral view of software architecture at the higher abstraction
level. The design space elimination approach analyzes all kinds of QoS require-
ments by passing various types of QoS parameters (i.e., QoSPar) into Figure 4
and by revising the QoS formulae accordingly. Due to the space considerations,
please refer to [16] for the stochastic design space elimination using PPCEA .

3.3 System Integration

In UniFrame, application domains described in the knowledgebase are assumed
to be formalized using a Generative Domain Model [6]. A key aspect of a GDM
is the presence of generative rules which formalize its structure. GDM’s may
be constructed for various domains according to the standards. Furthermore,
components developed for that domain will also follow these standards. We use
Two-Level Grammar (TLG) [4] to express the GDM since TLG’s class hierarchy
allows convenient expression of abstract component hierarchies and TLG rules
may be used to express the generative rules required by the GDM [5]. TLG
may be used to provide attribute evaluation and transformation, syntax and
semantics processing of languages, parsing, and code generation. All of these are
required to use TLG as a specification language for components and domain-
specific generative rules.

An example TLG for a sound sensor GDM is:

class SoundSensor is subclass of Sensor.
SoundLocation :: Location.
SoundVolume :: Float.
AlarmThreshold :: Float.
SafeArea :: {Location}*.
alarm : SoundVolume > AlarmThreshold,

SoundLocation not in SafeArea.
end class Sensor.

SoundSensor inherits various Sensor properties such as the location of the sen-
sor itself and adds additional properties such as the location and volume of the
sound detected, the threshold at which an alarm should be sounded, and a safe
range to ignore sounds. These type declarations are established by the first level
of the TLG and correspond to context-free grammar rules (the :: corresponds to
the ::= in traditional BNF notation). Note that SafeArea is a set of 0 or more
locations. The second level of the grammar contains rules (e.g., in the above
TLG, alarm will be true if the sound volume exceeds the alarm threshold and
the sound location is not in the set of safe area locations). Additional rules
may establish pre-conditions, post-conditions, and invariants, including QoS
constraints.

The component development and deployment process starts with a UMM re-
quirements specification of a component, following the established GDM for a
particular domain. The UMM specification is informal and indicates the func-
tional (i.e., computational, cooperative and auxiliary aspects) and non-functional
(i.e., QoS constraints) features of the component. This informal specification may
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also be formalized using TLG to provide additional semantics such as rules for
validating the component and pre and post-conditions. Validated components
are deployed on the network for potential discovery by the URDS. If the com-
ponent does not meet the requirement specifications then the developer refines
either the UMM requirements specification or the design.

MDA5 Platform Independent Models (PIM’s) are based upon the domains
and associated logic for the given application. TLG allows these relationships
to be expressed via inheritance. If a software engineer wants to design a server
component to be used in a distributed embedded system, then he/she should
write an informal requirements specification in the form of a UMM describing
the characteristics of that component. We use the UMM and domain knowledge
base to generate platform independent and platform-specific UMM specifications
expressed in TLG (which we will refer to as UMM-PI and UMM-PS, respec-
tively). UMM-PI describes the bulk of the information needed to progress to
component implementation. UMM-PS merely indicates the technology of choice
(e.g., CORBA6). These effectively customize the component model by inheriting
from the TLG classes representing the domain with new functionality added as
desired. In addition to new functionality, we also impose end-to-end Quality-of-
Service expectations for our components (e.g., a specification of the minimum
frame-rate in a distributed video streaming application). Both the added func-
tionality and QoS requirements are expressed in TLG so there is a unified nota-
tion for expressing all the needed information about components. A translation
tool [12] may be used to translate UMM-PI into a PIM represented by a com-
bination of UML and TLG. Note that TLG is needed as an augmentation of
standard modeling languages such as UML to define domain logic and other
rules that may not be convenient to express in UML directly.

A Platform Specific Model (PSM) is an integration of the PIM with tech-
nology domain-specific operations (e.g., in CORBA, J2EE7, or .NET8). These
technology domain classes also are expressed in TLG. Each domain contains
rules that are specific to that technology, including how to construct glue code
for components implemented with that technology. Architectural considerations
are also specified, such as how to distinguish client code from server code. PSMs
may be expressed in TLG as an inheritance from PIM TLG classes and tech-
nology domain TLG classes. This means that PSMs will contain not only the
application-domain-specific rules, but also the technology-domain-specific rules.
The PSM also maintains the QoS characteristics expressed at the PIM level.
Because the model is expressed in TLG, it is executable in the sense that it
may be translated into executable code in a high-level language. Furthermore,
it supports changes at the model level, or even requirements level if the model
is not refined following its derivation from the requirements, because the code
generation itself is automated.

5 Model Driven Architecture - http://www.omg.org/mda
6 Common Object Request Broker Architecture - http://www.omg.org/corba
7 Java 2 Enterprise Edition - http://java.sun.com/javaee
8 http://www.microsoft.com/net
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An example of high-level rules to generate connector code between client-side
and server-side operations is given below:

ClientUMM, ServerUMM :: UMM.
ClientOperations, ServerOperations :: {Interface}*.

Here it is assumed that UMM specifications exist for both the client and server
and that the operations of each are represented as a syntactic interface (although
we may wish to include semantic information in practice). The second level
of the grammar provides for generating code to map the client operations to
the server operations according to a specific component model. Additional rules
would specify the details of these mappings. Such rules may use both application-
specific and technology-specific domain knowledge.

3.4 Quality Validation

After system integration, a validation procedure demonstrates the functional-
ity correctness and quality satisfaction of a DRE system. The Attributed Event
Grammar (AEG) approach [1], as shown in Figure 5, is introduced for creat-
ing and running test cases in automated black-box testing of real-time reactive
systems (e.g., reactive behaviors of triggering rifles).

The purpose of the attribute event grammar is to provide a vehicle for gen-
erating event traces (Step 1 in Figure 5). An event is any detectable action in
the environment that could be relevant to the operation of the System Under
Test (SUT). For example, an event may be a time interval or a group of sensors
triggered by a soldier that has a beginning, an end, and duration. There are
two basic relations defined for events: two events may be ordered or one event
may appear inside another event. The behavior of the environment (i.e., event
trace) can be represented as a set of events with these two basic relations de-
fined for them. Two events can happen concurrently as well. An event may have
attributes associated with it. Each event type may have a different attribute
set. Event grammar rules can be decorated with attribute evaluation rules. The

How to 
create 

test cases

How to run test case

How to monitor the results

Generator

Test driver 
(in C or assembly 

language)

SUT

Run time 
monitor

Environment 
Model 

represented 
as an event 

grammar

Step 1

Step 2

Step 3

Step 4

Fig. 5. An Overview of the AEG approach
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action is performed immediately after the preceding event is completed. Events
usually have timing attributes like begin time, end time, and duration. Some of
those attributes can be defined in the grammar by appropriate actions, while
others may be calculated by appropriate default rules. For example, for a se-
quence of two events, the begin time of the second event should be generated
larger than the end time of the preceding event.

The event traces generated by the generator (Step 2) are not completely
random since they fulfill constraints embedded in the environment model. Event
attributes provide inputs to the SUT, and the event trace structure facilitates
the necessary timing constraints. The test driver (e.g., a C program) can be
derived from the given event trace (Step 3). Generated test drivers may interact
with the system and adjust the evolving event trace based on the results of that
interaction. The environment model can contain descriptions of hazardous states
in which SUT could arrive. Thus, it becomes possible to conduct experiments
with the SUT in the simulated environment and gather statistical data about
the behavior of SUT in order to estimate operational effectiveness, safety and
other dependability properties of the SUT (Step 4). By changing the values
of parameters of the environment model (e.g., adjusting frequencies of some
events in the model and running experiments with the adjusted model), the
dependencies between environment parameters and the behavior of the system
can be identified. This approach integrates the SUT into the environment model,
and uses the model for both testing of the SUT in the simulated environment
and assessing risks posed by the SUT. Such an approach may also be applied to
a wide range of reactive systems, where environment models can be defined to
specify typical scenarios and functional profiles.

The following (oversimplified) example of a missile defense scenario of the BTS
demonstrates how to incorporate an interaction with the SUT into AEG. We as-
sume the SUT tracks the launched missile by receiving specific geographical data
from the orientation and position sensors of IS-PCTracker on the soldier
(send sensor signal() action in the model simulates sensor inputs to the SUT),
and at a certain moment makes a decision to fire an anti-missile (i.e., interceptor)
by generating an output to a corresponding actuator (SUT launch interceptor()).
The catch construct represents an external event generated at runtime by the
SUT. The external event listener is active during the execution of a test driver
obtained from the generated event trace. This particular external event is broad-
cast to all corresponding event listeners. The following event grammar specifies a
particular set of scenarios for testing purposes.

Attack::= { Missile_launch } *

The Attack event contains several parallel Missile launch events.

Missile_launch::= Boost_stage / Middle_stage.completed := True/
Middle_stage WHEN (Middle_stage.completed) Boom

The Boom event (which happens if the interception attempts have failed) rep-
resents an environment event, which the SUT in this case should try to avoid.
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Middle_stage::= ((CATCH SUT_launch_interception(hit_coordinates)

WHEN(hit_coordinates == Middle_stage.coordinates)

[ p(0.1) interception

/ Middle_stage.completed := False;

send_hit_input(Middle_stage .coordinates);

BREAK; / ] END_CATCH | move )

) *

The sequence of move events within Middle stage may be interrupted by receiv-
ing an external event SUT launch counterattack (hit coordinates) from the SUT.
This will suspend the move event sequence and will either continue with event
counterattack (with probability 0.1), which simulates the enemy-counterattack
event triggered by the SUT, followed by the BREAK command, which termi-
nates the event iteration, or will resume the move sequence. This model allows
several counterattack attempts through the same missile launch event. For sim-
plicity it is assumed that there is no delay between receiving the external event
and the possible counterattack event.

move ::= /adjust( ENCLOSING Middle_stage .coordinates) ;
send_sensor_signal(ENCLOSING Middle_stage.coordinates);
move.duration:= 1 sec /

This rule provides attribute calculations and sends an input to the SUT. In
general, external events (i.e., events generated by the SUT) may be broadcast
to several event listeners in the AEG, or may be declared as exclusive and will
be consumed by just one of the listeners. If there is not a listener available when
an external event arrives, there may be an error in the environment model,
which can be detected and reported at the test execution time. To alleviate this
problem, AEG may contain a mechanism similar to an exception handler for
processing external events which have missed regular event listeners.

The environment model defined by AEG can be used to generate (pseudo)
random event traces, where events will have attribute values attached, including
time attributes. The events can be sorted according to the timing attributes and
the trace may be converted into a test driver, which feeds the SUT with inputs
and captures SUT outputs. The functionality of this generated test driver is
limited to feeding the SUT inputs and receiving outputs and may be implemented
as an efficient C or even assembly language program that meets strict real-time
requirements. Only send and catch actions obtained from the event trace are
needed to construct the test driver; the rest of the events in the event trace are
used as “scaffolds” to obtain the ordering, timing and other attributes of these
actions. The generator takes as input the AEG model and outputs random event
traces. Necessary actions are then extracted from the trace and assembled into
a test driver.

The main advantages of the approach are as follows: 1) The environment
model provides for automated generation of a large number of random test
drivers; 2) It addresses the regression testing problem: generated test drivers
can be saved and reused; 3) The generated test driver contains only a sequence
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of calls to the SUT, external event listeners for receiving the outputs from SUT,
and time delays where needed to fulfill timing constraints, hence it is quite effi-
cient and could be used for real-time test cases; 4) Different environment models
for different purposes can be designed; 5) Experiments with the environment
model running with the SUT provide a constructive method for quantitative
and qualitative software risk assessment [28]; and 6) Environment models can
be designed in early stages, before the system design is complete and can be used
as an environment simulation tool for tuning the requirements and prototyping
efforts. The generated event traces can be considered as use cases that may be
used for requirements specification on early stages of system design.

4 Related Work

In recent years, there have been multiple research theories and industrial stan-
dards proposed for DRE systems (e.g., TAO [25]). Because various kinds of
complexities are omni-present in DRE systems, there are many possible solu-
tions to such complexities that have been introduced at different abstraction
levels. Among many tools presented by different institutes or vendors, the fol-
lowing are relevant to UniFrame.

– RAPIDware: RAPIDware [18] is a project for component-based develop-
ment of adaptable and dependable middleware. It uses rigorous software
development methods to support interactive applications executed across
heterogeneous networked environments throughout the entire software life-
cycle. RAPIDware consists of three major techniques to fulfill its objectives:
in terms of the design workflow, adaptable design techniques are utilized to
design components that comprise crosscutting concerns (e.g., QoS and secu-
rity); a programming paradigm is introduced to specify QoS requirements,
evaluate the system accommodation in terms of different configurations and
contexts, and validate functional and non-functional properties via auto-
mated checking; and a middleware development toolkit that assists software
engineers in implementing and selecting components and composing the en-
tire system.

– APEX: Advanced Programming Environment for Embedded Computing
Systems (APEX) [29] is a promising infrastructure for software development
in the domain of embedded systems, especially for digital signal processing.
Similar to UniFrame, APEX consists of five core techniques that cover the
entire software life-cycle: the Online Repository for Embedded Software is
a web-based repository systems to facilitate component management and
retrieval; the COTS Aware Requirement Engineering methodology adapts
and analyzes product requirements for any possible artifact reuse during the
software development; the Design for Independent Composition and Evalu-
ation techniques decomposes an embedded system into a set of independent
subsystems in the design workflow for better modularization; the Automated
Modification and Integration of Components utilities compose and customize
components by generating glue code using existing design patterns and class
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templates, respectively; and the Environment for Automated Simulation and
Quality Analysis toolkit simulates the embedded systems and performs the
coverage and performance analysis.

There are three key differences between APEX, RAPIDware, and UniFrame.
First, UniFrame and RAPIDware are promising in seamlessly integrating a sys-
tem from homogeneous and heterogeneous components by respectively using au-
tomated glue/wrapper code generation and middleware techniques. APEX has
not explicitly discussed this issue [29]. Second, in order to reuse components effec-
tively and efficiently, UniFrame introduces a QoS-driven Product Line (QoSPL)
[17] framework to assist in constructing a set of DRE systems that share common
features in the design and analysis workflows. RAPIDware introduces a mid-
dleware development toolkit for selecting and integrating components. APEX
mainly concentrates on the reusability analysis at the requirements workflow
and exploits the analysis results to the following workflows. Finally, to our best
knowledge, the formalisms (e.g., stochastic Petri Nets) that APEX applies mostly
concentrate on performance analysis and validation. The usage of formalisms is
relatively less mentioned in other workflows. Conversely, both UniFrame and
RAPIDware use formalisms throughout the software development.

5 Conclusion and Future Work

Rapid advances in hardware, software, and networking technologies are enabling
an unprecedented growth in the capabilities of complex DRE systems. How-
ever, the traditional development pressures continue to force the introduction
of creative ways to develop systems more rapidly and with less cost. For years,
many such creative ways have been derived from the concepts of essential and
accidental complexities [3]. UniFrame addresses such complexity by utilizing a
unified component and resource discovery technique, a timed colored Petri Nets
modeling toolkit, an automatic code generation paradigm, and an event trace
approach. Additionally, the last formal method technique enhances the confi-
dence of DRE system construction by specifying event traces, generating and
executing test cases, and validating quality issues.

Currently, various prototypes of URDS have been constructed and exper-
imented with. These prototypes contain the features of pro-active discovery,
multi-level matching (matching restricted to only a few levels), and customiza-
tion based on reinforcement learning principles. The results of these experimen-
tations are promising and hence, efforts are underway to customize the URDS
to the domain of MARS. The scope of design space exploration and elimination
that QoS-UniFrame covers is mostly on software and hardware issues. Design and
analysis paradigms to address network latencies are under the situation of local
area network communication such that the latencies can be ignored. Enriching
the notations of timed colored Petri Nets to comprise various communication
approaches and heterogeneous protocols over network is our current plan. In
addition, as a part of the prototype of the product line engineering framework,
QoS-UniFrame is planned to cohesively collaborate with QoS-driven TLG [15]
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for DRE product line construction. As for AEG, the first prototype of the test
driver generator has been implemented at Naval Postgraduate School and used
for several case studies. In the area of AR, extensive work has been done on the
registration and calibration aspects that relate the coordinate systems, including
those of trackers [26][27][31].
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Abstract. DECOS (Dependable Components and Systems) is an EU-
funded integrated research project (IP) with the goal to develop a frame-
work and an associated design methodology for the component-based
design of dependable embedded systems. The core of DECOS is based
on the Time-Triggered Architecture (TTA), a distributed architecture
for high-dependability real-time applications. In the first part of this
paper the design flow of DECOS from the Platform Independent
Model (PIM) to the Platform Specific Model (PSM) is discussed and
the DECOS execution environment is introduced. In the second part
the fault-tolerance mechanisms of DECOS are explained. After a
deliberation of the fault hypothesis, the support for the implementation
of triple-modular redundancy (TMR) is presented.

Keywords: Dependable Systems, Time-triggered Architecture, Embed-
ded Systems, Design Methodology, Fault Tolerance.

1 Introduction

DECOS (Dependable Components and Systems) is an Integrated Research
Project of the sixth European Framework program. It is the objective of DECOS
to develop an integrated architecture and an associated design methodology for
the component-based design and implementation of large dependable embed-
ded systems. The interactions of the components are realized by the exchange
of time-triggered and event-triggered messages across interfaces to a real-time
communication system.

DECOS is based on the Time-Triggered Architecture (TTA), which has been
developed at the Institut für Technische Informatik of the Vienna University of
Technology during the past twenty years. The TTA [1] is an integrated distributed
computer architecture, designed to provide a continuous timely service with an
MBTF of better than 109 hours in the presence of component failures, provided
that the occurrences of component failures are in agreement with the stated fault
hypothesis. The TTA is intended for applications that require utmost availabil-
ity even in the presence of an arbitrary fault in any of its components: examples
of such applications are the control of a nuclear power plant, the flight control
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system of an airplane, or a computer-based brake-control system within an au-
tomobile that does not contain a mechanical backup. Such a high reliability can
only be achieved by the provision of redundancy in the hardware, since the ob-
served component (chip) failure rates are orders of magnitudes lower[2] than the
required system reliability. Every redundancy scheme is based on a number of
assumptions — the fault hypothesis — about the types and frequency of faults
that the system is supposed to handle. In case that all fault-handling mecha-
nisms are perfect and cover all scenarios that are listed in the fault hypothesis,
the probability of system failure is reduced to assumption coverage[3], i.e., the
probability that the assumptions made in the fault hypothesis are met by reality.
The fault hypothesis of any fault-tolerant system is thus a critical document in
the design process.

One common technique to implement fault-masking by redundancy is triple-
modular redundancy (TMR). In the TMR approach three synchronized deter-
ministic replicas of every critical component form a new unit — the fault-tolerant
unit (FTU) — that masks the arbitrary failure of any one of its three compo-
nents. An incoming message is distributed to all three units of the FTU and
the result message (and the internal state) is output to three voters that make
majority decisions based on at least two identical results. If one of the com-
ponents produces no result or a result that is different from the result of the
other two components, this component is considered to have failed. TMR struc-
tures will only succeed if the redundant components are synchronized and fail
independently. Correlated failures can occur because of external causes (a sin-
gle external event, e.g., a lightning stroke that causes the failure of more than
one component) or by error propagation, i.e. an erroneous component sends a
faulty message to an up to that instant correctly operating component and thus
corrupts the internal state of this component. The issues of fault isolation and
error propagation of replicated components are thus of critical importance in the
design of an architecture that is intended to support fault-masking by TMR.

This paper is structured as follows. In the next Section two we introduce the
model-driven design methodology developed in DECOS. DECOS starts by de-
composing a large application into a number of nearly autonomous Distributed
Application Subsystems (DAS). The Platform Independent Model (PIM) of a
DAS is then transformed into the Platform Specific Model (PSM) and allocated
to the DECOS execution environment. Section three presents the DECOS ex-
ecution environment, which is based on the TTA. Section four focuses on the
fault-tolerance mechanisms of DECOS and explains how the implementation of
triple-modular redundancy is supported by DECOS.

2 Model-Driven Design in DECOS

In DECOS we assume that a large real-time application can be decomposed into
many different nearly autonomous Distributed Application Subsystems (DAS).
Examples of a DAS in the automotive context are: the DAS that performs vehicle
dynamics control, the entertainment DAS or the DAS for the body electronics
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control functions (e.g. controlling the light, access control, air conditioning, etc.).
From the functional point of view every DAS can be considered to be nearly in-
dependent from every other DAS. The communication among DASes, if needed,
is realized via well-defined interfaces, the inter-DAS gateways. In many auto-
motive applications, every DAS is provided with its own dedicated hardware
base — we call such an architecture a federated architecture. In a federated ar-
chitecture there is minimal sharing of hardware resources among DASes. As a
consequence of this non-sharing of hardware resources there are today more than
fifty different electronic control units (ECUs) in a premium car. An architecture
which is intended to support the sharing of hardware resources among the nearly
independent DASes is called an integrated architecture. DECOS is intended to
provide such an integrated execution environment, where a physical ECU can
support more than one DAS.

2.1 The Platform Independent Model (PIM)

The design methodology of DECOS assumes that in a first step an application
is partitioned into the set of its nearly independent distributed application sub-
systems(DAS). Each DAS is developed independently from any other DAS and
represented as a network, where the nodes are considered to be computational
units (we call them jobs) that have an internal state, and accept and produce
messages, while the links are communication channels for the timely transport
of messages between the jobs. A DAS can be represented at different levels of
abstractions. The Platform Independent Model (PIM) of a DAS is a high-level
abstract representation that does not make any assumption about the physical
execution environment or about the physical communication links among jobs.
We call a job at the PIM level an I-job.

Since jobs must meet deadlines and can contain state, a model of time must
be part of any job representation. In DECOS we use a single model of time,
the physical sparse real-time[4] of the TTA, and use this model of time for all
representations of jobs. The PIM model of a job, the I-job, must thus express all
timing information,such as the instant of expecting a message or the instant of
sending a message in the metric of physical real-time. The interface where a job
provides its services to other jobs is called the linking interface (LIF). The LIF
specification of all I-jobs of task consists of the operational specification and the
meta-level specification, as discussed in [5]. The operational specification con-
tains the syntactic message specification in the value domain and the temporal
domain, while the meta-level specification assigns meaning to the information
chunks that have been established by the operational specification.

2.2 The Platform Specific Model (PSM)

In order to be able to execute a job and to estimate the concrete hardware
resources (processing, memory) for the execution of a job, a concrete hardware
platform, the target platform, must be selected. In the next phase the I-job must
be transformed into a representation that can be executed on the selected target
platform. We call this platform-specific model of a job the S-job representation.
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The concrete form of the S-job representation depends on the resource char-
acteristics of the selected target platform. If this target platform consists of a
CPU with a given operating system and middleware that supports a specific
application program interface (API) then the S-job must contain the commands
that can be executed by this specific CPU and must communicate with its en-
vironment across the given API. If the selected hardware platform is an FPGA,
then the S-Job will be represented in a form that can be loaded directly into the
FPGA.

As soon as the S-job representation of a job is available, the concrete hard-
ware requirements (processing time, memory) for the execution of the job are
available. These concrete hardware requirements are needed in order to be able
to allocate the S-job to a given node.

3 The DECOS Execution Environment

A physical DECOS micro-component consists of a host subsystem, a communi-
cation controller to a time-triggered core network and a local interface subsystem
to the environment as depicted in Fig. 1. The host-subsystem can be a computer
with a real-time operating system, middleware and the application software, an
FPGA or a dedicated hardware subsystem a shown in Fig. 2. In the TTA no
assumptions are made about the internal structure of a micro-component. Only
the (message) interfaces of the micro-components to the TT network musts be
fully specified in the domains of time and value

The temporal properties and the value properties of the Platform Message
Interface (PMI) are independent of the concrete implementation of the micro-
component. It is thus possible to exchange one implementation option by another
without any modification of the interface properties of the micro-component.

The host subsystem of the node is connected to the inner port of the commu-
nication controller, as shown in Fig. 1. A communication channel of the time-
triggered core network ends at an outer port of the communication controller of
a micro-component. The communication controller contains a memory for the
storage of incoming and outgoing event (queue) and state messages realized as

Fig. 1. DECOS micro-component with host subsystemand communication controller
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Fig. 2. Different implementation options for a Micro-component

Fig. 3. Multi-core node of the TTA, consisting of four micro-components (including a
gateway to TT Ethernet)

dual-ported RAM module. Whenever the global time reaches a (periodic) instant
that has been assigned to the outer port, a pending message will be sent to the
time-triggered core network. Incoming messages are delivered to the host across
the inner ports either in the information push mode (by raising an interrupt) or
in the information pull mode after the host has send a request for the delivery of
the next message. The interface between the host computer and the inner ports of
the communication interface subsystem is called the Platform Message Interface
(PMI). The PMI is the most important interface of the DECOS architecture.

The communication channel between the different I-jobs of a task is realized
by an overlay network on top a time-triggered core network. The time-triggered
core network guarantees non-interference (in the temporal domain) of the com-
munication channels allocated to different DASes.

Since a DECOS node will normally provide the resources for a number of
S-jobs from different nearly independent DASes, a DECOS host must provide
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an encapsulated partition for every S-job and a (virtual) communication channel
with known temporal properties for the communication among the S-jobs of a
given DAS. The partitioned execution environment within a DECOS node can
be furnished either by a real-time operating system on a scalar processor that
provides protected partitions and a priori fixed processor capacity for the timely
execution of each S-job or by a given dedicated core (CPU and memory) of a
multi-core physical node. We call such a dedicated core a micro-component. The
communication among the micro-components of a multi-core physical node can
be realized by another time-triggered network, as depicted in Figure 3. Eventu-
ally, such a node can be implemented as a single system-on-a-chip (SoC).

4 Fault Tolerance in DECOS

In the following paragraphs we discuss the fault-masking mechanisms of DECOS
with respect to hardware faults. Since DECOS is based on TTA [1], the fault-
tolerance mechanisms of DECOS rely on the fault-tolerance mechanisms of the
TTA. In the TTA it is assumed that the hardware design and the basic fault-
handling mechanisms are free of design faults.

4.1 Fault-Containment Regions

The first step in the specification of a fault hypothesis is concerned with the
establishment of a the fault-containment regions (FCR), i.e. the units of failure.
An FCR is a subsystem that is considered to fail independently from any other
FCR. If we must tolerate the physical destruction of a hardware component (e.g.,
in an accident), then different FCRs must be in different physical locations, i.e.
the computer system must be distributed. In the TTA we assume that every
node of the distributed system forms an FCR.

4.2 Failure Modes and Frequency of Faults

In the next step we must specify the critical failure modes of FCRs. Any re-
striction of the tolerated failure modes must be considered as an additional
assumption that has a negative effect on the assumption coverage. In the opti-
mal case no restriction of the failure modes are made, i.e., a failing component
can manifest an arbitrary behavior. We consider a failure mode of an FCR as
critical, if it impacts the remaining correct nodes of the distributed system in
such a way that the functionality or the consistency of the distributed computing
base among the nodes that are outside the affected FCR is lost. We focus on a
single fault during a fault-recovery interval Δd. After the recovery interval Δd
the architecture has recovered from the consequences of this fault and can tol-
erate a further fault (provided enough resources remain operational). We define
a set of nodes as Δd-consistent if Δd time units after the occurrence of failure
all remaining correct nodes have the same view about this failure event.

Permanent Failures: In the TTA it is assumed that a single node, which can
be implemented on a single SoC, can fail in an arbitrary failure mode without
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disturbing the correct operation of the other nodes that are not affected by
the fault. A restricted failure-mode model would require two independent
FCRs (one FCR monitoring the behavior of the other FCR) which cannot
be housed on the same die because of the many common mode elements of
a single die such as power supply, mask, production process, physical space.
If the fault is transient, then the failed node is assumed to recover within a
given recovery interval.

Massive Transient Disturbances: Another important fault class in a
distributed embedded system, particularly in the automotive domain, is
concerned with massive transient disturbances, e.g., those caused by elec-
tromagnetic emission (EMI). A massive transient disturbance can cause the
temporary loss of communication among otherwise correct nodes that reside
in different FCRs or cause state-corruptions within more than one node.
Based on available failure data [2] it is reasonable to assume that the multiple
correlated faults produced by a massive transient disturbance are transient,
i.e., that the hardware is not faulted by the massive transient disturbance.
In such a situation the TTA provides the core service of prompt error de-
tection in order that the nodes may take some local corrective action until
the transient disturbance has disappeared and the communication service
and the consistency of the nodes is reestablished by a fast restart. For ex-
ample, [6] report that in an automotive environment a temporary loss of
communication of up to 50 msec can be tolerated by freezing the actuators
in the positions that were taken before the onset of the transient distur-
bance. The probability of occurrence of massive transient disturbances must
be reduced by proper quality engineering, e.g., by shielding the cables or in-
stalling fiber optics instead of copper. In a safety-critical distributed system
massive transient disturbances must be rare events. From the point of view
of the communication system, fast detection of a transient disturbance and
fast recovery after the transient has disappeared are important.

Frequency of Faults: The assumptions about the frequency of fault occurrence
are depicted in Table 1. We distinguish between transient failures and perma-
nent failures as well as between fail-silent failures and Byzantine failures.

Whereas the data in the first row — permanent failures — is derived from
extensive field data,the assumptions of row two, three and four are not as well

Table 1. Assumed failure rates

Type of Failure Failure Rate Source

permanent fail silent < 100 FIT
(MTTF > 1 000 000 hours)

Field data from the automotive
industry[2]

transient fail silent < 100 000 FIT
(MTTF > 1000 hours)

SEUs caused by neutrons[7]

permanent Byzantine < 2 FIT
(MTTF > 5 000 000 hours)

Fault injection experiments[8]

transient Byzantine < 2 000 FIT
(MTTF > 50 000 hours)

Fault injection experiments[8]
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supported by experimental data and field evidence. In particular it is very diffi-
cult to find a good estimate for the transient failure rates, because these failure
are very dependent upon the environmental conditions (e.g., geometry of the
setup determines the susceptibility with respect to EMI, geographical position
and altitude determines the rate of SEUs etc..) of the unit under observation.
The failure rates of Table 1 are our best estimates and are used in our reliability
models to calculate the service availability of the TTA.

4.3 Fault Masking by Triple-Modular Redundancy (TMR)

DECOS, which is based on the TTA [1], performs error handling in the time
domain at the architecture level and error handling in the value domain by
triple modular redundancy (TMR) of the host-subsystems.

The architecture-level error handling in the temporal domain is enabled by the
a priori knowledge about the permitted sending instants of the nodes, which is
a characteristic element of the time-trigged architecture. Whenever a node sends
a message at an instant which is not in agreement with the predefined sending
schedule, the node is classified as faulty. The communication system contains
a special device, a guardian, which contains knowledge about the predefined
sending schedules and blocks any untimely message (In Fig. 4 the guardian is
part of the TT Ethernet [9] switch). The guardian thus transforms an untimely
message into an omitted message, i.e., an omission failure, which is a fail-silent
failure.

Figure 4 depicts a triple-modular redundant (TMR) configuration of five nodes
of DECOS. Each node supports a number of different DASes. For example the
first node supports a pink, a blue and a green DAS and a gateway to TT Eth-
ernet. Let us assume that the services of two DASes, the blue DAS and the red
DAS , are safety-critical and have to protected by TMR. We will instantiate the
replicated micro-components of these safety-critical DASes on three nodes (on
node one, two, and four for the blue DAS, and on nodes three, four, and five
for the red DAS) under the assumption that each node forms an independent

Fig. 4. TMR configuration in the TTA with the nodes depicted in Fig. 2
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fault-containment region[10]. The communication between the nodes is realized
by two replicated external deterministic communication channels via the TT ser-
vice of an external network, e.g., TT Ethernet[9]. It is assumed that the internal
state of each red DAS micro-component is periodically distributed to the other
two red DAS micro-components for the purpose of outvoting a transient error
in the internal state. The same must hold true for the blue DAS. The duration
of the period of the internal state distribution determines the repair time after
the occurrence of a transient fault and is an important parameter of any relia-
bility model. Replicated sensors input the information from the environment to
the respective micro-components. In order to establish a consistent view of the
environment at all replicas, an agreement protocol has be executed that estab-
lishes an agreed value at an agreed point of the sparse time base[4] for every
replicated input data element. The output is delivered to fault-tolerant voting
actuators. In the depicted configuration, the failure of any single device (input,
output, SoC, and any one of the two communication subsystems) is tolerated. A
prerequisite for such a fault-tolerant structure to mask an error in any one fault-
containment region is the availability of a global notion of time and the timely
and deterministic behavior of the communication service among the SoCs.

There is an additional benefit in such an architecture approach if the nodes
are formed by giga-scale SoCs. It is expected that in technologies beyond 90nm
feature size, single-event upsets (SEU) will severely impact field-level product
reliability, not only for embedded memory, but for logic and latches as well[11,12].
This effect can be mitigated by providing a triple-modular redundant structure,
consisting of three SoCs, for masking transient, intermittent, and permanent
SoC faults.

5 Conclusion

DECOS provides the framework for the component-based implementation of
large distributed system, starting with the platform independent model of a dis-
tributed application subsystem and supporting the transforming to the platform
specific model and the allocation to the given distributed execution environment.
The architecture inherent mechanisms for fault-masking by triple modular re-
dundancy enable the component-based implementation of high-dependability
applications.
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Abstract. The advanced mechatronic systems of the next generation
are expected to behave more intelligently than today’s systems by build-
ing communities of autonomous agents which exploit local and global
networking to enhance their functionality. Such mechatronic systems will
therefore include dynamic structural adaptation at the network level and
complex real-time coordination protocols to adjust their behavior to the
changing system goals leading to cooperative self-adaptation in a safe
and coordinated manner. In this paper the Mechatronic UML approach
and its concepts for compositional modeling and verification of crucial
safety properties for cooperative self-adaptive mechatronic systems are
outlined. Based on former results for the compositional verification of
the real-time coordination and safe rule-based dynamic structural adap-
tation, we present in this paper a systematic compositional verification
scheme which permits to verify the safety of real-time systems with com-
positional adaptation and an a priori unbounded number of structural
configurations.

1 Introduction

Advanced mechatronic systems [1] today start to combine traditional mechanical
and electrical engineering with technologies from software engineering in order
to provide reliable technical solutions for complex real-world problems.

The advanced mechatronic systems of the next generation are expected to
behave more intelligently than today’s systems by building communities of au-
tonomous agents which exploit local and global networking to enhance their
functionality in a scalable and fault tolerant manner.

Such advanced networked mechatronic systems will include dynamic struc-
tural adaptation of the networking topology and complex real-time coordination
which enables them to adjust their behavior at run-time to the changing system
goals. These systems thus support the coordinated self-optimization of networked
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systems [2], which goes beyond traditional self-adaptive systems (cf. [3,4,5]) that
only operate locally.

The development of self-adaptive systems can be viewed from two perspec-
tives, either top-down when considering an individual system, or bottom-up
when considering cooperative systems. Individual self-adaptive systems evaluate
their own global behavior and change it when the evaluation indicates that they
are not accomplishing what they were intended to do, or when better functional-
ity or performance is possible. Self-adaptive systems can on the other hand also
work bottom-up when operating in a cooperative style. Such cooperative self-
adaptive systems are composed of a large number of components that interact
according to local and often rather simple rules (in an extreme form also referred
to as self-coordination). The global behavior of the system emerges from these
local interactions, and it is difficult to deduce properties of the global system by
studying only the local properties of its parts.

One major problem which has to be addressed when developing coopera-
tive self-adaptive mechatronic systems is the real-time coordination and the po-
tentially dynamic structural adaptation of the communication and cooperation
structures. As mechatronic systems are often safety-critical applications, the de-
velopment of software controlling these systems consequently has to undergo
a rigorous process including the prevention of faults employing adequate and
well-founded modeling concepts and the detection of critical faults due to the
verification of crucial safety properties. Thus, we do not only require a suitable
solution to model both the integration between the continuous and discrete real-
time processing as well as the networking with structural adaptation, but also
means for its proper verification.

In order to address the verification of those real-time coordination features
that result from the structural adaptation at run-time, techniques such as testing
the system in several test environments and in its operation environment are
not sufficient any more due to the rather incomplete coverage of possible design
faults. Current formal verification approaches, which provide the required more
complete coverage at least in principle, on the other hand do not scale for the
considered class of systems: While model checking approaches can prove safety
properties for models of moderate size only, semi-automatic approaches such as
theorem proving require usually not available advanced proof skills.

In this paper the Mechatronic UML approach and its concepts for com-
positional modeling and verification of crucial safety properties for cooperative
self-adaptive mechatronic systems are outlined. Based on former results for the
compositional verification of the real-time coordination [6] and safe rule-based
dynamic structural adaptation [7,8], we present in this paper a systematic com-
positional verification scheme which permits to verify the safety of real-time
systems with compositional adaptation and an a priori unbounded number of
structural configurations.

We first employ an application example to outline the most important system
characteristics as well as resulting challenges for the design of advanced networked
mechatronic systems in Section 2. Then the employed Mechatronic UML
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approach is sketched in Section 3 before the modeling of the network part of the
application example is outlined in Section 4. We then introduce the underlying
formal model in Section 5 and then describe the underlying compositional rea-
soning scheme in Section 6. The paper closes with an overview about the related
work in Section 7 and a final conclusion and outlook on future work.

2 Cooperative Self-adaptive Mechatronic Systems

We introduce in this section the specific characteristics and challenges we have
to face when developing cooperative self-adaptive mechatronic systems, starting
with a motivating example.

2.1 Application Example: The RailCab System

As a concrete example for an advanced mechatronic system with cooperative self-
adaptation, we consider the Paderborn-based RailCab research project
(http://www-nbp.upb.de/en), which aims at combining a passive track system
with intelligent shuttles that operate individually and make independent and de-
centralized operational decisions. The project is funded by a number of German
research organizations. It has built a test track in the scale of 1:2.5 such that
the ideas of the project can be evaluated in real operation (cf. Fig. 1 (a)).

The vision of the RailCab project is to provide the comfort of individual traffic
concerning scheduling and on-demand availability of transportation as well as in-
dividually equipped cars on the one hand and the cost and resource effectiveness
of public transport on the other hand. The modular railway system combines
sophisticated undercarriages with the advantages of new actuation techniques

Fig. 1. (a) The test track and shuttle prototype of the RailCab project – (b) The OCM
architecture and its elements
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as employed in the Transrapid (http://www.transrapid.de/en) to increase pas-
senger comfort while still enabling high speed transportation and (re)using the
existing railway tracks.

One particular crucial design goal is the minimization of the energy consump-
tion. To be competitive w.r.t. traditional train systems, the shuttles must be
able to reduce the energy consumption due to air resistance by building tempo-
rary convoys whenever suitable. Such convoys are built on-demand and require
a small distance between the different shuttles such that a high reduction of air
resistance is achieved.

The coordination between the shuttles is realized with wireless communication.
The shuttles have to change their behavior depending on their current position
and role within a convoy. A rear shuttle will, for example, hold the distance to
the front shuttle on a constant level, while if operating independently the con-
stant velocity would be the control goal. The feedback controller which controls
the acceleration of the shuttle has thus to be dynamically exchanged at run-time.
A shuttle also has to reduce the intensity of braking when another one drives in a
short distance behind it to exclude any rear-end collision when braking.

The design of the shuttles thus has to ensure a safe coordination when build-
ing or breaking convoys by dynamic structural adaptation. The switching between
different controllers at run-time must guarantee safety and stability. Due to the
safety-critical character of the resulting real-time coordination between speed con-
trol units of the shuttles, appropriate techniques to provide these guaranteeswhich
can be employed when building the control software of the shuttles are required.

The outlined shuttle system is well suited to identify the essential challenges of
the future generation of cooperative self-adaptive mechatronic systems and will
thus be further employed to outline them and present the proposed approach.
For sake of brevity, we will consider only an oversimplified version of the convoy
building problem.

2.2 Design Challenges

As illustrated by the building of convoys in the application example, crucial re-
quirements for mechatronic systems are the tight integration of quasi-continuous
and discrete control software and that a proper realization of complex real-
time coordination and dynamic structural adaptation by the software has to be
achieved at the network level. We further explain these challenges looking at the
micro- and macro-architecture of networked mechatronic systems.

Micro-Architecture. The typical functions and requirements for a single sub-
system in an advanced mechatronic systems can be exemplified using, for ex-
ample, the internal subsystem architecture named Operator-Controller Model
(OCM) depicted in Fig. 1 (b) (cf. [9]).

(1) On the lowest level of the OCM, there is the controller including an ar-
bitrary number of alternative control strategies. Within the OCM’s innermost
loop, the currently active control strategy processes measurements and produces
control signals. As it directly affects the plant, it is called motor loop. The
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software processing is necessarily quasi-continuous, including smooth switching
between the alternative control strategies which are described with some form
of differential equations or difference equations.

(2) The controller is controlled by the reflective operator, in which monitor-
ing and controlling routines are executed. The reflective operator operates in a
predominantly event-oriented manner and thus usually includes a control au-
tomaton with a number of discrete control states and transitions between them.
It does not access the actuators of the system directly, but may modify the
controller and initiate the switch between different control strategies. Further-
more it serves as the connecting element to the cognitive level of the OCM. In
the top-level OCMs the reflective operator is also responsible for the real-time
coordination with other top-level OCMs.

(3) This topmost level of the OCM is called the cognitive operator. On this
level, the system can gather information concerning itself and its environment
and use it for the improvement of its own behavior. This element is optional and
thus might not be present in all subsystems.

Macro-Architecture. In general, the OCM-hierarchy defines locally within a
complex, autonomous mechatronic systems a strictly hierarchical control flow,
i.e. each level tries to execute control as much as possible locally but whether
reconfiguration is to be executed is decided on the next higher level. The OCM
hierarchy can be nested, i.e. the each level may include a full-fledged OCM.

No such hierarchy exists anymore when it comes to the level of freely inter-
acting software agents. This is the level above the OCM hierarchy where agents
exchange information but no central control is defined. As an example, consider
the different shuttles, stations and possibly job brokers of the RailCab project.
These agents interact with each other only in a local context and adapt their
architecture dynamically as required when building convoys.

Taking the outlined requirements for advanced networked mechatronic sys-
tems at the micro- and macro-architecture level into account, we have to address
the following main challenges:

(a) A suitable approach for hierarchical structures of OCMs is required which
supports besides hybrid behavior also the safe reconfiguration of subsystems in
order to support the reliable self-adaptation of the OCMs.

(b) For the level of freely interacting software agents, the approach must in
addition provide means to model and analyze the flexible but safe real-time
coordination between the autonomous mechatronic agents.

(c) Besides the real-time coordination, at the level of freely interacting soft-
ware agents, means to specify and analyze the dynamic structural adaptation
also have to be provided.

(d) Finally, the approach must integrate the concepts a-c for hierarchical OCM
structures, flexible real-time coordination of software agents, and safe dynamic
structural adaptation in such a manner that the safe hierarchical reconfiguration,
safe real-time coordination, and safe dynamic structural adaptation can still be
guaranteed.
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3 Mechatronic UML

We outline in this section how we address the identified challenges by the model
driven Mechatronic UML development approach which combines domain spe-
cific modeling and refinement techniques with verification based on composi-
tional model checking of the real-time behavior and the checking of structural
inductive invariants for the dynamic structural adaptation.

The Mechatronic UML approach addresses the outlined challenges provid-
ing the following essential solutions:

(1) It at first suggests modeling the hierarchical agent structure of the software
within a single mechatronic agent using a refined UML 2.0 component model
including the detailed definition of ports which is refined to define a proper
integration between discrete and continuous control such that the reconfiguration
of hierarchical component systems can be described in a modular manner [10]. A
conceptual mapping to a reconfigurable variant of hybrid/timed automata then
permits to check in a modular manner that only safe reconfiguration steps are
present in a given model [2]. This solution addresses challenge (a).

(2) Our approach in addition addresses the real-time coordination (challenge
(b)) by supporting a compositional proceeding for modeling and compositional
verification of the real-time software when using the UML 2.0 component model
with ports and connectors as well as pattern with rigorously defined real-time
behavior [6]. Timed automata, a related notion of refinement, and the overlap-
ping of the pattern and component behavior at the ports resp. roles is employed
to decompose the verification problem into number of checks which have to be
performed for local models only such that scalability is achieved (cf. [11]). At
this level, additional means for the compositional safety analysis [12] and con-
structive improvement of dependability by means of fault tolerance techniques
[13] are provided.

(3) The structural adaptation of the complex topology of the technical system
as outlined in challenge (c) is described by object diagrams. Using an extended
notion of UML object diagrams named Story Pattern [14], we can then define the
structural adaptation rules for the networked mechatronic agents which operate
on their local context only (cf. [15]). The resulting dynamic structural adapta-
tion is formalized by graph transformation systems. Currently the verification of
crucial safety properties using model checking for models of moderate size and
automatic checking of structural invariants for infinite state system is supported
(cf. [7,8]).

The former three modeling and analysis solutions are complemented by support
for the generation of code for hard real-time processing for the employed UML
concepts [16,17], which guarantees that the high level properties which have been
proven in the separate modeling views are preserved by the code generation.

In addition to the provided modeling and analysis solutions, their proper inte-
gration into a whole systematic and correct compositional reasoning framework
as stressed in challenge (d) is required.

We have addressed the integration of the concepts for hierarchical OCM struc-
tures and flexible interaction of software agents that enables the independent
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verification of the safe hierarchical reconfiguration and the safe real-time coor-
dination in an informal manner already in [18,2].

In this paper we will focus on the formal reasoning framework which allows
us to combine the developed solution for the compositional modeling and ver-
ification of the real-time coordination and the solution for the verification of
structural invariants for the rule-based structural adaptation.

4 Modeling

In the following, we will describe our approach in more detail using the be-
forehand introduced RailCab example which combines our results about the
real-time coordination presented in [6] and the results about the safe rule-based
reconfiguration presented in [7,8]. The outlined scheme will then later be gen-
eralized into the required compositional reasoning scheme for cooperative self-
adaptive mechatronic systems.

4.1 Basic Ontology and Hazard Definition

We at first employ UML class diagrams and UML object diagrams to describe
all possible system configurations and possible hazards.

Ontology. We start with an ontology model of the considered system using
UML class diagrams. For our example, the physical entities of the system in
form of shuttle agents and tracks and their relationships are specified in the
class diagram depicted in Figure 2. We use tracks to denote short segments with
room for only a single Shuttle and their successor association connects them into
a directed track layout. The current position of a Shuttle is described by the
association on while the go association encodes the potential movement towards
a Track which cannot be stopped (due to the physical laws). We do here not
further discuss the details of the physical attributes of the Shuttle such as the
actual position pos on the Tracks or the physical laws for sake of brevity.

Hazards. UML object diagrams can be used to model concrete configurations
as instances of the ontology. We can therefore specify unsafe conditions, i.e.,
configurations that should not occur during when the system is executed such
as hazards or accidents.

At this stage usually all hazards and accidents which have to be taken into
account have to be defined. We restrict our attention for our example to collisions

<<Agent>>
Shuttle

pos: real
speed: real
length: real

<<entity>>
Track

length: real

on

go

successor

go

d/dt pos = speed

Fig. 2. Class diagram of the example ontology
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Shuttle:sa
on

Track:ta Shuttle:sbon

{ | sa.pos - sb.pos | < (sa.length + sb.length)/2 }

Shuttle:sa
on

Track:ta Shuttle:sbon

a) b)

Fig. 3. The Collision accident for two shuttles

between shuttles which can be characterized by two shuttles which are located
on the same track (see Fig. 3 a)).

Behavior. The continuous behavior is annotated in the ontology of Figure 2 in
form of a differential equation d/dt pos = speed and define the continuous change
of the attributes over time as long as no discrete behavioral step is executed.

To model also the discrete behavior of the system, we employ Story patterns,
an extension of UML object diagrams based on the theory of graph transfor-
mation systems (cf. [14]), which are basically rules which describe the transfor-
mation of one instance configuration into another one by two object diagrams
specifying partial configuration. The first one is a pre-condition which is expected
to be present before the rule can be applied while the second is a post-condition
which describe the side-effect relative to the first one. Thus if the pre-condition
can be matched, i.e., occurs in a configuration, that occurrence is transformed
to correspond to the post-condition.

Appropriate stereotypes are used to extend the object diagrams such that
the pre- and post-condition can be compactly specified within a single ob-
ject diagram: unmarked elements remain constant, elements annotated with the
�destroy� are erased, and elements annotated with the �create� are created.
Crossed out elements belong to the pre-condition and specify that if any of these
elements can be matched in a given configuration, the rule is not applicable.

Story patterns are further used to describe all relevant changes of the config-
uration, e.g., agent behavior, coordination rules, or physical effects. The story
patterns in Fig. 4 describes the physical behavior of a Shuttle moving from one
Track to the next.

The combination of the continuous and discrete behavior does in fact allow a
collision to happen and ensures that the relevant inertia of the moving shuttle
is appropriately represented within our model.

successor

«destroy»

go
«destroy»

on

«create»

on

Track:t1

Shuttle:s1

Track:t2

{ s1.pos = t1.length}

s1.pos’ := 0

Fig. 4. The move Story Pattern: moving a shuttle to the next track
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<<Agent>>
Shuttle

pos: real
speed: real
length: real

<<entity>>
Track

length: real

<<community>>
DistanceCoordinationPattern

on

go

<<role>>
rear

<<role>>
front

successor

<<agent>>
Shuttle

<<entity>>
Track

on

go

successor

go
next

<<commitment>>

<<community>>
DistanceCoordinationPattern

<<role>>
rear

<<role>>
front

a) b)

d/dt pos = speed

next
<<commitment>>

Fig. 5. Class diagram of the ontology with coordination patterns

successor

«create»

go
«create»

next

Track:t3

«destroy»

next

Track:t2
successor

Track:t1

on

Shuttle:s1
rear

DistanceCoordinationPattern:dc1

{ s1.pos = t1.length }

s1.pos’ := 0;

Fig. 6. Behavioral rule: unrestricted movement for a Shuttle

4.2 Dynamic Structural Adaptation

The basic idea to cope with the identified hazards is to employ real-time co-
ordination by means of structural adaptation rules and coordination patterns
which guarantee that these situations identified as potentially hazardous cannot
(or can at least only very unlikely) result in an accident. We employ the design
steps outlined later in Section 4.3 to design the detailed local real-time coordi-
nation between two shuttles. Beforehand, we have to enhance our model to also
reflect these patterns, given commitments, and the adaptation rules.

In a first step the ontology (Fig. 2) is accordingly extended with additional
conceptual elements as presented in Fig. 5. These enhancements include a next
association, which denotes the commitment to go to that specific Track when the
next time a go-Rule is executed. Two shuttles can be group together by the
DistanceCoordinationPattern via the two roles rear respectively front.

In addition, behavioral rules to rule the coordination are introduced to ensure
that Shuttles respect the commitment expressed by their next association: Fig. 6
describes a solitary Shuttle to move freely.

The required coordination for the collision avoidance is realized by instantiat-
ing a DistanceCoordinationPattern which disables the unrestricted rule and enables
the provided behavioral rules for coordinated movement when one Shuttle ap-
proaches another one.

A special instantiation rule createDC is employed to create the DistanceCoor-
dinationPattern when required: If there is a beforehand unconnected Shuttle on a

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Modeling and Verification of Cooperative Self-adaptive Mechatronic Systems 267

frontrear

next
onon

«create»

DistanceCoordinationPattern:dc1

DistanceCoordinationPattern:dc2

Track:t1 Track:t2

«create»

rear

Shuttle:s1 Shuttle:s2

«create»

front

DistanceCoordinationPattern:dc3

Fig. 7. Instantiation rule: creating a DistanceCoordinationPattern

«create»

next
next

«create»

go
go

successor
Track:t3

rear

Shuttle:s1

on

Track:t1
successor

Track:t2

on

DistanceCoordinationPattern:dc1

Shuttle:s2

front

«destroy»

{ s1.pos = t1.length }

s1.pos’ := 0;

Fig. 8. Behavioral rule: Coordinated movement

Shuttle’s next Track (see Fig. 7). The additional rule deleteDC erases the pattern
instance when the rear Shuttle is no longer near (has no go or next association to
the current location of the front Shuttle).

The additional coordinated behavioral rules goDC1 (see Fig. 8) and goDC2
then only permit the rear Shuttle to move forward when the front Shuttle has
already moved which reliably prevents that the moveMultiple rule could result in
a collision.

4.3 Real-Time Coordination Pattern

In the domain of cooperative self-adaptive mechatronic systems, an autonomous
agent like a shuttle usually operates in a local environment only and thus the
interfaces to its environment are strictly local (e.g., a shuttle trying to build
a convoy has to interact only with one other shuttle and not with a third one
which is a few kilometers away). Due to this domain-specific restriction, we usu-
ally only require relative simple coordination patterns, i.e. patterns with simple
coordination protocols between roles, limited numbers of input signals, and a
fixed number of roles.
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go

successor

onon

frontrear

Shuttle:sbShuttle:sa

Track:tbTrack:ta

DistanceCoordinationPattern:dca

Fig. 9. Invariant: No uncoordinated movement of Shuttles in close proximity

Fig. 10. Component Diagram and Patterns

The real-time coordination between two shuttles for building and maintaining
a convoy is one such simple coordination pattern. As depicted in Figure 10,
the ConvoyCoordination pattern between two shuttles describe that shuttles build
convoys with one another via the dedicated RearRole and FrontRole roles.

The more detailed coordination is then specified in the roles of this pattern
(see Figure 11). As the agents (components) in the considered domain must meet
hard real-time requirements, we use our real-time variant of UML state machines
named Real-Time Statecharts [19] for the specification of role behavior. The
additionally supported constructs from timed automata [20,21] such as clocks,
time guards, time invariants and further annotations like worst case execution
times and deadlines enable an automatic and correct implementation on a real
physical machine with limited resources which preserve the high level properties
of the model (cf. [17,19]).

The following scheme is used for the communication via roles: If an event has
the form roleA.message this denotes that the transition is only triggered when
message is received via the port related to roleA. The side-effects roleB.message
describes the sending of message to the port related to roleB. If we use events
where no port is referenced, the message is local and sent resp. received within
the same statechart.

As depicted in Figure 11, initially both roles are in their state noConvoy::default,
which denotes that they are not in a convoy. The rear role then can non-
deterministically choose to propose building a convoy or not. To propose a con-
voy, a message is sent to the front role of the related shuttle and that front role
decides non-deterministically to reject or to accept the proposal.
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default

wait

noConvoy

answerdefault

default

/ rearRole.breakConvoyRejected
rearRole.breakConvoyProposal

/ rearRole.convoyProposalRejected

rearRole.convoyProposal /

convoy
/ rearRole.breakConvoy
rearRole.breakConvoyProposal

/ rearRole.startConvoy

wait

noConvoy

convoy

frontRole.convoyProposalRejected /

/ frontRole.convoyProposal

wait
frontRole.breakConvoyProposalRejected /

/ frontRole.breakConvoyProposal

default

frontRole.breakConvoy / frontRole.startConvoy /

a) Rear Role

b) Front Role

{t0}
[1 ≤ t0 ≤ 1000]

Fig. 11. Real-Time Statechart for roles RearRole and FrontRole role

If we are in convoy mode, the rear shuttle may non-deterministically choose
to propose breaking up the convoy. It then sends a proposal to the front shuttle
to do so. The front shuttle may again non-deterministically choose to reject or
accept that proposal.

For the connector which represents the communication media in form of a
wireless network we do not define the behavior explicitly by means of a State-
chart. Instead, we only specify its QoS characteristics such as throughput, max-
imal delay etc. in the form of connector attributes (it will forward incoming
signals with a delay of 1 up to 5 msec.; it operates unreliably in the sense that
it might fail completely at any time).

To specify required safety constraints, the following RT-OCL [22] constraint
must hold which requires that a combination of role states where the front role
is in state noConvoy and the rear role is in state convoy can never be reached.
This state is unsafe as the front shuttle could brake with full intensity although
another shuttle drives in short distance behind, which may result in a rear-end
collision.

context DistanceCoordination inv:
not (self.oclInState(RearRole::Main::convoy) and

self.oclInState(FrontRole::Main::noConvoy))

As shown in [6], properties like the former one can be guaranteed if the pattern
are verified and the components correctly refine the related pattern roles. As a
component may realize different roles of different patterns (In our example, the
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Shuttle component is a combination of refined versions of the RearRole and the
FrontRole), the components have to be subject to verification also to ensure that
the verified pattern properties still hold (cf. [6]). This reasoning scheme permits
to reuse patterns during the construction of other systems as proven and verified
building blocks.

4.4 Component Behavior

In this section the specification of the real-time behavior of the single components
which realize the real-time coordination pattern roles as outlined in the last
section is considered which preserves the verification results by refining the role
behaviors.

Figure 12 depicts the real-time behavior of the Shuttle component of Figure
10, taken from [6]. The Real-Time Statechart consists of three orthogonal states
FrontRole, RearRole, and Synchronization. FrontRole and RearRole are refinements
of the role behaviors from Figure 11 and specify in detail the communication
that is required to build and to break convoys. Synchronization coordinates the
communication and is responsible for initiating and breaking convoys. The three
sub-states of Synchronization represent whether the shuttle is in the convoy at
the first position (convoyFront), at second position (convoyRear), or whether no
convoy is built at all (noConvoy). The whole statechart is a refinement of both role

isConvoyOk
/ noConvoy

when(convoyUseful)
/ buildConvoy

defaultH wait

when(convoyNotUseful)
/ doBreakConvoy

convoyFront
isConvoyOK
/ convoyOK

noConvoy convoyRear
breakConvoy /

breakConvoy /

/ FrontRole.breakConvoyRejected
FrontRole.breakConvoyProposal

default

default

  breakConvoy

FrontRole.breakConvoyProposal
/ FrontRole.breakConvoy

Synchronization

/ RearRole.startConvoy
convoyOk

wait

waitdefault

RearRole.breakConvoyProposalRejected /

RearRole.convoyProposal / isConvoyOK

noConvoy / RearRole.convoyProposalRejectednoConvoy

/ breakConvoy
RearRole.breakConvoy

doBreakConvoy
/ RearRole.breakConvoyProposal

default

Convoy

RearRole

FrontRole.startConvoy /

buildConvoy / FrontRole.convoyProposal

FrontRole.convoyProposalRejected / breakConvoy

wait

convoy

noConvoy

FrontRole

d1

d1

d1

{t0}
d1 [15 ≤ t0]

d1

d1

d1

dc

dc

dc dc

dc
dc

dc

dc

dc

dc dc

Fig. 12. Behavior of the Shuttle component
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descriptions as it just resolves the non-determinism from the roles from Figure
11 and does not add additional behavior.

5 Formal Model

We used graph transformation systems (GTS) [23] with attributes and continuous
attribute updates which support hybrid behavior as underlying formal model.

As underlying concept graphs and graph patterns which in addition include
negative nodes and edges are employed. A graph pattern P matches a graph G,
if there exists an isomorphic function iso that maps all positive elements of P
(P+) to elements of G and no isomorphic function iso′ exists which extends iso
and map at least one negative element of P (P−) to elements of G.

Graph patterns that are used to describe system properties can be divided
into required and forbidden patterns. A required pattern must always be fulfilled
during system execution (system invariant), whereas a forbidden pattern must
never be fulfilled (system hazard, accident).

5.1 Graph Transformation Systems

A graph transformation system S = (Gi, R) consists of a set of initial graphs Gi

and a set of graph transformation rules R (defined by a set of story patterns),
defining all possible transformations in the transformation system. The state
(configuration) of S is a graph G and we denote all possible configurations of S
as GS .

A rule r ∈ R (written 〈〈L→rR〉〉) is applicable to a graph G if G matches L. A
story pattern defines the two graph patterns L and R as follows: Those elements
of the story pattern that are not annotated with �create� build L. R consists
of all elements that are not annotated with �destroy�.

During the application of a rule 〈〈L→rR〉〉 to a graph G, the elements that
are in L+ but not in R+ are removed from G, and elements that are in R+ but
not in L+ are added to G. Therefore, the elements annotated with �create�
will be created by the rule and those annotated with �destroy� will be erased.
Elements without annotations are preserved by the application of the rule.

We write G |=⇒r G′ if rule r can be applied to graph G and the application
results in graph G′. We write G |=⇒∗ G′ if G is transformed into G′ by a (possibly
empty) sequence of rule applications. For a given graph transformation system
S = (Gi, R) and a graph G, the set of reachable graphs of S starting from G is
denoted by REACH(S, G) = {G′ | G |=⇒∗ G′}. All reachable graphs of S are
denoted by REACH(S) =

⋃
G∈Gi REACH(S, G).

5.2 Hybrid Graph Transformation Systems

While graph transformation system permit to model complex discrete models,
we have to also support continuous behavior and thus in addition consider the
following extensions for hybrid graph transformation systems (HGTS): We as-
sign types to all nodes and edges, provide node type specific attributes a ∈ V ,
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and node type specific continuous behavior for the attributes of that node type.
The state of a HGTS therefore consist of a graph G as well as an assignment
X which provides for each node n and related attribute a the current value as
X(n, a).

Graph patterns are accordingly extended such that they can also contain
Boolean constraints over the node attributes. In addition, for the right hand
side graph pattern we also permit to employ updates which determine the new
attribute values as a function of node attributes of the left hand side.

Due to the additional continuous behavior, we have, like for hybrid automata,
two steps for HGTS: (1) At first, the classical GTS step results in a discrete
change of the graph which takes place in zero time, in addition, the applica-
tion of a rule require that the additional Boolean constraints are fulfilled and
may also change some of the attribute values of the nodes denotes by related at-
tribute updates in the right hand side of the rule. (2) Secondly, a time consuming
continuous step that results for a current state (G, X), a time step δ > 0, and
trajectories ρ : [0, δ] → [V → IR] with ρ(0)(a) = X(n, a) for each node n ∈ G
and attribute a ∈ V which conforms to the continuous behavior specification of
the type of n results in a state (G, Xδ) for time δ with identical graph G and
the continuous state Xδ defined by Xδ(n, a) := ρ(δ)(a).

Using this concept, we can, for example, describe the velocity of a vehicle
given as a node n using differential equations or real-time behavior by means of
clock variables with a constant derivative 1.

Using a rule labeling alphabet A and a corresponding labelling for all rules
α : R → A we further write G a→G′ instead of G →r G′ if α(r) = a and
G τ(δ)→G′ for a continuous step. G w→∗G′ is accordingly defined as the finite
sequence of steps Gi

ai→Gi+1 with w the concatenation of the labels a1; . . . ; an

with τ(δ1); τ(δ2) is reduced to τ(δ1 + δ2).1 If more appropriate we may also omit
the labeling and write G→G′ and G→∗G′.

The composition S ⊕ T of two HGTS S and T is defined by simply joining
the rule sets. We can in addition define the parallel composition S‖T of two
labeled HGTS S and T by synchronizing always two rules of both HGTSs with
the same label. We further require that to build a parallel composition, the
combined rules are always identical w.r.t. shared element types. For the parallel
composition holds that S as well as T simulate S‖T (see below).

5.3 Simulation and Refinement

A graph pattern P further matches a graph pattern P ′, if there exists an iso-
morphic function iso that maps all positive elements of P to positive elements
of P ′ and all negative elements of P to negative elements of P ′. If P matches
P ′, we say that P is a subpattern of P ′, and write P � P ′. In case of conditions
for graph pattern refinement must in addition hold, that the conditions of the
refined graph pattern P ′ restricted to all elements also present in P imply the
conditions of P ′.
1 We ignore here the problem of Zeno behavior which might result from an infinite

sequence of classical steps or a not convergent sequence of time steps (
∑

δi �→ ∞).
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For any graph pattern P1 and P2 with P2 � P1 holds that for any other
graph pattern P that substitution is monotonic w.r.t. refinement (P [P2/P1] � P )
Combining both results we get G |= ¬P ⇒ G |= ¬P [P2/P1].

To ensure that a more detailed HGTS is restricted to the behavior specified
in a more abstract one, we employ the following notion of simulation for HGTSs:

Definition 1. For two HGTS S = (Gi
S , RS) and T = (Gi

T , RT ) holds that S is
a simulation of T iff S has the same types as T and an Ω ∈ GS × GT exists with
(GS , GT ) ∈ Ω implies GS |T ≈ GT and

∀G′
S ∈ GS : GS→G′

S ∃G′
T ∈ GT : GT →∗G′

T ∧ (G′
S , G′

T ) ∈ Ω (1)

for all GS ∈ Gi
S holds Ω ∩ {GS} × Gi

T �= ∅. We write S � T .

For HGTS S1, S2, and S3 with S3 = S1‖S2 holds pre construction that the
parallel composition results in simulation (S3 � S1∧S3 � S2). The strengthening
of rule conditions, adding attributes, or extending the LHS of a rule are typical
examples of GTS refinement steps which ensure a simulation relationship.

6 Compositional Verification

The idea for the compositional verification of networked mechatronic systems is
to employ our approach for the automatic checking for structural invariants for
infinite state models [7,8] and combined it with our approach for the composi-
tional model checking of model fragments consisting of patterns and components
[6] in order to verify that the crucial safety properties identified during an initial
system analysis hold.

6.1 Basic Ontology and Hazard Definition

In Section 4.1, in a first step an ontology S0 of the system in form of an HGTS
which describes all relevant elements, relations, and attributes of the system is
developed. This model contains the top-level software components, but will not
take the effects of any software control into account.

The proposed steps to the verification efforts are starting with the identifi-
cation of hazards by means of forbidden graphs. This might be, for example, a
collision between two shuttles which can be characterized by a structure where
both shuttles are on the same or adjacent tracks and their distance is not suffi-
cient (see Figure 3 a)). We then want to prove the absence of such a hazard Gh

described as a graph pattern of the HGTS S0.

6.2 Structural Adaptation

Instantiation rules, the controlled behavior in case that related coordination
patterns are present, and possibly additional structural invariants have to be
defined in the next step as described in Section 4.2. Therefore, the ontology given
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by the HGTS S0 is then accordingly extended. As the added control via software
could in principle not alter the possible system behavior but only restrict it, the
resulting HGTS S1 therefore simulates S0 (S1 � S0).

In our example, the HGTS S1 then further includes a coordination pattern
P which should take care of the related coordination problem. The pattern is
represented by a special node and can be characterized by a graph pattern Gp

such that the graph pattern includes some nodes that also appear in the hazard
(usually the pattern roles; e.g., the two shuttles are involved). Therefore, we
can assume that a graph isomorphism iso exists such that Gh ∩ iso(Gp) is not
empty. As both graph pattern are themselves by definition connected graphs,
Gh+p := Gh ∪ iso(Gp) is then also a connected graph pattern.

We accordingly extend the ontology S0 into an ontology S1 with attributes,
and real-time behavior by adding instantiation rules for the patterns. However,
for the employed HGTS formalism currently not techniques exist that can check
directly the required properties. Therefore, we propose to use a rough abstraction
Sa

1 of S1 in form of a GTS (S1 � Sa
1 ) instead of the more detailed HGTS S1

which abstract from all attributes and continuous behavior. To further check the
absence of the hazard, we identify its structural part Gs

h (see Figure 3 b)) with
Gs

h � Gh which abstracts from the attributes of the hazard Gh as implied by Sa
1 .

We do not need an abstract pattern Gs
p for Gp as Gp is already a purely structural

pattern with is covered by Sa
1 . We can still assume that Gs

h+p := Gs
h ∪ iso(Gs

p)
must be a connected graph as Gs

h ∩ iso(Gs
p) is not empty. To describe that the

hazard is never present if not also the pattern is present we can use a forbidden
graph pattern P s

h∧¬p where Gs
h is the positive part and iso(Gp)\Gs

h denotes the
negative part. If P s

h∧¬p is excluded, we know that the hazard is never possible
without a related active pattern.

We then have to show that a hazard is only possible if the pattern is also
present for the HGTS Sa

1 holds:

� ∃G′ ∈ REACH(Sa
1 ) : G′ |= P s

h∧¬p. (2)

We can employ our approach for the automatic checking of structural in-
variants for infinite state models [7,8] to show that condition 2 holds.2 In our
example we can show that a Shuttle will not go to a Track occupied by another
Shuttle without having a coordination pattern in place.3

As Ph⇒¬p is a forbidden graph pattern, we simply have to prove that its
negation is a structural invariant of Sa

1 and can then conclude due to S1 � Sa
1

that also holds:
� ∃G′ ∈ REACH(S1) : G′ |= P s

h∧¬p

2 The same approach could have been applied for a rough abstraction Sa
0 of the initial

ontology S0 (S0 � Sa
0 ) if the hazard is inherently excluded by the behavior of the

not controlled system. However, most often this will not be the case and we have to
further add the control functionality to our model as done in the case of S1.

3 Even though this invariant is not necessarily required for the operational correctness
of the model, this implied condition (see Fig. 9) needs to be made explicit, along with
several structural constraints restricting cardinalities, in order for the specification
to pass the inductive invariant checking (cf. [7]).
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Note that from Gh � Gs
h follows as outlined in Section 5.3 that we can make

the same conclusion for the original hazard for Ph∧¬p with positive graph Gh.

� ∃G′ ∈ REACH(S1) : G′ |= Ph∧¬p

6.3 Real-Time Coordination Pattern

The refinement of the system behavior which results due to the additional control
implied by the coordination patterns as described in the last section, has to be
realized in form of a real-time coordination pattern as outlined in Section 4.3.

To also verify that an active pattern ensures that the real hazard Gh is not
possible, we refine our model further by deriving a HGTS S2 which refines S1
which in addition describes for each pattern the required role and connector
behavior. To achieve the outlined refinement of S1, we at first transform for
each pattern the related real-time behavior in form of Real-Time Statecharts
into a related set of real-time HGTS rules for a separated HGTS Sp

2 which also
contain the elements of S1 which relate to Gh. In addition, a special rule for
activating the pattern and erasing it are added which fire non-deterministically.

For this HGTS Sp
2 which only contains the pattern behavior including the

non-deterministic create and destroy rules, we want then to compositionally
reason that the hazard Gh is not possible. Therefore, we can use our approach
for the compositional model checking of model fragments consisting of patterns
and components [6] to verify that a single occurrence of the pattern will always
fulfill the pattern condition.

Such a verification is possible as for the pattern occurrences holds that they
behave independently of all other pattern occurrences and is sufficient to check
the specific case of an HGTS Spi

2 with only one instance. The correctness of Spi
2

can thus be proven in isolation using a real-time model checker which employs
an equivalent real-time automaton Mpi

2 and the to Gh equivalent property φh,
as we have to consider no structural changes. For this model containing only a
single pattern instances we can prove that for all reachable states of Mpi

2 the
condition φh is excluded:

� ∃s ∈ REACH(Mpi
2 ) : s |= φh. (3)

This result can then be transferred to Spi
2 and Gh, as both are equivalent:

� ∃G ∈ REACH(Spi
2 ) : G |= Gh.

As Spi
2 is extended by Sp

2 only by a create and destroy rule, we have for Sp
2 that

Gh is excluded if any element of Gp is present (and thus pattern instances are
covered by Spi

2 ). Thus we can conclude that in any case Ph∧p = Gh ∪ iso(Gp) is
excluded:

� ∃G ∈ REACH(Sp
2 ) : G |= Ph∧p.

By constructing S2 as S1‖Sp
2 , we have S2 � Sp

2 as parallel composition implies
simulation. We thus can conclude:

� ∃G ∈ REACH(S2) : G |= Ph∧p. (4)
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As parallel composition implies simulation we also have S2 � S1, and thus we
transfer the following fact from S1:

� ∃G′ ∈ REACH(S2) : G′ |= Ph∧¬p. (5)

These two conditions can be combined to exclude the hazard Gh due to the
following counter argument: Assuming it ∃G ∈ REACH(S2) : G |= Gh. Due to
condition 5 we can then conclude for every occurrence of Gh that we also have
the pattern p. This is, however, in contradiction to condition 4 which exclude
h ∧ p and thus no such G ∈ REACH(S2) can exist. Thus we must have:

� ∃G ∈ REACH(S2) : G |= Gh.

6.4 Component Behavior

We still have to refine the component instances as outlined in Section 4.4. This
component realization has to preserve the proven properties of the earlier re-
finement steps and check locally that their processing fulfills the role constraints
and excludes local conflicts between the constraints of the roles. This 4th step is
required to exclude that the made guarantees are contradicting. E.g., a shuttle
should not promise to brake in one pattern while it promised to not brake in
another one at the same time.

We therefore refine the component behavior by adding the internal synchro-
nization which results in a HGTS S3 which refines S2 in such a manner that the
instantiation rules are possibly refined, the connector behavior is still present, the
pattern roles are refined, and the component internal synchronization is added.
Due to S3 � S2 we then have:

� ∃G ∈ REACH(S3) : G |= Gh. (6)

6.5 Compositional Reasoning Scheme

The full compositional reasoning scheme has 4 steps which at first include sim-
ulation relations which are guaranteed by the chosen construction steps. Then,
we have derived properties which follow from the condition 2 and 3 due to the
present simulation relation and construction steps. The two remaining not de-
rived conditions 2 and 3 remain to be proven in order to derive the required
result that the hazard is excluded. This can be accomplished automatically by
verifying condition 2 using our approach for invariant checking and by checking
condition 3 employing our compositional real-time model checking approach.

To exclude deadlocks, which might indicate inconsistent timing constraints in
form of time stopping deadlocks, it is sufficient to check independently the coor-
dination patterns, the component behavior, and the proper refinement relation
between the pattern roles and component ports (cf. [6]).
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7 Related Work

No approach which combines the automatic verification of safety conditions for
arbitrarily large structures or potentially infinite structures with real-time be-
havior like the presented approach exists. However, several approaches exist with
address compositional model checking or the verification of dynamically chang-
ing structures.

7.1 Compositional Verification

The state explosion problem, which leads to scalability problems for larger sys-
tems even when no time is considered (cf. [24]), limited the applicability of model
checking for complex software systems. A number of modular and compositional
verification approaches have therefore been proposed. One particular composi-
tional approach is the assume/guarantee paradigm [25]. Model checking tech-
niques that permit compositional verification following the assume/guarantee
paradigm have been developed [26, p. 185ff]. Our approach employed in Section
6.3 and 6.4 also follows the assume/guarantee paradigm, but supports time and
take advantage of information available in form of pattern role protocols to de-
rive the required additional assumed and guaranteed properties automatically
rather than manually as in [26].

7.2 Verifying Dynamic Structural Adaptation

A number of approaches exist which address only finite cases for systems with
dynamic changing structure. DynAlloy [27] extends Alloy [28] such that state
changes can also be modeled and operational invariants for small systems can
be checked. A transformation of models into a model-checker specific input
has been successfully applied to verify service-oriented systems with structural
changes [29]. Instead of transforming a system to a model checker’s input for-
mat, Rensink performs the model checking directly on the GTS [30]. Real-Time
Maude [31] supports the simulation of a single behavior of the system as well
as model checking of the complete state space, if it is finite, based on rewriting
logics. As all above approaches require an initial graph and a not too large fi-
nite state space, they are not appropriate for the outlined complex, networked
mechatronic systems.

The automatic verification of a certain minimal sub-model of a system with
dynamically changing structures and the manual generalization of this result to
all possible models is proposed in [32]. We in contrast support in Section 6.1
and 6.2 a fully-automatic procedure for verifying whether only safe sub-models
can be reached at run-time and then employ model checking to check that these
sub-models are safe.

Only one approach exists that explicitly addresses the verification of infinite
state systems with changing structures. In [33], a GTS is approximated by a
finite Petri graph which consists of a graph and a Petri net that can be analyzed
with existing standard tools. The approach is not appropriate, as an initial graph
is required and no deletion of nodes is permitted.
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8 Conclusion and Future Work

The RailCab project shows that properties such as real-time coordination via
unreliable wireless networks and dynamic structural adaptation can be expected
for the next generation of networked mechatronic systems which are in fact sys-
tems of systems requires and that new approaches to modeling and verification
are required. The ongoing development of the Mechatronic UML approach
addresses these challenges by exploiting observed domain restrictions, refining
the UML 2.0 component and pattern model, adding support for structural adap-
tation, and combining a number of verification techniques into an overall scheme
for the compositional verification of crucial safety properties.

A more seamless tool support for all the outlined modeling and verification
steps in the Fujaba Real-Time Tool Suite4 and the application of the approach
in related domains such as automotive systems is planned future work.
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14. Köhler, H., Nickel, U., Niere, J., Zündorf, A.: Integrating UML Diagrams for
Production Control Systems. In: Proc. of the 22nd International Conference on
Software Engineering (ICSE), Limerick, Ireland, ACM Press (2000) 241–251

15. Klein, F., Giese, H.: Separation of concerns for mechatronic multi-agent systems
through dynamic communities. In Choren, R., Garcia, A., Lucena, C., Romanovsky,
A., eds.: Software Engineering for Multi-Agent Systems III: Research Issues and
Practical Applications. LNCS 3390. Springer (2005) 272–289

16. Burmester, S., Giese, H., Gambuzza, A., Oberschelp, O.: Partitioning and Modular
Code Synthesis for Reconfigurable Mechatronic Software Components. In Bobeanu,
C., ed.: Proc. of European Simulation and Modelling Conference (ESMc’2004),
Paris, France, EOROSIS Publications (2004) 66–73
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31. Ölveczky, P., Meseguer, J.: Specification and analysis of real-time systems using
Real-Time Maude. In: Proc. FASE. LNCS 2984, Springer (2004) 354–358

32. Caporuscio, M., Inverardi, P., Pelliccione, P.: Formal analysis of architectural
patterns. In: Proc. EWSA. LNCS 3047, Springer (2004) 10–24

33. Baldan, P., Corradini, A., König, B.: A static analysis technique for graph trans-
formation systems. In: Proc. CONCUR. LNCS 2154, Springer (2001) 381–395

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Architectural Design, Behavior Modeling and

Run-Time Verification of Network Embedded
Systems

Man-Tak Shing1 and Doron Drusinsky1,2

1 Department of Computer Science, Naval Postgraduate School
Monterey, CA 93943-5118, USA

{shing, ddrusin}@nps.edu
2 Time Rover Inc.

Cupertino, CA 95014, USA
dorond@time-rover.com

http://www.time-rover.com

Abstract. There is an increasing need for today’s autonomous systems
to collaborate in real-time over wireless networks. These systems need to
interact closely with other autonomous systems and function under tight
timing and control constraints. This paper concerns with the modeling
and quality assurance of the timing behavior of such network embedded
systems. It builds upon our previous work on run-time model checking of
temporal correctness properties and automatic white-box testing using
run-time assertion checking. This paper presents an architecture for the
network embedded systems, a lightweight formal method that is based
on formal statechart assertions for the design and development of net-
worked embedded systems, and a process of using run-time monitoring
and verification, in tandem with modeling and simulation, to study the
timing requirements of complex systems early in the design process.

Keywords: Network Embedded System, Lightweight Formal Method,
Architecture Design, Run-Time Verification, Statechart Assertions.

1 Introduction

With the recent advance in Internet and wireless technology, there is a new de-
mand for high performance and intelligent automobiles, aircraft and autonomous
robots to collaborate in real-time over wireless networks. These systems need to
interact closely with other embedded systems and function under tight tim-
ing and control constraints. This paper addresses the need to verify the tim-
ing properties of real-time, reactive distributed systems. It presents a testing
methodology that builds upon our work on run-time model checking of temporal
correctness properties and automatic white-box testing using run-time assertion
checking [4]. Run-time Execution Monitoring of formal specification assertions
(REM) is a class of methods for tracking the temporal behavior, often in the
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form of formal specification assertions, of an underlying application. REM meth-
ods range from simple print-statement logging methods to run-time tracking of
complex formal requirements (e.g., written in temporal logic or as statechart as-
sertions) for verification purposes. NASA used REM for the verification of flight
code for the Deep Impact project [10]. In [8], we showed that the use of run-time
monitoring and verification of temporal assertions, in tandem with rapid pro-
totyping, helps debug the requirements and identify errors earlier in the design
process. Recently, REM has been adopted by the U.S. Ballistic Missile Defense
System project as the primary verification method for the new BMDS battle
manager because of its ability to scale, and its support for temporal assertions
that include real-time and time series constraints [2].

The rest of the paper is organized as follows. Section 2 provides an overview of
the StateRover statechart assertion formalism. Section 3 presents an architecture
that supports high-level specification of network level objectives and policies
and the enforcement of these policies by direct re-configuration of the states of
individual network elements. We will illustrate the proposed architecture with
an example from the automatic highway platoon system. Section 4 describes
the use of run-time monitoring and verification, in tandem with modeling and
simulation, to study the timing requirements of complex systems early in the
design process. Section 5 presents a discussion on the approach and Section 6
draws some conclusions.

2 The Statechart Assertions

Harel Statecharts [15] are commonly used in the design analysis phase of an
object oriented UML based design methodology to specify the dynamic behavior
of complex reactive systems. In [5] [6], Drusinsky presented a new formalism
that combines UML-based prototyping, UML-based formal specifications, run-
time monitoring, and execution-based model checking. The new formalism is
supported by StateRover, a commercially available tool from the Time Rover Inc.
StateRover provides support for design entry, code generation, and visual debug
animation for UML statecharts combined with flowcharts. The new formalism
and tool allow system designers to embed deterministic and non-deterministic
statechart assertions in statechart designs and execute the assertions in tandem
with their primary UML statechart to provide run-time monitoring and run-time
recovery from assertion failures.

2.1 A Statechart Example

Figure 1 shows the top-level statechart of a leader election (LE ) module, which
is one of the many leader election modules connected by a unidirectional ring
network. The top-level statechart consists of three states, the Initializing state
and two composite states named Electing Leader and Found Leader, together
with a set of state variables declared in the associated local variable declaration
box shown in Figure 1. Each LE module uses the Own Id variable to store its
unique integer identity and uses the Leader Id variable to remember the identity
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/*Local Variables*/
AGENT *agent;
int Own_Id;
int Leader_Id;
TRTimeoutATGTime watchdogTimer2 =
                       new TRTimeoutATGTime(20, this);
TRTimeoutATGTime watchdogTimer3 =
                       new TRTimeoutATGTime(20, this);
TRTimeoutATGTime heartbeatTimer =
                       new TRTimeoutATGTime(20, this);
int temp_id;

Vehicle

[]

Electing_Leader
Rep's Page-2

Found_Leader
Rep's Page-3

[]

C1

[]

C2

C3

[]

Initializing

start()[]/
agent->send_election(Own_Id);

Fig. 1. Top-level page of the LE statechart

Fig. 2. The Electing Leader statechart of the LE module

of the current leader, which is the largest identity value among the identities of
all the active LE modules in the network. In addition, it has three timers and
an agent object. The timers are instances of a built-in StateRover timer class,
and the agent object serves as a proxy for all network communications.

The LE statechart starts at the Initializing state waiting for the arrival of
the start() event from the environment. Upon receiving the start() event, it uses
the send election() method of its agent object to send an election() message
to its neighbor in the network and then enters the Electing Leader composite
state shown in Figure 2. The Electing Leader composite state consists of two
concurrent threads, Electing and Watchdog 2. The statechart in the Electing
thread models the logic of the following simple leader election algorithm.
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Fig. 3. The Found Leader statechart of the LE module

if (event == election(id)) then // on-going election
{
if (id == Own_Id) then
send leader(Own_Id} event to its neighbor;

else if (id < Own_Id) then
send election(Own_Id) event to its neighbor;

else
send election(id) event to its neighbor;

}
else if (event == leader(id)) then
{ // found leader, terminate election
Leader_Id = id;
if (Leader_Id != Own_Id) then
send leader(id) event to its neighbor;

reset the watchdogTimer_2 timer;
transition to the Found_Leader state via the page connector C1;

}

The statechart in the Watchdog 2 thread makes sure that the LE statechart
receives at least one election() message every 60-second cycle while it is partici-
pating in an on-going election. If the LE statechart receives the event timeout-
Fire(timer) with timer == watchdog2Timer while it is in the Watching 2 state,
it will initiate another round of leader election by sending an election(Own Id)
message to its neighbor because it has not received any election() message within
the last cycle.

The leader election algorithm terminates when the LE statechart receives a
leader(id) message, and will transition from the Electing Leader state to the
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Found Leader state via the page connector C1. Note that the correctness of
the algorithm relies on a reliable and fully trusted network of cooperating LE
modules.

Figure 3 shows the statechart of the Found Leader composite state. It consists
of three concurrent threads. While in the Found Leader state, the leader uses the
statechart in the GenerateHeartBeat thread to send out a heartbeat(Own Id) mes-
sage once every 60 seconds, and each LE statechart expects to receive at least one
heartbeat() message from the leader via its neighbor in every 60-second cycle. If
the LE statechart receives the event timeoutFire(timer) with timer == watch-
dog3Timer while it is in the Watching 3 state, it will initiate another round of
leader election by sending an election(Own Id) message to its neighbor and tran-
sitioning to the Electing Leader state because it has not received any heartbeat()
messagewithin the last cycle.OtherLE moduleswill also enter theElecting Leader
state via the page connector C2 when they receive the election() messages from
their neighbors in the network while they are in the Found Leader state.

2.2 Statechart Assertions

Studies have suggested that the process of specifying requirements formally en-
ables developers to gain a deeper understanding of the system being specified,
and to uncover requirements flaws, inconsistencies, ambiguities and incomplete-
nesses [11]. The StateRover uses deterministic and non-deterministic statecharts
for the formal specification of temporal correctness properties (i.e. properties
about the correct ordering, sequencing, and timing of events and responses).
Figure 4 contains three statechart assertions for the following natural language
requirements:
Assertion 1. Leader Id must be greater than or equal to Own Id whenever the
LE statechart enters the Found Leader state.
Assertion 2. At least one heartbeat occurs every 60 seconds while LE is in the
Found Leader state.
Assertion 3. There should not be 3 or more rounds of leader election within a
5-minute interval.

Assertion 1 is an example of a correctness-property assertion that ensures “the
leader election algorithm correctly selects the active LE module with the largest
identity value as the leader”. Assertion 2 is an example of a timing constraint
assertion that ensures “the LE module receives at least one heartbeat every 60
seconds while it is in the Found Leader state”. Assertion 3 is an example of a
temporal constraint assertion to ensure the stability of the networked system.

Figures 5-6 show the combined LE statecharts with embedded statechart
assertions, where the Assertion1 and Assertion3 statecharts now become sub-
statecharts of the top-level LE statechart, and the Assertion2 statechart becomes
a sub-statechart of the Found Leader state. Sub-statecharts represent whole stat-
echarts defined elsewhere, i.e., in a different statechart file. Using sub-statecharts
facilitates reuse: the assertion statecharts are drawn once but can be reused many
times in many other statecharts. A statechart with an embedded substatechart
is called a primary statechart. StateRover provides a way to map the events
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between the primary statechart and its sub-statecharts. The StateRover’s code
generator generates code that automatically passes down events from the pri-
mary statechart to the sub-statecharts.

Figures 4a and 4b are examples of deterministic statechart assertion. (Non-
deterministic assertions are discussed in Section 2.3.) Every time the Found
Leader state of the primary (i.e., LE ) statechart is entered, the Assertion2 state
is entered, and the sub-statechart becomes active, starting its computation in the
initial states (Init and Need heartbeat in Figure 4b). The sub-statechart remains
active until either assertion2Timer fires its timeout event and the Recording
thread is not in the OK state, or the LE statechart exits the Found Leader
state. Once the LE statechart leaves the Found Leader state, it is no longer in
the Assertion2 state and the assertion sub-statechart will not be executing at
all. The next time the LE statechart enters the Assertion2 state, the assertion
sub-statechart starts its computation from its initial states all over again.

The statecharts in Figure 4 are formal specifications that assert about the pri-
mary LE statechart because they each make a statement about the correctness
of the primary statechart. They do so using a built-in Boolean variable named
bSuccess, and a corresponding method called isSuccess(), both auto-generated
by the StateRover’s code generator. Whenever the assertion detects a violation of
the requirement it sets bSuccess = false, as in Figure 4b when assertion2Timer
fires its timeout event and the Recording thread is not in the OK state. The
method isSuccess() returns the value of bSuccess mainly for the purpose of JU-
nit testing and automatic white-box testing described in Section 2.5 and Section
2.6. Because statechart assertions are usually used to flag errors, the isSuccess(),
which monitors the bSuccess variable, is set to true by default. It is the assertion
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developers’ responsibility to set it to false when the assertion fails, as done in
the Error activity box in Figure 4b.

In addition, an unlabeled transition from the Assertion1 state to the Elect-
ing Leader state is added to enable run-time recovery (Figure 5). Whenever
the Assertion 1 fails, because Leader Id < Own Id, the sub-statechart reaches
the terminal state (T) and will therefore cause the unlabeled transition out of
the Assertion1 state to fire, forcing the LE statechart to transition to the Elect-
ing Leader state. Consequently, the LE statechart recovers from the specification
failure by starting another round of leader election.

2.3 Non-deterministic Assertion Statecharts

The StateRover supports the specification of more complex requirements us-
ing non-deterministic statecharts. Figures 4c is an example of non-deterministic
statechart assertions. While deterministic statechart assertions suffice for the
specification of many requirements, theoretical results [7] show that non-deter-
ministic statecharts are exponentially more succinct than deterministic Harel
Statecharts. As indicated in Figure 4c, there is an apparent next-state conflict
when event primaryEntered(“Electing Leader”) is sensed while the statechart
is in the Init state. The vanilla StateRover code generator (described in the
next section) generates an error message for such a statechart. It is however a
legal non-deterministic statechart. Non-deterministic statecharts use a special
StateRover code generator that creates a plurality of state-configuration objects,
one per possible computation in the assertion statechart. Non-deterministic stat-
echart assertions use an existential definition of the isSuccess() method, where
if there exists at least one state-configuration that detects an error (assigns
bSuccess=false) then isSuccess() for the entire non-deterministic assertion re-
turns false. Likewise, terminal state behavior is existential; if at least one state-
configuration is in a terminal state then the non-deterministic statechart asser-
tion wrapper considers itself to be in a terminal state. The StateRover also has
a power-user priority mechanism to change or limit the existential default def-
initions of isSuccess() and the terminal state. This mechanism is described in
details in [6].

2.4 The StateRover Code Generator

The primary StateRover rapid prototyping tool is its code generator. The State-
Rover’s code generator generates a class per statechart model (i.e. per statechart
file) in either Java or C++ language, a convenient level of encapsulation for a
controller statechart that lives within a heterogeneous system of Java or C++
objects created by various tools or perhaps hand-coded. The class can then be
dynamically instantiated according to the needs of the system.

In our example, we have four statechart diagram files, with the LE statechart
in the first file and the Assertion1, Assertion2 and Assertion3 sub-statecharts
in the second, third and the fourth files. The StateRover’s code generator au-
tomatically connects the four statecharts objects resulting in an executable LE
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module. The controller class consists of a set of event handlers (one per transi-
tion event), the central event dispatcher execTReventDispatcher, and the source
code for local variable declarations and methods supplied by the users via the
dialog boxes of StateRover’s statechart editor. In addition, the code generator
also generates a Java interface, named LEIF, to allow the test drivers or other
systems from the external environment to interact with the LE module.

Statechart orthogonality is implemented by the vanilla code generator using
a fixed schedule created during code generation. For example, in Figure 3, three
orthogonal timeoutFire() transitions, two in the WatchDog 3 thread and one
in the GenerateHeartbeat thread, will be realized as three if blocks within the
timeoutFire() event handler. The order of these if blocks induces a fixed firing
schedule for corresponding transitions. Besides the vanilla code generator, the
StateRover has a concurrent code generator that generates multi-threaded Java
code for statecharts with Harel-concurrence.

2.5 Testing of Generated Code

The generated code is designed to work with the JUnit Test Framework [1]
[18]. Use Case scenarios used by the system designers to identify user needs and
system requirements are hand-coded as JUnit test cases and exercised against
the generated statechart code. Figure 7 illustrates the StateRover’s JUnit based
testing architecture. Tests, which consist of sequences of events and timing infor-
mation, are either hand coded or auto-generated by the white-box test generator.

Fig. 7. JUnit based simulation and testing architecture

For example, the following hand-code test case describes a scenario in which
the LE statechart successfully participates in two rounds of leader election within
an interval of 180 seconds.

import junit.framework.*;
public class TestLE1 extends TestCase {
private LE veh = null;
private AGENT t = null;
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public TestLE1(String name) {
super(name);

}

protected void setUp() throws Exception {
super.setUp();
t = new AGENT();
veh = new LE(3, -1, t); // Own_Id == 3,

// Leader_Id == -1
}

protected void tearDown() throws Exception {
veh = null;
super.tearDown();

}

// Test Scenario:
public void testExecTReventDiapatcher() {
// first round of leader election
veh.start();
veh.election(4);
veh.incrTime(30); // advance clock by 30 sec
veh.leader(4); // found leader with id == 4

// veh should now be in the Found_Leader state
this.assertTrue(veh.isState("Found_Leader"));
veh.incrTime(120); // advance clock by 120 sec

// veh should initiate the second round of leader
// election since it has not received any
// heartbeat() for more than 60 sec
this.assertTrue(veh.isState("Electing_Leader"));
veh.election(1);
veh.incrTime(15); // advance clock by 15 sec
veh.election(3);
veh.incrTime(15); // advance clock by 15 sec
veh.leader(3); // found leader with id == 3

// veh should be in the Found_Leader state
this.assertTrue(veh.isState("Found_Leader"));

// the testcase should return bSuccess == true
this.assertTrue(veh.isSuccess());

}
}
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A test exercises the primary statechart model, which then automatically ex-
ercises embedded assertions. The assertion feeds back a Boolean success value, is-
Success(), to the JUnit based test, which then announces fail or success
accordingly.

It is important to validate the correctness of the assertions early in the soft-
ware development process. By keeping each statechart assertion in a separate
diagram file, we can generate code and test each statechart assertion indepen-
dent of the prototype design. For example, a developer might expect the fol-
lowing scenario to cause the Assertion2 statechart to fail, since the heartbeats
do not arrive regularly; the inter-arrival time between the second and the third
heartbeat is more than 60 seconds.

public class TestAssertion2 extends TestCase {
private Assertion2 assert2 = null;
...
protected void setUp() throws Exception {
super.setUp();
assert2 = new Assertion2();

}
...
// Test Scenario:
public void testExecTReventDiapatcher() {
assert2.heartbeat(4); // receive first heartbeat
assert2.incrTime(61); // advance clock by 61 sec
assert2.heartbeat(4); // receive second heartbeat
assert2.incrTime(117); // advance clock by 117 sec
assert2.heartbeat(4); // receive third heartbeat
assert2.incrTime(10); // advance clock by 10 sec
assert2.heartbeat(4); // receive third heartbeat
// the testcase should return bSuccess == false
this.assertFalse(assert2.isSuccess());

}
}

The developer of the assertion was surprised by the assertion’s success for
this scenario. After a closer examination of the natural language assertion and
the Assertion2 statechart, the developer decided that the error was caused by
an incorrect interpretation of the natural language requirement “at least one
heartbeat occurs every 60 seconds”. Hence, he reformulated the natural language
requirement and the Assertion2 statechart as follows:

Assertion 2 (revised). The inter-arrival time between two consecutive heartbeats
cannot exceed 60 seconds.

When the extended primary statechart of Figure 6 (with the revised Assertion2
of Figure 8) is executed using a scenario similar to TestAssertion2, the revised
Assertion2 statechart will detect an error in the primary statechart as it is per-
forming REM of the primary. Automatic test generation discussed in Section 2.6
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Fig. 8. Revised Assertion2 statechart

is a technique for automatically discovering violating scenarios such as TestAsser-
tion2. This example highlights the subtleties in creating correct formal assertions
and the value of testing executable formal assertions via JUnit-based simulations.

2.6 Automatic, Intelligent, White-Box Test Generation

The StateRover’s White-Box Test Generator (WBTG) is an automatic code gen-
erator for a JUnit TestCase class. This TestCase, however, does not capture a sin-
gle, human created, scenario as JUnit TestCase objects usually do. Rather, it con-
tains a loop that creates a plurality of tests for a Statechart Under Test (SUT).
We denote this WBTG generated TestCase the WBTestCase. The auto-generated
WBTestCase is usable verbatim within a broader test suite that replaces the one
shown in Figure 7, which may include both WBTestCase and the manually cre-
ated tests. Automatically generated tests are used in three ways:

1. To search for severe programming errors, of the kind that induces a JUnit
error status, such as NullPointerException.

2. To identify tests that violate temporal assertions. Such failed assertion are
captured by a JUnit assertFalse() (versus the assertTrue()) statement using
the isSuccess() feedback loop depicted in Figure 7.1

3. To identify input sequences that lead the SUT to particular states of interest.

The StateRover generated WBTestCase creates sequences of events and con-
ditions for the SUT. The WBTestCase is intelligent in the following regard: it
creates only sequences which “matter” to either the SUT or to some assertion
statechart. For example, in Figure 1, upon startup, the SUT has one option only:
to observe the start event. The WBTestCase therefore generates this event. Con-
sequently, the SUT moves to the Electing Leader state shown in Figure 2. There,
the SUT expects a timeout event, an election event, or a leader event; so the
WBTestCase generates one of those using one of the two algorithms the user
1 To help statechart designers pinpoint specific errors, each failed test run is reported

with an identification number. The causes of failure for a specific run can be inves-
tigated in detail by running the automatic white box tester in single test/run mode.
Such mechanism helps developers to efficiently eliminate errors in their design.
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selects: the stochastic algorithm or the deterministic algorithm described below.
Hence, in general, the StateRover generated WBTestCase repeatedly observes all
events that potentially affect the SUT when it is in a given state configuration,
selects one of those events and fires the SUT using this event. The WBTestCase
auto-generates three artifacts:

1. Events, as described above.
2. Time advance increments, for the correct generation of timeoutFire events.
3. External data objects of the type that the statechart prototype refers to.

This process describes the model-based aspect of the StateRovers WBTG.
However, the StateRovers WBTG actually observes all entities, namely, the SUT
and all embedded assertions. It collects all possible events from all those entities,
thus creating a hybrid model-based and specification-based WBTG. For a SUT
with a loop, there is an infinite number of input sequences of unbounded lengths.
The StateRovers WBTG addresses these issues in the following manner:

1. The StateRover’s user specifies the maximal number of test sequences the
WBTestCase is allowed to generate, denoted as the WB test-budget.

2. The StateRover’s user specifies the maximal length of any test sequence
generated by the WBTestCase.

The WBTG uses two primary methods, a stochastic method and a deterministic
method, for test generation. For each of three artifacts of concern, namely, the
set of possible events, the set of objects the object factory can generate, and
simulation time increments, the stochastic method rolls the dice and makes a
selection accordingly, while the deterministic method attempts to systematically
cover all possible sequences by enumerating these artifacts and traversing new
sequences one by one. In addition, the StateRovers WBTG can also be configured
to use NASAs Java Pathfinder (JPF) [16]. JPF uses a customized Java Virtual
Machine to detect the presence of concurrency errors such as deadlock under
varying firing schedules of concurrent transitions and actions. Moreover, JPF can
be viewed as a sophisticated hybrid of the deterministic and stochastic methods.
JPF makes sure to not revisit system states more than once by recording the
state space being visited. The drawbacks of using JPF are: (1) JPF tends to run
out of memory for complex systems, (2) JPF wastes resources by model-checking
the assertions and the methods of the actions and activities, and (3) JPF does
not work well with frameworks like JUnit and Spring.

3 Adaptive Network Architecture

Any good architecture for the networked embedded systems must be adaptive
and easily reconfigurable at runtime to cope with the changing environment
and to accommodate changing mission needs. In particular, we must move away
from today’s box-centric network architecture where the decision-making logic
of the control plane is spread out over the routers and switches in support of the
simple best effort distributed protocol. It is very difficult, if not impossible, to
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Fig. 9. The 4D architecture (after [13])

retrofit this box-centric architecture to support the more sophisticated network
objectives like traffic engineering, survivability, security, and policy management,
which require the increasing run-time use of reflection (systems that utilize their
own models), self-adaptation, and self-optimization to satisfy the mission needs.

In [13], Greenberg et al proposed a novel clean slate 4D architecture that
abstracts the network management into four components – the data, discovery,
dissemination and decision planes (Figure 9). The decision plane replaces to-
day’s management plane. It consists of multiple servers (called decision elements)
that make all decisions driving the network-wide control based on the real-time
network-wide view coming from the discovery plane. The discovery plane is re-
sponsible for maintaining and updating information about the physical entities
making up the network and synthesizes the information into a network-wide
view for the decision elements. The data plane handles individual packets based
on the output (e.g. forwarding table, packet filters, link scheduling weights, etc.)
from the decision plane. The data plane may also collect data on behalf of the
discovery plane. The dissemination plane decouples the decision plane from the
discovery and data planes. It provides the option to move management infor-
mation from the decision plane to the data plane and state information from
the discovery plane to the decision plane using separate communication paths
to avoid the need to establish routing protocols before they can be used.

3.1 Network Architecture for the Automatic Highway Platoon
System

In this section, we will illustrate the 4D architecture with an example from
the automated highway system, where each vehicle is equipped with vehicle-
to-vehicle and vehicle-to-roadside Intelligent Transportation System (ITS) wire-
less communication, radars for measuring the inter-vehicle distances, sensors for
measuring the vehicle’s lateral position relative to the lane center, electronically
controlled steering, throttle and brake actuators, and the computers for pro-
cessing data from the sensors and generating commands to the actuators. In
addition, the roadway is instrumented with magnetic markers buried along the
centerline of each lane at four feet spacing. The magnetic markers enable the
vehicle to detect its lateral position, and by alternating the polarities of the mag-
netic markers, they can also transmit roadway characteristics such as upcoming
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road geometry information, milepost, entrances and exits information to the ve-
hicle [14]. The main objectives of the automated highway system are to reduce
traffic congestions, enhance safety, and reduce human stress. These goals can
be achieved using the Adapted Cruise Control technology [27], which uses sen-
sors to maintain a small but safe inter-vehicle distance between cars while they
traveling at high speed in the formation of a platoon [26]. These platoons are
coordinated using a leader-follower architecture that centralizes the coordination
on the leader [25].

In a centralized platoon, the task of communication to coordinate the vehicle
platoon formation is only executed by the leader vehicle. To maintain the platoon
formation, the leader (head vehicle) is the only entity that can give order (e.g.
velocity, inter-vehicle distance, time and location for lane change, etc.) to its
followers, while the followers can only apply the requested changes as well as
submit requests for leaving the platoon to the leader. The leader vehicle also has
to communicate with other platoons (which can be defaulted to a single vehicle)
to coordinate platoon merging as well as safe lane changes, and to communicate
with the roadside ITS for real-time traffic information and rules of engagements.
Finally, if the leader itself has to leave the platoon, then it must issue order
for the followers to select a new leader and hand over the command to the new
leader before leaving the platoon.

To support the complex communication requirements of the platoon leader,
we propose to apply the 4D architecture to the design of the automated highway
system communication network. Figure 10 shows the UML-RT model of the
high-level architecture of a vehicle for the automated highway system. UML-RT
[24] is an extension of the original UML based on the concepts in the ROOM
language [23], and forms the basis for the new features in UML 2.0 for modeling
large-scale software systems.

The UML-RT model shown in Figure 10 consists of a set of Vehicle capsules.
Each Vehicle capsule consists of a Planning capsule, a Coordination capsule,
a Vehicle Control capsule, a Comms capsule and a set of sensor capsules. The
Comms capsule, which represents the wireless communication subsystem of the
vehicle, is made up of a Decision Element capsule, a Dissemination Element cap-
sule, a Discovery Element capsule and one or more Data Element capsules (as
indicated by the multi-object icon). Each Decision Element capsule has two ports
to communicate with the Planning capsule and the Dissemination Element mod-
ule. Each Dissemination Element capsule has multiple ports for communication
with its associated Data Element capsules and uses single ports to communicate
with the Decision Element capsule and the Discovery Element capsule, as well
as forwarding management information from the Decision Element capsule of
the platoon leader to the Data Element capsule of the followers via the wireless
network in the Environment capsule.

Each vehicle’s Decision Element can be in one of the following 3 states –
active, voting or inactive. The Decision Elements will be in the voting state when
they are in the process of electing a platoon leader. Once selected, the decision
element of the platoon leader becomes active and is responsible for notifying the
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Fig. 10. The high-level architecture of a platoon vehicle

rest of the platoon about the election result. It will create the routing tables
for inter-platoon, intra-platoon, as well as vehicle-to-roadside communications,
and disseminate the intra-platoon routing table to the followers. The Decision
Elements of the other platoon members will become inactive and turn over the
control of its Dissemination, Discovery and Data Elements to the newly elected
leader.

With the help of the real-time network-view from the discovery plane, the
active Decision Element can quickly adapt to changes in the network environ-
ment while still maintaining the overall network objective. For example, when
communication degrades, the Decision Element can make decision, in real-time,
as to which messages should be sent first (via which data paths), which messages
should be delayed, or even not be sent at all.

4 Modeling, Simulation and Run-Time Verification

The analysis and design of complex safety-critical networked embedded systems
pose many challenges. Feasible timing and safety requirements for these systems
are difficult to formulate, understand, and meet without extensive prototyping.
Traditional timing analysis techniques are not effective in evaluating time-series
temporal behaviors (e.g. the maximum duration between consecutive missed
deadlines must be greater than 5 seconds). This kind of requirements can only
be evaluated through execution of the real-time systems or their prototypes.
Modeling and simulation holds the key to the rapid construction and evaluation
of prototypes early in the development process.

4.1 The OMNeT++ Model

OMNeT++, which stands for Objective Modular Network Testbed in C++, is an
object-oriented discrete event simulator primarily designed for the simulation
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of communication protocols, communication networks and traffic models, and
multi-processors and distributed systems models [20].

Figure 11 shows a simple OMNeT++ model of a platoon system with three
vehicles communicating with one another via the 4D architecture. OMNeT++
provides three principal constructs (modules, gates and connections) for model-
ing the structures of a target system. An OMNeT++ simulation model consists
of a set of modules communicating with each other via the sending and re-
ceiving of messages. Modules can be nested hierarchically. The atomic modules
are called simple modules; their code are written in C++ and executed as co-
routines on top of the OMNeT++ simulation kernel. Gates are the input and
output interfaces of the modules. Messages are sent out through output gates of
the sending module and arrive through input gates of the receiving module. In-
put and output gates are linked together via connections. Connections represent
the communication channels and can be assigned properties such as propagation
delay, bit error rate and data rate. Message can contain arbitrarily complex data
structures and can be sent either directly to their destination via a connection
or through a series of connections (called route).

4.2 Integrating StateRover Startchart Designs with OMNeT++
Models

Figure 12a shows an object model of the Decision Element Capsule package,
which is made up of a Decision Element class and the statechart classes generated
from one or more statechart files. Figure 12b shows an instance of the Decision

Fig. 11. The OMNeT++ model of an automated highway system
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Fig. 12. The object model of the Decision Element Capsule package

Element Capsule package, which contains an instance of the Decision Element
class together with an instance of the LE statechart for leader election.

Here, the Decision Element class extends the OMNeT++ cSimpleModule class
and serves as the proxy (in place of the AGENT class) to handle as all network
communications for the statechart object.

OMNeT++ uses messages to represent events. Each event is represented by
an instance of the cMessage class or one its subclasses. Messages are sent from
one module to another – this means that the place where the “event will occur” is
the message’s destination module, and the model time when the event occurs is
the arrival time of the message. Events like “timeout expired” are implemented
by the module sending a message to itself. OMNeT++ cSimpleModule class
provides a virtual member function, handleMessage(), which will be called for
every message that arrives at the module. In our example shown in Figure 12b,
we will insert the following code into the handleMessage function of the Decision
Element module to handle incoming messages to the module:

void DecisionElement::handleMessage(cMessage *msg) {
if (msg->hasBitError()) {
// log error and update error count
}
else if (msg->isSelfMessage()) // it is a timeout message
processTimer(msg);

else {
switch (msg->kind()) {
case ELECTION_MSG:

// extract data from the message and invoke the
// election() function of the st object
st->election(msg->getValue());
break;

case LEADER_MSG:
// extract data from the message and invoke the
// leader() function of the st object
st->leader(msg->getValue());
break;
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case HEARTBEAT_MSG:
// extract data from the message and invoke the
// heartbeat() function of the st object
st->heartbeat(msg->getValue());
break;

default: // unrecognized message kind
// log error and output error message
break;

}
}

}

In addition, the Decision Element module provides three functions, send elec-
tion(int id), send leader(int id) and send heartbeat(int id) for the LE module to
send messages to the other LE modules in the network. When invoked by the
LE object, these functions will create an instance of the cMessage class with an
integer value set to id and the messageKind set to the appropriate kind, and
then send the message via the “to dissemination” output gate of the Decision
Element module.

5 Discussions

5.1 Related Works

With the popularity of UML, Harel statecharts have become the tool of choice
for most engineers to design complex reactive systems. While statecharts can ef-
fectively specify what a system should do (positive information), they tend to be
less effective for the specification of safety requirements (i.e., negative information
about what a system must not do). Hence, researchers have attempted to augment
statechart specifications with other formalisms like process algebra [21], symbolic
timing diagrams [19] and temporal logic [12], and demonstrated formal proofs for
certain properties of the Statechart design. In the past, Temporal Logic [22] and
Metric Temporal [3] have been the two primary languages used by REM tools.
Some notable temporal-logic based tools are the Temporal Rover and DBRover
[4] and NASA’s PaX [17]. The major drawback of these approaches is that the as-
sertions are expressed in textual form, which are hard to create and understand.
The engineers need to work with two separate languages and formalisms, with as-
sertions written in temporal logic and system designs in statecharts, The lack of
a unified formalism requires users to work with two models, one for verification of
the assertions and one for specification of the design, with no guarantee that the
correctness of one implies the correctness of the other.

StateRover statecharts provide a coherent uniform formalism for both sys-
tem designs and requirements assertions. It is easier for system designers to
create and understand statechart assertions than text-based temporal assertions
because statechart assertions are visual, intuitive, and resemble statechart design
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models. For example, statechart assertions are event driven just like statechart
models, while temporal logic is purely propositional. Moreover, statechart as-
sertions are Turing equivalent and are therefore significantly more expressive
than temporal logic. While many commercial tools (e.g. Statemate, Rhapsody,
Rational Rose RealTime) provide the capability to generate target code from
statechart designs, StateRover supports the specification of and code generation
for non-deterministic statecharts, which is essential for the specification and
REM of more complex requirements.

Modeling and simulation plays a vital part in the development of network
systems. All prominent simulation tools (e.g., OPNET, OMNeT++, Ptolemy)
provide a rich set of reusable models to simulate various communication proto-
cols, network devices and links. The availability of these reusable models provide
cost-effective means to study the temporal and performance requirements of com-
plex networked systems via run-time monitoring and modeling and simulation
early in the development process. Most of these simulation tools support system
models that are made up of agents (i.e. black boxes) communicating via message
passing. This paper presents an architecture that wraps the StateRover gener-
ated code inside these black boxes (called modules) in the OMNeT++ models.
Similar architecture can be developed for the StateRover generated code to work
with OPNET and Ptolemy as well.

5.2 Reuse of Statechart Assertions

Reuse is one important reason for separating assertions from the statechart
model. Java interfaces are a convenient tool for separating components. The
StateRover uses two interfaces for primary-statechart/assertion-statechart sep-
aration: ITRPrimary is the interface for the primary statechart whereas ITR-
Assertion is the interface for the assertion statechart. The interfaces are ex-
tendible (being in source code form). This allows a primary to pass down custom
information to the assertion without the assertion “knowing” who the primary
is, and vise versa.

Event mapping is the simple mapping of event names from the primary stat-
echart name space to the assertion name space. While the Assertion2 statechart
uses the primary’s event name (heartbeat in Figure 4b), it could be written with
a generic event name such as P . A particular instance of this assertion inside
the LE primary would then map heartbeat to P using the StateRover tool. The
StateRover supports name mapping of assertion events to the primary statechart
event space and will generate code to implement such mapping.

In [9], we present a process for the development and evaluation of statechart
assertions early in the development process. The ability to test the statechart
assertions independent of the prototype design ensures that system designers
truly understand the required system behavior without being tainted by any
pre-conceived solutions. With the help of StateRover’s code generator, we can
create a library of executable assertion patterns consisting of generic statechart
assertions and the accompanying scenario-based test cases. The use of pre-tested
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generic statechart assertions will lessen the development time and improve the
quality of the statechart assertions in rapid prototyping.

6 Conclusions

This paper brings together several technologies (statechart assertion formalism,
run-time monitoring, discrete event simulations, JUNIT based test methodol-
ogy) to support the behavior modeling and run-time verification of complex
networked system temporal requirements. The novelty of the proposed approach
include: (1) writing formal specifications using statechart assertions, (2) JUnit-
based simulation and validation of statechart design and assertions, (3) auto-
matic, JUnit-based, white-box testing of statechart prototypes augmented with
statechart assertions, and (4) the use of discrete event simulation in tandem with
run-time verification for networked system prototypes. In addition, this paper
presents a clean-slate 4D architecture to support the complex communication
requirements of complex networked systems. To demonstrate the code design
described in Section 4.2, we have implemented a simple OMNeT++ model con-
sisting of 4 instances of the Decision Element capsule connected in a unidirec-
tional ring. Our next step is to develop a prototype for the highway automated
system shown in Figure 11, and test the timing behavior of the design with the
different platoon maneuver scenarios.

The StateRover Eclipse plugin is currently under development. This plugin
will enable the development as UML statechart models and diagrams under the
Eclipse IDE like any C++ or Java file. The StateRover will include support
for system-level UML modeling and specification. For the system-level modeling
view it will support component diagrams whereas the system-level verification
view will support a formal specification language based on message sequence
charts. The StateRover will include code generation and REM for both types of
diagrams.
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Abstract. Inheritance in real-time object-oriented programming is a
young subject for research, let alone for practice. Issues in inheritance
design are discussed in the context of TMO (Time-Triggered Message-
Triggered Object) scheme for real-time distributed object programming.
The TMO scheme guides programmers to incorporate timing specifica-
tions in natural, modular, and easily analyzable forms. The scheme thus
makes it relatively easy to practice inheritance design. Some TMO struc-
turing rules and styles that enable efficient design of inheritance are pre-
sented. A GUI-based approach for TMO-framework programming with
exploitation of inheritance is also discussed.

Keywords: object-oriented, real time, distributed computing, inheri-
tance, TMO, time-triggered, message-triggered, timing specification,
global time.

1 Introduction

When the object-oriented (OO) programming approach emerged, inheritance
was touted as one of several most significant, new features of the approach.
Since then, inheritance has been exploited vigorously in software developments
involving layered software structuring [1,2,3,4,5].

Since the incorporation of the OO approach in real-time (RT) programming
is a subject of relatively young and immature research efforts, both research
and practice of inheritance in RT OO programming are in states of infancy.
Among the most ambitious RT OO programming approaches in terms of the
level of abstraction at which programmers are allowed to exercise their logics is
the TMO (Time-Triggered Message-Triggered Object) programming and speci-
fication scheme [6,7,8,9]. The TMO scheme is not only a RT OO programming
approach but also a RT distributed computing (DC) component scheme. TMO
combines the complexity management benefits of the OO structuring paradigm
with the ability to explicitly specify temporal constraints in terms of global
time [10] in natural forms. The expressive power of TMO is strong such that all
conceivable DC applications, including both non-RT and RT applications, can
be structured in the form of TMO networks. In this paper, we are discussing in
what forms inheritance can be exploited in TMO programming.

F. Kordon and J. Sztipanovits (Eds.): Monterey Workshop 2005, LNCS 4322, pp. 304–316, 2007.
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There is a question regarding how widely inheritance will be used in RT DC
programming. Limited experiences have indicated that inheritance has been used
considerably in development of middleware and APIs (application programming
interfaces) supporting RT DC programming. However, it appears that use of
inheritance in actual development of RT DC application programs has not been
as appealing and compelling. When a RT computing object is designed, it needs
to be validated for its timely service capabilities. Such an object class may be
inherited in developing another similar object but then the latter derived object
must go through the validation process again. Unless the validation of the de-
rived object becomes considerably simpler due to the inheritance of an already
validated object class, the benefit of using inheritance over copying the object
class and extending it may be marginal. Future research and experiments will
enable a more concrete statement on this.

Currently the TMO programming is facilitated by the same basic language
tools used for non-RT application programming in OO styles, i.e., C++ compi-
lation systems such as Visual Studio for C++, GNU C++ Compiler, etc. There
is no fundamental obstacle in facilitating TMO programming in other basic OO
programming languages such as Java or C#. However, a TMO program requires
a new execution engine which is typically a combination of hardware, commer-
cial OS kernel, and middleware specifically built to support TMOs. The core
of this engine is the middleware and one particular version built by us in UCI
is the TMO Support Middleware (TMOSM) [8,9,11]. A friendly programming
interface wrapping the execution support services of TMOSM has also been de-
veloped and named the TMO Support Library (TMOSL) [7,8,9]. It consists of
a number of C++ classes and approximates a programming language directly
supporting TMO as a basic building block.

Therefore, the TMO programmer uses a C++ editing and compilation system
along with TMOSL in programming TMO-structured programs. No new com-
pilers are involved. A TMO program consists of the main function (main()) plus
TMOs which are logically networked. Some times I/O device drivers supplied
by commercial vendors require callback functions to be supplied by application
programmers. In TMO-structured RT DC application programs, such callback
functions are not inside any TMO. They typically perform simple things such as
picking data from certain buffer areas and then call TMOs.

The TMO programming scheme and supporting tools have been used in a
broad range of basic research and application prototyping projects in a num-
ber of research organizations and also used in an undergraduate course on RT
DC programming at UCI for some years.1 TMO facilitates a highly abstract
programming style without compromising the degree of control over timing pre-
cisions of important actions.

Although TMOSL has been designed to make the TMO programmer feel
like using a close approximation of a new language, there are occasions where
programmers make mistakes which could be detected quickly if a new language
processing system were available. In certain parts of a TMOSL-based TMO

1 http://dream.eng.uci.edu/eecs123/learn.htm
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program, several parameter-preparation statements followed by an API function
call are used whereas the same effects could be created by use of one keyword in
a new TMO programming language. Inheritance handling can involve such parts
and thus could become somewhat more complicated than what it could be in an
environment where a new language is available. Certain structuring rules and
styles must also be observed to facilitate efficient design of inheritance. Those
rules and styles will be discussed in Sect. 2 and Sect. 3. A GUI-based approach
for TMO-framework programming with exploitation of inheritance is discussed
in Sect. 4.

2 An Overview of the TMO Programming Scheme

TMO is a natural, syntactically minor, and semantically powerful extension of
conventional object structure. As depicted in Fig. 1, the basic TMO structure
consists of four parts:

1. ODS-sec (Object-data-store section). This section contains the data-
container variables shared among methods of a TMO. Variables are grouped
into ODS segments (ODSSs) which are the units that can be locked for ex-
clusive use by a TMO method in execution. Access rights of TMO methods
for ODSSs are explicitly specified and the execution engine analyzes them
to exploit maximal concurrency.

Fig. 1. Basic TMO structure (adapted from [6])
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2. EAC-sec (Environment access capability section). Contained here are “gate
objects” providing efficient call-paths to remote TMO methods, logical mul-
ticast channels called Real-time Multicast and Memory Replication Channels
(RMMCs) [9], and I/O device interfaces.

3. SpM-sec (Spontaneous method section). These are time-triggered methods
whose executions are initiated during specified time-windows.

4. SvM-sec (Service method section). These provide service methods which
can be called by other TMOs.

Major features are summarized below.

Use of a global time base. All time references in TMOs are global time
references which are valid regardless of the locations of the platforms on which
TMOS run. That is, a global time base established by the TMO execution engine
should provide information on the current time such that it can be referenced
from anywhere within the distributed computing (DC) systems with well under-
stood error bounds. A global time base is an abstract entity which is layered on
and approximated by local clocks in DC nodes with the known error bound [10].
To keep the approximation errors within a target bound, distributed clocks are
synchronized periodically among themselves and/or to a common source such as
the global positioning system (GPS).

Distributed computing component. The TMO is a distributed computing
component and thus TMOs distributed over multiple nodes may interact via re-
mote method calls. To maximize the concurrency in execution of client methods
in one node and server methods in the same node or different nodes, client meth-
ods are allowed to make non-blocking service requests to service methods [8]. In
addition, TMOs can interact by exchange of messages over RMMCs [8,9].

Clear separation between two types of methods. The TMO may con-
tain two types of methods, time triggered (TT) methods (spontaneous methods
or SpMs), which are clearly separated from the conventional service methods
(SvMs). The SpM executions are triggered when the RT clock reaches time val-
ues determined at the design time. On the contrary, SvM executions are triggered
by calls from clients that are transmitted by the execution engine in the form
of service request messages. Moreover, actions to be taken at real times, which
can be determined at the design time, can appear only in SpMs.

Triggering times for SpMs must be fully specified as constants during the
design time. Those RT constants as well as related guaranteed completion times
(GCTs) of the SpM appear in the first clause of a SpM specification called the
Autonomous Activation Condition (AAC) section. An example of an AAC is:

for t = from 10:00am to 10:50am every 30min
start-during (t,t+5min) finish-by t+10min

which has the same effect as

start-during (10:00am,10:05am) finish-by 10:10am,
start-during (10:30am,10:35am) finish-by 10:40am

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



308 K.H. (Kane) Kim, M.-C. Kim, and M.-H. Kim

Basic concurrency constraint (BCC). This rule prevents potential con-
flicts between SpMs and SvMs and reduces the designer’s efforts in guaranteeing
timely service capabilities of TMOs. Basically, activation of a SvM triggered by
a message from an external client is allowed only when potentially conflicting
SpM executions are not active. A SvM is allowed to execute only when an ex-
ecution time-window big enough for the SvM exists and does not overlap with
the execution time-window of any SpM that accesses an ODSS needed by the
SvM. However, the BCC does not stand in the way of either concurrent SpM
executions or concurrent SvM executions.

Guaranteed completion time (GCT) of the server (i.e., a SvM of a
server TMO) and the result return deadline imposed by the client.
The TMO incorporates deadlines in the most general form. Basically, for method
completions of a TMO, the designer guarantees and advertises execution time-
windows bounded by start times and completion times. In addition, deadlines
can be specified in the client’s calls for service methods for the return of the
service results.

As mentioned in the introduction, the TMO Support Middleware (TMOSM)
is a TMO execution support middleware model which can be easily adapted to
most commercial OS kernel platforms. Prototype versions of TMOSM currently
exist for Windows XP, Windows CE and Linux 2.6. The TMO Support Library
(TMOSL) is a friendly programming interface wrapping the execution support
services of TMOSM [8], [http://dream.eng.uci.edu/eecs123/learn.htm ].
It consists of a number of C++ classes which are selectively inherited and/or
instantiated in building TMOs.

3 Inheriting a Whole TMO

In TMOSL-based programming a TMO is designed by writing a TMO class first
and then adding an instantiation statement. Therefore, in principle, once a TMO
class is implemented, it can be inherited in developing another similar application
TMO. However, since a TMO contains features unique in RT programming,
certain structuring rules and styles must be followed in order to avoid undesirable
effects. Such rules and styles are discussed in this section.

3.1 The Roles of TMO Constructors in TMOSL-Based
Programming

Parts of a TMO are associated with timing specifications. The specified timing
requirements must be honored by the TMO execution engine. Timing spec-
ifications of SpMs and SvMs in a TMO must be passed onto the execution
engine before the specified execution-time-windows for the SpMs and SvMs ar-
rive. Therefore, in TMOSL-based programming the constructor of a TMO must
contain steps for passing the timing specifications of SpMs and SvMs to the
execution engine. Such steps are basically calls for API functions:
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RegisterSpM ((PFSpMBody) SpM1, &SpM1_spec);
RegisterSvM ((PFSvMBody) SvM7, &SvM7_spec);

Here PFSpMBody is the function pointer type for the SpM, and PFSvMBody is the
function pointer type for the SvM. SpM1 is the function name of the SpM in the
TMO and SvM7 is the function name of the SvM in the TMO. SpM1 spec and
SvM7 spec are the data structures containing the timing specifications and other
attributes for SpM1 and SvM7, respectively.

Therefore, these API functions also pass onto the execution engine the
pointers to the codes of the relevant SpMs and SvMs. The constructor then
contains a step for registering the entire TMO via an API function call,
RegisterTMO(&TMO spec). Among other things, one effect of this step is to let
the execution engine know that earlier registered SpMs and SvMs belong to the
TMO just registered with a unique global name.

To give some further details, SpM1 spec contains the timing specifications
in the form of AACs, e.g., “for t = from 10am to 10:50am every 30min
start-during (t, t+5min) finish-by t+10min”. In addition, it contains the
list of the IDs of ODSSs (i.e., object data member groups) which SpM1 accesses
along with access modes (i.e., read-only or read-write). This kind of ODSS ac-
cess right specification is included in SvM7 spec as well. The execution engine
can analyze these ODSS access right specifications to determine ways to exploit
concurrency maximally during the execution of the TMO.

As an example, Fig. 2 shows a simple TMO class, TMO Send Class, which
contains just one SpM, Sender SpM, and two data members which are ODSSs,
RMMC 1g and m MIC. RMMC 1g is an object serving as a gate for accessing the
logical multicast channel RMMC 1. Through RMMC 1g a TMO method (SpM or
SvM) can multicast a message and pickup a message multicast by other TMOs.
m MIC is an object serving as a microphone device driver interface.

Figure 3 provides the constructor of the TMO. The constructor of
TMO Send Class contains a step for initializing a microphone device, a
step for registering Sender SpM, and a step for registering the host
TMO, TMO Send. The second step is carried out by the local function
Sender SpM register detail(). In that function an AAC is created and

class TMO_Send_Class  : public CTMOBase
{
private:
    int Sender_SpM(); // SpM function body
      int Sender_SpM_register_detail(); // SpM registration function
    RMMCGateClass RMMC_1g;   // RMMC gate
    Mic_Wrapper_Class m_MIC; // Wrapper object for audio-in device
public:
    TMO_Send_Class();  // Default constructor
    TMO_Send_Class(TCHAR *, tms);  // TMO constructor
};

Fig. 2. An example of a TMO
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void  TMO_Send_Class::Sender_SpM_register_detail () {
    // Initialize data members for Sender_SpM execution
    . . .
    /* Specify time-window for SpM  - (1) Parameters for AAC */
    MicroSec from = (MicroSec) WARMUP_DELAY_SECS * 1000 * 1000;
    MicroSec until = (MicroSec) SYSTEM_LIFE_HOURS * 60 * 60 * 1000 * 1000;
    MicroSec every = (MicroSec) SENDER_SPM_PERIOD * 1000;
    MicroSec est = 0;
    MicroSec lst = est + LASTEST_SPM_START_TIME * 1000;
    MicroSec by = SENDER_SPM_DEADLINE * 1000;

    /* Specify time-window for SpM  - (2) Instantiation of AAC object */
    AAC aac1 ( NULL, // NULL for a permanent AAC
               tm4_DCS_age (from), tm4_DCS_age (until), every, est, lst, by);

    /* SpM registration */
    SpM_RegistParam SpM_spec;
    // Insert AAC into SpM_spec
    SpM_spec.build_regist_info_AAC (aac1);
    // Insert RMMC gate as ODSS into SpM_spec
    SpM_spec.build_regist_info_ODSS (RMMC_1g.GetId(), RW);
    // Insert device wrapper as ODSS into SpM_spec
    SpM_spec.build_regist_info_ODSS (m_MIC.GetId(), RW);
    if (RegisterSpM  ((PFSpMBody) Sender_SpM,  & SpM_spec) == FAIL)
        TMOSLprintf (_T("Failed to register Sender_SpM method\n"));
}

/** Contructor */
TMO_Send_Class::TMO_Send_Class (TCHAR* TMO_name, tms& start_time)
  : RMMC_1 (_T("RMMC_1")) {
    m_MIC.OpenMic ();  // Initialize the WaveIn device
    Sender_SpM_register_detail () ;  // Register Sender_SpM
    
    // Register TMO
    TMO_RegistParam    TMO_Send_spec;
    _tcscpy (TMO_Send_spec.global_name, TMO_name);
    TMO_Send_spec.start_time = start_time;
    RegisterTMO  (&TMO_Send_spec);
}

Fig. 3. An example of a TMO constructor

then inserted into SpM spec. One gate for RMMC 1, RMMC 1g, is inserted into
SpM spec as an ODSS along with the access mode descriptor, RW (i.e.,
read-write). Similarly, a microphone device driver interface, m MIC, is in-
serted into SpM spec as an ODSS along with the access mode descrip-
tor, RW (i.e., read-write). Thereafter, Sender SpM is registered to the exe-
cution engine and that is, SpM spec is passed onto the execution engine.
When the execution engine performs an execution of Sender SpM, it locks
the two ODSSs, i.e., the RMMC 1g and m MIC, for exclusive use by the SpM
execution. The locks are released when the SpM execution (one execution,
not all executions periodically occurring between “from” and “until”) is
over.

In the case of a data structures containing registration parameters for a SvM,
e.g., SvM7 spec, the timing specification contained there consists of:
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1. Guaranteed execution time bound (GETB),
2. Pipeline degree which is the maximum number of concurrent executions al-

lowed for the SvM,
3. Maximum invocation rate (MIR) and basic period, which are associated with

the meanings that the maximum number of invocations of the SvM in every
interval of the length equal to the basic period is MIR.

Registration parameters for a SvM also include ODSS access right specifica-
tions and a character string serving as the name of the SvM that can be called
by client objects. When a TMO contains multiple SvMs, the names (character
strings) of those SvMs that can be called by clients must be distinct. However,
a SvM in one TMO and another SvM in a different TMO may have the same
name that can be called by clients.

As shown in Fig. 3, the parameters for TMO registration include a globally
unique character string serving as the globally recognized name of the TMO and
the start time of the TMO.

3.2 Structuring Rules and Styles Enabling Efficient Design of
Inheritance of Parts of a TMO in TMOSL-Based Programming

The unique aspects in inheriting a TMO produced with C++ TMOSL are mostly
related to the timing specifications a great majority of which are contained in
the constructor.

In the case of a SvM, there is no problem in inheriting the entire timing
specification. GETB, pipeline degree, MIR, and base period can be inherited in
most cases. A proper style is to write a function SvM register detail() similar
to Sender SpM register detail() in Fig. 3.

In the case of a SpM, some parts of the timing specifications are expressed in
terms of global time instants unlike in a SvM of which the timing parameters
are in terms of durations. The “from” and “until” fields in an AAC are usually
global time instants. In general, all appearances of global time instants in a
TMO should be checked carefully to see if they can be inherited without any
modification. Therefore, the cases of inheriting the timing parameters of a SpM
class without any modification occur relatively infrequently. This means that a
function SpM register detail() that is different from SpM register detail()
in the parent TMO class needs to be provided more often than not. In the parent
TMO class, the SpM register detail() function should be called from a custom
constructor which is not a default constructor. Otherwise, double registrations
of the SpM may occur during the instantiation of the derived TMO class.

There are two other types of areas within a TMO where global time instants
may appear. One type of area is where a service request (i.e., call) is made to a
SvM in another TMO. In the case of a blocking service request, a deadline for
result return is specified. This deadline specification usually takes an expression
of duration and in such cases, it rarely presents a problem during the design of
inheritance. On the other hand, it is also possible to use a constant expression of
global time instants although it is done rarely. Such cases require careful checking
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during the design of inheritance. Therefore, specifying deadlines for result return
in terms of durations is a preferred style.

The other type of area is where a message transmission and receiving over
an RMMC is executed. A message-sender specifies an official release time
(ORT) [8,9], which is the time at which the message should become accessi-
ble through subscriber RMMC-gates to consumer methods in receiving TMOs.
A message-receiver may specify a timeout value. These timing expressions often
involve global time instants. They thus need to be checked during the design of
their inheritance.

3.3 Access Qualifiers

A SvM in a TMO is always invoked via a service request from a client TMO which
takes the form of a message transmitted from the node hosting the client TMO
to the node hosting the called SvM and TMO. Even if both the server TMO
and the client TMO reside on the same node, a service request takes the same
form of a message which is processed partly by the network message handling
part of the TMO execution engine. Therefore, there is no reason to declare a
SvM as a public function member of a TMO. A SvM invocation, i.e., a service
request to a SvM, should be done through TMOSL APIs such as OnewaySR(),
BlockingSR(), etc.

To facilitate TMO inheritance, it is the most appropriate to declare access-
qualifications of SpMs, SvMs, ODSSs, and RMMC gates as “protected” in C++
TMOSL-based TMO programming. By declaring them as protected members
of a TMO class, any direct access to ODSSs, including RMMC-gates, and any
direct invocation of SpMs or SvMs from outside the owner TMO, which are all
design / coding errors, can be detected by the compiler. At the same time, pro-
tected members of a base class can be inherited in a derived class and accessed
directly from member functions of the derived class. Therefore, such an arrange-
ment enables TMO inheritance. For further details of these aspects, consider the
following example.

This example application consists of two TMO classes, CBaseTMO (Fig. 4) and
CDerivedTMO (Fig. 5). CDerivedTMO class inherits components of CBaseTMO as
their names imply. One ODSS class, CODSS, is used in this example. This ODSS
class has one data member, count.

CBaseTMO has two SpMs, SpM1() and SpM2(). There are two constructors for
this TMO class, one default constructor to support TMO class inheritance and
the other for registration to the TMO execution engine. Note that all members
except constructors are declared as protected members. Thus, any direct invo-
cation of SpMs or direct access to ODSSs from the outside of the TMO class is
disabled while proper inheritance of the SpMs and ODSSs is facilitated.

A TMO class, CDerivedTMO, inherits components of CBaseTMO. Because
data members and function members of CBaseTMO are declared as protected
members, all those can be accessed from the constructors of CDerivedTMO.
CDerivedTMO has two new function members, SpM1 register detail() and
SpM2 register detail(), which override the function members of CBaseTMO
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class  CBaseTMO : public CTMOBase {
protected:
    CODSSClass ODSS1;
    int SpM1 ();
    int SpM1_register_detail (); // registration function
    int SpM2 ();
    int SpM2_register_detail (); // registration function
public:
    CBaseTMO () {};              // for inheritance
    CBaseTMO (TCHAR *,  tms);
};

Fig. 4. A base TMO class

class  CDerivedTMO : public CBaseTMO {
protected:
    int SpM1_register_detail (); // registration function
    int SpM2_register_detail (); // registration function
public:
    CDerivedTMO () {};            // for inheritance
    CDerivedTMO (TCHAR *, tms);
};

Fig. 5. A derived TMO class

that have the same names. The two new function members are called from the
constructor, CDerivedTMO(TCHAR *, tms). The two functions are thus executed
during an instantiation of CDerivedTMO and their effects are the registrations of
SpM1 and SpM2 of the newly instantiated TMO to the execution engine.

4 Inheritance Support in VisTMO

ViSTMO (Visual Studio for TMO) is a visual design and programming tool
for developing application TMOs [12]. ViSTMO provides a graphics-based de-
sign editor that supports interactive design of application TMO frameworks
and provides user-friendly GUIs (graphic user interfaces). It also has a code-
framework generator that generates code-frameworks based on the information
provided by a TMO programmer via the graphics-based design editor. By pri-
marily filling the empty fields in dialog boxes, programmers can produce designs
of application TMO networks that are complete except for function bodies of
member functions. Once code-frameworks are generated, programmers can then
manually insert function bodies to complete the programming. Experiences have
indicated a great potential of ViSTMO in enabling significant improvement of
the productivity of TMO programmers.

ViSTMO has recently been enhanced to support the practice of the inheritance
programming styles discussed in this paper. When a user creates a new TMO
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Fig. 6. ViSTMO support for inheritance

Fig. 7. A base class and a derived class displayed in ViSTMO
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class, ViSTMO provides an opportunity for inheriting a base class as shown in
Fig. 6 which is a snapshot of ViSTMO in action. A user can select any existing
TMO class as its base class from the “Base Class” combo box. When a base class,
CBaseTMO in this example, is selected, all members of the selected base class are
displayed in the same window. These base class members are denoted as being in
the “Base” category and cannot be edited from this window. Those marked “*”
in the category field, e.g., SpM1 CDerivedTMO, are members of a newly created
class.

In addition, clicking the “Base Class” button right next to the “Base Class”
combo box results in a display of the information of the selected base class in
a separate window (or dialog box) as shown in Fig 7. A user can back-track
the class hierarchy of a class by recursively following the base classes until the
display reaches a class without a base class, which means its base class is CT-
MOBase that is in TMOSL and serves as a default base class for all TMO
classes.

For each SpM and SvM listed, clicking the associated “Revise” button results
in opening of a window displaying various registration parameters. A new SpM
or SvM can be added by opening a new window via clicking the “Add” button
in the relevant section and then filling various registration parameter fields in
the newly open window.

TMO inheritance can thus be designed almost completely in ViSTMO with-
out necessitating intermittent generation and manual editing of code-
frameworks.

5 Conclusion

Exploiting inheritance in RT OO DC programming is largely an immature art.
The TMO programming and specification scheme makes it relatively easy to
practice inheritance design. It is largely because the TMO scheme guides pro-
grammers to incorporate timing specifications in natural, modular, and easily
analyzable forms. Some structuring guidelines and styles that enable efficient
and easily analyzable design of inheritance have been presented in this paper.
An approach incorporated into a GUI-based tool for TMO-framework program-
ming in order to support inheritance design has also been presented. It is hoped
that future research produces better understanding of how useful inheritance is
in a broad range of RT DC programming situations.
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Lédeczi, Ákos 143
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