
!

!

10th!Monterey!Workshop!

Software!Engineering!for!Embedded!Systems:!

From!Requirements!to!Implementation!

September!24!–!26,!2003!

!

Hosted!at!Chicago!Illinois!

Table&of&Contents&

Alur!R.!(2003).!Software!synthesis!from!hybrid!automata.!10TH!Monterey!Workshop!Software
Engineering for Embedded Systems: From Requirements to Implementation,!10(1),!1.!.................!4!

Berzins!B.,!Qiao!L.,!Luqi!(2003).!Information!consistency!checking!in!documentation!driven!development!!
for!complex!embedded!systems.!10TH!Monterey!Workshop!Software Engineering for Embedded
Systems: From Requirements to Implementation,!10(2),!2U9.!..!4!

Brinksma!E.,!Mader!A.!(2003).!On!verification!modelling!of!embedded!systems.!10TH!Monterey!
Workshop!Software Engineering for Embedded Systems: From Requirements to Implementation,!
10(3),!10U17.!...!4!

Bryant!B.!R.,!!Lee!B.,!Cao!F.,!Zhao!W.!,!Carol!B.!C.,!…!Auguston!M.!(2003).!!From!natural!language!
requirements!to!executable!model!of!software!components.!10TH!Monterey!Workshop!Software
Engineering for Embedded Systems: From Requirements to Implementation,!10(4),!18U25.!.........!4!

Buy!U.,!Darabi!H.!(2003).!Sidestepping!verification!complexity!with!supervisory!control.!10TH!Monterey!
Workshop!Software Engineering for Embedded Systems: From Requirements to Implementation,!
10(5),!26U33.!...!4!

Christopher!G.!D.!(2003).!A!vision!for!embedded!system!properties!via!a!modelUcomponentUaspect!
system!architecture.!10TH!Monterey!Workshop!Software Engineering for Embedded Systems: From
Requirements to Implementation,!10(6),!34U41.!...!5!

Gunter!E.!L.!(2003).!From!natural!language!to!linear!temporal!logic:!difficulties!of!capturing!natural!
language!specifications!in!formal!languages!for!automatic!analysis.!10TH!Monterey!Workshop!Software
Engineering for Embedded Systems: From Requirements to Implementation,!10(6).!42U50.!.........!5!

Henzinger!T.!A.!(2003).!The!fixed!logical!execution!time!assumption.!10TH!Monterey!Workshop!Software
Engineering for Embedded Systems: From Requirements to Implementation,!10(7).!51.!...............!5!

Hughes!J.,!Pautet!L.,!Kordon!F.!(2003).!Refining!middleware!functions!for!verification!purpose.!10TH!
Monterey!Workshop!Software Engineering for Embedded Systems: From Requirements to
Implementation,,!10(8).!52U59.!...!5!

Joshi!A.!(2003).!Eliciting!a!formal!model!from!informal!requirements!specified!in!a!natural!language!–!
some!issues!and!a!particular!approach.!10TH!Monterey!Workshop!Software Engineering for
Embedded Systems: From Requirements to Implementation,!10(9).!60.!...!5!

Lee!E.!A.!(2003).!ModelUdriven!development!from!objectUoriented!design!to!actorUoriented!design.!10TH!
Monterey!Workshop!Software Engineering for Embedded Systems: From Requirements to
Implementation,!10(10).!61.!...!6!

Luqi,!Zhang!L.!(2003).!Documentation!driven!agile!development!for!systems!of!embedded!systems.!10TH!
Monterey!Workshop!Software Engineering for Embedded Systems: From Requirements to
Implementation,!10(11).!62U78.!..!6!

Margaria!T.,!Steffen!B.!(2003).!Aggressive!modelUdriven!development:!synthesizing!systems!from!models!
viewed!as!constraints.!10TH!Monterey!Workshop!Software Engineering for Embedded Systems:
From Requirements to Implementation,!10(12).!!79U88.!..!6!

Heimdahl!M.!(2003).!New!development!techniques!–!new!challenges!for!verification!and!validation.!10TH!
Monterey!Workshop!Software Engineering for Embedded Systems: From Requirements to
Implementation,!10(13).!89.!...!6!

Medvidovic!N.!,!Malek!S.,!MikicURakic!M.!(2003).!Software!architectures!and!embedded!systems.!10TH!
Monterey!Workshop!Software Engineering for Embedded Systems: From Requirements to
Implementation,!10(14).!90U99.!..!6!

Daftari!A.,!Mehta!N.,!Bakre!S.,!Sun!X.!(2003).!On!design!framework!on!context!aware!embedded!
systems.!10TH!Monterey!Workshop!Software Engineering for Embedded Systems: From
Requirements to Implementation,!10(15).!100U109.!...!7!

Wirsing!M.,!Baumeister!H.,!Knapp!A.!(2003).!Techniques!for!improving!testUdriven!design.!10TH!Monterey!
Workshop!Software Engineering for Embedded Systems: From Requirements to Implementation,!
10(16).!110.!..!7!

!

!

Software Synthesis from Hybrid Automata

Rajeev Alur, University of Pennsylvania

Abstract:

Benefits of high-level modeling and analysis can be significantly enhanced if the code is
generated automatically from the model such that the relationship between the two is
rigorously understood. For embedded control software, hybrid systems is an appropriate
modeling paradigm due to the ability to specify continuous dynamics as well as discrete
switching. In this talk, we will discuss the challenges involved in code generation from
hybrid models. In particular, we argue that, for portability and modularity, the
traditionally separate steps of discretizing the continuous controllers, determining the
sampling frequencies, and scheduling of periodic tasks, should be integrated. We will
describe some of the ongoing work to achieve this goal.

 1

Information Consistency Checking in Documentation Driven
Development for Complex Embedded Systems

Valdis Berzins, Lisa Y. Qiao, Luqi

Naval Postgraduate School, Software Engineering Automation Center

Monterey, CA93943
{berzins, yqiao, luqi}@nps.navy.mil

Abstract Complex embedded systems, especially systems of embedded systems (SoES) need documentation to support
their development. In our research, we are developing a documentation driven development method for SoES. In this
method, keeping high confidence properties consistently identified in documentation of different development phases is
an important issue since it is critical to ensure software quality of the end product. To address this issue, in this paper
we investigate a method for information consistency checking in documentation driven development for SoES. We
present an attributed object graph model to describe the semantics of document elements. Based on this model, we
show how a set of attribute computation rules can analyze consistency between the key information such as timing
properties transformed from one development phase to another.

Keywords Documentation, Systems of Embedded Systems, High Confidence, Attributes, Semantics

1. Introduction

1.1 Background

Complex embedded systems that are widely used today are usually deployed for long periods of time. They
usually have mission critical requirements and demand real-time and high-confidence performance. These
complex embedded systems, known as systems of embedded systems (SoES)[1], are composed of
component systems that were developed by different organizations with different tools and run on different
platforms. Furthermore, they must rapidly accommodate frequent changes in requirements, mission,
environment, and technology. These traits make software development for systems of embedded systems
face several challenges. First, key properties of embedded systems, such as high-confidence properties are
hard to keep consistent during the whole development process, making software quality difficult to ensure
in the end product. Second, a wide variety of stakeholders (sponsors, developers, users, maintainers, etc)
are involved in the overall lifecycle of the software. Inconsistent information among different stakeholders
is one of the main factors resulting in design faults. Third, complex embedded systems are difficult to
evolve and maintain because of the independent development of their constituents and frequent changes in
circumstances.

Previous research on embedded system development revealed that documentation plays a crucial role in
coping with the above challenges throughout the software life cycle. According to the FIPS PUB 105
definition, documentation refers to all information that describes the development, operation, use, and
maintenance of computer software. This information is in a form that can be reproduced, distributed,
updated, and referred to when it is needed [2]. Furthermore, software documentation should provide
information to support all software life cycle processes, most notably, requirements gathering, quality
assurance, design, system evolution and reengineering, project management, communication among all
system stakeholders and communication with software tools.

1.2 Related Work

Software Engineering aims to improve software quality and productivity by providing systematic,
disciplined and quantifiable approaches to software development. Documentation has been proven to play a
key role in software engineering. Many theories, methods, and techniques related to documentation have
been developed in the past decades. There are different specific documents associated with different
development phases. Typical phases in the software life cycle include requirements analysis and definition,
architectural design, implementation, composition, deployment, maintenance and evolution.

 2

In the requirement phase, a requirement definition, which is a kind of documentation, serves as a starting
point for the whole software development process. Natural language is the most common form of
requirement definition [3]. By modeling and formalizing the requirement definition, the formal
documentation – the requirement specification – can be derived. In this case, the requirement specification
is usually written in formal language. Typical examples include [4]，[5]，[6] and [7]. They use temporal
logic to represent the formal requirement specifications that further serve as the basis for verification and
validation.

The most important documentation used in the design phase is design specification. This acts as a blueprint
for the actual coding by outlining the logic of individual code modules. It also assists maintenance
programmers as they modify the program to add enhancements or fix errors [8]. A design specification is
generally described by formal or semi-formal methods, such as hierarchy charts, logic charts, state
transition diagrams, state machines, data flow diagrams, data dictionaries, object-oriented approaches, and
a great number of formal languages [9]. Some typical formal and semi-formal notations used for design
specification include UML [10，11] and some kinds of architecture description language [12，13].
Prototype system description language (PSDL) [14, 15] is another typical design specification language for
real-time embedded systems. It uses operators and data streams between operators to model the embedded
systems and captures timing constraints and control constraints of embedded systems. PSDL also provides
a graphic interface to stakeholders. In addition, design specification also serves as the basis for formal
analysis as described in [16], [17] and [18] to find design faults early in development.

Configuration is another important aspect of software development that is done based on documentation
support, such as architectural specification and component specification. In complex control systems, the
configuration of components must be flexible enough to allow rapid online reconfiguration and adaptation
to react to environmental changes and unpredictable events at run-time. For this purpose, an open software
architecture [19] has been used for integrating control technologies and resources.

Although a lot of effort has been applied toward improving documentation technology [8, 20, 21], there are
still open challenges that hinder documentation from providing efficient support for complex systems of
embedded systems development. First, according to the traditional concept, software documentation
consists only of informal text and diagrams intended for human consumption. This kind of static
information simply records some results and process steps during the software development. It cannot
capture the dynamic information during the development process. Second, keeping documentation up-to-
date is difficult and time consuming. The various representations of documentation increase the complexity
of maintaining information consistency, increase the intellectual burden on stakeholders, and introduce the
need for transformations that are tedious and error prone when carried out manually. Some formal
representations with rigorous logic are conducive to machine manipulation but are difficult for human
understanding. Informal representations such as natural language are comfortable for many system
stakeholders but are too vague and ambiguous for direct use by computer tools. Although multiple views of
the information can alleviate this problem, how to maintain consistency among information presented to
both the humans and computer tools is still a challenge. In addition, to guarantee software quality in the end
product, the information should be kept consistent among documents of successive development phases.
Traditional documentation technologies do not solve this problem.

To attack above problems and enable documentation to provide more effective support for complex SoES
development, we proposed a documentation driven development method for SoES [22]. This is a new
approach for documentation that can enhance integration of computer aided software development methods,
encompass the entire life cycle, support system evolution and improve communication with system
stakeholders. In this method, keeping consistency of information transformed between successive
development phases is an important issue. It is critical for ensuring high confidence in the end product. For
this purpose, a specific method is needed to enable the key information to be consistently transferred
between documentation of successive development phases. This paper presents such a specific method.

Much research has been done on attribute grammars that constitute a classic technology for compiling [23-
26]. An attribute grammar is a specification of computations and dependence based on a formal calculus

 3

introduced by Knuth [27]. Since it is an efficient way to handle the semantics of context-free languages, we
plan to extend and exploit it to deal with the information consistency issue identified above. In this paper,
we present an attributed object graph model to represent aspects of the “meaning” of document elements
and use a set of attribute computation rules to analyze and ensure the consistency of information
transformed between successive development phases.

1.3 Organization of This Paper

The rest of paper is organized as follows: Section 2 addresses the core of the documentation driven
development method – repository representation; Section 3 presents an attributed object graph model for
document elements; Section 4 illustrates the use of attribute computation rules to help ensure consistency of
documentation and section 5 presents the conclusion and future work.

2. Repository Representation

The repository representation is the core of the documentation driven development method. All the
information related to development process is stored as knowledge in the documentation repository. Each
development phase has its own area in the documentation repository. The information is transformed
between different documentation areas that belong to successive development phases. Typical examples of
the information stored in the repository are requirement specifications, abstracted models, stakeholder input
(from sponsors, end users, developers, technical supporters, etc.), design rationale, project management
information and the source code. The repository uses a structured central representation for this knowledge
so that different stakeholders can communicate with each other based on consistent information and this
knowledge can be consistently transformed between successive development phases. Figure 1 illustrates the
repository representation.

Figure 1 Repository Representation

Figure 1 shows that the repository representation includes three kinds of artifacts, i.e., document elements
(DEL), a set of syntactic templates and a set of attribute computation rules. A document element is a basic
building block consistent with the semantics of the information contained in the documentation. It is
described by a semantic document model. This model is an object model for the information contained in
the documentation whose instances form an attributed object graph. The documentation elements are the
nodes of this graph. The amount of information associated with each node depends on the degree of
formalization for each documentation type. Formal representations have explicit structure at a fine
granularity and very simple information associated with individual documentation elements. Informal

Syntactic Templates

Semantic
Document

Model
Multiple

views

Semantic
Processing

Attribute
Computation

Rules

DEL

DEL

DEL

DEL
DEL

DEL

DEL

 4

representations have only a large granularity structure and can have lengthy annotations attached to the
nodes. Document elements hold the key information extracted from all the requirements, models, activities
and processes related with system development. The model is strongly typed and structured according to a
documentation schema. Further development of this approach will need better computer-assisted methods
for resolving the ambiguities common in informal representations, transforming them into more formal,
finer-grained representations, and for checking the validity of this process.

Syntactic templates are object operations with parameters. The purpose of a syntactic template is to
materialize the part of a specific documentation view that corresponds to a given documentation element.
The parameters represent the relevant properties of the context and the descendent nodes of the
documentation element. Syntactic templates are designed together with specific sets of rules that govern
the manipulation of the data stored in the document elements. The content of the document elements is
treated as repository knowledge and the different templates govern how that knowledge is used and
presented to the stakeholders and tools in the computer development environment. The combination of a
document element and different syntactic templates forms the multiple view presentation of the same
information. Combining document elements with corresponding templates can also transform the
information between representations written in different description languages [22].

Attribute computation rules represent the methods for computing derived document attributes. They make
the repository into an active project support system. These rules are organized in a rule base. The rule base
is designed to be open in the sense that new rules can be added without changing the effect of any complete
subset of the previous version of the rules. This property supports reliable incremental extension of the
automation support provided by the repository and enables steady improvement of decision support
processes.

In the long term, the repository will perform a variety of automated and computer aided functions such as
the following:

• Materialize external representations of documents suitable for particular stakeholders or tools
• Find appropriate subsets and projections of the documents suitable for particular purposes
• Extract computed attributes of documents, such as expected completion date of the project
• Transform data among different representations as needed to support integration of development

processes and tools
• Configuration management of the documents [28-30]
• Project management based on management documents such as plans and schedules [31-33]

To address the problem of consistent information transformation between documentation of successive
development phases, we describe the attributed object graph model and attribute computation rules in the
following sections.

3. Attributed Object Graph Model

This section explains the computational semantics of the attributed object graph model. This is an object
model of knowledge in the documentation repository. It has a nested structure with potentially shared nodes,
i.e., directed acyclic graph structure. This representation is a generalization of abstract syntax trees and is
designed to represent and efficiently analyze constructs that appear in more than one context. This is a
common pattern in software artifacts – for example, an operation is typically defined once and called from
many different contexts.

In the attributed object graph model, each node represents a semantically meaningful structure, such as an
individual requirement, a subsystem, an operation, or an operator within a logical expression. The nodes are
the finest grain structures visible to the attribute computation rules. Each node is an instance of an abstract
data type. The computed attributes of each node correspond to the operations of the data type. Invoking

 5

appropriate methods of the data type can derive the value of an attribute. Attribute computation rules are
declarative definitions of these methods.

The semantics of attribute evaluation in the attributed object graph model is a generalization of the
corresponding semantics in an ordinary attribute grammar. The two are the same when the graph is a tree.
The difference shows up for inherited attributes of shared nodes: in an attribute grammar, each node can
have at most one parent, but a shared node in an attributed object graph can have more than one parent.

We require the type of an inherited attribute to be a lattice. In implementation terms, the type must
implement the lattice [T] interface with operations

 :bottom T -- least element
 (,) :lub T T T -- least upper bound
 (,) :le T T bool -- approximation ordering

and these operations must satisfy the standard properties of a mathematical lattice.

The semantics of an inherited attribute A with a defining expression E is the least upper bound of the values
of E in all contexts (i.e. the set of all parent nodes). In implementation terms, an attribute computation rule
of the form . (.)child A E parent A= can be realized with an initialization . :node A bottom= (for all
nodes) and an incremental update step . : (. , (.))child A lub child A E parent A= which is enabled in the
context of each parent node whenever the value of .parent A changes in that context.

To make the above restriction on attribute types less burdensome, we propose a default extension of all
types (a uniform subtype definition) that adds a new constant “bottom” representing an undefined value,
another new constant “conflict_error” representing a conflict between two incompatible values inherited
from different contexts, and the usual flat ordering on simple data types:

 (,) () () (_)le x y x bottom or x y or y conflict error= = = =

 (,) () ()lub x y if x bottom or x y then y= = =

 ()else if y bottom then x=

 _else conflict error -- display an error diagnostic

This default can be explicitly overridden by the designer for data types where this makes sense. An
example from the domain of timing constraints illustrates the idea:

 TYPE DEADLINE EXTENDS INTEGER

 _bottom MAXIMUM INTEGER=
 (,)le x y x y= ≥
 (,) (,)lub x y MIN x y=

This corresponds to the idea that if a program meets a given deadline, then it also meets any later deadline.
Thus, a component that inherits deadlines of 100ms, 75ms, and 120ms from three different requirement
documents is subject to a design constraint to execute within 75ms (since ((100,75),120) 75lub lub = for the
deadline type defined above).

To ensure the high confidence of SoES, it is important to keep timing properties consistent during the
whole development processes. This means the information related to timing properties needs to be
consistently identified in documents belonging to different development phases. In the next section, we will

 6

use timing properties as an example to illustrate the application of the proposed attributed object graph
model to the problem of maintaining document consistency.

4. Attribute Computations for Document Management

The attributed object graph model was designed to realize documentation checks and transformations that
support high confidence SoES development. These computations are used to (a) calculate the attributes
from the information in the documentation repository, (b) transform the information from one development
phase to another, (c) analyze the consistency between the information transformed between development
phases, description languages and information views, and (d) extract subsets of documents needed for
particular purposes. The declarations of these computations form a set of attribute computation rules.

In the development process, the documentation generated in early development phases is taken as input for
the next phases and guides the development activities in that phase to generate the output documentation.
To ensure the quality of the end product, it is important to keep selected non-functional properties needed
for high confidence visible and consistent during the whole development process. These high-confidence
properties should be kept consistent between the documentation generated in the early phase and that
generated in the next phase. Although the format of this kind of “key information” may be different
between two development phases, this information of later phase should imply that of the earlier. For
example, in the requirement phase, requirement documentation may include information describing a
customer request for deriving the computation result within containing constraints, then in the design phase,
the design documentation should include information with the same implication, such as information
related to the deadline, period and maximum execution time.

In this paper, we use timing properties transformation between requirement phase and design phase as the
example to illustrate the application of attribute computation rules. Suppose that the requirements
specification includes a maximum response time (MRT) constraint for a given service S and that at the
architectural level, S is realized by a software component C . The maximum response time appears at the
requirements level because it is directly visible to the system stakeholders and is of vital concern to them,
since late control signals can have catastrophic consequences.

At the design level, this constraint is transformed into lower level constraints on the period and maximum
execution time (MET) of a periodic software process. If the documentation element S in the requirements
document is a parent node of the documentation element C in the design document, the design rule that
ensures consistency of the two documents with respect to this issue can be expressed by the following
simple attribute computation rules: (MRT is an attribute of S ; timing_check, period, MET and diagnostic
are four attributes of C .)

 C.timing_check = (. . .)C period C MET S MRT+ ≤
 .C diagnostic Unless= (C.timing_check, error_message)
 -- Unless (C, M) displays M if C = false and does nothing otherwise

The rationale for this rule is that the worst case occurs when a request arrives just after the request stream
has been polled. In this case, the transaction will start processing one period later, and the software can take
up to the maximum execution time after the transaction starts to produce the result. This simplified example
assumes that all processing is done locally, so that we do not have to account for any latency in the
communications link between the machine running the component C and the machine running the
consumer process waiting for the output of C .

A mature documentation repository will actively check many different generic design rules like the one
illustrated in this simple example. The rule base will gradually grow as processes are improved and
constraints related to high confidence attributes are gradually formalized.

 7

5. Conclusions and Future Work

In recent years, complex embedded systems, known as systems of embedded systems (SoES), have been
widely used in many fields such as flight control and avionics, industrial process control, weapon system
control and nuclear plant control. The high complexity of SoES forces them to confront many software
development challenges, such as difficulty ensuring software quality, difficulty supporting software
evolution and difficulty supporting communication among different stakeholders. Much research on
individual embedded system development has demonstrated that documentation plays an important role in
development process and provides a promising way to cope with these challenges. In our research, we are
developing a documentation driven development method for SoES. This is a new approach to
documentation that can enhance integration of computer aided software development methods, encompass
the entire life cycle, support system evolution and improve communication with system stakeholders. This
effort enables documentation to provide more effective support for complex SoES development.

Furthermore, keeping information transformation consistent between successive development phases is an
important issue in the proposed approach. It is critical for ensuring high confidence in the end product. In
this paper, we investigate a specific method to perform information consistency checking in documentation
driven development of SoES. We present an attributed object graph model to describe the semantics of
document elements. Based on this model, we show how attribute computation rules can be used to analyze
consistency between the key information such as timing properties transformed from one development
phase to another.

However, further work still needs to be done in order to improve capability of documentation to efficiently
support complex embedded system development. For example, a better language for defining attribute
computations and an optimized evaluation engine that can handle the generalized attribute semantics
proposed here should be designed.

References

1. M. Maier, “Architecting Principles for Systems-of-System”, Technical Report,
http://www.infoed.com/Open/PAPERS/systems.htm.

2. http://www.nist.gov/itl/div897/pubs/fips105.pdf
3. L. Goldin, D. Berry, “AbstFinder: A Prototype Abstraction Finder for Natural Language Text for Use in

Requirement Elicitation”, Automated Software Engineering, No.4, 1997, pp.375-412.
4. E. Clarke, E. Emerson and A. Sistla, “Automatic Verification of finite state concurrent systems using

temporal logic specification”, http://citeseer.nj.nec.com/clarke93verification.html.
5. M. Dwyer, J. Hatcliff, and G. Avrunin, “Software Model Checking for Embedded Systems”,

www.cis.ksu.edu/~dwyer/projects/HCES-May-01-1.ppt.
6. D. Garlan, “Model Checking Publish-Subscribe Software Architectures”, Presentation at ARO Kickoff

Meeting, University of Pennsylvania, Philadelphia, PA, May 24 - 25, 2001,
www.cs.cmu.edu/~svc/talks/ppt/garlan.ppt

7. J. Wing, “Scenario Graph Generation and MDP-Based Analysis”, Presentation at ARO Kickoff Meeting,
University of Pennsylvania, Philadelphia, PA, May 24 - 25, 2001, http://www-
2.cs.cmu.edu/~svc/talks/html/wing_files/frame.htm.

8. J. French, J. Knight and A. Powell, “Applying Hypertext Structures to Software Documentation”,
www.cs.virginia.edu/~cyberia/papers/IPM97.pdf.

9. http://www.comlab.ox.ac.uk/archive/formal-methods/
10. G. Booch, J. Rumbaugh and I. Jacobson, “The Unified Modeling Language user guide”, Addison Wesley

Longman Publishing Co., Inc., Redwood City, CA, 1999.
11. Object Modeling Group, Inc., “Unified Modeling Language Specification, version 1.3”, June 1999.
12. M. Kande, V. Crettaz, A. Strohmeier and S. Sendall, “Bridging the Gap between IEEE 1471, Architecture

Description Languages and UML”, http://icwww.epfl.ch/publications/documents
13. N. Mehta, N. Medvidovic, “Towards a Taxonomy of software Connectors”, Proceedings of 22th

International Conference on Software Engineering, Limerick Ireland, 2000,
sunset.usc.edu/classes/cs599_2000/Conn-ICSE2000.pdf.

 8

14. Luqi, V. Berzins and R. Yeh, “A Prototyping Language for Real-Time Software”, IEEE Transaction on
Software Engineering, Vol.14, No.10, 1988, pp.1409-1423.

15. Luqi, R. Steigerwald, G. Hughes and V. Berzins, “CAPS as a Requirement Engineering Tool”. Proceedings
of Tri-Ada'91 International Conference, San Jose, USA, Oct 22-25, 1991, pp. 75-83.

16. R. Alur, T. Dang, J. Esposito, Y. Hur, F. Ivancic, V. Kumar, I. Lee, et al., “Hierarchical Modeling and
Analysis of Embedded Systems”, Proceedings of IEEE, Vol. 91, No 1, January, 2003, pp. 11-28.

17. R. Alur, “Model-based Design of Embedded Software”, Presentation at Vanderbilt Workshop, Vanderbilt
University, Nashville, TN, December 13-14, 2001, www.hpcc.gov/iwg/sdp/vanderbilt/
agenda_presentations/alur.pdf.

18. O. Sokolsky, A. Philippou, I. Lee and K. Christou, “Modeling and Analysis of Power-Aware Systems”,
Proceedings of 9th International Conference on Tools and Algorithms for Construction and Analysis Systems
(TACAS03), Warsaw, Poland, April 7-11, 2003, pp.409-425.

19. L. Wills, S. Sander, S. Kannan, A. Kahn, J. Prasad, and D. Schrage, “An Open Control Platform for
Reconfigurable, Distributed, Hierarchical Control Systems”, Proceedings of the Digital Avionics Systems
Conference, Philadelphia, PA, October, 2000, http:// controls.ae.gatech.edu/papers/kannan_dasc_00.pdf.

20. P. Devanbu, P. Selfridge, R. Branchman and B. Ballard, “LaSSIE: a Knowledge-based Software Information
System”, Proceedings of the IEEE 12th International Conference on software Engineering, 1990, pp.249-261.

21. C. Paris, K. Linden, “Building Knowledge Bases for the Generation of Software Documentation”,
http://acl.ldc.upenn.edu/C/C96/C96-2124.pdf.

22. Luqi, L. Zhang, “ Documentation Driven Agile Development for Systems of Embedded Systems”, Submitted
to Monterey Workshop 2003.

23. G. Hedin, “Reference Attributed Grammars”, Proceedings of Second workshop on Attribute Grammars and
their Applications (WAGA99), March 1999, pp. 158-172, http://www-
rocq.inria.fr/oscar/www/fnc2/WAGA99/proceedings/hedin/hedin2.pdf

24. D. Parigot, G. Roussel, E. Duris and M. Jourdan, “Attribute Grammars: a Declarative Functional Language”,
http://www.inria.fr/rrrt/rr-2662.html, 1995.

25. R. Herndon, V. Berzins, “ The Realizable Benefits of a Language Prototyping Language”, IEEE Transaction
on Software Engineering, Vol. 14, No. 6, June 1988, pp. 803-809.

26. U. Kastens, “Modularity and reusability in Attribute Grammars”,
http://citeseer.nj.nec.com/kastens92modularity.html, 1992.

27. D. Knuth, “Semantics of Context-free Language”, Journal of Mathematical System Theory, Vol. 2, No. 2,
June, 1968, pp.127-145.

28. O. Ibrahim, “A Model and Decision Support Mechanism for Software Requirement Engineering”, Naval
Postgraduate School, Ph.D. Dissertation, September 1996.

29. M. Harn, V. Berzins and Luqi, "A Dependency Computing Model for Software Evolution", Proceedings of
the 11th International Conference on Software Engineering and Knowledge Engineering, June 17-19,
1999, Kaiserslautern, Germany.

30. M. Harn, V. Berzins and Luqi, "Software Evolution Process via a Relational Hypergraph Model",
Proceedings of IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems, Tokyo,
Japan, October 5-8, 1999.

31. S. Badr, V. Berzins, "A Software Evolution Control Model", Proceedings of Monterey Workshop 94,
Monterey, CA, September 7-9, 1994, pp. 160-171.

32. S. Badr, “ A Model and Algorithms for A Software Evolution Control System”, Naval Postgraduate School,
Ph.D. Dissertation, December 1993.

33. M. Harn, “Computer Aided Software Evolution based on Inferred Dependencies”, Naval Postgraduate
School, Ph.D. Dissertation, December 1999.

On Verification Modelling of Embedded Systems

Ed Brinksma and Angelika Mader ?

Department of Computer Science, University of Twente
PO Box 217, 7500 AE Enschede, Netherlands

{brinksma,mader}@cs.utwente.nl

Abstract. Computer-aided verification of embedded systems hinges on
the availability of good verification models of the systems at hand. Be-
cause of the combinatorial complexities that are inherent in any process
of verification, such models generally are only abstractions of the full de-
sign model or system specification. As they must both be small enough
to be effectively verifiable and preserve the properties under verification,
the development of verification models usually requires the experience,
intuition and creativity of an expert. We argue that there is a great
need for systematic methods for the construction of verification models
to move on, and leave the current stage that can be characterised as
that of “model hacking”. The ad-hoc construction of verification models
obscures the relationship between models and the systems that they rep-
resent, and undermines the reliability and relevance of the verification
results that are obtained. We propose some ingredients for a solution to
this problem.

1 What is the problem?

Many embedded systems are subject to critical applications, massive replication
and/or widespread distribution. The quality of their design, therefore, is an issue
with major societal, industrial, and economic implications. Systematic methods
to design and analyse such systems are consequently of great importance. In
this paper we focus on a number of methodological aspects of the analysis of
embedded systems.
In computer science formal methods research much progress is being made in
tool-supported, model-based system analysis, in particular in the areas of model
checking, theorem proving and testing. A prerequisite for such analysis is the
availability of a formal model of the system. For pure software systems the (semi-
)automated extraction of abstract models out of (a specification of) the source
code is a possibility in principle. For embedded systems, however, the modelling
task is intrinsically more complicated. As interaction with their (physical) en-
vironment is an essential ingredient, good models must integrate the relevant
aspects of the system hardware, software, and environment.
? This work has been partly funded as part of the IST Ametist project funded by

the European Commission (both authors), and the Moms project funded by the
Netherlands Organisation for Scientific Research (second author).

The current modelling and verification practice for embedded systems can be
characterised by the slogan: “model hacking precedes model checking”. Construct-
ing a model is typically based on the experience, intuition and creativity of an
expert. In an initial phase the model is improved in trial and error fashion: first
verification runs show errors in the model, rather than errors in the system. Once
the model is considered stable and correct, the subsequent verification runs are
considered analyses of the system.
Processes of model construction are mainly described in case studies, but in
most cases the applied design decisions and paradigms remain implicit. As a
consequence, it is difficult to compare, and assess the quality of the models.
Therefore, different analysis results are also difficult to interpret. The ad-hoc
construction of verification models obscures the relationship between models and
the systems that they represent, and undermines the reliability and relevance of
the verification results that are obtained. Moreover, most of the existing case
studies are done to show that a given algorithm is faster, or that some tool is
applicable to a given problem.
So far, the method of modelling has not been a topic of systematic research.
Quoting the NASA Guidebook on formal methods [17]: “The observation [that
there is a paucity of method in formal methods] focuses in particular on the
absence of ‘defined, ordered steps’ and ‘guidance’ in applying ... methodical el-
ements that have been identified.” A first collection of relevant empirical data
exists in the form of various case studies consisting of different teams apply-
ing different modelling approaches to a common problem, such as the steam
boiler case study [14], the RCP-memory case study [8], the VHS batch plant
case study [16], and an industrial distributed data base application [9]. What is
mostly missing, however, is the extraction of the commonalities and differences
of the resulting models, and their comparative evaluation against qualitative cri-
teria such as ease of modelling, quality of analysis, tool support, adaptability,
maintainability, etc.
A wealth of material exists on the topic of specification (formalisms) and their
application, but this is essentially aimed at the construction of complete models
(specifications) of system behaviour, as unambiguous statements of the desired
functionality, where the resulting size and complexity are of secondary interest.
Our interest, however, is in models for selected properties of interest where sim-
plicity and size are of prime concern to control the combinatorial explosion that
results from their analysis. Only such an approach offers hopes for tool-supported
analysis.

2 What do we need?

The previous section indicated that we need methods for the construction of
verfication models that combine the following properties:

– They are of limited complexity , meaning that they can be analysed with the
help of computer-aided verification tools;

– They are faithful , meaning that they capture accurately the (verification)
properties of interest;

– They are traceable, meaning that they have a clear and well-documented
relation to the actual (physical) system.

It is clear that it is not easy, generally, to satisfy all of these constraints con-
currently. The construction of verification models really is a design problem in
its own right that may share many characteristics of the design problem of the
system itself, but is not identical to it because of its different purpose and com-
plexity constraints. Being a design problem, it generally also involves a strongly
creative element that defies automization.
Below, we discuss the above points in some more detail.

2.1 Limited complexity

Modern formal methods research is tightly coupled to the development of ana-
lytical software tools such as animators, model checkers, theorem provers, test
generators, simulators, Markov chain solvers, etc. Only computer-aided analysis
can hope to overcome the combinatorial complexities that are inherent in the
study of real systems.
Even then, one of the main obstacles to overcome is the infamous combinatorial
explosion problem, causing the size of search spaces, state spaces, proof trees,
etc. to grow exponentially in the number of (concurrent) system components.
This makes it essential to keep the complexity of verfication models within the
range that can be effectively handled by tools.
Of course, the effective limit is growing rapidly itself, due to both exponen-
tial growth of hardware speed and memory miniaturisation (Moore’s law), and
improvements the algorithms and data structures used in the tools. Still, it
seems reasonable to assume that effective computer-aided analysis must always
be based on models that simplify or abstract from the full functionality of the
system at hand.

2.2 Faithfulness

The purpose of verification is to show that a system satisfies (or does not satisfy)
various properties. It is obvious that the model we investigate for verification
should share the properties of interest with the original system. Therefore, the
abstraction steps that are applied in the verification modelling process should
preserve the relevant properties. Under most circumstances this is a tall order
for two reasons:

1. We may not know the relevant formal properties. In fact, finding the right
formal properties to verify is often as much a part of the verification design
problem as finding the right model. In practice, the design of the properties

and model go hand in hand. Together with the necessity to keep models
small this leads to a collection of different models, each geared for a different
(set of) formal property (properties) [5].

2. We may not know whether our abstractions preserve them. Showing that our
abstractions preserve the intended properties may be as hard as our original
verification problem, and the set of abstractions with known preservation
properties is usually too small to suffice for practical problems.

A common way out of the second complication is to be satisfied with approx-
imating models that may generate false negatives or false positives, i.e. report
nonexistent errors, or obscure existing errors, respectively. In the first case, spu-
rious errors may be filtered out if they cannot be traced back to the original
system, e.g. by counterexample trace analysis in model checking. In the second
case, one is reduced to falsification or debugging , where the presence of errors
can be shown, but not their absence.
The insight that all verification is in some sense reduced to debugging, due to the
untimately informal relationship between model and real system, is misleading.
Although it is true in the Popperian sense of falsification, it should not be in-
terpreted as a reason not to seek the positive identification of model properties.
This minimalistic approach is not enough when a model must have certain prop-
erties to be relevant at all for the verification task at hand. For example, when
deriving schedules by means of model checking [6], one needs to know positively
that the relevant aspects of time are represented in the model. The modelling
process should therefore guarantee in some way the presence of the properties
of interest.
An interesting development in software model checking is that of (semi-)automated
model abstraction from code [3, 2, 11], allowing for many approximating verifi-
cation models to be analysed concurrently. This way of debugging can under
circumstances achieve a good error coverage. For embedded systems, however,
the modelling task is intrinsically more complicated. As interaction with a (phys-
ical) environment is an essential ingredient, good models must integrate the
relevant aspects of the system hardware, software, and environment. This can-
not be achieved by automated code abstraction. Libraries of succesful modelling
fragments coupled to specific system domains may provide a way forward here.

2.3 Traceability

Verifying an erroneous model is both useless and time-consuming. As pointed
out above already obtaining faithful models is not an easy task, and cannot
be achieved by formal means only. In fact, one of the most important ways of
establishing the relevance of a (verification) model is by keeping track of the
design and abstraction steps that relate it to the actual system, the choices that
were made, and the reasons behind them.
There is not a unique starting point for model derivation. In an a posteriori
verification case one could start from a piece of embedded software together with

an engineer’s diagram of what the physical part of the embedded system does.
It could be a standard or another informal description. In an a prioriverification
we might start from a desired behaviour specification. In any case we have to
get from a system description that is likely not to be a formal object to a formal
model. The preservation of relevant properties is therefore (in many design steps)
also not a formal notion. In such cases the only form of evidence that can be
given is by insight. Insight requires a transparent representation of the design
steps taken. Another advantage of a clear derivation traject is that is easier to
check (by others). Transparency makes it easier to detect errors in the modelling
process.
A further relevant aspect in this context is the comparability of verification
approaches and results. In many research projects different groups work with
different tools on the same case studies. The comparison of the results, however,
is difficult due to the fact that there are no criteria available to compare the
different models. Their design track records provide valuable information that
can help to compare and relate them.

3 How do we get there?

Anyone attempting to obtain methods for transparent model construction for
embedded system verification along the lines sketched above, is immediately
confronted with two facts:

– domain dependency : design methods and concepts depend strongly on par-
ticularities of the application domain at hand. Moreover, different domains,
specifications, system descriptions, and creative elements provide a huge
range of problem settings.

– subjectivity : transparency is a relative and imprecise notion. What consti-
tutes a clear documentation of a modelling step depends very much on the
kind of the step, the problem domain, the level of informality and formality,
and certainly also on personal taste. As clear as possible always means to
restrict to the information necessary and find a good representation for it,
which could be a diagram, an informal explanation, a table a formal map-
ping, etc. However, diagrams with ambiguous semantics can be as difficult
to understand as some formalism that requires too much details.

Under these circumstances, what is needed is a protocol for the construction
of verification models. It must adopted by the (embedded systems) verification
community at large, so that it can be a point of reference for the construc-
tion, evaluation, and comparison of verification models. At the same time, it
can provide the basis for the collection and organisation of succesful models
and modelling patterns as ingredients for a true discipline of verification model
engineering.

Even in the inherent absence of a universal approach to model construction, each
modelling process should be guided by a number of basic considerations. The
guidance is obtained by systematically considering the different aspects:

– scope of modelling ;
– properties of interest ;
– modelling patterns;
– effective computer-aided analysis.

We digress shortly on each of these points.

scope of modelling

It is necessary to make explicit what the model includes and what not. What
part of the system, assumptions about the environment, operating conditions,
etc. The system domain under consideration is also relevant here, as it usually
introduces particular concepts an structuring principles that must be referred
to. It has turned out te be useful to make dictionaries of the domain specific
vocabulary used: it helps to agree, e.g., with system experts, on the interpretation
of the description, to filter the relevant notions, and to have instrumentation for
unambiguous explanations in later modelling steps.

properties of interest

The properties of interest should be stated as explicitly as possible. As indi-
cated earlier, initially we may not know what will be the correct formalisation
of these properties and their preservation principles. Nevertheless, their infor-
mal statement and intention should be stated as completely and unambiguously
as possible. At each modelling step the best possible argumentation should be
put forward on why they can be assumed to be preserved. The definitions and
arguments should become more precise as formalisation progresses in the course
of the model construction.

modelling patterns

Important in any more systematic approach is the identification of characterising
structural elements that occur in a system under verification, and allow the
sharing of modelling patterns in models that have such elements in common.
The concept of solution patterns is central to many branches of engineering; an
excellent elaboration of the idea of design patterns in software engineering by
Micheal Jackson as problem frames can be found in [13].
Characterising structural elements can be representative for a particular applica-
tion area (e.g. network controllers, chemical process control), but not necessarily
so. Very different systems, such as e.g. a steel plant [10] and a multimedia juke

box [15] have been found to share significant similarities, viz. on an abstract level
both are comparable transport scheduling problems with a resource bottleneck.
Some examples of characterising structural elements that play a role in in many
embedded systems are controller polling policies, scheduling mechanisms, (pro-
gramming) languages, operating system and network features such as interrupt
handling, timers, concurrency control, communication architecture, time granu-
larity, etc. at various levels of abstraction depending on the properties of interest.

effective computer-aided analysis.

Modelling and analysis of realistic systems is impossible without proper tool sup-
port. Therefore, it is reasonable to focus on model classes for which efficient tool
support is available. As analysis tools are a very active area of research where
continuous progress is being made, it is important to be open to new devel-
opments. Tool performance is improving dramatically by such devices as better
data structures, sophisticated programming techniques, and parallelisation [4] of
algorithms. New, more powerful approaches such as guided [7, 1] and parametric
model-checking [12, 18] are extending the applicability of tools significantly.

4 Conclusion

We have argued that the construction of verification models for embedded system
is a non-trivial task for which there are no easy solutions. It is our feeling that the
issues that we have raised deserve more more attention from both the community
of researchers and the industrial appliers of formal methods. It is of great interest
that the designs of verification models are made available to be able to evaluate,
compare, improve, collect and use them in a more systematic way, and leave the
current stage of model hacking. To be able to do so a generally agreed protocol
for their documentation as transparent and guided design processes is much
needed. We have outlined some ingredients for such a protocol.

References

1. R. Alur, S. La Torre, and G. Pappas. Optimal paths in weighted timed automata.
In Proc. of the Fourth International Workshop on Hybrid Systems: Computation
and Control, volume 2034 of LNCS. Springer, 2001.

2. T. Ball, S.K. RajamaniJ. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, Robby,
S. Laubacj, and H. Zeng. Bandera: Extracting finite-state models from java source
code. In Proceeding 22nd ICSE, pages 439–448. IEEE Computer Society, 2000.

3. T. Ball and S.K. Rajamani. The SLAM project: debugging system software via
static analysis. In Proceeding 29th POPL, pages 1–3, 2002.

4. G. Behrmann, T. Hune, and F. W. Vaandrager. Distributed timed model checking
- how the search order matters. In Proceedings CAV’2000, volume 1855 of LNCS.
Springer, 2000.

5. E. Brinksma. Verification is experimentation! Journal of Software Tools for Tech-
nology Transfer (STTT), 3(2):107–111, 2001.

6. E. Brinksma, A. Mader, and A. Fehnker. Verification and optimization of a PLC
control schedule. International Journal on Software Tools for Technology Transfer,
4(1):21–53, 2002.

7. K. G. Larsen et al. As cheap as possible: Efficient cost-optimal reachability for
priced timed automata. In Proceedings of CAV’2001, volume 2102 of LNCS.
Springer, 2001.

8. M. Broy et al., editor. Formal System Specifications - The RCP-Memory Specifi-
cation Case Study, volume 1169 of LNCS. Springer, 1996.

9. P. H. Hartel et al. Questions and answers about ten formal methods. In Proceed-
ings of the 4th Int. Workshop on Formal Methods for Industrial Critical Systems,
volume II, pages 179 – 203. ERCIM/CNR, 1999.

10. Ansgar Fehnker. Scheduling a Steel Plant with Timed Automata. In Sixth
International Conference on Real-Time Computing Systems and Applications
(RTCSA’99). IEEE Computer Society Press, 1999.

11. G. Holzmann and M.H. Smith. Software model checking. In Proceeding FORTE
1999, pages 481–497. Kluwer, 1999.

12. T. S. Hune, J. M. T. Romijn, M. I. A. Stoelinga, and F. W. Vaandrager. Linear
parametric model checking of timed automata. In Proceedings of TACAS’2001,
volume 2031 of LNCS, pages 189–203. Springer, 2001.

13. M. Jackson. Problem Frames. ACM Press, Addison-Wesley, 2001.
14. H. Langmaack, E. Boerger, and J. R. Abrial, editors. Formal Methods for Industrial

Applications: Specifying and Programming the Steam Boiler Control, volume 1165
of LNCS. Springer, 1996.

15. M. Lijding, P. Jansen, and S. Mullender. Scheduling in hierarchical multimedia
archives. Submitted.

16. A. Mader, E. Brinksma, H. Wupper, and N. Bauer. Design of a PLC control
program for a batch plant - VHS case study 1. European Journal of Control,
7(4):416–439, 2001.

17. NASA’s Software Program. Formal Methods Specification and Analy-
sis Guidebook for the Verification of Software and Computer Systems.
eis.jpl.nasa.gov/quality/Formal methods/.

18. R. L. Spelberg, R. de Rooij, and H. Toetenel. Experiments with parametric veri-
fication of real-time systems. In Proceedings of the 11th Euromicro Conference on
Real Time Systems, 1999.

From Natural Language Requirements to Executable Models of Software
Components∗

Barrett R. Bryant, Beum-Seuk Lee, Fei Cao, Wei Zhao, Carol C. Burt

Department of Computer and Information Sciences
University of Alabama at Birmingham

Birmingham, AL 35294-1170, U. S. A.
{bryant, leebs, caof, zhaow, cburt }@cis.uab.edu

Rajeev R. Raje, Andrew M. Olson

Department of Computer and Information Science
Indiana University-Purdue University-Indianapolis

Indianapolis, IN 46202, U. S. A.
{rraje, aolson}@cs.iupui.edu

Mikhail Auguston

Department of Computer Science
Naval Postgraduate School

Monterey, CA 93943, U. S. A.
auguston@cs.nps.navy.mil

Abstract

The UniFrame approach to component-based software development assumes that concrete
components are developed from a meta-model, called the Unified Meta-component Model,
according to standardized business domain models. Implicit in this development is that there is a
Platform Independent Model (PIM) which is transformed into a Platform Specific Model (PSM)
under the principles of Model-Driven Architecture. This paper advocates natural language as the
starting point for developing the business domain models and the meta-model and shows how this
natural language may be mapped through the PIM to PSM using a formal system of rules
expressed in Two-Level Grammar. This allows software requirements to be progressed from
business logic to implementation of components and provides sufficient automation that
components may be modified at the model level, or even the natural language requirements level,
as opposed to the code level.

1. Introduction

Model-driven architecture (MDA) [Fran03] is an approach whereby software components are
expressed using models, typically in UML1. The basic approach is to define Platform Independent
Models (PIMs) which express the business logic of components conforming to some domain (e.g.
banking, telecommunications, etc.) and then to derive Platform Specific Models (PSMs) using a
specific component technology (e.g. CORBA2, J2EE3, etc.). Business logic is typically expressed

∗ This material is based upon work supported by, or in part by, the U. S. Army Research Laboratory and the U. S. Army
Research Office under contract/grant number DAAD19-00-1-0350, and by the U. S. Office of Naval Research under
award number N00014-01-1-0746.

1 UML – Unified Modeling Language, http://www.omg.org/uml
2 CORBA – Common Object Request Broker Architecture, http://www.corba.org
3 J2EE – Java 2 Enterprise Edition, http://java.sun.com/j2ee

http://www.omg.org/uml
http://www.corba.org/
http://java.sun.com/j2ee

in natural language before a model is developed. Standardization of business domains and
associated components is being undertaken by the Object Management Group (OMG)4. To
facilitate the MDA approach to be used in practice, automated tools are needed to develop the
business domain specifications from their requirements in natural language as well as to enable
transformation from PIMs into PSMs. Furthermore, if MDA is to be used for constructing
distributed software systems, then the models must consider not only functional aspects of
business logic, but also non-functional aspects, which we call Quality-of-Service (QoS). QoS
attributes are not currently considered in the MDA framework.

UniFrame [Raje01] is an approach for assembling heterogeneous distributed components,
developed according to MDA principles, into a distributed software system with strict QoS
requirements. Components are deployed on a network with an associated requirements
specification, expressed as a Unified Meta-component Model (UMM) [Raje00] in the Two-Level
Grammar (TLG) specification language [Brya02a]. The UMM is integrated with generative
domain models and generative rules for system assembly [Czar00] which may be automatically
translated into an implementation which realizes an integration of components via generation of
glue and wrapper code. Furthermore, the glue/wrapper code is instrumented to enable validation
of the QoS requirements [Raje02].

This paper describes a unified method of expressing business domain models in natural
language, translating these into associated business logic rules for that domain, application of the
business logic rules in building MDA PIMs, and maintaining these rules through development of
PSMs. The complete mapping takes place using a formal system of rules expressed in Two-Level
Grammar. This allows software requirements to be progressed from business logic to
implementation of components and provides sufficient automation that components may be
modified at the model level, or even the natural language requirements level, as opposed to the
code level. Section 2 describes our previous work with Two-Level Grammar and its use as a
specification language. The application of this to Model-Driven Architecture is discussed in
section 3. Finally we conclude in section 4.

2. From Natural Language Requirements to Formal Models

To achieve the conversion from requirements documents to formal models several levels of
conversions are required. First the original requirements written in natural language are refined as
a preprocessing of the actual conversion. This refinement task involves checking spellings,
grammatical errors, consistent use of vocabularies, organizing the sentences into the appropriate
sections, etc. The requirements are expected to be organized in a well-structured way, e.g. as laid
out in [Wils99] or as a collection of use-cases [Jaco99], and be part of an ontological domain
[Lee02b]. Since we are allowing for specification of components that will be deployed in a
distributed environment, Quality-of-Service attributes are also specified [Yang02]. Next the
refined requirements document is expressed in XML format. By using XML to specify the
requirements, XML attributes (meta-data) can be added to the requirements to interpret the role of
each group of the sentences during the conversion. The information of the domain-specific
knowledge is specified in XML. The domain-specific knowledge describes the relationship
between components and other constraints that are presumed in requirements documents or too
implicit to be extracted directly from the original documents [Lee02a].

Then a knowledge base is built from the requirements document in XML using natural
language processing (NLP) [Jura00] to parse the documentation and to store the syntax,

4 http://www.omg.org

http://www.omg.org/

semantics, and pragmatics information. In this phase, the ambiguity is detected and resolved, if
possible. Once the knowledge base is constructed, its content can be queried in NL. Next the
knowledge base is converted, with the information of the domain specific knowledge, into Two
Level Grammar by removing the contextual dependency in the knowledge base [Lee02c]. TLG is
used as an intermediate representation to build a bridge between the informal knowledge base and
the formal specification language representation. The name “two-level” in Two-Level Grammar
comes from the fact that TLG consists of two context-free grammars interacting in a manner such
that their combined computing power is equivalent to that of a Turing machine. Our work has
refined this notion into a set of domain definitions and the set of function definitions operating on
those domains. In order to support object-orientation, TLG domain declarations and associated
functions may be structured into a class hierarchy supporting multiple inheritance.

Finally the TLG code is translated into VDM++, an object-oriented extension of the Vienna
Development Method [Durr92], by data and function mappings. VDM++ is chosen as the target
specification language because VDM++ has many similarities in structure to TLG and also has a
good collection of tools for analysis and code generation. Once the VDM++ representation of the
specification is acquired we can do prototyping of the specification using the VDM++ interpreter.
Also we can convert this into a high level language such as Java or C++ or into a Rational Rose
model in UML [Quat00] using the VDM++ Toolkit [IFAD00]. Using XMI5 format, not only the
class framework but also its detailed functionalities can be specified and translated into OCL
(Object Constraint Language) [Warm99]. The structure of the system is shown in Figure 1.

3. Integration with Model-Driven Architecture

The method of translating requirements in natural language into UML models and/or
executable code described in the previous section may be used to translate business logic into
formal rules. Business domain experts from various application domains may express their
specification in natural language and then our system translates this into Two-Level Grammar
rules via natural language processing (NLP). These rules are encapsulated in a TLG class
hierarchy defining a knowledge base with domain ontology, domain feature models (specifying
the commonality and variability among the product instances in that domain), feature
configuration constraints, feature interdependencies, business operational rules, temporal
concerns, etc. TLG specifies the complete feature model including the structural syntax and
various kinds of semantic concerns [Zhao03]. For example, assume that our application domain is
banking. The business domain will then include a feature model of a bank, which includes
specification of the various attributes and operations a bank will have, such as account creation
and management, deposit, withdraw and balance checking operations on individual accounts, etc.
In related work [Cao03a], we have investigated the construction of Generative Domain Models
[Czar00] using the Generic Modeling Environment [GME01]. This tool may also be extended
with a natural language processor as a front end, i.e., by applying natural language processing to
the business domain model (which is represented in natural language), which can then extract
feature model representation rules and then interpret those rules to generate a graphical feature
diagram.

 Platform Independent Models in MDA are based upon the business domains and associated
logic for the given application. TLG allows these relationships to be expressed via inheritance. If
a software engineer wants to design a server component to be used in bank account management
systems, then he/she should write a natural language requirements specification in the form of a
UMM (Unified Meta-component Model) describing the characteristics of that component. Our

5 XMI - XML Metadata Interchange, http://www.omg.org/technology/documents/formal/xmi.htm

http://www.omg.org/technology/documents/formal/xmi.htm

Knowledge Base

Two Level Grammar

Java

Requirements Document in XML

OCL or UML

Decontextualization

Informal

Formal

NL Requirements Document

KB in XML

Domain Knowledge in XML

Query in NL

Contextual Natural Language Processing

XMI

Functionality-based QoSUse Cases Component-based

Ontology, Formal restrictions

VDM++

Preprocessing

Data and Function translation

Figure 1. Natural Language Requirements Translation into Executable Models

natural language requirements processing system will use the UMM and domain knowledge base
to generate platform independent and platform specific UMM specifications expressed in TLG
(which we will refer to as UMM-PI and UMM-PS, respectively). UMM-PI describes the bulk of
the information needed to progress to component implementation. UMM-PS merely indicates the
technology of choice (e.g. CORBA). These effectively customize the component model by
inheriting from the TLG classes representing the business domain with new functionality added
as desired. In addition to new functionality, we also impose Quality-of-Service expectations for
our components. Both the added functionality and QoS requirements are expressed in TLG so
there is a unified notation for expressing all the needed information about components. The
translation tool described in the previous section may be used to translate UMM-PI into a PIM
represented by a combination of UML and TLG. Note that TLG is needed as an augmentation of
UML to define business logic and other rules that may not be convenient to express in UML
directly.

A Platform Specific Model is an integration of the PIM with technology domain specific

operations (e.g. in CORBA, J2EE, etc.). These technology domain classes also are expressed in
TLG. Each domain contains rules which are specific to that technology, including how to

construct glue/wrapper code for components implemented with that technology and architectural
considerations such as how to distinguish client code from server code. We express PSMs in TLG
as an inheritance from PIM TLG classes and technology domain TLG classes. This means that
PSMs will then contain not only the business-domain specific rules but also the technology-
domain specific rules. The PSM will also maintain the Quality-of-Service characteristics
expressed at the PIM level (a related paper [Burt02] explores the rules for this maintenance in
more detail and [Burt03] explores this issue for the QoS aspect of access control in particular).
Since the model is expressed in TLG, it is executable in the sense that it may be translated into
executable code in a high-level language (e.g. Java). Furthermore, it supports changes at the
model level, or even requirements level if the model is not refined following its derivation from
the requirements, since the code generation itself is automated.

Banking Domain knowledge
(in NL)

Bank server UMM
 (in NL)

NLP
NLP

Banking Domain knowledge
 (in TLG)

Bank server UMMPI

 (in TLG)
Bank server UMMPS

 (in TLG)

Tool support

Model Driven Architecture

 PIM

UML TLG

PSM (in UML and TLG)

Technology Domain
knowledge (in TLG)

Bank server implementation (in Java)

 Feature model, dictionary,
configuration constraints,
business rules ……….

Figure 2. Integration of Two-Level Grammar with Model Driven Architecture

Figure 2 shows the overall view of the model-driven development from natural language

requirements into executable code for the banking example we have just described.

4. Discussion

This paper has described an approach for unifying the ideas of expressing requirements in
natural language, constructing Platform Independent Models for software components, and
implementing the components via Platform Specific Models. The approach is specifically
targeted at the construction of heterogeneous distributed software systems where interoperability
is critical. This interoperability is achieved by the formalization of technology domains with rules
describing how those technologies may be integrated together via the generation of glue and
wrapper code. The processing of software requirements, construction of PIMs and PSMs, and
specification of technology domain rules are all expressed in Two-Level Grammar, thereby
achieving a unification of natural language requirements with the Model Driven Architecture
approach.

For future work, we will investigate aspect-oriented technology [Kicz97] as a mechanism for
specifying crosscutting relationships across components and hence improving reusability of
components and reasoning about a collection of components. Such aspects of components as
functional pre/post conditions and QoS properties crosscut component modules and specification
of these aspects spread across component modules. Preliminary work in defining an aspect-
oriented specification language is very promising [Cao03b].

We are also investigating the applicability of the UniFrame approach to real-time and
embedded systems. Real-time constraints are already one of the Quality-of-Service parameters we
are now validating. However, we expect that our current timing requirements will need
refinement to be applicable in a true real-time setting. We are also looking at applying our
modeling technology to the embedded system domain. Finally we are continuing our work in
model-driven security to assure that security issues are maintained in migration from PIMs to
PSMs.

5. References

[Brya02a] Bryant, B. R. and Lee, B.-S., “Two-Level Grammar as an Object-Oriented
Requirements Specification Language,” Proc. HICSS-35, 35th Hawaii Int. Conf. System Sciences,
2002, http://www.hicss.hawaii.edu/HICSS_35/HICSSpapers/PDFdocuments/STDSL01.pdf.

[Brya02b] Bryant, B. R., et al., “Formal Specification of Generative Component Assembly Using
Two-Level Grammar,” Proc. SEKE 2002, 14th Int. Conf. Software Engineering Knowledge
Engineering, 2002, pp. 209-212.

[Burt02] Burt, C. C., Bryant, B. R., Raje, R. R., Olson, A. M., Auguston, M., “Quality of Service
Issues Related to Transforming Platform Independent Models to Platform Specific Models,”
Proc. EDOC 2002, 6th IEEE Int. Enterprise Distributed Object Computing Conf., 2002, pp. 212-
223.

[Burt03] Burt, C. C., Bryant, B. R., Raje, R. R., Olson, A. M., Auguston, M., “Model Driven
Security: Unification of Authorization Models for Fine-Grain Access Control,” to appear in
Proc. EDOC 2003, 7th IEEE Int. Enterprise Distributed Object Computing Conf.

[Cao03a] Cao, F., Bryant, B. R., Burt, C. C., Huang, Z., Raje, R. R., Olson, A. M., Auguston,
M., “Automating Feature-Oriented Domain Analysis ,” to appear in Proc. SERP 2003, 2003 Int.
Conf. Software Engineering Research and Practice, 2003.

http://www.hicss.hawaii.edu/HICSS_35/HICSSpapers/PDFdocuments/STDSL01.pdf

[Cao03b] Cao, F., Bryant, B. R., Raje, R. R., Auguston, M., Olson, A. M., Burt, C. C.,
“Assembling Components with Aspect-Oriented Modeling/Specification,” to appear in Proc.
WiSME 2003, UML 2003 Workshop Software Model Engineering.

[Czar00] Czarnecki, K., Eisenecker, U. W., Generative Programming: Methods, Tools, and
Applications, Addison-Wesley, 2000.

[Durr92] Dürr, E. H., van Katwijk, J., “VDM++ - A Formal Specification Language for Object-
Oriented Designs,” Proc. TOOLS USA '92, 1992 Technology of Object-Oriented Languages and
Systems USA Conf., 1992, pp. 263-278.

[Fran03] Frankel, D. S., Model Driven Architecture: Applying MDA to Enterprise Computing,
Wiley Publishing, Inc., 2003.

[GME01] GME 2000 User's Manual, Version 2.0. ISIS, Vanderbilt University, 2001.

[IFAD00] IFAD, The VDM++ Toolbox User Manual, http://www.ifad.dk, 2000.

[Jaco99] Jacobson, I., Booch, G., Rumbaugh, J., The Unified Software Development Process,
Addison-Wesley, 1999.

[Jura00] Jurafsky, D., Martin, J., Speech and Language Processing, Prentice-Hall, 2000.

[Kicz97] Kiczales, G., et al., “Aspect-Oriented Programming,” Proc. ECOOP ’97, European
Conf. Object-Oriented Programming, 1997, pp. 220-242.

[Lee02a] Lee, B.-S. and Bryant, B. R., “Contextual Knowledge Representation for Requirements
Documents in Natural Language,” Proc. FLAIRS 2002, 15th Int. Florida AI Research Symp.,
2002, pp. 370-374.

[Lee02b] Lee, B.-S. and Bryant, B. R., “Contextual Processing and DAML for Understanding
Software Requirements Specifications,” Proc. COLING 2002, 19th Int. Conf. Computational
Linguistics, 2002, pp. 516-522.

[Lee02c] Lee, B.-S., Bryant, B. R., “Automation of Software System Development Using Natural
Language Processing and Two-Level Grammar,” Proc. 2002 Monterey Workshop Radical
Innovations Software and Systems Engineering in the Future, 2002, pp. 244-257.

[Quat00] Quatrani, T., Visual Modeling with Rational Rose 2000 and UML, Addison-Wesley,
Reading, MA, 2000.

[Raje00] Raje, R. R., “UMM: Unified Meta-object Model for Open Distributed Systems,” Proc.
ICA3PP, 4th IEEE Int. Conf. Algorithms and Architecture for Parallel Processing, 2000, pp. 454-
465.

[Raje01] Raje, R. R., Auguston, M., Bryant, B. R., Olson, A. M., and Burt, C. C., “A Unified
Approach for the Integration of Distributed Heterogeneous Software Components,” Proc. 2001
Monterey Workshop Engineering Automation for Software Intensive System Integration, 2001,
pp. 109-119.

http://www.ifad.dk/

[Raje02] Raje, R. R., Auguston, M., Bryant, B. R., Olson, A. M., Burt, C. C., “A Quality of
Service-based Framework for Creating Distributed Heterogeneous Software Components,”
Concurrency and Computation: Practice and Experience 14, 12 (2002), 1009-1034.

[Warm99] Warmer, J., Kleppe, A., The Object Constraint Language: Precise Modeling with
UML, Addison-Wesley, 1999.

[Wils99] Wilson, W. M., “Writing Effective Natural Language Requirements Specifications,”
Naval Research Laboratory, 1999.

 [Yang02] Yang, C., Lee, B.-S., Bryant, B. R., Burt, C. C., Raje, R. R., Olson, A. M., Auguston,
M., “Formal Specification of Non-Functional Aspects in Two-Level Grammar,” Proc. UML 2002
Workshop Component-Based Software Engineering and Modeling Non-Functional
Aspects(SIVOES-MONA), 2002, http://www-verimag.imag.fr/SIVOES-MONA/uniframe.pdf.

[Zhao03] Zhao, W., Bryant, B. R., Burt, C. C., Gray, J. G., Raje, R. R., Olson, A. M., Auguston,
M. “A Generative and Model Driven Framework for Automated Software Product Generation,”
Proc. CBSE 6, 6th Workshop Component-Based Software Engineering, 2003,
http://www.csse.monash.edu.au/~hws/cgi-bin/CBSE6/Proceedings/papersfinal/p31.pdf.

http://www-verimag.imag.fr/SIVOES-MONA/uniframe.pdf
http://www.csse.monash.edu.au/~hws/cgi-bin/CBSE6/Proceedings/papersfinal/p31.pdf

Sidestepping verification complexity with supervisory control

Ugo Buy
Dept. of Computer Science

University of Illinois at Chicago
buy@uic.edu

Houshang Darabi
Dept. of Mechanical and Industrial Engineering

University of Illinois at Chicago
hdarabi@uic.edu

September 12, 2003

Abstract

While the goal of verification is to check whether a model of the
system under consideration has a desired property, supervisory
control achieves correctness by adding a so-called supervisor
that prevents the occurrence of incorrect behaviors to the origi-
nal system. Supervisory control methods are appealing because
they can be much more tractable than the corresponding verifi-
cation problems. Here we first examine two supervisory control
algorithms, one for enforcing mutual exclusion properties and
the other for enforcing real-time deadlines on Petri net models
of the controlled system. Next, we argue that use of supervisory
control methods may lead to a simpler and more effective cod-
ing style for embedded software than current practices. Finally,
we highlight research issues that must be addressed in order to
permit widespread application of supervisory control methods.

1 Introduction

Embedded systems often exhibit features typical of con-
current and real-time systems. The automatic verification
of concurrency and timing properties has been studied ex-
tensively for over two decades; however, progress in this
area has been slow. One reason for this state of affairs is
the computational intractability of most verification prob-
lems. Here we suggest that supervisory control can be
a more practical approach than automatic verification for
a broad class of embedded systems. While verification
seeks to determine whether a model of the system under
consideration has a desired property, supervisory control
achieves correctness by adding a so-called supervisor that
inhibits incorrect behaviors to the original system.

The supervisory control methods discussed here are
suitable for embedded systems that can be modeled as
a discrete event system (DES). We are specifically inter-
ested in control systems for discrete manufacturing pro-
cesses, although the same supervisory control techniques
are generally applicable to other DES models as well. A
discrete manufacturing plant consists of machines for pro-

ducing, moving, and assembling parts on a shop floor.
Control systems for such plants must enforce a variety of
correctness properties, including traditional concurrency
and timing properties.

Supervisory control methods for discrete event systems
typically employ finite state automata or Petri nets to
model a DES [4, 13, 14, 17]. Here we focus on Petri-net-
based models for two reasons. First, Petri nets support
computationally-tractable methods for supervisor synthe-
sis. We summarize two such methods below. These meth-
ods use concepts specific to Petri nets, such as P-invariants
and net unfolding. Thus, these methods are not appli-
cable to discrete event systems modeled by finite-state
automata. Existing supervisory control methods for au-
tomata models usually resort to the cross-product of finite-
state automata for supervisor synthesis, which is likely
to lead to state-space explosion. Second, Petri nets are
used extensively for specification and analysis of discrete
manufacturing systems. For instance, the language of Se-
quential Function Charts (SFCs) is a straightforward ex-
tension of Petri nets. SFCs are part of the IEC 61131 stan-
dard for manufacturing control languages; they are sup-
ported by popular commercial products such as Matlab
and RSLogix 5000 [8].

Given a Petri net and a set of correctness properties,
supervisory controlmethods can enforce the given prop-
erties by cleverly disabling net transitions that could lead
to a violation of the properties. Thus, the supervisory con-
troller of a Petri netN is a subnetS that is added toN in
order to enforce the properties of interest. In this case,N
is said to be thecontrolled net[6]. A supervisor is said to
bemaximally permissiveif it does not disable any behav-
ior that satisfies the property of interest while preventing
the occurrence of all behaviors that violate the property.

The first method that we survey uses Petri net P-
invariants to enforce a broad variety of mutual exclusion
constraints of the controlled net [4, 11, 17]. An advantage
of this method, which has been studied extensively in the
past decade, is that its worst-case computational complex-
ity is polynomial in the size of the controlled system. This

complexity is dramatically lower than the complexity of
the corresponding verification problems [16]. An addi-
tional advantage is that the method generates maximally
permissive supervisors [17].

The second mehod uses the concept oftransition la-
tencyto enforce real-time deadlines in time Petri nets [2].
This is a new method; however, it is one of few exist-
ing techniques for enforcing real-time properties in timed
models. In brief, the latency of a transitiont is the lat-
est time whent can be fired while guaranteeing that the
given deadline is met. Transition latencies are computed
by unfolding the ordinary Petri net underlying the time
Petri net that models the controlled system [3, 9, 15]. The
complexity of this method is dominated by the unfolding,
which is at worst exponential in the size of the controlled
net [3]. However, we believe that the average-case com-
plexity will be polynomial.

On the positive side, supervisory control methods not
only provide a tractable alternative to intractable verifica-
tion problems. Supervisory controllers can also lead to a
novel programming paradigm for embedded and real-time
systems. In contrast with current practices, in the new
paradigm a programmer would first code an embedded
system without the burden of building desired correctness
properties (e.g., compliance with mutual exclusion or tim-
ing constraints) directly into the code. The programmer
would then submit this code, along with a control speci-
fication, to asupervisor generator, which would augment
the programmer’s code with a supervisor capable of en-
forcing the properties contained in the specification.

On the negative side, several issues may adversely af-
fect the applicability of supervisory controllers. For in-
stance, events in the controlled system may not beobserv-
ableandcontrollableto the extent needed for supervisor
generation. Informally, an event is said to be observable if
its occurrence can be detected by the supervisor. An event
is controllable if its occurrence can be inhibited by the
supervisor. Moreover, the integration of supervisors for
different properties in order to guarantee correctness with
respect to all properties considered must be explored.

This paper is organized as follows. In Section 2 we
introduce some required definitions. Section 3 summa-
rizes a method for enforcing mutual exclusion properties
of generalized Petri nets. In Section 4, we present our
paradigm for generating deadline-enforcing supervisors
in time Petri nets. In Section 5, we discuss the poten-
tial advantages and disadvantages of supervisory control
methods in software development for embedded systems.

2 Definitions

An ordinary Petri netis a four-tupleN = (P, T, F,M0)
whereP andT are the node sets andF the edges of a

directed bipartite graph, andM0 : P → N is called the
initial markingof N , whereN denotes the set of nonneg-
ative integers. In general, a marking or state ofN assigns
a nonnegative number of tokens to eachp ∈ P .

A transition isenabledwhen all its input places have at
least one token. When an enabled transitiont is fired, a
token is removed from each input place oft and a token
is added to each output place; this gives a new marking
(state). Petri netN = (P, T, F,M0) is safeif M0 : P →
{0, 1}, and if all markings reachable by legal sequences
of transition firings from the initial marking have either 0
or 1 tokens in every place.

A generalizedPetri net associates a positive weightw
with each arcf ∈ F . If f goes from an input transition
t1 to an output placep, thenw tokens are deposited inp
whenevert1 fires. If f goes from input placeq to output
transitiont2, then at leastw tokens are needed inq in order
for t2 to be enabled. In this case, the firing oft2 removesw
tokens fromq.

A time Petri net[1, 10] is a five-tuple(P, T, F,M0, S)
where(P, T, F,M0) is an ordinary Petri net, andS as-
sociates astatic (firing) intervalI(t) = [a, b] with each
transition t, where a and b are rationals in the range
0 ≤ a ≤ b ≤ +∞, with a 6= ∞.

Static intervals change the behavior of a time Petri net
with respect to an ordinary Petri net in the following way.
If transition t with I(t) = [a, b] becomes enabled at
time θ0, then transitiont must fire in the time interval
[θ0 + a, θ0 + b], unless it becomes disabled by the re-
moval of tokens from some input place in the meantime.
Thestatic earliest firing timeof transitiont is a; thestatic
latest firing timeof t is b; thedynamic earliest firing time
of t is θ0 + a; thedynamic latest firing timeof t is θ0 + b;
thedynamic firing intervalof t is [θ0 + a, θ0 + b].

The state of a time Petri net is a triple(M,Θ, I), where
M is the marking of the underlying untimed Petri net,Θ is
the global time, andI is a vector containing the dynamic
firing interval of each transition enabled byM . The ini-
tial state of a time Petri net consists of its initial marking,
time 0, and a vector containing the static firing interval of
each transition enabled by this marking.

A firing schedulefor time Petri netN is a finite se-
quence of ordered pairs(ti, θi) such that transitiont1 is
fireable at timeθ1 in the initial state ofN , and transition
ti is fireable at timeθi from the state reached by starting
in the initial state ofN and firing the transitionstj for
1 ≤ j < i in the schedule at the given times.

3 Enforcing mutual exclusion

This supervisory control method enforces sets of linear
mutual exclusion constraints on the reachable markings of
the controlled netN . For instance, ifN hasm transitions

p1

p6

t1

t6

p2

p7

t2

t7

p3

p8

t3

t8

p4

p9

t4

t9

p5

p10

t5

t10

Figure 1: Example of controlled Petri net for readers and writers example.

andn places, each constraint may take the following form:

n
∑

i=1

li · µi ≤ β (1)

Variable µi represents the marking of placepi, li is an
integer coefficient, andβ is an integer constant [4, 11, 17].

Given controlled netN and a set of linear constraints
similar to inequality (1) above, this supervisory control
method exploits a property of Petri net P-invariants. A P-
invariant is a subsetPI of N ’s place setP such that the
weighted sum of the tokens residing in placespi ∈ PI re-
mains constant in all reachable markings ofN . Inequal-
ity (1) can be transformed into a P-invariant equality by
adding a slack variableµC :

n
∑

i=1

li · µi + µC = β (2)

VariableµC represents the marking of a control placepC

that enforces inequality (1). Consequently, a set ofk lin-
ear inequalities can be enforced by a supervisory con-
troller consisting ofk control places and zero transitions.

The arc subset connectingPC , the set of control places,
toP , the place set in the controlled net, can be easily com-
puted by a simple matrix multiplication. LetD be the
n×m incidence matrix of a Petri netN with m transitions
andn places. Entrydi,j is a positive (negative) integerw
if N contains a weightw arc from transitiontj to placepi

to (frompi to tj). In general, the place invariants ofN are
the integer solutions to the following vector equation:

xT · D = 0T (3)

HerexT is a transposedn-vector representing the integer
coefficients of the net’s place invariants and0T is a trans-
posedm-vector filled with zeros.

Therefore, the P-invariants induced by a set ofk in-
equalities (1) must satisfy the following equation:

[L I] · D = 0 (4)

whereL represents ak × n matrix containing the coef-
ficients of inequality constraints (1),I is the unit matrix

of sizek andD is the incidence matrix of the net consist-
ing of N and the supervisory controller. ClearlyD has
n + k rows, wheren is the number of places inN , andm

columns, one for each transition inN :

D =

[

DN

DC

]

(5)

HereDN is then × m incidence matrix ofN andDC is
thek ×m incidence matrix of the supervisor netS. From
equations (4) and (5), we can findDC as follows:

DC = −L · DN (6)

Thus, the desired supervisory controller can be found
by a simple matrix multiplication involving the incidence
matrix of the controlled net and the coefficients appearing
in the inequality constraints to be enforced. The elements
of DC will be integers, as required, becauseL andDN are
integer matrices. Yamalidou et al showed that the super-
visory controllers generated in this fashion are maximally
permissive [17].

We illustrate the potential benefits of P-invariant-based
supervisory control by applying this method to the readers
and writers problem, a classical example of mutual exclu-
sion. We consider a version with 3 readers and 2 writers.
As usual, multiple readers are allowed in the buffer when
no writer is in the buffer; however, each writer excludes
both other writers and all readers from the buffer. Figure 1
shows a Petri net for a version in which the mutual exclu-
sion constraints are not enforced. Placesp1, p2 andp3 rep-
resent the three readers in the idle state. Whenp6, p7 and
p8 have a token, the three readers are in the buffer. Like-
wise, placesp4 andp5 represent the idle states of the two
writers; a token in placep9 or p10 means that a writer is
in the buffer. To enforce the mutual exclusion constraints
we write the following three inequalities:

p6 + p9 + p10 ≤ 1

p7 + p9 + p10 ≤ 1

p8 + p9 + p10 ≤ 1

The first constraint stipulates that at most one of the first
reader and the two writers can be in the buffer simul-
taneously. The remaining two constraints stipulate the

p1

p6

t1

t6

p2

p7

t2

t7

p3

p8

t3

t8

p4

p9

t4

t9

p5

p10

t5

t10

p11 p12 p13

Figure 2: Petri net for readers and writers example with supervisorycontroller.

same condition for the second and third reader. Figure 2
shows the Petri net for the readers and writers example
with the supervisory controller obtained by formula (6)
above. Placesp11, p12, p13, and their incident arcs are
the supervisor. In particular, placep11 enforces the mu-
tual exclusion between the first reader and the two writers.
Placesp12 andp13 play a similar role for the second and
third reader. The mutual exclusion among writers follows
from each of the three constraints above.

The significance of this method is that it can enforce
mutual exclusion constraints of a Petri net model in time
polynomial in the size of the controlled net and the su-
pervisor net. Therefore, the overall complexity will be
polynomial whenever a mutual exclusion problem can be
translated into a linear system containing a number of in-
equalities polynomial in the size of the controlled net.
This performance is in sharp contrast with the verifica-
tion of mutual exclusion properties, for which no general-
purpose polynomial-time algorithm is known. When it
is applicable, the approach based on supervisory con-
trol is likely to be vastly more scalable than verifica-
tion. This method has also been extended to the case
of Petri nets with unobservable and uncontrollable tran-
sitions [11]. Yamalidou et al defined other extensions in-
cluding the case of “greater-than” constraints, constraints
expressed as logical formulas, and constraints involving
the firing vectors of the controlled net [17]. Finally, Ior-
dache et al defined a method for enforcing net liveness
(e.g., freedom from deadlock) in the controlled net [7].

4 Enforcing real-time deadlines

We report preliminary results on a method for enforcing
real-time deadlines in time Petri nets [10]. Given a time
Petri netN = (P, T, F,M0, S), a net transitiontD, and
a deadlineλ, our method seeks to generate a supervisory
controller that forcestD to fire no more thanλ time units

since the latest of the previous firing oftD and the be-
ginning of a firing sequence. Throughout this section we
assume thatN is a safe and live time Petri net.

Our paradigm for generating deadline-enforcing super-
visory controllers consists of three steps. First, we com-
pute a so-calledtransition latencyfor each transitiont in
N . Given a time Petri netN = (P, T, F,M0, S), the
latencyl(t) of a transitiont ∈ T is the maximum delay
between any firing oft and the next firing oftD, along fir-
ing schedules permitted by the supervisory controller for
netN . Thus, the latency oft is an upper bound on the
time required fortD to fire aftert fires.

Second, we define a so-calledclock netC, a time Petri
net whose places correspond to transition latencies iden-
tified earlier. A place in a clock net is used to disable dy-
namically transitions whose firing may preventtD from
meetingλ. Of course, a transitiont should be allowed to
fire only whent’s latency is no greater than the time left
until the deadline on the firing oftD expires.

Third, we synthesize a supervisory controllerS based
on netsN andC. ControllerS disables transitions inN
based on the marking of places inC. In particular,S
dynamically disables transitions whose latency is greater
than the time left until the deadline on the firing oftD.

Consider, for instance, the time Petri net appearing in
Figure 3. Suppose that target transitiont7 must be fired
within 51 time units from the initial state. In order for
t7 to fire, transitiont2 must fire first. Sincet2 is in con-
flict with t1, a supervisory controller must disablet1 some
time before the deadline expires. In this case, we can set
the latency oft2 to 25 time units, the sum of the static
latest firing delays oft3, t5, andt7. After t1 fires, tran-
sitions t3, t4, t6, t2, t3, t5 andt7 must be fired in order
for the deadline to be met. The sum of their static latest
firing times is 48 time units. Thus, it is safe to firet1 if at
least 48 time units remain untilt7 must be fired.

t1 [0,3]

t3 [6,12]

p6

p7

p1

p2

p4

p8 p9

p3

t2 [0,3]

t4 [1,6] t5 [2,7]

t6 [0,2] t7 [3,6]

p5

Figure 3: Example of a time Petri net.

4.1 Computing transition latencies

We believe that various approaches can be followed when
defining the latency ofN transitions. Here we discuss a
technique callednet unfolding[3, 5, 9, 15]. We choose this
technique for two reasons. First, net unfolding explicitly
captures the causal relationship on transition firings for
the Petri net under consideration. Thus, by unfolding net
N we can define reasonably tight latency values. Second,
unfoldingN allows us to identifyN transitions that need
not be disabled in order for deadlineλ to be met. In gen-
eral,λ can be enforced by disabling only a small subset
of transitions in the controlled net. For instance, it is suf-
ficient to disable transitiont1 in a timely manner in order
to force transitiont7 to fire in Figure 3. This fact can lead
to reductions in the size of subnetsC andS below.

We require the following definitions. Consider nodesx

andy in an (untimed) ordinary Petri net. Nodex precedes
y, denoted byx < y if there is a directed path fromx to
y in the Petri net. Nodesx andy arein conflict, denoted
by x#y, if the Petri net contains two distinct paths origi-
nating at the same placep that diverge immediately afterp
and lead tox andy. Whenx#x holds, nodex is said to be
in self-conflict. Nodesx andy areconcurrentif they are
not in conflict with each other and neither node precedes
the other.

An occurrence netis an unmarked ordinary Petri net
O = (PO, TO, FO) subject to these conditions [3]:

1. ∀p ∈ PO, p has at most one input arc.

t1

t3 p
6

p7

p1
p2

p4

p8 p9

p3

t2

t4 t5

t6 t7

p5 t’3

p’7

p’4

p’1 p’2 p’’2
p’3

Figure 4: Unfolding of the Petri net appearing in Figure 3.

2. O is acyclic.

3. Each nodex ∈ PO∪TO is finitely preceded, meaning
that the number of nodesy ∈ PO ∪ TO such that
y < x is finite.

4. No nodex ∈ PO ∪ TO is in self-conflict.

Given a controlled netN , considerM, the ordinary
Petri net underlyingN , so thatM = (P, T, F,M0).
An unfoldingof M is a marked, labeled occurrence net
U = (PU , TU , FU ,M0U , lU), wherelU is a function map-
ping each nodex ∈ PU ∪ TU to a nodelU (x) in M. In
brief, each element ofU is an “occurrence” of its image
in M. The formal definition of a net unfolding can be
found elsewhere [3] along with algorithms for generating
unfoldings of ordinary Petri nets. Here we simply report
an example of a net unfolding.

Figure 4 shows an unfolding of the ordinary Petri net
underlying the time Petri net in Figure 3. Placesp1,
p2, and p3, which are initially marked, are mapped to
the homonymous places inN . Transitionst1 andt2 are
mapped similarly. However, placep4 in N is in self-
conflict because it can be reached fromp2 either through
transitiont1 or t2. Thus, this place is represented by two
places,p4 andp′

4
, in Figure 4. Transitiont3 and placep7

are also split into two nodes for the same reason. Finally,
placesp′

1
, p′

2
, p′′

2
, andp′

3
, represent the so-calledcut-off

points of the unfolding. When these places are marked,
the net returns to its initial state.

We define transition latencies from the unfolding of the
untimed net underlying controlled netN . First, for each
transitiontu ∈ TU , the transition set of unfoldingU , we
associate the static latest firing time oflU (tu), the image
of tu in N , with tu. Second, we examine backward paths
from each occurrence oftD in U to the initial places of
U and forward paths fromtD occurrences to the cut-off
places ofU . We add the static latest firing times of the
transitions that we find along these paths and we associate
the partial sums with such transitions. Definec to be the
longest backward path from atD occurrence inU to the
initial places ofU . Defined to be the longest forward path
from atD occurrence to the cut-off places ofU . Third, we
consider paths from initial places to the cut-off places that
do not includeU transitions mapping intotD. These paths
may correspond to cyclic behaviors of netN in which
tD is not fired (e.g., iftD is disabled along these paths).
We addc to the combined delays along such paths. The
resulting values yield the latencies forN transitions.

In the example appearing in Figure 4, we associate de-
lays as follows:t1 → 3, t2 → 3, t3 → 12, t4 → 6,
t5 → 7, t6 → 2, andt7 → 6 during the first phase of the
algorithm. Next, we consider paths originating at target
transitiont7. Sincet7 feeds directly into cut-off placesp′′

2

andp′
3
, we discard paths toward cut-off places. Backward

paths fromt7 to initial placesp2 andp3 yield the follow-
ing latencies:t7 → 0, t5 → 6, t3 → 13, andt2 → 25.
Finally, we consider the cycle involving firing sequence
σ = t1, t3, t4, t6. The sum of the static latest firing delays
alongσ is 23. We add the latency of transitiont2 and the
latest firing delay oft2 to the delays computed on the cy-
cle. This yields the following latency values:t1 → 48,
t3 → 36, t4 → 30, t6 → 28. Transitiont3 is seemingly
given two different latency values because this transition
is in self-conflict. When this happens, we define the la-
tency to be the least value.

4.2 Clock nets

We compute a clock netC = (PC , TC , FC ,M0C , SC) for
a controlled netN = (P, T, F,M0, S) based on the tran-
sition latencies and choice points previously defined with
net unfolding. We specifically consider a subsetTH ⊆ T

of N transitions that are involved in choice points (i.e.,
because they share at least one input place).

First, we add toPC one place for each distinct element
in the set of latency valuesL = {v | ∃t ∈ TH andv =
l(t)}. Given a latency valuev, we denote the place corre-
sponding tov by pv. In addition,PC contains a placepλ

corresponding to deadlineλ and a placepD for resetting
the clock net after the firing oftD. Figure 5 shows the

clock net for the controlled net appearing in Figure 3.
Here setTH consists of transitionst1 andt2; placesp25

andp48 map the latencies of these transitions in the clock
subnet. Placep51 models deadlineλ.

We define the transition setTC , static delay intervals
SC , and flow relationFC of C as follows. First, we insert
a transition between pairs of clock net places with consec-
utive index values. The static delay of each such transition
is the difference between the index values of its input and
output place. In Figure 5 this yields transitionst8 andt9
with delays of 3 and 23. Next, we define an arc fromtD
to pD, and we add a group of|PC | − 1 zero-delay transi-
tions toTC , one transition for each placepk ∈ PC , except
for pD. A token in pD enables one of these transitions
immediately aftertD fires. The transition removes the to-
ken frompD and from one of the other places inPC ; it
deposits a token inpλ and in a suitable number ofS con-
trol places described below. This completes the resetting
of C andS. In Figure 5, transitionst10, t11, andt12 reset
the clock subnet and supervisor aftert7 fires. Additional
details can be found elsewhere [2].

4.3 Supervisory controllers

Supervisory controllers enforce deadlineλ on the firing
of transitiontD in netN = (P, T, F,M0, S) with clock
netC = (PC , TC , FC ,M0C , SC). Let PV = PC − {pD}.
The supervisory control constraint is expressed by:

Disablet ∈ TH if pv ∈ PV marked withl(t) = v (7)

We note that by construction, for any marking of clock
netC, all places inPV combined will always contain ex-
actly one token. UnlesstD is fired, the token inPV will
always move toward places with lower index values. Con-
straint (7) above states that a transitiont ∈ N is disabled
whenever the token inPV moves to a placepv whose in-
dexv is equal tot’s latencyl(t). Therefore, control con-
straint (7) above will disable all transitions that might de-
lay the firing oftD by more thanv units, the index of the
marked state ofC. Moreover, oncet is disabled,t is not al-
lowed to fire again until after target transitiontD has been
fired. As a result, all the transitions that may result in the
violation of deadlineλ on the firing oftD are disabled.

We implement constraint (7) above by defining two
places,q1 andq2, and one transitionr for eacht ∈ TH .
The rules for defining arcs incident onq1, q2 and r are
discussed elsewhere [2].

Figure 5 shows the supervisory controller for the net
in Figure 3. This controller disables transitionst1 andt2
when transitionst8 andt9 are fired. For instance, whent8
fires placec3 becomes marked, which enables transition
t13. The firing oft13 causes the removal of the token from
placec1; this action disables transitiont1. Transitiont9

t1 [0,3]: 48

t3 [6,12]: 13
p6

p
7

p1

p2

p
4

p8 p9

p3

t2 [0,3]: 25

t4 [1,6]: 30
t5 [2,7]: 6

t6 [0,2]: 28 t7 [3,6]: 0

p51

p5

p48

p25

t8 [3,3]

t9 [23,23]

pD

t11

t12

t10c1 c2

c3 c4

t13 t14[0,0] [0,0]

Figure 5: Supervisory controller and clock net of time Petri net appearing in Figure 3.

similarly disables transitiont2. Additional details can be
found elsewhere [2].

5 Assessment

The two methods discussed earlier indicate that supervi-
sory control may have significant benefits on the devel-
opment of software for concurrent and real-time systems.
The most significant advantage of supervisory control is
reduced computational complexity with respect to the cor-
responding verification algorithms. For instance, in Sec-
tion 3 we saw that a broad variety of mutual exclusion
constraints can be enforced in time polynomial in the size
of the system under consideration. This is in sharp con-
trast to the verification of mutual exclusion properties,
which is computationally intractable. Although we lack
empirical data on the real-time method discussed in Sec-
tion 4, we believe that on average this method will also be
tractable. The verification of real-time systems is gener-
ally considered even more complex than the case of un-
timed concurrent systems. When they are applicable, su-
pervisory control methods may provide greater help to de-
velopers of embedded systems than existing techniques.

However, the full potential of supervisory control in
software development is more far-reaching than just guar-
anteeing that certain correctness properties are met. The
availability of supervisory control tools could free pro-
grammers from the need to build compliance with correct-
ness properties directly into their code. The version of the
readers and writers example shown in Figure 1 is a case in

point. This version could be obtained by translation from
software that was deliberately written without paying at-
tention to its mutual exclusion constraints. However, a
supervisory controller can subsequently enforce these and
other properties that are expressed as linear equalities and
inequalities on net markings and firing vectors.

Thus, the use of supervisory control methods could lead
a new programming paradigm for concurrent and real-
time systems. In this paradigm, a programmer would
first write a version of the program without being con-
cerned about complying with mutual exclusion and real-
time properties. Next, the programmer would submit this
program along with a control specification to a supervi-
sory control tool. The tool would then translate the pro-
gram into a Petri-net model and generate suitable super-
visors. Finally, the tool would add code that enforces the
control specification to the original code.

While supervisory control methods hold considerable
promise for the development of concurrent and real-time
systems, the widespread application of these methods also
faces formidable obstacles. Petri net transitions may not
be observable and/or controllable to the extent needed for
supervisor definition. This could happen, for instance, in
wireless sensor networks, special kinds of embedded sys-
tems [12]. These networks often lack the ability for a node
(i.e., an embedded system equipped with sensors) to know
instantaneously and control events in different nodes.

Additional obstacles may arise when attempting to in-
tegrate multiple supervisory control methods in order to
enforce different properties. For instance, it is currently

unclear whether the two methods that we discussed ear-
lier can be effectively combined in an effort to guarantee
simultaneously mutual exclusionandreal-time properties.

Liveness properties, such as freedom from deadlock,
pose additional challenges to the application of supervi-
sory control methods. Although freedom from deadlock
is an intractable verification problem, this is considered
the “easiest” property to check through verification. The
same does not hold in the world of supervisory control;
the definition of supervisors for enforcing Petri net live-
ness is much more challenging than, say, enforcing mutual
exclusion properties expressed as linear constraints [7].A
method by He and Lemmon, who use net unfoldings to
enforce liveness, seems especially promising [5].

To date, several research issues must be investigated
in order to answer some of the questions regarding the
applicability of supervisory control to software develop-
ment. First, additional supervisory control methods must
be defined for enforcing different properties. In the case
of the readers and writers example, it is quite conceiv-
able to define versions in which the readers or the writers
have priority or in which read and write requests should
be handled in FIFO order. Supervisory control strategies
for these kinds of specifications are generally not avail-
able yet. Second, we must collect empirical data on the
applicability of supervisory control in software develop-
ment. At the very least, we should find out how often
mutual exclusion constraints can be expressed through a
small number of linear constraints in the form (1). The
complexity of net unfolding when applied to real-world
software problems must also be assessed empirically be-
cause this techique is crucial both to liveness-enforcing
and deadline-enforcing supervisors.

6 Conclusions

We briefly summarized two supervisory control methods
for concurrent and real-time systems. Although these
methods have not reached the level of maturity needed
to permit the creation of tools for software development,
they hold considerable promise because they are generally
more tractable than the corresponding verification algo-
rithms. For these reasons, we should investigate research
directions that may lead to widespread applications of su-
pervisory control in software development for concurrent
and real-time systems, such as embedded systems.

References

[1] B. Berthomieu and M. Diaz. Modeling and verification of
time dependent systems using time Petri nets.IEEE Trans.
Softw. Eng., 17(3):259–273, Mar. 1991.

[2] U. Buy and H. Darabi. Deadline-enforcing supervisory
control for time Petri nets. InCESA’2003 – IMACS Multi-
conference on Computational Engineering in Systems Ap-
plications, Lille, France, July 2003. Available on CD-
ROM.

[3] J. Esparza, S. R̈omer, and W. Vogler. An improvement
of McMillan’s unfolding algorithm. Formal Methods in
System Design, 20(3):285–310, May 2002.

[4] A. Giua, F. DiCesare, and M. Silva. Generalized mutual
exclusion constraints for nets with uncontrollable transi-
tions. InProceedings IEEE Int. Conf. on Systems, Man,
and Cybernetics, pages 974–979, Chicago, Illinois, Oct.
1992.

[5] K. X. He and M. D. Lemmon. Liveness-enforcing su-
pervision of bounded ordinary Petri nets using partial or-
der methods.IEEE Transactions on Automatic Control,
47(7):1042–1055, July 2002.

[6] L. E. Holloway, B. H. Krogh, and A. Giua. A survey of
Petri net methods for controlled discrete event systems.
Discrete Event Dynamic Systems: Theory and Applica-
tions, 7:151–190, Apr. 1997.

[7] M. V. Iordache, J. O. Moody, and P. J. Antsaklis. Synthesis
of deadlock prevention supervisors using Petri nets.IEEE
Transactions on Robotics and Automation, 18(1):59–68,
2002.

[8] R. W. Lewis. Programming industrial control systems us-
ing IEC 1131-3. Technical report, The Institution of Elec-
trical Engineers, 1998.

[9] K. L. McMillan. A technique of state space search based
on unfolding.Formal Methods in System Design, 6(1):45–
65, Jan. 1995.

[10] P. M. Merlin and D. J. Farber. Recoverability of com-
munication protocols—implications of a theoretical study.
IEEE Trans. Communications, COM-24(9):1036–1043,
Sept. 1976.

[11] J. O. Moody and P. J. Antsaklis. Petri net supervisors
for DES with uncontrollable and unobservable transitions.
IEEE Transactions on Automatic Control, 45(3):462–476,
Mar. 2000.

[12] G. J. Pottie and W. J. Kaiser. Wireless integrated network
sensors.Commun. ACM, 43(5):51–58, May 2000.

[13] P. J. Ramadge and W. M. Wonham. Supervisory control
of a class of discrete event processes.SIAM Journal of
Control and Optimization, 25(1):206–230, 1987.

[14] A. S. Sathaye and B. H. Krogh. Supervisor synthesis for
real-time discrete event systems.Discrete Event Dynamic
Systems: Theory and Applications, 8, 1998.

[15] A. Semenov and A. Yakovlev. Verification of asyn-
choronous circuits using time Petri net unfolding. In
Proceedings of the 33rd Design Automation Conference
(DAC96), pages 59–62, Las Vegas, Nevada, June 1996.

[16] R. N. Taylor. Complexity of analyzing the synchroniza-
tion structure of concurrent programs.Acta Inf., 19:57–84,
1983.

[17] K. Yamalidou, J. Moody, M. Lemmon, and P. Antsaklis.
Feedback control of Petri nets based on place invariants.
Automatica, 32(1):15–28, 1996.

Abstract – Current approaches to developing complex
embedded systems, particularly those with constraints in
addition to their functional requirements, suffer
significant limitations when moving from system
requirements to implementation. Chief among these
limitations is the inability of current development
approaches to achieve an appropriate match between
the sets of abstractions in their programming models
and the inherent structure of concerns that appears in
modern embedded systems.

While emerging techniques such as model-integrated
computing, component middleware and aspect-oriented
programming address parts of this problem, how they
are to be combined for greatest effect is still an open
research problem. This paper outlines the problem of
requirements-driven integration of multiple embedded
system properties within implementation software, and
offers an architectural vision for system software in
support of requirements-driven development of
embedded systems.

Keywords – distributed real-time and embedded
systems, generative programming

A. INTRODUCTION

Complex large-scale systems, especially those with

constraints on timeliness, footprint, or other properties
outside the functional semantics of the application, are
posing an increasing challenge to current approaches to
software and system engineering. Specifically,
developing correct distributed real-time and embedded
(DRE) systems requires programmers to address
constraints in two distinct semantic dimensions:

• Functional constraints – algorithmic
correctness, type safety, computability and
similar concerns related to computations and
their results.

1 This work was supported in part by the DARPA PCES

program, under contract F33615-00-C-3048 to Boeing and
contract F33615-03-C-4110 to Washington University.

• Para-functional [1] constraints – end-to-end
timeliness, recovery from faults, memory
footprint, security, concurrency, and similar
concerns that fall outside the functional
semantics of the system, but are nonetheless
essential to its correct operation.

Not only do these dimensions invite different styles of
programming for configuring their semantics correctly,
but they often interact in ways that can cause them
interfere with each other. This paper considers the
fundamental problem of interference in systems
programming, examines several existing approaches to
address that problem, and proposes a solution
architecture that both synthesizes and extends current
approaches.

This paper is structured as follows. Section B presents
the problem of interference, which is the motivation for
this work. Section C examines the challenge of
supporting appropriate abstractions in the face of an
overall constraint structure that resists decomposition
along a single dimension of abstraction. Section D
examines current approaches to addressing interference
between system aspects, and notes key related research
problems that remain open today. To address the open
problems described in Section D, Section E presents an
integrated architectural vision that combines and
augments the existing approaches of model-integrated
computing, component middleware, and middleware
aspect frameworks. Finally, Section F presents
conclusions and describes future work.

B. MOTIVATION: INTERFERENCE

This section describes the problem of interference

between system aspects, and gives examples of
interference within the context of concurrent distributed
component middleware. Section B.a first describes a
simple motivating example in which such interference
can occur. Section B.b explains in detail how functional
and para-functional system aspects can interfere in the
example given in Section B.a. Section B.c then discusses
the more general subject of interference, and the need
for further research in that area.

Christopher D. Gill

A Vision for Integration of Embedded System Properties
 Via a Model-Component-Aspect System Architecture1

Department of Computer Science and Engineering
Washington University, St.Louis

cdgill@cse.wustl.edu

a. A Motivating Example

Consider the class of systems consisting of interacting

application components distributed across multiple
embedded endsystems. In this paper the term
“component” is used in its formal technical sense, i.e.,
consisting of objects implementing specified component
interfaces, e.g., as defined by the CORBA Component
Model (CCM) [2] or J2EE [3] standards.

For these kinds of embedded applications, standards-
based middleware such as CCM or J2EE allows
application-specific components to be plugged into more
general middleware frameworks, allowing application-
specific configuration and re-use of independently
developed software components. Examples of
applications that can benefit from this approach include
industrial control, avionics mission computing, and
automotive information systems.

2 threads

pending upcalls

ORB 1

wait
strategy

1 thread

pending upcalls

ORB 2

wait
strategy

1 thread

pending upcalls

ORB 3

wait
strategy

Component A Component B

Component C

Component D

facet s

facet t

facet u

facet v facet w

facet x

facet y

facet z

2 threads

pending upcalls

ORB 1

wait
strategy

1 thread

pending upcalls

ORB 2

wait
strategy

1 thread

pending upcalls

ORB 3

wait
strategy

Component A Component B

Component C

Component D

facet s

facet t

facet u

facet v facet w

facet x

facet y

facet z

Figure 1: Deployment of Application Components

Figure 1 illustrates many key features of component-
oriented embedded systems, including:

• Components – compose interfaces with objects
that implement them;

• Component Interfaces – formally specify
interactions between components:

o Facets – advertise method invocation
entry points for a component,

o Receptacles – advertise points where
invocations are made into other
components,

o Event sinks – advertise event push entry
points for a component, and

o Event sources – advertise event pushes
into other components;

• Supporting Infrastructure – enables interactions
between components, including:

o Distributed communication – e.g.,
between components on different object
request brokers (ORBs), and

o Local concurrency – e.g., the number of
threads available and the upcall
concurrency policies in an ORB.

Use of component middleware technologies can
significantly reduce the complexity of packaging,
assembling, and deploying application components, but
unfortunately are mainly focused on the functional
properties of the components, i.e., their implementation
and interfaces but not how quality of service (QoS)
requirements are communicated to or enforced in the
underlying middleware. For embedded systems with
additional para-functional QoS constraints such as
timeliness and distribution, QoS-aware component
models that are aware of and provide programming and
configuration mechanisms to address these constraints
are needed [4].

However, even with the support of QoS-aware
middleware, the process of programming and
configuring both functional and para-functional
properties remains tedious and error-prone. The
fundamental problem is that functional and para-
functional properties can interfere in subtle and complex
ways that are often insufficiently represented, checked,
or corrected in the overall system programming model.
We now consider an example of interference between
the inherent functional properties of the example
application shown in Figure 1, and induced para-
functional properties resulting from its deployment.

b. Interference Leading to Deadlock

For the example application shown in Figure 1,

functional properties of interest are captured by a graph
of invocations of facets between components.
Independent of how the components are deployed on the
available endsystems, the invocation graph encodes a
causal ordering of the component entry points. The
para-functional properties of interest in this example are
captured by the grouping of components onto ORBs, the
number of threads on each ORB, and the strategy used
by each thread to wait on connections.

As we have examined in other work, using a
non-blocking wait-on-connection strategy has
implications for feasible schedulability of invocations,
while using a blocking strategy runs a risk of deadlock
[5]. We have also examined the ability of adapting
rates of invocation at different points in the component
packaging, assembly, and deployment lifecycle, to
support resource utilization optimizations, i.e., to
achieve feasibility or to reduce pessimism [6].

To illustrate the more general problem of
interference, we focus here on the problem of deadlock,
without reference to rates, priorities, or schedulability.
Specifically, we assume that an ORB thread blocks on a
connection when it invokes a facet on a component on
another ORB. Note that when a facet is invoked on
another component in the same ORB, or even a facet
within the same component, the thread of execution
moves from the invoking method to the invoked method,
crossing the component interface. In contrast, when a
method invokes a facet on a component on another
ORB, two relevant concurrency events occur:

• The thread in the method making the invocation
blocks until the invocation completes.

• A thread in the ORB hosting the invoked facet is
bound to the invocation.

We note that for a synchronous two-way invocation,
completion does not occur until the reply message from
the invoked method has been received; for an
asynchronous one-way or AMI invocation, completion
of the invocation occurs after the request message has
been sent and any callback handlers or other post-
processing mechanisms have been registered locally.
With two way invocations, a case of interference
between functional and para-functional properties
emerges from this example:

• To process invocations originating from another
ORB, a thread from the available ORB threads must
be bound to that invocation upcall.

• If a two-way invocation of a facet on another ORB
is made within the original upcall, or transitively
within another method invoked within the scope of
that upcall, the bound thread blocks until the remote
invocation completes.

• If all threads in an ORB are blocked, no further
upcalls can occur until at least one of the threads
completes its original upcall and is then unbound.

• Therefore, any path in the invocation graph that
crosses into a particular ORB more times than the
number of threads in that ORB, will lead to
deadlock.

Figure 2 illustrates a scenario that explores cases
where deadlock does or does not occur, in a hypothetical
invocation graph based on the example in Figure 1:

1. An invocation of facet s arrives at ORB 1, and
binds a thread.

2. The method implementing facet s makes a
blocking invocation of facet u, which binds the
thread in ORB 2.

3. The method implementing facet u invokes facet v
in the same thread.

4. The method implementing facet u makes a
blocking invocation of facet t, which binds the
second thread of ORB 1, but then returns without
making further invocations which in turn unbinds
the second thread in ORB 1 and unblocks the
thread in ORB 2. The method implementing facet
u then also returns without making further
invocations, which unbinds the thread in ORB 2
and unblocks the first thread in ORB 1.

5. The method implementing facet s makes a
blocking invocation of facet x, which binds the
thread in ORB 3.

6. The method implementing facet x makes a
blocking invocation of facet w, which binds a
thread in ORB 2 – note that the same thread was
bound earlier to the invocation of facet u, but was
unbound upon return of the method implementing
facet u.

7. The method implementing facet w makes a
blocking invocation of facet y, but the only thread
in ORB 3 is already blocked on the invocation
from the method implementing facet x, to facet w.
At this point, ORB 3 is thus deadlocked, as is the
entire invocation chain through facets s, x, and w.

z

y

xt

s

u v

w

Component A

Component B

Component C

Component D

ORB 1

ORB 2

ORB 3

2

1

3

7

6

4

5 zz

yy

xxtt

ss

uu vv

ww

Component A

Component B

Component C

Component D

ORB 1

ORB 2

ORB 3

2

1

3

7

6

4

5

Figure 2: Interference Resulting in Deadlock

c. Toward more Complete Models of Interference

Numerous hazards other than deadlock must be

avoided in complex embedded systems, such as failures
of end-to-end timeliness, hardware or software faults, or
even adversarial intrusion and compromise of the

system. For component-based real-time systems,
temporal patterns of facet invocations and execution
times of implementing methods must be modeled. The
behavior of the supporting middleware must again be
considered, e.g., preemption policies for access to
resources and the overhead from context switches and
other “hidden” behaviors of the underlying middleware
and operating system.

Interference due to fault-tolerance mechanisms and
policies must be modeled, and measures to mitigate or
repair faults must be modeled and their benefits must be
balanced against their impact on other constraints, such
as timeliness. For example, replication of data and
invocation messages consumes computation and
communication resources, but leads to more timely
recovery in the event a fault occurs. A similar kind of
interference between security measures and other
properties is illustrated by the practice of adding
watermarks to application data: computation and storage
resources are consumed to increase confidence in the
authenticity of information managed by the system.

C. THE PROBLEM OF APPROPRIATE ABSTRACTION

A fundamental problem in modeling constraints in

multiple dimensions such as functionality, timeliness,
fault-tolerance, and security, is to provide appropriately
scaled abstractions within the programming models used
to develop and configure the system. Problems can arise
both from excessive abstraction and from insufficient
abstraction.

Excessive abstraction can result in mismatches with
crucial constraints of an application. For example, if the
number of threads provided by an ORB is not
configurable in the programming model, hazards such as
deadlock and deadline failure may result. The scenario
examined in Section B.b illustrates this problem, where
an application whose functional properties result in a
invocation chain that crosses into an ORB more times
than the number of threads it has available to perform
upcalls will result in deadlock.

Changing the policy for waiting on connections to be
non-blocking can avoid deadlock, but may have
implications for deadline feasibility due to increased
blocking times [5], and may also increase overhead by
making more calls to operating system functions such as
select(). Simply increasing the default number of
threads in each ORB would alleviate the deadlock
problem for some applications, but one can envision that
some applications might still exhaust a given fixed limit
on the upcalls a single ORB may perform due to cyclic
or recursive structure in their invocation graphs.
Furthermore, increasing the number of threads may

increase operating system and middleware overheads,
resulting in significant performance degradation.

Insufficient abstraction leads to another kind of
problem, in which the details needed to configure a
system are exposed in the programming model, but the
space of configurations is unmanageably large, and the
job of producing correct systems is thus made tedious
and error-prone. This kind of accidental complexity has
been addressed by frameworks like the ADAPTIVE
Communication Environment (ACE) [7], which capture
key higher level abstractions that are obfuscated by
lower-level interfaces like POSIX [8].

The heterogeneity of concerns in real-world systems
makes it implausible that any single configuration of
properties in the supporting middleware and operating
systems, when composed with the functional semantics
of each application, will meet the para-functional
constraints of every system. A key part of this dilemma
has been called “ the tyranny of the dominant
decomposition” [9], in which a particular style of
abstraction is appropriate for most of a system of
constraints, but does not address others completely.

For example, ACE encodes an object-oriented
decomposition of the configuration space inherent in
POSIX and similar operating system interfaces such as
Win32. ACE selectively uncovers certain low-level
details such as file handles, which need to be shared
among objects or passed to operating system interfaces,
avoiding problems of either too much or too little
encapsulation.

Even so, limitations of a purely object-oriented style
of abstraction begin to appear when composing multiple
ACE objects to create higher-level middleware
subsystems such as dynamic scheduling event
dispatchers [10]. In particular, information needed by
different scheduling strategies may vary significantly,
and using inheritance polymorphism to associate
combinations of scheduling parameters with the events
to be dispatched would lead to an explosion in the
number of classes needed and result in an increase in
the complexity of programming the infrastructure.
Instead, applying a generic programming [11] style of
abstraction to complement the predominantly object-
oriented structure of ACE allows arbitrary scheduling
parameter types to be composed with events, while
preserving type safety of QoS parameters with respect to
the scheduling heuristics used in the dispatcher.

 Objects, distributed objects, components, and
generics all treat a single type and its interfaces as the
fundamental unit of encapsulation, achieving a better fit
between system requirements and the abstractions
available to satisfy those requirements. In real-world
systems, however, key concerns still cross-cut such

single-type encapsulation boundaries leading to
additional complexity in meeting their associated
requirements.

The Aspect-Oriented Programming (AOP) [12]
paradigm encapsulates sets of related points that cross-
cut other abstraction boundaries, and thus serves to
complete an appropriate set of abstractions when used in
conjunction with other programming paradigms. The
combination of multiple styles of abstraction avoids the
problem of a single dominant decomposition, and leads
to the solution approach advocated by this paper: a
synthesis of model-integrated computing tools,
component middleware, and lower-level aspect
frameworks to organize the application and supporting
infrastructure.

D. TOWARDS GENERATIVE SYSTEM

PROGRAMMING

This section surveys existing approaches to

addressing interference between system aspects, and
identifies the benefits and limitations of the current state
of the art. Section D.a first describes several existing
approaches to addressing interference between system
aspects. Section D.b then details open research questions
that these approaches do not address.

a. Survey of Current Approaches

We first survey existing approaches to managing

interference between system aspects, which fall into
three main categories:

• System Aspect Frameworks – system
infrastructure frameworks that directly encode
abstractions for managing interference.

• Model-Driven Toolsets – integrated
combinations of modeling abstractions and
infrastructure generation or configuration
abstractions, often focused on a particular
problem domain.

• Model Engineering Tools – more general
abstractions for model creation, manipulation,
and checking, which can be applied variously
to infrastructure generation, configuration,
modeling, and checking for different domains.

System Aspect Frameworks: BBN technologies
Qoskets [13] are high-level aspect-oriented middleware
abstractions for QoS management. Qoskets cross-cut
distribution and layer boundaries, and thus offer end-to-
end configurability of large-scale system infrastructures.

The CIAO [4] project at Washington University and
Vanderbilt University extends the standard CORBA
Component Model for configurability of para-functional
as well as functional properties. CIAO extends the
standard CCM XML-based component packaging,
assembly, and deployment capabilities to include
configuration of para-functional system aspects within
the components, their containers, and the supporting
system infrastructure. We are working with researchers
at BBN to integrate their Qoskets approach with CIAO.

Researchers at the University of British Columbia
have developed an AOP tool called AspectC, for C
systems programming environments [14].
Complementing the AspectJ tool for Java, AspectC
offers the ability to refactor many examples of open-
source systems software along aspect-oriented paths.
The extension of AOP tools to multiple languages is
very promising and availability of such tools for C++,
including the ability to weave aspects into template
code, would allow new and powerful combinations of
generic, object-oriented, and aspect-oriented techniques
to be applied together.

Absent the availability of mature AOP tools for C++,
we have tended to combine generic and object-oriented
techniques with logic-driven composition approaches in
the vein of work at the University of Utah on
Task/Scheduler Logic [15]. In particular, we are in the
process of re-factoring the Kokyu [10] dispatching
framework to use both generic and object-oriented
techniques in conjunction with composition logics to
ensure safety of configurations with respect to para-
functional properties.

The Time Weaver [1] framework developed at
Carnegie-Mellon University provides system aspect
configuration abstractions called couplers that are
similar to the BBN Qoskets approach. The CMU
approach explicitly promotes recursive composition of
couplers for hierarchical encapsulation of abstractions,
and notes several design dimensions along which para-
functional aspects are composed in existing DRE
systems. Of particular note in the CMU approach is the
discussion of projections of aspects between different
design dimensions, and the need to reconcile constraints,
i.e., to address interference across as well as along those
design dimensions.

The CoSMIC [16] project at Vanderbilt University
has similar aims to the Time Weaver project at CMU,
but pursues model-driven configuration of DRE systems
within the context of existing middleware frameworks,
notably CIAO and QuO. By adopting both the
component-oriented programming model in CIAO and
the aspect-oriented programming model in the QuO

Qoskets approach, CoSMIC can leverage the appropriate
style of abstraction for each of a broader set of concerns.

Model-Driven Toolsets: The Cadena [17] project at
Kansas State University applies model-based techniques
to configuration of component-based systems, and in
particular to behavioral aspects of component-based
applications and their supporting infrastructure. Cadena
thus covers a wide domain of component-based
applications, while allowing selective customization of
the aspects relevant to each particular application. We
are in the process of exploring integration of Cadena
with CIAO, leveraging CIAO’s ability to configure QoS
properties directly within Cadena.

 The VEST [18] toolkit developed at the University of
Virginia is another model-driven toolset for DRE
systems. Where Cadena focuses on configuring a
particular kind of middleware, VEST takes a more
vertically crosscutting approach, modeling, configuring
and checking abstractions at the application,
middleware, operating system, and even hardware
levels. Both the Cadena and VEST implementations are
focused on particular domains, but each is extensible to
cover additional abstractions beyond those in its current
implementation.

Model Engineering Tools: Whereas Cadena is
focused on a particular domain, the Bogor [19]
framework that is also being developed at Kansas State
University provides flexible and general capabilities for
developing a variety of model-checking tools. The
generic modeling environment (GME) [20] tool
developed at Vanderbilt University is a similarly general
meta-modeling environment, and in fact was used in the
VEST tool implementation.

b. Open Research Challenges for

Generative System Programming

Each of the approaches surveyed above covers an
important segment of the space of model-driven
computing, but it is apparent that no one of those
approaches can completely cover the configuration
space of functional and para-functional properties in
DRE systems. Therefore we argue that a synthesis of
techniques is needed, to allow DRE system developers
to draw on multiple tools and infrastructure frameworks
and apply each to its best use, with reasonable assurance
of (1) the fidelity of the abstract representations to the
composed system, and (2) the correctness of the
system’s properties in each of its multiple design
dimensions.

The following challenges must be addressed to
achieve such a synthesis:

• Implicit, ad hoc structure of implementation
frameworks must be re-factored to avoid
unnecessary forms of interference, and must
provide explicit reflective information for use in
their composition and configuration.

• Alternative dominant decompositions must be
supported fully in the programming model, to
reduce complexity of design dimensions.

• Higher levels of abstraction should be used in
projecting model abstractions into the
implementation frameworks used to compose the
model-based system.

E. AN ARCHITECTURAL VISION

This section describes an architectural vision that

seeks to align the different kinds of system component
infrastructures, system aspect frameworks, model-driven
toolsets, and model engineering tools described in
Section D.a, to address the challenges outlined in
Section D.b. A key theme of this vision is that both (1)
top-down modeling of application characteristics and
requirements, and (2) bottom-up modeling of
infrastructure aspects are necessary and appropriate.
Section E.a first gives an overview of the proposed
architecture. Section E.b then illustrates how segments
of that architecture could serve to resolve the deadlock
problem discussed in Section B.b.

a. Architecture Overview

Figure 3 illustrates the proposed architecture, which
integrates model-driven, component-oriented, and
aspect-oriented approaches.

OS / Network

Low-Level
Middleware

High-Level
Middleware

Application

Container

Component

Component
Packaging,
Assembly,

and
Deployment

Infrastructure
Configuration

threadstimers

queues

QoS contracts

timers

sockets

t

s

Concurrency
Domain Model

Resource Access
Domain Model

Interaction
Domain Model

Deployment
Domain Model

Model Synthesis and
Infrastructure Weaving

OS / Network

Low-Level
Middleware

High-Level
Middleware

Application

Container

Component

Component
Packaging,
Assembly,

and
Deployment

Infrastructure
Configuration

threadstimers

queues

QoS contracts

timers

sockets

tt

ss

Concurrency
Domain Model

Resource Access
Domain Model

Interaction
Domain Model

Deployment
Domain Model

Model Synthesis and
Infrastructure Weaving

Figure 3: Model-Component-Aspect System Architecture

The following list describes the major segments of the
envisioned model-component-aspect architecture, and
the respective contribution of each segment:

• Domain-Specific Modeling Tools – increase
scalability by encapsulating representation and
analysis of individual domain models, increasing
separation of modeling and checking concerns.

• Model Synthesis Tools – allow synthesis and
checking of multiple separate domain models, a
necessary adjunct to the separation of models for
distinct domains.

• Component middleware – offers a common and
standardized implementation context within
which reflective information for different domain
models can be applied directly to weaving and
configuration of application components and
supporting system infrastructure.

• High-level system aspect frameworks – support
integration and configuration of existing
middleware infrastructure and application
implementations using their external interfaces.

• Low-level system aspect frameworks – allow
synthesis and customization of infrastructure and
components by weaving into those abstractions.

• Implementation Weavers – perform model-
driven system generation, through synthesis,
integration and configuration of application
components and system infrastructure.

The relationships between these architectural
segments are as important as the segments themselves.
Application components must be able to provide model
information about their para-functional constraints such
as memory usage and thread safety, as well as their
functional constraints, to modeling tools. Middleware
infrastructure implementations must similarly provide
model information about their configuration options and
para-functional properties. High-level system aspect
frameworks can glue together integrated configurations
of existing middleware implementations [13]. Low-level
system aspect frameworks are promising complements
to model engineering tools, so that a domain-specific
model, e.g., for real-time analysis, can be co-designed
with model information about specific system
framework abstractions, e.g., threads, timers, and queues
in a dispatching subsystem [10], from which its model
implementations will be generated. Component models’
packaging, assembly, and deployment capabilities can
be used, possibly in conjunction with domain-specific
infrastructure configurators, as implementation weavers.

b. Example Resolved

We now offer a brief illustration of how various

segments of a model-component-aspect architecture
could be applied to resolve the problems illustrated in
Section B.b. In the deployment scenario shown in
Figure 2, the following steps could help avoid deadlock
while still meeting other functional and para-functional
constraints:

1. Component middleware would provide reflective
information about the packaging, assembly, and
deployment of components, including the
invocation graph and placement of components
onto ORBs.

2. Low-level system aspect frameworks would
provide reflective information about default
concurrency and reply-wait strategies and other
properties, and offer points of configurability of
those properties.

3. High-level system aspect frameworks would insert
instrumentation points for collecting run-time
information, such as exhaustion of a thread pool
or deadline misses. Adaptation mechanisms may
also be added to allow run-time manipulation of
system properties, in cases where some hazards
are uncommon and recovery from them is possible
if encountered.

4. Domain-specific modeling tools would capture
models for the system’s interaction, resource
access, deployment, and concurrency domains,
using the reflective information supplied by the
components and the aspect frameworks.

5. Model synthesis tools would integrate those
models, and perform crosscutting analysis to
determine ways in which the deadlock could be
resolved, e.g., by migrating Component C from
ORB 2 to ORB 3, or by increasing the number of
threads configured in ORB 3. If multiple
alternatives were feasible, additional analysis
would be performed to determine which would be
more desirable, and under what operating
conditions.

6. Finally, implementation weavers would be used to
configure or even synthesize properties of the
implementation – in cases where multiple
configurations are possible and among them
different ones would best suit different operating
conditions, adaptation mechanisms would be
configured to detect those conditions and adapt
among the alternative configurations accordingly.

F. CONCLUSIONS AND FUTURE WORK

This paper has presented the position that interference

between system aspects, in both the functional and para-
functional semantics of an application, is a fundamental
issue in real-world systems programming. Furthermore,
it is apparent that no single dominant decomposition can
address the problem of entanglement. Instead,
appropriate abstractions in each of several domains must
be composed and woven together in both the modeling
and system generation segments of a larger integrated
architecture. Model-component-aspect architectures are
proposed to achieve the composition of abstractions
from multiple domains, and generate DRE systems that
are correct in both their functional and para-functional
properties.

The challenges outlined in Section D.b offer a
roadmap for future work. Of particular interest is the
co-design of model engineering tools with abstraction
frameworks, such as low-level aspect frameworks, that
can reduce the complexity of model specification and
checking, and allow more rapid development of
additional domain-specific modeling tools. A further
area of interest is the representations that would arise
from or perhaps even precede the co-design of general
model engineering tools and their abstraction libraries.
In general the goal is to increase the level of abstraction
within the models, and correspondingly within the
implementation frameworks used to realize those
models. Algebras and logics for interference-aware
composition of system aspects is of particular interest,
both for co-design of aspect frameworks and model
engineering tools, and for customization of domain-
specific models.

References

[1] R. Rajkumar and D. de Niz, “Model-Based Embedded

Real-Time Software Development” , RTAS 2003 Workshop
on Model Driven Embedded Systems, Washington, D.C.,
USA, May 2003.

[2] Object Management Group, “CORBA Components” ,
OMG document formal/2002-06-65, June 2002

[3] D. Alur, J. Crupi, and D. Malks, “Core J2EE Patterns:
Best Practices and Design Strategies” , Prentice Hall, 2001.

[4] N. Wang, D. C. Schmidt, A. Gokhale, C. D. Gill, B.
Natarajan, C. Rodrigues, J. P. Loyall and R. E. Schantz,
"Total Quality of Service Provisioning in Middleware and
Applications," Microprocessors and Microsystems, special
issue on Middleware Solutions for QoS-enabled
Multimedia Provisioning over the Internet, vol. 27, no. 2,
pp. 45-54, March 2003.

[5] V. Subramonian and C. Gill, “A Generative
Programming Framework for Adaptive Middleware” ,
HICSS 2004, Hilo, HI, January 2004 (to appear).

[6] N. Wang and C. Gill, “ Improving Real-Time System
Configuration via a QoS-aware CORBA Component
Model” , HICSS 2004, Hilo, HI, January 2004 (to appear).

[7] D. C. Schmidt, “The ADAPTIVE Communication
Environment (ACE),
www.cs.wustl.edu/~schmidt/ACE.html, 1997

[8] IEEE, POSIX1003.1c, “ Information Technology –
Portable Operating System Interface (POSIX) – Part 1:
System Application Program Interface (API) [C
Language]” , 1995

[9] Tarr, Harrison, Ossher, Finkelstein, Nuseibeh, and Perry,
“Workshop on Multi-Dimensional Separation of Concerns
in Software Engineering” , ICSE 2000, Limerick, Ireland

[10] C. Gill, D. Schmidt, and R. Cytron, “Multi-Paradigm
Scheduling for Distributed Real-Time Embedded
Computing” , IEEE Proceedings 91(1), Jan 2003.

[11] Matthew H. Austern, “Generic Programming and the
STL: Using and Extending the C++ Standard Template
Library” , Addison-Wesley, Reading, Massachusetts, 1998

[12] Kiczales, Lamping, Mendhekar, Maeda, Lopes,
Loingtier, and Irwin, “Aspect-Oriented Programming”,
Proceedings of the 11th European Conference on Object-
Oriented Programming, June, 1997

[13] Schantz, Loyall, Atighetchi, and Pal, “Packaging Quality
of Service Control Behaviors for Reuse”, Proceedings of
the 5th IEEE International Symposium on Object-Oriented
Real-time distributed Computing, Washington, DC, April,
2002.

[14] Coady, Kiczales, Feeley, and Smolyn, “Using AspectC
to Improve the Modularity of Path-Specific Customization
in Operating System Code”, Joint ESEC / ACM SIGSOFT
FSE-9 Conference, September 2001.

[15] Alastair Reid and John Regehr, “Task/Scheduler Logic:
Reasoning about Concurrency in Component-Based
Systems Software” , 2002,
citeseer.nj.nec.com/reid02taskscheduler.html

[16] Gokhale, Natarajan, Schmidt, Nechypurenko, Gray,
Wang, Neema, Bapty, and Parsons, “CoSMIC: An MDA
Generative Tool for Distributed Real-time and Embdedded
Component Middleware and Applications” , ACM
OOPSLA 2002 Workshop on Generative Techniques in the
Context of Model Driven Architecture, Seattle, WA,
November, 2002

[17] Hatcliff, Deng, Dwyer, Jung, and Prasad, “Cadena: An
Integrated Development, Analysis, and Verification
Environment for Component-based Systems”, Proceedings
of the International Conference on Software Engineering,
Portland, OR, May 2003.

[18] Stankovic, Zhu, Poornalingam, Lu, Yu, Humphrey, and
Ellis, “VEST: An Aspect-based Composition Tool for
Real-time Systems”, 9th IEEE Real-time Applications
Symposium, Washington, DC, May 2003.

[19] Robby, M. B. Dwyer, and J. Hatcliff, “Bogor: An
Extensible and Highly-Modular Model Checking
Framework” , Proceedings of the Fourth Joint Meeting of
the European Software Engineering Conference and ACM
SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE 2003), to appear.

[20] Ledeczi, Bakay, Maroti, Volgysei, Nordstrom, Sprinkle,
Karsai, “Composing Domain-Specific Design
Environments” , IEEE Computer, November, 2001.

������� �	��
����������������������	
����������������� �"!#����������$���&%�'
()�+*,%-���.
/�&�102�43657��!�
/�8�9�������	��
������:�;�������������=<>!#� %-�+?�%���
/�&�$��0)���

�������@���A�����B���C���D�10E3F���EGH�I
J���@��
/�&%KGH�C���.L�0/��0

M$NPORQTS�U1VXWJY9Z\[^]_
`�[^acbd[^]ROe[^fhg�YJOiZ\jkZRWZ\[Cldm�no[qpsrJYJldNPlutdf

v�w9x+y+z&{q|Ry
}d~X���I�e�^���>��~X�i�q�^������~s~R������~8�\�.���������F��~R���.�������+��~e�o�i���#���F�����+�2���������q�.�+�+�����i���#��~8�����\�

�I��~e�����e���$~��F�+�J~i�-���q�i�4���F�����+���/�i���C����~e�����i���. F�^���+������~e�#~i�-���^�D�F��~R���.�������+����~I���D�\�.����¡����£¢
¤¥���q���&��}d�+�$��~e�¦�i�¤§~R¨e���>© ªi«/���o�¬�+~R�$�$~e����~e�����i���������~e���. F�^���+�������q¨D�^��~e���.�������+��~i�����F�����+�$�®~e�
�+~R�^�+¯^�����+�s���.~R�$��¯^�q�����&�����^¨®�^��~s�+�.�����+�+���i�J��~e¯q���$��~i���. ^�e�$�^���-�����+�������^�^���4���F�����+�$�+¢9}d~��\�°�������
���q�+���I��~i����¯q���i�#±²~i�>�i�����.�$�^����~��^�.�����\�I���+������¯^�����+�D����~R�³���q�+��´4��~i�>�X���F�����+���µ���q�I���+���+�R�i�s�
�^��~s�+�+�����.�¶�i���®�$~��F�+�����¬�i�1�e¯^��~e���i�¦�����e�q�¬�i��¨e~e�������q�$�1�&�����i�q�^����������~����q�¶�q�e���1~e�9���^� ��~i����¯q���i�
�e���o���q�µ�e¯F��~R���&�¦�-��~ ¡��q���q�i���q���������^�µ�e¯^��~e���i�¦�-���q�i�·���i���������4�+�.���¦�i���$�^��~R���°�������.�·���°���¦�e���q���q¨¶��~
���q�µ¨R���\�+�$�����.�+��¡����&����~e�¥¢·¸ ~�¹�+�\�.���s�����.�+��¡����&����~e�q�/���+¨R�����e�·���^��~i�����e���q�i��¯F�¦�e�����e�^¨R¯q�e¨R�1�+~e�q�+�+�F���
±º�e�������+�F�����^~s�.¯q�$�+�s���¦´°¢J»¼� ���-¨R�+�^�.�¦�e���������q�.���o���F��~e�����i�d�����+�.��¡q���i����~e�q� ���q�i�-�. F�^���+���µ���q�®����¯q�
�e������¯q�����+���J���F�����+�h����½s¯q�����+�$�.�����+¢u}J�q�.���°��~e���e��������/�^�+�+�+�����&���4��~®���+�+~R¨e�q��¾+�µ���q�µ¨\�i�����.�P¹�+�+�4���q�
���F��~i�����e�u�i�������q� ��~e�����e�§�����+�+��¡q���i����~R�^�+¢»k�D���^���µ�q�e���.�µ¹J�®�.~R�q�.�+�s���¦�i���®~R�����q�®¨R�e�q�����q�i�µ�. F�����
���.�P¹�+�+�C���^��~i�����e�������+�.��¡q���i����~e���i���8��~i�����e�J�����+�.��¡q���i����~e�q�4¨e���R�+�C����¤§���^���i�$}d�+�$��~e�¦�i��¤¥~e¨R���R�
�e���>��~e�$����~e�������^�����������+�®��~i�®�+~e������~e�������^¨D�����&�¶¨R�e�¥¢ ¿8���e����~��F�����.¯q��� ���^�����$���i�.� ���^�+���o�$�.���q~��F�
~e�����i���F�����^¨����q�®¨R�e���q���\�¶~R�D���q�¶���F�����+�À�$~��F�+�²¢

Á Â�Ã¬ÄJÅ�ÆIÇCÈ8É ÄJÊiÆDÃ
Ë�Ì:Í°Î§Ï�Ð�Ñ�ÏeÒFÓoÔ ÕFÖ.Ó�Ñ9×®ÒÙØ°Õ�Ú²Í�Ô¶Ò�Ö.ÏXÛ£Ö.ÕFÜFÖ+Ò�Ý�Ý�Ð�Ì£Ü�Û£Ö°ÕFÞ�Ïeß&ÍIÔ-Õ^à£Ó�Ñ:ádÏiÜ^Ð�Ì�Ô®Ð�Í°Î6ÒÙà§Ø°ÏiÖRâ Ø>Ö.Ïeãqà£Ð�Ö.ÏiÝ�ÏiÌqÍ.Ø
Ñ�Õ�ß&à§Ý¬ÏeÌqÍe×FÔ®Î§Ð�ß+Î�Ô ÕFà£Ó�Ñ¬á¥Ï®Ïiä�Û§Ö°ÏRØ°Ø°ÏeÑDÐ�Ì¬Í.ÏiÖ.Ý�Ø�Í°Î§Ò�Í1Ô-ÏeÖ°Ï¶Ý�ÏeÒFÌ£Ð�Ì£Ü�Úºà£Ó£Í°Õ4Í°Î§Ï®à§Ø¦ÏeÖ1Ò�Ì¥ÑDÔ®Î§Ð�ß+Î�Ô ÕFà£Ó�Ñ
ÚºÕFÖ.ÝåÍ.Î£ÏoÒFÜFÖ.ÏiÏiÝ�ÏeÌ^Í�ádÏ&Í�Ô ÏiÏeÌDÍ.Î£Ï�à§Ø°ÏiÖ�æ¼ÕFÖ1ßiÕFÌ§Ø°à£Ý�ÏiÖ�çÕ�ÚdÍ°Î§Ï�Û£Ö.Õ�Ñ£à§ß�Í1ÒFÌ§Ñ¬Í°Î£Ï®Û§Ö°Õ�Ñ�à§ßiÏiÖoè é\ê�ëµì�í�Ø�Í.ÏiÝ
Ø°Û¥ÏRß&Ð�î¥ßiÒ�Í°Ð�ÕFÌ§Ø�Ô-Õ^à£Ó�Ñ�Í.Î£ÏiÌ�á¥Ï�ß&Ö.ÏeÒ�Í°ÏeÑ�á�í�Ö°Ïiî§Ì£Ð�Ì£ÜXÍ.Î£ÏBÖ.Ïeãqà£Ð�Ö.ÏiÝ�ÏiÌqÍ.Ø$Í°Õ#Ò�Ñ�ÏeØ.ß&Ö.Ð�Û£Í°Ð�ÕFÌTÕFÚÞ�à¥Ø�Í¬Í°Î£Ï
ádÏiÎ§Ò\ï�Ð�ÕFÖ¬Õ�Ú�Í.Î£Ï�Ø°í�Ø�Í.ÏiÝ8×µà§Ø°Ð�Ì£ÜAækÒ�Ì§Ñ;Î£ÕFÛdÏ&Úºà§Ó�Ó�í;Ñ�Õ�ß&à§Ý¬ÏeÌqÍ°Ð�Ì£Üqç�ð�Ì£ÕsÔ®Ó�ÏRÑ�ÜFÏBÕ�Ú�Í.Î£Ï8ÏiÌ�ï�Ð�Ö.ÕFÌ§Ý¬ÏeÌqÍDÐ�Ì
Ô®Î£Ð�ß+Î�Í.Î£Ï�Ø°í�Ø�Í.ÏiÝ7Ô ÕFà£Ó�ÑBá¥Ï�Ñ£ÏiÛ£Ó�ÕsíFÏRÑ>Í°Õ�Ú¼Ò^ß�Í.ÕFÖ®ÕFà£Í®Í°Î£Ï�Ò^Ø¦ÛdÏeß&Í.Ø Í°Î¥ÒsÍ�Ö.ÏiÓ�íIÕFÌ8Û£Î£ÏeÌ£ÕFÝ�ÏeÌ§ÒDÍ°Î§Ò�ÍoÒ�Ö.Ï
Ì£ÕFÍ-Ñ�Ð�Ö°ÏRß�Í°Ó�í�Ð�Ì£Û£à£Í1Í°Õ$Õ^ÖµÕFà£Í°Û£à�Í á�í�Í°Î§ÏoØ¦í�Ø¦Í°ÏeÝ�ë�ñ§Ö°Õ^ÝòÎ£ÏeÖ°Ï¶Í.Î£Ï�Ø°Û¥ÏRß&Ð�î¥ßiÒ�Í°Ð�ÕFÌ�Ô ÕFà£Ó�Ñ¬á¥Ï�Ñ�ÏeßiÕFÝ�Û¥ÕqØ¦ÏRÑ
Ð�Ì^Í.Õ®Úºà£Ì§ß&Í°Ð�ÕFÌ§ÒFÓ^ßiÕFÝ�Û¥Õ^Ì£ÏiÌqÍ+ØuÍ°Õ�Û§Ö°Õsï�Ð�Ñ�ÏµÒ¶ÚºÖ+Ò�Ý�ÏiÔ ÕFÖ.ð®ÚºÕFÖ�Í°Î£Ï Ñ�ÏeØ°Ð�Ü^Ì4Õ�Ú�Í°Î£Ï Ø¦ÕFÚ²Í�Ô ÒFÖ°Ï^ë�ó1Ò^ß+Î�Úºà§Ì§ß�Í.Ð�Õ^Ì§Ò�Ó
ß&Õ^Ý�Û¥Õ^Ì£ÏiÌqÍ$Ô-Õ^à£Ó�Ñ#ádÏ>Ö.Ï&î§Ì£ÏRÑ#Í°ÕCÒ�Ì�ÕFÛdÏiÖ+ÒsÍ.Ð�Õ^Ì§Ò�Ó�Ý�Õ�Ñ�ÏeÓk×/Û¥ÕqØ°Ø°Ð�á§Ó�í�Ø¦à§ß+Î�ÒFØ�Ò�î¥Ì£Ð�Í.Ï�Ø¦Í.ÒsÍ.Ï�Ý�Ò^ß+Î£Ð�Ì£ÏF×
Ò�Ì¥Ñ�ÚºÖ.ÕFÝôÎ£ÏiÖ.Ï®ß&Õ�Ñ�Ð�Ì£Ü$ß&ÕFà§Ó�Ñ¬ádÏiÜFÐ�Ì�ëJõ®Ú²Í.ÏiÖ�Í.Î£Ï�Ø¦ÕFÚ²Í�Ô ÒFÖ°Ï Î§Ò^ØJá¥ÏeÏiÌIÑ�ÏeïFÏiÓ�ÕFÛdÏeÑ�×sÍ°Î£Ï�Ø°ÛdÏeß&Ð�î¥ßeÒsÍ°Ð�ÕFÌ�Ò�ÜqÒ�Ð�Ì
Ô ÕFà£Ó�Ñ�ádÏ$Ì£ÏeÏeÑ�ÏRÑ9×�Í°Î§Ð�Ø¶Í.Ð�Ý�Ï4Í.Õ¬Ü^à£Ð�Ñ�Ï�Ø¦í�Ø¦Í°ÏeÝ�Í°ÏRØ�Í.Ð�Ì£Ü¥ë

ö®Ïeãqà£Ð�Ö.ÏiÝ�ÏiÌqÍ.Ø-Ò�Ì§Ñ>Ø°ÛdÏeß&Ð�î¥ßeÒsÍ°Ð�ÕFÌ¥Ø�á¥ÏeÜFÐ�Ì>Í°Î§ÏiÐ�Ö1Ï&ä�Ð�Ø�Í.ÏiÌ§ßiÏoÒFØµÐ�Ñ�ÏRÒFØ1Ï&ä�Û£Ö.ÏeØ.Ø¦ÏRÑDÐ�Ì>Ì§Ò�Í°à£Ö+Ò�Ó¥Ó�ÒFÌ£ÜFà§ÒFÜFÏ^ë
÷ Ï&ÚºÕ^Ö°Ï�Ò�à�Í.ÕFÝ>ÒsÍ.ÏeÑ>Í.Õ�ÕFÓ�Ø1Ý>Ò\í>ádÏ�ÒFÛ£Û£Ó�Ð�ÏRÑ>Í°ÕDÍ°Î§Ï4Ø°ÛdÏeß&Ð�î¥ßeÒsÍ°Ð�ÕFÌ·×qÐ�Í¶Ý�à§Ø¦Í®á¥Ï4ßiÒFÛ�Í°à£Ö.ÏeÑ�Ð�Ì�Ø¦Õ^Ý�ÏoÚºÕ^Ö°Ý>Ò�Ó
Ó�Ò�Ì£Ü^à§Ò�Ü^Ï Û§Ö°Õ�ß&ÏRØ°Ø.Ò�á§Ó�Ï®á�í�ß&ÕFÝ�Û£à£Í°ÏiÖ+Øeë/Ë�Ú·ÒFÌ¬Õ^Û¥ÏeÖ.Ò�Í°Ð�ÕFÌ§ÒFÓ£Ý�Õ�Ñ�ÏiÓdÐ�ØµÍ°Õ�ádÏoÑ�ÏeÝ�ÕFÌ§Ø¦Í°Ö+ÒsÍ.ÏeÑ¬Í°ÕDØ°Ò�Í°Ð�Ø�ÚºíDÍ°Î£Ï
Ø°Û¥ÏRß&Ð�î¥ßiÒ�Í°Ð�ÕFÌ�×^Í°Î£ÏeÌIÍ.Î£Ï�Ó�Ò�Ì§ÜFà§ÒFÜFÏoßeÒ�Û�Í.à£Ö°Ð�Ì£Ü�Í°Î£Ï4Ø¦ÛdÏeßiÐ�îdßiÒsÍ.Ð�Õ^ÌIÝ�à¥Ø�Í®Ò�Ó�Ø¦Õ�Î§Ò\ïFÏ�Ò�Ö.Ð�Ü^ÕFÖ.ÕFà§ØµØ°ÏiÝ>ÒFÌ^Í.Ð�ßeØië
ø�ÕsÔ Ïiï^ÏiÖR×sÌ§ÒsÍ.à£Ö+Ò�Ó£Ó�Ò�Ì£Ü^à§Ò�Ü^Ï¶Ð�Ø1Î£Ð�Ü^Î£Ó�í�Ï&ä�Û£Ö.ÏeØ.Ø°Ð�ï^ÏF×FÒFÌ§Ñ�Î£Ð�ÜFÎ£Ó�íDÒFÝ�á£Ð�ÜFà£Õ^à§Øeëñ§ÕFÖ.Ý�ÒFÓ�Ó�ÒFÌ£ÜFà¥Ò�ÜFÏRØJÎ§Ò\ï�Ð�Ì§Ü
ÒIÖ.Ð�ÜFÕFÖ.ÕFà¥ØoØ°ÏiÝ>Ò�ÌqÍ°Ð�ßiØ4ÒFÌ§ÑCÒFÑ£Ý¬Ð�Í¦Í.Ð�Ì§Ü8ÒFà�Í°Õ^Ý>ÒsÍ°ÏRÑCß+Î£ÏRß+ðqÐ�Ì£ÜBÕ�Ú1Û£Ö.ÕFÛdÏiÖ°Í°Ð�ÏeØ4ÒFÖ°ÏDÕ�Ú1Ó�Ð�Ý�Ð�Í°ÏRÑ�Ïiä�Û§Ö°ÏRØ°Ø°Ð�ï^Ï
ÛdÕsÔ-ÏeÖeëù¶Î£ÏiÖ.Ï&ÚºÕ^Ö°Ï^×iÞ�à§Ø¦Í Ò^Ø�Í.Î£ÏiÖ.ÏoÐ�Ø1Ò�Ü^Ò�Û>ádÏ&Í�Ô ÏiÏeÌ>Í°Î§ÏoÐ�Ý¬Û§Ó�ÏeÝ¬ÏeÌqÍ.ÒsÍ.Ð�Õ^Ì�Ò�Ì¥Ñ¬Í°Î£Ï�ÕFÛdÏiÖ+ÒsÍ.Ð�Õ^Ì§Ò�Ó£Ý�Õ�Ñ�ÏeÓk×
ú.û·üRý�þ·ÿ���þ����+ÿ���ü����+þ·þ�	�
�
��ÿ�������ý���
��+ÿ���������������� � �"!�#%$'&(!)$*!)$+&-,/.-0(1

2

Ò�Ì¥ÑXá¥ÏiÍ�Ô-ÏeÏiÌ�Í°Î£Ï¬ÕFÛdÏiÖ+ÒsÍ.Ð�Õ^Ì§Ò�Ó/Ý¬Õ�Ñ�ÏeÓ�Ò�Ì§ÑCÍ°Î£Ï�Ø¦ÛdÏeßiÐ�îdßiÒsÍ.Ð�Õ^Ì�×dÍ°Î£ÏeÖ°Ï¬Ð�Ø�ÒBÜ^ÒFÛCá¥ÏiÍ�Ô-ÏeÏiÌXÍ.Î£Ï�Ð�Ì£ÚºÕFÖ.Ý�ÒFÓk×
Ì§Ò�Í°à£Ö+Ò�Ó9Ó�Ò�Ì£Ü^à§Ò�Ü^Ï�Ø°Û¥ÏRß&Ð�î¥ßiÒ�Í°Ð�ÕFÌXÒ�Ì¥ÑIÍ.Î£Ï4ÚºÕFÖ.Ý>Ò�Ó�Ø°Û¥ÏRß&Ð�î¥ßiÒ�Í°Ð�ÕFÌ�ë

ì�Ð�Ì§ß&Ï�Í°Î§Ï�Ø¦ÛdÏeßiÐ�î¥ßeÒsÍ.Ð�Õ^Ì�Ð�Ø Í°Î£Ï�ÚºÕFà§Ì§Ñ£ÒsÍ.Ð�Õ^ÌBÕFÚ�Í°Î§Ï�Ø¦ÕFÚ²Í�Ô ÒFÖ°Ï�ß&ÕFÌ¥Ø�Í.Ö°à§ß&Í°Ð�ÕFÌ�×�Ð�Í®Ì£ÏiÏRÑ£Ø Í°Õ>Ø.ÒsÍ°Ð�Ø¦Úºí>ï\ÒFÖ��
Ð�ÕFà§Ø¶Ø.Ò�Ì£Ð�Í�íIß&Ö.Ð�Í.ÏiÖ.Ð�ÒDá�íIÐ�Í.Ø°ÏiÓ�Ú�ë�Ë�Ì�Ò^Ñ£Ñ�Ð�Í°Ð�ÕFÌ�×�Ð�Í®Ý�à§Ø¦Í®á¥Ï$ÛdÕ^Ø.Ø¦Ð�á£Ó�ÏoÍ.Õ>ß&ÕFÌ£î§Ö°ÝÍ.Î§ÒsÍ®Í.Î£Ï$ß&Õ^Ý¬ÛdÕ^Ø°Ð�Í°Ð�ÕFÌ�ÕFÚ
Í°Î§ÏDÕ^Û¥ÏeÖ.Ò�Í°Ð�ÕFÌ§ÒFÓ/Ý�Õ�Ñ�ÏiÓ�ØoÚºÕFÖ�Í°Î£Ï�Ø°í�Ø¦Í°ÏeÝ³ß&Õ^Ý¬ÛdÕFÌ§ÏiÌqÍ.ØoÍ°Õ^ÜFÏ&Í.Î£ÏiÖ4Ô®Ð�Í°Î�Í°Î£Ï¬Ì£ÏeßiÏeØ.Ø°ÒFÖ°íXÑ�Õ^Ý>Ò�Ð�ÌCð�Ì£ÕsÔ®Ó��
ÏeÑ£ÜFÏ�Ø°Ò�Í°Ð�Ø�Úºí8Í.Î£Ï¬Ø°ÛdÏeß&Ð�î¥ßeÒsÍ°Ð�ÕFÌ·×�Ò�Ì§ÑCÍ°Î§Ò�Í�Í.Î£Ï�Ð�Ì¥Ñ�Ð�ï�Ð�Ñ�à§ÒFÓJßiÕ�Ñ�Ï�à£Ì£Ð�Í.Ø�Ð�Ý�Û£Ó�ÏiÝ�ÏeÌ^Í4Í.Î£Ï>ß&ÕFÖ.Ö.ÏeØ°Û¥Õ^Ì§Ñ�Ð�Ì£Ü
ÕFÛdÏiÖ+ÒsÍ.Ð�Õ^Ì§Ò�Ó/Ý�Õ�Ñ£ÏiÓ�Øië4õ Í�ÏRÒFß+Î�Ø¦Í°ÏeÛCÕ�ÚµÍ.Î£Ð�Ø�ßiÕFÌ�î§Ö.Ý>ÒsÍ.Ð�Õ^ÌCÛ£Ö.Õ�ßiÏeØ.Ø®Í.Î£ÏiÖ.ÏDÒFÖ°Ï�ßiÕFÌ§ßiÏiÖ.Ì§ØoÍ°Î§Ò�Í�Ý�à¥Ø�Í4á¥Ï
Í.ÒFðFÏeÌ¬Ð�ÌqÍ°Õ�ßiÕFÌ§Ø°Ð�Ñ�ÏiÖ+ÒsÍ.Ð�Õ^Ì�ë/ó��dÕ^Ö¦Í+ØJÍ°Õ�Ñ�ÏeÖ°Ð�ïFÏ�ßiÕ�Ñ�ÏoÒ�à£Í°ÕFÝ>Ò�Í°Ð�ßiÒ�Ó�Ó�í�ÚºÖ.ÕFÝòÕ^Û¥ÏeÖ.Ò�Í°Ð�ÕFÌ§ÒFÓ£Ý�Õ�Ñ�ÏiÓ�Ø1Ò�Í¦Í°ÏeÝ�Û�Í.Ø
Í°ÕIÒ^Ñ£Ñ�Ö.ÏeØ.Ø¶Í°Î§Ï$Û£Ö°Õ^á£Ó�ÏiÝ	Õ�Ú�ß&ÕFÌ£î§Ö°Ý�Ð�Ì£Ü�Í°Î¥ÒsÍoÐ�Ì§Ñ�Ð�ï�Ð�Ñ�à¥Ò�Ó·ßiÕ�Ñ£Ï�à£Ì£Ð�Í.Ø�Ø°Ò�Í°Ð�Ø�Úºí�Í°Î£Ï�Õ^Û¥ÏeÖ.Ò�Í°Ð�ÕFÌ§ÒFÓ9Ý�Õ�Ñ£ÏiÓ�Øië
�µÖ.ÕFÜ^Ö.ÒFÝEÒFÌ§Ñ�Í°ÏiÝ�ÛdÕFÖ+Ò�Ó9Ó�ÕFÜ^Ð�ßeØi×�Ò�Ì¥Ñ�Ý�Õ�Ñ�ÏiÓ/ß+Î£Ïeß+ð�Ð�Ì£ÜDÒFÖ°Ï$ÒDïFÏiÖ.íIÒFß&Í°Ð�ïFÏ$Ò�Ö.ÏeÒDÕ�ÚÖ°ÏRØ¦ÏRÒ�Ö+ß+Î>ÚºÕFÖ®Ñ�ÏeÝ�ÕFÌ��
Ø¦Í°Ö+ÒsÍ°Ð�Ì£Ü$Í.Î§ÒsÍ Í°Î§ÏoÕFÛdÏiÖ+ÒsÍ.Ð�Õ^Ì§Ò�Ó¥Ý�Õ�Ñ£ÏiÓ�Ø-Ø.ÒsÍ.Ð�Ø¦Úºí¬ÚºÕFÖ.Ý�ÒFÓ¥Ø°Û¥ÏRß&Ð�î¥ßiÒ�Í°Ð�ÕFÌ§ØeëJË�Ì>Í°Î§Ð�Ø-Û§Ò�ÛdÏiÖ Ô ÏoÔ®Ð�Ø¦Î>Í.ÕDÑ�Ö+Ò\Ô
ÒsÍ°Í°ÏeÌ^Í.Ð�Õ^Ì�Í°ÕXÍ.Î£Ï�Ø¦Í°ÏiÛÙÕFÚ�ßiÒ�Û£Í°à£Ö.Ð�Ì§ÜBÍ.Î£ÏBØ°ÛdÏeß&Ð�î¥ßeÒsÍ°Ð�ÕFÌ¥Ø$Ð�ÌTÒ�ÚºÕ^Ö°Ý>ÒFÓµÓ�ÒFÌ£ÜFà¥Ò�ÜFÏ>Ø°à£Ð�Í°ÏeÑ�Í.Õ�Ò�à£Í°ÕFÝ>Ò�Í°Ð�ß
Ò�Ì¥Ò�Ó�í�Ø°Ð�Ø ÒFÌ§ÑBà§Ø¦Ï$Ð�Ì�Í°Î£Ï�Ø°à£á§Ø°Ïeãqà£ÏeÌqÍ®Ø¦Í.ÒFÜFÏRØ-ÕFÚJÑ£ÏiïFÏeÓ�Õ^Û£Ý�ÏiÌqÍ�Ò�Ì§ÑBïsÒ�Ó�Ð�Ñ§ÒsÍ°Ð�ÕFÌ·ë

� �
	��� ÊeÃXÊiÃ�������ÄJÈ8Å���������Ã��¬È�������������É�Ê! CÉ"��ÄJÊ&Æ¬Ã�#

õoØ�Ý�ÏiÌqÍ.Ð�Õ^Ì£ÏeÑ#Ò�ádÕsïFÏF×9Ø°Û¥ÏRß&Ð�î¥ßiÒ�Í°Ð�ÕFÌ§Ø�ádÏiÜ^Ð�Ì�Í°Î£ÏeÖ°Ï�Ï&ä�Ð�Ø�Í.ÏiÌ§ßiÏDÐ�Ì�Î�à£Ý>ÒFÌCÍ°Î§ÕFà£Ü^Î^ÍR×9Ô®Î£Ð�ß+Î�Ð�Ø�Í�íqÛ§Ð�ßeÒ�Ó�Ó�í
Ì£ÕFÍ Ïiä�Û§Ö°ÏRØ°Ø°ÏeÑIÒ^Ø1Ó�ÕFÜ^Ð�ßeÒ�Ó¥ÚºÕFÖ.Ý�à£Ó�Ò�Ï^×qÒFà�Í°Õ^Ý>ÒsÍ.Ò§×�ÕFÖ Ý�Ò�Í°Î£ÏeÝ>ÒsÍ°Ð�ßiÒFÓ¥Ïiä�Û£Ö°ÏRØ°Ø°Ð�ÕFÌ§Øe×^á§à�Í®Ö.Ò�Í°Î£ÏeÖ-Ð�Ì�Ì§Ò�Í°à£Ö+Ò�Ó
Ó�Ò�Ì£Ü^à§Ò�Ü^ÏFë%$�ÒsÍ.à£Ö.ÒFÓ®Ó�ÒFÌ£ÜFà¥Ò�ÜFÏBÐ�Ø>Ò�Í>Í°Î£ÏXØ.Ò�Ý�Ï�Í°Ð�Ý�ÏXÕFÌ�Í°Î£Ï8ÕFÌ§Ï�Î¥Ò�Ì§Ñ�Ð�Ý�Û£Ö.ÏeßiÐ�Ø°ÏXÒ�Ì§ÑAÒ�ÝDá£Ð�ÜFà£Õ^à§Øi×
Ò�Ì¥Ñ�Õ^Ì�Í.Î£Ï>Õ�Í.Î£ÏiÖR×�Î£Ð�ÜFÎ£Ó�íCÏiä�Û§Ö°ÏRØ°Ø°Ð�ï^ÏFë¬Ë�Ì#Ö.ÏiÌ¥Ñ�ÏiÖ.Ð�Ì§Ü8Ò�Ì§Ò�Í°à£Ö+Ò�ÓJÓ�Ò�Ì£Ü^à§Ò�Ü^Ï¬Ø°ÛdÏeß&Ð�î¥ßeÒsÍ°Ð�ÕFÌ�Ð�Ì�ÒBÚºÕ^Ö°Ý>Ò�Ó
Ó�Ò�Ì£Ü^à§Ò�Ü^ÏF×�á¥ÕFÍ°ÎXÒFØ°ÛdÏeß�Í+Ø®Ò�Ö.Ï4Îqà§Ö.Ñ�Ó�ÏeØ Í.Õ�á¥Ï$Õsï^ÏiÖ+ß&ÕFÝ�Ï^ë

õ�ÝDá£Ð�Ü^à£Ð�Í°Ð�ÏeØ®Ò�Ö.Ï�Ö°ÏeÝ¬Õsï^ÏeÑ�áqíIÒ�ßeÒ�Ö.Ï&Úºà£ÓuÖ.ÏeÒFÑ£Ð�Ì£Ü¬Õ�Ú/Í°Î£Ï$Ì¥ÒsÍ°à§Ö.ÒFÓdÓ�Ò�Ì§ÜFà§ÒFÜFÏ�Ñ£Õ�ßià£Ý�ÏiÌqÍ®á�í�Ò¬Ö°ÏRÒFÑ�ÏeÖ
Ô®Î£Õ$Ð�Ø�Û£Ö.ÏiÛ§ÒFÖ°ÏRÑ�Í.Õ$Í°Õ�ß+Î¥Ò�Ó�Ó�ÏeÌ£ÜFÏ Í°Î§Ï�Û£Ö.Ïeß&Ð�Ø°Ð�Õ^ÌDÕFÚuÏeïFÏeÖ°í�Ø¦Í.Ò�Í°ÏeÝ¬ÏeÌqÍe×FádÕ�Í.Î>Ð�Ì¥Ñ�Ð�ï�Ð�Ñ�à§ÒFÓ�Ó�í¬ÒFÌ§Ñ�Ò$ß&Õ^Ý¬ÛdÕ&�
Ì£ÏeÌ^Í Õ�Ú9Í.Î£Ï�Ô®Î§ÕFÓ�Ï�Ñ�Õ�ß&à§Ý¬ÏeÌqÍeë�ù¶Î£ÏoÖ.ÏeÒ^Ñ�ÏiÖ-Ð�Ø-ÜFÖ.ÏeÒ�Í°Ó�í¬Ò^Ø°Ø°Ð�Ø�Í.ÏeÑ�Ð�ÌIÍ°Î§Ð�Ø-Û£Ö.Õ�ßiÏeØ.Øi×qÐ�Ú�Í°Õ¬Ò�Ð�Ñ�Í°Î£ÏeÐ�Ö¶ß&Ö.Ð�Í°Ð�ßiÒ�Ó
Ö.ÏeÒFÑ£Ð�Ì£Ü¥×RÍ°Î£Ïeí�Ò�Ö.Ï Ò�Í¦Í.ÏiÝ�Û�Í°Ð�Ì£Ü�Í°Õ�ÚºÕFÖ.Ý>Ò�Ó�Ð('eÏµÍ.Î£Ï®Ñ�Õ�ß&à£Ý�ÏiÌqÍµÒFØÓ�Ð�Í.ÏiÖ+Ò�Ó�Ó�í�Ò^ØÛ¥ÕqØ°Ø°Ð�á§Ó�Ï Ð�Ì�Ò�Ó�ÒFÌ£ÜFà§ÒFÜFÏ-Ô®Ð�Í.Î
ÒIßiÓ�ÏRÒ�Ö�ÒFÌ§ÑXÛ£Ö.ÏeßiÐ�Ø°Ï�Ø°ÏiÝ>Ò�ÌqÍ.Ð�ßeØiëoó1Ó�Ð�Ý�Ð�Ì¥ÒsÍ°Ð�Ì£Ü�ÒFÝ�á£Ð�ÜFà§Ð�Í.Ð�ÏRØ�Ð�Ø�Ñ�Õ^Ì£Ï�Ð�Ì�ÒFÌXÐ�Í.ÏiÖ+ÒsÍ°Ð�ïFÏ�Û£Ö°Õ�ßiÏeØ.Ø�Õ�ÚµÖ.ÏeßiÕFÜ)�
Ì£Ð*'iÐ�Ì£Ü�Í.Î£Ï$Ò�ÝDá£Ð�Ü^à£Ð�Í�íF×�Ø¦ÏeÏið�Ð�Ì§ÜDß&Ó�Ò�Ö.Ð�î¥ßiÒ�Í°Ð�ÕFÌ>ÚºÖ.ÕFÝEÍ°Î§Ï4ÒFà�Í°Î§ÕFÖ ÕFÖ¶Ò�à�Í.Î£ÕFÖ.Ð�Í�í^×qÒ�Í¦Í.ÏiÝ�Û�Í°Ð�Ì£ÜDÍ°ÕDÚºÕFÖ.Ý>Ò�Ó�Ð('eÏ
Í°Î§ÏDß&Ó�Ò�Ö.Ð�î§ÏeÑ8ï^ÏiÖ+Ø¦Ð�ÕFÌ�×§Í°Î£ÏeÌ�à£Ì¥ß&ÕsïFÏeÖ°Ð�Ì£Ü>Ì£ÏeÔåÒ�ÝDá£Ð�Ü^à£Ð�Í°Ð�ÏeØ�Ô®Î§Ð�ß+ÎCÌ§ÏiÏeÑ�ß&Ó�Ò�Ö.Ð�î¥ßeÒsÍ.Ð�Õ^Ì�ëoù¶Î£Ð�Ø�Û£Ö.Õ�ß&ÏRØ°ØoÐ�Ø
Ð�Ì£Î£ÏiÖ.ÏiÌqÍ.Ó�íIÒ�Îqà§Ý�ÒFÌBÕ^Ì£Ï)+�Õ^Ì�ÕFÌ§Ï�ÏeÌ§Ñ>Í.Î£Ï4á§ÒFØ°Ð�ßoà£Ì§Ñ�ÏeÖ.Ø¦Í.ÒFÌ§Ñ�Ð�Ì£Ü¬Õ�Ú�Í.Î£Ï4Ý¬ÏRÒ�Ì£Ð�Ì£Ü¬Õ�Ú�Í.Î£Ï4Ø¦ÛdÏeßiÐ�î¥ßeÒsÍ.Ð�Õ^Ì
Ö.ÏeØ°Ð�Ñ�ÏRØoÐ�Ì#Í°Î£Ï¬Ý�Ð�Ì§Ñ§Ø4Õ�Ú1Ð�Í.Ø4Ò�à£Í°Î£Õ^Ö.Øe×9Ò�Ì§Ñ�ÕFÌCÍ.Î£Ï�Õ�Í.Î£ÏiÖR×uÍ°Î£Ï¬Ö.Ïeß&Õ^ÜFÌ£Ð�Í°Ð�ÕFÌ�Õ�ÚµÍ.Î£Ï>Ò�Ý�á§Ð�Ü^à£Ð�Í�í8Ð�Ø4Ñ�ÕFÌ£Ï
á�íXÍ°Î§ÏIÎ�à£Ý>Ò�Ì�Û¥ÏeÖ¦ÚºÕ^Ö°Ý�Ð�Ì£Ü�Í°Î£Ï�Í.Ö.ÒFÌ§Ø°Ó�Ò�Í°Ð�ÕFÌ�ë-,�Ð�Í°Î�Í.Ð�Ý�ÏF×·Í°Î£ÏBÒFß�Í$ÕFÚ Ö.ÏeßiÕFÜFÌ§Ð('eÐ�Ì£Ü8Ò�ÝDá£Ð�ÜFà£Ð�Í°Ð�ÏeØ$Ý>Ò\í
ádÏeß&Õ^Ý�ÏoÐ�Ì§ß&Ö.ÏeÒ^Ø¦Ð�Ì£ÜFÓ�íDÒ^Ø°Ø°Ð�Ø�Í.ÏeÑ�á�í�Ý�Ò^ß+Î£Ð�Ì£Ï®Í°Ö+Ò�Ì¥Ø¦Ó�ÒsÍ.ÕFÖ+Øiëø�ÕsÔ ÏiïFÏeÖe×Fáqí�Ý>Ò�ð�Ð�Ì£Ü�à§Ø°ÏoÕFÚ·Ò4Í°Ö+Ò�Ì¥Ø¦Ó�ÒsÍ.ÕFÖR×FÐ�Ì
Ï!�uÏeß&Íe×FÒ�Í/Í.Î£Ï Û¥Õ^Ð�ÌqÍ�Ô-Ï¶Ø°à£á£Ý�Ð�ÍÍ°Î§Ï/.°Ì§ÒsÍ.à£Ö+Ò�ÓqÓ�ÒFÌ£ÜFà§ÒFÜFÏ10�Ø¦ÛdÏeßiÐ�îdßiÒsÍ.Ð�Õ^Ì�Í.ÕoÍ.Î£Ï1Í.Ö.ÒFÌ§Ø°Ó�Ò�Í°ÕFÖR×RÍ°Î£Ï¶Ó�Ò�Ì£Ü^à§Ò�Ü^Ï
ádÏeß&Õ^Ý�ÏeØ Ò�Ý>ÒFß+Î£Ð�Ì£Ï�Ó�Ò�Ì§ÜFà§ÒFÜFÏoÒFÌ§Ñ�Í°Î§Ï�ãqà£ÏRØ�Í.Ð�Õ^ÌIÕ�Ú�Ô®Î£ÏiÍ°Î£ÏeÖ1Í.Î£Ï�Ì§ÒsÍ.à£Ö.ÒFÓ§Ó�Ò�Ì£Ü^à§Ò�Ü^Ï�Ï&ä�Û£Ö.ÏeØ.Ø°Ð�Õ^Ì§Ø�Î§Ò\ï^Ï
Í°Î§Ï�Ø°ÒFÝ¬Ï4Ý�ÏeÒFÌ£Ð�Ì£Ü>ÒFØ Í°Î§Ï$Ý¬ÏRÒ�Ì£Ð�Ì£Ü�ÜFÐ�ïFÏeÌBá�í>Í.Î£Ï4Í°Ö+Ò�Ì¥Ø¦Ó�ÒsÍ.ÕFÖ®Ø�Í.Ð�Ó�Ó�Ö.ÏiÝ>Ò�Ð�Ì§Øeë

÷ ÏeßiÒFà§Ø°ÏoÕ�Ú·Í°Î£Ï4Î�à£Ý>Ò�Ì�Ú¼ÒFß�Í.ÕFÖR×�á¥ÕFÍ°ÎIÍ.Î£Ï$ÒFß&Í-Õ�ÚJØ¦ÏeÏið�Ð�Ì£ÜDßiÓ�ÒFÖ°Ð�î¥ßiÒ�Í°Ð�ÕFÌ�ÒFÌ§Ñ>Ö.ÏiÌ§Ñ£ÏiÖ.Ð�Ì£Ü¬ß&Ó�Ò�Ö.Ð�îdßiÒsÍ.Ð�Õ^Ì
Ò�Ö.Ï�Ø¦à§á�Þ�Ïeß&Í�Í°Õ®Ì£Õ^Ì���Ñ�Ï&Í.ÏiÖ.Ý¬Ð�Ì£Ð�Ø¦Ý8ë32�Ì4Í.Î£ÏµØ°Ð�Ñ�Ï1Õ�Ú�Ø¦ÏeÏið�Ð�Ì§Ü�ß&Ó�Ò�Ö.Ð�î¥ßeÒsÍ.Ð�Õ^Ì�×&Í.Î£Ï�Ö°ÏRÒFÑ�ÏeÖ9Õ�Ú�Í°Î§ÏµØ¦ÛdÏeßiÐ�î¥ßeÒsÍ.Ð�Õ^Ì
Ý>Ò\íCÖ.ÏeÒFÑ�Ò8Ø¦Í.ÒsÍ.ÏiÝ�ÏiÌqÍ�ÚºÕ^Ö$Ô®Î£Ð�ß+ÎÙÕFÌ£Ó�íCÕFÌ§Ï>Ý¬ÏRÒ�Ì£Ð�Ì£ÜXÕ�ßißià£Ö+Ø�Í°ÕXÍ.Î£ÏiÝ8ëBøoÕsÔ-ÏeïFÏeÖe×9Í.Î£ÏiÖ.Ï>Ý>Ò\íCÎ§Ò\ï^Ï
ádÏiÏiÌ�Ò�Ñ�Ð��uÏiÖ.ÏiÌqÍ�Ý�ÏeÒFÌ£Ð�Ì§Ü§×sÛdÕ^Ø.Ø¦Ð�á£Ó�í4Í°Î£Ï¶ÕFÌ§Ï-Ð�ÌqÍ°ÏiÌ¥Ñ�ÏeÑDá�í$Í°Î£Ï®ÒFà�Í°Î£Õ^Öeë�2�Ì�Í.Î£Ï¶Õ�Í°Î§ÏiÖ�Ø¦Ð�Ñ�Ï^×sÍ°Î£Ï®ÒFà�Í°Î£Õ^Öe×
Ô®Î£ÏeÌ¬Ò^Ø¦ð^ÏeÑ$ÚºÕ^ÖµÒ4ß&Ó�Ò�Ö.Ð�î¥ßeÒsÍ.Ð�Õ^Ì�×sÝ>Ò\í$Ì£Õ�Íµà£Ì¥Ñ�ÏiÖ+Ø�Í+Ò�Ì§Ñ�Í°Î§Ï¶Ñ£Ð��uÏiÖ.ÏiÌ§ßiÏeØJÐ�Ì¬Í°Î£Ï¶ÛdÕ^Ø.Ø¦Ð�á£Ó�Ï Ð�ÌqÍ°ÏeÖ°Û£Ö.Ï&Í+ÒsÍ.Ð�Õ^Ì§Øi×
Ò�Ì¥Ñ�Ý>Ò\í�ß+Î£Õ�ÕqØ¦Ï4Ò�Û¥ÕqØ°Ø°Ð�á£Ð�Ó�Ð�Í�í�Ñ�Ð(�dÏeÖ°ÏeÌ^Í®ÚºÖ.ÕFÝ7Í°Î£Ï$Õ^Ì£Ï�Í°Î£ÏeíIÍ°Ö.à£Ó�íIÝ�ÏeÒFÌ^ÍRë

õoØ�Ò�ÌXÏiä�ÒFÝ�Û£Ó�Ï�Õ�Ú�Í°Î§Ï�Ì£ÏeÏeÑ�Í°ÕBÖ°ÏRß&Õ^ÜFÌ£Ð*'iÏ�ÒFÌ§Ñ8ÏiÓ�Ð�Ý�Ð�Ì§ÒsÍ.ÏDÒFÝ�á£Ð�ÜFà£Ð�Í°Ð�ÏeØe×§Ó�Ï&Í�à§Ø�ß&ÕFÌ¥Ø¦Ð�Ñ�ÏiÖ�ÒIØ°ÒFÝ�Û£Ó�Ï
Ø¦Í.ÒsÍ.ÏiÝ�ÏiÌqÍ�Í°Î§Ò�Í�Ý�Ð�ÜFÎqÍ�ádÏ¬ÚºÕFà£Ì¥ÑCÐ�Ì#ÒIà¥Ø¦ÏeÖ�Ö.Ïeãqà£Ð�Ö°ÏeÝ�ÏiÌqÍ.Ø¬æºÕ^Ö�Ø°í�Ø�Í.ÏiÝ³Ø°Û¥ÏRß&Ð�î¥ßiÒ�Í°Ð�ÕFÌ¥ç�Ñ�Õ�ß&à£Ý�ÏeÌ^Í4Õ�Ú1Ò
Ø°í�Ø¦Í°ÏeÝ�Í°Î¥ÒsÍ�Ý�à¥Ø�Í�Ý�ÕFÌ§Ð�Í.ÕFÖ�Ò�Ì¥Ñ�Ö.ÏiÜ^à£Ó�Ò�Í°Ï4Ò>Ñ�Ïiï�Ð�ß&Ï�Í°Î¥ÒsÍ�Ð�Ì§ß&Ó�à§Ñ�ÏRØ�Ò¬Û£Ö°ÏRØ°Ø°à£Ö.Ï�Ö.ÏeÒ^Ñ�Ð�Ì£Ü54

2�Ì¥ß&Ï¬Í°Î£Ï>Û§à£Ý�Û�Î¥ÒFØ4ádÏiÏiÌ�Í.à£Ö°Ì§ÏeÑ�á¥ÏeÏiÌ�ÕFÌ·×·Ò�Ì�Ð�Ì§Ð�Í.Ð�ÒFÓµÛ£Ö.ÏeØ.Ø¦à£Ö.Ï¬Ö°ÏRÒFÑ�Ð�Ì£Ü8Ô®Ð�Ó�Ó�ádÏ�Í.Ò�ð^ÏiÌ
ÒFÌ§ÑÙÑ�Ð�Ø¦Û§Ó�Ò\í^ÏeÑ9×JÒ�Ì§Ñ#Í.Î£ÏiÖ.ÏeÒ�Ú²Í°ÏiÖ�Í°Î£ÏBÑ�Ð�Ø°Û£Ó�Ò\íFÏRÑ#ïsÒFÓ�à£ÏIÚºÕFÖ$Í.Î£Ï�Û£Ö.ÏeØ.Ø°à£Ö°Ï�Ô®Ð�Ó�Ó ádÏIà£ÛuÑ£ÒsÍ.ÏeÑ
ÏeïFÏeÖ°í�6¬Ø°ÏeßiÕFÌ§Ñ£Øeë

õ Í�î¥Ö.Ø¦Í�Ö.ÏeÒ^Ñ�Ð�Ì§Ü§×¥Í°Î£Ð�Ø�Ý�Ò\í8Ø°ÏiÏiÝHÓ�Ð�ð^ÏDãqà£Ð�Í°Ï�ÒIÛ£Ö.ÏeßiÐ�Ø°Ï�Ø¦Í.Ò�Í°ÏiÝ�ÏeÌ^ÍRë87·Ï&ÍRâ Ø�Ó�ÕqÕ^ð�Ò�Í�Ð�Í4Ò�á£Ð�Íeë9,�Î§ÒsÍ
Ñ�Õ�ÏeØ Ð�Í®Ý¬ÏRÒ�Ì�ÚºÕFÖ Í°Î£Ï$Ñ�Ð�Ø°Û£Ó�Ò\í^ÏeÑ>ïsÒFÓ�à£Ï�Í.ÕDádÏ;:1<>=@?BADCE=5FXù¶Î£Ï�î§Ö.Ø¦Í�Ò�Ì§Ø°Ô ÏiÖ Ð�Ø-Í°Î¥ÒsÍ¶Í°Î£Ï$Ñ�Ð�Ø°Û£Ó�Ò\í^ÏeÑ>ïsÒFÓ�à£Ï
Ð�ØµÝ>ÒFÑ�Ï�Í°Õ�ádÏ®Í°Î§Ï�Ø.Ò�Ý�ÏoÒFØ�Í°Î£Ï�ÒFß�Í.à§Ò�Ó§Û£Ö°ÏRØ°Ø°à£Ö.Ï®ïsÒ�Ó�à£ÏFë�÷ à�Í-Ø°Ð�Ì¥ß&Ï�Ô ÏoÒ�Ö.Ï¶Í.ÒFÓ�ð�Ð�Ì£Ü�ÒFá¥Õ^à�ÍµÍ°Ð�Ý�ÏF×�Ò�Ö.Ï®Ô-Ï

6

Ð�Ì§Ø¦Ð�Ø¦Í°Ð�Ì£Ü$Í°Î¥ÒsÍ1Í.Î£Ï�Ñ£Ð�Ø°Û£Ó�Ò\íFÏeÑ�ïsÒFÓ�à£ÏoÐ�Ø-Ý>ÒFÑ�Ï®Í.Õ�ádÏ�Í.Î£Ï�Ø.Ò�Ý�ÏoÒ^Ø�Í°Î§Ï�ÒFß&Í°à§ÒFÓ§ïsÒ�Ó�à£ÏoÒ�Í-Ïiä�Ò^ß�Í.Ó�íDÍ°Î£Ï�Ø°ÒFÝ�Ï
Í°Ð�Ý�Ï1F8õoÖ°Ï¶Ô Ï Ð�Ì§Ø°Ð�Ø¦Í°Ð�Ì£Ü�Í°Î¥ÒsÍ�Í°Î§ÏiÖ.Ï®Ð�Ø�����A����;CoÒ�Ó�Ó�ÕsÔ ÏeÑ�ÚºÕFÖJÍ°Î§Ï�Ñ£ÒsÍ+ÒoÍ.Õ$á¥Ï®Ö.ÏeÒ^Ñ�ÒFÌ§ÑDÍ°Î£Ï�Ñ�Ð�Ø°Û£Ó�Ò\í4Í.Õ$á¥Ï
ß+Î§ÒFÌ£ÜFÏRÑ5F8Ë�ÚÍ°Î£Ï�à§Ì§Ñ�ÏiÖ.Ó�íqÐ�Ì£Ü�Ì£ÕFÍ°Ð�ÕFÌ8Õ�ÚÍ°Ð�Ý�Ï$Ð�Ø�ßiÕFà£Ö+Ø°Ï�ÏeÌ£ÕFà§ÜFÎ�×£ÒFÌ§Ñ�ÕFà£Ö�Ø°ÏiÌ§Ø°ÕFÖ+Ø®Ò�Ì¥Ñ�Û£Ö.Õ�ß&ÏRØ°Ø°ÕFÖ+Ø¶Ò�Ö.Ï
Ú¼ÒFØ¦Í-ÏeÌ£ÕFà§ÜFÎ�×qÍ°Î§ÏiÌIÍ.Î£Ð�Ø-Ý>Ò\í�ádÏ�Ö.ÏeÒ^Ø¦Õ^Ì§Ò�á£Ó�ÏFëø�ÕsÔ Ïiï^ÏiÖR×�Í°Î§Ð�Ø Ð�Ø1Ö.ÏeÒFÓ�Ó�í�Þ�à§Ø�Í®Ø°Ô-ÏeÏiÛ£Ð�Ì£Ü�Í.Î£Ï�Ð�Ø.Ø¦à§ÏoÕ�Ú·Í°Ð�Ý¬Ï
ÚºÕFÖ®ßiÕFÝ�Û£à�Í+ÒsÍ°Ð�ÕFÌ�à£Ì§Ñ£ÏiÖ®Í.Î£Ï4Ö°à£Ü>ÒFÌ§ÑBÒ^Ø°Ø°à£Ý�Ð�Ì£Ü�Í.Î§ÒsÍ®Í.Î£Ï$Ý>ÒFß+Î£Ð�Ì£Ï�Ð�Ø®Ú¼ÒFØ¦Í¶ÏeÌ£ÕFà§ÜFÎIÍ.Õ>Ý�ÏiÏ&Í®Ô®Î§Ò�Í°ÏeïFÏiÖ
Í°Î§Ï�Ö°ÏRÒ�Ó¥à£Ì�Ô®Ö°Ð�Í¦Í.ÏiÌ>Ö.Ïeãqà£Ð�Ö°ÏeÝ¬ÏeÌqÍ.Ø1ÒFÖ°Ï^ë/ù¶Î�à§Ø�.¦à£ÛuÑ£ÒsÍ.ÏeÑ>0�Ö°ÏRÒ�Ó�Ó�í¬Ý�ÏeÒ�Ì¥Ø1Ø°ÕFÝ�Ï&Í.Î£Ð�Ì§Ü�Ý�ÕFÖ.Ï®Ó�Ð�ðFÏ®Í.Î§ÒsÍ-Í°Î£Ï
Ñ�Ð�Ø¦Û§Ó�Ò\íCïsÒFÓ�à£Ï�Ð�Ø�Í°Î£ÏIØ.Ò�Ý�Ï>ÒFØ�Í.Î£ÏIÒFß&Í°à§ÒFÓ�Û£Ö.ÏeØ.Ø¦à£Ö.Ï¬ï\ÒFÓ�à§Ï>Õ�Ú-Ì§Õ�Í�Ý�ÕFÖ.Ï¬Í°Î§ÒFÌ�Ø°ÕFÝ�Ï>Ò�Ó�Ó�ÕsÔ ÏeÑ�Ò�Ý�Õ^à£ÌqÍ
Õ�Ú�Í.Ð�Ý�Ï�Ò�Ü^Õ§ë4õoØ�Í°Î£Ï¬Ö.ÏeÒFÑ£ÏiÖoÎ¥ÒFØ�Û£Ö°Õ^á§Ò�á§Ó�í8Ò�Ó�Ø¦ÕBÌ£Õ�Í.Ð�ßiÏeÑ9×uÔ Ï¬ßeÒ�Ì�â Í�Ö.ÏeÒFÓ�Ð�Ø¦Í°Ð�ßiÒ�Ó�Ó�íBÖ.Ïeãqà£Ð�Ö°Ï�Í°Î£Ï�Ñ�Ð�Ø¦Û§Ó�Ò\í
ïsÒ�Ó�à£Ï¶Í°Õ$ádÏ .¦Í°Î£Ï�Ø.Ò�Ý�Ï 0$Ò^ØJÍ°Î§Ï�ÒFß�Í.à§Ò�Ó§Û£Ö°ÏRØ°Ø°à£Ö.Ï¶ï\ÒFÓ�à§ÏFë ,#Ï�ßiÒ�Ì·â ÍµÝ�ÏeÒ^Ø¦à§Ö°Ï Í°Î§ÏoÒFß&Í°à§ÒFÓ£Û£Ö.ÏeØ.Ø¦à£Ö.Ï¶ïsÒ�Ó�à£ÏF×
Ô Ï�ßeÒ�Ì�ÕFÌ§Ó�íCÝ�ÏRÒFØ°à£Ö°Ï>ÒFÌ�ÒFÛ£Û£Ö.Õ\ä�Ð�Ý>ÒsÍ.Ï¬ïsÒFÓ�à£Ï¬ÚºÕ^Ö�Ð�ÍRë�õ�Ì§Õ�Í°Î§ÏiÖ�ãqà£ÏeØ¦Í°Ð�ÕFÌ�Ð�Ø4Ô®Î§ÒsÍ�Ñ£ÕqÏRØ$Ð�Í�Ý¬ÏRÒ�Ì�ÚºÕFÖ
Í°Î§Ï8Ñ£Ð�Ø°Û£Ó�Ò\í�Í°Õ�á¥ÏXà§ÛdÑ£Ò�Í°ÏRÑ C	� C	
����� C������ =��1F��oÕ�ÏRØ�Ð�Í>Ý�ÏeÒFÌ;Í.Î§ÒsÍ�Í°Î§ÏXÖ°ÏRÒFÑ�Ð�Ì£Ü�à§Û¥Õ^ÌAÔ®Î§Ð�ß+Î�Í°Î£Ï
Ñ�Ð�Ø¦Û§Ó�Ò\í8Ð�Ø4á§ÒFØ°ÏeÑCØ°Î£Õ^à£Ó�Ñ#ádÏ�Í+Ò�ðFÏeÌ�Ïiä�Ò^ß�Í.Ó�íXÏeïFÏiÖ.í 6�Ø°ÏeßiÕFÌ§Ñ§Øi×uÕFÖ�Í.Î§ÒsÍ4Í°Î§ÏDÌ£ÏeÔôÑ�Ð�Ø°Û£Ó�Ò\í8ïsÒ�Ó�à£Ï�Ô ÕFà£Ó�Ñ
ádÏ�Ü^ÏiÌ£ÏeÖ.Ò�Í°ÏeÑIÏ&ä£ÒFß&Í°Ó�í¬ÏeïFÏeÖ°í 6�Ø°ÏeßiÕFÌ§Ñ§Ø�æ¼ÕFÖ Û¥ÏeÖ°Î§ÒFÛ§Ø-Í°Î£Ïeí>Ö°ÏRÒ�Ó�Ó�í�Ô¶Ò�ÌqÍ°ÏRÑ�Í°Õ¬ð�Ì£ÕsÔ:Í°Î¥ÒsÍ Í°Î£Ï4Ñ�Ð�Ø¦Û£Ó�Ò\íFÏRÑ
ïsÒ�Ó�à£ÏeÑCÔ Ò^Ø®Ì£Ïiï^ÏiÖ�Ý¬Õ^Ö°Ï�Í°Î§ÒFÌ 6>Ø°Ïeß&Õ^Ì§Ñ£ØoÕFÓ�Ñ9×uÔ®Î£Ð�ß+ÎXÐ�Ø°Ì�â Í�Ö°ÏRÒ�Ó�Ó�íBÍ°Î§ÏDØ.Ò�Ý�ÏDÒ^Ø�à£ÛuÑ£ÒsÍ.Ð�Ì§ÜIÍ°Î§ÏDÑ�Ð�Ø¦Û§Ó�Ò\í
Ïiï^ÏiÖ.í;6�Ø¦ÏRß&ÕFÌ¥Ñ£Ø.ç&ëJË�Ú9Í°Î£Ï�Í°Ð�Ý�Ï�Í°ÕDÖ°ÏRÒFÑ¬Í.Î£Ï�Û§Ö°ÏRØ°Ø°à£Ö.Ï�ïsÒ�Ó�à£Ï�ÒFÌ§Ñ�à£ÛuÑ£ÒsÍ.ÏoÍ.Î£Ï�Ñ�Ð�Ø°Û£Ó�Ò\í�Ð�Ø-ßiÕFÌ§Ø¦Í.ÒFÌqÍe×^Í°Î£ÏeÌ
Í°Î§Ï�î§Ö+Ø�Í-Í�Ô-ÕDÕFÛ�Í.Ð�Õ^Ì§Ø Ò�ádÕsïFÏoÒFÝ¬Õ^à£ÌqÍ1Í.Õ�Í°Î§Ï�Ø.Ò�Ý�Ï�Í.Î£Ð�Ì§Ü§ë�ø�ÕsÔ Ïiï^ÏiÖR×FÐ�Ú�ÚºÕFÖ Ï&ä£Ò�Ý�Û£Ó�ÏF×^Í°Î§ÏoÍ.Ð�Ý�Ï�Í°Õ�Ö.ÏeÒ^Ñ
Í°Î§Ï�Û£Ö.ÏeØ.Ø¦à§Ö°ÏIÐ�Ø�ïsÒFÖ°Ð�Ò�á£Ó�ÏF×Í.Î£ÏiÌ;Í°Î£Ïeí�ÒFÖ°Ï�Ì£Õ�ÍRë�õ�Ì§Ñ;Ó�Ò^Ø�Í.Ó�í:æ²ÚºÕ^ÖDÌ§ÕsÔoç�×�Ô®Î§Ò�ÍDØ¦Î§ÕFà£Ó�ÑÙÎ§ÒFÛ£Û¥ÏeÌTÐ�Ú�Í°Î£Ï
Ø°í�Ø¦Í°ÏeÝ7Ú¼ÒFÐ�Ó�Ø¶Í°Õ>ádÏ�ÒFá£Ó�Ï4Í.Õ>à£ÛuÑ£ÒsÍ.Ï$Í°Î£ÏDÑ�Ð�Ø°Û£Ó�Ò\íFÏRÑ�ïsÒ�Ó�à£Ï�Ò�Í�Í°Î£Ï�ÒFÛ£Û£Ö.ÕFÛ£Ö.Ð�ÒsÍ°Ï�Í.Ð�Ý�Ï1F�ì�Ò\í�Ð�Ì£Ü¬Í°Î§Ò�Í�Í°Î§Ð�Ø
Ø°Î£ÕFà£Ó�Ñ8ádÏ�Ð�Ý¬ÛdÕ^Ø.Ø°Ð�á£Ó�Ï�Ý�ÏeÒFÌ§ØoßiÓ�ÒFÐ�Ý�Ð�Ì£Ü>Í.Î£ÏiÖ.Ï�Ô®Ð�Ó�ÓÌ£Ïiï^ÏiÖ�ádÏDÒFÌ�í�Ú¼ÒFà£Ó�Í+Ø�Ð�ÌXÍ°Î§Ï�ÏiÌ�ï�Ð�Ö°Õ^Ì£Ý�ÏiÌqÍ�ÕFÖ�Ô®Ð�Í.Î
Í°Î§Ï�Ø¦í�Ø¦Í°ÏiÝ)Ð�ÌqÍ°ÏeÖ¦Ú¼Ò^ß&Ï�Í°Õ¬Í.Î£Ï$ÏiÌ�ï�Ð�Ö.ÕFÌ§Ý¬ÏeÌqÍeë

ù¶Î£ÏoÛdÕFÐ�ÌqÍ.Ø-Ý>ÒFÑ�Ï�Ò�ádÕsïFÏ�Ò�ádÕFà£Í1Í°Î§ÏoÜFÐ�ïFÏeÌ>Ï&ä£Ò�Ý�Û£Ó�Ï�ÒFÖ°Ï®Ö.ÏiÓ�ÏiïsÒFÌ^Í Ö°ÏeÜ^ÒFÖ.Ñ�Ó�ÏeØ.ØJÕ�Ú9Í.Î£Ï�ß+Î§ÕFÐ�ß&Ï�ÕFÚ�Ó�Õ^ÜFÐ�ß
Ð�Ì�Ô®Î£Ð�ß+Î�Í.ÕDÝ�Õ�Ñ�ÏeÓuÍ°Î£Ï$Ø°Û¥ÏRß&Ð�î¥ßiÒ�Í°Ð�ÕFÌ�ë�ø�ÕsÔ Ïiï^ÏiÖR×qÒ�Í¦Í.ÏiÝ�Û�Í°Ð�Ì£ÜDÍ°Õ¬ÚºÕFÖ.Ý>Ò�Ó�Ð('eÏ�Í.Î£Ð�Ø®Ø¦Í.Ò�Í°ÏeÝ¬ÏeÌqÍ¶Ð�Ì�ïsÒFÖ°Ð�ÕFà§Ø
ÚºÖ+Ò�Ý�ÏiÔ ÕFÖ.ð�Ø�Ô ÕFà§Ó�Ñ�Í.ÏiÌ§Ñ�Í.Õ�Ø¦Î§ÕsÔôà£ÛTÒ�Í�Ó�ÏeÒFØ¦ÍDØ°ÕFÝ�Ï>Õ�Ú¶Í.Î£ÏeØ°ÏIÐ�Ø°Ø°à£ÏeØeë8ñ£ÕFÖ�Ï&ä£Ò�Ý�Û£Ó�ÏF×Ð�Ú�Ô Ï�Í°Ö.Ð�ÏeÑ�Í°Õ
ßiÒFÛ�Í°à§Ö°Ï$Í.Î£ÏDØ°ÛdÏeß&Ð�î¥ßeÒsÍ°Ð�ÕFÌ�Ô®Ð�Í.Î#Ò�ÌXÏiä�Í°ÏiÌ¥Ñ�ÏeÑ8î¥Ì£Ð�Í.Ï¬Ø¦Í.Ò�Í°ÏDÝ�Ò^ß+Î£Ð�Ì£ÏF×dÔ-ÏDÔ-Õ^à£Ó�Ñ8Ó�Ð�ðFÏeÓ�í8ÏiÌ¥ÑXà£ÛCÔ®Ð�Í°Î�Ò
ÜFà¥Ò�Ö+Ñ�ÏeÑIÍ°Ö+Ò�Ì§Ø°Ð�Í.Ð�Õ^ÌBÓ�Ò�ádÏiÓ�ÏeÑ�á�í�Ø°ÕFÝ�Ï&Í.Î£Ð�Ì£Ü�Ó�Ð�ðFÏ@4

�����	���� !� æ ��"$#%#&���(' '�)+*,�.-0/ 12�3' "54! $1('6� '�)+*,� ç87 6:9
 ;) �<4$/ 1	= >�1$/?"(� 4A@ 4!#B���3�<"$#&� >21$/?"2�

Ë�Ú�Í.Î£Ï8Ý¬Õ�Ñ�ÏeÓ¶Ð�Ø¬Ð�Ì^Í.ÏiÖ.Û£Ö.Ï&Í°ÏRÑTÐ�Ì�Ò�Ø¦ÏiÍ¦Í.Ð�Ì£Ü�Ô®Î£ÏeÖ°Ï^×�ÚºÕFÖ¬ÏeÒ^ß+ÎÙÍ°Ö+Ò�Ì§Ø°Ð�Í°Ð�ÕFÌ�×µÐ�Ì�Ò^Ñ£Ñ�Ð�Í°Ð�ÕFÌ;Í°Õ#Í°Î£ÏXÒFß&Í°Ð�ÕFÌ§Ø
ß&Õ^Ý�Ý¬Ð�Í¦Í.ÏeÑ¬á�í�Í.Î£Ï®Ý>ÒFß+Î£Ð�Ì£ÏF×FÍ°Î£Ï®ÏeÌ�ïqÐ�Ö.ÕFÌ£Ý�ÏiÌqÍ�Ð�ØµÒ�Ó�Ó�ÕsÔ ÏeÑ�Í°Õ�ÒFÖ°á£Ð�Í°Ö+Ò�Ö.Ð�Ó�í�ß+Î§ÒFÌ£ÜFÏ®ÒFÓ�Ó�ïsÒ�Ó�à£ÏRØ�Ð�Í1Ø°à£Û£Û§Ó�Ð�ÏeØ
æºÏ^ë Ü¥ë�è?CRêºç�×§Í°Î£ÏeÌ�×§Ô®Ð�Í°ÎXÏRÒFß+ÎBÍ°Ö+Ò�Ì§Ø°Ð�Í.Ð�Õ^Ì�× 4�#&�	���<"$#B� >21$/?"2� ÛdÕ�Í°ÏeÌqÍ°Ð�Ò�Ó�Ó�íBÔ®Ð�Ó�Ó/ß+Î§ÒFÌ£ÜFÏ4Ð�Í.Øoï\ÒFÓ�à§ÏFë-ù¶Î§ÏiÖ.Ï&ÚºÕFÖ.ÏF×
Ô ÏCßiÒ�Ì�Ì§Õ�Í�Ü^à§Ò�Ö+Ò�ÌqÍ°ÏeÏ�Í°Î§Ò�ÍIÍ°Î£ÏeÖ°Ï�Ð�Ø�ÏiïFÏeÖIÒ�Í°Ð�Ý�ÏCÔ®Î£ÏeÌ D) �	45/ 1	= >�1$/?"(� @ 4�#B���3�	"5#&� >�1$/?"(� ë õoÓ�Ó�Ô-Ï
ßiÒFÌ�ÜFà§ÒFÖ.ÒFÌ^Í.ÏiÏ�Ð�Ø4Í°Î§Ò�Í�Í°Î§Ï�ß&à£Ö.Ö.ÏiÌqÍ�ïsÒ�Ó�à£Ï>Õ�Ú ;) �<4$/ 1<= >21$/?"2� Ð�Ø4Í°Î§Ï�Ø°ÒFÝ�ÏIÒFØ�Ø°ÕFÝ�Ï>Û£Ö.Ïiï�Ð�ÕFà§Ø$ïsÒFÓ�à£Ï>ÕFÚ
4�#&�	���<"$#B� >�1$/?"2� ë

E F8Å�Æ ����ÄJÈ8Å����%����Ã��DÈ���� � ÄJÆ �HG �

õoØ Ñ�Ð�Ø°ßià§Ø.Ø¦ÏRÑIÒ�ádÕsïFÏ^×FÌ§Ò�Í°à£Ö+Ò�Ó¥Ó�ÒFÌ£ÜFà§ÒFÜFÏoØ°ÛdÏeß&Ð�î¥ßeÒsÍ°Ð�ÕFÌ¥Ø1Ò�Ö.Ï�Ø°à£á�Þ�ÏRß�Í-Í°ÕDßiÕFÌ§Ø°Ð�Ñ�ÏiÖ+Ò�á£Ó�ÏoÒFÝ�á£Ð�ÜFà£Ð�Í�íFëJø�ÕsÔ �
Ïiï^ÏiÖR×1ÏeïFÏiÌAÐ�Ú�Í.Î£ÏiíAÒ�Ö.ÏBÖ.ÏiÌ§Ñ£ÏiÖ.ÏeÑ�Ô®Ð�Í.Î�Í.Î£ÏXà�Í.Ý¬ÕqØ�Í�ßeÒ�Ö.Ï�ÒFÌ§ÑAÛ£Ö.Ïeß&Ð�Ø°Ð�Õ^Ì�×1ádÏ&ÚºÕ^Ö°Ï�Í°Î§Ïií�ßeÒ�ÌAá¥ÏRß&Õ^Ý¬Ï
Í°Î§ÏDÜ^Ö°Ð�Ø�Í�ÚºÕFÖ�Í°Î§Ï¬Ý�Ð�Ó�Ó�ÕFÚ-Ò�à£Í°ÕFÝ>Ò�Í°Ð�ß�Ò�Ì¥Ò�Ó�í�Ø°Ð�Øi×dÍ°Î§ÏiíCÝDà§Ø�Í4ádÏDÚ¼ÒFÐ�Í.Î�Úºà£Ó�Ó�íCÍ°Ö+Ò�Ì§Ø°Ó�Ò�Í°ÏRÑXÐ�ÌqÍ.Õ�ÒBÝ>ÒFß+Î£Ð�Ì£Ï!�
Û£Ö.Õ�ß&ÏeØ.Ø.Ò�á£Ó�Ï�ÚºÕ^Ö°Ý>Ò�ÓJÓ�Ò�Ì£Ü^à§Ò�Ü^ÏF×9Ô®Ð�Í°Î�Ò�Ö°Ð�ÜFÕ^Ö°Õ^à§ØoØ°ÏiÝ>Ò�ÌqÍ.Ð�ßeØiëJIXÕFÖ.ÏiÕsï^ÏiÖR×§Í.Î§ÒsÍ$ÚºÕ^Ö°Ý>Ò�ÓJÓ�Ò�Ì£Ü^à§Ò�Ü^Ï�ÝDà§Ø�Í
ÒFÑ£Ý¬Ð�Í®Í°Î§Ï$ðqÐ�Ì§Ñ£Ø¶ÕFÚJÒFà�Í°Õ^Ý>ÒsÍ°ÏRÑBÒFÌ§Ò�Ó�í�Ø¦Ð�Ø¶Ñ�ÏeØ°Ð�Ö°ÏRÑ9ë

7�Ð�Ì£ÏeÒFÖ�ù/ÏiÝ�ÛdÕFÖ+Ò�Ó 7·ÕFÜFÐ�ß>æ 7�ù"7ç®Ð�ØoÒ>ßiÕFÝ�Ý�ÕFÌXÓ�Ò�Ì£Ü^à§Ò�Ü^Ï$à§Ø¦ÏRÑ�ÚºÕFÖoØ°ÛdÏeß&Ð�Úºí�Ð�Ì§ÜIÛ£Ö.ÕFÛdÏiÖ°Í°Ð�ÏeØ®Í.Î§ÒsÍ�Ò�Ö.Ï
Í°Õ¬Î£Õ^Ó�Ñ�Õ�ÚßiÕFÌ§ßià£Ö.Ö°ÏeÌ^Í¶Ø¦í�Ø¦Í°ÏeÝ�Øeë 2�Ì£Ï4ÒFÑ�ïsÒ�ÌqÍ+Ò�ÜFÏ�Õ�Ú 7�ù"7#Ð�Ø Í°Î§Ò�Í Ð�Í®Î§ÒFØ¶Ò�Ú¼Ò�Ð�Ö°Ó�íIØ¦Ð�Ý�Û£Ó�Ï4ÒFÌ§ÑIÐ�ÌqÍ°à£Ð�Í°Ð�ïFÏ
Ø°íqÌqÍ+ÒsäCÔ®Ð�Í°ÎÙÒBØ°Ð�Ý¬Û§Ó�ÏIÒFÌ§Ñ�Ô ÏiÓ�Ó(��Ñ�Ïiî§Ì£ÏRÑ#Ø°ÏiÝ>Ò�ÌqÍ.Ð�ßeØië¬ø�ÕsÔ ÏiïFÏeÖe×uÍ.Î£Ï>Ñ�Ö.Ð�ï�Ð�Ì£Ü8Ý¬ÕFÍ°Ð�ïsÒsÍ°Ð�ÕFÌ�ádÏiÎ£Ð�Ì§Ñ#Í°Î£Ï
à§Ø°Ï�ÕFÚ 7�ù"7 Ð�Ø�Í.Î§ÒsÍ�Ð�ÍDÐ�ØDÛdÕ^Ø.Ø°Ð�á£Ó�ÏIÍ.Õ�Ï �dÏRß�Í°Ð�ïFÏeÓ�íÙß+Î£ÏRß+ð�Ô®Î£Ï&Í.Î£ÏiÖ�ÒCÜ^Ð�ï^ÏiÌ�7�ù"7 ÚºÕFÖ.Ý�à£Ó�ÒXÎ£Õ^Ó�Ñ£ØDÕ�ÚoÒ
ÜFÐ�ïFÏeÌ�Ø°í�Ø�Í.ÏiÝ	Ï&ä�Û£Ö.ÏeØ.Ø¦ÏRÑBÒ^Ø�Ò�ÌXÒFà�Í°Õ^Ý�Ò�Í°Õ^Ì�ë1ø�ÕsÔ Ïiï^ÏiÖR×�Í°Î£ÏRØ¦Ï4Ú¼Ò^ß�Í.ÕFÖ+Ø�Ò�Ö.Ï$ÒsÍ�Õ�Ñ£Ñ£ØoÔ®Ð�Í.Î 7�ù"7�á¥ÏeÐ�Ì£ÜIÒ
Î£Ð�ÜFÎ£Ó�í�Ïiä�Û£Ö°ÏRØ°Ø°Ð�ïFÏ¶Ó�ÒFÌ£ÜFà¥Ò�ÜFÏ^ë 7�ù"78Î§Ò^ØµÒ4Ó�Ð�Ý�Ð�Í°ÏeÑ�Ò�á£Ð�Ó�Ð�Í�í�Í.Õ$Ï&ä�Û£Ö.ÏeØ.ØµÒ$Ø°Ï&Í1ÕFÚuØ¦Í.Ò�Í°ÏeØµÔ®Ð�Í.Î£Ð�ÌIÒ�Ø¦ÏRã^à§ÏiÌ§ßiÏ
Ô®Î£ÏeÖ°Ï Ò�Û£Ö.ÕFÛdÏiÖ°Í�í4Ð�Ø·Í°Õ�Î£ÕFÓ�Ñ9ë3�JÏiÖ.Î§Ò�Û§Ø/Ò�Ì�ÏeïFÏeÌ�á£Ð�ÜFÜ^ÏiÖ·Ð�Ý�Û¥ÏRÑ�Ð�Ý¬ÏeÌqÍJÐ�Ì�Û§Ö.Ò^ß�Í°Ð�ß&Ï^×sÒsÍ/Ó�ÏeÒ^Ø�ÍJá�í$Ò�Ì£ÏRßiÑ�ÕFÍ.Ò�Ó
Ïiï�Ð�Ñ�ÏiÌ¥ß&ÏF×RÐ�Ø9Í°Î§ÏµÐ�Ì¥Ò�á£Ð�Ó�Ð�Í�í�Ð�Ì�7�ù"7¬Í.Õ�Ï&ä�Û£Ö.ÏeØ.Ø�Ñ�ÏRØ¦Ð�Ö°ÏRÑ�Ö°ÏeÓ�Ò�Í°Ð�ÕFÌ§Ø9ádÏ&Í�Ô ÏiÏeÌ$Ø�Í+ÒsÍ°Ï-ß&ÕFÝ�ÛdÕFÌ£ÏeÌqÍ.Ø�Ò�Í/Ñ�Ð(�dÏeÖ°ÏeÌ^Í
ÛdÕFÐ�Ì^Í+Ø¶Ð�Ì�Í.Ð�Ý�ÏFë

K

Ë�Ì%7�ù"71×·Í.Ð�Ý�Ï�Ð�Ø¬Ì£Õ�Í¬Ï&ä�Û£Ó�Ð�ßiÐ�ÍR×µÒ�Ì§ÑÙÍ°Î�à§Øe×�Ð�ÚoÐ�Í�Ð�ØDÌ£ÏeßiÏeØ.Ø°ÒFÖ°í�Í°Õ�Í.Ò�Ó�ðÙÒ�ádÕFà�ÍDÍ°Ð�Ý�ÏF×�Í.Î£Ð�ØDÝ�à¥Ø�Í�á¥Ï
Ñ�Õ^Ì£ÏIá�í�Ý�ÒFð�Ð�Ì£ÜCÍ°Ð�Ý¬Ï8Ò�Ì;Ï&ä�Û£Ó�Ð�ßiÐ�Í�ß&ÕFÝ�ÛdÕFÌ£ÏeÌqÍDÕ�Ú®Í.Î£ÏBØ¦Í.Ò�Í°ÏRØ$Í°ÏRØ�Í.ÏeÑ;áqí#Í°Î§ÏBá§Ò^Ø¦ÏBØ¦à£á>�kÚºÕ^Ö°ÝDà£Ó�ÒFÏIÐ�Ì
Í°Î§Ï�7�ù"7�ÚºÕ^Ö°ÝDà£Ó�Ò£ë�ù¶Î£ÏiÌ�Í.Ð�Ý�Ï$Ð�Ø®Ò�Ó�Ø¦Õ�ÒFÑ£Ñ£ÏeÑ�Ï&ä�Û£Ó�Ð�ßiÐ�Í.Ó�íIÍ°ÕIÒ�Ì�í>Ý�Õ�Ñ�ÏiÓ·Õ�Ú·Í.Î£Ï�Ø°í�Ø¦Í°ÏeÝ)ádÏiÐ�Ì£Ü>ß+Î£Ïeß+ð^ÏeÑ9ë
æ¼õ�ØoÒFÌ�Ïiä£Ò�Ý�Û£Ó�ÏF×§Ø°ÏiÏIè 2 ê�ë ç�õoØ�Ò�Ì8Ï&ä£Ò�Ý�Û£Ó�ÏF×dß&Õ^Ì§Ø¦Ð�Ñ�ÏeÖ¶Í°Î£Ï�Ö.Ïeãqà£Ð�Ö.ÏiÝ�ÏiÌqÍ�ÜFÐ�ïFÏeÌBÏRÒ�Ö.Ó�Ð�ÏiÖ�ßiÕFÌ§ßiÏiÖ.Ì£Ð�Ì£Ü�Í°Î£Ï
Ý�ÕFÌ£Ð�Í°Õ^Ö°Ð�Ì£Ü¬Õ�ÚÍ°Î£Ï$Û§à£Ý�Û�Û§Ö°ÏRØ°Ø°à£Ö.ÏFëJù·Õ�ádÏ�Ò�á£Ó�Ï4Í°Õ�Ö.ÏiÌ§Ñ�ÏeÖ°ÏRÑIÍ.Î£Ï�ß&Ó�Ò�à¥Ø¦Ï .¦à£ÛuÑ£Ò�Í°ÏeÑ�ÏeïFÏiÖ.í 6¬Ø¦ÏRß&Õ^Ì§Ñ£ØE0
Ð�Ì 7�ù"7µ×uÖ.Ïeãqà£Ð�Ö°ÏRØoÒBïsÒ�Ö.Ð�ÒFá£Ó�Ï�Í°Õ�Ý�ÕFÌ£Ð�Í°Õ^ÖoÍ.Î£ÏDÛ¥ÒFØ.Ø°ÒFÜFÏ�ÕFÚµÍ°Ð�Ý�Ï�Ø°ÕIÍ.Î§ÒsÍ4Ô ÏDð�Ì£ÕsÔÀÔ®Î£ÏeÌCÍ�Ô ÕBØ°ÏeßiÕFÌ§Ñ£Ø
Î§Ò^ØJÛ§ÒFØ.Ø¦ÏRÑ9ëJø�ÕsÔ ÏiïFÏeÖe×\Í.Î£ÏiÖ.Ï�Ò�Ö.Ï¶Û£Ö.ÕFÛdÏiÖ°Í°Ð�ÏeØJÕ�ÚdÍ°Ð�Ý�Ï®Í°Õ$Ô®Î§Ð�ß+Î>Ò�Ì�í�Ø°í�Ø�Í.ÏiÝôÝ¬Õ�Ñ�ÏeÓ£Ý�à¥Ø�Í1ßiÕFÌ�ÚºÕ^Ö°Ý8ëJñ£ÕFÖ
Ï&ä£ÒFÝ¬Û§Ó�Ï^×�Í°Ð�Ý¬Ï$ßeÒ�Ì�Ì£Õ�Í�Ñ�ÏRß&Ö.ÏeÒFØ°ÏFë¶æºË�ÚJÐ�Íoß&ÕFà§Ó�Ñ9×�Ý�ÕqØ�Í®Ð�Ý¬Û§Ó�ÏeÝ¬ÏeÌqÍ.ÒsÍ.Ð�Õ^Ì§Ø¶Õ�Ú/Í°Î£Ï4Û£à§Ý¬Û8Ý�ÕFÌ§Ð�Í.ÕFÖ®Ô ÕFà£Ó�Ñ
Ì£ÕFÍJÛ§Ö°ÕsïsÒ�á§Ó�í$Ø.ÒsÍ°Ð�Ø¦Úºí$Í°Î£Ï¶à£ÛuÑ£Ò�Í°Ï¶Ö°ÏRãqà£Ð�Ö.ÏiÝ�ÏeÌ^ÍRë ç�ù¶Î£ÏeØ°Ï¶Û£Ö°Õ^Û¥ÏeÖ¦Í.Ð�ÏRØJßiÒ�Ì§Ì£Õ�ÍJÐ�Ì¬ÜFÏeÌ£ÏiÖ+Ò�Ó�ádÏ¶Ï&ä�Û£Ö.ÏeØ.Ø¦ÏRÑ�Ð�Ì
7�ù"7µ×�Ø°Õ$ß+Î£Ïeß+ð�Ð�Ì£Ü�Í°Î§Ò�Í�Í°Ð�Ý¬Ï®Î¥ÒFØá¥ÏeÏiÌ>ß&Õ^Ö°Ö.Ïeß&Í°Ó�í$Ý�Õ�Ñ£ÏiÓ�ÏeÑ¬Ð�ØJÜ^ÏiÌ£ÏeÖ.ÒFÓ�Ó�í$ÕFà£Í.Ø°Ð�Ñ�Ï Í.Î£Ï�Ø°ßiÕFÛdÏ¶Õ�Ú¥Ô®Î¥ÒsÍµßiÒFÌ
ádÏ$ïFÏiÖ.Ð�î§ÏeÑBá�í�Ý�Õ�Ñ�ÏiÓ·ß+Î§Ïeß+ð�Ð�Ì§Ü/7�ù"7�ÚºÕ^Ö°ÝDà£Ó�ÒFÏFë��^à§Ø�ÍoÒ^Ø¶Ð�Í�Ð�Ø¶Ð�Ý�Û¥Õ^Ö¦Í+Ò�ÌqÍ®Í°ÕIÑ�Õ�ßià£Ý�ÏiÌqÍ�Ô®Î§ÒsÍ�Ñ�Õ^Ý>Ò�Ð�Ì
ð�Ì£ÕsÔ®Ó�ÏeÑ�Ü^Ï�Ð�Ø�à¥Ø¦ÏRÑBÐ�ÌXÖ.Ï&î§Ì£Ð�Ì£ÜIà¥Ø¦ÏeÖ�Ö°ÏRãqà£Ð�Ö.ÏiÝ�ÏeÌ^Í+Ø¶Ð�ÌqÍ.Õ�Ò>Ø¦í�Ø¦Í°ÏeÝ Ø°Û¥ÏRß&Ð�î¥ßiÒ�Í°Ð�ÕFÌ�×¥Ð�ÍoÐ�ØoÒFÓ�Ø°Õ�Ð�Ý�ÛdÕFÖ°Í.ÒFÌ^Í
Í°Õ>Ñ�Õ�ßià£Ý�ÏiÌqÍ¶Í°Î£ÏRØ¦Ï$ÏiäqÍ.Ö.Ò&�PÓ�ÕFÜ^Ð�ßeÒ�Ó§Ú¼ÒFß�Í+Ø Í°Î§Ò�ÍoÒ�Ö.Ï�Ö.Ïeãqà£Ð�Ö.ÏeÑ>Í.Õ�Î£ÕFÓ�Ñ9×§ÒFÌ§Ñ�à§Û¥Õ^ÌBÔ®Î£Ð�ß+ÎBÍ°Î£Ï�ßiÕFÖ.Ö°ÏRß�Í°Ì§ÏeØ.Ø
Õ�Ú/Í°Î£Ï�Ø°í�Ø�Í.ÏiÝ Ý�Ò\í�á¥Ï�Ñ�ÏeÛ¥ÏeÌ§Ñ�ÏRÑ9ë

Ë�Ì�ÒFÑ§Ñ�Ð�Í.Ð�Õ^Ì8Í°Õ�ß&ÕFÌ¥ß&ÏiÛ£Í.ØoØ°à§ß+ÎCÒ^Ø®Í°Ð�Ý�ÏF×dÔ®Î£Ð�ß+Î�Ò�Ö.Ï$Û¥ÕqØ°Ø°Ð�á£Ó�í�Ð�Ý¬Û§Ó�Ð�ß&Ð�Í�Ð�ÌXÍ°Î§ÏDØ°í�Ø¦Í°ÏeÝ Õ^ÖoÐ�Ì£Î£ÏeÖ°Ð�Í°ÏRÑ
ÚºÖ.ÕFÝ Í°Î£Ï�Ø¦í�Ø¦Í°ÏeÝ	ÏeÌ�ïqÐ�Ö.ÕFÌ£Ý�ÏiÌqÍR×§á£à�Í4Ô®Î£Ð�ß+ÎCÝ>Ò\íBÌ§ÏiÏeÑXÍ°Õ�ádÏ�Ý>Ò^Ñ�Ï�Ïiä�Û§Ó�Ð�ß&Ð�Í�Ð�ÌCÍ.Î£Ï�Ý�Õ�Ñ�ÏiÓP×uÐ�Í�Ð�Ø�Ò�Ó�Ø°Õ
Õ�Ú²Í.ÏiÌÙÌ£ÏRß&ÏRØ°Ø.Ò�Ö.íCÍ.Õ#ÒFÑ§Ñ .¦Î£Ð�Ø�Í.ÕFÖ.í�ïsÒ�Ö.Ð�Ò�á£Ó�ÏeØE0�Í°ÕCÕ^à£Ö�Ý�Õ�Ñ�ÏeÓ1Í.ÕCÏiÌ§ÒFá£Ó�ÏIà§Ø�Í°ÕCÏiä�Û§Ö°ÏRØ°Ø$Ö.Ïeãqà£Ð�Ö.ÏiÝ�ÏiÌqÍ.Ø
ÛdÏiÖ°Í.Ò�Ð�Ì£Ð�Ì£Ü¬Í°Õ�Û§Ò^Ø�Í®ïsÒ�Ó�à£ÏeØ¶ÕFÚßiÕFÝ�Û¥Õ^Ì£ÏiÌqÍ+Ø¶Õ�Ú·Í.Î£Ï�Ø¦Í.ÒsÍ.ÏFë�7�ù"7�Ð�Ø®ÒDÓ�ÕFÜ^Ð�ßoÚºÕFÖ®Ïiä�Û£Ö°ÏRØ°Ø°Ð�Ì£ÜDÛ§Ö°Õ^Û¥ÏeÖ¦Í.Ð�ÏRØ-ÕFÚ
Ø°Ïeãqà£ÏiÌ¥ß&ÏeØ ÕFÚØ¦Í.ÒsÍ.ÏeØeë�ø�ÕsÔ ÏiïFÏeÖe×qÍ.Î£Ï4á§ÒFØ°Ï�ÚºÕFÖ.Ý�à£Ó�Ò�Ï4Ò�Ö.Ï�Õ^Ì£Ó�íIÕsïFÏeÖ Ò�Ø°Ð�Ì£Ü^Ó�Ï4Ø¦Í.ÒsÍ.ÏFëµù¶Î£ÏeÖ°Ï4Ð�Ø¶Ì£Õ�Ò�á£Ð�Ó�Ð�Í�í
Í°ÕBÏ&ä�Û£Ö.ÏeØ.ØoÖ.ÏiÓ�ÒsÍ.Ð�Õ^Ì§Ø�á¥ÏiÍ�Ô-ÏeÏiÌCÍ.Î£Ï¬ï\ÒFÓ�à§ÏeØ�Õ�ÚµÍ.Î£Ï¬Ø¦Í.Ò�Í°Ï�ÒsÍ4ÕFÌ£ÏDÛ¥Õ^Ð�ÌqÍ4Ð�Ì�Í°Ð�Ý�Ï�ÒFÌ§Ñ�ÒFÌ£Õ�Í.Î£ÏiÖRë8,#Ï�ßiÒFÌ
Ø.Ò\í�Í°Î¥ÒsÍ1Í.Î£ÏoïsÒFÓ�à£ÏoÕ�Ú�Ò�Ü^Ð�ï^ÏiÌ�ïsÒ�Ö.Ð�ÒFá£Ó�ÏoÐ�Ø-Ò�Ó�Ô Ò\í�Ø��£×Fá£à�Í Ô-Ï�ßiÒ�Ì§Ì£Õ�Í-Ø.Ò\íDÍ°Î£Ï�ï\ÒFÓ�à§Ï�Õ�Ú�Ò$Ü^Ð�ï^ÏiÌ>ïsÒ�Ö.Ð�ÒFá£Ó�Ï
Ð�Ø�ßiÕFÌ§Ø¦Í.ÒFÌqÍe×9ÕFÖ�Ý�ÕFÌ£ÕFÍ°Õ^Ì£Ð�ßeÒ�Ó�Ó�í8Ð�Ì§ß&Ö.ÏeÒ^Ø¦Ð�Ì£Ü¥ë�ù·Õ�á¥Ï>ÒFá£Ó�ÏDÍ°Õ8ßiÒFÛ�Í°à§Ö°ÏDÍ°Î£Ï�Ð�Ñ�ÏeÒ�Í°Î¥ÒsÍ4Í°Î£Ï¬ïsÒ�Ó�à£Ï�Õ�Ú���Ð�Ø
Ý�ÕFÌ£ÕFÍ°Õ^Ì£Ð�ßeÒ�Ó�Ó�íXÐ�Ì§ßiÖ°ÏRÒFØ°Ð�Ì£Ü¥×uÔ-Ï�Ô ÕFà£Ó�Ñ�Ð�ÌqÍ°Ö.Õ�Ñ�à§ß&Ï>ÒFÌ�ÒFà�ä�Ð�Ó�Ð�ÒFÖ°í8ïsÒ�Ö.Ð�Ò�á£Ó�ÏF×�Ø.Ò\í 4�#&�<>!) ��"2� �BÒFÌ§Ñ�Ö.Ïeãqà£Ð�Ö.ÏÍ°Î¥ÒsÍ

� / � 1<=2� � 7 4�#B�	>�) � "(� �	�
ù¶Î£Ð�Ø�Õ^Ì£Ó�í$ßeÒ�Û�Í.à£Ö°ÏRØ9Í.Î£Ï1Ì£ÕFÍ°Ð�ÕFÌ4Í.Î§ÒsÍ
�¶Ð�Ø·Ý�Õ^Ì£Õ�Í.ÕFÌ£Ð�ßiÒFÓ�Ó�íoÜ^Ö°ÕsÔ®Ð�Ì£Ü®Ð�Ú£Ô-Ï-Î§Ò\ïFÏJÍ.Î£Ï-Ò^Ñ£Ñ�Ð�Í°Ð�ÕFÌ§ÒFÓFð�Ì£ÕsÔ®Ó�ÏeÑ�Ü^Ï
Í°Î¥ÒsÍ1ÏeïFÏiÖ.í�Í.Ö.ÒFÌ§Ø°Ð�Í.Ð�Õ^Ì¬à§ÛdÑ£Ò�Í°ÏRØ 4�#&�<>!) ��"2� ��Í°Õ$Í.Î£Ï�Û£Ö.Ïiï�Ð�ÕFà§Ø�ïsÒFÓ�à£ÏoÕ�Ú���ë�ù¶Î£Ð�Ø1Ð�Ø-Ò�Ú¼ÒFß&Í1Í°Î¥ÒsÍ-ßeÒ�Ì>Ì£ÕFÍ1á¥Ï
Ï&ä�Û£Ö.ÏeØ.Ø°ÏeÑ8Ð�Ì 7�ù"7µ×uØ¦ÕBÐ�Í4Ý�à¥Ø�Í�á¥Ï¬ïFÏeÖ°Ð�î§ÏeÑ8Ð�ÌCÍ.Î£ÏDÒFà£ÜFÝ�ÏeÌ^Í.ÏeÑCØ°í�Ø�Í.ÏiÝHÝ�Õ�Ñ�ÏiÓá�í8Ø°ÕFÝ�ÏDÝ¬ÏRÒ�Ì§Ø�Õ�Í.Î£ÏiÖ
Í°Î¥Ò�Ì�7�ù"7�Ý¬Õ�Ñ�ÏeÓ·ß+Î£ÏRß+ðqÐ�Ì£Ü¥ë

Ë�Ì;ß&Õ^Ì§ß&à§Ö°Ö.ÏiÌqÍDÒFÌ§ÑÙÏiÝDá¥ÏRÑ£Ñ�ÏRÑTØ¦í�Ø¦Í°ÏeÝ�Øe×Í°Î£ÏeÖ°ÏBÐ�ØDÒ�Ì;Ò^Ñ£Ñ�Ð�Í°Ð�ÕFÌ§ÒFÓ-Ñ�Ð��Iß&à£Ó�Í�íÙÔ®Ð�Í°ÎÙÍ.Î£Ï�à§Ø°Ï�ÕFÚ®Í°Î£Ï
Í°ÏeÝ�Û¥Õ^Ö.ÒFÓ9ÕFÛdÏiÖ+ÒsÍ°Õ^Ö� � � ' ëµù/Õ>ádÏ�Ò�á£Ó�Ï�Í°Õ>Û£Ö.ÕsïFÏ�Û£Ö.ÕFÛdÏiÖ°Í°Ð�ÏeØ¶Õ�ÚJÒ>Ø¦í�Ø¦Í°ÏeÝ�×�Ð�Í�Ð�Ø®ÜFÏeÌ£ÏiÖ+Ò�Ó�Ó�í>Ì§Ïeß&ÏRØ°Ø.Ò�Ö.í�Í°ÕÑ�ÏRß&ÕFÝ�ÛdÕ^Ø°Ï4Í°Î£ÏDØ¦í�Ø¦Í°ÏiÝ Ð�ÌqÍ.Õ>Ý¬Õ�Ñ�à§Ó�ÏRØoÒ�Ì¥Ñ�ÒFá§Ø¦Í°Ö+ÒFß�Í�Õ^à�Í®Í°Î§Õ^Ø°Ï�ß&Õ^Ý¬ÛdÕFÌ§ÏiÌqÍ.Ø¶Í.Î§ÒsÍ�Ñ�Õ>Ì£Õ�ÍoßiÕFÌqÍ°Ö.Ð�á£à�Í°Ï
Í°Õ¬Í.Î£Ï4Û£Ö°Õ^Û¥ÏeÖ¦Í�íIßià£Ö.Ö°ÏeÌ^Í.Ó�í>ádÏiÐ�Ì£Ü�ïFÏeÖ°Ð�î§ÏRÑ9ëJË�ÚJØ°Û¥ÏRß&Ð�î¥ßiÒ�Í°Ð�ÕFÌ§Ø¶ÒFÖ°Ï�ÜFÐ�ïFÏeÌ�Ô®Ð�Í°Î�Í°Î£Ï� � � ' Õ^Û¥ÏeÖ.Ò�Í°Õ^Öe×qÍ°Î§ÏiíÝ>Ò\í�á¥Ï$ß+Î£ÏRß+ðFÏeÑ�ÒFØ1Í°Ö.à£Ï�Ð�ÌBÍ°Î£Ï4Ø¦à§ádßiÕFÝ�Û¥Õ^Ì£ÏiÌqÍ®Ñ�ÏiÏeÝ�ÏeÑBÖ°ÏeÓ�Ïeï\ÒFÌqÍe×�á£à�Í Í°Î£Ï4Û£Ö.ÕFÛdÏiÖ°Í�í�Ý>Ò\í¬ádÏ�Ú¼Ò�Ó�Ø¦Ï�Ð�Ì
Í°Î§Ï�Ó�ÒFÖ°Ü^ÏiÖµØ°í�Ø�Í.ÏiÝEÔ®Î£ÏiÖ.Ï�Ò�Ó�Ó£Í.Î£Ïoß&Õ^Ý�Û¥Õ^Ì£ÏiÌqÍ.Ø-Ò�Ö.Ï®ß&ÕFÝ�ÛdÕ^Ø°ÏeÑ9ë 7�ÏiÍ-à§Ø1ß&ÕFÌ¥Ø¦Ð�Ñ�ÏiÖµÍ°Î£Ï87�ù"7XØ¦ÛdÏeßiÐ�î¥ßeÒsÍ.Ð�Õ^Ì

� / � 1	=2� æ �3�(�<���� 5� æ ��"5#�#B�!��' '�)+*,� -0/ 12�3' 4�#B���3�	"5#&� #&��1� ;)+��� '�)+*,� ç87 6 9
 � � ' æ D) �	45/ 1	= >�1$/?"2� @ 4�#&�<>!) ��"2� 4�#&�	���<"$#B� >21$/?"2� ç¦ç&ë

Ë�ÌXÌ§Ò�Í°à£Ö+Ò�Ó�Ó�Ò�Ì§ÜFà§ÒFÜFÏF×�Í.Î£Ð�Ø®Í°ÏeÓ�Ó�Ø�à¥Ø®Í°Î¥ÒsÍ�ÒFÌqíqÍ.Ð�Ý�Ï4Í°Î§ÏDØ°í�Ø¦Í°ÏeÝ Ø°ÏiÏRØ¶Í°Î§Ò�ÍoÐ�Íeâ Ø�ádÏiÏiÌ#ÒsÍ�Ó�ÏeÒFØ¦Í86�Ø°ÏeßiÕFÌ§Ñ£Ø
Ø°Ð�Ì§ßiÏ>Í°Î§ÏIÓ�Ò^Ø�Í�Í°Ð�Ý¬ÏIÍ°Î£Ï�Ñ�Ð�Ø°Û£Ó�Ò\í�Ô¶ÒFØ$à§ÛdÑ£Ò�Í°ÏRÑ9×Í°Î£ÏeÌÙÍ°Î£Ï�Ø¦í�Ø¦Í°ÏeÝKÝ�à¥Ø�Í¬à£ÛdÑ§ÒsÍ°ÏIÍ°Î£Ï�Ñ£Ð�Ø°Û£Ó�Ò\í�Í.ÕXÍ°Î£Ï
ß&à§Ö°Ö.ÏiÌqÍ�Û£Ö.ÏeØ.Ø¦à£Ö.Ï ï\ÒFÓ�à§Ï�æºÔ®Î§Ò�ÍµÔ®Ð�Ó�Ó§ádÏ¶Í°Î£Ï®Û§Ö°ÏeïqÐ�ÕFà¥ØJÛ£Ö°ÏRØ°Ø°à£Ö.Ï¶ï\ÒFÓ�à§ÏF×FÕ^Ì§ß&Ï¶Ô Ï�ß&Õ^Ý¬Û§Ó�ÏiÍ°Ï Í°Î£Ï�Í°Ö+Ò�Ì§Ø°Ð�Í.Ð�Õ^Ì
Ñ�Õ^Ð�Ì£Ü�Í.Î£Ï®à£ÛuÑ£ÒsÍ.ÏRç�ë�ù¶Î£Ð�ØµØ°Û¥ÏRß&Ð�î¥ßiÒ�Í°Ð�ÕFÌ¬Ý>Ò\í�ïFÏeÖ°í�Ô ÏiÓ�Ó�Î£Õ^Ó�ÑDÚºÕFÖJÍ.Î£Ï�Ø°à£á§Ø°í�Ø¦Í°ÏeÝôßiÕFÝ�Û¥ÕqØ¦ÏRÑ�Õ^Ì£Ó�í�Õ�ÚdÍ°Î£Ï
Ø°í�Ø¦Í°ÏeÝKæºÕ^Ö¶ÏiÌ�ï�Ð�Ö.ÕFÌ£Ý�ÏeÌ^Í�ç ß&Ó�Õ�ß+ðu×�Í.Î£Ï4Û£Ö°ÏRØ°Ø°à£Ö.Ï�Ý�Õ^Ì£Ð�Í.ÕFÖR×£Ò�Ì§Ñ�Í°Î§Ï�Ñ�Ð�Ø°Û£Ó�Ò\íF×�á£à�Í�Ð�ÚÍ°Î£Ï�Ø°í�Ø�Í.ÏiÝ7Ð�Ø¶Ý�ÕFÖ.Ï
ß&Õ^Ý�Û£Ó�ÏiäIÔ®Ð�Í.ÎBÕFÍ°Î£ÏeÖ¶ï\ÒFÓ�à§ÏeØ-Í°Õ¬á¥Ï4Ý�ÕFÌ§Ð�Í.ÕFÖ.ÏeÑ�ÒFÌ§ÑIÛdÏiÖ.Î§ÒFÛ§Ø¶ß&ÕFÌqÍ.Ö°Õ^Ó�Ó�ÏeÑ9×�Ô®Î£ÏeÌ�Í.Î£Ï4Õ�Í.Î£ÏiÖ®ß&Õ^Ý�Û¥Õ^Ì£ÏiÌqÍ.Ø
Ò�Ö.ÏXÛ£à�ÍBÐ�Ì�Û§ÒFÖ.ÒFÓ�Ó�ÏiÓoÔ®Ð�Í.Î:Í°Î£ÏCÛ¥Ò�Ö°Í°Ð�ß&à£Ó�Ò�Ö�Ø°à£á§Ø°í�Ø�Í.ÏiÝ@æºÔ®Ð�Í°Î ÒFÌ�Ð�ÌqÍ°ÏeÖ°Ó�ÏeÒ\ï�Ð�Ì£ÜÙØ¦ÏeÝ>Ò�ÌqÍ°Ð�ßiØ+ç�×¶Ð�Í�Ð�Ø�Ì£Õ�Í
Ò�à£Í°ÕFÝ>Ò�Í°Ð�ßIÍ.Î§ÒsÍ�Í°Î§Ï8Ø°ÛdÏeß&Ð�î¥ßeÒsÍ°Ð�ÕFÌAØ�Í.Ð�Ó�Ó®Î£Õ^Ó�Ñ£Øe×1ÒFÌ§Ñ;Ð�Ì§Ñ�ÏeÏeÑ9×-à£Ì£Ó�ÏeØ.ØDÍ°Î£ÏeÖ°Ï8Ò�Ö.Ï�Ø°ÕFÝ�Ï�ð�Ð�Ì§Ñ§ØDÕFÚ�Ó�Õ�ß+ð�Ø
Û£Ö.Ïiï^ÏiÌqÍ°Ð�Ì£Ü¬Õ�Í°Î§ÏiÖ¶Û§Ò�Ö°Í.Ø¶ÕFÚ·Í.Î£Ï�Ø¦í�Ø¦Í°ÏeÝ�ÚºÖ°Õ^Ý7Û£Ö.ÕFÜ^Ö°ÏRØ°Ø°Ð�Ì§Ü§×�Í.Î£Ð�Ø�Ø¦ÛdÏeßiÐ�îdßiÒsÍ.Ð�Õ^ÌBÐ�Ø¶Ó�Ð�ð^ÏiÓ�í>Í°Õ�ádÏ�Ú¼ÒFÓ�Ø°ÏFëµõ Í
Í°Î§ÏDî¥Ö.Ø¦Í$Û¥Õ^Ð�ÌqÍ�ÒsÍ4Ô®Î£Ð�ß+Î �����<� �2 5� æ ��"$#%#&���(' '�)+*,� - / 12�6' 4�#&�	���<"$#B� #B�(1� D)+��� '�)+*,� ç:7 6�×·Ð�Í$Ð�Ø4Û¥ÕqØ°Ø°Ð�á§Ó�Ï¬ÚºÕFÖ
Ø°ÕFÝ�Ï�Õ�Í.Î£ÏiÖ�Û§Ò�Ö°ÍoÕFÚÍ.Î£ÏDØ°í�Ø�Í.ÏiÝ	Í°Õ�á¥ÏDá£à§Ø°í�Ñ�Õ^Ð�Ì§Ü�Ø¦Õ^Ý�Ï&Í°Î§Ð�Ì£Ü¥ëoù¶Î£Ï�Û§Ö°Õ^á£Ó�ÏeÝ Ô®Ð�Í°Î� � � ' ×9Ò^Ø®Ô-ÏeÓ�ÓJÒFØ
Õ�Í.Î£ÏiÖ�ßiÕFÌ§Ø¦Í°Ö.à§ß&Í.Ø®Ø°à§ß+Î�Ò^Ø � / � 1<=2� Ò�Ì§Ñ�� �('�)+/ ×£Ð�Ø Í°Î§Ò�Í®Í°Î£ÏeíBÒFÖ°Ï�Ì£Õ�ÍoßiÕFÝ�ÛdÕ^Ø°Ð�Í.Ð�Õ^Ì§Ò�ÓPë

��Ì�ÚºÕ^Ö¦Í.à£Ì§Ò�Í°ÏiÓ�íF×£Í°Î£Ï4Ý�Õ^Ø¦Í®ÕFá�ï�Ð�Õ^à§Ø¶Ò�Ó�Í°ÏiÖ.Ì§Ò�Í°Ð�ïFÏ�Í.Õ¬Í°Î£Ï$à§Ø°Ï4Õ�Ú� � � ' Ð�Ø Í°Î£Ï$à§Ø°Ï�Õ�Ú�� >(�!��'�"�1$/?/ = ëJù¶Î§Ð�ØÐ�Ø-Ü^ÏiÌ£ÏeÖ.ÒFÓ�Ó�í�Ý�à§ß+ÎBÔ-ÏRÒ�ð^ÏiÖµÍ.Î§Ò�ÌBÐ�Ø Ð�ÌqÍ°ÏiÌ¥Ñ�ÏeÑBá�íIÒ�Ì§Ò�Í°à£Ö+Ò�ÓdÓ�Ò�Ì£Ü^à§Ò�Ü^Ï�Ø°Û¥ÏRß&Ð�î¥ßiÒ�Í°Ð�ÕFÌ�Ô®Î§ÏiÖ.Ï� � � ' Ø°ÏiÏeÝ�Ø

�

Ò�Û§Û£Ö°Õ^Û£Ö.Ð�Ò�Í°ÏFë1Ë�ÚJÕ^Ì£Ï�ßiÒFÌ8Ð�Ñ�ÏeÌqÍ°Ð�Úºí�Ò�Û£Ö.ÕFÛdÏiÖ°Í�í��;Í°Î¥ÒsÍ�Î£Õ^Ó�Ñ£ØoÕ�Ú�Ø�Í+ÒsÍ.ÏeØ®ÕFÚÍ.Î£Ï�Ø°à£á§Ø°í�Ø�Í.ÏiÝ)Û§Ö°Ð�ÕFÖ¶Í.Õ>Í°Î£Ï
Í°Ö+Ò�Ì¥Ø¦Ð�Í°Ð�ÕFÌ�ádÏiÐ�Ì£ÜXÍ.ÒFðFÏeÌ�ÒFÌ§Ñ�Í°Î¥ÒsÍ�Ú¼ÒFÐ�Ó1Í°ÕXÎ£Õ^Ó�Ñ§Ø�ÒFØ�Ø¦Õ�ÕFÌTÒ^Ø$Ð�Í�Ð�Ø�Í.ÒFðFÏiÌ·×·Í.Î£ÏiÌTÐ�Í�Ý�Ð�ÜFÎqÍ�ádÏIÛ¥ÕqØ°Ø°Ð�á£Ó�Ï
Í°Õ8à§Ø°Ï>ÒIÚºÕ^Ö°ÝDà£Ó�Ò�ÕFÚ1Í°Î§Ï�ÚºÕFÖ.Ý�� � �('�)+/�� Ð�Ì#Û§Ó�Ò^ß&Ï�Õ�Ú � � '����
	 ë ,�Î¥ÒsÍ$Ô-Ï�Ô ÕFà£Ó�Ñ#Ó�Ð�ðFÏDÍ°Õ8à§Ø°Ï¬ÚºÕFÖ��
Ð�Ø�ÒBØ�Í+ÒsÍ°ÏeÝ�ÏiÌqÍoÍ.Î§ÒsÍ�Í°Î£Ï¬Ø�Í+ÒsÍ.Ï�Õ�Ú1Í°Î£Ï¬Ø¦à£á¥Ø¦í�Ø¦Í°ÏiÝ2Ñ�Õ�ÏRØ¦Ì�â Í$ß+Î§Ò�Ì£Ü^ÏFë�ø�ÕsÔ ÏiïFÏeÖe×¥á¥ÏeÐ�Ì§ÜBÒ�á§Ó�Ï�Í°Õ�Ïiä�Û£Ö°ÏRØ°Ø
Í°Î§Ð�Ø�Ñ£Ð�Ö.Ïeß&Í°Ó�í�Ö.Ïeãqà£Ð�Ö°ÏRØ¶á¥ÏeÐ�Ì£ÜIÒFá£Ó�Ï4Í°Õ�ßiÕFÝ�Û§Ò�Ö.Ï�ï\ÒFÓ�à§ÏeØ¶ÚºÕ^Ö�ïsÒ�Ö.Ð�ÒFá£Ó�ÏRØ ÚºÖ°Õ^Ý)Õ^Ì£Ï�Ø�Í+ÒsÍ.Ï$Ô®Ð�Í.Î8Í°Î£ÕqØ¦Ï�ÚºÖ.ÕFÝ
Ò�Ì§Õ�Í°Î§ÏiÖ�Ø¦Í.Ò�Í°Ï�æ²Í°Î§Ï .°Ø°à§ßeß&ÏeØ.Ø°ÕFÖ 0>Ø�Í+ÒsÍ°Ï\ç�×uÒ�Ì§Ñ�ÒFØ�Ô-Ï�Î¥Ò\ïFÏ�Ø.Ò�Ð�ÑCÒ�ádÕsïFÏ^×£Í.Î£Ð�Ø�Ð�Ø�Õ^à�Í.Ø°Ð�Ñ£Ï�Í°Î§ÏDÏiä�Û§Ö°ÏRØ°Ø°Ð�ï^Ï
ÛdÕsÔ-ÏeÖµÕ�Ú 7�ù"71ëqõ6Ì£ÕFÌ>��Ø°ÕFÓ�à�Í°Ð�ÕFÌ>Ð�Ø�Í.ÕDÒ^Ñ£ÑIÒ�ïsÒFÖ°Ð�Ò�á£Ó�Ï®Í.Õ�ÕFà§Ö-Ø¦Í.ÒsÍ.Ï�ÚºÕ^Ö1ÏeÒ^ß+Î�Í°Ö+Ò�Ì§Ø°Ð�Í°Ð�ÕFÌCæºÕ^Ö-ÏRÒFß+ÎIØ¦Í.Ò�Í°ÏRç
Ð�ÌCÕFà£Ö4Ø°à£á§Ø°í�Ø¦Í°ÏeÝ8ë�ñ§ÕFÖ�ÏeÒFß+ÎCÍ°Ö+Ò�Ì§Ø°Ð�Í.Ð�Õ^Ì�×dÔ-Ï¬ÒFÑ£Ñ8Í.Î£Ï�ÒFß�Í.Ð�Õ^ÌCÕ�Ú1Ø°Ï&Í°Í°Ð�Ì£ÜBÍ°Î£Ï�ß&Õ^Ö°Ö.ÏeØ°Û¥Õ^Ì§Ñ�Ð�Ì£Ü>ïsÒ�Ö.Ð�ÒFá£Ó�Ï
Í°Õ�Í°Ö.à£ÏF×�Ò�Ì¥Ñ>Ø¦ÏiÍ¦Í°Ð�Ì£Ü¬Ò�Ó�Ó¥ÕFÚdÍ.Î£ÏoïsÒFÖ°Ð�Ò�á£Ó�ÏeØ1Ö°ÏeÛ£Ö.ÏeØ°ÏiÌqÍ°Ð�Ì£Ü4Í°Î§ÏoÕ�Í.Î£ÏiÖ-Í°Ö+Ò�Ì¥Ø¦Ð�Í°Ð�ÕFÌ§ØoæºÕFÖ-ÕFà�Í ��Ø¦Í.Ò�Í°ÏRØ.ç�Í°Õ$Ú¼ÒFÓ�Ø°ÏFë
ù¶Î£ÏeÌTÕFÌ£Ï�ßiÒFÌ;ÒsÍ°Í°ÏiÝ�Û�Í¬Í°Õ�ßiÒFÛ�Í°à£Ö.Ï>Í.Î§ÒsÍ¬Í°Î£Ï�Ø¦à§á§Ø¦í�Ø¦Í°ÏeÝ=Î¥ÒFØ°Ì�â Í�ß+Î§Ò�Ì§ÜFÏeÑTáqí�ÏeÌqà§Ý¬ÏeÖ.Ò�Í°Ð�Ì£Ü�ÒFÓ�Ó-Í°Î£Ï
Í°Ö+Ò�Ì¥Ø¦Ð�Í°Ð�ÕFÌ§Ø®æ¼ÕFÖ1Ø¦Í.Ò�Í°ÏRØ.çJÒFÌ§Ñ�Ø°Ò\í�Ð�Ì£ÜoÍ.Î§ÒsÍ-ÏeÒFß+Î¬ïsÒ�Ö.Ð�ÒFá£Ó�Ï®Î§ÒFØ�ÒFÌ¬Ïiä�Û£Ó�Ð�ß&Ð�Íµî£ä�ÏRÑDïsÒFÓ�à£Ï®à§Ì^Í.Ð�Ó§Í°Î£Ï®Û§Ö°Õ^Û¥ÏeÖ¦Í�í
Í°Î¥ÒsÍµÐ�ØJÍ°Õ4Î£Õ^Ó�Ñ¬Ì£ÏiäqÍµÎ§ÕFÓ�Ñ£Øië�ì�Õ^Ý¬ÏiÍ°Î£Ð�Ì£Ü$Ó�Ð�ð^Ï¶Í°Î£Ð�Ø�Ý�Ð�ÜFÎqÍµá¥Ï®Ô ÕFÖ.ðsÒ�á£Ó�Ï Ð�Ì�Í.Î£Ï�Ø¦ÏiÍ¦Í.Ð�Ì£Ü$ÕFÚuØ°í�Ø�Í.ÏiÝåÝ�Õ�Ñ�ÏeÓ�Ø
à§Ø°Ð�Ì§Ü�ÕFÌ§Ó�íXÛ£Ó�Ò�Ð�ÌCî¥Ì£Ð�Í.Ï¬Ø¦Í.Ò�Í°Ï¬Ý>ÒFß+Î£Ð�Ì£ÏeØeë$÷ à�Í�Í.Î£Ð�Ø4Ð�Ø�ÜFÏeÌ£ÏiÖ+Ò�Ó�Ó�í8Ì£ÕFÍ4ÒBØ¦Õ^Ó�à£Í°Ð�ÕFÌ�ádÏeßeÒ�à§Ø°Ï�Ð�Í$Ñ�Õ�ÏeØ�Ì£Õ�Í
Ò�Ó�Ó�ÕsÔhà§Ø¶Í.ÕIÑ�Ï&Í.Ïeß�Í�Ô®Î§ÏiÌXß+Î§Ò�Ì§ÜFÏ4Î§ÒFØ¶Õ�ßeß&à£Ö.Ö°ÏRÑ�Ð�Ì�Í°Î£Ï�Ø°à£á§Ø°í�Ø�Í.ÏiÝ)Í°Î£Ö.ÕFà£Ü^Î�Í+Ò�ð�Ð�Ì£Ü>Ò¬Í°Ö+Ò�Ì§Ø°Ð�Í.Ð�Õ^Ì�Í.Î§ÒsÍ
Ð�Ø�Ò>Ó�Õ�ÕFÛ�ë�Ë�ÌCÏ&ä�Í.ÏiÌ§Ñ�ÏRÑXî§Ì§Ð�Í.ÏDØ¦Í.ÒsÍ.Ï�Ý>ÒFß+Î§Ð�Ì£ÏRØi×dÔ®Î£ÏeÖ°Ï�Í°Î£ÏeÖ°ÏDÐ�Ø�Ò>Ì£ÕFÍ°Ð�ÕFÌCÕFÚ�.¦Û£Ö.ÕFÜ^Ö.ÒFÝ Ø¦Í.ÒsÍ.ÏeØE0>ÜFÐ�ïFÏeÌ
á�íIïsÒ�Ö.Ð�ÒFá£Ó�Ï�ïsÒ�Ó�à£ÏRØi×�Ð�ÌXÒFÑ£Ñ�Ð�Í°Ð�ÕFÌBÍ°Õ¬Í.Î£Ï�Ø�Í+ÒsÍ.ÏeØ¶Õ�Ú/Í°Î£Ï4î¥Ì£Ð�Í.Ï$Ø�Í+ÒsÍ°Ï$Ý>Ò^ß+Î£Ð�Ì§ÏF×�ÕFÌ§Ï�Ý>Ò\í>ÏeÌ^Í.ÏiÖ¶Í.Î£Ï�Ø°ÒFÝ�Ï
î§Ì£Ð�Í°Ï�Ø�Í+ÒsÍ.Ï�Ý>ÒFß+Î£Ð�Ì£ÏoØ¦Í.Ò�Í°ÏoÝ>ÒFÌqí�Í°Ð�Ý�ÏeØ-Î§Ò\ï�Ð�Ì£ÜDÒ�Ñ�Ð(�dÏeÖ°ÏeÌ^Í-Û£Ö°Õ^ÜFÖ+Ò�ÝEØ�Í+ÒsÍ°ÏoÏeÒFß+Î�Í.Ð�Ý�Ï^ëJù¶Î�à§ØµÍ°Î£Ï�ïFÏeÖ°í
ïsÒ�Ó�à£ÏeØ Í.Î§ÒsÍ�Ô Ï$Ò�Ö.Ï4Ð�ÌqÍ°ÏeÖ°ÏRØ�Í.ÏeÑBÐ�Ì8Ì£ÕFÍ�ß+Î§Ò�Ì£Ü^Ð�Ì§Ü¬Ý>Ò\íIß+Î§ÒFÌ£ÜFÏ$ÒFÌqí�Ô¶Ò\íFë

7�ÏiÍ¶à¥Ø¶Ö°ÏiÍ°à£Ö.ÌIÍ.ÕDÍ.Î£Ï4Ï&ä£Ò�Ý�Û£Ó�Ï�Õ�Ú·Í.Î£Ï$Ñ�Ð�Ø¦Û£Ó�Ò\í>à£ÛuÑ£ÒsÍ.ÏFëµ÷ ÏiÓ�ÕsÔhÐ�Ø¶Ò ..ß&Ó�Ò�Ö.Ð�î¥ßeÒsÍ.Ð�Õ^Ì50�ÕFÚ·Í°Î§Ï�Õ^Ö°Ð�ÜFÐ�Ì§ÒFÓ
Ø°Û¥ÏRß&Ð�î¥ßiÒ�Í°Ð�ÕFÌ�ÜFÐ�ïFÏiÌ·ë

2�Ì¥ß&Ï¬Í°Î£Ï>Û§à£Ý�Û�Î¥ÒFØ4ádÏiÏiÌ�Í.à£Ö°Ì§ÏeÑ�á¥ÏeÏiÌ�ÕFÌ·×·Ò�Ì�Ð�Ì§Ð�Í.Ð�ÒFÓµÛ£Ö.ÏeØ.Ø¦à£Ö.Ï¬Ö°ÏRÒFÑ�Ð�Ì£Ü8Ô®Ð�Ó�Ó�ádÏ�Í.Ò�ð^ÏiÌ
ÒFÌ§Ñ9×¥Ð�ÚJÍ°Î§Ï�ïsÒ�Ó�à£Ï$Ö°ÏRÒFÑ�Ð�Ø®Ì£Õ�ÍoÒFÌXÏiÖ.Ö°Õ^Öe×�Ð�ÍoÐ�ØoÑ�Ð�Ø¦Û§Ó�Ò\í^ÏeÑ9ë1ù¶Î§ÏiÖ.ÏeÒsÚ²Í.ÏiÖR×£Û£Ö.Õsï�Ð�Ñ�ÏRÑIÍ.Î£ÏiÖ.Ï�ÒFÖ°Ï
Ì§Õ>ÏiÖ.Ö°Õ^Ö.Ø-Ð�Ì8Û£Ö.ÏeØ.Ø°à£Ö°Ï�Ö.ÏeÒFÑ£Ð�Ì£ÜqØi×qÍ.Î£Ï�Ñ�Ð�Ø¦Û£Ó�Ò\íIÔ®Ð�Ó�Ó·Ì£Ïiï^ÏiÖ®ádÏ$Ý¬Õ^Ö°Ï�Í°Î¥Ò�Ì 6¬Ø¦ÏRß&ÕFÌ¥Ñ£Ø¶ÕFÓ�Ñ9ë

,#Ï�ßeÒ�Ì8ßiÒFÛ�Í°à£Ö.Ï4Ý�à§ß+Î8ÕFÚ·Í°Î§Ï$Ð�ÌqÍ°ÏeÌqÍ�Õ�ÚÍ°Î£Ð�Ø�Ø°Û¥ÏRß&Ð�î¥ßiÒ�Í°Ð�ÕFÌ�Ô®Ð�Í.ÎBÍ.Î£Ï4ÚºÕFÓ�Ó�ÕsÔ®Ð�Ì£Ü-7�ù"7#ÚºÕFÖ.Ý�à§Ó�Ò54
� "$*:4 � ���� ��#�#B�D#��64!#B���3�<"$#&� #&��1� ;)+����� 9
� >2���('�"�1$/?/ =æ D) �	45/ 1	= >21$/?"2� @ 4�#&�<>!) ��"2� 4�#&�	���<"$#B� #B�(1� D)+����
/ 12�6' ;) �<4$/ 1<= "54! $1('6� '�)+* � @ 4�#&�<>!) ��"2� ��"$#%#&���(' '�)+*,��
æ �!#%#&�D#��64�#&�	���<"$#B� #B�(1� D)+�����
� �!/ ��12�3���
æ �3�(�<���� 5� æ ��"5#�#B�!��' '�)+* � - / 12�3' D) �	45/ 1	= "$4! 51('6� '�)+*,� ç�� 6
� �('�)+/æ ;) �<4$/ 1<= >21$/?"2� @ 4!#B�	>�) � "(� 4!#B���3�<"$#&� #&��1� ;)+����
/ 12�3' D) �	45/ 1	= "$4! 51('6� '�)+*,� @ 4�#&�<>!) ��"2� ��"5#�#B�!��' '�)+* � ç¦ç°ç¦ç

ì�Õ^Ý¬Ï�ÕFÚ8Í°Î£ÏhÒ^Ø°Ø°à£Ý�Û�Í°Ð�ÕFÌ¥Ø�Í°Î§Ò�Í�Ò�Ö.Ï:Ý>ÒFÑ�Ï�ÚºÕ^ÖÙÍ°Î§Ð�ØTÍ°Õåß&Õ^Ö°Ö.Ïeß&Í°Ó�íåÏ&ä�Û£Ö.ÏeØ.Ø�Í°Î§Ï Ñ�ÏeØ°Ð�Ö°ÏRÑEØ°ÛdÏeß&Ð�î>�
ßiÒ�Í°Ð�ÕFÌÐ�Ì§ß&Ó�à§Ñ�Ï�Í.Î§ÒsÍ�Ô-Ï ßeÒ�Ì�Ñ�Ïiî§Ì£Ï �!#%#&�D# ÚºÖ.ÕFÝ�Þ�à§Ø¦ÍTÍ°Î§ÏhïsÒ�Ó�à£ÏhÕ�Ú 4!#B���3�<"$#&� #&��1� ;)+��� ×�Ò�Ì§ÑEÍ.Î§ÒsÍ
/ 12�6' ;) �<4$/ 1<= "54! $1('6� '�)+* � Ò�Ó�Ô Ò\í�Ø>ßiÕFÌqÍ.ÒFÐ�Ì§Ø>Í°Î£Ï�Í°Ð�Ý¬Ï�Ô®Î£ÏiÌ�Í.Î£Ï�Ñ�Ð�Ø°Û£Ó�Ò\í�Ô Ò^ØIÓ�ÒFØ¦ÍIà£ÛuÑ£ÒsÍ.ÏeÑ9ëåù¶Î£ÏRØ¦Ï
Ö.Ïeãqà£Ð�Ö°ÏeÝ¬ÏeÌqÍ.Ø¶Ò�Ö.Ï4Ï&ä�Í°Ö+ÒB��Ó�Õ^ÜFÐ�ßiÒFÓdÒFÌ§Ñ�Ì§ÏiÏeÑ�ï^ÏiÖ.Ð�Úºí�Ð�Ì£ÜDá�íBÝ¬ÏRÒ�Ì§Ø¶ÕFÍ°Î£ÏeÖ¶Í°Î§ÒFÌ 7�ù"7#Ý�Õ�Ñ�ÏeÓ·ß+Î£Ïeß+ð�Ð�Ì£Ü§ë

ù¶Î£ÏoÑ�Ð��Iß&à£Ó�Í°Ð�ÏeØµÔ-Ï®Î§Ò\ï^Ï®Ý�ÏiÌqÍ°Ð�ÕFÌ£ÏRÑ¬Î£ÏiÖ.Ï�Ò�Ö.Ï¶Ì£Õ�Í1Ø°Û¥ÏRß&Ð�î¥ß¶Í.Õ�7�Ð�Ì£ÏeÒFÖµù·ÏeÝ¬ÛdÕFÖ+Ò�Ó 7�ÕFÜ^Ð�ßF×�á£à�Í-Ï&ä�Í°ÏeÌ^Í
Í°ÕIØ°Ð�Ý¬Ð�Ó�Ò�ÖR×£Ý�ÕFÖ.Ï$Ï&ä�Û£Ö.ÏeØ.Ø¦Ð�ïFÏ4Ó�ÕFÜFÐ�ßiØ®Ø°à§ß+ÎCÒ^Ø�� ù"7���ækØ¦ÏeÏ�è 6Rê²ç�Ò�Ì§Ñ�Í.Î£Ï�� ��� Ò�Ó�ß&à£Ó�à§Ø$æ¼Ø°ÏiÏBè �sêºç�ë®õoÓ�Ó�ÕsÔ®Ð�Ì§Ü
á£Ö+Ò�Ì§ß+Î§Ð�Ì£Ü�Í°Ð�Ý�Ï�ßiÕFÌ§Ø¦Í°Ö.à§ß&Í.Ø�æ¼ÒFÓ�Õ^Ì£Ü�Ø°ÕFÝ�Ï¬Û§ÒsÍ.Î�×�Õ^Ö�ÒFÓ�Õ^Ì£Ü�ÒFÓ�ÓJÛdÕ^Ø.Ø¦Ð�á£Ó�Ï�Û§ÒsÍ.Î§Ø.ç�Ñ�Õ�ÏeØ4Ì§Õ�Í$ÒFÑ£Ñ�Ö.ÏeØ.Ø�Í°Î£Ï
Ð�Ø°Ø°à£ÏeØ¶Ö+Ò�Ð�Ø°ÏeÑBÎ£ÏiÖ.ÏFë ù¶Î£Ï�ÒFÑ£Ñ£Ð�Í.Ð�Õ^Ì§Ò�Ó�Ïiä�Û£Ö°ÏRØ°Ø°Ð�ïFÏiÌ§ÏeØ.Ø-ÕFÚ/Í.Î£Ï � ��� Ò�Ó�ß&à£Ó�à§Ø�Ñ�Õ�ÏRØ�Ò�Ó�Ó�ÕsÔ6ÜFÖ.ÏeÒ�Í°ÏiÖ®ÒFá£Ð�Ó�Ð�Í�íIÍ°Õ
Ñ�ÏRØ°ßiÖ°Ð�á¥Ï�Ò�Ø°Ï&Í¶Õ�Ú·Ø¦Í.ÒsÍ.ÏeØ1ÚºÕFÖ-Ô®Î£Ð�ß+ÎBÒ�Û£Ö.ÕFÛdÕ^Ø°Ð�Í.Ð�Õ^Ì>Ð�Ø1Í°Õ¬Î£Õ^Ó�Ñ9ë�øoÕsÔ-ÏeïFÏiÖR×�Ð�ÌBÒFÓ�Ó¥Í°Î£ÏRØ¦Ï�Ø¦í�Ø¦Í°ÏeÝ�Øe×^Í°Î£ÏeÖ°Ï�Ð�Ø
Ø¦Í°Ð�Ó�ÓdÒ4Ó�Ò^ß+ð�Õ�Ú�ÒFá£Ð�Ó�Ð�Í�í�Í.Õ�Ö°ÏeÓ�Ò�Í°Ï®ïsÒ�Ó�à£ÏRØJÚºÖ°Õ^ÝEÑ£Ð��uÏiÖ.ÏiÌqÍ1ÛdÕFÐ�ÌqÍ.ØµÐ�Ì�Í°Ð�Ý�ÏF×�Ò�Ì§Ñ>Ò4Ó�ÒFß+ðDÕ�Ú�ß&Õ^Ý�Û¥ÕqØ¦Ð�Í°Ð�ÕFÌ§ÒFÓ�Ð�Í�íFë

! " �$# �oÉ ÄJÊiÃ��&% #3#JÈ �BÄJÊiÆDÃ�#HÊiÃ Ä�'����)(#·Ä3� * Æ�Ç � �
Ë�ÌTÍ.Î£Ï�Û£Ö°Ïeï�Ð�Õ^à§Ø�Ø°Ïeß&Í°Ð�ÕFÌ;Ô ÏBÑ£Ð�Ø.ß&à§Ø.Ø°ÏeÑÙÝ�Ï&Í.Î£Õ�Ñ�ÕFÓ�ÕFÜ^í�ÚºÕFÖ¬Î£ÕsÔ�Ô-Ï�ßiÒFÌ;à§Ø°Ï�7�ù"7 ÚºÕFÖ.Ý�à£Ó�Ò�ÏIÍ°Õ�Ð�Ì§Ñ£Ð��
Ö.Ïeß�Í.Ó�í8ßiÒFÛ�Í°à§Ö°Ï�Í°Î£ÏDÝ¬ÏRÒ�Ì£Ð�Ì£ÜBÕ�ÚµÌ§Ò�Í°à£Ö+Ò�Ó/Ó�ÒFÌ£ÜFà§ÒFÜFÏ�Ø°ÛdÏeß&Ð�î¥ßeÒsÍ°Ð�ÕFÌ¥Øiëoù¶Î§ÏeØ°Ï�Ý�Ï&Í.Î£Õ�Ñ£ØoÎ¥Ò\ïFÏ�Ó�Ð�Ý�Ð�Í.Ò�Í°Ð�ÕFÌ§Ø

�

Ò�Ì¥ÑÙß&ÕFÝ�ÏIÒ�ÍDÒ�ÌÙÏiä�ÛdÏiÌ¥Ø¦ÏIÕFÚ®Ð�Ý�ÛdÕ^Ø°Ð�Ì£ÜXÖ.ÏeØ¦Í°Ö.Ð�ß�Í°Ð�ÕFÌ¥Ø$ÕFÌ�Í.Î£Ï�Ø°í�Ø¦Í°ÏeÝ Ý�Õ�Ñ�ÏeÓ�Ø�Í°ÕCádÏ�ß+Î£ÏRß+ðFÏeÑ�ë�ù¶Î£ÏRØ¦Ï
Ö.ÏeØ¦Í°Ö.Ð�ß&Í°Ð�ÕFÌ§ØJÕFÚ²Í°ÏiÌ>Ð�Ì�ïFÕ^Ó�ï^Ï-Í.Î£ÏoÒ^Ñ£Ñ�Ð�Í°Ð�ÕFÌ�Õ�ÚuÌ£ÏiÔ:ïsÒ�Ö.Ð�Ò�á£Ó�ÏeØ�ÒFÌ§Ñ�Ò�Ó�Í°ÏiÖ+ÒsÍ.Ð�Õ^Ì§ØÍ°Õ�Í°Î£ÏoØ°Ï&ÍµÕFÚuÍ°Ö+Ò�Ì§Ø°Ð�Í.Ð�Õ^Ì§ØÍ°Õ
Ö.Ï��§ÏRß�Í�Í°Î§Ï�Ì£ÏiÏRÑ�ÏeÑ�ádÏiÎ¥Ò\ïqÐ�ÕFÖ1Õ�ÚdÍ°Î£ÏRØ¦Ï�ïsÒFÖ°Ð�Ò�á£Ó�ÏeØeëJñ£ÕFÖ1Ï&ä£Ò�Ý�Û£Ó�ÏF×^Ô®Î£ÏiÌIÒ^Ñ£Ñ�Ð�Ì£Ü$Î£Ð�Ø�Í.ÕFÖ.í�ïsÒ�Ö.Ð�ÒFá£Ó�ÏeØe×sÍ°Î£ÏeÖ°Ï
Ð�Ø1Í.Î£Ï4Ï&ä�Í°Ö+ÒB��Ó�ÕFÜFÐ�ßiÒFÓ/æ¼Ðkë ÏFë�×£Ì£ÕFÍ Ïiä�Û§Ö°ÏRØ°Ø°Ð�á§Ó�Ï�Ð�Ì�7�Ð�Ì£ÏRÒ�Ö®ù·ÏeÝ�Û¥Õ^Ö.ÒFÓ 7·ÕFÜFÐ�ßeç1Ö.Ïeãqà£Ð�Ö°ÏeÝ¬ÏeÌqÍ-Í.Î§ÒsÍ¶Í°Î§Ï�Î§Ð�Ø¦Í°Õ^Ö°í
ïsÒ�Ó�à£ÏeØ�Ö°ÏRß&ÕFÖ+Ñ�Í°Î£Ï�ÒFÛ£Û£Ö.ÕFÛ£Ö.Ð�Ò�Í°Ï4ïsÒ�Ó�à£ÏeØoÒsÍ®Í°Î§Ï�Ò�Û£Û§Ö°Õ^Û£Ö°Ð�ÒsÍ.Ï�Í°Ð�Ý¬ÏRØi×¥Ò�Ì§Ñ8Ì£ÏeïFÏeÖ¶Í.Ò�ð^Ï$ÕFÌXÒ�Ì�íIÐ�Ö.Ö°ÏeÓ�Ïeï\ÒFÌqÍ
ïsÒ�Ó�à£ÏeØeë $oÕ�ÍDÕ^Ì£Ó�í#ÝDà§Ø�ÍDÍ°Î£ÏRØ¦ÏBÏ&ä�Í°Ö+ÒXïsÒ�Ö.Ð�Ò�á£Ó�ÏeØ�ÒFÛ£ÛdÏeÒ�ÖDÐ�ÌTÍ°Î£Ï 7�ù"7 Ø°Û¥ÏRß&Ð�î¥ßiÒ�Í°Ð�ÕFÌ§Øe×Já£à�Í�Í.Î£Ïií�ÝDà§Ø�Í
Ò�Ó�Ø°ÕXÕ�ßeß&à£Ö�Í°Î£Ö.ÕFà§ÜFÎ£Õ^à�Í�Í°Î§ÏBØ°í�Ø¦Í°ÏeÝ Ý¬Õ�Ñ�ÏeÓµÍ.Õ�ádÏ�ïFÏeÖ°Ð�î§ÏRÑ�Ô®Ð�Í.ÎTÖ°ÏRØ¦ÛdÏeß&Í�Í°Õ�Í°Î£Ï 7�ù"7hØ°Û¥ÏRß&Ð�î¥ßiÒ�Í°Ð�ÕFÌ�×
Ð�Ì#Ø°à§ß+Î�ÒBÔ¶Ò\í8Ò^Ø�Í°Õ�ÜFà§ÒFÖ.ÒFÌ^Í.ÏiÏ$Í.Î£Ï�Ï&ä�Í°Ö+ÒB��Ó�ÕFÜFÐ�ßiÒFÓ·Ö.Ïeãqà£Ð�Ö°ÏeÝ�ÏiÌqÍ.Øeë��-Ó�à£Í¦Í°ÏeÖ°Ð�Ì£Ü�Í°Î§Ï�Ø°í�Ø�Í.ÏiÝ2Ý�Õ�Ñ�ÏiÓJá�í
Ý�Õ�Ñ�Ð�Úºí�Ð�Ì£Ü�Ð�Í ÏeïFÏeÖ°í�Ô®Î£ÏeÖ°Ï¶Ì£ÏeÏeÑ�ÏRÑ>Ô®Ð�Í.Î>Í°Î§Ð�Ø ÒFÑ£Ñ£Ð�Í.Ð�Õ^Ì§Ò�Ó¥Ð�Ì�ÚºÕ^Ö°Ý>Ò�Í°Ð�ÕFÌ�Í°Î¥ÒsÍ-Ð�ØµÌ§Õ�Í-Ïiä�Û£Ó�Ð�ß&Ð�Í°Ó�í�Û£Ö.ÏeØ°ÏiÌqÍ1Ð�Ì
Í°Î§Ï�ÒFß�Í.à§Ò�Ó9Ð�Ý�Û£Ó�ÏiÝ�ÏiÌqÍ.Ò�Í°Ð�ÕFÌ8Ö.ÏeÑ�à§ßiÏeØ Í.Î£Ï4Í°Ö.à§Ø¦Í�Ô-Õ^Ö¦Í.Î£Ð�Ì§ÏeØ.Ø-ÕFÚ/Í.Î£Ï$ïFÏeÖ°Ð�î¥ßeÒsÍ°Ð�ÕFÌ·×�ÒFÌ§Ñ�Í°Î£Ï�Ð�Ì§ßiÖ°ÏRÒFØ°ÏeØ-Í°Î£Ï
Ü^ÒFÛBádÏ&Í�Ô ÏiÏeÌ�Í.Î£Ï�Ø°í�Ø¦Í°ÏeÝ7Ý�Õ�Ñ�ÏiÓ·ÒFÌ§ÑBÍ°Î£Ï$Ð�Ý�Û£Ó�ÏiÝ�ÏiÌqÍ.Ò�Í°Ð�ÕFÌ�ë

,#Ï8Û£Ö.ÕFÛdÕ^Ø°ÏIÍ.Î§ÒsÍR×-Ô®Î§ÏiÖ.Ï�ÛdÕ^Ø.Ø¦Ð�á£Ó�ÏF×µÍ.Î£ÏXØ¦í�Ø¦Í°ÏeÝ Ý¬Õ�Ñ�ÏeÓ®á¥Ï8Ó�Ï&Ú²Í>Ð�Ì^Í+ÒFß&Íe×-ÒFÌ§ÑÙÍ.Î£Ï8Ý�Õ�Ñ£ÏiÓ Í°Î§Ò�Í>Ð�Ø
ïFÏeÖ°Ð�î§ÏRÑÙá¥ÏXÒFÌ�Ò�à£Í°ÕFÝ>Ò�Í°Ð�ßiÒ�Ó�Ó�í�Ü^ÏiÌ£ÏeÖ.Ò�Í°ÏRÑTÛ£Ö.Õ�Ñ�à§ß�Í�Õ�ÚoÍ°Î£Ï8ÕFÖ.Ð�ÜFÐ�Ì§Ò�Ó¶Ø¦í�Ø¦Í°ÏeÝ Ý¬Õ�Ñ�ÏeÓ Í°ÕFÜ^Ï&Í.Î£ÏiÖ�Ô®Ð�Í°Î�Ò
Ø°ÏiÛ§ÒFÖ.Ò�Í°ÏXÝ�Õ�Ñ�ÏiÓ4ßiÒFÛ�Í°à£Ö.Ð�Ì£ÜÙÍ°Î§Ï#ÒFÑ§Ñ�ÏeÑ:ïsÒ�Ö.Ð�Ò�á£Ó�ÏeØBÒ�Ì§ÑAÍ.Ö.ÒFÌ§Ø¦Ð�Í°Ð�ÕFÌ¥Øiëåõoà£ÜFÝ�ÏiÌqÍ.Ð�Ì£Ü;Í°Î£Ï#Ý�Õ�Ñ£ÏiÓ�Ô®Ð�Í.Î
Î£Ð�Ø�Í.ÕFÖ.í�ï\ÒFÖ°Ð�Ò�á§Ó�ÏRØi×FÚºÕFÖ Ï&ä£Ò�Ý�Û£Ó�Ï�Ø°ÏiÏeÝ�Ò�Û£Ö.Ð�Ý�Ï4ßiÒFÌ§Ñ�Ð�Ñ£ÒsÍ.Ï�ÚºÕFÖ¶Ø°à§ß+ÎBÒFà�Í°Õ^Ý�Ò�Í°Ð�ÕFÌ�ëJñ£Õ^Ö Ø°ÕFÝ�Ï�Ì£Õ�Í.Ð�Õ^Ì§Ø1ÕFÚ
Ò�à£Í°ÕFÝ>Ò�Í.Ò4Ò�Ì§Ñ¬Û£Ö.Õ�Ñ�à§ß&Í.Øe×^Ñ�ÏeÖ°Ð�ï�Ð�Ì£Ü4Í.Î£Ï®Ý�Õ�Ñ�ÏiÓ¥Ì£ÏiÏRÑ�ÏeÑDÚºÕFÖ1ïFÏiÖ.Ð�î¥ßiÒ�Í°Ð�ÕFÌDÚºÖ°Õ^ÝåÍ°Î§Ï®Ð�Ì£Ð�Í°Ð�Ò�ÓdØ¦í�Ø¦Í°ÏeÝòÝ�Õ�Ñ�ÏiÓ
ï�Ð�Ò�Û£Ö°Õ�Ñ�à¥ß�Í-Ý>Ò\í�Ì£ÕFÍ-ádÏ�Ò�ÌBÒ�Û£Û£Ö.ÕFÛ§Ö°Ð�ÒsÍ.Ï¶Í°Î£Ð�Ì£Ü�Í.ÕDÑ�Õ¥ë�ø�ÕsÔ ÏiïFÏeÖe×FÚºÕFÖ-Ï&ä�Í°ÏeÌ§Ñ�ÏeÑ>î§Ì£Ð�Í°Ï4Ø�Í+ÒsÍ°Ï�Ý>ÒFß+Î£Ð�Ì£ÏeØ
æ¼ó-ñ�ì;I�ç-Ô®Ð�Í.ÎBÓ�Ò�ádÏiÓ�ÏeÑIÍ°Ö+Ò�Ì§Ø°Ð�Í°Ð�ÕFÌ§Øe×qÍ°Î£Ð�Ø¶Ð�Ø ÛdÕ^Ø.Ø¦Ð�á£Ó�ÏFë�÷ Ö°Ð�Ï��¥íF×�Ò�Ì�Ï&ä�Í°ÏeÌ§Ñ�ÏRÑ>î§Ì£Ð�Í°Ï$Ø¦Í.Ò�Í°Ï4Ý>ÒFß+Î£Ð�Ì£Ï�Ô®Ð�Í.Î
Ó�Ò�ádÏiÓ�ÏeÑ�Í°Ö+Ò�Ì¥Ø¦Ð�Í°Ð�ÕFÌ§ØoÐ�Ø�Ò�î§Ì£Ð�Í°Ï¬Ø�Í+ÒsÍ.Ï�Ý>ÒFß+Î£Ð�Ì£Ï�Ô®Î£ÏeÖ°Ï�Í°Î£ÏDÏeÑ�Ü^ÏeØ�ÒFÖ°Ï�Ó�Ò�ádÏiÓ�ÏeÑ�ÚºÖ.ÕFÝHÒ>Ü^Ð�ï^ÏiÌCÒ�Ó�Û£Î§ÒFá¥ÏiÍe×
á£à�Í�Ô®Î§ÏiÖ.Ï�Ô Ï4Ï&ä�Í°ÏeÌ§Ñ�Ô®Ð�Í.ÎXÒ�Úºà§Ì§ß�Í.Ð�Õ^Ì�Ý>ÒFÛ£Û£Ð�Ì£Ü�Ó�ÏiÍ¦Í°ÏeÖ.Ø¶ÕFÚ/Í.Î£Ï�Ò�Ó�Û£Î§ÒFá¥ÏiÍ¶Í°Õ>ÜFà¥Ò�Ö+Ñ�ÏeÑBÒFß�Í.Ð�Õ^Ì§Ø¶ÕsïFÏeÖ Ò
î£ä�ÏeÑXØ°Ï&Í�Õ�ÚµïsÒ�Ö.Ð�Ò�á£Ó�ÏeØeë¶Ë�ÌXÍ°Î£Ð�Ø�Ø¦ÏiÍ¦Í°Ð�Ì£Ü¥×¥Ð�Ú�Í°Î£ÏDÕFÖ.Ð�Ü^Ð�Ì¥Ò�Ó·Ø°í�Ø�Í.ÏiÝ2Ø¦ÛdÏeßiÐ�îdßiÒsÍ.Ð�Õ^ÌXÐ�Ø�Ñ�Ï&Í.ÏiÖ.Ý�Ð�Ì£Ð�Ø¦Í°Ð�ß$Í°Õ�Í°Î£Ï
Ï&ä�Í.ÏiÌqÍ4Í°Î§Ò�Í�Ì£ÕXÏeÑ�Ü^ÏeØ�ÚºÖ.ÕFÝ2Í.Î£ÏIØ.Ò�Ý�Ï>Ø�Í+Ò�Ö°Í4Î¥Ò\ïFÏ¬Í°Î£ÏIØ.Ò�Ý�Ï�Ó�Ò�ádÏiÓP×�Í°Î§ÏiÌ�Ð�Ú¶Ô ÏDÍ+Ò�ð^ÏDÍ.Î£Ï>Û£Ö.Õ�Ñ�à§ß�Í�ÕFÚ
Í°Î§ÏDØ°í�Ø¦Í°ÏeÝ2ó1ñ�ì;IcÔ®Ð�Í°Î#Ò�Ì�ó-ñJì�I Ô®Ð�Í.ÎCÍ.Î£Ï¬Ø.Ò�Ý�Ï�Ó�Ò�ádÏiÓ�ÏeÑCî§Ì£Ð�Í°Ï�Ø�Í+ÒsÍ.Ï�Ý>ÒFß+Î£Ð�Ì£Ï^×¥á£à£Í�ÏiäqÍ.ÏiÌ§Ñ£ÏeÑXá�í
Ñ�Ð(�dÏeÖ°ÏeÌqÍJÜ^à§Ò�Ö+Ñ�ÏRÑ�ÒFß&Í°Ð�ÕFÌ§Øe×sÍ.Î£Ï®Ö°ÏRØ¦à§Ó�Í�Ô®Ð�Ó�Ó�í�Ð�ÏiÓ�ÑDÒFÌDÏiäqÍ.ÏiÌ§Ñ£ÏeÑDî§Ì£Ð�Í°Ï�Ø¦Í.Ò�Í°Ï¶Ý>ÒFß+Î£Ð�Ì£Ï Í°Î§Ò�Í�Î§ÒFØÍ.Î£Ï�Ø°ÒFÝ�Ï
à£Ì§Ñ£ÏiÖ.Ó�í�Ð�Ì£Ü�î§Ì£Ð�Í°Ï�Ø¦Í.ÒsÍ.Ï®Ý>ÒFß+Î£Ð�Ì£ÏF×Fá£à�ÍµÔ®Î£ÏeÖ°Ï¶Í.Î£Ï®ÜFà§ÒFÖ.Ñ£ÏeÑ�Ò^ß�Í.Ð�Õ^Ì§Ø�Ò�Ö.Ï¶Ì£ÕsÔTÍ.Î£Ï®Û§Ò�Ð�Ö.Ô®Ð�Ø°Ï®ß&ÕFÝ�ÛdÕ^Ø°Ð�Í.Ð�Õ^Ì
Õ�Ú/Í°Î£Ï$Ü^à§Ò�Ö+Ñ�ÏRÑBÒ^ß�Í°Ð�ÕFÌ¥Ø ÚºÖ°Õ^Ý�Í°Î£Ï4Í�Ô Õ�Ý>ÒFß+Î£Ð�Ì£ÏeØeë

7�ÏiÍ1à§Ø1Ø°ÏiÏoÔ®Î§ÒsÍµÍ.Î£Ð�ØµÝ�ÏeÒFÌ§Ø�Ð�Ì�Í°Î£Ï�Ï&ä£Ò�Ý�Û£Ó�Ï®Ô®Ð�Í.Î�Í°Î£Ï�Û£Ö.ÏeØ.Ø¦à£Ö.Ï®Ñ�Ð�Ø¦Û£Ó�Ò\íFë �JÕ^Ø.Ø°Ð�á£Ó�Ï�æºÛ¥Ø¦Ïeà§Ñ�Õ&��çJß&Õ�Ñ�Ï
ÚºÕFÖ¶Í.Î£Ï$Û£Ö.ÏeØ.Ø¦à§Ö°Ï4Ñ�Ð�Ø¦Û£Ó�Ò\íIÐ�Ø®ÒFØ ÚºÕ^Ó�Ó�ÕsÔ�Ø 4

�������
	�������������
����������������������� �������!�"�#����%$&���'���
��
!�"�#�����(
�����
�*)�+,��� ��#�"�-�
!�"�#����/.0$1�������'� �����'
!�"�#�����2

#�"������+,��� ��#�"�-�
�3��	�����'��+'"��'�4.5$76 �'�'���
����
�3��	3�82:9
��#��
�;�������'� �����'�"�#�"���	<.0$��'������2
= �>�
#��?���'�����'� �'�����"�#�"���	1$&�'"�#��
��(@+��
)����1�����A���'�����'� �'����
!�"�#����B$&���'������
!�"�#�����(
�����
�C�D� �E����6
�
��+��F�G6 ���'���
����
�,��	3�IH&#�"������+,��� ��#�"�-�
�3��	3�������+�"
����(KJ�$MLON�P

�����
�*)�+,��� ��#�"�-�
!�"�#����/.0$1�������'� �����'
!�"�#�����2
#�"������+,��� ��#�"�-�
�3��	�����'��+'"��'�/.0$*6 �'�'���
����
�3��	3�82:9�(

��#��
�;�������'� �������"�#�"
��	<.5$���������2:9

ñ£Õ^Ö�Ö.ÏeÒFØ°ÕFÌ¥Ø$Õ�Ú�Ø°Û§ÒFßiÏF×JÔ-Ï�ÕFÝ�Ð�Í¬ÒCÑ�Ï&Í+Ò�Ð�Ó�ÏRÑÙÑ�ÏeØ.ß&Ö.Ð�Û�Í°Ð�ÕFÌÙÕFÚ Í.Î£ÏBó-ñ�ì;I,Í°Î§Ò�Í¬ßeÒ�Û�Í.à£Ö°ÏRØ$Í.Î£Ð�Ø�Û£Ö.Õ�ßiÏeØ.Øië
÷ Ö°Ð�Ï��¥íF×�Í.Î£Ï�ßiÕ�Ñ�ÏoßiÒFÌ�á¥Ï�ß&ÕFÝ�Û£Ð�Ó�ÏeÑ�Ð�Ì^Í.Õ�Ò�ßiÕFÌqÍ°Ö.ÕFÓ��¥ÕsÔ�Ü^Ö.ÒFÛ£ÎXè K êdÒ�Ì¥Ñ¬Í°Î£ÏeÌ�Ò�à�Í.ÕFÝ>ÒsÍ.Ð�ßeÒ�Ó�Ó�í�Í°Ö+Ò�Ì§Ø°Ó�ÒsÍ°ÏRÑ
Ð�Ì^Í.Õ¬ÒFÌ�ó1ñ�ì;I Ô®Ð�Í°ÎIÍ.ÏiÌ8Ø�Í+ÒsÍ.ÏeØeëJó-ÒFß+Î�Ø¦Í.Ò�Í°Ï4ß&Õ^Ö°Ö.ÏeØ°Û¥Õ^Ì§Ñ£ØµÍ°Õ¬ÏiÐ�Í°Î£ÏeÖ¶ÒDß&Õ^Ì§Ñ�Ð�Í°Ð�ÕFÌ§ÒFÓdÕ^Ö ÒFÌBÒ^Ø°Ø°Ð�Ü^Ì£Ý�ÏiÌqÍeë
õ�Ó�Ó¥Í°Ö+Ò�Ì§Ø°Ð�Í.Ð�Õ^Ì§ØµÒFÖ°Ï�Ó�Ò�ádÏiÓ�ÏeÑ>Ñ£Ð�Ø¦Í°Ð�Ì§ß�Í.Ó�í^ëµó1Ò^ß+Î�ßiÕFÌ§Ñ£Ð�Í.Ð�Õ^Ì§Ò�ÓdØ�Í+ÒsÍ°ÏoÎ§ÒFØµÍ�Ô-Õ$Õ^à�Í1Í.Ö.ÒFÌ§Ø¦Ð�Í°Ð�ÕFÌ¥Øi×^ÏeÒFß+Î>Ô®Ð�Í°ÎIÒ
ÜFà¥Ò�Ö+Ñ�á£à�Í-Ì£Õ4Ö°ÏRÒ�Ó£ÒFß&Í°Ð�ÕFÌ�×^Ò�Ì§Ñ¬ÏeÒ^ß+ÎDÒ^Ø°Ø°Ð�Ü^Ì£Ý�ÏiÌqÍµØ�Í+ÒsÍ.Ï®Î§ÒFØJÕ^Ì£Ï¶ÕFà�Í�Í.Ö.ÒFÌ§Ø¦Ð�Í°Ð�ÕFÌ¬Ô®Ð�Í°Î�Ì£Õ4ÜFà§ÒFÖ.Ñ�×�á£à�Í1ÒFÌ
ÒFß&Í°Ð�ÕFÌ�ß&ÕFÖ.Ö.ÏeØ°Û¥Õ^Ì§Ñ�Ð�Ì£Ü>Í°ÕBÍ°Î§Ï�Ò^Ø°Ø°Ð�ÜFÌ£Ý�ÏiÌqÍRë�õôÝ�Õ^Ö°Ï�ß&Õ^Ý¬Û¥ÒFß�Í$ó1ñ�ì;I ßiÒFÌ�à£Ì§Ñ£ÕFà£á�Í.ÏeÑ�Ó�íCádÏ>ß&Ö.ÏeÒsÍ.ÏeÑ9×
á£à�Í>Í.Î£ÏiÖ.Ï8Ð�Ø>Ò�Ø°Ð�Ý�Û£Ó�ÏCÒ�Ó�ÜFÕ^Ö°Ð�Í°Î§Ý Í°ÕÙÒ�à�Í.ÕFÝ>ÒsÍ.Ð�ßeÒ�Ó�Ó�í;ÜFÏiÌ§ÏiÖ+ÒsÍ°ÏBÍ°Î§Ð�Ø>Õ^Ì£ÏFë�ù/ÕÙÒFÑ£Ñ;Í°Î£ÏXÐ�Ì�ÚºÕ^Ö°Ý>ÒsÍ.Ð�Õ^Ì
Ò�ádÕFà£ÍoÍ°Î§Ï 4�#&�<>!) ��"2� ïsÒFÖ°Ð�Ò�á£Ó�ÏeØe×dÔ-Ï¬ß&Ö.ÏeÒsÍ.ÏDÒ�Ì£ÏiÔòó-ñ�ì;IcÔ®Ð�Í°Î#Ï&ä£ÒFß&Í°Ó�íBÍ.Î£Ï�Ø°ÒFÝ¬Ï¬Ø�Í+ÒsÍ.ÏeØe×dÏRÑ�ÜFÏRØi×uÒ�Ì¥Ñ
Í°Ö+Ò�Ì¥Ø¦Ð�Í°Ð�ÕFÌ�Ó�ÒFá¥ÏeÓ�Øe×�á£à�Í�Ì§ÕsÔ Ïiï^ÏiÖ.í>Í°Ö+Ò�Ì¥Ø¦Ð�Í°Ð�ÕFÌBÎ§ÒFØ¶Í.Î£Ï�Ø.Ò�Ý�Ï4à£Ì£ÜFà¥Ò�Ö+Ñ�ÏeÑBÒFß�Í.Ð�Õ^Ì�Ò^Ø°Ø°Õ�ß&Ð�ÒsÍ.ÏeÑBÔ®Ð�Í.Î�Ð�Í 4

4�#&�<>!) ��"2� 4�#&�	���<"$#B� #B�(1� D)+���RQ S 4�#B���3�	"5#&� #&��1� ;)+���,T
4!#B�	>�) � "(� ��"5#�#&���(' '�)+*,�UQ S ��"$#%#&���(' '�)+*,�

é

Ë�Ú-Ô Ï�Î§ÒFÑ�Ý�ÕFÖ.Ï 4�#&�<>!) ��"2� ï\ÒFÖ°Ð�Ò�á§Ó�ÏRØoÍ.Õ8á¥Ï�ðFÏeÛ�Í4Í°Ö+ÒFß+ð8Õ�Ú Ô-Ï�Ô ÕFà£Ó�Ñ�Ò^Ñ£Ñ�Í°Î£ÏeÝ³Ð�Ì·ë¬ù¶Î£Ï�Û£Ö.Õ�Ñ�à§ß&Í4ÕFÚ
Í°Î§Ð�Ø¶ó1ñ�ì;IKÔ®Ð�Í.Î�Í.Î£Ï$Ø¦í�Ø¦Í°ÏeÝó-ñ�ì;IKí�Ð�ÏiÓ�Ñ£Ø¶Ò�Ì�ó-ñ�ì;IKÔ®Ð�Í°Î�Í°Î£Ï$Ø.Ò�Ý�Ï�Ø¦Í.Ò�Í°ÏRØi×�ÏeÑ£ÜFÏeØe×�Ò�Ì§Ñ�Ó�ÒFá¥ÏeÓ�Øe×�á£à�Í
Ô®Î£ÏeÖ°ÏoÍ°Î£Ï4ÒFß&Í°Ð�ÕFÌ�ßiÕFÝ�Û¥Õ^Ì£ÏiÌqÍ Õ�Ú�Í.Î£Ï�Ü^à§Ò�Ö+Ñ�ÏRÑIÒFß&Í°Ð�ÕFÌ�Ò^Ø°Ø°Õ�ß&Ð�ÒsÍ°ÏRÑ�Ô®Ð�Í.Î�ÏRÒFß+Î>Í.Ö.ÒFÌ§Ø¦Ð�Í°Ð�ÕFÌ�Ð�Ø¶Ò�à§ÜFÝ�ÏiÌqÍ°ÏRÑ
á�í>Í°Î§Ï4Ò^Ñ£Ñ�Ð�Í°Ð�ÕFÌ§ÒFÓ�ÒFØ.Ø¦Ð�ÜFÌ§Ý¬ÏeÌqÍ.ØeëJ÷ í�Ñ£Ïeß&Õ^Ý�Û¥ÕqØ¦Ð�Ì£ÜDÍ°Î£Ï4Û£Ö.ÕFá£Ó�ÏiÝ7Í°Î£Ð�Ø®Ô¶Ò\íF×�Ô-Ï$Ø°ÏiÛ§ÒFÖ.Ò�Í°Ï�ÕFà�Í¶Í.Î£Ï4Í.Ò^Ø¦ð
Õ�Ú/Õ�Ú·ï^ÏiÖ.Ð�Úºí�Ð�Ì£Ü�Í.Î£Ï�.°Ï&ä�Í°Ö+ÒB��Ó�ÕFÜFÐ�ßiÒFÓ*0�Û£Ö.ÕFÛdÏiÖ°Í°Ð�ÏeØe×�Ø¦Õ�Í°Î§Ò�Í-Í.Î£Ïií>Õ^Ì£Ó�í>Ì£ÏiÏRÑ>Í°Õ¬ádÏ�Ø°Î£ÕsÔ®ÌIÚºÕ^Ö1Í.Î£Ï4ó1ñ�ì;ICØ
Í°Î¥ÒsÍ�Ô ÏiÖ.Ï¬ßiÕFÌ§Ø¦Í°Ö.à§ß�Í.ÏeÑ�Ø°ÕFÓ�ÏiÓ�íXÍ°Õ8Ý>Ò�ð^ÏDÍ.Î£ÏiÝKÍ°Ö.à£ÏFëIñ§ÕFÖ$Í.Î£Ï>Ï&ä£ÒFÝ¬Û§Ó�Ï�Õ�Ú Í°Î§Ï>Î£Ð�Ø¦Í°Õ^Ö°í�ï\ÒFÖ°Ð�Ò�á§Ó�ÏRØi×9á�í
Í°Î§Ð�Ø�Ú¼ÒFß�Í.ÕFÖ.Ð('RÒsÍ.Ð�Õ^Ì�×·Ð�ÍDÐ�Ø�Ð�Ý�Ý¬ÏRÑ�Ð�ÒsÍ°ÏIÍ°Î§Ò�Í�ÚºÕFÖDÏeÒFß+Î�Í.Ö.ÒFÌ§Ø¦Ð�Í°Ð�ÕFÌ�Í.Î£Ï�ïsÒ�Ó�à£ÏIÕFÚ®ÏeÒFß+Î 4�#&�<>!) ��"2� ïsÒ�Ö.Ð�ÒFá£Ó�Ï
Ð�Ø4Í°Î£ÏBØ°ÒFÝ¬ÏIÒ�Ú²Í°ÏeÖ$Í°Î£ÏIÍ°Ö+Ò�Ì§Ø°Ð�Í.Ð�Õ^ÌÙÒFØ�Í°Î§ÏIïsÒ�Ó�à£ÏIÕ�Ú®ß&Õ^Ö°Ö.ÏeØ°ÛdÕFÌ§Ñ�Ð�Ì£Ü8ÕFÖ.Ð�ÜFÐ�Ì§Ò�Ó�ïsÒ�Ö.Ð�Ò�á£Ó�Ï�Ô Ò^Ø$á¥ÏiÚºÕFÖ.Ï�Í°Î£Ï
Í°Ö+Ò�Ì¥Ø¦Ð�Í°Ð�ÕFÌ�ë IXÕFÖ.ÏiÕsï^ÏiÖR×9áqíCÍ°Î£Ð�Ø$Ú¼Ò^ß�Í°Õ^Ö°Ð*'eÒ�Í°Ð�ÕFÌ�×·Ô-ÏIÑ�Õ^Ì�â Í�Î§Ò\ïFÏ¬Í°Õ�Ô-Õ^Ö°Ö.íCÒ�ádÕFà�Í�Î¥Ò\ïqÐ�Ì£ÜXÒFßeß&Ð�Ñ�ÏiÌqÍ+Ò�Ó�Ó�í
ß+Î§ÒFÌ£ÜFÏRÑ�Í.Î£Ï�Ø°í�Ø�Í.ÏiÝÝ�Õ�Ñ�ÏiÓ¥Ð�Ì�Ø°ÕFÝ�Ï�à§Ì£Û£Ö.ÏeÑ�Ð�ß�Í+Ò�á£Ó�ÏoÔ¶Ò\íDØ°Ð�Ì¥ß&Ï®Í.Î£Ï�Ø°í�Ø�Í.ÏiÝÝ�Õ�Ñ£ÏiÓ§Ý>ÒFðFÏeØ1Ì£Õ�Ý�ÏiÌqÍ.Ð�Õ^Ì
Õ�ÚÍ°Î§Ï 4�#B�	>�) � "(� ïsÒ�Ö.Ð�Ò�á£Ó�Ï$Ò�Ì§ÑBÍ°Î§Ï$Î£Ð�Ø¦Í°Õ^Ö°íBó1ñ�ì;I=Ï!�uÏeß&Í.Ø®Õ^Ì£Ó�íIÍ°Î£ÏeÝ�ë õ Í�Û£Ö.ÏeØ°ÏiÌqÍe×�Ô®Î§Ò�Í�Ð�Ø�Û£Ö°Õ^Û¥ÕqØ¦ÏRÑ
Î£ÏeÖ°Ï>Ð�Ø�Õ^Ì£Ó�í#Ý�Ï&Í°Î§Õ�Ñ£ÕFÓ�ÕFÜFí^ëBøoÕsÔ-ÏeïFÏiÖR×·Ð�ÍDØ°ÏiÏeÝ�Ø�ß&Ó�ÏeÒ�Ö�Í°Î§Ò�ÍDÒsÍ�Ó�ÏeÒ^Ø�Í�Ð�ÌTØ°ÕFÝ�Ï>Ó�Ð�Ý�Ð�Í.ÏeÑ�á£à£Í¬ß&Õ^Ý�Ý¬Õ^Ì
ßiÒ^Ø¦ÏRØi×¥Í°Î§Ð�Ø�Û£Ö.Õ�ßiÏeØ.ØoÕFÚ�Ú¼ÒFß&Í°ÕFÖ.Ð�Ì£Ü�Ò�Ì¥Ñ�ß&Õ^Ì§Ø¦Í°Ö.à§ß�Í.Ð�Ì£ÜBÒ�à�ä�Ð�Ó�Ð�Ò�Ö.í�ó-ñ�ì;ICØe×uØ°à§ß+Î�Ò^Ø�Í.Î£Ï¬Î£Ð�Ø¦Í°Õ^Ö°í8ó1ñ�ì;I�Øi×
ß&Õ^à£Ó�Ñ�ádÏ�Ò�à�Í.ÕFÝ>ÒsÍ.ÏeÑ9ë

� �ÆDÃ8É �iÈ�#JÊ&Æ¬Ã�#
Ë�ÌCÍ.Î£Ð�Ø�Û¥Ò�ÛdÏiÖ4Ô-Ï¬Î§Ò\ï^Ï�Ñ�Ð�Ø°ßià§Ø°Ø°ÏeÑCÍ°Î£Ï¬Í.Ö.ÒFÌ§Ø¦Ð�Í°Ð�ÕFÌCÚºÖ°Õ^Ý³Ò�ÌCÐ�Ì�ÚºÕFÖ.Ý>Ò�ÓJÌ§Ò�Í°à£Ö+Ò�ÓÓ�ÒFÌ£ÜFà¥Ò�ÜFÏDØ¦ÛdÏeßiÐ�î¥ßeÒsÍ.Ð�Õ^Ì
Í°ÕDÒ$ÚºÕFÖ.Ý>Ò�ÓdØ¦ÛdÏeßiÐ�î¥ßeÒsÍ.Ð�Õ^Ì>Ð�Ì 7·Ð�Ì§ÏeÒ�Ö ù·ÏeÝ�Û¥Õ^Ö.ÒFÓ 7�Õ^ÜFÐ�ß®Ò�Ì§Ñ>Í°Î£Ï�ß&ÕFÌ¥Ø�Í.Ö°à§ß&Í°Ð�ÕFÌ>ÕFÚ·Ò$Ý�Õ�Ñ£ÏiÓuØ¦à£Ð�Í°ÏRÑ�Í°Õ�Í°Î£Ï
Ø°Û¥ÏRß&Ð�î¥ßiÒ�Í°Ð�ÕFÌ�×¥á£à�Í�Ø¦Í°Ð�Ó�Ó/ßiÒFÛ�Í°à§Ö°Ð�Ì£Ü�Í°Î§ÏDØ°í�Ø¦Í°ÏeÝ	Ñ£ÏeØ°Ð�Ü^ÌCØ¦Õ�Í.Î§ÒsÍ�Í.Î£ÏDØ°í�Ø�Í.ÏiÝHÑ�ÏeØ°Ð�ÜFÌCßiÒFÌ8á¥ÏDïFÏiÖ.Ð�î§ÏeÑBÍ°Õ
Î§Ò\ï^ÏDÍ.Î£Ï�Ñ�ÏRØ¦Ð�Ö.ÏeÑ�Û£Ö.ÕFÛdÏiÖ°Í°Ð�ÏeØeëBù/Õ8ÚºÕFÖ.Ý�ÒFÓ�Ð*'iÏ>Ð�Ì�ÚºÕ^Ö°Ý>Ò�Ó-Ø¦ÛdÏeßiÐ�î¥ßeÒsÍ.Ð�Õ^Ì§Øi×·Í°Î£ÏeÖ°Ï�Ð�Ø�ÒFÌÙÐ�Í.ÏiÖ+ÒsÍ.Ð�ï^Ï¬Û§Ö°Õ�ß&ÏRØ°Ø
Õ�ÚJß&Ó�Ò�Ö.Ð�îdßiÒsÍ.Ð�Õ^Ì�Ò�Ì¥Ñ�Ö.ÏiÌ§Ñ£ÏiÖ.Ð�Ì£ÜDÍ°Î§Ï�Ø¦ÛdÏeßiÐ�î¥ßeÒsÍ.Ð�Õ^Ì�Ý�ÕFÖ.Ï4Û£Ö°ÏRß&Ð�Ø¦Ï^ë�ñ£ÕFÓ�Ó�ÕsÔ®Ð�Ì£Ü¥×�ÕFÖ¶Ð�ÌqÍ.ÏiÖ.Ó�ÏRÒ\ïFÏeÑIÔ®Ð�Í.ÎBÍ.Î£Ð�Øi×
Ð�Ø$Í°Î§Ï�Û£Ö.Õ�ß&ÏeØ.Ø$ÕFÚ Í.Ö°í�Ð�Ì£ÜXÍ.ÕCÏ&ä�Û£Ö.ÏeØ.Ø4Í°Î§Ï�Ð�Ì�ÚºÕFÖ.Ý>Ò�Ó1Ø°Û¥ÏRß&Ð�î¥ßiÒ�Í°Ð�ÕFÌÙÐ�Ì;Ò8ÚºÕ^Ö°Ý>Ò�Ó1Ó�ÒFÌ£ÜFà§ÒFÜFÏ^ë8ù¶Î§ÏIÝ�ÕFÖ.Ï
Ï&ä�Û£Ö.ÏeØ.Ø°Ð�ï^Ï�Í°Î£Ï-Ó�ÒFÌ£ÜFà¥Ò�ÜFÏ^×RÍ°Î£Ï¶ß&Ó�Õ^Ø°ÏiÖ·Í°Î£Ï-ÚºÕFÖ.Ý>Ò�Ó^Ø°ÛdÏeß&Ð�î¥ßeÒsÍ°Ð�ÕFÌ¬ßiÒFÌ�á¥Ï-Í°Õ�Ï&ä�Û£Ö.ÏeØ.Ø¦Ð�Ì£Ü�Ïiä£ÒFß�Í.Ó�í�Í.Î£Ï-Ð�ÌqÍ°ÏeÌ^Í
Õ�Ú-Í°Î£Ï�Ð�Ì�ÚºÕ^Ö°Ý>ÒFÓµØ¦ÛdÏeßiÐ�î¥ßeÒsÍ.Ð�Õ^Ì�ëIø�ÕsÔ Ïiï^ÏiÖR×uÍ°Î£Ï>Ý�ÕFÖ.Ï�Ï&ä�Û£Ö.ÏeØ.Ø¦Ð�ïFÏDÍ°Î§Ï>Ó�ÒFÌ£ÜFà§ÒFÜFÏ^×9Í°Î£Ï>Ó�ÏeØ.Ø4Ó�Ð�ð^ÏiÓ�íXÍ°Î£ÏeÖ°Ï
Ð�Ø�Í.Õ#ádÏBÏ �dÏRß�Í.Ð�ï^Ï�Úºà£Ó�Ó�í;Ò�à�Í.ÕFÝ>ÒsÍ.ÏeÑTØ°à£Û£ÛdÕFÖ°Í¬ÚºÕFÖ¬Û£Ö°Õsï�Ð�Ì£ÜXÍ.Î§ÒsÍ¬Í°Î£Ï8Û£Ö.ÕFÛdÏiÖ°Í°Ð�ÏeØDÎ£Õ^Ó�ÑÙÕFÚ�Í°Î§Ï�Ø°í�Ø�Í.ÏiÝ
Ý�Õ�Ñ�ÏiÓPë�ì�Ð�Ì¥ß&Ï;7�Ð�Ì£ÏeÒFÖ�ù/ÏiÝ�ÛdÕFÖ+Ò�Ó 7�ÕFÜ^Ð�ß�Ð�Ø4Ò�Ñ£ÕFÝ�Ð�Ì¥Ò�ÌqÍ�Ó�Ò�Ì£Ü^à§Ò�Ü^Ï$ÚºÕFÖ�ÚºÕ^Ö°Ý>Ò�ÓØ¦ÛdÏeßiÐ�îdßiÒsÍ.Ð�Õ^Ì�×9ÕsÔ®Ð�Ì£Ü>Í°Õ
Í°Î§ÏIÒ�á£Ð�Ó�Ð�Í�íCÍ.ÕXÏ!�uÏeß&Í°Ð�ïFÏiÓ�íCÝ�Õ�Ñ�ÏiÓ-ß+Î£Ïeß+ð 7�ù"7:Û§Ö°Õ^Û¥ÏeÖ¦Í.Ð�ÏRØ4Õ�Ú î§Ì£Ð�Í°ÏIÝ�Õ�Ñ�ÏiÓ�Øe×·Ô Ï�ÚºÕ�ßià§Ø$Õ^Ì�Í.Ö.ÒFÌ§Ø¦Ó�ÒsÍ.Ð�Ì§Ü
Ø°Û¥ÏRß&Ð�î¥ßiÒ�Í°Ð�ÕFÌ§ØJÐ�ÌqÍ°Õ�7�ù"7µë@,#Ï�Ñ£Ð�Ø.ß&à§Ø.ØµØ°ÕFÝ�Ï®Õ�ÚdÍ°Î§Ï�Ô Ò\í�Ø�7�ù"78Ó�ÒFß+ð�ØJÏ&ä�Û£Ö.ÏeØ.Ø°Ð�ï^Ï ÛdÕsÔ ÏiÖR×�Ò�Ì§Ñ�Ô Ï�Ñ�Ð�Ø°ßià§Ø°Ø
Í°ÏRß+Î£Ì£Ð�ãqà£ÏeØJÚºÕ^Ö-ßiÐ�Ö+ß&à£ÝDïFÏeÌ^Í.Ð�Ì§Ü�Ø¦Õ^Ý¬Ï®ÕFÚuÍ°Î£ÏoÑ£Ð �Iß&à§Ó�Í.Ð�ÏRØ1Ö.ÏeØ°à£Ó�Í°Ð�Ì£Ü4ÚºÖ°Õ^ÝòÍ.Î£Ð�Ø1Ñ�Ïiî¥ß&Ð�ÏiÌ§ßiíFë�õ�Ý�Ï&Í.Î£Õ�Ñ�ÚºÕFÖ
ßiÒFÛ�Í°à§Ö°Ð�Ì£ÜBÒ^Ø¦ÛdÏeß&Í.Ø�Õ�ÚµÍ.Î£Ï�ÏiÌ�ï�Ð�Ö.ÕFÌ§Ý¬ÏeÌqÍe×uØ¦à§ß+Î�ÒFØoÍ°Ð�Ý�ÏF×·ÒFÌ§ÑXÐ�Ì�ÚºÕFÖ.Ý>ÒsÍ°Ð�ÕFÌ�Ò�ádÕFà�Í�Û§ÒFØ¦Í$Ø�Í+ÒsÍ°Ï¬Ð�Ìqï^ÕFÓ�ïFÏRØ
Ò�à§ÜFÝ�ÏiÌqÍ°Ð�Ì£Ü�Í°Î£Ï®Ø¦Í.Ò�Í°Ï¶Ô®Ð�Í.Î¬Ò^Ñ£Ñ�Ð�Í°Ð�ÕFÌ§ÒFÓ�ï\ÒFÖ°Ð�Ò�á§Ó�ÏRØiëù¶Î£Ï¶Û£Ö°Õ^Û¥ÏeÖ¦Í.Ð�ÏRØ/Í°Õ�Ô®Î£Ð�ß+ÎDÍ°Î§ÏeØ°Ï¶ÒFà�ä�Ð�Ó�Ð�Ò�Ö.í�ïsÒFÖ°Ð�Ò�á£Ó�ÏeØ
Ý�à¥Ø�ÍDÒ^Ñ�Î£ÏeÖ°Ï>Ò�Ö.Ï�Í�í�Û£Ð�ßiÒ�Ó�Ó�í�Ì£ÕFÍ�Ï&ä�Û£Ö.ÏeØ.Ø¦Ð�á£Ó�Ï>Ð�Ì�7�ù"71ë·ù¶Î£ÏRØ¦Ï�ÒFà�ä�Ð�Ó�Ð�Ò�Ö.íCïsÒ�Ö.Ð�ÒFá£Ó�ÏRØ4Î§Ò\ïFÏ>Ì§ÕXÏ&ä�Ð�Ø¦Í°ÏeÌ§ß&Ï
Ð�ÌTÍ°Î§Ï�Ø°í�Ø�Í.ÏiÝ Ñ�ÏeØ°Ð�ÜFÌ æ¼ÕFÖ¬ÕFÌ£Ó�íÙÒ�Ì;Ïiä�Ð�Ø¦Í°ÏeÌ§ß&Ï�ÚºÕFÖ¬Û£à£Ö.Û¥ÕqØ¦ÏBÕ�ÚoádÏiÐ�Ì£Ü�Ö.ÏeÒ^Ñ9×�Ð�Ú�Í°Î£ÏeíÙÖ°ÏeÛ£Ö.ÏeØ°ÏiÌqÍ�Ð�Ì£Û£à�Í
Í°ÕCÍ°Î£Ï�Ø°í�Ø�Í.ÏiÝ ÚºÖ°Õ^ÝKÍ.Î£Ï�ÏeÌ�ïqÐ�Ö.ÕFÌ£Ý�ÏiÌqÍ�ç�ë8ù·Õ�ßeÒ�Û�Í.à£Ö.Ï>Í°Î£ÏBÒFÑ£Ñ�Ð�Í°Ð�ÕFÌ¥Ò�Ó1Ì§ÏiÏeÑ£ÏeÑ�Ö.ÏeØ¦Í°Ö.Ð�ß&Í°Ð�ÕFÌ§Ø$Õ^Ì�Í°Î£ÏRØ¦Ï
ïsÒ�Ö.Ð�ÒFá£Ó�ÏeØ Ð�Í�Ð�Ø¶Ì£ÏRß&ÏRØ°Ø.Ò�Ö.í�ÚºÕFÖ�Ð�Í®Í°Õ>ádÏ�ÒFÑ§Ñ�ÏeÑBÍ°Õ�Í.Î£Ï�Ø°í�Ø¦Í°ÏeÝ)Ý�Õ�Ñ�ÏiÓPë�,�Ï�Û£Ö.ÕFÛdÕ^Ø°Ï�Ò�Ý�Ï&Í.Î£Õ�Ñ�ÕFÓ�ÕFÜ^í>ÚºÕFÖ
Í°Î§Ð�Ø¶ÒFÑ§Ñ�Ð�Í.Ð�Õ^ÌIÍ.Î§ÒsÍ®Ð�Ìqï^ÕFÓ�ïFÏRØ1ß&Ö.ÏeÒ�Í°Ð�Ì£ÜDØ°ÏiÛ¥Ò�Ö+ÒsÍ°ÏoÝ¬Õ�Ñ�ÏeÓ�Ø¶ßeÒ�Û�Í.à£Ö°Ð�Ì£ÜDÍ°Î£Ï�Ì£ÏeÏeÑ�ÏRÑ�ádÏiÎ§Ò\ï�Ð�ÕFÖ-Õ�Ú£Þ�à§Ø¦Í¶Í°Î£ÏRØ¦Ï
Ò�à£ä�Ð�Ó�Ð�ÒFÖ°í�ïsÒ�Ö.Ð�ÒFá£Ó�ÏRØi×�ÒFÌ§Ñ�Í°Î§ÏiÌ�ÒFà�Í°Õ^Ý>ÒsÍ°Ð�ßiÒFÓ�Ó�íÙß&Õ^Ý¬ÛdÕ^Ø°Ð�Ì£ÜXÍ°Î§ÏeØ°ÏBÝ�Õ�Ñ�ÏiÓ�ØDÔ®Ð�Í.ÎTÍ°Î§ÏBÏiä�Ð�Ø¦Í°Ð�Ì£Ü#Ø°í�Ø�Í.ÏiÝ
Ý�Õ�Ñ�ÏiÓJÍ.Õ�Ü^ÏiÌ£ÏeÖ.Ò�Í°ÏDÍ°Î£Ï>Ý�Õ�Ñ�ÏeÓµà§Ø°ÏeÑ�ÚºÕFÖ$Ý�Õ�Ñ�ÏiÓµß+Î£ÏRß+ð�Ð�Ì£Ü¥ë¬ù¶Î§Ð�Ø$Ñ�Ð�Ø.ß&Ð�Û£Ó�Ð�Ì£ÏIÒFÓ�Ó�ÕsÔ�Ø�à§Ø�Í°Õ8Ð�Ø¦Õ^Ó�Ò�Í°Ï¬Í°Î£Ï
ÒFØ°ÛdÏeß�Í+Ø�ÕFÚ�Í°Î§Ï�Ý�Õ�Ñ�ÏeÓ Ïiä�Û£Ö°ÏRØ°Ø°Ð�Ì£ÜXÍ°Î§Ï8ÒFà�ä�Ð�Ó�Ð�Ò�Ö.í#Ð�Ì�ÚºÕFÖ.Ý>ÒsÍ.Ð�Õ^Ì�Ø°ÕCÍ°Î¥ÒsÍ�Ð�ÍIßiÒFÌTádÏ�ï^ÏiÖ.Ð�î¥ÏeÑÙá�íÙÕ�Í.Î£ÏiÖ
Ý�Ï&Í.Î£Õ�Ñ£ØXæ¼Ø°à§ß+Î�Ò^Ø¬Ð�Ì�ÚºÕ^Ö°Ý>ÒFÓ Û§Ö°Õ�Õ�ÚoÍ°Î£Ö.ÕFà£Ü^Î;Ð�Ì§Ø°Û¥ÏRß�Í°Ð�ÕFÌdç�ëAË�Í>ÒFÓ�Ø°Õ�Ò�Ó�Ó�ÕsÔ�ØDà§Ø¬Í°Õ�Ö.Ï&Í.ÒFÐ�Ì;Í°Î£ÏXØ°í�Ø�Í.ÏiÝ
Ý�Õ�Ñ�ÏiÓJÐ�Ì^Í+ÒFß&Í$Ø°ÕIÍ.Î§ÒsÍ$Ô Ï¬ßeÒ�Ì#Î§Ò\ïFÏ¬ß&ÕFÌ£î¥Ñ�ÏiÌ¥ß&ÏDÍ°Î§Ò�Í�Í.Î£Ï�Ö°ÏRØ¦à§Ó�Í+Ø�ÕFÚµÍ°Î§Ï¬Ý�Õ�Ñ�ÏeÓµß+Î£Ïeß+ð�Ð�Ì£ÜBÒFÛ£Û£Ó�Ð�ÏRÑXÍ°Õ
Í°Î§Ï�ß&ÕFÝ�ÛdÕ^Ø°Ð�Í.Ï4Ý¬Õ�Ñ�ÏeÓ�Ð�Ý¬Û§Ó�í�Í°Î£Ï$Ð�ÌqÍ°ÏiÌ¥Ñ�ÏeÑ�Ý�ÏeÒFÌ£Ð�Ì§ÜDÚºÕ^Ö¶Í°Î£Ï$Õ^Ö°Ð�ÜFÐ�Ì§ÒFÓuØ°í�Ø�Í.ÏiÝ)Ø°ÛdÏeß&Ð�î¥ßeÒsÍ°Ð�ÕFÌ·ë

� � Æ/� � #��FÆ�Å	Ä '�� F8ÈBÄ�È8Å��
Ë�Ì¬Í°Î£Ð�Ø�Û§ÒFÛ¥ÏeÖ�Ô-Ï¶Î§Ò\ï^Ï¶Ð�Ñ�ÏeÌqÍ°Ð�î§ÏeÑDÍ°Î§Ö°ÏeÏ®Û£Ö°Õ^á£Ó�ÏiÝ>ØJÔ®Ð�Í.Î¬Í°Ö+Ò�Ì§Ø°Ð�Í.Ð�ÕqÒ�Ì£Ð�Ì£Ü�ÚºÖ°Õ^ÝòÌ§Ò�Í°à£Ö+Ò�Ó�Ó�Ò�Ì§ÜFà§ÒFÜFÏ¶Ø¦ÛdÏeßiÐ�Ú �
ßiÒ�Í°Ð�ÕFÌ§Ø Í.Õ¬ÚºÕFÖ.Ý�ÒFÓ9Ó�ÒFÌ£ÜFà¥Ò�ÜFÏ4Ø°Û¥ÏRß&Ð�î¥ßiÒ�Í°Ð�ÕFÌ§Ø 4
� $�ÒsÍ.à£Ö.ÒFÓ�Ó�Ò�Ì£Ü^à§Ò�Ü^ÏJØ°ÛdÏeß&Ð�Ú¼ßiÒ�Í°Ð�ÕFÌ§Ø·Ò�Ö.Ï�ÜFÏiÌ§ÏiÖ+Ò�Ó�Ó�í�Ý�Õ^Ö°ÏµÒFÝ�á£Ð�ÜFà£Õ^à§ØdÍ°Î¥Ò�Ì4Í°Î§Ïií�î§Ö.Ø¦Í·Ò�Û§Û¥ÏRÒ�ÖRë·ù¶Î£ÏiÖ.Ï!�ÚºÕ^Ö°Ï^×dÍ°Î£ÏeÖ°Ï¬Ð�Ø�ÒBÌ£ÏiÏRÑXÍ°ÕBÐ�Ñ£ÏiÌqÍ°Ð�ÚºíCÒ�ÝDá£Ð�Ü^à£Ð�à�Í°ÏRØ�ÒFÌ§Ñ�Ñ�Ð�Ø.Ò�Ý�á§Ð�Ü^à§ÒsÍ.ÏFë4ù¶Î£ÏDÛ§Ö°Õ�ß&ÏRØ°Ø�Õ�ÚµÖ.ÏiÌ¥Ñ�ÏiÖ.Ð�Ì§Ü

C

Í.Î£Ï4Ø¦ÛdÏeßiÐ�Ú¼ßeÒsÍ°Ð�ÕFÌ¥Ø1Ð�ÌBÒ�ÚºÕFÖ.Ý�ÒFÓ¥Ó�Ò�Ì§ÜFà§ÒFÜFÏoßeÒ�Ì�Ø°ÏiÖ.ïFÏ�ÒFØ Ò�à§Ø°Ï&Úºà£ÓdÍ.ÕqÕ^Ó¥Ð�Ì�Ð�Ñ�ÏeÌ^Í.Ð�Úºí�Ð�Ì£Ü�Ò�Ý�á§Ð�Ü^à£Ð�Í.Ð�ÏRØië
� ù/Õ#Ñ§ÒsÍ°Ï^×JÚºÕFÖ.Ý>Ò�Ó1Ó�Ò�Ì§Ü^Ò�Ü^à£ÏeØ�Ø¦à£Ð�Í.ÒFá£Ó�ÏIÚºÕFÖ�Ø°à§ß+Î;Ò�à£Í°ÕFÝ>Ò�Í°Ð�ÕFÌTÒFØ�Ý�Õ�Ñ£ÏiÓ®ß+Î£Ïeß+ð�Ð�Ì£Ü�ÒFÖ°ÏIÌ§Õ�Í¬Ò^Ñ�Ï!�ãqà§Ò�Í°ÏeÓ�íDÏ&ä�Û£Ö.ÏeØ.Ø¦Ð�ïFÏ¶ÏiÌ§ÕFà£Ü^ÎDÍ.Õ�Ñ�Ð�Ö°ÏRß�Í°Ó�íDßeÒ�Û�Í.à£Ö.Ï¶Í°Î£Ï®Ì§Ò�Í°à£Ö+Ò�Ó§Ó�ÒFÌ£Ü^ÒFÜFà£Ï®Ø°Û¥ÏRß&Ð�î¥ßiÒ�Í°Ð�ÕFÌ§Øeë ,�Ï®Î§Ò\ï^Ï
Û§Ö°Õ^Û¥ÕqØ¦ÏRÑ¬Ø°ÕFÝ�Ï�Ý�ÏiÍ°Î£Õ�Ñ�Õ^Ó�Õ^ÜFÐ�ÏeØÚºÕFÖ-Ð�Ì¥Ñ�Ð�Ö.Ïeß&Í-ßiÒFÛ�Í°à§Ö°Ï¶Í.Î£Ö°Õ^à£ÜFÎIÒ$ßiÕFÝDá£Ð�Ì¥ÒsÍ°Ð�ÕFÌ>ÕFÚuÒFà�ä�Ð�Ó�Ð�Ò�Ö.í�ïsÒ�Ö.Ð��
ÒFá£Ó�ÏeØ�Ò�Ì§Ñ�Ï&ä�Í°Ö+ÒB��Ó�Õ^ÜFÐ�ßiÒFÓ9Ö°ÏRã^à§Ð�Ö.ÏiÝ�ÏiÌqÍ+Øië4ù¶Î£Ð�ØoÝ�Ï&Í.Î£Õ�Ñ�ÕFÓ�ÜFí8Î§ÒFÌ§Ñ�Ó�Ï¬ßiÕFÝ�Ý�ÕFÌ�ßeÒFØ°ÏeØoÝ¬Õ�Ñ�ÏeÖ.Ò�Í°ÏeÓ�í
Ô ÏiÓ�ÓP×£á£à�ÍoÒ�Í¶Î§ÏeÒ�Ö°Í®Ð�Ø�ÕFÌ£Ó�í�Ò�ß&Õ^Ó�Ó�Ïeß&Í°Ð�ÕFÌ�Õ�ÚJÎ£Ïià£Ö.Ð�Ø�Í.Ð�ßeØië
� õ�Ñ£Ñ�Ð�Ì£ÜXÒ�à�ä�Ð�Ó�Ð�Ò�Ö.í8Ì£Õ�Í.Ð�Õ^Ì§Ø�Í°ÕBÍ°Î£Ï>Ø°í�Ø�Í.ÏiÝ³Ø°Û¥ÏRß&Ð�î¥ßiÒ�Í°Ð�ÕFÌ�Ö.Ïeãqà£Ð�Ö.ÏeØ�ÒFÑ£Ñ�Ð�Ì£Ü�Í°Î£ÏeÝ2Í°Õ�Í°Î§Ï¬Ø°í�Ø�Í.ÏiÝ
Ý�Õ�Ñ�ÏeÓÒ^ØoÔ ÏiÓ�Ókë�ö�ÒsÍ.Î£ÏiÖoÍ°Î§ÒFÌ�ß&Ó�à�Í°Í°ÏiÖ�Í°Î§Ï¬Ø°í�Ø�Í.ÏiÝ	Ý¬Õ�Ñ�ÏeÓ/Ô®Ð�Í°Î�Í°Î£Ð�Ø�Ò�à�ä�Ð�Ó�Ð�Ò�Ö.íBÐ�Ì�ÚºÕ^Ö°Ý>ÒsÍ.Ð�Õ^ÌXÌ£Õ�Í
Ïiä�Û£Ó�Ð�ß&Ð�Í4Ð�ÌXÍ.Î£Ï¬Ð�Ý�Û£Ó�ÏiÝ�ÏiÌqÍ.Ð�Õ^Ì�×uÔ-ÏDÛ£Ö°Õ^Û¥ÕqØ¦Ï�Í°Î§Ò�ÍoÍ.Î£Ï¬ÒFà�ä�Ð�Ó�Ð�Ò�Ö.íBÐ�Ì�ÚºÕFÖ.Ý>ÒsÍ.Ð�Õ^ÌXá¥Ï�ßiÒFÛ�Í°à£Ö.ÏeÑCÐ�Ì�Ò
ÒFà�ä�Ð�Ó�Ð�Ò�Ö.íXÝ¬Õ�Ñ�ÏeÓµß&Õ^Ì§Ø�Í.Ö°à¥ß�Í°ÏRÑ�Ø°ÕFÓ�ÏiÓ�í8ÚºÕFÖ�Í°Î§Ð�Ø4Û£à§Ö°ÛdÕ^Ø°ÏF×·ÒFÌ§ÑXÍ.Î£ÏiÌÙßiÕFÝ�Û¥ÕqØ¦ÏRÑCÔ®Ð�Í°Î#Í°Î£Ï>Ø°í�Ø�Í.ÏiÝ
Ý�Õ�Ñ�ÏeÓ9Í°Õ>Õ^á�Í.ÒFÐ�ÌBÍ°Î£Ï$Ý�Õ�Ñ�ÏeÓ�à§Ø°ÏeÑ�ÚºÕFÖ®ïFÏeÖ°Ð�î¥ßeÒsÍ°Ð�ÕFÌ·ë

ù¶Î£Ï$Û£Ö.ÕFá§Ó�ÏeÝ7Í°Î¥ÒsÍoÔ Ï$Î§Ò\ïFÏ4Ð�Ì§Ñ�Ð�ßiÒ�Í°ÏeÑ�Í.Î£Ï�ádÏeØ¦Í�Ø°ÕFÓ�à�Í°Ð�ÕFÌ�ÚºÕFÖoÐ�Ø¶Í.Î§ÒsÍ�Õ�ÚÍ°Î£Ï�ÒFà£ÜFÝ�ÏeÌ^Í.Ð�Ì§ÜDÍ.Î£Ï�Ø°í�Ø�Í.ÏiÝ
Ý�Õ�Ñ�ÏiÓPëµñ£Õ^Ö¶ßiÏiÖ°Í.ÒFÐ�Ì�Ý�Ï&Í°Î§Õ�Ñ§Ø¶Õ�ÚÒFà£ÜFÝ�ÏeÌ^Í.Ð�Ì§Ü§×�Ð�Í¶Ð�Ø®ß&Ó�ÏeÒFÖ¶Í°Î§Ò�Í®Ð�Í�Ð�Ø¶Û¥ÕqØ¦Ð�á£Ó�Ï�ÚºÕFÖ Í°Î£Ð�Ø¶Í.Õ¬ádÏ$ÛdÏiÖ°ÚºÕFÖ.Ý¬ÏRÑ
Ò�à£Í°Ý>ÒsÍ.Ð�ßeÒ�Ó�Ó�í^ë�ì�Õ¬Ñ�Õ�Ð�ÍeëµõoÌ§Ñ8Ò�Û£Û£Ó�í>Ð�Íeë1ì�ÏeÏ�Î§ÕsÔ Ô ÏiÓ�ÓdÔ Ï$ßiÒFÌ�Î§ÒFÌ§Ñ�Ó�Ï�Ö.ÏeÒFÓuÔ-Õ^Ö°Ó�ÑIÛ£Ö.ÕFá§Ó�ÏeÝ�Ø-Í.Î£Ð�Ø¶Ô¶Ò\íFë

,#Ï¶Î§Ò\ï^Ï-Ñ�Ð�Ø.ß&à§Ø.Ø¦ÏRÑ�Ø°ÕFÝ�Ï-Î§Ïià£Ö.Ð�Ø¦Í°Ð�ßiØ��\Ý�ÏiÍ°Î£Õ�Ñ�Õ^Ó�Õ^ÜFÐ�ÏeØ9ÚºÕ^ÖÚºÕFÖJßiÒ�Û£Í°à£Ö.Ð�Ì§Ü�Ì§Ò�Í°à£Ö+Ò�ÓqÓ�Ò�Ì£Ü^à§Ò�Ü^Ï-ß&Õ^Ì§ß&ÏeÛ�Í.Ø
Ð�ÌDÒ�Ó�ÒFÌ£ÜFà§ÒFÜFÏ Ø¦à§ß+Î¬ÒFØ37�ù"7µë�øoÕsÔ-ÏeïFÏiÖR×\ß&Ó�ÏeÒ�Ö.Ó�í$Ô-Ï¶Ò�Ö.Ï-ßiÕFÌqÍ°Õ^Ö¦Í.Ð�Ì£Ü�ÕFà£Ö+Ø°ÏiÓ�ïFÏeØ�Í°Õ�î£ÍJÍ°Î£Ï¶Ó�Ò�Ì£Ü^à§Ò�Ü^ÏFë ICÕFÖ.Ï
Ô ÕFÖ.ð�Ì£ÏeÏeÑ£Ø1Í°ÕDá¥Ï4Ñ�ÕFÌ§Ï�ÕFÌ�ßiÕFÌ§Ø¦Í°Ö.à§ß&Í°Ð�Ì£Ü�Ó�Ò�Ì£ÜqÒ�ÜFà§ÏeØµÔ®Ð�Í°ÎIÍ°Î£Ï�Ï&ä�Û£Ö.ÏeØ.Ø¦Ð�ïFÏ®ÛdÕsÔ ÏiÖµÍ.ÕDßeÒ�Û�Í.à£Ö°Ï�Í°Î£Ï�Ð�Ñ£ÏeÒFØ
Ì£ÏeÏeÑ�ÏRÑ$Ð�Ì¬Ø¦ÛdÏeßiÐ�Ú¼ßeÒsÍ.Ð�Õ^Ì§ØiëJì�Ð�Ý¬Û§Ó�í$Ý>Ò�ð�Ð�Ì£Ü�Í.Î£Ï Ó�ÒFÌ£ÜFà§ÒFÜFÏµÝ�Õ^Ö°ÏµÏiä�Û£Ö°ÏRØ°Ø°Ð�ïFÏF×\Ð�Ì�Í.Î£Ï1Ý>ÒsÍ.Î£ÏiÝ>Ò�Í°Ð�ßiÒ�Ó�Ø°ÏiÌ§Ø°ÏF×
Ð�Ø¦Ì�â Í�Í.Î£ÏBÒFÌ§Ø°Ô-ÏeÖeë8Ë�Ñ�ÕCádÏiÓ�Ð�ÏiïFÏIÍ°Î§Ò�Í¬ÒXÓ�Ò�Ì£Ü^à§Ò�Ü^ÏIØ¦à¥ß+ÎTÒFØ��uÏiÖ.Ý¬ÏeÓ�Õ)��ñ§Ö.ÒFÌ£ðFÏeÓµØ¦ÏiÍ�Í.Î£ÏiÕ^Ö°í^×/Õ^Ö�Î£Ð�ÜFÎ£ÏeÖ��
ÕFÖ+Ñ�ÏeÖµÓ�Õ^ÜFÐ�ß�×qÔ®Î£Ð�ß+Î�Ò�Ö.Ï�Ï&ä�Û£Ö.ÏeØ.Ø°Ð�ï^Ï®ÏiÌ£Õ^à£ÜFÎ�Í.ÕDßiÒFÛ�Í°à§Ö°Ï�á¥ÒFØ°Ð�ßoÝ�Ò�Í°Î£ÏeÝ>ÒsÍ°Ð�ßiØe×�Ò�Ö.Ï�Ï&ä�Û£Ö.ÏeØ.Ø¦Ð�ïFÏ®ÏeÌ£ÕFà§ÜFÎ�Í°Õ
ßiÒFÛ�Í°à§Ö°Ï1Ø°í�Ø�Í.ÏiÝ Ø¦ÛdÏeßiÐ�Ú¼ßeÒsÍ.Ð�Õ^Ì§Øi×sÒFÌ§Ñ4Ïiï^ÏiÌ$à§Ø°ÏiÖ/Ö°ÏRã^à§Ð�Ö.ÏiÝ�ÏiÌqÍ+Øië·øoÕsÔ-ÏeïFÏeÖe×RØ¦à§ß+Î$Ó�Ò�Ì§ÜFà§ÒFÜFÏeØ·ßiÒ�Ì§Ì£Õ�Í/Ò^Ñ�Ý�Ð�Í
Í°Î§ÏoÑ�ÏeßiÐ�Ø°Ð�ÕFÌ�Û£Ö.Õ�ßiÏeÑ�à§Ö°ÏRØJÌ£ÏeßiÏeØ.Ø°ÒFÖ°í$ÚºÕ^Ö1Ø°í�Ø¦Í°ÏeÝôï^ÏiÖ.Ð�îdßiÒsÍ.Ð�Õ^Ì�ë·Ë�Í-Ð�Ø�Ì§Õ�Í-ßiÓ�ÏRÒ�ÖR×FÎ£ÕsÔ Ïiï^ÏiÖR×\Í°Î§Ò�ÍµÚºÕFÖ�.°Ö°ÏRÒ�Ó 0
Ø°í�Ø¦Í°ÏeÝåØ¦ÛdÏeßiÐ�îdßiÒsÍ.Ð�Õ^Ì�×sÍ.Î£Ï Úºà£Ó�Ó§Ï&ä�Û£Ö.ÏeØ.Ø¦Ð�ïFÏ-Û¥ÕsÔ ÏiÖJÕ�ÚuØ¦à¥ß+Î�Ó�Ò�Ì£ÜqÒ�ÜFà§ÏeØ/Ð�ØJÖ.Ïeãqà£Ð�Ö°ÏRÑ9ë 2�Ì§Ï¶ÒFÖ°ÏRÒ�ÕFÚ¥Ö.ÏeØ°ÏeÒ�Ö+ß+Î
Í°Î¥ÒsÍoÐ�Ø�Ì£ÏeÏeÑ�ÏRÑXÐ�Ø®Í°ÕIî§Ì§ÑXÓ�Ò�Ì£Ü^à§Ò�Ü^ÏeØe×�Û£Ö.ÕFá§ÒFá£Ó�í�Ø¦Ð�Ý�Ð�Ó�Ò�ÖoÍ°Õ 7�ù"71×§á£à£Í�Ô®Ð�Í°ÎCÏiä�Û§Ö°ÏRØ°Ø°Ð�ï�Ð�Í�íIÏ&ä�Í.ÏiÌ§Ñ�ÏRÑXÐ�Ì
Ñ�Ð�Ö°ÏRß�Í.Ð�Õ^Ì§Ø�Í°Î§Ò�Í�Ò�Ö.Ï�Í.Î£Õ^Ø°Ï�Ì£ÏiÏRÑ�ÏeÑ#ÚºÕFÖ$ßeÒ�Û�Í.à£Ö°Ð�Ì£Ü8Ý�Õ^Ø¦Í�ß&ÕFÝ�Ý�ÕFÌ§Û£Ó�Ò^ß&Ï�Ø¦ÛdÏeßiÐ�Ú¼ßeÒsÍ.Ð�Õ^Ì�ßiÕFÌ§Ø¦Í°Ö.à§ß�Í+Øië>õoÌ
Ï&ä£ÒFÝ¬Û§Ó�Ï�Õ�Ú Í°Î§Ð�Ø�Ý¬Ð�ÜFÎqÍ�ádÏIÒFÑ£Ñ£Ð�Ì£Ü8Í.Î£Ï>Ì£ÕFÍ°Ð�ÕFÌ�Õ�Ú Í°Î£Ï�Ì£Ï&ä�Í���Ø¦Í.ÒsÍ.Ï�ï\ÒFÓ�à§Ï�ÚºÕFÖ�Ò�ïsÒ�Ö.Ð�ÒFá£Ó�ÏF×·Ð�ÌÙÒFÑ£Ñ£Ð�Í.Ð�Õ^Ì
Í°ÕIÍ°Î£Ï�ßià£Ö.Ö°ÏeÌ^Í�ïsÒFÓ�à£Ï^ë�ì�à§ß+ÎCß&Õ^Ì§Ø¦Í°Ö.à§ß�Í+Ø®Ì£ÏiÏRÑ�Í°ÕIádÏ�ß+Î£ÕqØ¦ÏeÌ8Ô®Ð�Í.Î�ß&Õ^Ì§Ø¦Ð�Ñ�ÏeÖ.Ò�Í°Ð�ÕFÌBÚºÕFÖ�ádÕ�Í.ÎXÍ°Î£Ï�Ï&ä�Í°ÏeÌ^Í
Í°Õ�Ô®Î£Ð�ß+Î�Í°Î£ÏeíIÔ®Ð�Ó�Ó9Ú¼Ò^ß&Ð�Ó�Ð�Í.Ò�Í°Ï$Ö.ÏiÌ§Ñ£ÏiÖ.Ð�Ì£Ü�Ø°Û¥ÏRß&Ð�î¥ßiÒ�Í°Ð�ÕFÌ§Øe×£Ò�Ì§Ñ�Í°Î§Ï�Ò�á£Ð�Ó�Í�íIÍ°ÕIÒ�à£Í°ÕFÝ>Ò�Í°Ð�ßiÒ�Ó�Ó�íIß+Î£Ïeß+ð>Í.Î§ÒsÍ
Í°Î§Ïií�Î§ÕFÓ�Ñ�ÕFÚJØ°í�Ø�Í.ÏiÝ7Ý�Õ�Ñ�ÏiÓ�Øeë

õ�Ì£ÕFÍ°Î£ÏeÖ®Û¥ÕqØ°Ø°Ð�á£Ó�Ï4Û§ÒFÖ¦Í.Ð�ÒFÓ�Ò�Ì§Ø°Ô ÏiÖ Ð�Ø¶Í.Õ¬Í°Ö+Ò�Ì§Ø°Ó�Ò�Í°Ï�Í°Î£Ï$Ì¥ÒsÍ°à§Ö.ÒFÓdÓ�Ò�Ì§ÜFà§ÒFÜFÏ�Ð�ÌqÍ°Õ>Ò¬Î£Ð�ÜFÎ£Ó�íIÏiä�Û§Ö°ÏRØ°Ø°Ð�ï^Ï
ÚºÕFÖ.Ý>Ò�Ó�Ó�ÒFÌ£ÜFà¥Ò�ÜFÏ^×�Ò�Ì§ÑhÍ°Î£ÏeÌ6Ñ�ÏeÖ°Ð�ïFÏ�Ò�Û£Û§Ö°Õ\ä�Ð�Ý�ÒFÐ�Í.ÕFÌ§ØIÍ°Õ;Í°Î£ÏRØ¦Ï�Ö°ÏRãqà£Ð�Ö.ÏiÝ�ÏeÌ^Í+Ø�Ð�Ì6Ò;Ó�ÏRØ°Ø�Ïiä�Û§Ö°ÏRØ°Ø°Ð�ï^Ï
Ó�Ò�Ì£Ü^à§Ò�Ü^ÏCØ¦à£Ð�Í.ÒFá£Ó�ÏCÚºÕFÖ8Ò�à£Í°ÕFÝ>Ò�Í°Ð�ÕFÌ Ø°à§ß+ÎhÒFØBÝ�Õ�Ñ�ÏiÓ4ß+Î£Ïeß+ð�Ð�Ì£Ü§ëôË�Ì�Í°Î§Ð�Ø8Ø.ß&ÏiÌ¥Ò�Ö.Ð�Õ¥×�ÒsÍ�î¥Ö.Ø¦Í�Ñ�ÏeÖ°Ð�ïFÏRÑ
ÚºÕFÖ.Ý�à§Ó�ÒFÏ>Í°Î§Ò�ÍDÔ ÏiÖ.Ï�Ø¦Í°Ö.ÕFÌ£Ü^ÏiÖ$Í.Î§Ò�ÌÙÍ.Î£Ï�Õ^Ö°Ð�ÜFÐ�Ì§ÒFÓµÔ-Õ^à£Ó�ÑÙá¥Ï�ß+Î£Ïeß+ð^ÏeÑ9ëXË�ÚoÍ°Î£Ïeí�Ø°à§ßeß&ÏiÏRÑ�ÏeÑ�×/Í.Î£ÏiÌ;Í°Î£Ï
ÕFÖ.Ð�ÜFÐ�Ì§Ò�ÓuÖ.Ïeãqà£Ð�Ö°ÏeÝ¬ÏeÌqÍ¶Ô ÕFà§Ó�Ñ�ádÏ$ðqÌ§ÕsÔ®Ì�Í.Õ>Î£ÕFÓ�Ñ9ëµË�ÚÍ°Î£Ïeí�Ú¼ÒFÐ�Ó�ÏeÑBÍ.ÕIß+Î£Ïeß+ðu×�Í°Î§ÏiÌXß&Õ^à£ÌqÍ°ÏiÖ ��Ï&ä£Ò�Ý�Û£Ó�ÏeØ-Í°Õ
Í°Î§Ï�Ñ�ÏiÖ.Ð�ï^ÏeÑ�ÚºÕFÖ.Ý�à£Ó�Ò�Ï4ß&Õ^à£Ó�Ñ�ádÏ$ÜFÏeÌ£ÏiÖ+ÒsÍ.ÏeÑ�Ò�Ì§ÑBÐ�ÚÍ°Î§ÏeØ°Ï

,�Ð�Í.ÎXÏ&ä�ÛdÏiÖ.Ð�ÏeÌ§ß&Ï4Õ�ÚÔ®Î§ÒsÍ�ð�Ð�Ì§Ñ£Ø®ÕFÚÒFà�ä�Ð�Ó�Ð�ÒFÖ°í>Ð�Ì�ÚºÕ^Ö°Ý>ÒsÍ.Ð�Õ^Ì�ßeÒ�Ì�á¥Ï�Ò

" � �&�oÅ��oÃ8É"� #
è 2 ê�$�Ð�ðFÕ^Ó�Ò�Þ¬÷/Þ�Ö°Ì§ÏiÖR×¶õoÌ§ßiÒÙ÷ Ö.ÕsÔ®Ì£ÏF×¶ó1Ñ§Ñ�Ð�Ï �-Î§Ò�Ì£Ü¥×8ICÐ�ß+Î§ÒFÏiÓ �-Õ^Ó�Ì·×¶õoÖ¼Þ�à§Ì��$Ò�Û£à£ÖR×��dÕFÎ¥Ò�ÖHICÒFÌ£Ì§Ò£×

ø�ÏeÌ£Ì�í#÷�ë/ì�Ð�Û£Ý>Ò£×Ò�Ì§Ñ�ù/ÕFÝ>Ø�ó�ë �oÖ°Ð�ádÏFëBìqÍ.ÏiÛ 4 �oÏRÑ�à§ß�Í.Ð�ï^Ï!��Ò�Ó�ÜFÕ^Ö°Ð�Í°Î£Ý�Ð�ß¬ïFÏiÖ.Ð�î¥ßiÒ�Í°Ð�ÕFÌ�ÕFÚ Ö.ÏeÒ^ß�Í.Ð�ï^Ï
Ò�Ì§ÑIÖ°ÏRÒ�Ó(�kÍ.Ð�Ý�Ï�Ø°í�Ø�Í.ÏiÝ>Øeë9Ë�Ì���� A C	
�� ?&A%� ��� ?
	�� ����!C	
 C<��� C:����� ��� < :�ADC	
�� � =@CE=�� C<
�� �8� ?BA�� ���§×�ï^ÕFÓ�à£Ý�Ï
2 2�� 6�Õ�Ú��������¥×§Û§Ò�Ü^ÏeØ � 2 ��� � 2�� × 2���� é§ë

è 6\ê�ó�ëJõ�ëJóµÝ�ÏiÖ+Ø°ÕFÝ Ò�Ì§Ñ �¥ë! ¬ë�øoÒ�ÛdÏiÖ.Ì�ë�â ì�Õ^Ý�Ï&Í°Ð�Ý�ÏeØeâÒFÌ§Ñ�â $�ÕFÍ/$�ÏeïFÏeÖeâ/Ö°ÏeïqÐ�Ø°Ð�Í.ÏeÑ 4 2�ÌTá£Ö+Ò�Ì¥ß+Î£Ð�Ì§Ü
ïFÏeÖ.Ø°à§Ø Ó�Ð�Ì£ÏRÒ�Ö¶Í°Ð�Ý�Ï4Í°ÏeÝ¬ÛdÕFÖ+Ò�Ó9Ó�ÕFÜ^Ð�ßFë�"#�$��%X× K5K æ 2 ç 4 2 � 2 � 2 C � × �^ÒFÌ�ë 2��&� é§ë

è K ê�óµÓ�Ø°Ò('�à§Ì^Í.ÏiÖ1ÒFÌ§Ñ ��ÕFÖ.ÕFÌ-�JÏiÓ�ÏeÑ9ë ��ÒsÍ.ÎDÏiä�Û£Ó�Õ^Ö.Ò�Í°Ð�ÕFÌ¬Í°Õ�Õ^ÓkëdË�ÌIö�Ò�Ì¥ß&Ï��-Ó�ÏeÒ\ïFÏeÓ�ÒFÌ§Ñ9×�ÏRÑ�Ð�Í°ÕFÖR×*) �(�#	?�8?�� =
�+	 ,$��
�� A.-D� ��<��
/� ����� A%
 : � A�� ��� ?�� =0� � ?
	A�2���&� �12� �2� A C	� �43*5BA.-$�<�5ADC<
�� ?BA�� ��� ?#	�� ����!C	
 C<��� C�3�)&�$���0�
6 7�7 ×�ïFÕFÓ�à£Ý�Ï 2 �5C � ÕFÚ�� C��!A :;
 C�� �&A C<�H���8� ��� < :�A C	
����	� C	� � C&×�Û¥Ò�ÜFÏRØ�� � ���	� 2�� ×�õ�Ý>Ø¦Í°ÏiÖ+Ñ£ÒFÝ�×�ù¶Î£Ï
$�ÏiÍ°Î£ÏeÖ°Ó�Ò�Ì§Ñ§Øi× 2������ ë£ì�Û£Ö.Ð�Ì£Ü^ÏiÖRë

�

è ��ê:�oÏiä�Í°ÏiÖ �4Õ)'iÏeÌ�ë�ö®ÏeØ°à£Ó�Í.Ø>Õ^ÌAÍ°Î£ÏXÛ£Ö.ÕFÛdÕ^Ø°Ð�Í°Ð�ÕFÌ§ÒFÓ ÝDà���ßiÒ�Ó�ß&à§Ó�à§Øeë) ->C���
EC!A�� � ?#	/� ��� < :�A C	
 ���	� C<��� C&×
Û§Ò�Ü^ÏeØ K!K5K � K � �¥×$��ÏeßFë 2��&�!K ë

è �\ê$�ë�ICÒFÌ£Ì§Ò4Ò�Ì§Ñ�õ�ë)�µÌ�à£ÏeÓ�ÐPë) ->C�) C<� <���
 ?#	 � �4,!� � � �� C ?5�!A���� C8?�� = � ��� � :;
�
 C<� A!� �2� ADC	� ��ë¥ì�Û§Ö°Ð�Ì£ÜFÏeÖ��
��ÏiÖ.Ó�ÒFÜ§× 2��&� 6£ë

è ésê���ë ICÒ&' 'eÒ§×��§ëµñ¥Ò�Ð�Ö.ßiÓ�Õ^à£ÜFÎ·×µ÷�ë ICÏiÓ�Í°ÕFÌ·×8�DëµÑ�Ï ��Ò�á£Ó�Õ§×-õ�ë1ì�ß+Î£Ï �dÏeÖe× Ò�Ì§Ñ�ö$ë1ìqÍ.ÏiïFÏeÌ§Øeë���� A�� ?�
 C
�8� ,!��� C C	
���� , � AD?�� =)?�
E=2��ë �µÖ.ÏiÌqÍ.Ð�ßiÏ�ø�Ò�Ó�Ók× 2���� �§ë

è?CRê:IÙë®õ�ë 2 'iÕ^Ó�Øe×���ë¶õ�ë®ó1Ò^Ø�Í+Ò�à£Ü^Î��uÏF×oõ�ë � ÒFÌqÍe×oÒFÌ§Ñ6ìuë �-ÕFÓ�Ó�Ð�Ü^Ì£ÕFÌ�ë ��2���ó 4¶õ³Í.ÕqÕ^ÓoÚºÕ^ÖXÑ�ÏeØ°Ð�Ü^Ì
Ý�Õ�Ñ£ÏiÓ�Ó�Ð�Ì£ÜDÒFÌ§Ñ>ï^ÏiÖ.Ð�î¥ßeÒsÍ.Ð�Õ^Ì>Ð�Ì�Ø.ÒsÚºÏiÍ�í>ß&Ö.Ð�Í.Ð�ßeÒ�Ó¥Ø°í�Ø�Í.ÏiÝ>Øeë�Ë�Ì	�8
��(� C CE=���� ,�� � A.->C�
� A.-���� A C	
�� ?&A%� ��� ?
	
� �2� ADC<� � ?1!C A�� � ����!C	
 C	� � Ci×¥ì�ÏeÒ�Í¦Í.Ó�Ï^× ��ì�õ�×¥ì�ÏeÛ�Í°ÏeÝ�ádÏiÖ 2������ ë

�

The Fixed Logical Execution Time Assumption

Thomas A. Henzinger, University of California, Berkeley

Abstract:

A central challenge in real- time programming is the definition of a programming model
at a level of abstraction that supports both implementability and verifiability. If a
programming model is too close to an abstract specification, then it is difficult to generate
efficient code. On the other hand, if a programming model is too close to the execution
platform, then the gap between specificationand program is difficult to bridge. Many
traditional real- time programming models are based on priorities. These models are
arguably not sufficiently abstract, and the resulting code is often unpredictable with
respect to both timing (jitter) and function (data races). Some newer programming
models are based on the synchrony assumption, which postulates that computation is
infinitely faster than the physical environment. These programming models are often too
abstract and difficult to compile onto resource-constrained and distributed platforms. We
present a novel real- time programming model, based on the FLET (fixed logical
execution time) assumption, which is less abstract than synchronous models but more
abstract than priority-based models. We demonstrate that FLET-based programming
leads to predictable, composable, portable, and efficient real- time code.

Refining middleware functions for verification purpose

Jérôme Hugues, Laurent Pautet
{hugues, pautet}@enst.fr

École Nationale Supérieure
des Télécommunications

CS & Networks Department
46, rue Barrault

F-75634 Paris CEDEX 13, France

Fabrice Kordon
Fabrice.Kordon@lip6.fr

Laboratoire d’Informatique de Paris 6/SRC
Université Pierre & Marie Curie

4, place Jussieu
F-75252 Paris CEDEX 05, France

Abstract

The development of real-time, dependable or scalable
distributed applications requires specific middleware that
enables the formal verification of domain-specific proper-
ties. So far, typical middleware implementations do not
directly address these issues. They focus on patterns and
frameworks to meet application-specific requirements.

Patterns propose a high-level methodology adapted to
the description of software components. However, their se-
mantics does not clearly address verification of static or
run-time properties. Such issues can be addressed by other
formalisms, at the cost of a more refined description.

In this paper, we present our current effort to combine
both patterns and Petri Nets to refine and then to verify mid-
dleware. Our contribution details steps to build Petri Net
models from the Broker architectural pattern. This provides
a model of middleware and is a first step towards formal
middleware verification.

1 Issues in middleware development

Distribution middleware provides description methods,
services and guidelines to ease the development of dis-
tributed applications. Middleware specifications describe
the semantics and runtime supports for distribution.

Successful implementations of solutions such as
CORBA, Java Message Service (JMS) or SOAP demon-
strate that distributed applications require very different
distribution models: Remote Procedure Call (RPC), Dis-
tributed Objects Computing (DOC), Message Passing (MP)
or Distributed Shared Memory (DSM).

Besides, there is a rising demand for a wider range of
runtime and platform support: embedded, mobile, real-
time, multimedia, etc. These new criteria increase complex-

ity in both middleware development and use. Middleware
implementations should be versatile enough to handle dif-
ferent (and potentially antagonist) platform requirements;
application must abide to complex middleware semantics.

Current middleware implementations rely on patterns to
enable configurability and then to meet user requirements
for one specific distribution model. Architectural and de-
sign patterns are introduced to describe specific solution to
recurrent design problems (request demultiplexing, buffers
allocations, concurrent execution, etc). Middleware is de-
scribed by means of a language pattern that weaves together
a set of related patterns. This approach proved its efficiency
in various industrial projects [1]. Hence, the combination
of patterns provides a high-level description of middleware.
Yet, weak pattern descriptions may lead to slightly different
implementations or implementations that interleave differ-
ent patterns concerns. This impedes implementations veri-
fication.

Moreover, patterns are only descriptive. They do not
provide any verification guidelines. Thus, implementa-
tions rely only on simple verification methods to verify
behavioral-only properties: the use of some middleware
functions and the execution of predefined test cases. But
this approach lacks generality: it can only test a restricted
subset of the infrastructure properties.

As middleware use evolves toward real-time and depend-
able applications, there is a strong need for formal verifica-
tion of middleware with respect to explicitly defined proper-
ties. Yet, verification process is a complex task. The choice
of a verification mechanisms is thus significant.

In the remainder of this paper, we detail our current effort
on middleware verification. We focus on remote invocation
models (RPC, DOC or MP) and exclude DSM. We present a
middleware typical architecture, built around the Broker ar-
chitectural pattern and show limits that prevent verification.
Then we introduce our work to fill this gap and detail the

1

modeling notations and process we use to verify the Broker.
We also detail our specific middleware architecture, imple-
mented by PolyORB1 and demonstrate how separation of
concerns eases verification. Then we explain how we refine
the Broker and detail how to formally verify it.

2 Broker: a key middleware pattern

Basically, middleware provides mechanisms to enable
transparent interaction between application nodes using
messages. Reception of a message triggers: 1) resources
allocation, 2) specific processing for the distribution model
and then 3) execution of application-specific code. A re-
sponse may be sent back to the message initiator, following
the same path. The architectural pattern Broker provides a
view of the components involved in this process.

We first present this pattern; we show its importance for
middleware specifications, performance and runtime; then
we discuss limitations when coming to verification.

2.1 Overview of the Broker

The Broker architectural pattern provides a synthetic de-
scription of the role of middleware [2]: “ [..] (to) struc-
ture distributed software systems with decoupled compo-
nents that interact by remote service invocations. A broker
component is responsible for coordinating communication,
such as forwarding requests, as well as for transmitting re-
sults and exceptions.”.

The Broker pattern prescribes the use of many differ-
ent objects: proxy, client and server, repository, bridge.
These objects cooperate in the following way: Servers reg-
ister themselves with the broker through the Repository,
and make their services available to Clients through method
interfaces; Clients access servers by sending requests via
the Broker. Broker exchanges requests between nodes by
locating the appropriate server, forwarding the request to
it and transmitting results back to the client. Proxy and
Bridge handle communication mechanisms and enable data
exchange across heterogeneous platform.

We can note that the Broker specification presented
above provides a complete view of an architecture to
achieve remote service invocation. It covers all functions
involved in middleware execution: protocol stack, data rep-
resentation for transmission through network, resource al-
location, etc. Hence, its precise definition and study will
provide a first analysis of a middleware architecture.

2.2 Broker within middleware architectures

The Broker pattern has a key role in middleware archi-
tecture and implementations. Moreover, similar patterns

1http://libre.act-europe.fr/polyorb

[2] propose simpler views of the Broker adapted to spe-
cific cases. Variations of this pattern are used by middle-
ware norms or specifications: e.g. for CORBA or Microsoft
.NET specifications. Some implementations detail varia-
tions that support different distribution models or enable
precise tuning of middleware performance:

• The Advanced Communication Toolkit (ACT) [3] pro-
vides a flexible implementation of the Broker pat-
tern. It allows a precise description of resource alloca-
tion policies for multi-threading or data marshalling.
ACT shows the Broker may serve as a basis to im-
plement various distributions models. It supports
CORBA (DOC) and cBus (Message Oriented Middle-
ware, MOM).

• The ACE ORB (TAO) [4] demonstrates how the Bro-
ker pattern can be extended and then adapted to several
concurrent executions policies. TAO proposes multi-
ple patterns to control concurrent execution of Broker
instances. A performance analysis revealed these dif-
ferent patterns enable great flexibility in configuration
and good performance.

Hence, the Broker pattern is used under multiple forms at
the core of most middleware architectures. Its precise def-
inition and analysis would provide significant information
about resource use, execution flow, middleware faults and
performance analysis; but also to detect incorrect design.

So far, middleware implementations rely on slightly dif-
ferent behavioral descriptions of the Broker. This pat-
tern definition is not sufficiently detailed and may lead to
many fine variations introduced by implementation choices.
Moreover, this pattern interleaves multiple functions: pro-
tocol, resource allocation, etc. Such a description impedes
verification: it covers many complex functions. Thus, the
Broker architectural pattern provides a specification of mid-
dleware architecture not suitable for formal verification.

However, patterns provide an elegant way to describe a
component. We now present how we extract a precise spec-
ification of middleware components from the Broker archi-
tectural pattern that is suitable for verification.

3 Analysis guidelines

A complete analysis of the Broker pattern requires first a
clear description of the component interface, related seman-
tics and expected properties. Ultimately, this description is
expressed using a notation that enables formal verification.
In between, several transformations may be required to go
from high-level unformal specification to strongly formal-
ized description of a component.

This raises the question of the most adequate modeling
notation (or set of notations) to achieve this process. We

2

contemplate using one or more models among automata,
UML diagrams (and derived stereotypes), Petri nets (col-
ored, stochastic, etc) and architecture description languages
(ADL). These are the most used notations for modeling
software components.

We can note that none of these notation is supported by
a complete specification and verification cycle. Each nota-
tion only covers a restricted part of the software life cycle:
UML diagrams focus on system specifications and model-
ing; Petri nets on formal verification of controlled systems;
ADL on the description of system architectures.

Thus, one has to use two or more notation to cover both
specification and verification. Current research activities fo-
cus on the combination of different description models to
provide a complete description of a component :

• For instance one can derive Petri Nets from UML state
machines and diagrams [5] to achieve verification, yet
there is no fully automated tool to complete this task.

• Another possibility is to rely on domain specific no-
tations such as the Avionics Architectural Description
Language (AADL) [6] or L f P [7]. They detail how
new notations can be defined by extending and com-
bining multiple models. Yet, they are still at an early
definition stage and not fully supported by tools.

These studies provide guidelines for the formal spec-
ification and verification of components. They follow a
top/down approach from high level specifications to formal
one, enabling verification.

We propose to follow a similar approach, adapted to a
very specific problem: verifying the Broker pattern. We
present the different steps in the following sections. First we
propose a middleware architecture that eases verification;
then we refine the Broker pattern and define it with respect
to our middleware architecture. Finally, we present the for-
mal model of the Broker we produced using Petri Nets.

4 Middleware architecture for verification

In this section, we present how specific middleware ar-
chitectures enable formal verification. We introduce our
proposal, the schizophrenic architecture, and our implemen-
tation: PolyORB.

4.1 Rationale

We stated in section 2.2 that the interleaving of many
high-level functions is a major limitation for the verification
of middleware architectures based on the Broker pattern. To
solve this problem we have to propose a comprehensive def-
inition and then separation of middleware functions.

Generic middleware proposes such a separation: they
assert that middleware implementations have similar de-
sign. Hence, distribution models may be built from a set of
generic elements using a functionality-oriented approach.
Then, these elements are instantiated to conform to a spe-
cific distribution model.

Several projects demonstrate how middleware function-
alities can be described by a set of generic services, inde-
pendent from any distribution model. They propose a set of
abstract interfaces. Distribution models are implemented by
combining the concrete modules that implement these inter-
faces and provide access to generic middleware services.

• Quarterware [8] is generic middleware from which
CORBA, RMI and MPI instances have been produced.
These models have been implemented using a re-
stricted set of components that can be extended to im-
plement a specific model; or specialized for optimiza-
tion and high-performance.

• Jonathan [9] architecture emphasizes on instances as
adaptations of the core system Jonathan. Jonathan is
a framework of configurable components and abstract
interfaces. Dedicated instantiations provides CORBA
(David), Java RMI (Jeremie) distribution models, or
specialized ones for multimedia.

These different projects provide incomplete solutions for
verification. They enable the implementation of distribu-
tion models as instances or personalities of a generic set of
components. But personalities implementation interleaves
instantiated components: this impedes verification.

Thus, we have to clearly separate middleware functions
at both the definition and implementation levels. We now
present our solution: schizophrenic middleware.

4.2 Schizophrenic middleware

Schizophrenic middleware refines the definition and role
of personalities to increase separation of concerns. It intro-
duces application level, protocol level personalities and a
Neutral Core Middleware. The latter allows for interaction
between personalities. Figure 1 presents interaction capa-
bilities between personalities available in our implementa-
tion of schizophrenic middleware: PolyORB.

Application personalities constitute the adaptation layer
between application components and middleware through
a dedicated API or code generator. They register applica-
tion components with the core middleware; and they inter-
act with it to enable the exchange of requests between enti-
ties at the application-level.

Protocol personalities handle the mapping of personality
neutral requests (representing interactions between applica-
tion entities) onto messages exchanged through a chosen

3

communication network and protocol. Requests can be re-
ceived either from application entities (through an applica-
tion personality and the neutral core) or from another node
of the distributed application. They can also be received
from another protocol personality: in this case the applica-
tion node acts as a proxy performing protocol translation
between third-party nodes.

The Neutral Core Middleware acts as an adaptation layer
between application and protocol personalities. It manages
execution resources and provides the necessary abstractions
to transparently pass requests between protocol and applica-
tion personalities in a neutral way. It is completely indepen-
dent from both application and protocol personalities: this
enables the selection and interaction of any combination of
application and protocol personalities.

DSACORBA

SOAPGIOP

Application
personalities

Protocol
personalities

Neutral Core
middleware

(1)
(2)

(3)

Figure 1. PolyORB’s interacting personalities

Personalities implement a specific aspect of a distribu-
tion model. The Neutral Core Middleware enables the pres-
ence and interaction of multiple application and protocol
personalities within the same middleware instance, leading
to its “schizophrenic” nature (see [10] for more details).

Hence, this architecture separates three main compo-
nents of middleware: protocol-side, application-side and in-
ternals. This reduces components interleaving. We now de-
tail their interactions.

4.3 Separating middleware functions

Personalities implement middleware functions with re-
spect to a specific semantics. Yet, most of these functions
are notionally similar and can be defined as instances of
some generic services.

Hence, schizophrenic middleware define generic ser-
vices that express key middleware functionalities based on
an analysis of multiple implementations. These services
are focused on the completion of interactions between two
nodes of a distributed application. One can combine partic-
ular services instances to implement the neutral core mid-
dleware and application or protocol personalities.

• Addressing Each entity is given a unique identifier
within the entire distributed application.

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

marshaling

request

access pt

Neutral core
middleware

personalityProtocot	

Application

obj. ref

Application

process

object

servant

client server

ne
tw

or
k

request
receiving &

unmarshaling

addressing (1)

binding(2)

representation(3)

protocol(4)

transport(5)

activation(6)
surrogate

personality A personality B

execution(7)

Figure 2. PolyORB’s services

• Binding Middleware establishes and maintains asso-
ciations between interacting objects and resources al-
lowing this interaction (e.g. a socket, a protocol stack).

• Representation Request must be translated into a rep-
resentation suitable for transmission over network.

• Protocol Middleware implements a protocol for the
transmission of requests amongst nodes.

• Transport A communication channel is established
between a node and an object to transmit messages.

• Activation Middleware ensures a concrete entity im-
plementing objects is available to execute the request.

• Execution Middleware assigns execution resource to
process every incoming request.

Figure 2 illustrates how PolyORB’s services cooperate
to transmit one request from one application personality to
another, on two separate nodes using a common protocol.

The client (application personality ’A’) gets a reference
on the object from the “addressing” service (1); the core
middleware creates a binding object (2, “binding” service):
a dynamic gateway to the remote object through which the
client communicates; a message is built from the request (3
and 4, resp. “representation”, “protocol” services). and
sent to the remote node (5, “transport” service). Upon re-
ception, remote node middleware ensures that a concrete
entity implementing the object is available to execute the
request (6, “activation” service) and assigns execution re-
sources (7, “dispatching”) leading to the execution of ap-
plication code by application personality ’B’.

So far, we demonstrated in [11] how composing and
reusing services enable the rapid prototyping of RPC (dis-
tributed system annex of Ada), DOC (CORBA) and MOM
(based on Sun’s JMS API) middleware. PolyORB allows
implementors to design multiple distribution model from a
common set of services. Code reuse ratio reaches 70%; it
is less than 30 % for generic middleware. We show how

4

the instanciation of PolyORB services to build personnal-
ities preserve separation of middleware functions. Finally,
benchmarks show performance are correct for such a mid-
dleware, when compared to generic middleware.

Per construction, each service encompasses a restricted,
well-defined set of functionalities. This separation of con-
cerns enables separate analysis and verification of each mid-
dleware component. It is a first step towards the verification
of the whole middleware. Thus, schizophrenic middleware
architecture provides foundations for formal verification.

5 Refining the Broker pattern

The Broker architectural pattern interleaves functions
that define middleware architecture. We now detail how we
refine this pattern specification to separate its functionalities
and thus facilitate verification.

5.1 From architectural to design pattern

The Broker pattern role is to coordinate distributed ap-
plications and handle request exchange between nodes. Its
initial definition as an architectural pattern (section 2.1) en-
compasses protocol services, resource allocation, request
execution, etc. It gathers many components that should be
delegated to separate components.

We propose to refine this architectural pattern and to de-
fine a Broker design pattern, i.e. a component that interacts
with other services to provide the same functionalities than
initial architectural pattern. This definition provides greater
separation of components involved in middleware.

PolyORB’s architecture enables function delegation to
a specific service. Thus, middleware are combination of
these services. In this respect, we define the Broker design
pattern whose unique role is to coordinate communications
between nodes and to transmit requests.

This design pattern cooperates with other PolyORB’s
services. It sends requests from a node to another using
both addressing and binding services. It receives incom-
ing requests from remote nodes through transport service;
activation service ensures request completion.

Hence, the Broker design pattern along with PolyORB’s
services is notionally equivalent to the Broker architectural
pattern. Yet, it clearly separates functions into separate ele-
ments. We now define each of them.

5.2 Elements of the Broker design pattern

We focus on elementary abstractions to express the Bro-
ker design pattern interfaces. These abstractions interact
with other PolyORB’s services to form the complete mid-
dleware. The elements to describe this pattern are:

• Asynchronous Event Sources: enable waiting on ex-
ternal event sources, e.g. incoming data on TCP sock-
ets. These sources are input points used by remote
nodes to interact with this Broker instance. An API
to manipulate and check sources is provided.

• Job Queue: stores all incoming jobs the Broker will
process. Elementary Broker actions are defined as jobs
to be processed by tasks running Broker; e.g. moni-
toring an event source, binding, processing incoming
data, executing a request.

• Broker: enables services to access Broker function-
alities either to process jobs, or to receive incoming
data from remote nodes through asynchronous event
sources. We distinguish the Broker main loop proce-
dure that monitors sources or process jobs until a given
exit condition is met; from the Broker API that allows
for interaction with event sources (protocol level) and
the job queue (application level).

• Scheduling Policy: allocates existing tasks to run the
Broker main loop. Allocation is done upon the notifi-
cation of event occurrences within middleware.

Figure 3 details communication between these blocks.

Broker API

Event Sources

Job Queue
"Main Loop"

Scheduler

E
ve

nt"use"

"set up"

"monitors"

"queue"

"fetch"

Figure 3. Interactions in Broker design pattern

This specification, and the unformal descriptions above
provide a first overview of the Broker design pattern. It
implies interactions among its sub-components. We now
briefly present them in order to determine coupling between
them.

• Broker: multiple tasks may concurrently execute Bro-
ker’s main loop, or other functions from the Broker
API. This requires a precise locking policy.

• Job Queue: jobs can be queued by the Broker main
loop upon the notification of an event on a source; or
at the request of user code. This implies the definition
of a specific queuing policy.

Jobs are fetched in the Broker loop for processing.

• Asynchronous event sources: event sources list can
be modified at any time; a traffic model defines how
incoming data are received.

5

• Scheduler: Tasks executing the Broker main loop may
be scheduled to achieve specific tasks. Figure 4 details
the automaton used for scheduling. Current Broker’s
global state determines the next action a task running
the Broker’s main loop will perform: direct leaving
if exit condition is met, processing jobs, blocking on
event sources or going idle.

The scheduler may be triggered at any time to ensure
a task will process events: e.g. sources modification,
new job queued, . . .

Figure 4. Task state automaton

These different elements show that this system is highly
concurrent and driven by the occurrence of specific events.
Thus we must choose carefully an appropriate modeling
technique to model each Broker’s functions and their com-
bination. We now detail how we move forward formal spec-
ification and then verification using Petri Nets.

6 Petri Net modeling of Broker

Petri Nets proved to be a rigorous formalism to verify
concurrent event driven systems. Existing tools enable au-
tomatic verification of structural properties or model check-
ing. In this section, we detail how we mapped previous
specifications to Petri Nets.

We first briefly present well formed Petri nets. Then we
discuss the modeling process of the Broker, and finally in-
troduce the Petri net model of the Broker.

6.1 Unformal presentation of Petri nets

A well formed colored Petri net [12, 13] is a 5-uple
<P,T,Pre,Post,Types,M0> where P is a set of places (de-
picted by circles), T is a set of transitions (depicted by rect-
angles), Pre[t] is the precondition function for transition t,
Post[t] is the postcondition function for transition t, Types
is the set of basic types (a basic type is a finite set) and M0

is the initial marking.
To each place p, a domain Dom(p) is associated:

Dom(p) is the cartesian product of some basic types.
Dom(p) corresponds to the set of token color that place p
can possibly contain. In figure 5, basic classes is C. The

domain of place a is the cartesian product of C with itself,
the one of b and c is C.

A marking M(p) is associated to each place p: M(p) is
a multi-set over Dom(p). Therefore, a marking M is the
function that associates a marking to each place p of P. An
element of a marking in a place is called a token. In figure 5,
the initial marking associates one token having value <1> in
place b and two tokens having values <1> and <2> in place
c (function <C.all> generates one token for any value of
class C).

class
 C is 1 .. 2;
Domain
 D is <C, C>;
Var
 x, y in C;

a

b <1> c <C.all>

T U

<y++1,y><C.all,x>

<x> <C.all> <y>

Figure 5. A small Petri net example.

Pre and Post functions describe how a marking is mod-
ified when an action is performed. Since actions are asso-
ciated to transitions, instead of "an action is performed" we
say: "a transition is fired". To each transition, a set of vari-
ables Var(t) is associated. Each variable is defined over a
basic type. In figure 5, Var(T) = <x> and Var(U) = <y>.
The binding of a transition is the association of an actual
value to each parameter. When a transition fires, the corre-
sponding tokens are generated in its output places. Based on
this evolution, the state space can be generated. The figure 6
provides the one of our example and explicitly presents all
possible bindings (the double circle represents the initial
state and black circles represent deadlock states).

Computing the state space allows behavioral analysis
such as detection of specific states (e.g. "is a given situa-
tion possible") or causal relation between two states (e.g.
"if I reach state S1, will I eventually reach state S2?").

Petri nets also support structural analysis: properties
such as invariants (e.g. "the number of tokens remains con-
stant on a subset of places") are computed on the graph
structure and thus do not require to compute the state space
too. Thus, infinite systems may be verified [13].

c: <1>+<2>
b: <1>

c: <2>
b: <1>
a: <2,1>

c: <1>
b: <1>
a: <1,2>

a:<1>+<2,1>

b: <1>
a: <1,2>+<2,1>

U
 y = 1

U
 y = 2

T
 x = 1

U

 y = 2

U
 y = 1

Figure 6. The corresponding state space.

6

6.2 The modeling process

Having unformally defined Broker subcomponents and
their interactions, we now detail how to formally specify it.

We first transcribe the different components and interac-
tions we presented into Petri Nets modules. We associate a
specific action to each transition of the Petri Net; places rep-
resent states. Interaction between components is specified
as common places between different modules. Hierarchy
can also be used to provide partial views and helps in re-
fining an initial Petri net model. However, this hierarchy
should be flatten to use formal verification tools.

Then, Petri net modules are merged to produce a com-
plete model, suitable for verification. To do so, we use the
CPN-AMI2 CASE environment that provides modeling fa-
cilities as well as model checking and structural analysis
tools. Hence, the Petri Nets model for the Broker pattern is
the aggregate of several Petri Net modules, each of which
specifies one function of the Broker.

ThreadPool

SigOut
1

Lock
1

Polling
1

EvtHole

LstEvt

ChckSrcB

ChckSrcE

ProcEvtB

FlushEvt

ProcEvtE

QueuEvt

FlushDone

<t>

<t><t>

<s,j>
<t><t>

<t>

<t>

<t><s,j>
<e,s> <t>

<t>

<t>
<t>

<t>
<t>Class Threads is 1.. T; Events is 1.. E; Jobs is 1..J; Sources is 1..S;Var t in Threads; e in Events; j in Jobs; s in Sources;

Figure 7. Petri Net for one Broker module

6.3 Petri Net of the Broker

By lack of space, we only present the Petri net module
of one core function processed by the Broker main loop
(see Figure 7). This procedure is triggered when a task is
blocked, waiting for events. It consists of two phases: 1)
polling on event sources and 2) processing events.

2http://www-src.lip6.fr/logiciels/mars/cpn-ami

• Polling on event sources. Place ThreadPool contains
all threads scheduled to check event sources (see sec-
tion 5.2). Only one task can actually check sources.
When transition ChckSrcB fires, one available threads
is selected to check sources. Transition ChckSrcE fires
upon the notification of the presence of an event in the
sources (place SigOut). Place Polling ensures only one
thread can check sources.

• Event processing. Since we read from event sources
(place EvtHole), this step has to be performed under
critical section (ensured by place Lock). Transition
FlushEvt is fired as long as there are events coming
from any of the sources. Transition FlushDone fires
when all events are consumed, which is enforced by
the inhibitor arc from EvtHole to FlushDone. Events
are stored in the Job Queue for further processing by
others threads. The related functions are defined in
other Petri net modules. When all events are queued,
transition ProcEvtE fires to release the lock and restore
the thread in the pool.

Places outlined in black have a special status in the Petri
net module. They support communication with other Petri
net modules. Their marking is generated by these modules
and ensure an appropriate connection between the modules.
They represent either other Broker functions or middleware
modules interacting with the broker (i.e. behavior of Poly-
ORB services). This typical composition technique is called
channel place [14].

This Petri net module allows a stand-alone assessment of
the modeled function. This can be done by changing the ini-
tial marking: each initial marking corresponds to a set of po-
tential scenarios. This provides useful behavioral informa-
tion on the correctness of the modeled function. All func-
tions can be separately tested and then combined to form
the complete Petri net model. Besides, module substitution
allows us to define different scenarios that emulate specific
conditions (e.g. queuing, locking or scheduling policies).

Then, these different models of the Broker can be tested,
providing information on resource consumption/ We may
first test for any deadlock or livelocks situations. Then, we
may compute resources needed to fullfill a specific scenario;
we may look for stable states or compute shorter or longuest
processing path. The main advantage of this technique is to
enable verification targeted on the way the middleware is
used. Thus, optimizations can be formally verified accord-
ing to specific execution conditions.

7 Conclusion and future works

This paper presents the first steps towards middleware
verification. We have detailed how to extract from an un-

7

formal specification components that can be verified; and
proposed the use of Petri Net to verify these components.

Most efficient middleware architectures rely on design
patterns as a language to express and then implement user
requirements. Test cases are defined to validate this archi-
tecture. Yet, this approach lacks generality: it only tests the
use of a restricted set of functions.

Then, we presented the Broker architectural pattern. It
provides a complete and precise definition of all compo-
nents involved in remote service invocation. It is of com-
mon use in middleware architecture. We noted its analy-
sis would provide analysis of middleware implementations.
But this pattern interleaves many high-level functions. This
impedes verification. We thus looked for precise separation
of all middleware functions to ease the verification process.

We detailed existing modeling notations. We showed
at least two different formalisms are required to enable the
complete definition and then verification of software com-
ponents. We chose to rely on design patterns notations and
Petri Nets to model the Broker.

We first presented the schizophrenic middleware archi-
tecture and its implementation PolyORB. We showed how
its architecture clearly decouples middleware functions at
both definition and implementation level. We refined Bro-
ker architectural pattern and define a Broker design pattern.
It interacts with other PolyORB services to fulfill the same
functions. Moreover, the Broker design pattern embeds less
functionalities. This also eases verification.

Finally, we explained how we produced Petri net models
of the Broker. We presented how to build specific scenarios
to verify properties with respect to application needs. We
contemplate verifying our implementation PolyORB.

We defined specific conditions to be tested. This will re-
quire future work to be completed. We expect it will provide
more information on middleware behavior with respect to
specific scenarios and lead to the formal validation of prop-
erties of our model, and then of our implementation.

References

[1] D. Schmidt and F. Buschmann, “Patterns frameworks
and middleware: Their synergistic relationships,” in
Proceedings of the 25th International Conference on
Software Engineering, 2003.

[2] F. Buschmann, R. Meunier, H. Rohnert, P. Sommer-
lad, and M. Stal., Pattern-Oriented Software Architec-
ture: A System Of Patterns. John Wiley and Sons
Ltd., 1996.

[3] C. Francu and I. Marsic, “An Advanced Communica-
tion Toolkit for Implementing the Broker Pattern,” in
Proceedings of ICDCS’99. IEEE, June 1999.

[4] D. C. Schmidt, D. L. Levine, and S. Mungee, “The
design of the TAO real-time object request broker,”
Computer Communications, vol. 21, no. 4, pp. 294–
324, Apr. 1998.

[5] J. Merseguer, J. Campos, S. Bernardi, and S. Do-
natelli, “A compositional semantics for UML state
machines aimed at performance evaluation,” in Pro-
ceedings of the Sixth International Workshop on Dis-
crete Event Systems, october 2002.

[6] H. Feiler, B. Lewis, and S. Vestal, “The SAE Avion-
ics Architecture Description Language (AADL) Stan-
dard: A Basis for Model-Based Architecture-Driven
Embedded Systems Engineering,” in RTAS 2003
Workshop on Model-Driven Embedded Systems, May
2003.

[7] D. Regep and F. Kordon, “Lf P: a specification lan-
guage for rapid prototyping of concurrent systems,” in
12th IEEE International Workshop on Rapid System
Prototyping, June 2001.

[8] A. Singhai, A. Sane, and R. Campbell, “Quarterware
for Middleware,” in Proceedings of ICDCS’98. IEEE,
May 1998.

[9] F. D. Tran and J.-B. Stéfani, “Towards an extensi-
ble and modular ORB framework,” in Workshop of
ECOOP’97, Jyvaskyla, Finlande, Apr. 1997, http://
sirac.inrialpes.fr/~bellissa/wecoop97/dangtran.ps.gz.

[10] T. Quinot, F. Kordon, and L. Pautet, “From functional
to architectural analysis of a middleware support-
ing interoperability across heterogeneous distribution
models,” in Proceedings of the 3rd Int’l Symposium on
Distributed Objects and Applications (DOA’01), Sept.
2001.

[11] J. Hugues, L. Pautet, and F. Kordon, “Contributions
to middleware architectures to prototype distribution
infrastructures,” in Proceedings of the 14th IEEE In-
ternational Workshop on Rapid System Prototyping
(RSP’03), San Diego, CA, USA, June 2003.

[12] G. Chiola, C. Dutheillet, G. Franceschini, and S. Had-
dad, “On Well-Formed Coloured Nets and their Sym-
bolic Reachability Graph,” High-Level Petri Nets.
Theory and Application, LNCS, 1991.

[13] C. Girault and R. Valk, Petri Nets for System Engi-
neering. Springer Verlag, Sept. 2002.

[14] Y. Soussy, “Compositions of Nets via a communica-
tion medium,” in 10th International Conference on
Application and theory of Petri Nets, Bonn, germany,
June 1989.

8

Eliciting a Formal Model From Informal Requirements Specified In a Natural
Language -- Some Issues and a Particular Approach

Aravind Joshi, University of Pennsylvania

Abstract:

In this talk we will discuss some general issues concerning the extraction of a formal
model from a requirement specification document in natural language. These issues
pertain to the degree of feasibility, interface issues, and finally, problems in specifying
evaluation criteria. In addition we will also describe briefly our approach to this
elicitation problem. This work has just begun and the work is preliminary at this stage.

Model-driven Development
From Object-Oriented Design to Actor-Oriented Design

Edward A. Lee, UC Berkeley

Abstract:

Most current software engineering is deeply rooted in procedural abstractions. Objects in
object-oriented design present interfaces consisting principally of methods with type
signatures. A method represents a transfer of the locus of control. Much of the talk of
"models" in software engineering is about the static structure of object-oriented designs.
However, essential properties of real-time systems, embedded systems, and distributed
systems-of-systems are poorly defined by such interfaces and by static structure. These
say little about concurrency, temporal properties, and assumptions and guarantees in the
face of dynamic invocation.

Actor-oriented design contrasts with (and complements) object-oriented design by
emphasizing concurrency and communication between components. Components called
actors execute and communicate with other actors. While interfaces in object-oriented
design (methods, principally) mediate transfer of the locus of control, interfaces in actor-
oriented design (which we call ports) mediate communication. But the communication is
not assumed to involve a transfer of control.

By focusing on the actor-oriented architecture of systems, we can leverage structure that
is poorly described and expressed in procedural abstractions. Managing concurrency, for
instance, is notoriously difficult using threads, mutexes and semaphores, and yet even
these are extensions of procedural abstractions. In actor-oriented abstractions, these low-
level mechanisms do not even rise to consciousness, forming instead the "assembly-
level" mechanisms used to deliver much more sophisticated models of computation. In
this talk, I will outline the models of computation for actor-oriented design that look the
most promising for embedded systems.

 1

Documentation Driven Agile Development for
Systems of Embedded Systems

Luqi, Lynn Zhang

Software Engineering Automation Center

US Naval Postgraduate School
{luqi; lzhang} @ nps.navy.mil

Abstract: This paper presents the framework of documentation-driven agile development (DDAD)
methodology for high confidence systems of embedded systems. DDAD mainly includes two parts: a
documentation management system (DMS) and a process measurement system (PMS). DMS will create,
organize, monitor, analyze and transform all documentation associated with the software development
process. The information will be stored in an abstract and active form that will support a variety of formal
and informal documents for different stakeholders and can interact with software tools. PMS will monitor
the frequent changes in system requirements and assess the effort and success possibility of the project with a
measurement model based on a set of quantitative metrics that can be automatically collected in requirements
phase and stored and organized in DMS. PMS will also measure the properties of the software system that must
be realized with high confidence (safety in this paper) based on quantitative metrics. DDAD will provide a
mechanism to monitor and quickly respond to changes in requirements and provide a friendly communication
and collaboration environment to enable different stakeholders to be easily involved in development processes
and therefore significantly improve the agility of software development of SoES. DDAD will also support
automated software generation based on a computational model and some relevant techniques. Several potential
application domains are proposed in the paper.

Keywords: Software Development; Documentation; Agility; Knowledge Representation; Systems of Embedded Systems.

1. Introduction
Design of real-time embedded systems involves a multi-disciplinary team of systems, software and
hardware engineers. They have different concerns, use different tools, and work somewhat independently
of one another. For a high confidence system of embedded systems, development is much more complex
than development of monolithic embedded systems. Non-essential software complexity of a system of
systems can have a greater negative impact on system behavior than for a single system. In general,
systems of embedded systems are usually deployed for long periods of time, are used globally, and have
mission critical requirements. They demand real-time performance and high confidence. Attributes like
system effectiveness, availability, reliability, safety, security, and clarity of design are all essential. Most
importantly, the SoES must rapidly accommodate frequent changes in requirements, mission, environment,
and technology. Consequently they are often structured as a coalition of separate components to form
systems of embedded systems with dynamic configurations. In addition, SoES are usually composed of
component systems that were developed by different organizations with different tools and run on different
platforms. A wide variety of stakeholders (sponsors, developers, users, maintainers, etc.) are involved in
the overall lifecycle of the software [1, 20].

A large amount of research has been conducted on real-time systems. Progress has been made, but mostly
on “point solutions” that address sub-areas of complex system development. Integrated systematic
methods that collectively provide an end-to-end solution, are easy to use, and are amenable to computer aid
are needed to meet these challenges.

Software development agility is drawing more and more attention in the software engineering community.
Agile software development is presented as the solution to deal with the frequent changes of requirements
[11]. This approach focuses on individuals and interactions over processes and tools; working software
over comprehensive documentation; customer collaboration over contract negotiation; responding to
change over following a plan [37]. Thus, compared to other methods heavily depending on the traditional
documentation, many current agile software development methods try to provide better communications

 2

with the user, reduce the comprehensive documentation and be capable to adapt to requirements changes.
Some typical agile development methods are extreme programming (XP); dynamic software development
method (DSDM); adaptive software development; feature-driven development; lean development; rapid
application development etc.

Extreme Programming (XP) was created in response to problem domains whose requirements change [8,
38]. The XP practices are also intended to mitigate the risk and increase the likelihood of success. XP
requires an extended development team. The XP team includes not only the developers, but also the
managers and customers, all working together elbow to elbow. Asking questions, negotiating scope and
schedules, and creating functional tests require more than just the developers be involved in producing the
software. However, XP is only suitable for small groups of programmers, between 2 and 12. XP was not
designed for a project with a huge staff or a large number of different stakeholder roles.

DSDM uses an iterative process based on prototyping and involves the users throughout the project life
cycle [9]. DSDM achieves delivery with tight timescales through shortening communication lines between
users and developers, between analysts and designers, between and across team members, and between
differing levels of management. The mechanisms by which these communication lines are shortened differ
from one application to another. DSDM defines a strategy for defining what the necessary documentation
set will be for a given project. Much of the documentation that is traditionally produced is for the transfer
of ideas from one developer to another or from developers to users. DSDM provides guidance on how to
decide what sort of documentation is necessary and why. There are key criteria that a project should satisfy
for DSDM to be applied easily. The project should be able to identify all the classes of users who will use
the end result so that knowledgeable representatives can participate throughout the lifecycle of the project
and provide coverage of the views of all the user classes.

These agile methods’ attitude to documentation is to reduce the amount of traditional informal documents
as much as possible by increasing direct communications between users and developers. The problem with
these approaches is that the users are required to be knowledgeable and well versed in the software domain
skills to be able to participate in the development process. Following some of the agile principles runs a
high risk when the motivated individuals don’t have the requisite domain skills [39]. Moreover, software
development automation is reduced when direct communications between users and developers are over
emphasized. It’s well known that the automation of development can significantly improve productivity
and minimize errors in software products. A good tradeoff between software development automation and
agility is needed to develop systems that require high confidence on a large scale with frequent changes.

Making suitable use of documentation in the development process can reduce the requirements for
participants to have specific knowledge. Moreover, by generalizing and abstracting the essence of
documentation and exploiting the capability for computer-aided documentation, documentation can be used
to significantly improve the agility of SoES software development while sacrificing automation to a
minimum extent.

According to traditional concept and current common practice, software documentation consists only of
informal text and diagrams intended for human consumption. This kind of static information in
documentation cannot provide effective support for the development process, especially for systems of
embedded systems. In our opinion, this traditional concept should be extended so that all the information
needed to carry out the development process is considered documentation. The requirements for both high
confidence and frequent changes in systems of embedded systems can only be realized by development
processes that provide effective computer aid. Effective documentation should support humans to the
extent the relevant development processes are carried out by humans, and should support software tools to
the extent development processes are carried out by tools. In the common case where an aspect of the
development process is carried out by a collaboration of both humans and software tools, the
documentation should provide two views, one for the humans and one for the tools. For such aspects,
consistency and accurate correspondence between the two views are of most importance, and computer aid
is needed to effectively realize these properties.

 3

In this approach, models and simulations are included as documentation. Some typical models include
computational models and design models. They serve as the basis to support development activities such as
requirements analysis, architecture design, validation and verification. Simulation and prototyping are
examples of computer aided processes used to check the correctness of the requirements for the system
under development. With this extension, documentation can provide more effective support for whole
development process. This paper proposes a documentation driven methodology with respect to the
features of systems of embedded systems. This methodology will significantly improve the agility of
software development to accommodate frequent changes in requirements of SoES and support partial
automation of software development as well.

2. Overview of Documentation Driven Agile Development
Agile development emphasizes the relationship and cooperation of different stakeholders. It requires that
the development group, comprised of system designers, hardware developers, software developers and
customer representatives, should be well-informed, competent and authorized to consider possible
adjustment needs emerging during the development process life-cycle [26]. Our idea to improve agility on
a large scale by taking advantage of a good documentation system is depicted in Figure 1. It’s named the
Documentation Driven Agile Development (DDAD) methodology. Three typical development processes
are shown to illustrate the methodology.

The main idea behind DDAD is to build and use a Document Management System (DMS) and a Process
Measurement System (PMS). The key to DDSD is that information from any activity involved throughout
the software development process as well as the entire software life cycle will be recorded, managed and
transformed by the DMS. The information will be stored in a form that will support a variety of formal and
informal documents for different stakeholders and can be manipulated by a set of software tools.
Eventually, the DMS will monitor and drive the overall development process and be applied throughout the
entire software life cycle. DMS makes the development processes transparent and traceable, enables
documentation to be updated quickly and facilitates communications and collaboration between
stakeholders to promptly respond to changes in requirements. Process Measurement System (PMS) is used
to track and analyze changes in requirements to verify the feasibility of the requirements, assess effort and

RA: Requirements Analysis; AD: Architecture Design; CD: Component Design
TDV: Tool Documentation View; HDV: Human Documentation View

O2 N H3 H2O

Water_Flow

D isplay_status

Drain Inlet Feeder

F_Time

Repository

Adjustin g Listen er Feed ing Listener

Sam pler

Source

Sensor

Adju sting An nou ncer
Feeding Anno uncer

RA

CD

AD

RA

AD

CD

Documentation
Repository

Documentation
Repository

Documentation
Repository

Driver

Driver

Converter

Converter

Converter

Converter

Converter

Converter

Process
Measurement
System (PMS) Documentation

Management
System (DMS) TDV HDV

Figure 1. Documentation Driven Agile Software Development

 4

risk of development, provide clues to modify the requirements, and measure the required high confidence
properties. PMS is based on a set of quantitative metrics, most of which can be automatically collected in
requirements phase. These metrics are stored and organized in the documentation management system.
PMS and DMS working together will help the development of SoES rapidly accommodate frequent
changes in requirements.

3. Documentation Management System (DMS)
DMS will create, organize, monitor, analyze and manipulate all documentation associated with the software
development process. It will record all information from the development process such as requirement
specifications, abstracted models, stakeholder input, design rationale, project management information and
the source code. It will also extract important information from all development activities such as
requirements analysis, prototyping, architectural design, software composition, system verification and
validation, and system deployment. A documentation repository will be used to store the information in a
structured, well-organized format. Information from the repository will support knowledge transfer
between processes and generate the various presentations of this information for the different stakeholders
and tools. The information stored in the repository drives both the Tool Documentation View (TDV) and
Human Documentation View (HDV). By doing this, the development processes can be automated and the
communications between stakeholders can be easier.

Tool Documentation View (TDV) representations are based on formal representations of the knowledge
stored in the documentation repository and transformed into a format appropriate for use by the computer
environment (software tools). They are usually in the form of mathematical formulas like temporal logic or
process algebra, formal languages like PSDL or ADL, and programming languages. Typical TDVs include
system models, requirements/design specifications, ontologies, source codes, test cases etc. They can also
include application data such as geographic databases, results of measurements, medical records, financial
databases, tables of properties of physical materials, and any other reference information relevant to system
design.

Human Documentation View (HDV) representations are typically graphical in nature and in a form easily
understood by humans. They are used by the stakeholders to communicate and interact with each other
(sponsors, end users, developers (system, hardware and software engineers), technical supporters, etc.).
Additional forms include text annotations written in natural language, decision tables and spread sheets.
They can easily be expanded to include modern communication techniques such as video and audio clips.
The latter can be useful for recording raw data about application process and content, to capture implicit
requirements information that system stakeholders can demonstrate but cannot describe. The information
in the HDV can include computed attributes that are not explicit in the information entered into the DMS.
We envision this type of information to be useful for engineering and project management decision
support. Examples include results of design rule checks, values of performance and reliability metrics,
projections of project completion date and cost, and project risk metrics.

DMS contains a set of tools (e.g. converters and drivers) that will automatically convert the stored
information from one representation to another to support different stakeholders and integrate the
development processes by driving the knowledge transfer between them.

3.1 Documentation Repository
Keeping documentation up to date is difficult because of the various representations of information used in
various stages of the development. The various representations of the same documentation information
increase the complexity of maintaining information consistency and also hinder unaided communications
between human and machine. Although multiple views of the information can solve this problem, how to
maintain consistency among information presented to both the human and computer tools is still a
challenge. This paper presents a documentation repository in which a common internal representation,
template-based knowledge representation, is used to represent all information contained in the
documentation.

 5

Template-based knowledge representation is the kernel part of the documentation repository. It includes the
following artifacts:

• Document Elements that are described by a semantic document model. It is an object model for the
information contained in the documentation whose instances form an attributed object graph.

• A set of syntactic templates. The specifying elements together with syntactic templates can translate
representations from one form to another or transform the information from one view to another.

• Attribute computation rules. This artifact represents the methods for computing derived document
attributes.

Document Element
A document element is a basic building block consistent with the semantics of the information contained in
the documentation. We use a semantic model named Attributed Object Graph Model (AOGM) to describe
the semantics of each document element [16]. This is an object model of knowledge in the documentation
repository. It has a nested structure with potentially shared nodes, i.e., directed acyclic graph structure. This
representation is a generalization of abstract syntax trees that was developed in our previous research to
represent constructs that appear in more than one context. This is a common pattern in software artifacts –
for example, an operation can be defined once and called from many different contexts. In this model, each
node represents a semantically meaningful structure, such as an individual requirement, a subsystem, an
operation, or an operator within a logical expression. The nodes are the finest grain structures visible to the
attribute computation rules. Furthermore, each node is an instance of an abstract data type. The computed
attributes of each node correspond to the operations of the data type. Thus, invoking appropriate methods
of the data type can derive the value of the corresponding attributes.

Syntactic Template
To improve the communication between the human and machine during the development process,
computed multiple views of the same information for different people and different computer tools
involved in the development provide a way to avoid inconsistencies between different representations of
the same information due to incomplete manual updates. We are developing corresponding templates to
support multiple views of the information. These views include the Human Document View (HDV) and the
Tool Document View (TDV). In this case, the templates serve to transform the information from one view
to another.

Syntactic templates are object
operations with parameters. They
provide a context for the resident
document elements that will appear in
different kinds of specifications. The
combination of a document element and
its syntactic context forms the multiple
view presentation for the same
information. Combining document
elements with corresponding templates
can also transform the information
between representations written in
different description languages.

We use tokens in an initial prototype
representation of templates. Special
tokens such as blank-filling tokens and
action-interpreting tokens support
computation of concrete document
views. The blank-filling tokens indicate
the blanks to be filled out, the actions to
be interpreted and the information to be
correlated etc. Action-interpreting

Template Items Formalized Identification Operational Semantic

Key-word ≪! key !≫ Key word to be matched

Token-Blank ≪@type@≫
Type to be replaced with the
value of a document element

Token-In /
Token-Out ≦ ≧

Enclosed by Token-in and
Token-out will be contributed
as properties of preceding
Token

Routine Action

≪&action&≫
≪&NL&≫
≪&HL&≫

Action to be performed
New line is output
Hyper Link is followed

Appearance
of N≧0 *⌈ … ⌋ Items that appear 0 to n times

Appearance
of 0 or 1 o⌈ … ⌋ Items that appear once or none

Selective
Appearance

⌈ <condition1> -> <item1>
⇡ <condition2> -> <item2>
⇡ …
⌋

Select one of values from list

Semantic symbol ≪, ≪@, ≪&, *⌈, o⌈ , ⇡
≫, @≫, &≫, ⌋, ≦, ≧

Enumerated characters have
special meanings for software
tools

Real Appearance Typed characters Any character appearing in the
template only represents itself

Template
Comment // Omitted

Table 1. List of Semantic Tokens

 6

tokens are used to indicate actions to be conducted by software tools. Some possible tokens are listed in
Table 1.

Attribute Computation Rules
We are studying methods for computing derived attributes and developing a set of schemata used to (a)
calculate the attributes from the information in the documentation repository, (b) transform the information
from one stage to another, (c) analyze the consistency between the information transformed between stages,
and information views, and (d) extract subsets of documents needed for particular purposes.

Based on the Attributed Object Graph Model (AOGM), we developed a set of attribute rules to check
whether significant aspects of the meaning are preserved during the information transformed from one
development phase to another phase. These attribute rules can ensure that there is no information lost in
transformation. We used timing properties transformation between requirement phase and design phase as
the example to describe corresponding attribute computation rules [16].

3.2 Representation Converter
The representation converter presents the repository documentation to different stakeholders in a traceable,
consistent and understandable way. These presentations include graphical depiction, formal description,
logic formulation, audio and video media and so on. This tool will present the knowledge embodied by
specifying elements and syntactic templates in a form the stakeholders can understand. The converter is
based upon the combination of the knowledge-centric templates and the collection of specifying elements.
It will “combine” the content of the document elements and the syntactic templates together to create and
present desired documents for different stakeholders. Based on a specific template design, the tool
generates presentation output for different stakeholders. A template selector is used to determine what
kinds of documents will be produced. Also, based on the specific template design, the converter guides
information to a collecting specifying element. This is similar to drag and drop with dialogue resources
supported in a Windows application.

We have conducted research on a successful example that supports multiple document presentations based
upon syntactic knowledge, such as the Computer Aided Prototyping System (CAPS) [17, 18, 40]. CAPS is
the computed-aided prototyping system, whose computational model can be described in both PSDL
specification and graphical depiction. Different stakeholders can share this information. Although a
designer will use both the formal and graphical documents, a customer might use just a graphical
document, and software tools use just the formal documents.

3.3 Transition Driver
A transition driver serves as a process transition tool based on the combination of knowledge-centric
templates and a collection of document elements. Its function is to analyze the key information held by the
templates and the document elements and to promote the transition of repository knowledge from one
development process to the next. A transitional driver has the ability to act in both a forward and reverse
direction. It can drive the transition of knowledge from one process to a succeeding one (forward) or from
one process to a preceding one (reverse). In the first mode, the transitional driver promotes forward
engineering of software products. The transition driver analyzes the preceding knowledge (knowledge used
as an input), guides user’s intervention, and then generates succeeding knowledge (process output). In the
second mode, the driver promotes reverse engineering of legacy software systems if necessary. In this case,
the driver serves as an extractor. It performs analysis and extracts useful information from what is
normally considered the output information from a phase and generates what should have been the input
information for that phase. A challenge in this area is how to best manage designer and user interaction to
extract specification and design information the way it should have been built, rather than capturing the
way it actually was built, including all of the errors and faults. A first step is to support annotations that
identify such faults with links to explanations of why they constitute faults.

 7

4. Process Measurement System (PMS)
The function of the process measurement system is to monitor the frequent changes in system
requirements, assess the effort and success possibility of the project, and measure the high confidence
properties of the system. The PMS obtains necessary information from the documentation repository. The
analysis results will be presented to the developers and users as feedback. This quick communication is a
key factor to make development of SoES agile: feedback is most useful when it can be delivered while the
relevant aspect of the system is still in the process of being created, rather than after it has been completed
and other system decisions have been made based on a faulty version of that aspect.

The process measurement system includes two parts: (1) a measurement model for effort and risk of a
project; (2) a measurement model for high confidence. We have introduced a set of metrics to measure the
effort and the risk in an evolutionary software project [22]. These metrics can be automatically obtained
early in the requirements phase. They accommodate changes in requirements, process, technology, and
resources of a project. Based on the set of metrics, a measurement model has been proposed [22]. The
result is a statistical model that is used to estimate development effort and risk of failure of the project. The
high confidence measurement model in this paper is only focused on software safety, because safety is the
most critical factor for many DoD software systems and the state of the art in software engineering lacks a
formal method and metric for measuring safety. We developed an Instantiated Activity Model (IAM) that
supports a formal approach for safety analysis by providing precise metrics [30].

4.1 The Measurement Model for Effort and Risk of a Software Project
Current state of the art techniques for risk assessment rely on checklists and human expertise. This
constitutes a weak approach because different people could arrive at different conclusions from the same
scenario. The measurement model we developed for effort and risk is a statistical model based on a set of
quantitative metrics. The metrics include requirements volatility, organization efficiency, product
complexity, and technology maturity. This model will enable different program managers to derive the
same projections on the same software project.

Metrics for Requirements Volatility
Requirement changing is the most significant characteristic for a system of embedded systems.
Requirements volatility clearly influences the possibility of project success. From the point of view of the
metrics, a change in a requirement can be viewed as a death of the old version and a birth of the new one.
The requirements volatility can be obtained from birth-rate and death-rate. Birth-rate is defined as the
percentage of new requirements incorporated in each cycle of the evolution process. Death-rate is defined
as the percentage of requirements that are dropped by the customer in each cycle of the evolution process.
The requirements volatility (RV) is defined as:

RV = BR + DR,

where, BR = (NR / TR) * 100 %, DR = (DelR / TR) * 100 %, NR = number of new requirements; DelR =
 number of requirements deleted; TR = total number of requirements.

Metrics for Organization Efficiency
The efficiency of the organization can be measured by observing the fitness between people and their roles
in the software process. The skill match between the person and the job is required to estimate the speed in
processing information and the rate of exceptions, which in turn affect efficiency. Efficiency also depends
on many factors like team structure, experience, and tools. Simulations have shown that there exists an
easier way to estimate team efficiency by observing the ratio between direct working time and idle time.
The team efficiency metric (EF) is defined as:

EF= Dwork% / Idle%+Dwork%

where Dwork% is the percentage of direct working time; Idle% is the percentage of idle time.

 8

Metrics for Product Complexity
Product complexity is in general a function of the relationships among the components of the product.
Hence, it is important to measure the complexity as a predictor. Product complexity is also directly related
to the effort needed to develop a product.

Some requirements are difficult for the user to provide and are difficult for the analysts to determine. It’s
notably the case for real-time systems. The best way to discover these hidden requirements is via
prototyping. CAPS is a CASE tool specially suited for this task, which uses the Prototype System
Description Language (PSDL) [17-19]. Specifications written in PSDL can be analyzed to compute the
complexity. Metrics for complexity can be defined by using a hybrid complexity measure that properly
accounts for data flow and the properties associated with each operator and data stream in PSDL. A
complex metric FC is defined as follows:

1

FC ()[() ()]
n

i i i
i

w o dsi o dso o
=

= ∗∑

where,
1

() 1
m

i k ik
k

w o pw c
=

= + ∗∑ is the total property weight of operator io . kpw is the property weight of

the kth property, with 0 1kpw≤ ≤ and
1

1
m

k
k

pw
=

=∑ . ikc is the property occurrence coefficient, with 1ikc = if

operator io has property kp and 0ikc = otherwise. m is the numbers of property types in PSDL. ()idsi o

is one plus the number of data streams flowing into operator io ; ()idso o one plus the number of data

streams flowing out of operator io ; n is the total number of operators.

Metrics for Technology Maturity
The software industry is characterized by frequent technology changes. A system of embedded systems is
usually deployed for long periods of time and is used globally. In the process of evolutionary development
of a SoES, the related technologies will change significantly during the period the system is deployed.
Generally, the newer the technology is, the more quickly the technology changes. The impact of technology
maturity on success of a project, especially for a SoES, is important.

Technology mainly consists of two parts. One is the software technologies that are selected to implement
the project. The other is the domain technologies involved in the project. The choice of implementing
technologies should be subordinated to the project domain technologies and requirements.

A new technology becomes mature in the process of transition from a scientific discovery to routine
engineering practice in product development. Technology transition is referred to as diffusion in the
literature. Diffusion is the process by which an innovation is communicated through certain channels over
time among the members of a social system. Based on information theory, communication theory, and
statistical mechanics, we developed a metric, named ‘technology temperature T’, to measure the maturity of
a technology [23].

According to information theory, the quantity of information in an ensemble of possible messages is
measured by entropy. A message is made up of sets of terms. In this context, the relevant information is
the knowledge about a technology. Following reasoning similar to that used in statistical and condensed
particle physics and recalling the standard definition from the thermodynamics, the temperature T for
technology transition can be defined as follows:

1 HS
T n

∆
=

∆

where, n∆ is the change in the number of terms of a message alphabet Ξ . HS∆ is the change in entropy.
The entropy is defined as follows: for the message alphabet Ξ with the given probability mass function

 9

() Pr{ },p x X x x Ξ= = ∈ , X is a discrete random variable, the definition of information entropy is

2() ()log ()H
x

S X p x p x
Ξ∈

=−∑ .

The temperature is measured in “degrees” in a physical system, however, in the context of information
degrees can be expressed in information units (bits). The value of T represents the maturity of a technology.
It’s a function with respect to time step [23].

Measurement Model
A Weibull distribution can be used to build the measurement model. The Weibull distribution was
originally used to model strength of Bofors's steel, fiber strength of Indian cotton, length of syrtoideas,
fatigue life of steel, statures of adult males, and breadth of beans. Many authors have advocated the use of
this distribution in reliability and quality control [21, 25]. Others used it to model software life cycles [15].
The three parameter Weibull distribution is defined as follows.

A random variable x is said to have a Weibull distribution with parameters α , β andγ (0α > , 0β >) if the
probability distribution function (pdf) and cumulative distribution function (cdf) of x are respectively:

1

0
pdf: ()

(/)() exp((() /))
x

f x
x x xα α α

γ
α β γ γ β γ−

<
= − − − ≥

0
cdf: F()

1 exp((() /))
x

x
x xα

γ
γ β γ

<
= − − − ≥

where,
• x is the random variable under study. In our context, x can be interpreted as development time.
• α is a shape parameter. It affects the skew of the function. When α = 1, the function reduces to the

exponential distribution. The combined effect of α and β controls the variability of the pdf.
• β is a scale parameter that stretches or compresses the graph in the x direction.
• γ is a location parameter that determines the mean of the pdf.

We have conducted a large number of empirical experiments to determine the relationship between the
parameters in the above model and the quantitative metrics above [22]. When the metrics are input then
development effort and success possibility of the project can be estimated by the model. The outputs of the
model are important supporting information to help the sponsors and developers to make decisions about
the next process.

4.2 The Measurement Model for Safety Analyses
Safety is a critical to many high confidence systems of embedded systems, especially for DoD systems.
Software safety focuses on the failures of the system as they relate to hazardous events. A system is
considered as “safe” if the probability of a hazardous failure has been reduced to some defined acceptable
level. Safety is not a Boolean value of purely safe or unsafe, but a variable that ranges from completely
unsafe towards safe [31, 32]. We developed a formal Instantiated Activity Model (IAM) and a metric to
measure the probability that a hazardous event will occur and the severity of that hazardous event [30].

Instantiated Activity Model (IAM)
The IAM is a typical Input-Process-Output (IPO) block
schema dealing with a set of related activities such as, input,
process, output, failure, malfunction, etc. Figure 2 gives an
example of an IAM. This is a typical IPO block with possible
failure attached to the activities. For instance, Input 1I with
potential failure 1F , through successive activities Process

1P
with potential failure 2F and Output

1O with potential failure

F1 F3

I1 O1F2 P1

Figure 2. An Instantiated Activity Model

 10

3F would result in a failure leading to a malfunction. The IAM reveals the relationship between essential
IPO activities, the potential failures, and a hazardous situation or malfunction so we can establish a metric
base for the safety analysis and risk assessment.

Hazard Probability of the IAM
The IAM is the key that supports formal approach for system safety analysis and risk assessment. This is
based on the probability that a hazardous event will occur and the severity of that hazardous event (i.e., the
consequences). Through the combination of these two elements, we can derive the hazard probability for
the system as follows:

() (,)* ()* ({ })H f i e i e i i
i

P g P F g P A P A DA=∑

where (,)f iP F g stands for probability of activity failure at degree g, g is the failure severity degree,

()e iP A stands for probability of activity execution, ({ })e i iP A DA stands for the probability of execution of Ai

and {DAi}, {DAi} stands for the dependent activities caused by activity iA , iA is the ith element of A,
A I O R= ∗ ∪ ,

1 2 3{ , , , | all possible input activities}I I I I= ,
1 2 3{ , , , | all possible output activities}O O O O= ,

1 2 3{ , , , | all possible process activities}S R R R= .

The goal of making the IAM measurable on probability of failure is to identify potential hazards before the
start of development, balancing development against effect. This method is especially effective for systems
of systems. We can assume that each component system may have a myriad of different process flows that
ultimately may result in a malfunction. We determine single failure probabilities using appropriate methods,
as well as the determination of applicable process execution and related execution probabilities. It is
possible to derive the probability that the whole system with execute a malfunction.

The risk exposure is the hazard probability times the cost of hazard occurrence.

5. Automated Software Generation based on Computational Models
DDAD integrates key processes in the software life cycle by the documentation management system
(DMS). Models, activities, prototypes, simulations involved in these processes will be stored and
manipulated in DMS. Supported by DMS, automated program generation can be realized based on a well-
defined computational model and series of relevant techniques. A computational model was developed to
describe the emergent properties, the interactions between component systems, and constraints associated
with both functional and non-functional properties of a SoES [20]. A SoESζ is modeled as follows:

1 2, , , , ,)S E C D F Fζ = (

S is the component system set, { | [1,]}iS s i n= ∈ , is denotes the component system constituting SoES (n
is the number of component systems in the whole SoES); { | , [1,]}jkE e j k n= ∈ denotes the interaction sets

between component systems, jke denotes the set of interactions from component system js to component

system ks ; { | [1,]}iC c i n= ∈ denotes constraint sets on how the component systems are used in the given

environment. ic is a set of constraints on is . { | , [1,]}jkD d j k n= ∈ denotes constraint sets on

interactions between component systems,
jkd is a set of constraints applied to interactions in jke .

Constraint sets C and D include the constraints for the design phase. They are refined from emergent
properties G and high confidence constraints H of a SoES,

1 2(,); (,)C G H D G HF F= = ,
where 1F and 2F are two maps that map emergent properties and high confidence measures into local
constraint sets on component systems and local constraint sets on interactions between component systems
respectively. The mappings specify what must be assessed to ensure that the SoES satisfies its requirement

 11

with high confidence, if it has already been certified that the individual is meet their requirements with
high confidence. The constraint sets also represent a design for the systems integration, which will be
realized by wrappers around the is .

Based on this model, a prototype system can be established to validate the requirements for a SoES. Well-
formulated prototyping documentation can be used to promote system transition by extracting
compositional architecture and evolving components. We found a way to build an explicit architecture for
a prototyping system so that the product system can evolve through a transitional procedure [29]. The
compatible composition model allows both explicit architecting and componential evolving by
incorporating computer-aided prototyping techniques into a transitional process. Additionally, we
introduced an object-oriented model for interoperability via wrapper-based translation [28]. This model
performs transition from a computational phase, through a compositional phase, to a componential phase.
During the transitional process, documentation passes throughout the development process. These results
support automated software generation.

6. Development Knowledge Sharing Based on Ontologies
Collaboration capability between stakeholders is another important feature of DDAD. Effective sharing of
information and interoperation of development artifacts are vital to collaborative software development,
e.g. development of SoES. Ontology is now widely used for realizing knowledge sharing between
organizations and/or individuals who have different culture backgrounds. Ontology is the term used to
refer to the shared understanding of some domain of interest that may be used as a unifying framework to
solve problems in that domain [24]. An ontology is a set of definitions of content-specific knowledge
representation primitives: classes, relations, functions, and object constants. We have studied how to
establish the software development tool ontology to improve interoperability in heterogeneous software
development [13]. The methodology for constructing an ontology consists of 6 steps: (1) Identifying the
purpose and scope of the ontology; (2) Feature modeling; (3) Establishing commonalities; (4) Determining
tool ontologies; (5) Representation of the domain; (6) Documenting the ontology. The ontologies are
important parts of the documentation repository to support collaboration between stakeholders.

(1) Identifying the purpose and scope of the ontology. One of the most important steps in constructing an
ontology is to make an early decision about the purpose of the ontology. This purpose provides a
controlling perspective on the terms, attributes of terms, and relationships captured in the ontology. The
scope of the ontology provides a guide
to the depth and breadth of the intended
ontology, consistent with the purpose.

(2) Feature modeling. This step is to
perform a domain analysis of software
development tools by constructing and
then considering the feature models of
tools. Feature modeling is a method
used to help define software product
lines and system families, to identify
and manage commonalities and
variabilities between products and
systems [14]. Feature models represent
an explicit model of a device or system
by summarizing the features and the
variation points of the device/system. A
feature model for software system
captures the reusability and configurability aspects of reusable software. As an example, Figure 3 illustrates
a feature model of a how PSDL timing constraints are implemented in CAPS.

PSDL Timing
Constraints

Period Maximum
response time

Minimum
calling period

Maximum
execution time

Finish within

Alternative
Features

Optional
Features

Figure 3. Feature Model of the PSDL Timing Constraints of CAPS

Mandatory
Features

 12

(3) Establishing Commonalities. This step is to isolate and annotate the commonalities that exist between
the feature models. These common features then form the basis for the basic ontology terminology of the
software development tool federation. The approach in this step is to reason about the feature diagrams,
develop lists of potential terms from the feature diagrams, identify common terms between the lists, and
then construct affinity diagrams of these common terms. Affinity diagrams are hierarchical Venn diagrams
that provide groupings of related terms. The groupings of terms in the affinity diagrams then provide the
basis for the hierarchy of terms in the software development tool ontology.

(4) Determining tool Ontologies. This step is the construction of the detailed ontologies of the tools to be
used. In the case of tool ontologies, the detail needed for interoperability is dictated by the detail available
through the API or source code (which ever is available) of the tool. Therefore, the ontology is derived
from a selected set of classes and public methods related to the artifacts that are to be transmitted to (or
received from) other software tools.

(5) Representation of the Domain. The fifth step requires that the relationships between all ontologies be
identified and annotated. UML can be used to represent inter-relationship of ontologies. Such
representations then make it possible to construct a set of all federation entities in the domain. When
augmented with attribute computation rules, this representation can be made effective.

(6) Documenting the Ontology. The final step is to document the ontology. All assumptions about the
domain and information about the meta-data used to describe the ontology should be annotated in the
documentation repository in the form of template-based knowledge representation.

7. Methods and Models for Interoperability
We developed an Object Oriented Model for Interoperability (OOMI) to capture the information required
for resolving the representational differences that exist in autonomously developed systems [33, 34].
Defining the interoperation between systems in terms of an object model provides a foundation for easy
extension as new systems are added to an existing federation of systems.

The real-world entities and behavior information shared among a federation of interoperating systems are
modeled in the OOMI using the concept of a Federation Entity (FE). For each FE, one or more Federation
Entity Views (FEVs) are used to distinguish the differences in the state and behavior information used for
representing the same real-world entity on different systems (Figure 3).

SurfaceToSurfaceMissile

<<Federation Entity>>

SSM
<<Federation Entity View>>

GroundToGroundMissile
<<Federation Entity View>>

GroundTargetMissile
<<Federation Entity View>>

Figure 3. Defining Federation Entity (FE) and Federation Entity Views (FEVs)

for Real-World Entity

 13

It is expected that for a federation of heterogeneous systems, a number of real-world entities will be
involved in the interoperation between systems. Under the OOMI, the collection of real-world entities used
to define the interoperation of a specified federation of systems is termed a Federation Interoperability
Object Model (FIOM) (Figure 4).

We also provided a Translation Generator for the Interoperability Engineers (IE) to define correspondences
between the federation and component models’ attributes and operations and generate the translation code
skeletons, which can be modified to add functional or other transformations as necessary to resolve
representational differences via the OOMI IDE facilities. The resultant wrapper-based Translator uses the
FIOM, which the IE constructed using the OOMI IDE, to reconcile differences in real-world entity view
and representation among component systems of a federation at run-time.

The initial use of the model is targeted for integration of legacy systems. Although these legacy systems
generally have not been developed using object-oriented paradigm, an OOMI can easily be constructed
from the external interfaces defined for most legacy systems (whether object-oriented or not).

We investigated formal models and mechanisms for describing the QoS attributes and techniques to assure
the specified QoS. We developed a framework that allows an interoperation of heterogeneous and
distributed software components. The framework incorporates (1) a meta-component model that describes
the components, their services and service guarantees, and the infrastructure for integrating different
component models and sustaining cooperation among heterogeneous components, (2) formal specification
of components based on a two-level grammar, (3) validation and assurance of QoS based on event trace,
and (4) generative rules for assembling a set of components out of available choices. We developed a
Quality of Service behavior model based on the event trace analysis. The event trace approach allows us to
directly examine specific quality of service actions that take place during program operation. In addition,
we developed techniques to provide decision support for optimizing distributed object servers utilization, as
well as the use software decoys to improve the security of systems of embedded systems [35, 36].

GroundLaunchedWeapon

GroundLaunchedWeapon_View1
GroundLaunchedWeapon_View2
 ...
GroundLaunchedWeapon_ViewJ

Artillery

SSM
GroundToGroundMissile
GroundTargetMissile

EnemyOrderOfBattle

EnemyOrderOfBattle_View1
EnemyOrderOfBattle_View2
 ...
EnemyOrderOfBattle_ViewK

Artillery_View1
Artillery_View2
 ...
Artillery_ViewL

1*

FederationEntityZ

FederationEntityZ_View1
FederationEntityZ_View2
 ...
FederationEntityZ_ViewX

Federation Interoperability Object Model (FIOM)

SurfaceToSurfaceMissile

. . .

Generalization Aggregation

. . .

.

.

.

<<Federation Entity>>

<<Federation Entity>> <<Federation Entity>>

<<Federation Entity>>

<<Federation Entity>>

Figure 4. Federation Interoperability Object Model (FIOM) Representation

 14

8. Applications of DDAD
8.1 Joint Tactical Radio System (JTRS)
The Joint Tactical Radio System (JTRS) is a revolutionary communications system that will be the
foundation for all future Department of Defense tactical radios. JTRS will provide America’s warfighters
with state-of-the-art, software re-programmable, multi-band/multi-channel, network-capable systems that
offer an interoperable, flexible and adaptable network for simultaneous voice, data and video
communication [10]. It will create seamless interoperability and linkage among all military’s air, land and
sea legacy radio networks. Varied configurations of the system will advance communications mission
requirements. The JTRS attribute of extendibility supports incorporating changes that are typical of many
emerging requirements. In general, new requirements will be satisfied without hardware change provided
the new waveform fits within certain bandwidth, data rate and transmission frequency bounds.

JTRS is a typical real-time, embedded, distributed, heterogeneous, and software-intensive system. The
software implementation in JTRS should be able to dynamically adapt to the radio environment in which it
is located at different times. A powerful documentation management system is needed for the JTRS
program. Development of JTRS is complex and long-term. JTRS will be developed in several stages:
Cluster 1 represents the first segment of the joint tactical radio system. The planned Clusters 2, 3, and 4
will address the handheld, maritime, and airborne needs. A team led by Boeing has been selected to begin
building common tactical radios. The Boeing team is comprised of many sub-teams that take charge of
different tasks [5].

A knowledge sharing and management environment can be constructed based on the idea of the
documentation management system (DMS). This environment will support the decision coordination and
cooperation between development teams. The documentation repository can be used in not only software
development but also system and hardware development of JTRS as long as the related knowledge is
appropriately represented in the form of template-based knowledge representation. The maintainability,
traceability, consistency, understandability of documentation repository and the ability of quickly tracking
and responding changes in requirements will increase the efficiency and decrease the risk of the
development of JTRS. This application requires attention to the finer points of developing a distributed
implementation of the DMS.

8.2 Ballistic Missile Defense Simulation Systems
The evolving ballistic missile defense problem must be solved to support a long-term strategy that calls for
an integrated and adaptable "system of systems" to defend U.S. territory, forces, allies, and other interests
worth protecting [2]. Credible Department of Defense models and simulations (M&S) of ballistic missile
defense systems are expected by National- and Department-level decision-makers [6]. Many of these
large-scale, software-intensive simulation systems were autonomously developed over time, and subject to
varying degrees of funding, maintenance, and life-cycle management practices, resulting in heterogeneous
model representations and data. Systemic problems with distributed interoperability of these non-trivial
simulations in federations’ persist, and current techniques, procedures, and tools have not achieved the
desired results. Establishing credibility in DoD simulations involves many disciplines and knowledge areas
including software engineering, processes, quality, product management and architecture. The
Department’s complex organizational dynamics, and complicated acquisition procedures also impact the
level of M&S credibility, at times adversely.

There are two ways to apply the idea of DDAD to ballistic missile defense simulation systems. One way is
to use DDAD directly in the development of simulation software that is credible. The other way is to apply
the main idea of DDAD in simulations. A documentation management system for simulations can be built.
This will enable all information involved in simulations to be well organized and manipulated so that the
simulation processes are transparent, traceable and maintainable. Credibility of the simulation results will
therefore be improved.

 15

8.3 Joint Forces Program
Joint forces are now more important than ever because in today’s world the traditional distinctions between
maritime, land and air theatres of operations have become less relevant. By operating as a single, united
force, the Navy, Army and RAF can produce a bigger punch, maximizing operational effectiveness and
increasing the chance of success [7]. Interoperability requirements are critical to joint force programs.
Since interoperability requirements are dynamic, and often poorly understood before systems are put to use
in the field, the requirements and acquisition communities must have a flexible and powerful method to
communicate in order to overcome these challenges.

Based on the idea of DDAD, we have proposed a unified repository of architectural data, with the ability to
be viewed in several forms (i.e. with the ability to create multiple architectural views), each tailored to the
needs of different stakeholders [12]. The power of this methodology is that it provides a mechanism by
which functional and interoperability requirements are captured, defined, and levied on systems based on
how they will be employed. This is a dynamic process, which can accept changes to requirements, system
environments, and domains; and which supports time-phasing, spiral development, assessment of
requirements vs. capabilities and operational vs. system needs.

9. Conclusions
This paper explores a new view of documentation that can better serve development of systems of
embedded systems. The different views provided by the DDAD approach give project managers,
developers, sponsors, maintainers and end-users the ability to express their opinions or propose
requirements changes if needed by adding related documents via a user-friendly interface. This information
will be recorded in a form that can be manipulated, automatically analyzed and made available throughout
the rest of the development process. DDAD will track these changes and help to ensure that information
will not be corrupted in transformation from one phase to another. DDAD provides a method that
encourages stakeholder involvement while updating the requirements and consistently providing this
information for later use. DDAD also supports automated software generation by using a computational
model, rapid prototyping and other related techniques. This is helpful to achieve a good tradeoff between
stakeholder interaction and process automation. DDAD also provide a method to monitor and respond to
frequent changes in requirements. Consequently, agility of the development will be greatly increased.

By using the DDAD approach in every phase of development, even the automated processes, it should become
practically feasible to record, compile and present information to different stakeholders and tools in a clear,
understandable way at a level of complexity required to meet the stakeholders’ needs. By having these different
views available at various stages of development, stakeholders will be able to effectively monitor the
development process and communicate with each other. This improved transparency provides valuable
information needed for quality control and overall process improvement.

Software development processes from one phase to another are embodied as capture of relevant
information (e.g., design specification, quantifiable attributes), definition of document information models
and view presentation models, simulation of semantic behavior (e.g., executable specification), and
transformation of documents exploited by various phases. With insight into the future development of
documentation, the documentation repository will support transformation from high-level description (in
some specification languages) to low-level description (in some programming languages) with mapping
between those descriptions.

DDAD also provides comprehensive support for software maintenance and evolution. In DDAD, all the
activities and information used by the development processes are accurately recorded and organized in a
well-formulated documentation system that drives the system development and build processes. This will
ensure overall system properties are precisely documented and consistently updated and transferred
throughout successive phases and available after system release. The documentation will retain sufficient
detail to provide a sound basis for fault tracing, bug repairing and overall system improvement. DDAD will
keep track of system configuration, document dependencies and system status and enable the software to
respond to future changes in requirements thereby supporting maintenance and evolution of the system.

 16

Keeping track of accurate dependency information is critical for automatically locating the relevant parts of
a maze of documents for resolving a given system evolution issue.

From the viewpoint of long-term system construction, technologies for computer-aided documentation
repositories will drive the form of documentation standard needed for more effective regulatory
management. Much of the presented infrastructure can be generalized from software development to the
entire systems engineering and certification process.

DDAD will be a promising methodology to build a high confidence system of embedded systems. Three
potential applications were presented in the paper, but the methodology and idea of DDAD can be used in
many more industrial domains.

Reference
[1] B. Boehm, “Software Risk Management: Overview and Recent Developments”, 17th International

Forum on COCOMO and Software Cost Modeling, Los Angeles, CA, October 22-25, 2002,
http://sunset.usc.edu/events/2002/cocomo17.

[2] D. C. Gompert, J. A. Isaacson, “Planning a Ballistic Missile Defense System of Systems”,
http://www.rand.org/publications/IP/IP181/.

[3] E. Hall, Managing Risk. Methods for Software Systems Development. Addison Wesley, 1997.
[4] J. M. Shridhar, S. Ravi, “Virtual Manufacturing: An Important Aspect of Collaborative Product

Commerce”, Journal of Advanced Manufacturing Systems, Vol. 1, No. 1, 2002, pp. 113-119.
[5] http://www.boeing.com/news/releases/2002.
[6] http://www.sc.army.mil/.
[7] http://www.mod.uk/aboutus/factfiles/jointforces.htm.
[8] http://www.extremeprogramming.org.
[9] http://www.dsdm.org.
[10] J. H. Reed, Software Radio: A Modern Approach to Radio Engineering, Prentice Hall, 2002.
[11] J. Highsmith, “Agile Software Development: A Review of Agile Methodologies,”

http://www.cutter.com/workshops, December, 2002.
[12] J. L. Parenti, “Engineering Software for Interoperability Use of Enterprise Architecture

Techniques”, Master Thesis, Naval Postgraduate School, March 2003.
[13] J. Puett, “Holistic Framework for Establishing Interoperability of Heterogeneous Software

Development Tools”, Ph.D Dissertation (advisor: Luqi), Naval Postgraduate School, June, 2003.
[14] K. Czarnecki, U. Eisenecker, Generative Programming Methods, Tools, and Applications,

Addison-Wesley, 2000.
[15] L. Putnam, and W. Myers, Industrial Strength Software: Effective Management Using

Measurement. IEEE Computer Society Press, 1997.
[16] V. Berzins, L. Qiao, Luqi, “Information Consistency Checking in Documentation Driven

Development for Complex Embedded Systems”, submitted to Monterey Workshop 2003, Chicago,
USA, September 24-26, 2003.

[17] Luqi, M. Ketabchi, “A Computer-Aided Prototyping System”, IEEE Software, March, 1988, pp.
66-72.

[18] Luqi, R. Steigerwald, et al, “CAPS as a Requirement Engineering Tool”. in Proceedings of Tri-
Ada'91 International Conference, San Jose, USA, Oct 22-25, 1991, pp. 75-83.

[19] Luqi, V. Berzins, R. Yeh, “A prototyping language for real time software”, IEEE Transactions on
Software Engineering, Vol 14, No 10, 1988, pp. 1409-1423.

[20] Luqi, Y. Qiao, L. Zhang, “Computational Model for High-confidence Embedded System
Development”, Monterey Workshop --- Radical Innovations of Software and Systems Engineering
in the Future, October, 7-11, 2002, pp. 265-303.

[21] M. Lyu, Software Reliability Engineering. IEEE Computer Society Press. 1995.
[22] M. Murrah, “Enhancements and Extensions of Formal Models for Risk Assessment in Software

Projects”, Ph.D Dissertation (advisor: Luqi), Naval Postgraduate School, September, 2002.
[23] M. Saboe, “A Software Technology Transition Entropy Based Engineering Model”, Ph.D

Dissertation (advisor: Luqi), Naval Postgraduate School, March, 2002.

 17

[24] M. Uschold, M. Gruninger, "Ontologies: Principles, Methods and Applications," Knowledge
Engineering Review, Vol. 11, No. 2, June 1996.

[25] N. Johnson, and S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions. Vol. 1.
Wiley & Sons, 1994.

[26] P. Abrahamsson, O. Salo, J. Ronkainen, J. Warsta, “Agile Software Development Methods-
Review and Analysis”, Technical Report, ESPOO 2002.

[27] P. M. Nelson, “A Requirements Specification of Modifications to the Functional Description of
the Mission Space Resource Center”, Master Thesis, Naval Postgraduate School, June 2001.

[28] P. Young, V. Berzins, J. Ge and Luqi, “Use of Object-Oriented Model for Interoperability in
Wrapper-Based Translator for Resolving Representational Differences between Heterogeneous
Systems”, Monterey Workshop 2001 on Engineering Automation for Software Intensive System,
Monterey, CA, 2001, pp. 170-177.

[29] X. Liang, J. Puett and Luqi, “Perspective-based Architectural Approach for Dependable Systems”,
Proc. of ICSE 2003 Workshop on Software Architectures for Depenable Systems, Portland, OR,
USA, May 3, 2003, pp. 1-6.

[30] Luqi, X. Liang, M. Brown, C. Williamson, “Formal Approach for Software Safety analysis & Risk
Assessment via an Instantiated Activity Model”, to appear in the 21th International System Safety
Conference, August 4-8, 2003, Ottawa, Ontario, Canada.

[31] National Aeronautics and Space Administration, NASA Œ STD Œ 8719.13A, Software Safety,
NASA Technical Standard, September 15, 1997.

[32] United Kingdom Ministry of Defense, Ship Safety Management System™s Handbook, JSP 430,
UK.

[33] P. Young, V. Berzins, J. Ge and Luqi, “Using an Object Oriented Model for Resolving
Representational Differences between Heterogeneous Systems”, Proceedings of 17th ACM
Symposium on Applied Computing (SAC), Madrid, Spain, 10-14 March 2002, pp. 976 - 983.

[34] P. Young, “Integration of Heterogeneous Software Systems through Computer-Aided Resolution
of Data Representation Differences”, Ph.D. Dissertation (Advisor: Luqi), Naval Postgraduate
School, Monterey, CA, March 2002.

[35] W. Zhao, B. Bryant, R. Raje, M. Auguston, A. Olson and C. Burt, “A Unified Approach to
Component Assembly Based on Generative Programming”, Proceedings of 2002 Workshop on
Generative Programming (GP 2002), Austin, Texas, April 2002, pp.195-199.

[36] J. Drummond, Luqi, W. Kemple, M. Auguston and N. Chaki. “Quality of Service Behavioral
Model from Event Trace Analysis.” Proceedings of the 7th international Command and Control
Research and Technology Symposium (CCRTS 2002), Quebec City, Quebec, 16-20 September
2002.

[37] K. Beck et al., “Manifesto for Agile Software Development”, www.agilemenifesto.org, February
2001.

[38] K. Back, Extreme Programming Explained: Embrace Change, Addison-Wesley, 2000.
[39] T. DeMarco, B. Boehm, “The Agile Methods Fray”, IEEE Computer, Vol. 36, No. 6, 2003, pp.

90-92.
[40] Luqi, Z. Guan, “A Software Engineering Tools for Requirement Document based Prototyping”,

Proceedings of the 7th World Multiconference on Systemics, Cybernetics and Infromatics,
Orlando, Florida, USA, July 27 - 30, 2003, Volume VI, pp.237-243.

Aggressive Model-Driven Development:
Synthesizing Systems from Models viewed as

Constraints

Tiziana Margaria1,2 and Bernhard Steffen2

1 METAFrame Technologies GmbH, Dortmund, Germany
{tmargaria}@METAFrame.de

2 Chair of Programming Systems, University of Dortmund, Germany
{Tiziana.Margaria, Steffen}@cs.uni-dortmund.de

Position Paper

1 Motivation

The Problem

According to several roadmaps and predictions, future systems will be highly
heterogeneous, they will be composed of special purpose code, perhaps written
in different programming languages, integrate legacy components, glue code,
and adapters combining different technologies, which may run distributed on
different hardware platforms, on powerful servers or at (thin and ultra-thin)
client sites. Already today’s systems require an unacceptable effort for deploy-
ment, which is typically caused by incompatibilities, feature interactions, and
the sometimes catastrophic behavior of component upgrades, which no longer
behave as expected. This is particularly true for embedded systems, with the con-
sequence that some components’ lifetimes are ‘artificially’ prolonged far beyond
a technological justification, since one fears problems once they are substituted
or eliminated.

Responsible for this situation is mainly the level on which systems are tech-
nically composed: even though high level languages and even model driven de-
velopment are used for component development, the system-level point of view
is not yet adequately supported. In fact, in particular the deployment of a het-
erogeneous systems is still a matter of assembly-level search for the reasons of
incompatibility, which may be due to minimal version changes, slight hardware
incompatibilities, or simply to hideous bugs, which come to surface only in a
new, collaborative context of application. Integration testing and the quest for
’true’ interoperability are indeed major cost factors and major risks in a system
implementation and deployment.

Hardware development faces similar problems with even more dramatic con-
sequences: hardware is far more difficult to patch, making failure of compatibility
a real disaster. It is therefore the trend of the late ’90s to move beyond VLSI to

M1

C1 Cn

Mn MnM1

Running System Running System

Compilation/Synthesis

Synthesis/Technology Mapping

Model Library

Component Library

Global Model

Integration Integration

Integration as
Consistency/Compatibility

AMDDComponent Based
Design

…

…

…

Fig. 1. The AMDD Process

Systems-on-a-Chip (SoC) to guarantee larger integration in both senses: physi-
cally, compacting complex systems on a single chip instead of on a board, but
in particular also projectually, i.e. integrating the components well before the
silicon level, namely at the design level: rather than combining chips (the classi-
cal way), hardware engineers start to combine directly the component’s designs
and to directly produce (synthesize) system-level solutions, which are homoge-
neous at the silicon level. Interestingly, they solve the problem of compatibility
by moving it to a higher level of abstraction.

AMDD: Aggressive Model-Driven Development

At the larger scale of (embedded) system development, moving the problem of
compatibility to a higher level of abstraction means moving it to the modelling
level (see Fig. 1): rather than using the models, as usual in today’s Component
Based Development paradigm, just as a means of specification, which

– need to be compiled to become a ‘real thing’ (e.g., a component of a software
library),

– must be updated (but typically are not), whenever the real thing changes
– typically only provide a local view of a portion or an aspect of a system,

models should be put into the center of the design activity, becoming the first
class entities of the global system design process. In such an approach, as shown
on the right side of Fig. 1,

– libraries should be established on the modelling level: building blocks should
be (elementary) models rather than software components,

– systems should be specified by model combinations (composition, configura-
tion, superposition, conjunction...), viewed as a set of constraints that the
implementation needs to satisfy,

2

– global model combinations should be compiled (synthesized, e.g. by solving
all the imposed constraints) into a homogeneous solution for a desired envi-
ronment, which of course includes the realization of an adequate technology
mapping,

– system changes (upgrades, customer-specific adaptations, new versions, etc.)
should happen only (or at least primarily) at the modelling level, with a
subsequent global recompilation (re-synthesis)

– optimizations should be kept distinct from design issues, in order to maintain
the information on the structure and the design decisions independently of
the considerations that lead to a particular optimized implementation.

With this aggressive style of model-driven development (AMDD), which strictly
separates compatibility, migration, and optimization issues from model/function-
ality composition, it would be possible to overcome the problem of incompati-
bility between

– (global) models and (global) implementations, which is guaranteed and later-
on maintained by (semi-) automatic compilation and synthesis, as well as
between

– system components, paradigms, and hardware platforms: a dedicated compi-
lation/synthesis of the considered global functionality for a specific platform
architecture avoids the problems of incompatible design decisions for the
individual components.

In essence, delaying the compilation/synthesis until all parameters are known
(e.g. all compatibility constraints are available), may drastically simplify this
task, as the individual parts can already be compiled/synthesized specifically
for the current global context. In a good setup, this should not only simplify the
integration issue (rather than having to be open for all eventualities, one can
concentrate on precisely given circumstances), but also improve the efficiency
of the compiled/synthesized implementations. In fact, AMDD has the potential
to drastically reduce the long-term costs due to version incompatibility, system
migration and upgrading, and lower risk factors like vendor and technology de-
pendency. Thus it helps protecting the investment in the software infrastructure.
We are therefore convinced that this aggressive style of model-driven develop-
ment will become the development style at least for mass customized software in
the future. In particular we believe that AMDD, even though being drastically
different from state of the art industrial embedded system design, which is very
much driven by the underlying hardware architecture right from the beginning,
will change accordingly: technology moves so fast, and the varieties are so man-
ifold that the classical platform-focussed development will find its limits very
soon.

The Scope of AMDD

Of course, AMDD will never replace genuine software development, as it assumes
techniques to be able to solve problems (like synthesis or technology mapping)

3

which are undecidable in general. On the other hand, more than 90% of the
software development costs arise worldwide for a rather primitive software de-
velopment level, during routine application programming or software update,
where there are no technological or design challenges. There, the major problem
faced is software quantity rather than achievement of very high quality, and au-
tomation should be largely possible. AMDD is intended to address (a significant
part of) this 90% ‘niche’.

What does this mean? AMDD aims at making things that inherently are simple
as simple as they should be. In particular this means that AMDD is (at least
in the beginning) characterized by abstractions, neglecting interesting, but at a
certain level of development unnecessary, details, like e.g. distribution of compu-
tation, methods of communication, synchronization, real time. General software
development practices can be replaced here by a model and pattern-based ap-
proach, adequately restricted to make AMDD effective. The challenge for AMDD
therefore is initially to characterize and then model specific scenarios where its
effectiveness can be guaranteed. Typically, these will be application-specific sce-
narios, at the beginning rather restrictive, which will then be generalized and
standardized in order to extend the scope of applicability.

Making AMDD work

In order to reach a practicable and powerful environment for AMDD there is
still a long way to go:

– adequate modelling patterns need to be designed,
– new analysis and verification techniques need to be developed,
– new compilation/synthesis techniques need to be devised,
– automatic deployment procedures need to be implemented,
– systems and middleware need to be elaborated to support automatic deploy-

ment, and,
– at the meta-level, we need a theory for the adequate specification of the

settings which support this style of development.

It should be noted, however, that there is an enormous bulk of work one can
build upon. Thus there is room also for quick wins and early success: AMDD is
a paradigm of system design, and as such, it inherently leaves a high degree of
freedom in the design of adequate settings, which, as described in Section 3, can
be successfully used already today.

In the following we will focus on the following main ingredients:

1. a heterogeneous landscape of models, to be able to capture all the particular-
ities necessary for the subsequent adequate product synthesis. This concerns
the system specification itself, the platforms it runs on together with their
communication topology, the required programming style, exceptions, real
time aspects, etc.

4

2. a rich collection of flexible formal methods and tools, to deal with the het-
erogeneous models, their consistency, and their validation, compilation, and
testing.

3. automatic deployment and maintenance support that are integrated in the
whole process and are able to provide ’intelligent’ feedback in case of late
problems or errors.

2 What we can build upon

2.1 Heterogeneous Landscape of Models

One of the major problems in software engineering is that software is multi-
dimensional: it comprises a number of different (loosely related) dimensions,
which typically need to be modelled in different styles in order to be treated
adequately. Important for simplifying the software/application development is
the reduction of the complexity of this multi-dimensional space, by placing it
into some standard scenario. Such reductions are typically application-specific.
Besides simplifying the application development they also provide a handle for
the required automatic compilation and deployment procedures.

Typical among these dimensions, often also called views, are

– the architectural view, which expresses the static structure of the software
(dependencies like nesting, inheritance, references). This should not be con-
fused with the architectural view of the hardware platform, which may indeed
be drastically different. - The charm of the OO-style was that it claimed to
bridge this gap.

– the process view, which describes the dynamic behavior of the system. How
does the system run under which circumstance (in the good case)

– the exception view, which addresses the system’s behavior under malicious
or even unforeseen circumstances

– the timing view, addressing real time aspects
– the various thematic views concerned with roles, specific requirements, ...

Of course, UML tries to address all these facets in a unifying way, but we
all know that UML is currently rather a heterogeneous, expressive sample of
languages, which lacks a clear notion of (conceptual) integration like consistency
and the idea of global dynamic behavior. Such aspects are dealt with currently
independently e.g. by means of concepts like contracts [1] (or more generally,
and more complicatedly, via business-rules oriented programming like e.g. in
[6]). The latter concepts are also not supported by systematic means for guaran-
teeing consistency. In contrast, AMDD views these heterogeneous specifications
(consisting of essentially independent models) just as constraints which must be
‘solved’ during the compilation/synthesis phase (see also [13]).

Another recently very popular approach is Aspect Oriented Programming
(AOP) [7, 2], which sounds convincing at first, but does not seem to scale for
realistic systems. The programmer treats different aspects separately in the code,

5

but has to understand precisely the weaving mechanism, which often is more
complicated than programming all the system traditionally. In particular, the
claimed modularity is only in the file structure but not on the conceptual side.
In other words, in the good case one can write down the aspects separately,
but understanding their mutual global impact requires a deep understanding of
weaving, and, even worse, of the result of weaving, which very much reminds of
an interleaving expansion of a highly distributed system.

2.2 Formal Methods and Tools

There are numerous formal methods and tools addressing validation, ranging
from methods for correctness-by-construction/rule-based transformation, cor-
rectness calculi, model checkers, and constraint solvers to tools in practical use
like PVS, Bandera, SLAM to name just a few. On the compiler side there are
complex (optimizing) compiler suites, code generators, and controller synthesiz-
ers, and other methods to support technology mapping. A complete account of
these methods would be far beyond the purpose of this paper. Here it is sufficient
to note that there is already a high potential of technology waiting to be used.

2.3 Automatic Deployment and Maintenance Support

At the moment, this is the weakest point of the current practice: the deploy-
ment of complex systems on a heterogeneous, distributed platform is typically
a nightmare, the required system-level testing is virtually unsupported, and the
maintenance and upgrading very often turn out to be extremely time consum-
ing and expensive, de facto responsible for the slogan ”never change a running
system”.

Still, also in this area there is a lot of technology one can build upon: the
development of Java and the JVM or the dotnet activities are well-accepted
means to help getting models into operation, in particular, when heterogeneous
hardware is concerned. Interoperability can be established using CORBA, RMI,
RPC, Webservices, complex middleware etc, and there are tools for testing and
version management. Unfortunately, using these tools requires a lot of expertise,
time to detect undocumented anomalies and to develop patches, and this for
every application to be deployed.

3 A Simple AMDD-Setting

The Application Building Center (ABC) developed at METAFrame Technologies
in cooperation with the University of Dortmund is intended to promote the
AMDD-style of development in order to move the application development for
certain classes of applications towards the application expert. Even though the
ABC should only be regarded as a first step of AMDD development, it already
comprises some important AMDD-essentials (Fig. 2.3):

6

SIB1

Macro 1

SIBn
FLGnFLG1

Running System

Compilation /Synthesis

Feature Library

Global SLG

uses

Integration as
Consistency/Compatibility

ABC‘s AMDD

.. …
Component Model Library

..Macro n

Heterogeneous Service Models

Temporal Constraints
and Types

Fig. 2. The AMDD Process in the ABC

1. Heterogeneous landscape of models: the central model structure of the ABS
are hierarchical Service Logic Graphs (SLGs)[14, 9]. SLGs are flow chart-
like graphs. They model the application behavior in terms of the intended
process flows, based on coarse granular building blocks called SIBs (Service-
Independent Building blocks) which are intended to be understood directly
by the application experts [14] – independently of the structure of the under-
lying code, which, in our case, is typically written in Java/C/C++. The com-
ponent models (SIBs or hierarchical subservices called Macros), the feature-
based service models called Feature Logic Graphs (FLGs), and the Global
SLGs modelling applications are all hierarchical SLGs.
Additionally, the ABC supports model specification in terms of

(a) two modal logics, to abstractly and loosely characterize valid behaviors
(see also [5]),

(b) a classification scheme for building blocks and types, and
(c) high level type specifications, used to specify compatibility between the

building blocks of the SLGs.

The granularity of the building blocks is essential here as it determines the
level of abstraction of the whole reasoning: the verification tools directly con-
sider the SLGs as formal models, the names of the (parameterized) building
blocks as (parameterized) events, and the branching conditions as (atomic)
propositions. Thus the ABC focusses on the level of component composition
rather then on component construction: its compatibility, its type correct-
ness, and its behavioral correctness are under formal methods control [9].

2. Formal methods and tools: the ABC comprises a high-level type checker, two
model checkers, a model synthesizer, a compiler for SLGs, an interpreter, and
a view generator. The model synthesizer, the model checkers and the type
checker take care of the consistency and compatibility conditions expressed
by the four kinds of constraints/models mentioned above.

7

3. Automatic deployment and maintenance support: an automated deployment
process, system-level testing [10], regression testing, version control, and on-
line monitoring [3] support the phases following the first deployment.
In particular the automatic deployment service needs some meta-modelling
in advance. In fact, this has been realized using the ABC itself. Also the test-
ing services and the online monitoring are themselves strong formal methods-
based [11] and have been realized via the ABC.

In this sense, the ABC can be regarded as a simple and restrictive but work-
ing AMDD framework. In fact, in the ABC, composition/coordination of com-
ponents as well as their maintenance and version control happen exclusively at
the modelling level, and the compilation to running source code (mostly Java
and C++) and deployment of the resulting applications are fully automatic.

4 Conclusions and Perspectives

We have proposed an aggressive version of model-driven development (AMDD),
which moves most of the recurring problems of compatibility and consistency
from the coding and integration to the modelling level. Of course, AMDD re-
quires a complex preparation of adequate settings, where the required compi-
lation and synthesis techniques can be realized. Still, the effort to create these
settings and their (application dependent) restrictions can be easily paid off by
immense cost reductions in software mass construction and maintenance. In fact,
besides reducing the costs, aggressive model-driven development will also lead
(more or less automatically) to a kind of normed software development, making
software engineering a true engineering activity.

This direction is also consistent with the perspective indicated by the joint
GI-ITG position paper on Organic Computing1 [12]: the blurring of borders
between hardware and software (machines and programs) that initiated with
embedded systems and with hardware/software codesign is going to reach a
completely new dimension, where

– the systems are conceived, designed and implemented in terms of services,
– they are provided and used in a virtual space, and where
– the distinction on where (local, global, at which node, on which hardware)

and how (hardware, software, network, ...) the services are available is rela-
tively inessential information.

In particular, according to availability or convenience, the provider of services can
be changed and the provision of services is not a permanent contract anymore.2

1 GI, the Gesellschaft für Informatik and ITG, the Informationstechnikgesellschaft im
VDE, the Verband der Elektrotechnik, Elektronik und Informationstechnik are the
German counterparts of the ACM and IEEE, respectively.

2 This is a scenario that concretizes the idea of Sentient Computing [4].

8

We are convinced that this aggressive style of model-driven development -
which overcomes the problem of compatibility between model and implementa-
tion, as well as between system components, paradigms and hardware platforms
- will become the development style for most of the applications in the future.
AMDD is a paradigm of system design, and as such it inherently leaves a high
degree of freedom in the design of adequate settings. In particular, we do not
expect a single solution to emerge, but rather a collection of environments and
settings optimized and tailored for this design paradigm in a number of relevant
areas of application.

In particular, we envisage a coordinative design paradigm similar to the al-
ready successful paradigm of feature-oriented design [5]: in that setting, widely
adopted in the telecommunication industry, systems are composed of a thin skele-
ton of basic functionality, enriched at need and on demand via additional fea-
tures that deliver premium functionality (services) to the customers/end-users.
A well studied example is the combination of POTS (Plain Old Telephone Ser-
vice) functionality as a basic telephony service provided by a switch, enriched
and virtualized by features like Call Forwarding, Conference Call, Collect Billing
etc. In feature-oriented design, the structure that matters is not the technical
structure (objects, classes) of and under the system, but rather the structure of
the application-domain (what does the system do for me, when and under which
conditions), together with the capability of mapping the what into the how and
of changing the how on the fly. Indeed, the Intelligent Network standard is de-
fined in this optic: it defines which features exist in that application domain and
what they deliver to the user, and it says nothing about implementational issues,
which are left free to the single vendors.

Even though it is only a very first step, we consider the ABC a kind of proof
of concept motivating the design of more elaborate aggressive model-based devel-
opment techniques. In fact, we have already reapt the benefits of this modelling
style in one of our projects, in the Integrated Testing Environment projects (with
Siemens ICN, Witten (D)). In an initial project phase we built a system-level
test environment for complex Computer-Telephony Integrated applications that
covered client-server third party application interoperating with telecommuni-
cation switches and communicating over a LAN [10]. In a second phase we were
faced with the problem of the next generation of applications, that from the
engineering point of view had a completely different, and much more complex,
profile: we needed to capture internet-based applications that online, role-based,
and remotely (over internet) reconfigure e.g. the complete routing and call man-
agement settings on a virtual switch implemented as a fault tolerant cluster of
physical switches [8]. This meant a new quality of complexity along at least
three dimensions: testing over the internet, testing virtual clusters, and testing
a controlling system in a non-steady state (during reconfiguration). Thanks to
our AMDD approach, this did not affect at all the conceptual type of the models
we used in the ITE! Thus we were able to help the Siemens engineers to solve
their new problem within the existing modelling framework, just by compatibly

9

extending the libraries of models. In particular, they could reuse SIBs, features
and SLGs from the previous project phase with no change.

References

1. L.F. Andrade, J.L. Fiadeiro: Architecture Based Evolution of Software Systems,
http://www.atxsoftware.com/publications/SFM.pdf.

2. AspectJ Website: http://eclipse.org/aspectj/
3. A. Hagerer, H. Hungar, O. Niese, and B. Steffen: Model Generation by Moderated

Regular Extrapolation. Proc. of the 5th Int. Conf. on Fundamental Approaches to
Software Engineering (FASE 2002), Grenoble (F), LNCS 2306, pp. 80-95.

4. A. Hopper: The Royal Society Clifford Paterson Lecture: Sentient Computing, 1999.
5. B. Jonsson, T. Margaria, G. Naeser, J. Nyström, and B. Steffen. Incremental re-

quirement specification for evolving systems. Nordic Journal of Computing, vol.
8(1):65, Also in Proc. of Feature Interactions in Telecommunications and Software
Systems 2000, 2001.

6. JRules, ILOG. http://www.ilog.com/
7. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Videira Lopes, J.-M. Lo-

ingtier, J.Irwin: Aspect-Oriented Programming. Proc. of ECOOP, Springer-Verlag
(1997).

8. T. Margaria, O. Niese, B. Steffen, A. Erochok: System Level Testing of Virtual
Switch (Re-)Configuration over IP, Proc. IEEE European Test Workshop, Corfu
(GR), May 2002, IEEE Society Press.

9. T. Margaria, B. Steffen: Lightweight Coarse-grained Coordination: A Scalable
System-Level Approach, to appear in STTT, Int. Journal on Software Tools for
Technology Transfer, Springer-Verlag, 2003.

10. O. Niese, T. Margaria, A. Hagerer, M. Nagelmann, B. Steffen, G. Brune, and H. Ide.
An automated testing environment for CTI systems using concepts for specification
and verification of workflows. Annual Review of Communication, Int. Engineering
Consortium Chicago (USA), Vol. 54, pp. 927-936, IEC, 2001.

11. O. Niese, B. Steffen, T. Margaria, A. Hagerer, G. Brune, and H. Ide. Library-based
design and consistency checks of system-level industrial test cases. In H. Hußmann,
editor, Proc. FASE 2001, LNCS 2029, pages 233–248. Springer Verlag, 2001.

12. Organic Computing: Computer- und Systemarchitektur im Jahr 2010, posi-
tion paper of the VDE/ITG/GI. http://www.gi-ev.de/download/VDE-ITG-GI-
Positionspapier

13. B. Steffen. Unifying models. In R. Reischuk and M. Morvan, editors, Proc.
STACS’97, LNCS 1200, pages 1–20. Springer Verlag, 1997.

14. T. Margaria, B. Steffen: METAFrame in Practice: Design of Intelligent Network
Services, in ”Correct System Design - Issues, Methods and Perspectives”, LNCS
1710, Springer-Verlag, 1999, pp. 390-415.

10

New Development Techniques--New Challenges for Verification and Validation

Mats Heimdahl, University of Minnesota

Abstract:

The new thrust towards model-based, or specification centered, development techniques
promises to reduce development costs and increase software quality. Model-based
techniques center the development effort around one or more high- level models of the
system of interest, and relies heavily on tools for visualization, analysis, and code
generation---tools that will largely replace tasks that were previously done manually. This
transition from manual development to predominantly automated development relying on
tools raises new and challenging verification and validation problems, in particular when
developing critical software systems that require certification. This talk will discuss the
verification and validation challenges arising from the increased reliance on tools and
point out directions for future research efforts.

Software Architectures and Embedded Systems
Nenad Medvidovic Sam Malek Marija Mikic-Rakic

Computer Science Department
University of Southern California

Los Angeles, CA 90089-0781
{neno,malek,marija}@usc.edu

Introduction
Software architecture has emerged as an area of intense research over the past decade [25,32]. A
number of approaches have been proposed to deal with architectural description and analysis [21],
architectural styles [8], domain-specific and application family architectures [4,35], architecture-
based dynamic system adaptation [29], and so forth. By and large, however, these approaches
share assumptions that make them suited specifically to the domain of traditional, desktop-based,
possibly distributed development platforms. Those (comparatively few) architecture-based solu-
tions that have focused on software systems for embedded devices (e.g., [28]) have had to face
some of the same challenges (e.g., applying solutions across an application family), but also
appear to have had some different priorities (e.g., ensuring efficient, architecture-compliant sys-
tem implementations).

The goal of this paper is to draw some general distinctions between “traditional” software archi-
tectures and those targeted at embedded systems. We focus on several areas that traditional soft-
ware architecture research has studied to date and discuss their applicability and potential
shortcomings in the context of embedded systems. As suggested above, our position is informed
by the existing literature. Additionally, we will leverage insights drawn from a graduate course we
have offered at USC for the past two years—Software Engineering for Embedded Systems [35].
Finally, we will also rely on the experience from Prism, an on-going research project whose goal
is to develop software architectural solutions for the domain of highly distributed, mobile,
resource-constrained, and possibly embedded computation [19,23]. The discussion provided in
this paper should not be considered a definitive study of this issue, but rather a starting point for
future discussions. We also attempt to provide a critical assessment of our Prism project with
respect to the discussed areas, in the hope of outlining future directions that will improve Prism’s
suitability for the embedded systems domain.

Architectural Modeling
A large number of special-purpose architecture description languages (ADLs) [21] have been
developed to represent different aspects of software architectures. More recently, the Unified
Modeling Language (UML) [3] has gained widespread acceptance for a similar purpose. Table 1
shows an overview of several ADLs and their primary foci. Only two of these notations are spe-
cifically intended for the embedded systems domain:
1. MetaH models architectures in the guidance, navigation, and control (GN&C) domain. MetaH

tries to ensure the schedulability, reliability, and safety of the modeled software system. It
also considers the availability and properties of hardware resources.

2. Weaves [10] supports specification of data-flow architectures. In particular, Weaves is spe-
cialized to support real-time processing of large volumes of data emitted by weather satellites.

Two other notations also deal with issues that are relevant to the embedded systems domain: Uni-
Con [32] supports modeling of runtime (though not necessarily real-time) scheduling, while
ROOM [31] targets real-time computation with a combination of message sequence charts and
state charts. The more recent Avionics ADL [5] tries to marry several of these ideas into a single
language.

Despite the above examples, many questions remain unanswered. It is unclear whether modeling
the architectures of embedded systems is inherently incompatible with semi-formal notations
such as UML. The prevailing characteristics of the embedded systems domain would suggest that
rigor and formality are a non-negotiable requirement. On the other hand, counter-examples exist.
For instance, the software architecture team working on JPL’s Mission Data Systems (MDS)
architectural framework [39] had initially selected UML for representing MDS architectures; the
team has recently replaced UML with an XML-based ADL [8], but one that still has only semi-
formally defined semantics.

Another relevant issue is deciding which aspects of an embedded software system are critical
from an architectural perspective. It is widely agreed that components, connectors, and their con-
figurations are the basic building blocks of a traditional software architecture. While the same
claim might be made about embedded system architectures, embedded systems have certain char-
acteristics that require careful consideration. For example, a to-be-embedded software system is
often built to a specification, with the actual platform(s) being unknown or even non-existent at
the time of development. In such cases, an application domain-specific ADL (e.g., MetaH for the
GN&C domain) may help in identifying at least those system aspects that are likely to remain sta-
ble across specific applications and platforms.

We have not focused on architectural modeling in the Prism project. Instead, we have chosen to
rely on our existing architecture modeling infrastructure [20] in order to address other issues, as
discussed below.

Analysis
A particular focus of existing ADLs has been on formal analysis of system properties at the archi-
tectural level. However, ADLs are hampered by two problems, both of which are likely to be fur-
ther magnified in the case of embedded systems. The first issue is analysis fidelity: while
languages such as Wright [1] allow modeling and sophisticated analyses of dynamic system prop-

Table 1: – ADL Scope and Applicability

ADL ACME Aesop C2 Darwin MetaH Rapide

Focus

Architectural
interchange at
the structural
level

Specification of
architectures in
specific styles

Architectures of
distributed,
evolvable sys-
tems in a partic-
ular style

Architectures of
distributed,
dynamic systems

Guidance, navi-
gation, and con-
trol system
architectures

Modeling and
simulation of the
dynamic behav-
ior of an archi-
tecture

ADL ROOM SADL UniCon Weaves Wright

Focus

Graphical (struc-
tural and behav-
ioral) models of
architectures

Formal refine-
ment of architec-
tures across
levels of detail

Glue code gener-
ation for inter-
connecting
existing compo-
nents

Data-flow archi-
tectures with
real-time
requirements on
data processing

Modeling and
deadlock analy-
sis of concurrent
systems

erties (e.g., potential for deadlocks), they either make large numbers of simplifying assumptions
about, or fail to consider altogether, the capacity, speed, power, and other properties of the hard-
ware platforms on which the modeled software systems will execute. In addition, most existing
ADLs provide scant support for transferring the desired architectural decisions into source code.
This is absolutely critical in the case of embedded systems, where an elegant and “correct” soft-
ware architecture will be of little use unless it results in an effective and efficient running system.

The lack of analysis fidelity suggests the second issue that has not been adequately addressed in
existing ADLs. In order to gain confidence that the system will behave correctly in its target envi-
ronment, simulation of that system model’s execution behavior in the (simulated) environment
becomes indispensable. While there is a lot of potentially relevant work on simulation, this work
has taken place almost entirely outside the domain of software architectures. The lone exception
to this is Darwin [16] which leverages its π-calculus underpinnings to support execution of “what
if” scenarios. Much additional work is needed if ADLs are to be rendered suitable for use with
embedded systems in this regard.

As in the case of modeling, thus far in the Prism project we have not particularly focused on archi-
tectural analysis of embedded system architectures.

Architectural Styles and Reference Architectures
Software architectural styles are recurring patterns of system organization whose application
results in systems with known (desirable) properties [9,33]. As such, styles are key software
design idioms. Examples of well known styles are layered, pipe-and-filter, client-server, push-
based, peer-to-peer, event-based, and so forth. At the same time, very little is known about the
applicability of these, or any other styles, to the embedded systems domain. There are a few
exceptions to this (e.g., [12,38]), but they have emerged from problem domains (e.g., mobile
robotics) in which software engineering issues, and software architectures in particular, are con-
sidered to be of secondary importance.

An issue related to styles is that of reference architectures. A reference architecture is applicable
to systems across an application family and/or problem domain. Unlike a style, which provides a
set of heuristics for arriving at a software system’s architecture, a reference architecture only
needs to be instantiated into a system architecture (i.e., it is already an architecture, but a generic
one). Even though effective styles for embedded systems may be unknown, there are examples of
successful reference architectures in this area. One such example is Phillips’s Koala project [28],
which is targeted at consumer electronics devices. Another example is IBM’s ADAGE [6] refer-
ence architecture (illustrated in Figure 1 below), targeted at the avionics domain. Reference archi-
tectures are hard to come by because they require (extensive) existing experience within an
application domain, but, once in existence, they do appear to be a natural fit with embedded sys-
tems.

We have placed special emphasis on architectural styles in the Prism project. Since, as discussed
above, there is currently very little understanding of styles that are appropriate in the embedded
systems setting, we have developed an architectural style framework, called Prism-SF [19], which
may be instantiated into a number of individual styles. The framework fixes a small number of
architectural notions: computation is performed within (autonomous) components, and their inter-
action enabled via events. All other architectural concepts (e.g., software connectors, communi-
cation ports) are available and configurable, but not required. Finally, Prism-SF allows the

selection and combination of four types of interaction: symmetric (i.e., peer-to-peer) and asym-
metric (i.e., master-slave), as well as synchronous and asynchronous. These facilities provided by
Prism-SF are instantiated into one or more architectural styles, which are, in turn, used in the
design of specific systems. For illustration, Figure 2 shows a partial application architecture
designed using an instance of Prism-SF in which
• both symmetric and asymmetric connectors are included;
• each component has single master, slave, and peer communication ports; and
• symmetric and asymmetric connectors may not be attached to one another.

Implementation Support
Software architectures provide design-level models and guidelines for composing software sys-
tems. For these models and guidelines to be truly useful in a development setting, they must be
accompanied by support for their implementation [18,32]. This is particularly important in the

Controls and Display

Flight Director

Guidance

Navigation Radio-Nav

Data Source Objects
(sensors)

Figure 1. ADAGE – a five-layer ref-
erence architecture intended for sys-
tems in the avionics domain. Every
ADAGE-compliant system will have
the depicted five layers. Each of the
five layers may, in turn, comprise its
own layered internal architecture.

Headquarters

 Commander

Deployment
Strategies
Repository

Simulation
Agent

S
ym

m
et

ric

C_Data
Repository

C_Troops
Manager

C_Display
Manager

C_App
Manager

Deployment
Advisor

Strategy
Analyzer

Asymmetric

Asymmetric

Display
Manager

Distributed Asymmetric

Distributed Asymmetric

Asymmetric

Asymmetric

D
is

tri
bu

te
d

Sy
m

m
et

ric

Soldier

S_Troops
Manager

S_Display
Manager

Distributed Asymmetric

Asymmetric

D
istributed

S
ym

m
etric

Asymmetric

Asymmetric

Offensive
Strategy

Defensive
Strategy

Decision
Module

Data
Repository

Figure 2. An application
architecture designed using
a particular instantiation of
the Prism-SF architectural
style framework.

Arch. elements:

Ports:

Component

Asymmetric
Connector

Symmetric
Connector

Master
Slave
Peer

Slave side

Master side

Distributed
Asymmetric
Connector

Distributed
Symmetric
Connector

context of embedded systems: they may be highly distributed, decentralized, mobile, and long-
lived large-scale software systems, increasing the risk of architectural drift [25] unless there is a
clear relationship between the architecture and its implementation. Recent studies [23,32] have
shown that an effective way to realizing the system’s architecture is to leverage the support pro-
vided by architectural middleware solutions. Typically an architectural middleware provides
implementation-level support for the key aspects of system’s architecture: components, connec-
tors, architectural configurations, and communication events.

Embedded systems are usually characterized by resource constraints. However, middleware solu-
tions introduce an abstraction layer and therefore raise the issue of its effect on the system’s per-
formance. For a middleware platform to be usable in the context of embedded systems, it needs
to be highly efficient. Depending on the nature of the embedded environment, efficiency can
entail minimum use of CPU, memory, battery power, network bandwidth, and so on. Recently,
some vendors of popular middleware solutions (e.g., CORBA Orbix [13]) have started to tailor
their support for use in the embedded systems domain. Table 2 below compares middleware solu-
tions for mobile, resource constrained, possibly embedded systems along several pertinent dimen-
sions. The table has been adapted from [23].

Heterogeneity is another intrinsic characteristic of embedded systems [14,19]: unlike traditional
software platforms, which have been standardized to a significant degree, many embedded sys-
tems run on one-of-a-kind hardware with special-purpose operating systems, programming lan-
guages, network protocols, data formats, and so forth. This poses a great challenge to embedded
application developers. Techniques commonly employed to address heterogeneity in traditional
software systems, such as XML encoding or platform independent programming languages (e.g.,
Java), also may not be viable options in the embedded systems domain due to resource scarcity
and possible real-time requirements. Therefore, a practical architectural middleware solution in
this domain needs to be either highly specialized (and thus narrowly applicable) or flexible in
order to overcome the unpredictable and the heterogeneous nature of embedded systems.

Our implementation support for software architectures in the Prism project is embodied in the
Prism-MW middleware platform [23]. Prism-MW provides implementation-level support for key
abstractions provided by the Prism-SF architectural style framework discussed above. Prism-

Table 2: Comparison of existing middleware solutions. denotes unavailable data;
denotes extensive support; denotes solid support; denotes some support; empty cells denote

no support.
Property Orbix/E [13] TAO [30] JXTA [26] .NET [22] JINI [34] XMIDDLE [17] RCSM [40] LIME [15] Prism-MW [23]

Architectural
abstractions

Efficiency a

a. Number of events per second (top) and memory usage (bottom).

16.6K 8K 20K
95KB 0.5MB 156KB 4.6KB

Scalability
Delivery
guarantees
Mobility
Reconfigurability

Security

MW is, at the same time, optimized to exhibit a small memory footprint and good system speed
(see Table 2), and extensible to address many relevant concerns, including distribution, mobility,
security, data compression, and so forth. However, Prism-MW currently does not consider other
hardware resources, such as battery power, or availability and properties of peripheral devices.
Figure 3 illustrates how an architecture is “programmed” in the Java version of Prism-MW.

Deployment Support
An embedded software system is typically developed and tested in a simulated environment. The
target hardware environment is frequently produced in parallel with the software system, and
therefore may not be available before or during the software system’s development and testing.
Alternatively, the actual target environment may be too expensive to replicate or it may be too dis-
tant (e.g., a space probe). However, the characteristics of the target environment directly influence
certain software decisions, such as the distribution of software components onto hardware hosts
(i.e., the system’s deployment architecture). Furthermore, the target environment often changes
during the system’s execution (e.g., due to the mobility of hardware hosts). As a result of this,
there is an increasing demand for deployment support that can assist with the installation and/or
update of a software system. Traditional approaches to software deployment have often required
sophisticated support (e.g., deployment agents [11]). These approaches have typically included
their own facilities to inspect the target environment prior to deployment. Since these facilities
are provided separately from the application’s implementation infrastructure, they introduce addi-

class DemoArch {
static public void main(String argv[]) {
Architecture arch = new Architecture ("DEMO");
// create components here
ComponentA a = new ComponentA ("A");
ComponentB b = new ComponentB ("B");
// create connectors here
Connector conn = new Connector("Conn");
// add components and connectors to the architecture
arch.addComponent(a);
arch.addComponent(b);
arch.addConnector(conn);
// establish the interconnections
arch.weld(a, conn);
arch.weld(b, conn);
arch.start();

}
}
Component A sends an event
Event e = new Event (“Event_a”);
e.addParameter("param_1", p1);
send (e);

Component B handles the event and sends a response
public void handle(Event e)
{
if (e.equals(“Event_a”)) {
...
Event e1= new Event(“Response_to_a”);
e1.addParameter("response", resp);
send(e1);

}...
}

Architecture initialization

Figure 3. Illustration of
application implementation
fragments in Prism-MW.
The created simple architec-
ture has two components, A
and B, communicating via a
connector, Conn.

tional overhead to the target host. Therefore, these approaches are usually not directly applicable
for resource constrained, embedded software systems.

Mainstream software deployment solutions have comprised large-scale “patches” that replace an
entire application or set of applications (e.g., new versions of MS Office). This kind of coarse-
grain deployment does not provide sufficient control over the deployment process and is usually
not applicable to distributed embedded systems with low-bandwidth network connections through
which the patches need to be exchanged. For these reasons, efficient, fine-grain control over the
deployment process is required in the context of embedded systems.

Finally, in highly distributed embedded systems, deployment and/or update process may need to
be initiated from multiple sites, each of which is in charge (and possibly aware) of only a part of
the overall system. Furthermore, the source locations of software components that need to be
installed or updated may be themselves distributed, requiring efficient support for exchanging the
necessary software components between the source and destination hosts.

Current support for deployment in the Prism project is accomplished via an extension to MS Visio
and a “skeleton” configuration in Prism-MW consisting of a special purpose Admin component
and a distribution-enabled connector. The resulting tool, Prism-DE, is shown in Figure 4. Prism-
DE allows one to specify a configuration of hardware hosts (with known IP addresses), operating
system processes on each host, and software configurations (comprising software components
and connectors) within each process. Once a suitable deployment is depicted, it is effected with a
single button push. The Admin components on each host receive and instantiate (using Prism-
MW’s API shown in Figure 3) the application-specific components. Further details of this pro-
cess are discussed in [24]. Prism-DE then continuously monitors the network connectivity of the
depicted hardware configuration. As indicated in the above discussion, Prism-DE currently sup-

Figure 4. Screenshot
of the Prism-DE
deployment environ-
ment. The dotted line
between the two bot-
tom device icons
denotes a network
disconnection.

ports only centralized deployment, in which the entire system’s deployment architecture, as well
as the locations of all component implementations are known a priori.

Dynamic Adaptability
Many embedded systems are safety-critical systems that concurrently engage the physical world.
These systems must be capable of adapting to changes in their execution environment. However,
usually these systems cannot be brought down for updates [32]. Dynamic adaptability provides a
solution to this problem, as it enables one to modify a running software system without stopping
its execution. However, system properties (e.g., availability, safety) may get affected during the
system’s dynamic manipulation and therefore need to be accounted for when performing the
adaptation. This can be achieved by analyzing (both statically [1] and dynamically [27]) the likely
effects of the proposed changes before they are enacted.

Dynamic adaptation may modify the system’s architecture. These modifications need to be cap-
tured and maintained at the architectural level to ensure consistency between the architectural
model and the running system. Depending on the origin of changes and the degree of distribution
of the software system, the task of maintaining the consistency may be trivial (i.e., updating the
architectural model before initiating the change or after the change is completed) or highly com-
plex (if there are many changes on many target hosts, the information about these changes needs
to be propagated to the host maintaining the architectural model). Furthermore, in decentralized
embedded systems there may not be a single host capable of maintaining the system’s overall
architectural model. We are aware of no existing solutions for ensuring correct, consistent, and
safe dynamic adaptability of such systems.

As indicated in the above discussion, the current support for dynamic system adaptability in Prism
assumes a centralized architectural model of the system. We leverage Prism-MW’s API for add-
ing, removing, and reconnecting components in an architecture (recall Figure 3), as well as pro-
gramming language-level facilities (e.g., dynamic class loading in Java) and operating system-
level facilities (e.g., DLLs in Windows), to enable dynamic system manipulation at the software
component level. While system analysis prior to dynamic change has not been a particular focus
of our work to date, as a “proof of concept” we have provided special purpose Architectural Anal-
ysis components within Prism-MW. These components implement a variation of our static analy-
sis capabilities for software architectures [20].

Conclusion
It has been claimed that software architectures have the potential to revolutionize large-scale soft-
ware development by allowing developers to shift their focus away from a system’s implementa-
tion details. However, in the case of embedded systems, the devil is indeed in the details: a
number of implementation-level issues have direct implications on a system’s success and even
its viability. These issues, therefore, must be captured and properly assessed at the level of an
embedded system’s software architecture; otherwise the architecture will be of little use. In this
paper, we have used the traditional “playing field” of software architectures to highlight some of
the unique challenges introduced by the embedded systems domain and briefly introduce emerg-
ing techniques to address these challenges; we have also provided an evaluation of our Prism
project with respect to these challenges. We hope to have provided a useful first step in what is
surely a topic worthy of further study.

References
[1] R. Allen and D. Garlan. A Formal Basis for Architectural Connection. ACM Transactions on

Software Engineering and Methodology, vol. 6, no. 3, pp. 213-249, July 1997.
[2] D. Batory, L. Coglianese, S. Shafer, and W. Tracz. The ADAGE Avionics Reference Archi-

tecture. A1AA Computing in Aerospace-10, San Antonio, Texas, March 28-30 1995.
[3] G. Booch, J. Rumbaugh, I. Jacobson. The Unified Modeling Language User Guide. Addison

Wesley, 1999.
[4] J. Bosch. Design and Use of Software Architectures: Adopting and Evolving a Product-Line

Approach. Addison-Wesley (Pearson Education), May 2000.
[5] E. Colbert, B. Lewis, and S. Vestal. Developing Evolvable, Embedded, Time-Critical Sys-

tems with MetaH. 34th International Conference on Technology of Object-Oriented Lan-
guages and Systems (TOOLS 34), Santa Barbara, August 2000.

[6] L. Coglianese and R. Szymanski, DSSA-ADAGE: An Environment for Architecture-based
Avionics Development, In Proceedings of AGARD, 1993.

[7] D. Daniel, R. Rasmussen, G. Reeves, A. Sacks. Software Architecture Themes In JPL's Mis-
sion Data System. AIAA Space Technology Conference and Exposition, Albuquerque, NM,
September 1999.

[8] E. M. Dashofy, A. Van der Hoek, R. N. Taylor. An Infrastructure for the Rapid Development
of XML-based Architecture Description Languages. 24the International Conference on Soft-
ware Engineering, Orlando, Florida, May 2002.

[9] R. T. Fielding. Architectural Styles and the Design of Network-Based Software Architec-
tures. Ph.D Thesis, University of California Irvine, June 2000.

[10] M. M. Gorlick and R. R. Razouk. Using Weaves for Software Construction and Analysis.
13th International Conference on Software Engineering, Austin, TX, May 1991.

[11] R. S. Hall, D. M. Heimbigner, and A. L. Wolf. A Cooperative Approach to Support Software
Deployment Using the Software Dock. 21st International Conference on Software Engineer-
ing, Los Angeles, CA, May 1999.

[12] B. Hayes–Roth et. al. A Domain-Specific Software Architecture for Adaptive Intelligent Sys-
tems. IEEE Transactions on Software Engineering, Vol. 21, No. 4, April 1995.

[13] IONA Orbix/E Datasheet. http://www.iona.com/whitepapers/orbix-e-DS.pdf
[14] E. A. Lee. Embedded Software. Advances in Computers (Marvin V. Zelkowitz, ed.), Vol. 56,

Academic Press, London, 2002.
[15] LIME. http://lime.sourceforge.net/
[16] J. Magee, J. Kramer. Dynamic structure in software architectures. 4th ACM SIGSOFT sym-

posium on Foundations of software engineering, San Francisco, CA, October 1996.
[17] C. Mascolo et. al. XMIDDLE: A Data-Sharing Middleware for Mobile Computing. Personal

and Wireless Communications, Kluwer, April 2002.
[18] N. Medvidovic, N. R. Mehta, M. Mikic-Rakic: A Family of Software Architecture Imple-

mentation Frameworks. The Working IEEE/IFIP Conference on Software Architecture 2002,
Montreal, Canada, August 2002.

[19] N. Medvidovic, M. Mikic-Rakic, N. Mehta, S. Malek. Software Architectural Support for
Handheld Computing. IEEE Computer, special issue on handheld computing, September
2003.

[20] N. Medvidovic, D. S. Rosenblum, and R. N. Taylor. A Language and Environment for Archi-
tecture-Based Software Development and Evolution. 21st International Conference on Soft-
ware Engineering, Los Angeles, CA, May 1999.

[21] N. Medvidovic and R. N. Taylor. A Classification and Comparison Framework for Software
Architecture Description Languages. IEEE Transactions on Software Engineering, January
2000.

[22] Microsoft .NET. http://www.microsoft.com/net/
[23] M. Mikic-Rakic and N. Medvidovic. Adaptable Architectural Middleware for Programming-

in-the-Small-and-Many. ACM/IFIP/USENIX International Middleware Conference, Rio de
Janeiro, Brazil, June 2003.

[24] M. Mikic-Rakic and N. Medvidovic. Architecture-Level Support for Software Component
Deployment in Resource Constrained Environments. Component Deployment, IFIP/ACM
Working Conference, Berlin, Germany, June 20-21, 2002.

[25] D.E. Perry and A. L. Wolf. Foundations for the Study of Software Architecture. ACM SIG-
SOFT Software Engineering Notes, Vol. 17, No.4, pages 40-52, October 1992.

[26] Project JXTA. http://www.jxta.org/
[27] M. Rakic, N. Medvidovic. Increasing the Confidence in Off-the-Shelf Components: A Soft-

ware Connector-Based Approach. 2001 Symposium on Software Reusability (SSR 2001), Tor-
onto, Canada, May 2001.

[28] R. V. Ommering. Building Product Populations with Software Components. 24th Interna-
tional Conference on Software Engineering, Orlando, Florida, May 2002.

[29] P. Oreizy, N. Medvidovic, and R. N. Taylor. Architecture-Based Runtime Software Evolu-
tion. 20th International Conference on Software Engineering, Kyoto, Japan, April 1998.

[30] D. Schmidt. TAO. http://www.cs.wustl.edu/~schmidt/TAO.html
[31] B. Selic. Real-Time Object-Oriented Modeling (ROOM). 2nd IEEE Real-Time Technology

and Applications Symposium, June, 1996
[32] M. Shaw, R. DeLine, D. Klein, T. Ross, D. Young, G. Zelesnik. Abstractions for Software

Architecture and Tools to Support Them. IEEE Trans. on Software Engineering, April 1995.
[33] M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging Discipline.

Prentice Hall, 1996.
[34] Sun Microsystems. JINI(TM) Network technology. http://wwws.sun.com/software/jini/
[35] W. Tracz. Domain-Specific Software Architecture Pedagogical Example. ACM Software

Engineering Notes, July 1995.
[36] University of Southern California’s “Software Engineering for Embedded Systems” class

website: http://sunset.usc.edu/classes/cs599_2002/index.html
[37] S. Vestal. MetaH Programmer’s Manual, Version 1.09. Technical Report, Honeywell Technol-

ogy Center, April 1996.
[38] B. Werger. A Situated Approach to Scalable Control for Strongly Cooperative Robot Teams.

Ph.D. Thesis. University of Southern California, May 2001.
[39] X2000/Mission Data System (MDS) project. http://x2000.jpl.nasa.gov/nonflash/technology/

mds.html
[40] S. S. Yau and F. Karim, Context-Sensitive Middleware for Real-time Software in Ubiquitous

Computing Environments. Proceedings of the International Symposium on Object-oriented
Real-Time Distributed Computing 2001, Magdeburg, Germany.

On Design Framework of Context Aware Embedded Systems

Abhay Daftari

Nehal Mehta

Shubhanan Bakre

Xian-He Sun

Department of Computer Science
Illinois Institute of Technology

{daftabh, mehtneh, shubh, sun}@iit.edu

Abstract

The primary goal of embedded systems is “Human-centered computing,” that is providing
service anywhere, anytime, and automatically. While electrical devices become smaller and
smaller and more powerful, context awareness becomes more and more important for embedded
systems. Although some of the later systems have been developed with context awareness in mind,
how to design a context aware embedded system systematically is still an issue that eludes
researchers in the field. This study introduces the importance of context awareness in today’s
embedded systems, divides the design of context aware systems into context aware applications
and infrastructure. It further applies aspect orientation in the design of context aware
infrastructure to model the architectural/system from the developer’s point of view. We show that
applying aspect orientation in the development of context aware embedded systems is feasible
and has real potential.

Keywords

Context awareness, embedded systems, aspect oriented software development, context aware
infrastructure, human-centered computing.

1. Introduction

The Early 1990s saw many efforts towards reducing the size of the computer and its portability.
Small but powerful devices become widely available that can be embedded anywhere and can be
carried by the user wherever he goes. During the same period, growth in the wireless technology
gave rise the popularity of coordinating small powerful devices to form an embedded computing
environment for the “Human-centered computing.” The size and the power of the computing
devices are no longer the determining factors in the design of embedded systems, but the quality
of service of the “Human-centered computing” is a key factor. Context awareness is becoming an
important factor in the embedded system design.

The vision of mobile computing [1] is to provide some form of freedom to the end user by
providing computing support when the user is in mobile mode. Mobility plus the availability of
embedded systems, or so-called “smart spaces” constitute pervasive computing, a broader view of
providing ‘Human Centered computing’. Pervasive computing talks about providing computing
everywhere and at all times [1]. This is done through providing smartness into embedded devices
and systems, and providing balance between assistance and interference to the end user [2].

It is clear that understanding the user’s surroundings will play a significant role in realizing the
goals of Pervasive computing as well as embedded systems. Context awareness is directed effort
towards understanding the environment around the user with the help of smart devices embedded
within its environment and improve the end-user’s experience by using this knowledge. Hence,
context awareness is the key research area in embedded systems. It has been explained what
constitutes a context aware application, and what context is and what are the definitions and
categories of context and context-aware (CA)[3].

To understand what context awareness is, first consider the traditional classroom scenario:

Professor T informs students about the updated course website that contains lecture slides
for the day’s lecture and that they need to bring the slides in the class for better
understanding as professor T is going to use projector for presentation. Even after
receiving this notification, some of the students either did not read the notification or
some of them forgot about it before the class. Hence, class is conducted with some
students have the slides in front of them while some of them do not.

Now, consider another scenario of smart classroom environment, where:

If professor T is moving towards the projector and lights in the room are off, then the
environment pervasively transfers the presentation slides from the professor’s handheld
device to students’ handheld device and the projector starts the presentation.

Discussion:
The second scenario takes into account the environment context information in which it
is executed. In the above example, the context information is the location of the professor
(classroom), the state of the lights in the room (off), the activity of the professor (moving
towards the projector), and the number of students in the classroom. Although the same
set of information was available in the traditional classroom scenario, it was not utilized
towards better end user experience. This type of utilization is in line with the vision of
context aware computing. In the later sections, we will base our discussions upon the
above smart classroom scenario.

There have been efforts in achieving context awareness through various approaches. The
major goal of these approaches is to capture surrounding context and adapt it as per end-
user needs. But still, context awareness is in inception stage and current approaches
provide limited context information. As anticipated [1], future context aware approaches
expected to support variety of context information and in large number. Hence, these
systems should be able to meet the requirements of scalability and ability to evolve to
fulfill the future needs.

Aspect Orientation (AO) is a relatively new methodology for Software Development (SD) [4]
that promises better design leading to properties including scalability and ability to evolve. This
study analyzes context-awareness from the perspective of applying AO in context aware
system/infrastructure design.

2. Aspect Oriented Software Development

A requirement is analyzed and some design is made which then is implemented. But during the
process, implementation is based on design documents that are in turn based on requirement
documents. Most of the times, it is difficult to trace requirements into the design and then in the
implementations. Modification in any one of these – requirements, design or implementation -
will require propagating it into all of them, which is complicated and causes problems. The main
reason behind this is that the system is in different forms at different levels.

The need for dealing with issues ‘one at a time,’ was coined as the principle of ‘separation of
concerns’ [5]. Aspect Orientation Software Development (AOSD) is relatively a new software
development methodology, based on principle of separation of concerns, for achieving a number
of desired properties in a system such as extensibility, modularity, etc.

A ‘concern’ is a functional or non-functional property of a system like security, synchronization,
logging, etc. During expression of design into implementation, due to the nature of some

concerns and/or limitations in the expression techniques used, it is not implemented in a modular
way and it tends to crosscut the rest of the implementation causing code tangling. Such a concern
is called crosscutting concern. An aspect, on the other hand, is modular realization of a
crosscutting concern. After incorporating aspects within the system, they need to interact with
each other to form an operational system. The process of achieving this interaction is termed as
weaving. An aspect consists of two parts, the first part – called advice – that contains the
functional details of concern, and the other part – called pointcut – which identifies the points of
interaction with the rest of the system. A joinpoint is a principled point in the execution of a
program; for example, a method call is one form of joinpoint. A pointcut, defined above, can be
imagined as a collection of such joinpoints.

3. CA Infrastructure requirements

Brief list of projects towards context awareness is Aura (CMU)[8], Oxygen (MIT)[1], RCSM
(Re-configurable Context Sensitive Middleware, ASU)[9], GAIA (UIUC)[10], Context Toolkit
(Georgia Tech)[11], SOLAR (Dartmouth)[12], Rome (Trigger Based Context awareness
Infrastructure, Stanford)[13], Rapidware (Michigan State University)[14], Multi-Sensor context
Aware Clothing (Lancaster, UK)[15], Charade (Gesture Recognition, University of Paris,
France)[16], One.World (University of Washington, Seattle)[17].

Based on the analysis of above system, we have observed that preliminary approach was to just
provide context awareness for one or two context that too embedded into platform. This was
platform specific and not sufficient for any complex context awareness.

The improvement over the past approach identified the need for many types of context and the
design of standalone applications. Going back to our old example of Smart Classroom, in order to
provide a smart environment a number of activities are needed including:

1. Decide what the desired context information is, like professor location, state of light
(on/off) and relative professor movements.

2. Decide and find the devices, which can provide above context information
3. Collect and store the above context information on a timely basis.
4. Compose raw context information to meaningful situations. In the above example if the

professor is moving towards the projector and the lights are turned off, this is a
meaningful situation.

5. If a meaningful situation occurs then action should be taken like transferring the lecture
slides from the Professor’s handheld device to the students’ handheld devices.

It can be observed that the context aware applications themselves would have to deal with
activities like communicating with context sources, collecting context data, storing and managing
context data for future, and finally using and adapting context data as per user’s needs. The
approach of storing context data on individual basis resulted in data redundancy. Moreover, to
design a similar system, all the steps need to be redone from the beginning. So the issues in terms
of extensibility and ability to evolve to future needs of context aware system needed to be
addressed. Learning from this approach, the current research in context awareness took an
architectural approach to towards system design, in which the total responsibilities are divided
between CA infrastructure and CA applications. The context aware infrastructures are responsible
for collecting, managing and delivering context on behalf of CA applications, whereas the CA
applications are responsible for adaptation.

In the above example, such a division would be:

Responsibilities in steps 2, 3 and 4 lie with the infrastructure and those in steps 1 and 5 should lie
with the application. Applications only need to describe the required context information and
request context aware infrastructure to collect this information on its behalf. The responsibilities
of finding the sources for the required context, and dealing with context source specific details are
given to context aware architecture. This approach will help the application designer to focus on
designing adaptation behavior of context aware application and provide freedom from dealing
with unnecessary source specific details. On the other hand, similar approach can be used for
many other context aware applications because the infrastructure for collection and delivery is
already in place, making architecture scalable to many context aware applications. So, a context
aware computing environment should consist of two parts, the system infrastructure and the
application software. The CA system is responsible for collecting, storing - managing and
delivering it to context aware applications, and the CA applications are responsible for adapting
it.

Based on the separation of infrastructure and application principle and based on the analysis of
existing works, we have identified the following goals that any context aware system should
fulfill:

Goals:

� Collect context on behalf of application
� Provide ways to subscribe and deliver collected context to respective applications
� Store and manage past context for future needs
� Mask Heterogeneity and provide independence in terms of programming languages used,

types of system support.
� Systems should be modular, and allow only required components to load.
� Systems should be extensible to future context need
� Systems should be scalable to many context types and many context aware applications
� Components can be reusable for future context need

Context aware is still a relatively new concept. Many of the proposed context-aware systems are
the result of convergence of independent projects targeted at realizing different sets of scenarios
in pervasive computing. For example, CODA and Odyssey file system – although in the
beginning they were designed for mobile data access, and eventually converged to provide basic
form of context awareness into Project Aura.

The abstract goals can be transformed into two types of requirements for system design: (1)
functional requirements that support the core functionality of system, and (2) non-functional

Context aware
 Infrastructure

1) Decide what is the desired context
information like professor location, state of
lights (on/off) and relative professor
movements and request this information
from the context aware infrastructure.

5) If a meaningful situation occurs then
take some action like transferring lecture
slides from the Professor’s handheld
device to the students’ handheld devices

2) Decide and find the devices,
which can provide above requested
information
3) Collect and store context
information on timely basis.
4) Compose raw context
information to meaningful situation.
In above example if the professor is
moving towards projector and the
lights are turned off, this is a
meaningful situation.

Context aware
Applications

requirements for orthogonal system needs like extensibility and scalability etc. Functional
requirements are those that are specific to a CA system whereas, non-functional are orthogonal
requirements that are generally true for any system. Non-functional requirements are also known
as quality requirements.

3.1 Functional Requirements
Following are the identified functional requirements for a design of a context-aware system:

1. Context Collection: This deals with collection of data from the sensors. This involves
dealing with questions about the data model to be used for collection (Push / Pull /
Request / Reponses), Insertion / Removal of Context Providers.

2. Context Storage/Management: This requirement pertains to the storage of the collected

context data and its management. The storage of context data is significant for a number
of purposes such as reproduction of context, logging, mining and future predictions. Also,
context data needs to be communicated at various places such as from sensors to storage,
from storage to consumers and most probably proxy consumers. Often the data is time
sensitive. Hence when, where and how to move the data, needs to be managed.

3. Context Subscription/Delivery: There needs to be ways for consumers to acquire the

collected and stored context data. The System thus needs context Subscription methods,
and a model for distribution (Push / Pull / Request / Reponses).

4. Context Analysis and Composition Ability: This is the most significant functional

requirement for context aware systems. Looking at various definitions, one can derive
that a context could be a composition of multiple raw data provided by sensors. And not
all the permutations of raw data will result in sensible contexts. Hence, the task of
context-composition is complex and is believed to involve decision-making on the basis
of history and experience.

3.2 Non-Functional Requirements

1. Quality of Service: Due to the dynamic nature of resources like sensors, devices, and
network bandwidth, it becomes essential for context-aware systems to provide the ability
to the applications for specifying such resource constraints.

2. Security: As with any other system, security is one of the prime non-functional

requirements. This requirement arises from the basic question - To what extent should the
private information be exposed to context-aware services transparently to the user? Also,
how should the issues like access control, authentication, authorization, and data
encryption be addressed in such an environment?

3. Heterogeneity: Heterogeneity arises due to different hardware platforms and also due to

the varying capabilities of the devices used. For achieving portability of applications
across multiple platforms, it is necessary to fulfill this requirement.

4. Scalability: The Ad-hoc discovery of resources, the changes in the number of users and

resources, and the limited computing capabilities of devices, introduces the problem of
scalability.

5. Adaptability: In pervasive computing when a user switches from a resource-rich device to

a resource-strapped device, the applications either should be able to adapt to these
changes to provide seamless service, or alternatively scale down according to the new
surroundings.

6. Fault Tolerance: The Ability of the system to adapt to compensate for errors can be

termed as fault tolerance. Doing things right even if pre-conditions deviate to a limited
extent is especially desired in CA systems.

7. Extensibility: Evolution is a part of the software life cycle. In order to provide the support

for new features, extensibility at different levels is necessary. For example, in a context-
aware system context should be extensible to new context and composition.

8. Functional Modularity: There should be clear distribution of responsibilities between the

devices, the applications, the infrastructure and the components within this infrastructure.
All the components of the system should be developed in an independent manner. This
requirement arises out of the principle of separation of concerns that inherently brings the
number of advantages to the system such as comprehensibility, reusability, re-
configurability, and other such properties.

9. Mobility: Pervasive computing is synonymous with user-centric computing. Unlike

traditional computing that forces the user to follow computing and the data, pervasive
computing focuses on providing the computing and data whenever and wherever the user
needs it. This introduces mobility constraints on context-aware applications.

Discussion:
Functional requirements present the core functionality of the architecture and are necessary to
fulfill the need of the context aware application support. For a better understanding, consider the
‘smart classroom environment’ example scenario. Once the application has decided the types of
context information such as the information about the location, the state of the lights, and the
movement of the professor, it describes these context needs to the context aware architecture.

1. Context Collection:

The infrastructure decides what context providers to use to get the context information. Once
they are known, it will collect the information from them.

2. Context Storage/Management: The collected context data for the location and the status of

the light are stored for future use. Although this data is not currently used by ‘Smart
classroom environment’, it could be utilized in the future. It is not necessary that all
applications need it, but as context awareness is an evolving area, this data will be useful to
predict the system’s behavior on the basis of past history.

3. Context Subscription/Delivery: In the beginning, the application will describe the context

needs. When some specific situation occurs, like ‘presentation is going to start,’ the
application will be notified for the same.

4. Context Analysis and Composition Ability: This function accumulates many raw contexts

information like ‘light is off and professor is moving towards projector,’ then decides that the
required situation ‘presentation is going to start’ is generated.

Here, we showed that the above functional requirements are necessary and sufficient for any
context aware architecture to support context aware application.

4. Applying AO to CA Infrastructure

The above section has mapped the goals into functional and non-functional requirements.
Based on the principle of separation of concerns, AOSD tries to modularize the requirements into

the aspects. Once the aspects are identified and their weaving accomplished, one could easily
trace the requirements to the design and from the design to the implementations. Many
approaches within AOSD understand the system in terms of the core functional components and
the aspectual components that constitute the non-functional components [19], whereas, others
understand it in terms of the aspectual components composed of both the functional and the non-
functional components [20]. But the major issue of identifying and distributing concerns into core
and/or aspects still remains an open issue.

Before discussing application of AO in Context Awareness, we mention few research projects
that have understood the potential of AO and acknowledged it by applying it to their system.
Some of the areas are operating system [24], middleware [25], etc. It can be observed that all
these areas have crosscutting concerns and code-tangling phenomenon. It has been demonstrated
AO has helped in separating these concerns and achieved better non-functional goals. As can be
observed from the discussion above regarding requirements of context aware system, there is
good extent of crosscutting concerns in CA system that makes it prospective candidate for
application of AO.

We will walk you through an example by keeping context awareness in focus and show
how the application of AO will result in better design. To analyze the application of AO
in context awareness, let us focus on the design and implementation of one of the
functional requirements – ‘Context Collection’.

To design a context collection module to support number of context providers. Currently
the system needs to support only a few number of context providers, but this number
could increase in future. The location of context providers can possibly be local and/or
remote thereby involving communication over the network.

Considering the functionality needed for context collection, the pseudo code for the context
collection module can be represented as follows:

Looking at the requirements the concerns in the system are not clearly visible. At first
instance it looks that entire functionality is related to context collection. Further examination
clarifies that the functionality of context collection is tangled with the policies related to
scalability. Following are the part of functionality that refer to scalability,

1. What should be the frequency at which the context data is collected from the

providers? – Context Collection Frequency.

/* Start up work */
Set some default value for context collection frequency.
Initialize the context location store
Find the network latency and how fast then can switch between connections

/* Loop for new context providers */
Loop

Look for new context provider
If found any,
 Get location information
 Store in the location store for future need

 Get the context collection frequency information
 …….
Collect context from all registered context providers periodically.
/* end of loop*/

Context collector is shutting down.

2. What are the capabilities of individual providers in terms of operating frequency?

– Context Provider Details.
3. What are the communication constraints such as bandwidth availability, network

protocols, etc.? – Other Dependencies.

Ideally, the modifications or changes in the above policies should be independent to the context
collection functionality. This becomes crucial when there is change in the number of context
providers of the system or in the network bandwidth, for example. As these kind of changes will
require modifications in the policies that are scattered in the number of functional components of
the system. But, in the above design of context collection module establishing such independence
is difficult to achieve and sometimes impossible due to the tight coupling between the functional
and non-functional requirements. Following section explains how AO will make above design
better and makes to achieve better scalability.

When aspect oriented technique is used, emphasis is given to the separation of concerns such as
the basic context-collection concern and scalability concern that relates to a number of variables
mentioned above. Following figure shows what would be the implementation of solution of above
issues using an AO approach.

In the above pseudo-code for context collection, using AO, the developer is oblivious to any other
concerns while implementing of context collection functionality. The two concerns for context
collection and scalability are clearly understood and realized as two separate modules.

Discussion:
In the AO technique, concerns are separated and modularized in one place with the specification
of the interaction between these separated modules. These modules (aspects) are then weaved
together to form a complete system. The functional code for context collection is completely free
from the code for scalability due to separation achieved. Moreover, if the scalability policies
change in the future, as it will be modularized at one place, its replacement will be multiple times
easier due to reuse of weaving code as a result of the properties of quantification and
obliviousness inherent in the system. Meaning, the need to visit the places of crosscut and modify
the code will be eliminated.

With conventional implementation techniques, such as procedural or object oriented
programming, it is clear from [19][21][22][23] that if a requirement like ‘need to add new context
provider,’ is not adequately addressed in the design phase then it is difficult to incorporate it later
on in the life cycle of the software system. On the other hand, with AO, requirements would be
easily traceable into design in terms of aspects and also in the implementation, as aspects are

class ContextCollector {
 public void collect() {//Collect the context Information}
 public void send(){//send the collected information}}

aspect Scalability {
 pointcut repeat() : call(ContextCollector.collect());
 pointcut send() : call(ContextCollector.send(//context information));
 before() : repeat () {
 //Decide the frequency for context collection
 //and introduce the loop }
 after () : repeat () {
 //end the loop }
 before () : send () {
 //Get the network parameter and adapt accordingly }}

weaved by a weaver to generate the implementation of the design. Hence incorporating
modifications in existing requirements and also adding new requirements using AO will result
better design due to added flexibility, extensibility and ability for evolution. Thus, following
needs to be done in order to add a new context provider that needs to use existing authentication
policies, while using AO in the system: With AO, the existing authentication policies is
modularized at one place and it is ‘inserted’ into appropriate places within the functional code
through a standardized weaving mechanism similar to the logging example presented in the
introduction of AOSD.

The above discussion is presented as a thought-provoking concept. Similar discussion holds true
for applying AO to fulfillment of other non-functional requirements of a CA system.

In order to see if AO can help towards improvement of existing CA systems, one needs to analyze
their design and implementation. We have observed that current literature in context aware work
does not mention AO at all or just started [9] [14] to use it as a tool for their system design. Due
to limitation in available literature, it is difficult to support this observation. But, there is support
available from AO in terms of language extensions, frameworks, and pre-processors that would
be helpful to examine and improve existing CA systems. Some of the examples of AO tools are:
AspectJ [19] - an extension to Java, HyperJ [20] – a different approach to AO in Java, AspectC++
[26] - an extension to C++, etc.

5. Conclusion

We present our position in embedded system development: context awareness is becoming an
increasingly important factor; the need of separating the context aware infrastructure
development and context aware application development; and applying aspect orientation in
context aware system design. A context aware scenario is used to illustrate the proposed concepts
and arguments at various levels during analysis of the CA system. The goals and requirements of
context aware system are identified and formally introduced. Through an example, we illustrate
how aspect orientation can be applied in the development of a context aware system. The ability
to evolve at a high rate has become crucial for the context aware systems because of the ever
changing and the diverse needs in context awareness. This study highlights the importance of
context awareness in embedded system design and builds a framework for future context aware
system development. Currently, we are using the framework in developing a context aware
system, Scarlet, at IIT.

6. References:

[1] “Project Oxygen Homepage,” http://oxygen.lcs.mit.edu/index.html (current Aug. 2003).
[2] M. Satyananrayanan, “Pervasive Computing: Vision and Challenges,” IEEE Personal
Communications, Aug. 2001.
[3] Survey – context aware refer term report
[4] AOSD http://www.aosd.net/
[5] E.W. Dijkstra, “A Discipline of Programming,” Prentice Hall, Englewood Cliffs, NJ, 1976.
[6] R.E. Filman and D.P. Friedman, “Aspect-Oriented Programming is Quantification and
Obliviousness,” Workshop Advanced Separation of Concerns, OOPSLA 2000, October 2000,
Minneapolis.
[7] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold, “An
Overview of AspectJ,” ECOOP, vol. 2072, pp. 327--353, 2001
[8] D.Garlan, D. Siewiorek , A. Smailagic and P. Steenkiste, “Project Aura: Toward Distraction-
Free Pervasive Computing,” IEEE Pervasive Computing, vol. 1, no. 1, Apr.-Jun. 2002, pp. 22-
31.

[9] S.S. Yau, F. Karim, Y. Wang, B. Wang, and S.K.S. Gupta, “Reconfigurable Context-Sensitive
Middleware for Pervasive Computing,” IEEE Pervasive Computing, Jul.-Sept. 2002, vol. 1, no. 3,
pp 33-40.
[10] M. Román, C.K. Hess, R. Cerqueira, A. Ranganathan, R.H. Campbell and K. Nahrstedt,
“Gaia: A Middleware Infrastructure to Enable Active Spaces,” IEEE Pervasive Computing, Oct.-
Dec. 2002, vol. 1, no. 4,pp. 74-83.
[11] A.K. Dey and G.D. Abowd, “The Context Toolkit: Aiding the Development of Context-
Aware Applications,” Workshop Software Engineering for Wearable and Pervasive Computing,
Limerick, Ireland, Jun. 2000.
[12] G. Chen and D. Kotz, “Solar: An Open Platform for Context-Aware Mobile Applications,”
Proc. 1st Int’l Conf. Pervasive Comp., Zurich, Switzerland, Jun. 2002, pp. 41-47.
[13] A.C. Huang, B.C. Ling, S. Ponnekanti and A. Fox, "Pervasive Computing: What Is It Good
For?" Workshop Mobile Data Management (MobiDE) in conjunction with ACM MobiCom '99,
Seattle, WA, September 1999.
[14] RAPIDware, http://www.cse.msu.edu/rapidware/
[15] K.V. Laerhoven, A. Schmidt and H.W. Gellersen, “Multi-Sensor Context-Aware Clothing,”
Proc. 6th Int’l Symposium Wearable Computers, ISWC 2002.
[16] T. Baudel and M. Beaudouin-Lafon, "CHARADE: remote control of objects using free-hand
gestures," Comm. the ACM, Jul. 1993, vol. 36, no. 7, p. 28-35.
[17] L. Arnstein, R. Grimm, C. Hung, J.H. Kang, A. LaMarca, G. Look, S.B. Sigurdsson, J. Su
and G. Borriello, “Systems support for ubiquitous computing: A case study of two
implementations of Labscape,” Proc. 2002 Int’l Conf. Pervasive Computing, Zurich, Switzerland,
Aug. 2002.
[18] A K. Dey, “Providing Architectural Support for Building Context-Aware Applications,”
doctoral dissertation, College of Computing, Georgia Institute of Technology, Atlanta, Nov.
2000.
[19] AspectJ, http://eclipse.org/aspectj/
[20] HyperJ, http://www.research.ibm.com/hyperspace/index.htm
[21] C. Constantinides, A. Bader, and T. Elrad, “A framework to address a two-dimensional
composition of concerns,” Proc. 1st Workshop Multi-Dimensional Separation of Concerns in
Object-Oriented Systems at OOSPLA’99, 1999.
[22] G. Kiczales, J. Lampoing, A. Mendhekar, C. Maeda, C. Lopez, J. Loingtier, and J. Irwin,
“Aspect-oriented programming,” Proc. European Conference on Object-Oriented Programming
(ECOOP), LNCS 1261, 1997.
[23] B. Tekinerdogan and M. Aksit, “Deriving Design Aspects from Conceptual Models,”
Position paper ECOOP ’97 Workshop Aspect-Oriented Programming, pp. 410-413, 1998.
[24] P. Netinant, C.A. Constantinides, A. Bader, and T. Elrad, “Supporting the Design of
Adaptable Operating Systems Using Aspect-Oriented Frameworks,” Int’l Conf. Parallel and
Distributed Techniques and Applications, PDPTA 2000, Oct. 2000
[25] AspectIX - Aspect Oriented Middleware, http://www.aspectix.org/

[26] A. Gal, W. Schroder-Preikschat and O. Spinczyk, “AspectC++: Language
Proposal and Prototype Implementation,” OOPSLA 2001 Workshop Advanced
Separation of Concerns in Object Oriented Systems, Tampa, Florida, Oct. 2001

Techniques for Improving Test-Driven Design

Martin Wirsing, Hubert Baumeister, and Alexander Knapp
LMU München, Institut für Informatik, Oettingenstr. 67, D-80638 München

Email: {wirsing, baumeist, knapp}@informatik.uni-muenchen.de

Abstract

Early test development and specification enhance the quality and robustness of software as ex-
perience with new agile software development methods shows. The methods propagate test-first
techniques and early prototyping through executable design models. For UML, Model-Driven Ar-
chitecture is oriented towards executable models. Several authors propose scenarios specified by
sequence diagrams as test cases for state diagrams; more generally, using software model checking
one may automatically verify whether state diagrams or code satisfy properties defined by sequence
diagrams. Other approaches use OCL invariants and pre-/post-conditions for instrumenting Java
code with assertions.

Also, Extreme Programming (XP) requires to write tests before writing the code as a means
for making the software robust and more easily refactored. Popular tools for XP are the family of
xUnit tools—with JUnit as the most well known instance—for writing automated unit tests and
Fit for writing automated acceptance tests.

In this paper we propose techniques for extending and improving such test-driven development
methods, where executable tests drive the development process. Scenarios and properties serve
us as a combined basis for system specification and test cases. Scenarios are defined by sequence
diagrams written in a powerful sublanguage of UML 2.0 which allows us to specify not only possible
scenarios but also forbidden scenarios (failure traces). A forbidden scenario is a scenario where
one wants to say that after legally performing some steps, the next step should now occur. This
is not expressible UML 1.5 sequence diagrams. Further extensions w.r.t. other approaches are the
use of nested method invocations and state invariants.

Scenarios are examples of successful or un-successful system runs. By extracting common
properties of several scenarios we obtain invariants and pre-/post-conditions written in OCL or
JML. The behaviour of the system is described either by models such as state diagrams or activity
diagrams, or by code e.g. written in Java.

For testing we insert invariants and pre- and post-conditions as assertions in the code and the
behaviour models. Then we test the instrumented system behaviour with respect to the possible
and forbidden scenarios. This is done by translating possible and forbidden scenarios to Fit tests
for scenarios involving user interaction and to JUnit tests for system scenarios.

Due to the addition of the assertions to the system behaviour we obtain a more complete test
coverage and further possibilities for checking dynamically the internal consistency of the system
specification.

For verification, we propose two approaches: interactive theorem proving combined with sym-
bolic evaluation and model checking. To be successful with the latter technique we have to restrict
the models to finite domains. Therefore we construct suitable abstractions of the scenarios and
the system behaviour and verify the abstractions using a model checker. For verifying the general
case, symbolic evaluation helps to reduce considerably the number of necessary interactions with
an interactive theorem prover.

Currently we are integrating these techniques into a user-oriented collaborative development
environment.

1

	2003 Monterey Workshop
	alur.paper
	berzins.paper
	brinksma.paper
	bryant.paper
	buy.paper
	gill.paper
	gunter.paper
	henzinger.paper
	hugues.paper
	joshi.paper
	lee.paper
	luqi.paper
	margaria.paper
	mats.paper
	medvidovic.paper
	sun.paper
	wirsing.paper

