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Preface

This volume contains revised and expanded versions of the papers presented at
the 15th Monterey Workshop, held during September 24–26, 2008 in Budapest,
Hungary.

The Monterey Workshops series was initiated in 1993 by Dr. David Hislop, a
longtime program manager at the U.S. Army Research Office, with the purpose
of exploring the critical problems associated with cost-effective development of
high-quality software systems. During their 15-year history, the Monterey Work-
shops have brought together scientists that share a common interest in software
development research serving practical advances in next-generation software-
intensive systems. Each year is dedicated to a particular topic of critical im-
portance. In recent years, workshop topics were “Innovations for Requirement
Analysis: From Stakeholders Needs to Formal Designs” (2007 in Monterey, Cal-
ifornia), “Composition of Embedded Systems, Scientific and Industrial Issues”
(2008 in Paris, France), “Networked Systems: Realization of Reliable Systems on
Unreliable Networked Platforms” (2005 in Laguna Beach, California), “Software
Engineering Tools: Compatibility and Integration”(2004 in Vienna, Austria),
“Engineering for Embedded Systems: From Requirements to Implementation”
(2003 in Chicago, Illinois), “Radical Innovations of Software and Systems Engi-
neering in the Future” (2002 in Venice, Italy).

The topic of the 2008 workshop was “Foundations of Computer Software,
Future Trends and Techniques for Development.” Modern computer systems
manage very large amounts of information, performing complex computations
in a distributed way. At the same time, there is a need to display information
in a way that aids human actors in the interpretation of this information and in
decision making. The systems are becoming more and more dynamic, adaptive,
and increasingly pervasive. Computer systems affect all aspects of our lives,
from the electric grid to banking to drive- and fly-by-wire control. Safety and
security are becoming central issues of computer system design, and verification,
validation, and certification are critical. Hardware technology and user needs are
both changing faster than software development methods evolve to accommodate
them.

There is a growing concern in the research community that existing foun-
dations of software development are not adequate for this new dynamic world
and that software development is becoming increasingly ad hoc. The papers pre-
sented at the workshop explore how the foundations and development techniques
of computer software could be adapted to address such a challenge. Material
presented in the papers spans the whole software life cycle, starting from specifi-
cation and analysis, design and the choice of architectures, large-scale, real-world
software development, code generation and configuration, deployment, and evo-
lution.
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We are grateful to the Steering Committee, the Local Organizing Committee,
and the invited speakers for making the workshop a success. We acknowledge
generous sponsorship from the U.S. Army Research Office (Dr. Purush Iyer) and
from the U.S. Air Force Office of Special Research (Dr. David Luginbuhl).

This volume was prepared using the EasyChair conference management sys-
tem.

January 2010 Christine Choppy
Oleg Sokolsky



Organization

General Chairs

Janos Sztipanovits Vanderbilt University, USA
Tadeusz P. Dobrowiecki Technical University of Budapest, Hungary

Program Chairs

Christine Choppy Université Paris Nord, France
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On the Pragmatics of Model-Based Design . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Hauke Fuhrmann and Reinhard von Hanxleden

Modelling and Verification of Relay Interlocking Systems . . . . . . . . . . . . . . 141
Anne E. Haxthausen, Marie Le Bliguet, and Andreas A. Kjær

Refinement of Components in Connection-Safe Assemblies with
Synchronous and Asynchronous Communication . . . . . . . . . . . . . . . . . . . . . 154

Rolf Hennicker, Stephan Janisch, and Alexander Knapp

Experiences in Model Driven Verification of Behavior with UML . . . . . . . 181
Fabrice Kordon and Yann Thierry-Mieg

Cross-Document Dependency Analysis for System-of-System
Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Syed Asad Naqvi, Ruzanna Chitchyan, Steffen Zschaler,
Awais Rashid, and Mario Südholt
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Revising the UML Collaborations:
A Well-Founded Approach

Egidio Astesiano and Gianna Reggio

DISI, Università di Genova, Italy
{astes,gianna.reggio}@disi.unige.it

Abstract. We first argue that in some software development areas the
need emerges of modelling structural and behavioural aspects of a com-
munity of objects cooperating to achieve a specific purpose, say a coop-
eration, for short. The notion of cooperation is formalized, with a first
citizenship status, in the UML 2, as a collaboration. There are however
some unclear and problematic spots both on some syntactic and seman-
tic aspects of the UML collaboration. The main goal of this paper is to
present first a much simplified metamodel for defining a collaboration,
still producing the same notation, with an associated semantics. Rather
surprisingly different useful semantic interpretations may be given and
are discussed.

1 Introduction

In some areas of software development, quite frequently the need emerges of mod-
elling structural and behavioural aspects of “a community of objects cooperating
to achieve a specific purpose”; for the moment we use the word “cooperation”
to qualify informally those aspects. We have been led ourselves to experience
that need when we have started to address the problem of moving from Business
scenarios to SOA solutions, following the request coming from some companies,
with which we are collaborating within a joint laboratory. To provide context
and motivation we will present two paradigmatic and well-known examples.

The first, and currently perhaps the foremost example can be seen in SoaML
[1], the current final OMG1 proposal for a UML profile for Service Oriented
Architectures. There, the need for modelling a community of objects arises in
three key cases. First in dealing with the high level view of a community of
participants providing and consuming services, that is modelled by a commu-
nity service architecture; second, in specifying the architecture of a particular
participant, with its subparticipants and possibly external collaborators inter-
acting through service contracts; finally the specification of a service, involving
its participants and their obligations, is defined by a service contract acting as a
binding contract. All three concepts are modelled using the UML collaborations.

Another related area where cooperation is a key concept is Business Mod-
elling (see, e.g., [2] for a detailed presentation). A Business Model consists of

1 www.omg.org

C. Choppy and O. Sokolsky (Eds.): Monterey Workshop 2008, LNCS 6028, pp. 1–23, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 E. Astesiano and G. Reggio

business processes, involving the business entities and their mutual relationships;
for each process we need to model the static view of the cooperation among the
roles interpreted by the business entities, and the behavioural view showing the
dynamic process behaviour; finally we need to give an overall view of the pro-
cesses constituting the business, the business roles and their relationships.

The concept of cooperation, as we have seen in the case of SoaML, is usually
modelled using UML collaboration. Contrary to UML 1, in UML 2 collabora-
tion has become a first class citizen construct, with some clear improvements
w.r.t. UML 1, but also with some problematic points especially related to the
semantic and structural aspects of the behavioural parts. Moreover, as it often
happens with other UML concepts, it is quite difficult to answer questions about
the legal use of related aspects by looking at the OMG specification documents
[3] (“the arcane details” in the words of [4]). Indeed, more generally, it is ex-
tremely difficult to come out with an explicit metamodel related to a construct,
due to the very nature of the OMG specification built over many levels of in-
direct references and specializations (you may easily count up to 30 levels of
specialization!) and this raises a serious problem to a developer, as it is recog-
nized by the UML inventors, who in [5] suggest that a developer builds his/her
own, usually simplified, conceptual model of the constructs of interest. Their
suggestion is confirmed and reinforced by our own experience in projects and SE
courses using the UML. Hence, we have decided to come out with a simplified
metamodel dealing with the most desirable and useful features, cutting down
the almost inextricable complication of too many indirect references. We adopt
that approach also dealing with the concept of “cooperation”, proposing a new
presentation of the UML 2 collaboration, that allows us to deal in a more direct
way with the related semantic and structural aspects.

We address the problems we have mentioned in the spirit and within the
context of the approach to software development, that we have called “well-
founded-methods” (see [6]), hence the title of this paper.

Indeed, in [6] we have argued how the purist attitude of the Formal Method
community, to which we have contributed for long time, was not adequate for the
current practice of software development. There we provided a detailed motiva-
tion of that statement. But here, for lack of room, let us summarize our motivation
reporting from that paper just two quotations. The first, by B. Meyer in [7], dis-
misses an ill-defined dichotomy : “For some scientists, software development is a
branch of mathematics; for some engineers it is a branch of applied technology.
In reality, it is both.” The second comes from C. Jones in [8]: “I assume that the
purpose of developing formal methods is to influence practical engineering of com-
puter systems . . . It is a measure of my unease with some research in the area of
computer science that I feel necessary to state this fact.” In that spirit, we have
introduced the name “well-formed development methods”, roughly meaning a re-
visitation or possibly a proactive proposal of engineering best practice methods,
but with the guarantee that the notation is amenable to a rigorous formal foun-
dation, though such formalization is not apparent to the user.
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Returning now to the central theme of this paper, to go “well-founded” implies
two directions. The first is to address the cooperation issue within a notational
context easy to understand for software engineers. In this respect we feel obliged
to stick to the UML notation as close as possible. On the other side, contrary to
what often happens when using the UML, we try to rely on a solid foundation,
and thus we try to provide a clear syntax in a way that it is easily checkable by
a developer, and moreover to define unambiguously the semantics or, at least,
to outline the possible different semantics.

These are the main aims of the paper, developed in Sect. 3, after showing as
a preliminary in Sect. 2 how the concept of cooperation arises and is currently
handled in the areas mentioned in the beginning. A fallout of this work is a
simplified UML metamodel which is used as a context for presenting the new
collaboration and is sketched in Appendix A.

Though the semantic issues posed by the UML have been addressed in many
papers, the semantics of collaborations has not received much attention, to our
knowledge, perhaps because collaboration is practically a new concept in the
UML 2. There has been some work on the collaboration diagrams of the UML 1,
see, e.g., [9], but they were a special form of behavioural diagram very similar to
the sequence diagrams, while collaborations are structural diagrams with which
a behaviour of various kinds may be associated.

On the other end many proposals for the semantics of the UML 2 not restricted
to just one kind of diagram do not consider the collaboration at all. For example
the quite extended work of the now terminated “UML 2 Semantics Project”2

(see [10] for an overview of the results) does not cover the collaboration.
Very recently, in [11], we find a notable attempt at providing an overall se-

mantic framework for relating the different types of diagrams, represented as a
“heterogeneous institution environment”. So, we have, for example, an Institu-
tion of Static Structure, and an Institution of Interaction. The spirit is, indeed,
that each behavioural diagram should be treated in a specific institution. But,
collaborations are not mentioned, nor it is easy to guess how they could be
treated; moreover the problem of the possible modalities of interpreting a be-
haviour, as outlined later, is clearly beyond the scope of that paper.

2 The Need for Modelling Cooperation

The purpose of this section is twofold. First we show how naturally the concept
of cooperation arises in the modelling phase of software development. To this end
we consider two relevant examples: modelling Business Processes and adopting
a SOA (Service Oreinted Architecture) approach. In both cases we see that
cooperation can be intuitively, albeit roughly, modelled with the UML concept
of cooperation. Second, by introducing the concept of collaboration and its use in
a signicant applicative context, we pave the way to the following section, where
some problems associated with the concept of UML collaboration are discussed
and to some extent solved.
2 http://research.cs.queensu.ca/ stl/internal/uml2/index.html
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2.1 The Business Process Modelling Case

Business Modelling (BM) is a real buzzword these days, with a growing offer of
supporting software tools by major and minor vendors. However BM may con-
vey different meanings. In the domain of Business Process Re-engineering and
Enterprise Architecture, BM is focused on analyzing, organizing and managing
the business activities. On the software development side, BM is viewed as pre-
liminary to and integrated with the development of information systems and is
concerned with the alignment of business processes and IT. Anyway, whatever
the focus, there seems to be a common consensus for the need or the relevance,
at least, of a supporting notation. Still such consensus has not been reached
about the choice of a notation, though currently especially BPMN (Business
Process Modeling Notation)3, but also (part of) the UML are the most widely
used. Here, we argue about the need of modelling cooperation also in this do-
main and we refer to a recent paper by us ([2]) for more detailed presentation of
the aspects sketched here and also for references. In [2] we extended the method
MARS4 [12,13] to model a Business with its related Business Processes.

We can model the roles for the business entities (business workers, business
objects and external systems) in a business process with a UML collaboration,
e.g., as in Fig. 1; the various roles are typed by classes defined in a class diagram
part of the whole model of the business. Then, the process behaviour, that defines
how the business process is carried out, may be modelled by an activity diagram
giving a workflow view, where the actions refer to the collaboration participants,
see, for example, Fig. 2.

Fig. 1. MARS Business Modelling: participants of a business process

Fig. 3, instead, shows a scenario of the whole business, i.e., a possible case
where there are various instances of different business processes running simul-
taneously and various instances of business entities playing different roles in
3 http://www.bpmn.org/
4 MARS (Model-based Adaptively Rigorous Software development) is a UML based

Model-driven Adaptively Rigorous approach to Software development. MARS falls
into the class of what we have called well-founded methods.
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Fig. 2. MARS Business Modelling: wokflow view of a business process

different processes. In the picture we can see, e.g., that there may be two in-
stances of the business process Hold Board Meeting, referring to two different
associations, running simultaneously, and that the same person may be the trea-
surer of two different associations. The instances of the business processes are
modelled by means of collaboration uses, where the collaboration roles are bound
to instance specifications.

2.2 The SoaML Case

SoaML [1] is the current OMG proposal for a UML profile for software devel-
opment according to the Service Oriented Architecture (SOA) paradigm. Re-
markably, in the various versions of SoaML we have witnessed a shift towards a
high-level view of SOA. Indeed SOA is intended as “a way of organizing and un-
derstanding organizations, communities and systems to maximize agility, scale
and interoperability. SOA, then, is an architectural paradigm for defining how
people, organizations and systems provide and use services to achieve results.”
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Fig. 3. MARS Business Modelling: business process scenario

Thus, quite naturally, what we have called “cooperation” plays a dominant role
within the proposed profile.

Obviously, SoaML being a UML profile, cooperation is modelled by means
of UML collaborations, that is used in three key concepts of the services archi-
tecture. First, the specification of a service is provided by a service contract.
“A service is an offer of value to another through a well-defined interface and
available to a community (which may be the general public). A service results
in work provided to one by another.” A service contract defines the terms, con-
ditions, interfaces and choreography that interacting participants must agree to
(directly or indirectly) for the service to be enacted – the full specification of a
service which includes all the information, choreography and any other “terms
and conditions” of the service. Consequently, rather naturally a service contract
is modelled by a UML collaboration with an associated behaviour. The static
structural part of that collaboration shows the participants (roles) of the services:
provider, consumer, and others.

In Fig. 4 the two participants are typed by means of two interfaces
stereotyped by �ServiceInterface�, whereas the collaboration is stereotyped by
�ServiceContract�; the connector between the two roles depicts that they will
exchange messages.
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Fig. 4. Example of service contract in SoaML

The behavioural part exposes the choreography of the service, that defines
what happens between the provider and consumer participants without defining
their internal structure (that have to be compatible with their service contracts).

Notice that here, in SoaML, in principle a behaviour may have any UML form:
interaction (e.g., sequence diagrams), state machines, activity diagrams, timed
diagrams, . . . . See Fig. 5 for an example of specification by interaction.

The other use of collaboration in SoaML is in modelling a services architecture,
which is a network of participant roles providing and consuming services to fulfill
a purpose. The services architecture defines the requirements for the types of
participants and service realizations that fulfill those roles.

A services architecture is modelled at two levels of granularity. The Commu-
nity Services Architecture is a “top level” view of how independent participants
work together for some purpose and is modelled as collaboration stereotyped by
�ServicesArchitecture�.

Fig. 6 shows that there are three participants cooperating by means of three
services; the fact that two participants are related by a service is represented by a

Fig. 5. Example of service choreography in SoaML
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collaboration use of the service contract. The lines connecting the collaboration
icons to the participant depict who is playing the various roles in the service
contracts (technically they are called bindings). Also in a service architecture
there may be the specification of a behavioural part representing a business
process defining the organization of tasks providing the values which are the
goal of the architecture.

The Participant Architecture is modelled again as a collaboration stereotyped
by �ParticipantArchitecture�, and specifies the internal architecture for a par-
ticular participant. In fact, a participant may also have a services architecture,
showing how parts of that participant, sub-participants and external collabora-
tors, work together to provide the services owned by the participant. Notably,
both views, Services Architecture and Participant Architecture, may be used as
a binding specification or as an optional view.

3 Collaboration Revised

3.1 Problems with UML Collaboration

As we have already mentioned, cooperation is modelled in the UML by the model
element collaboration. While in the previous versions, collaboration was a rather
fuzzy concept, used mainly for helping the intuition, in the UML 2 it has reached
a first citizenship status, with a great definitional improvement. However there
are still a number of problematic aspects. On the positive side we may note a
neat separation between static structure and behaviour; indeed its structure is
classified as a composite structure where the parts are roles, the roles of the
participants, linked by connectors. Moreover collaboration may be nested by
means of the “collaboration use”. However the problematic aspects outweigh, in
our opinion, the positive ones, for an effective use in software development.

The first problems concern the syntax, that in the UML is defined by meta-
modelling. As for other model elements, it is quite difficult to check the syntax

Fig. 6. Example of service architecture in SoaML
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against the official OMG specification of the UML. Indeed, that specification
has been organized in a hierarchical splitting of concepts (model elements), dic-
tated exclusively by the opportunity of permitting a flexible, highly reusable
modularization of the supporting tools, and not much suitable for helping a
software developer. Thus it is extremely difficult to come out with an explicit
metamodel related to a construct. That is why, oddly enough, the UML inventors
speak in [4] of “the arcane details” of the OMG official specification and in [5]
suggest a developer to build his/her own, usually simplified, conceptual model
of the constructs of interest. Collaborations being a composite structure, the
situation is even worse than for other model elements. Experimentally, in some
attempts at checking the admissibility of some syntactic parts of a collaboration,
we have often counted up to 30 levels of indirect hierarchical references. We will
try to eliminate most of those problems by proposing a new metamodel which
allows to use all element models of real use in software development practice,
while producing the same elements as in the UML. A choice, this last, dic-
tated by the widespread use of the UML, at least for some of its catching visual
aspects.

A second source of problems concerns the semantics, especially of the associ-
ated behaviour. Notably, there is not even consensus on the type of behavioural
diagrams to be used for collaborations. In principle, and as is suggested in the
OMG SoaML [1], any kind of behaviour is admitted; but in the OMG UML
specification [3] and also in [5] it is suggested that only the use of interaction
diagrams is suitable. But the big problems come from the interpretations of the
associated behaviour. As we will show, different modalities are possible. More-
over, as the things are, it is totally unclear how behaviours are related in a
layered collaboration and the same problem arises for collaboration specializa-
tion. Our conceptualization should help also in this respect, but we have first
to present a formal discussion of the mentioned issues, before understanding the
possible solutions.

3.2 A New Conceptual Model for Collaboration

We present in Fig. 7 the fragment of our conceptual metamodel concerning the
collaboration. The structure of the models and the class diagrams are shown in
Fig. 10 and 11 in the Appendix.

In this paper to simplify the UML class diagrams we follow the convention
that the association multiplicity 1 is omitted.

At the diagrammatic level we prefer to speak of Collaboration (overview) dia-
gram instead of using the UML term “Composite Structure Diagram”, because
the last one is rather generic and, it is said, may be used for two different aims:
collaboration use and structured classes (but not a simple collaboration).5

The metamodel fragment of Fig. 7 allows to define all basic collaborations;
for example the ones depicted in Fig. 1 and 4.

5 From [3, page 191]: “A composite structure diagram depicts the internal structure
of a classifier, as well as the use of a collaboration in a collaboration use.”
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Static Semantics
The connectors may only connect roles of the collaboration to which they belong
A classifier typing a role may be a class or an interface
An association typing a connector must have the two ends typed as the connector ends
The classifiers and the associations typing parts of a collaboration must belong to the
model to which the collaboration belongs
The expression defining the constraint, if any, must be correct w.r.t. the environment
consisting of the collaboration roles

Fig. 7. Collaboration: conceptual (meta)model

A collaboration is a BehavioredClassifier, that means it may have associated a
behaviour. Behaviour in the UML metamodel is a metaclass encompassing many
different constructs and quite hard to grasp in its full generality, thus we prefer
to define the behaviour of a collaboration in a more specific and direct way. We
assume that the behaviour of a collaboration may be defined either by sequence
diagrams, or activity diagrams or state machines. The sequence diagram case is
quite clear: the objects playing the collaboration roles should be able to perform
the message exchanges represented by the sequence diagram; whereas in the
case of an activity diagram the objects playing the collaboration roles should
be able to perform the actions part of the shown activity respecting the causual
relationships modelled by the activity diagram. A state machine should instead
be relative to a specific role, and should model the expected behaviour of an
object playing such role.

In Fig. 8 we present the fragment of our conceptual (meta)model concerning
the behavioural aspect of collaborations; there i-behaviour, a-behaviour and r-
behaviour stand respectively for interaction, activity and role behaviour.
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Static Semantics
The actions of an a-behaviour must have the form of an operation call over a role of
the associated collaboration (including also creation and destruction)
The lifelines of an i-behaviour of a collaboration must be the roles of the same, and if
there is a message between two lifelines, there should be a connector in the collaboration
between the two associated roles

Fig. 8. Collaboration with associated behaviour: conceptual (meta)model

3.3 (Formal) Semantics of the UML: Our Setting

The formal semantics of collaboration should be given as part of an overall
semantics of the UML models; thus we first sketch very roughly our setting. We
assume that the semantics of a UML model is a set of UML-systems, precisely all
those formally modelling the object communities described by the model itself
plus additional information on those ob ject communities. In the following we
will see examples of such extra information.

A UML-system is a labelled transition system (U STATE,U LABEL,→),
where

– U STATE ⊆ ℘(OBJECT STATE) × ℘(LINK)
– LINK = ASSOCIATION × O ID × O ID
– O ID denotes the set of the ob ject identities
– OBJECT STATE = O ID × STATE
– U LABEL denotes the set of labels, each one representing a set of actions

performed by the objects
– → ⊆ U STATE× U LABEL × U STATE.

A state of a UML-system represents the states of the objects existing at a specific
moment (identity, current values of attributes, actions that they are currently
executing, and current control state, if their behaviour is defined by a state

machine), and the existing links among them. A transition us ul−−−→ us′ represents
the fact that some objects whose states are in us execute some actions (and as
a possible consequence, exchange some messages, create and destroy some other
objects) transforming it into us′. The label ul represents the performed actions.
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A more detailed presentation of the UML-systems and of their use to model the
UML semantics may be found in [14,15].

The class diagrams of a UML model determine a collections of UML-systems:
those whose objects are defined by the classes in that class diagrams, and whose
links are determined by the associations appearing in those class diagrams; ob-
viously they satisfy all the constraints appearing in the class diagrams. Such
collection is dened by the function SemclassDiagram that given a class diagram
returns a subset of UML SYSTEM.

The other diagrams (e.g., state machines, sequences, activity and collabo-
ration diagrams) will either further restrict that collection of UML-systems, by
dropping all those whose behaviour is not in agreement with them, or will provide
some additional information. Formally, for each kind of diagrams, say diagram-
Type, we have a function SemdiagramType associating with a diagram d of type
diagramType an element in (UML SYSTEM → Bool) × INFO, where INFO is a
set.

Summarizing, given a UML model UM defined as in Fig. 10 in the Appendix
and denoting by Sem a semantics function for UML, we have:

Sem(UM) ⊆ UML SYSTEM× . . .,

where UML SYSTEM denotes the collection of all the possible UML-systems,
and . . . stands for the additional informations.

Moreover, if UM = cd, d1, . . . , dn , where cd is a class diagram and d1, . . . , dn

are diagrams of some different type

Sem(UM)=({uSys | uSys∈USY S∧i=1,...,nrestri(uSys)}, {info1, . . . , infon})
where

USY S = SemclassDiagram(cd) ⊆ P(UML SYSTEM),

and for i = 1, . . . , n

(restri, infoi) = SemdiagramTypei
(di) ∈ (UML SYSTEM → Bool) × INFOi.

We speak of a semantics function and not of the semantics function, since we
can envisage various mode in which a diagram may contribute to the semantics
of a UML model, as we will detail for the case of collaboration in the next section.

3.4 (Formal) Semantics of the UML Collaboration

The intuitive meaning of a collaboration, on the basis of the UML specification
[3], can be formalized as follows. A collaboration determines the possible partic-
ipants in a cooperation, by defining the roles that will play and which are their
mutual relationships: i.e., they must be connected by some links (represented by
the link connector) and must satisfy the condition expressed by the associated
constraint.

We first consider the case of a collaboration with no associated behaviour
diagrams. Thus our proposal for a formal meaning of a collaboration concerning
its static aspects is the collection of all possible lists of participants.
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Thus the initial proposal for a formal meaning of a collaboration concerning
its structural aspects is the collection of all possible lists of participants.

Let col be a collaboration having the roles R1 : C1, . . . , Rn : Cn.

Stat-Semcol(col) : U STATE → (OBJECT STATE+ → Bool)
Stat-Semcol(col)(us)(os1, . . . , osn) iff

– os1, . . . , osn are object states of us 6,
– os1 : C1, . . . , osn : Cn,
– for each link connector of col between Ri and Rj for the association ass there
exists in us a link for the association ass between osi and osj, and
– if col has an associated constraint, such constraint holds when R1, . . . , Rn are
instantiated with os1, . . . , osn respectively.

This semantics of the collaboration will then be part of the additional infor-
mation, describing which groups of ob jects may take part in that collaboration
in each state.

If a collaboration has associated some behavioural diagrams we have to take
them into account. We consider each different kind of behavioural diagram sep-
arately and discuss what they require, or better may require, when attached to
a collaboration. Intuitively, it seems quite natural that the behavioural diagrams
qualify the behaviour of the participants in the collaboration, but what that means
precisely it is not so obvious, and there may be different ways to intend it.

To outline our viewpoints, we consider two cases of associated behavioural
diagrams: sequence diagrams and state machine diagrams.

The sequence diagram case. If a collaboration has an associated sequence
diagram, then the behaviour of the participants should be related to the traces
defined by the sequence diagram itself. However, and this may be surprising,
there is not a unique way to establish such relation. Indeed, we can give at least
three ways to intend it, and we have examples of the use for each of them. At
the notational level the sequence diagram attached to a collaboration should be
tagged by a mode to make precise the way to intend it.

In the following we briefly present the three modes, but first we need a tech-
nical premise. In all three modes, and also later for the state machine case, we
will make use of what we call semantics in isolation of a diagram, denoted by
Semis. That semantic function captures the essential information provided by a
diagram in isolation, i.e., without taking into account its model context, namely
the other elements in the model. In general, given Semis, one can then proceed to
give the semantics of the whole (or part of the) model that provides the context
to that diagram.

Our simplified conceptual (meta)model of a sequence diagram is reported in
Fig. 12 in the Appendix.7; and here we briefly summarize our formal semantics
of sequence diagrams according to [3, Sect. 14].
6 Note that it is not required that all osi be distinct.
7 Here, for simplicity we do not consider the interaction combinators, nor the execution

specifications.
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Let seq be a sequence diagram as defined by the metamodel of Fig. 12.
Semis(seq) ⊆ TRACE 8

– TRACE = (LIFELINE × OCCURRENCE)∗

– LIFELINE denotes the set of the lifeline names
– OCCURRENCE = SEND ∪REC ∪CREATE ∪DESTROY ∪ INVARIANT

If Semis(seq) = traces, then traces represent possible acceptable behaviours
of the lifelines expressed in terms of sequences of (event) occurrences.9

Assume to have a collaboration col and an associated sequence diagram seq

that are parts of a UML model UM, s.t. Semis(seq) = traces.

Mode 1. The sequence diagram seq attached to the collaboration col restricts
the behaviour of the UML systems modelled by UM. This interpetation is useful,
for example, when we use a collaboration for modelling a use case: the attached
sequence diagram requires that the system and the actors must be able to per-
form the required scenarios.

Behav-Semcol
1 (col, seq) : UML SYSTEM → Bool

Behav-Semcol
1 (col, seq)(uSys) = for all us state of uSys,

if Stat-Semcol(col)(us)(os1, . . . , osn), then
Traces(us)|os1, . . . , osn should include refinements of traces,

where Traces(us) are all the possible traces starting from us, and |os1, . . . , osn

restricts the traces to the occurrences happening on os1, . . . , osn (here for lack
of room we do not define the refinement notion).

In this case the semantics of the collaboration will restrict the acceptable ob
ject communities, i.e., the UML systems.

Mode 2. In some cases, the meaning of the collaboration behaviour is more
descriptive than restrictive. Consider, e.g., the case of the description of an au-
thentication procedure as a collaboration among a user, the protected resource
and an authentication service. We do not want that each user in each moment
should be forced to try to authenticate; we just want to define what is the be-
haviour following some procedure. Perhaps in the model there may be different
collaborations with the same roles showing different ways to realize the authen-
tication. The same case happens when we use the collaborations to model design
patterns.

In this case the semantics of the collaboration, toghether the structural se-
mantics, will include the traces defined by the sequence diagram.

Behav-Semcol
2 (col, seq): (U STATE → (OBJECT STATE+ → Bool)) × P(TRACE)

8 Since the neg combinator is not part of the considered subset, we assume that a
sequence diagram defines a set of acceptable traces, and we do not consider the
unacceptable ones.

9 Also the satisfaction of state invariants is included in the occurrences.
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Behav-Semcol
2 (col, seq) = (Stat-Semcol(col), Semis(seq))

This is an example of a semantics of a diagram resulting in some additional
information (the set of traces).

Mode 3. We can also intend that the sequence diagram associated with a
collaboration restricts the possible participants to those whose behaviour is in
agreement with the traces defined by the latter. The restrictive modality is useful,
for example, to describe groups of participants complying with a contract.

Behav-Semcol
3 (col, seq): U STATE → (OBJECT STATE+ → Bool)

Behav-Semcol
3 (col, seq)(s)(os1, . . . , osn) =

Stat-Semcol(col)(us)(os1, . . . , osn) and Traces(us)|os1,...,osn refines Semis

(seq), that is a set of traces.

The state machine diagram case. If the behavioural aspects of a collab-
oration are defined by a state machine associated with one of its roles, thus
the behaviour of the participants playing that role should be related with the
labelled transition system defined by the semantics in isolation of the state ma-
chine itself. However, as for the other kinds of behavioural diagrams, we cannot
find a unique way to establish such relation, instead we can give at least three
ways to intend it. As before for the sequence diagram case we first define the
semantics of a state machine in isolation, and similarly to sequence diagram,
the first semantics of the collaboration with the attached state machine will re-
strict the set of UML-systems, whereas the others will result in some additional
information.

Our simplified conceptual (meta)model of the state machines is reported in
Fig. 13 in the Appendix.

We briefly summarize here the formal semantics of state machine diagrams in
isolation. Let sm be a state machine diagram as defined by the metamodel of
Fig. 13 whose context is a class C.

Semis(sm) is an object-system, i.e., a labelled transition system
(OBJECT STATE,OBJECT LABEL,→o, osinit), where

– OBJECT STATE is the collection of all the object states,
– →o ⊆ OBJECT STATE× OBJECT LABEL × OBJECT STATE.
– OBJECT LABEL is the collection of the possible interactions of an object

with the external world (receive/send an operation call, be destroyed/destroy
another object, create another object),10

– osinit ∈ OBJECT STATE is the initial state.

If Semis(sm) = lts, then the labelleld transition tree built by lts having osinit

as initial state represents all possible lives of an object of class C.

10 We assume that objects cannot directly update and read the attributes/associations
of other objects.
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Assume to have a collaboration col and a state machine diagram sm associated
with the role R : T s.t. Semis(sm) = oSys.

Mode 1. The state machine diagram sm attached to a collaboration col restricts
the behaviour of the modelled UML systems; that is, whenever a group of objects
are admissible participants of the collaboration, then the one playing the role
R must behave accordingly to oSys. This interpretation is useful, for example,
when we use a collaboration for modelling a use case: the state machine requires
the system to behave in a given way whenever connected with proper actors.

Behav-Semcol
1 (col, sm) : UML SYSTEM → Bool

Behav-Semcol
1 (col, sm)(uSys) = for all us state of uSys,

if Stat-Semcol(col)(us)(os1, . . . , osn) and osi is playing the role R, then
Tree(uSys, us, osi) should refine Tree(oSys, osinit),

where Tree(uSys, us, osi) is the labelled transition tree having root osi mod-
elling its possible activities in the context of us as defined by uSys, and where
Tree(oSys, osinit) is the transition tree having root osinit modelling its possi-
ble activities as defined by oSys (here for lack of room we do not define the
refinement notion).

Mode 2. In some cases, the meaning of the state machine behaviour is more
descriptive than restrictive; it just describes a behaviour of a role.

In this case the semantics of the collaboration will include the transition tree
defined by the state machine attached to the role R.

Behav-Semcol
2 (col, sm) :

(U STATE → (OBJECT STATE+ → Bool)×
LABELLED TRANSITION TREE)

Behav-Semcol
2 (col, sm) = (Stat-Semcol(col), Semis(sm))

Mode 3. We can also intend that the state machine diagram associated with
the role R of a collaboration restricts the possible participants playing the role
R to those whose behaviour is in agreement with the transition tree defined by
the latter.

Behav-Semcol
3 (col, sm) : U STATE → (OBJECT STATE+ → Bool)

Behav-Semcol
3 (col, sm)(us)(os1, . . . , osn) =

Stat-Semcol(col)(us)(os1, . . . , osn) and
Tree(uSys, us, osi) refines Tree(oSys, osinit).

3.5 Relationships between Collaborations

In the UML it is possible to establish some relationships among collaborations,
first of all generalization/specialization (this is possible since collaboration is
a specialization of classifier). In our conceptual (meta)model of the UML we
prefer to define generalization/specialization specifically for the various con-
structs rather than to introduce a superclass of all the generalizable/specializable
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Static Semantics
The general and the specific collaborations of a generalization must belong to the same
collaboration to which the generalization belongs; similar constraint for inclusion
Let <G be the transitive closure of < defined by C1 < C2 iff C2 generalizes C1, <G

must be anti-reflexive and anti-symmetric
Let <I be the transitive closure of < defined by C1 < C2 iff C2 includes C1,<I must
be anti-reflexive and anti-symmetric
In an inclusion there should be a binding for each role of the included collaboration
A binding should bind a role of the including collaboration (binder role) with a role of
the included collaboration (bound role)
The type of the binding role should be a subtype of the type of the bound role

Fig. 9. Collaboration relationships: conceptual (meta) model

constructs. This choice may not seem very elegant nor in the spirit of the OO
approach, but it saves a lot of troubles, and we can skip:

– to find all the aspects of generalizations that are common to all the various
cases (and to be sure to avoid mistakes when defining the special cases),

– to be careful not to put together the “being specializable/generalizable”
with other aspects (in the UML metamodel classifier is the metaclass of the
specializable elements, but it is also the metaclass of the instantiable elements,
and thus collaborations may have instances),

– to give a meaning to this very abstract concept of specialization/generaliza-
tion.

We think it is sensible to have a generalization/specialization notion for col-
laboration and we introduce it in our setting, see Fig. 9.

The UML 2 offers another way to establish a relationship between two collabo-
rations: we may, e.g., define collaboration C1 by means of a “use of collaboration
C2” (in this case the roles of C2 will be bound to roles of C1). It is useful also
to employ the concept of collaboration use at the instance levels (i.e., in object
diagrams) to present possible scenarios of objects taking part in various col-
laborations (in this case the roles of a collaboration will be bound to instance
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specifications), see, e.g., Fig. 3. Thus we prefer to explicitly and separately define
these two possible cases11.

In Fig. 9 we present the conceptual (meta)model part concerning the rela-
tionships among collaborations. Now we try to clarify their semantics, but here,
for lack of room, we detail only the inclusion relationship.

For what concerns the semantics at the static level, the participants in the
including collaboration bound to the included one should be also possible par-
ticipants in the last.

Assume that col1 includes col2 and that os1, . . . , osj are the participants of
col1 participating also in col2, then the following condition must hold

Sem(col1)(us)(os1, . . . , osj , osj+1, . . . , , osn) implies Sem(col2)(us)(os1, . . . , osj).12

In the case of inclusion of collaboration with associated behaviour also the
latter should be in agreement:

– if col2 has associated a sequence diagram, then such sequence diagram should
be called inside the sequence diagram associated with col1 by means of the ref
combinator;

– if an activity diagram is associated with col2, then it should be called inside
the associated activity diagram;

– if a role R2 of col2 bound with role R1 of col1 has associated a state machine
SM2, then also R1 must have associated a state machine SM1, and SM1 should
refine SM2.

4 Conclusion

Motivated by the request coming from some companies with which we are en-
gaged in a collaborative efgfort within a research laboratory, we have started
to address on the basis of some real concrete cases the problem of moving from
Business scenarios to SOA solutions. That has led us first to appreciate the need
and value of modelling “cooperations”, namely a community of objects cooper-
ating to achieve a specific purpose, and then, when trying to adopt the UML
collaboration that has been proposed for modelling such cooperations, we have
experienced the difficulties and ambiguities linked with the use of that part of
the UML.

The fact that collaborations play such an important role, as we have shown,
in Business Modelling in general, and, more specifically, in the SoaML OMG
proposal for a UML profile for SOA, gives a solid motivation for addressing that
issue in the context of what we have called “well-founded methods” [6], of which
our method MARS [12,13] is just an example.

Since UML is widely adopted and “understood”, at least at the level of a
visual support, instead of developing an entirely new concept, we have preferred
to stick to the same visual notation, but redefining the syntax (metamodel) and

11 For lack of room in this paper we do not cover the case of the instance level.
12 [3, pag. 172] says that this condition is a semantic variation point.
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analyzing its semantics in a critical way. Redefining a metamodel for develop-
ment purposes is a suggestion of the inventors of the UML that we have found
absolutely reasonable, because it eliminates the problem of checking the syntax
against the official OMG specification of the UML. Indeed that specification has
been organized in an interminable hierarchical splitting of concepts, dictated
exclusively by the opportunity of permitting a flexible, highly reusable modular-
ization of the supporting tools. The metamodel we propose, instead, allows us
to make use of all concepts and model elements that are really useful, while it
is not a real restriction, since it is well-known that a vast majority of the model
element of the UML is practically of no use in the software development activity.
Beside the syntactic aspects, we have addressed some basic semantic problems,
especially related to the behavioural diagrams and thus to the behavioural as-
pects of collaboration. Rather surprisingly, different semantic modalities arise.
In the “fresco” we are proposing, we have, admittedly, only sketched the basic
possibilities, but enough, we believe, to convince that still a lot of problems have
to be addressed, notwhitstanding the widespread use of the UML, with recurrent
claims of a much improved semanitc clarification. That is exactly an area that
we intend to explore further in rigour and detail, to fully achieve a well-founded
approach.

Acknowledgements. We gratefully acknowledge the help provided by the very
accurate and stimulating reviews.
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A The Conceptual (Meta)Model of the UML

Static Semantics
M.classifiers = M.diagram->select(oclIsTypeOf(Class Diagram)).classifier (that im-
plicitly requires that each model must include at least one class diagram)
All classes in a model must have distinct names

Fig. 10. UML model structure: conceptual (meta) model
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Static Semantics
An interface is abstract and has no attributes
All attributes must have distinct names, and all operations with the parameters having
the same types must have distinct names
The transitive closure of the generalization relationship among classes must be without
cycles

Fig. 11. Class diagram: conceptual (meta) model
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The type of a role must be either a class or an interface
If the kind of a message is complete, then both the send and the rec events are present;
if lost, then only the send event is present; otherwise, namely if lost, only the rec event
is present
The events of a message are on a lifeline of the interaction and vice versa
The operation of a message must belong to the class/interface of the receiving lifeline
The types of the arguments of a message are in agreement with those of the corre-
sponding operation
The arguments and the returned values of a message must be correct in the environment
containing self typed as the role of the sending lifeline and the interaction attributes

Fig. 12. Sequence diagram: conceptual (meta)model
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Static Semantics
A state machine must have one and only one initial state
The context of a state machine must be a class of the model
The source of a transition cannot be a final state
The target of a transition cannot be an initial state
If a transition has no trigger, then its source is an initial state
The expression building a change-event of a transition is wff w.r.t. the environment
made by the self typed as the context, and has type Boolean
The expression building a timed-event of a transition is wff w.r.t. the environment
made by the self typed as the context, and has type Time
The guard of a transition is wff w.r.t. the environment made by the self typed as the
context and the parameters of the event of the same transition, and has type Boolean
The effect of a transition is wff w.r.t. the environment made by the self typed as the
context and the parameters of the event of the same transition
The event parameters and the parameters of the operation corespond in number and
type

Fig. 13. State machine: conceptual (meta) model
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Abstract. Client synthesis for complex Web services is a critical and still open
topic as it will enable more flexibility in the deployment of such services. In
previous works, our team has developed a theoretical framework based on process
algebra that has led to algorithms and tools for the client interaction. Here, we
show how to generalise our approach for aspect oriented Web services.

1 Introduction

From elementary Web services to complex ones. Web services are self contained, self-
describing modular applications that can be published, located, and invoked across the
Web. They are based on a set of independent open platform standards to reach a high
level of acceptance. Web services framework is divided into three areas: communica-
tion protocol, service discovery and service description. The “Web Services Descrip-
tion Language” (WSDL) [26] provides a formal, computer-readable description of Web
services. Such a description specifies the software component interfaces listing the col-
lection of operations that are network accessible through standard XML messaging. It
includes all information that an application needs to invoke such as the message struc-
ture, the response structure and some binding information like the transport protocol,
the port address, etc.

However simple operation invocation is not sufficient for some kind of composite
services. They require in addition a long-running interaction derived by an explicit pro-
cess model. This kind of services may often be encountered in two cases. First when a
Web service is developed as an agent, it is composed by a set of accessible operations
and a process model which schedules the invocation to a correct use of the service.
Secondly, facing to the capability limits of Web services, composite services may be
obtained by aggregating existing Web services in order to create more sophisticated
services (and this in a recursive way).

In order to deal with the behavioural aspects of complex services, some industrial
and academic specifications languages have been introduced. Among them, “Business
Process Execution Language for Web Services” (BPEL4WS or more succinctly BPEL)
has been proposed by leading actors of industry (BEA, IBM, and Microsoft) and has
quickly become a standard [14].

The two facets of complex Web services. BPEL supports two different types of business
processes (see for instance [16], [17]):
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c© Springer-Verlag Berlin Heidelberg 2010



Client Synthesis for Aspect Oriented Web Services 25

– Executable processes specify the exact details of business processes. They can be
executed by an orchestration engine.

– Abstract business protocols specify the public message exchange between the client
and the service. They do not include the internal details of process flows but are
required in order for the client to correctly interact with the service.

Given the description of an executable process, its associated interaction protocol is
obtained by an abstraction mechanism (which masks all the internal operations of the
service). However the issues raised by these two types of processes are very different.
A specification of an executable process is close to the definition of a program whereas
the specification of interaction protocol mainly raises an difficult problem: how to syn-
thetize a client which will correctly handle the interaction with the service.

The synthesis problem. Indeed by construction, the external behaviour of a service is
non deterministic due to its internal choices. It is then a priori unclear whether a client,
i.e. a deterministic program, can be designed to interact with it. Furthermore the specifi-
cation often includes timing constraints (e.g. implicit detection of the withdrawal of an
interaction by the client) implying that these timing constraints must also be taken into
account by the client. However since no semantics of the interaction process is given
for BPEL (not to be confused with the semantics of the service execution), this problem
could not be formally stated. In practice, the industrial products including predefined
clients assume a simple interaction protocol as proposed by WSDL (like for instance
a “query-answer” interaction). Thus it is clear that the synthesis problem is a critical
issue for the rapid deployment of composite services.

Adaptation and Web services. Aspect oriented programming (AOP) helps the program-
mer to isolate non functional software (like authentication and logging) from business
software. Using AOP eases the modification of implemented policies as it does not im-
pact the functional part. However in the context of JAVA, it requires either to change
the compiler, the loader or the virtual machine. AOP is also desirable for Web services
since they require a lot of non functional codes but the integration of AOP in a Web
service framework raises significant difficulties.

Previous contributions. In our previous works, we have addressed both service adapt-
ability and client interaction issues but separately.

First, we have specified what is an external behaviour, i.e. we have given an oper-
ational semantics to an abstract BPEL specification in terms of a time transition sys-
tem [10,11]. The semantics is obtained by a set of rules in a modular way. Given a
constructor of the language and the behaviour of some components, a rule specifies a
possible transition of a service built via this constructor applied on these components.
As previously discussed, the transition system is generally non deterministic. Then we
have defined a relation between two communicating systems which formalizes the con-
cept of a correct interaction. There are standard relations between dynamic systems like
the language equivalence and the bisimulation equivalence but none of them matches
our needs. Thus we have introduced the interaction relation which can be viewed as a
bisimulation relation modified in order to capture the nature of the events (i.e. the send-
ing of a message is an action whereas the reception is a reaction). Afterwards we have
focused on the synthesis of a client which is in an interaction relation with the transition
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system corresponding to the system. The client we look for must be implementable, in
other words it should be a deterministic automaton. It has appeared that some BPEL
specifications do not admit such a client i.e. they are inherently ambiguous. Thus the al-
gorithm we have developed either detects the ambiguity of the Web service or generates
a deterministic automaton satisfying the interaction relation. The core of this algorithm
is a kind of determinisation of the transition system of the service.

Independently we have proposed an Aspect Oriented Programming (AOP) [18] ap-
proach which aims to change elementary Web services at runtime [2,23].

Our contributions. Here, we extend these works by providing:

– A method to design, deploy and publish aspect-oriented and composite Web ser-
vices;

– A formal semantics for aspect-oriented Web services;
– An algorithm that generates a client (i.e. an automata) based on this semantics or

detect that the service is ambiguous. Observe that this generation takes into account
specification of aspects with the aim to dynamically create additional automata at
run time.

– A client interpreter able to handle interactions not fully specified in the published
Web service description. In particular, it simultaneously manages execution of sev-
eral automata with synchronization contrary to our previous approach that manages
a single automaton.

This paper is organized as follows. Section 2 details the approach for synthesis of client
for service without adaptation. Section 3 presents the generalisation to aspect oriented
web services. Section 4 discusses related work. Finally in section 5 we conclude and
give some perspectives to this work.

2 Client Synthesis for Web Services

In this section, we develop the principle of client synthesis for services without
adaptation.

2.1 A Formal Semantics for BPEL Abstract Processes

BPEL provides a set of operators describing in a modular way the observable behaviour
of an abstract process. As shown in [22], this kind of process description is close to the
process algebra paradigm illustrated for instance by CCS [20], CSP [13] and ACP [3].
However, time is explicitly present in some of the BPEL constructors and thus the stan-
dard process algebra semantics are inappropriate for the semantics of such a process. In
order to model time, we have chosen a discrete time semantics since on the one hand the
theory of dense time is more involved and on the other hand timing requirements in Web
services are simpler than in real-time systems. For sake of clarity, we have not formal-
ized more technical features of BPEL like the compensation handlers. Our semantics
associates a finite automaton with an abstract process.
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The alphabet of the automaton. The first step for the definition of a semantics consists
in specifying the action alphabet for a BPEL process. We have five kinds of actions:

– A time unit elapsing is denoted by χ.
– Silent actions, denoted by τ cannot be observed by the client. They correspond to

decisions taken by the server (evaluation of a condition for switch, while, etc.).
– Exceptions; the set of exception events is denoted by Ex.
– In order to control that the client correctly detects the end of the service, we intro-

duce
√

, the termination event. This action will also simplify the definition of the
operational semantics.

– Sending and receiving messages: the set of types of messages will be denoted by
M . The emission is denoted by !m and the reception is denoted by ?m. We also
set !M = {!m |m ∈ M} and ?M = {?m |m ∈ M} and the wildcard ∗ may be
substituted for ! or ?.

Actions different from time elapsing can be classified as immediate (τ,
√

and excep-
tions) or delayed (emissions and receptions). The first kind of actions are performed in
null time (w.r.t. the time scale) and thus in our semantics have priority over the other
actions including time elapsing.

The states of the automaton. Each state will be associated with a BPEL process ob-
tained by successive transformations from the initial process. Two states have different
associated processes. At the beginning of the construction, there is a single state (the
initial one) corresponding to this process. Each time an edge is defined, a new process is
computed and if this process does not label an existing state then such a state is created.
Due to the semantic rules given in the next subsection, it can be proved that the number
of derived processes is finite (and thus the number of states is also finite).

The transitions of the automaton. The transitions starting from a state are obtained
by a top-down analysis of the process expression labelling this state. This analysis is
usually defined with the help of operational semantic rules. The definition of a semantic
rule [opx] for a generic process P = opx(P1, P2, . . .) includes the following parts:

– a boolean expression over some potential transitions of selected components of P :
Bexp({Po(i)

αi−→ P ′
o(i)});

– this condition is enforced by a second condition on the occurring labels denoted by
guard({αi}).

– If the two conditions are fulfilled then a state transition for P is possible where
the label Lexp({αi}) is an expression depending on the labels of subprocesses
transition and

– the new process is an expression Nexp(P, {P ′
o(i)}) depending on the original pro-

cess and the new subprocesses.

So, a generic rule, presented with the usual style has the following structure:

[opx] :
Bexp({Po(i)

αi−→ P ′
o(i)})

P
Lexp({αi})−→ Nexp(P, {P ′

o(i)})
where guard({αi})
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For sake of readability, we do not follow the (verbose) XML syntax of a BPEL
process. Instead we have chosen a simplified syntax close to the one used for process
algebra whose meaning should be immediate for who knows BPEL. As usual, we begin
the definition of rules by giving the ones corresponding to the basic processes of BPEL.
These basic processes are empty, ?o[m], !o[m] and throw[e].
The empty process empty can only terminate (the notation 0 is the null process).

empty
√

−−−→ 0

The ?o[m] and !o[m] processes. The process ?o[m] (which corresponds to the input op-
eration of WSDL) consists in receiving a message of type m. The process !o[m] (which
corresponds to the notification operation of WSDL) consists in sending a message of
type m. We only consider these two types of WSDL operations. The two other types
can be built with the sequence constructor (see below). Since these actions are not im-
mediate, time can elapse. This leads to the two rules below.

∗o[m]
χ−−→ ∗o[m] ∗ o[m] ∗m−−−−→ empty with ∗ ∈ {?, !}

The throw process. The process throw[e] raises an exception e which must be catched
in some scope process.

throw[e] e−−→ 0

We also introduce an auxiliary process time that represents time elapsing (not present
in the BPEL definition).

time
χ−−→ time

The sequence process ( ; ). The process P ; Q executes the process P then the pro-
cess Q. Since the operator “;” is associative, we safely restrict the number of operands
to two processes. The sequence process acts as its first subprocess while this process
does not indicate its termination. In the latter case, the sequence process acts as the
second process can do.

P
a−−→ P ′

P ; Q
a−−→ P ′ ; Q

where a 	= √

P
√

−−−→ and Q
a−−→ Q′

P ; Q
a−−→ Q′

Remark. The set of rules will imply that if there is an action a 	= √
such that P

a−−→
P ′, then P

√
−−−→ cannot occur.

The switch process. The process switch[{Pi}i∈I ] chooses to behave as one process
among the set {Pi}. Each branch of its execution is guarded by an internal condition.
Conditions are evaluated w.r.t. the order of their appearance in the description. However
since the client has no way to predict the choice of the service, this order is irrelevant.
The main consequence is that from the point of view of the client, this choice is non
deterministic. The switch process becomes one of its subprocesses in a silent way. Let
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us note that we have implicitly supposed that at least one condition is fulfilled. In the
other case, it is enough to add the process empty as one of the subprocesses.

∀ i ∈ I switch[{Pi}i∈I ]
τ−−→ Pi

The while process. The process while[P ] iterates an inner process as long as an in-
ternal condition is satisfied. Like switch, while evaluates in a silent way its condition.
Thus we have two rules depending on this internal evaluation.

while[P ] τ−−→ P ; while[P ]

while[P ] τ−−→ empty

The flow process. The process flow[{Pi}i∈I}] simultaneously activates a set of pro-
cesses {Pi}. For the moment considering that the synchronization primitives of BPEL
are internal ones we have not yet implemented this synchronization. Thus this paral-
lel execution is similar to a “fork-join” in the sense that the combined process ends
its interaction when all subprocesses have completed their execution. Subprocesses of
a flow process act independently except for one action: they simultaneously indicate
their termination. In the latter case, the flow process becomes the null process. Further-
more internal actions are considered as immediate and consequently the occurrence of
such an action in a subprocess prevents the occurrence of a delayed action (sending or
reception of a message) in another subprocess.

• Individual actions:

1.

∀j ∈ I
Pj

a−−→ P ′

flow[{Pi}i∈I ]
a−−→ flow[{Pi}i∈I\{j} ∪ {P ′}]

where a ∈ Ex ∪ {τ}

2.

∀m ∈ M ∀j ∈ I
Pj

∗m−−−−→ P ′ ∧ ∀ i ∈ I ∀ a ∈ Ex ∪ {τ}, ¬Pi
a−−→

flow[{Pi}i∈I ]
∗m−−−−→ flow[{Pi}i∈I\{j} ∪ {P ′}]

• Time elapsing: all processes must either let time elapse or terminate.

∀J 	= ∅ J ⊆ I
∀i ∈ J Pi

χ−−→ P ′
i ∧ ∀i ∈ I \ J Pi

√
−−−→

flow[{Pi}i∈I ]
χ−−→ flow[{P ′

i}i∈J ∪ {Pi}i∈I\J ]

• Termination:

∀ i ∈ I Pi

√
−−−→

flow[{Pi}i∈I ]
√

−−−→ 0
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The scope process scope(P, Ed) with

Ed def
= [{(mi, Pi) | i ∈ I}, (d, Q), {(ej, Rj) | j ∈ J}]

may evolve due to P evolution, reception of a message mi, expiration of the timeout
with duration d or occurrence of an exception ej . We note MI = {mi | i ∈ I} and
EJ = {ej | j ∈ J}.

• P actions: The termination exits the scope whereas another action does not.

P
√

−−−→

scope(P, Ed)
√

−−−→ 0

P
a−−→ P ′

scope(P, Ed) a−−→ scope(P ′, Ed)
where a /∈ Ex ∪ MI ∪ {√, χ}

• Receiving a message mi:

∀ i ∈ I
∀ a ∈ Ex ∪ {τ,√}, ¬P

a−−→
scope(P, Ed) ?mi−−−−→ Pi

• Exception handling: which depends whether the raised exception is catched in this
scope.

∀ j ∈ J
P

ej−−−→
scope(P, Ed) τ−−→ Rj

∀ e ∈ Ex \ EJ
P

e−−→
scope(P, Ed) e−−→ 0

If an exception e is never catched at any level then the process is an erroneous one which
can straightforwardly checked by examining whether an exception labels an transition
of the automaton.

• Time elapsing

∀ d > 0
P

χ−−→ P ′

scope(P, Ed)
χ−−→ scope(P ′, Ed−1)

• Time out
P

χ−−→
scope(P, E1) χ−−→ Q

The pick process can be viewed as a particular case of the scope process:

pick(Ed) ≡ scope(time, Ed)
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2.2 Interaction Relation

We first informally state what should be a correct interaction between two automata.
As for the bisimulation relation, we require a relation between pairs of states of the two
systems. Obviously the pair consisting of the initial states should belong to this relation.

Furthermore, the states of a pair should have a coherent view of the next interaction
steps to occur. At first, this implies that the relation must take into account the mutually
observable steps. Thus we introduce the observable transition relation of an automaton

by s
a⇒ s′ iff s

τ∗aτ∗
→ s′, s

ε⇒ s′ iff s
τ∗
→ s′.

Once it is done, we could require (like for bisimulation) that if a state s of the pair
(s, s′) may evolve by an observable transition of its automaton to some new state s1, s′

should have a similar observable transition leading to a state s′1 which would compose
with s1, a new pair of consistent views.

However we need to be careful. First, if an automaton sends a message the other
one must be able to receive the message. So it is necessary to introduce the notion of
complementary actions ?m =!m, !m =?m and ∀a /∈ {!m}m∈M ∪ {?m}m∈M a = a
and to require that the synchronized evolution is obtained via complementary actions.

But this requirement is too strong as it does not capture the different nature of the
sending and reception of a message. A sending is an action whereas a reception is a
reaction and will not spontaneously occur. Therefore a more appropriate relation will
first require that if, in s belonging to the pair (s, s′), an automaton may receive a message
m, then there is a third state s′′ of the other automaton indistinguishable from s′ w.r.t.
the observable transitions which can send m and second that in s′ the other automaton
can send a message (not necessarily m). The first condition expresses that the former
automaton is not overspecified and the second one that it will not wait indefinitely for
a message.

These considerations yield the following formal definition.

Definition 1 (Interaction relation). Let A1 = (S, s01, A,→1) and A2 = (S, s02,
A,→2) be two automata. Then A1 and A2 correctly interact iff ∃ ∼ ⊆ S1 × S2 such
that:

– s01 ∼ s02
– ∀s1, s2 such that s1 ∼ s2

• Let a /∈ {?m |m ∈ M} then

∗ if ∃ s1
a==⇒1 s′1, then ∃ s2

a==⇒2 s′2 with s′1 ∼ s′2
∗ if ∃ s2

a==⇒2 s′2 then ∃ s1
a==⇒1 s′1 with s′1 ∼ s′2

• Let m ∈ M ; if s1
?m===⇒1 s′1 then

∗ ∃ s−2
w===⇒2 s2, ∃ s−2

w===⇒2 s+
2 , ∃ s+

2
!m===⇒2 s′2 with s1 ∼ s+

2 and
s′1 ∼ s′2 where w is a word

∗ ∃ s2
!m′

====⇒2 s′2
• Let m ∈ M ; if s2

?m===⇒2 s′2 then

∗ ∃ s−1
w===⇒1 s1, ∃ s−1

w===⇒1 s+
1 , ∃ s+

1
!m===⇒1 s′1 with s+

1 ∼ s2 and
s′1 ∼ s′2 where w is a word

∗ ∃ s1
!m′

====⇒1 s′1
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Fig. 1. An example of two interacting systems

We illustrate the interaction relation in figure 1. The left automaton corresponds to
the BPEL service switch[!o[a], !o[b]], i.e. a service that internally decides to send mes-
sage a or b. The right automaton represents a possible client that waits either for an a or
b before terminating. The curved lines denote the relation between states. Observe the
importance of the definition: the initial state of the left automaton is related with three
states, on that can (observably) send both a and b and the two other ones that can only
send either a or b. However for the client these states are not “distinguishable” and so
this initial state is allowed to wait for an a or a b.

2.3 Client Automaton Synthesis

We are now in position to present the client synthesis algorithm. Since the client must
be implementable, we require it to be deterministic. This consideration leads to choose
as model for our client a deterministic automaton which is in interaction relation with
the automaton of the BPEL process.

Before developing it, we emphasize that there exist BPEL process which do not
admit clients. For instance, process switch[?o[m], ?o[m′]] internally chooses to receive
either a message m or m′ and thus no deterministic automaton can correctly interact
with it since it would imply that, in its initial state, the client should send either m or
m′ while the server would wait the other message. Observe the difference with process
switch[!o[m], !o[m′]] where a client can be easily designed: it just waits for either m or
m′ (see figure 1). We say that a process is ambiguous if it does not admit a deterministic
automaton which is in interaction relation with it.

Here we give an abstract view of the algorithm. A detailed description of the algo-
rithm is given in [10]. The general principle of our algorithm is similar to a determini-
sation procedure: a state of the TA client will correspond to a subset of states of the TA
of the service.

More precisely, each potential state s of the automaton client is associated with a
subset of states S2(s) of the TA service which are related to s via the interaction relation.
During the construction, there is a stack of client states to be processed. At the beginning
of the algorithm, the stack contains an initial client state s01 such that S(s01) = {s02},
s02 being the initial state of the service. It stops either when the stack is empty (i.e. the
client has been built) or when it has detected the ambiguity of the service.

First, we compute the ε-closure by τ -transitions. If this subset (call it S′) of service
states is already associated with a state s′ of the client, then the transition of the client
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which has generated the subset is redirected to s′. Otherwise, one creates a new client
state and we go on. We check the interaction relation for transitions. If it is not fulfilled
then we stop the construction. We give below an algorithmic description of a step of
the algorithm.

unstack (s, S′)
S′ ← ε−closure(S′)
If S′ has already be analysed and paired with s′ Then

one redirects the arc entering s toward s′ and one deletes s
Else

For every a s.t. subset Sa of a-successors of S′ is non empty do
If a /∈ {!m}m∈M and ∃t ∈ S′ ¬t

a=⇒ Then ambiguity

Else If a ∈ {!m}m∈M and ∃t ∈ S′ ∀m′ ¬t
!m′
=⇒ Then ambiguity

Else create sa; add s
a−→ sa; stack (sa, Sa)

2.4 Client Interpreter

We have implemented a client interpreter based on the previous theoretical develop-
ments. The interpreter downloads the BPEL description of the service. Then it gener-
ates the automaton according to the algorithm and it “executes” this automaton (see
figure 2). More precisely:

– It maintains the current state of the automaton.
– It opens (or let open) one input window per enabled action !m; this means that the

user can choose the type of message it wants to send and to enter the corresponding
data. It closes the windows that correspond to messages now disabled.

– It arms a time-out of one time unit.
– It changes the current state,

• either on reception of a message with opening an output window,
• either on validation of an input window with sending of the message,
• or on triggering of time-out.

Fig. 2. Generic client interpreter
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3 Aspect Oriented Programming and Web Services

3.1 Principles of AOP

AOP is a concept that enables the modularization of crosscutting concerns into sin-
gle units called aspects, which are modular units of crosscutting implementation [18].
Crosscutting concerns are requirements that cannot be localized to an individual soft-
ware component and that impact many components. In aspect-speak, these requirements
cut across several components. Aspect-oriented languages [19,15,1,21] are based on
three paradigms:

1. Joinpoints: They denote the locations in the program that are affected by a particular
crosscutting concern.

2. Pointcuts: They specify a collection of conditional joinpoints.
3. Advices: They are codes that are executed before, after or around a joinpoint.

For instance the logging functionality is often scattered horizontally across object hier-
archies and has nothing to do with the core functions of the objects it is scattered across.
The same is true for other types of code, such as security, exception handling, and trans-
parent persistency. This scattered and unrelated code is known as crosscutting code and
is the reason for AOP’s existence. Using AOP, we can insert the logging code into the
classes that need it with a tool called a weaver. This way, objects can focus on their core
responsibilities. The figure 3 shows the weaving process. The weaver is in charge for
taking the code specified in a traditional (base) programming language, and the addi-
tional code specified in an aspect language, and merging the two together. The weaver
has the task to process aspects and component code in order to generate the specified
behaviour. The weaver inserts the aspects in the specified joinpoint transversally. The
weaving can occur at compile time (modifying the compiler), load time (modifying the
class loader) or runtime (modifying the interpreter).

3.2 Adapting BPEL Processes

Several researches [4,5,25] consider AOP as an answer to improve WS flexibility. In
our previous approach, we developed an AOP-based tool named Aspect Service Weaver
(ASW) [2,23]. The ASW intercepts the SOAP messages between a client and an ele-
mentary WS, then it verifies during the interaction whether there is a newly introduced
behaviour (advice service). We use the AOP weaving time to add the new behaviour
(before, around or after an activity execution). The advices services are elementary WSs
whose references are registered in a file called “aspect services file descriptor”. The
pointcut language is based on XPath [27]. XPath queries are applied on the service de-
scription (WSDL) to select the set of methods on which the advice services are inserted.

We extend this approach to BPEL processes. We apply the AOP concepts to a BPEL
process in order to automatically generate an extended BPEL process without modi-
fying the BPEL engine. This process contains the base BPEL process and the advice
services. We apply the AOP concepts on BPEL processes in the following way:
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Fig. 3. The weaving process

1. A joinpoint is a simple or structured BPEL activity.

2. The pointcuts are specified on the BPEL document by using XPath.

3. The advice services are BPEL processes implementing the additional behaviour.

We also add to the generated process, a replying activity before each inserted advice
service (see figure 4). This activity sends to the client a message called execute. This
message informs the client about the execution of an additional behaviour. It encapsu-
lates two kinds of information: the identifier of the advice service and its corresponding
interaction protocol. This message is necessary since this additional behaviour can re-
quire new information exchange involving messages not expected by the client and
leading to execution failures. At the level of client implementation, the developer has
to handle this type of message: it must extract the interaction protocol of the advice
service and integrate it in its behaviour. This part is detailed later.

Fig. 4. The extended executable BPEL process
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Fig. 5. The extended BPEL generator

3.3 Extended BPEL Generator

These previous concepts are concretized through the architecture of our tool named
extended BPEL generator. The tool contains the following components (see figure 5):

1. The BPEL weaver
2. The aspect services file descriptor
3. The service advice repository (or the pattern repository) which contains the ser-

vices advices present in the system.
4. The deployment module which deploys the extended BPEL process on a standard

BPEL engine.

The BPEL weaver takes as input the base BPEL process and the aspect services
file descriptor. Then, it performs transformations on the base BPEL process syntactic
tree. It inserts the actions of sending execute messages and the advices services at the
selected joinpoints depending on the kind of the advice service. The figure 6 shows the
transformations made on the base process

receive(ResReq); switch({reply(ResResp)reply(error)})

which receives a ResReq message then replies by a ResResp or error message de-
pending on a condition (the switch process). In the case of an around service advice
(figure 6.d), the specified joinpoint is replaced by the advice service and the execute
message replying activity, because we consider that the advice service can encapsulate
the joinpoint. In the figure, a triangle represents an advice service and Q its correspond-
ing interaction protocol.

3.4 The Extended Interaction Protocol

The extended executable BPEL process interaction protocol is described by an extended
abstract BPEL process which integrates the sending of execute messages. The extended
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Fig. 6. Syntactic transformations on the base executable BPEL process

interaction protocol is generated from the base BPEL process and the aspect service file
descriptor based on the defined pointcuts and the type of advices (before, after or around).

The generation process performs transformations on the base abstract BPEL pro-
cess syntactic tree. It inserts the action of sending execute messages in the selected
joinpoints depending on the kind of the advice service (figure 7). The execute messages
contain only the identifier of the advice service id. The interaction protocol correspond-
ing to that id is sent to the client at runtime. In this way, the advice service can be

Fig. 7. Transformations on the syntactic BPEL process tree
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changed at any time without requiring a new publication. Since we have chosen to let
unchanged the BPEL engine, the weaver acts at deployment time.

3.5 The New Operational Rules

In order to take into account the special nature of the message execute we modify the
operational rules related to messages.

∀m ∈ M ∗ o[m]
χ−−→ ∗o[m] with ∗ ∈ {?, !}

∀m ∈ M \ {execute} ∗ o[m] ∗m−−−−→ empty with ∗ ∈ {?, !}

!o[m]
!execute(id)−−−−−−−−→ WaitAdvice(id) (1)

WaitAdvice(id)
id.

√
−−−→ empty (2)

The two first rules are similar to those presented in subsection 2.1. In the case of
sending an execute message, the automaton evolves to an intermediary state named
WaitAdvice(id) (rule 1). WaitAdvice(id) waits for the termination of the advice
service identified by id. When advice service id terminates, WaitAdvice(id) state ex-
ecutes id.

√
and becomes empty process (rule 2). In words, these two rules mimic the

synchronisation corresponding to a procedure call.

3.6 The Dynamic Client Interpreter

In order to communicate with change-prone BPEL processes, we extend the previous
client interpreter. The new client has to achieve the following tasks:

1. When the client receives an execute(id) message, it has to extract the advice ser-
vice interaction protocol (identified by id) and generates its corresponding server
and client automaton.

2. It simultaneously executes the client automaton of the main process and its advice
clients automata.

3. It makes synchronisation between the main client TA and the advices clients TA on
the termination of service advices execution.

Furthermore, the generation module of the dynamic client interpreter also integrates
new operational rules for sending and receiving in order to handle the execute(id)
messages.

3.7 Execution Scenario

Let us consider the abstract BPEL process defined before. If we want to dynamically add
an authentication process before the switch process, the extended abstract BPEL process
has to integrate a sending execute(id) message process before the switch process.

?o[ResReq]; !execute(id); switch(!o[ResResp], !o[error])
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Fig. 8. Adaptable service and client automata

At execution time, the dynamic client interpreter downloads the extended abstract
BPEL specification. Then, it generates the corresponding service automaton based on
the operational rules previously defined. Afterwards, based on the service automaton
and the interaction relation, our client generates the client automaton and begins its
interpretation. Figure 3.7 shows the generation process.

When the client receives an execute(id, Q) message, it extracts the abstract BPEL
advice service process from the message. In our example, the advice service is an au-
thentication process which abstract BPEL specification is:

!o[authDataRequest] ; ?o[authDataResp]

This process sends an authentication data request to the client asking for authentica-
tion data, receives these data then performs some actions to authenticate the user not
represented here for simplicity. The client generates the corresponding advice client au-
tomaton, associates with the received id and begins its execution (see figure 9 (left part)
where states in grey represents the current execution step).

When the advice client id terminates, the client synchronises the two automata: it
deletes the advice client, performs the id.

√
action and continues the execution of the

main client automaton (see figure 9 (right part)).

4 Related Work

Formal specification and verification of Web services. Some proposals have recently
emerged to formally describe WSs, most of them are grounded on transition system
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Fig. 9. Reception of an execute(id,Q) message (left) and the termination of an advice service
(right)

models (Labelled Transition Systems, Petri nets, etc.) [12,6]. The platform WSAT [8,9]
enables designers of a Web service composition to check properties expressed by LTL
formulas with SPIN tool. The formal semantics is obtained by gluing patterns for each
BPEL construction. One pattern is connected from its final state to the initial state of
next pattern according to the BPEL description with local transitions. This work does
not cover the time features and it focuses only on message exchanges: the conversation
is obtained by a virtual watcher that is supposed to record all messages sequences sent
by each peer enrolled in the composition.

Another research about Web services formal semantics is based on a BPEL to Finite
State Processes (FSP) translation [7]. This work lies on message sequence charts and
the core of the verification mechanism consists to check trace equivalence. Again, the
time features of the specification are not taken into account.

The work [24] uses the notation CRESS (Chisel Representation Employing System-
atic Specification) to formalise Web services. This model presents two main advantages:
automatic translation into formal languages for analysis as well as into implementation
languages for deployment. Then the CRESS specification is translated into LOTOS and
analysed with tools like TOPO, LOLA and CADP. Again, the temporal aspects are not
present.

These different contributions share with our approach the design of a formal seman-
tics for Web services. However they study the BPEL execution process and not the
interaction protocol, they do not include the time features of BPEL and they perform
component verification whereas we perform component synthesis.

AOP and Web services. In [4] and [5], the authors define specific AOP languages to
add dynamically new behaviours to BPEL processes. But, neither of these approaches
address the client interaction issue. The client has no mean to handle the interactions
that can be added or modified during the process execution.
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The Web Service Management Layer (WSML) [25] is an AOP-based platform for
WSs that allows a more loosely coupling between the client and the server sides. WSML
handles the dynamic integration of new WSs in client applications to solve client exe-
cution problems. WSML dynamically discovers WSs based on matching criteria such
as: method signature, interaction protocol or quality of service (QOS) matching. In a
complementary way, our work proposes to adapt a client to a modified WS.

5 Conclusion

In this paper, we proposed a solution based on AOP and process algebra to handle dy-
namic changes in the context of Web services. We extended our previous AOP approach
to support BPEL processes and to handle interaction issues. We also use process algebra
formalism to specify change-prone BPEL processes and generate dynamic clients.

As future works, we want to take into account the client execution context. We also
want to formally handle the aspect interactions issue (aspects applied at the same join-
point). Finally, we plane to improve the current ASW prototype as proof-of-concepts.
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Abstract. In this work we examine the problem of verifying translations from
outputs of one system to the inputs of another system, which we refer to as the
output-to-input translation problem. We present a formalization of this problem
along with a verification mechanism based on constraint logic programming. Com-
position of systems is an important issue in the software reuse domain, and has
applicability in other areas of software engineering such as transformation of in-
formation from one phase of the development process to another. Some challenges
are to verify the translation mechanisms that may be needed to connect indepen-
dently designed components and assess to what degree is the consumer component
functionality enabled after the composition takes place. To this end we use con-
straint logic programming modeling techniques. Our model allows formalization
of the translation problem in the form of constraints and relations between the out-
puts and the inputs of involved components. Since CLP tools are computationally
expensive, we identify characteristics of translation problems for which our tech-
nique is practical. We conclude with an application of our translation framework
within the Documentation Driven Software Development methodology.

1 Introduction

In this work we address a problem originating from the domain of software component
reuse in the design of complex systems, where a system may be composed of complex
subsystems. To reduce implementation costs and improve reliability, design of such
systems may incorporate existing software libraries or complete subsystems. In practice
software reuse is not limited to just matching component interfaces, and will potentially
require translation of outputs of the producer component to the inputs of the consumer
component. The challenge is that the translation can potentially involve merging outputs
via some sequence of operations. In this case it is important to verify that the translation
enables functionality of the consumer software component while supporting the outputs
of the source software component.

Therefore, the context for this work is conceptual verification of certifiable systems
where there exists a prior version of the system that has been certified correct and one
part of it is being updated and the system constraints are known. For example, it may
be required to replace some component due to new performance demands or since it
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became obsolete and unsupported. The update must be verified correct in order for the
next version to obtain certification as well. The verification of the updated system does
not eliminate the need for testing as the replaced component may contain implemen-
tation errors, such as memory overflows, timing faults, etc. The goal of this work is
to provide a sound verification framework that validates design of the upgrade, under
the assumption that the new component meets its specifications, as expressed by the
constraints associated with the component. The verification of the translation targets
architecture level faults and should help reduce system integration problems.

1.1 Validating Component Compositions

The problem of validating the composition of components is an active research area.
A previously studied approach to the problem is to use an object-oriented modeling
language and graphical tools to define and reason about component composition. For
example, GenVoca generators [1] are used to synthesize software systems by composing
components from reuse libraries. In GenVoca, components are parametrized program
transformations that encapsulate consistent data and operation refinements. In [2] it is
shown that GenVoca can be used to validate composition of components. However, the
assumption in [2] is that the compatible components implement same abstract interface.
In our work we do not make this assumption. Moreover, the degree to which the con-
sumer component is enabled as a result of the composition is not being measured in [2],
which we measure in this work by computing the range of the output of the consumer
component as compared to the output produced before composition takes place. Mean-
ing, constraint logic program can provide information about the possible solution space
for the constraint program that defines the new composition based on the set of given in-
puts, which can be compared to the range of outputs produced for the same set of inputs
by the consumer component either on its own or in an existing system configuration.

Another way to approach the problem is through reasoning about interface matching
and validation based on the detailed knowledge of the component’s code, as was done
in [3]. Specifically, [3] presents an approach to modeling components and component
composition, which incorporates the notion of communication between individual com-
ponents in the composition. Verification of composition is performed on interactions
between component interfaces. Again, translation is not considered. An interesting as-
pect of [3] is that the proposed model can check if a specific (transition) path in the
composition is reachable. However, the extent of reachable paths is not computed.

In [4] a conceptual framework is presented for software component definition, vali-
dation, and composition. This framework is dubbed ComDeValCo and it approaches
the problem of component composition by structuring system components as a li-
brary of components. The verification and validation methods for composition are not
well detailed.

The problem of translation in the context of web applications is examined in [5],
where a formal model is presented for providing a mapping between two independent
web modules. The key contribution of [5] is that they remove the lexicographical map-
ping requirements between components and allow the designer to choose which outputs
and inputs should be connected. In addition, [5] presents a mechanism for code gener-
ation from the mapping. The translations are mathematically specified through abstract
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state machines. However, the mapping is a direct mapping (one-to-one) and authors
of [5] do not provide a verification mechanism for the mapping. In our work we relax
the one-to-one mapping requirement and allow components in the composition to be
connected via an intermediate translator.

The above works approach the problem of component composition from a systems
level. There are higher level approaches to component composition that involve rea-
soning at a more abstract level of automata such as Timed Input/Output Automata [6].
However, it is often the case that an abstract automata representation of components
may be difficult and time consuming to extract from existing implementations. In our
approach we attempt to provide a bridge between the abstract and low level system
specifications, where our framework will attempt to verify component translation based
on the amount of information given. Clearly, the more detailed information is provided
about the components, domain of inputs, range of outputs, and the translation function-
ality, the more informative the answers will be.

Type-checking is another classic approach that can be used to verify matching be-
tween outputs and inputs in the composition. However, static type-checking is not suffi-
cient to verify values of the data based on examination of the code, for example check-
ing bounds on array indexes. Dynamic type-checking can be used to verify variable
assignments, but such an approach is usually used at runtime and to the best of our
knowledge cannot always be used as a proactive mechanism [7].

In this work we abstract the problem of component composition to its functional
behavior. Specifically, we relax assumptions that component code is available, rather we
assume that only constraints on the behavior (functionality) of the components is known
along with domain information of the input and outputs. These constraints characterize
the slots in the architecture that are to be filled by the components in question. The
constraints represent the standards imposed by the architecture on “plug-compatible”
components. These standards typically do not completely characterize all the details of
the behavior of acceptable component, although ideally they should be strong enough
to guarantee that any component that meets the standards will enable the architecture to
perform its intended functions.

Clearly the more information about components is available the more precise guar-
antees can be provided about the composition. We do not assume that there will be a
strict interface matching between components and that the use of a non-trivial trans-
lation layer may be necessary. We are interested in verification of the composition by
measuring the degree of enabled functionality of the consumer component after the
composition takes place.

1.2 Constraint Logic Programming

Constraint logic programming (CLP) is a programming paradigm that allows expressing
logical relations among several unknown variables, where each variable accepts values
from some domain. For example (from [8]), assume placement of a square and a circle
in a two dimensional plane, where the relation between these two objects is that the
circle should be contained within the square. Note that the size of these objects and
the location of the circle within the square are not specified. One may add additional
constraints to this system that describe specific ratios, distances from the borders, or
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add additional objects and introduce constraints on the relations between all objects.
A CLP solver is a tool that provides an answer whether the constraints expressed by a
CLP program are satisfiable, unsatisfiable, or undecidable.

CLP has been used to successfully model complex problems from various domains,
such as design of analog and digital circuits, civil and mechanical engineering, finance,
assembly line optimization, building visual language parsers, and many others (for a
comprehensive survey of CLP models we refer the reader to [9]).

Solving a CLP program involves the problem of constraint satisfaction [10], which
can be a computationally difficult problem. This means that for certain classes of prob-
lems constraint satisfaction requires exponential time with respect to the number of vari-
ables, for example all problems that are reducible to the 3SAT problem. The good news
is that many practical problems can be defined in terms of constraints over finite do-
mains (including some problems from the boolean domain). Programs that require infi-
nite domains are efficiently solvable if constraints can be specified as linear constraints
on integer variables; the same is not true for nonlinear constraints. Continuous domains
are common in real-world problems, where for this class of problems there are efficient
solutions for constraint satisfaction when constraints are expressed as linear inequalities
forming a convex region – linear programming. For a brilliant presentation of the con-
straint satisfaction problem we direct the interested reader to [10]. For practical point-
ers on modeling decisions that make a solution to a constraint logic program terminate
quickly we direct the reader to [11]. Advances in the research on CLP solvers and in-
creasing computational power of computers makes CLP an attractive method for solving
problems in a wide range of domains, including software engineering. However, in the
context of this work we will introduce restrictions to make our approach practical.

In this work we are interested in validating the translation between two software
components, but also in assessing size of the solution space. Doing so can give insight
about the functionality being enabled of the target software component. When the size
of the solution space produced by the consumer component after the composition is
same as the size of the solution space prior to the composition, then the composition
preserved the functionality of the consumer component, else some functionality has
been restricted.

Document Structure. In Section 2 we present a general framework for component trans-
lation. At this point we abstract from software components and present our framework in
terms of generic components that have inputs, outputs, and functionality. In Section 3 we
introduce a general model within which the translator is defined in terms of constraints
and relations between outputs and inputs, and we present some necessary conditions for
validation of a given translation. Various constraint domains are discussed in Section 4.
In Section 5 we examine application of our framework within Documentation Driven
Software Development framework, by augmenting an Open Architecture [12]. We con-
clude with final remarks and point out future research directions in Section 6.

2 Formal Modeling of Component Translations

Figure 1 depicts a composition of two components that is accomplished by use of a
translation of outputs of the source component to the inputs of the target component.
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Fig. 1. A general representation of the translation process from outputs of one component to
inputs of another

Specifically, outputs of Ω1 are mapped via a logical relation to the inputs of Ω2 through
the mapping μ1,2. (In the configuration that is being replaced, Ω2 is connected directly
to some other producer component.)

The objective is to verify to what degree the translation μ1,2 enables the function-
ality of the consumer component. Specifically, the range of output of the consumer
component prior to new composition configuration is produced by the functionality of
consumer component based on the allowed domain of system inputs. The new com-
position configuration and the use of a translator may restrict the domain of inputs of
the consumer component and consequently reduce the range of its outputs. It may be
possible for such differences to be measurable and used as indicators of the degree of
enabled functionality.

2.1 Assumptions

The primary assumption is that the translation is unidirectional, where the data flows
from the producer component to the consumer component. This is done for presentation
purposes and the bidirectional extension is straightforward.

We assume that the components used in the translation are well-formed, with inputs
and outputs that are bound to some specific set of types. The well-formedness assump-
tion restricts components to ones that have a fixed functionality and fixed protocol for
interacting with their connections. Note that our assumptions are not very restrictive
and do not rule out all models that may exceed descriptive powers of the specific CLP
language used or may exceed capabilities of the accompanying solver. We provide a
short survey of CLP languages and their capabilities and implementations in Section 4.

2.2 Notation and Model

In this section we describe our model along with definitions of mathematical notation and
symbols used to describe components and their functionality, as well as the meaning of
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the translation. In order to avoid notational clutter, whenever we refer to a component, or
component’s inputs or outputs outside of the composition we forgo the use of subscripts.

A component Ω is represented as a tuple from ι × o × R × C. The elements of
ι and o are tuples with at least one field, more formally o = 〈o1, o2, . . . , on〉 and
ι = 〈ι1, ι2, . . . , ιm〉, where n and m represent the number of outputs and inputs respec-
tively. Each field of ι, respectively o, is defined over a domain of some fixed type. R is

a mapping from inputs to outputs, such as R : ι
{r1,r2,...,rn}→ o, where {r1, r2, . . . , rn}

represents the set of relations that map component inputs to each of the outputs. Compo-
nents with internal states are modeled by adding an extra input and output for each state
variable, so that state variables can be used in constraints. R is modeled as a relation to
accommodate possibly nondeterministic component behavior. C is a set of constraints
defined over inputs and outputs. Constraints are terms that define desired properties of
the inputs and outputs. There should be at least one constraint on each field of ι and o.
For instance, assume that the first field of input ι accepts any number from the domain
of natural numbers, in this case the minimal constraint on the first field of the input is:
domain(ι(1)) = N. In addition, C contains constraints that define relations between
individual inputs and outputs that realize the component transformation. For example,
a component may have two outputs where one is a checksum of the other, hence a con-
straint would have to be added that describes this relation. Note that range(o(·)) can be
defined directly as a set as it was done for domain(ι(1)), or it can be defined as a set
computed over the relation ri for some i between 1 and n. Specifically: range(o(i)) =
{y : ∃x1, . . . , xm(∀(1 ≤ j ≤ m ⇒ xj ∈ domain(ι(j))) ∧ y ∈ ri(〈x1, . . . , xm〉))},
where 1 ≤ i ≤ n.

A translation μ1,2 is a mapping from the outputs of Ω1 to the inputs of Ω2, and is
represented by a tuple of the form ι × o × R, where fields of this tuple are defined
similarly as above. In addition, range(oμ(i)) is defined similarly to range(o(i)) (see the
preceding paragraph).

Therefore, given μ1,2, the definitions of Ω1 and Ω2, and the set of system constraints,
verification of the translation requires that we check at least the following goal conditions.

range(o1(i)) ⊆ domain(ιμ1,2(i)), 1 ≤ i ≤ nμ1,2 (1)

range(oμ1,2 (j)) ⊆ domain(ι2(j)), 1 ≤ j ≤ m2 (2)

The above conditions reflect the requirement that the domain of the mapped outputs
of Ω1 via some combination of operators to the inputs of Ω2 falls into the acceptable
domain. Hence, ensuring that the output produced by the mapping of outputs of Ω1 will
be supported by inputs of Ω2.

The goals can also include assertions that describe the intended cooperation between
the components. For a simple example consider a secure internet connection that en-
crypts data while it is in transit. In such a case component Ω1 should act as an encoder,
component Ω2 a decoder, and an appropriate additional goal would be that the two com-
ponents compute transformations that are inverse of each other, which can be expressed
as the assertion o1 = ι2.
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3 Translation Verification

Thus far we presented a general framework that defines the translation from outputs
of the producer component to the inputs of the consumer component. The remaining
activity is the verification of the translation. This section presents a method for veri-
fication of μ by using a constraint logic programming [9] framework. The discussion
that follows presents an approach for a general, theoretical CLP solver, and not for any
specific CLP implementation. However, this general approach is used as a guideline for
implementation of CLP solvers.

A constraint logic program can be defined in terms of tuple 〈G, S〉, where G is
a set of constraint goals, and S is a set of constraints. In our model, a minimal set
of constraint goals is represented by conditions (1) and (2) in the preceding section.
These goals ensure that the communication between the producer component and the
translation, and the translation and between the consumer component allow unrestricted
information flow. Therefore, our aim is to prove each of the terms in G to be true. The set
S represents the set of conditions under which the set of goals has to hold. Therefore,
constraints in S are assumed to be true and represent system requirements that have
been proved correct beforehand. The solver verifies constraints from G by moving
these that evaluate to true to the set S. A system is satisfiable when all constraints in G
evaluate to true and the set G is empty at the end of the prove; otherwise, the system is
unsatisfiable. Therefore, the solver checks whether all constraints in G(X) and S(X)
hold true for all interpretations of system variables in the set X , where X represents
the set of system variables. In a well formed goal, the only free variables correspond to
the inputs and outputs of the components and the translation itself. Per our assumption
each field of each input and output is associated with at least one constraint. Hence all
of the free variables that appear in G also appear in S. When the solver is successful
the system 〈G, S〉 is satisfiable, and since G has no free variables other than those in
X , the goal assertions must be true for any scenario in which the constraints hold. We
conclude that within the composition the ranges of outputs are subsets of domains of the
inputs – as desired. (Recall that a constraint system is undecidable when the termination
condition cannot be reached, see [13] for debugging techniques.)

Hence, using our model, we convert conditions (1) and (2) to the following set of
goals:

G =
⋃

1≤i≤nµ1,2

{range(o1(i)) ⊆ domain(ιμ1,2 (i))} ∪

⋃
1≤j≤m2

{range(μ1,2(j)) ⊆ domain(ι2(j))} (3)

The set S is simply:

S = C1 ∪ C2 ∪ Ccomposition constraints ∪ Cdesign constraints (4)

Where C1 and C2 denote the constraints associated with Ω1 and Ω2, respectively.
Ccomposition constraints and Cdesign constraints (see Figure 1) represents any addi-
tional constraints on the composition of the two objects. For example, the system design
may impose that the outputs of Ω2 have a specific relation to outputs of Ω1 or inputs
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of Ω2. Therefore, these constraints enforce the semantics of the transformation imple-
mented by the composition of the two components. In practice, the developer does not
need to be specific about which constraints belong to G and which belong to S. Rather,
the developer in addition to the constraints depicted in (3) identifies all system con-
straints and the logical relation between the system variables.

The following a very simple example illustrates a situation in which a constraint
model allows us to verify semantics of the translation that goes beyond simple type
checking. A producer component produces an integer value as an output, and the con-
sumer component accepts an integer value and an input – these requirements represent
constraints C1 and C2. However, the values output by producer are opposite of what
is expected by the consumer component – an example of a composition constraint,
Ccomposition constraints (i.e., translation implements the following relation o1(i) =
−1 × ι2(j) for some appropriate indexes i and j). The goal constraints are trivial in
this example and basically require that outputs and inputs are constrained to the integer
domain. Such condition is easy to verify using a constraint model, but may be difficult
to verify using other methods.

Assessing The Solution Space. The CLP program as defined by (3) and (4) will produce
a set of terms. If the solution set to our program is an empty set, meaning the solution
space is empty, then the given translation is too limiting. Otherwise, the degree to which
the functionality of Ω2 is enabled can be assessed by comparing the size of the produced
solution space to the size of the domain of ι2. Note that the range of o2 represents the
solution space produced by Ω2 in isolation from the new composition configuration,
where all values in the range of o2 were produced as a result of some function of Ω2.
CLP solvers support verbosity levels that allow printout of the reachable solutions and
the decisions made along the way. The solution trace will depend on the characteristics
of the program and the CLP language/solver that is being used. This means that the
composition can be re-evaluated against the system design requirements and validated
against the trace printout of the reasoning leading to possible solutions. Trace analysis
could be performed by a system designer or possibly be automated. Such analysis can
uncover whether the conceptual output of the system is correct or not. If the output
is not correct, then the analysis can help to identify which constraints or functionality
of Ω1 or μ1,2 are responsible for unnecessarily restricting the desired behaviors of the
newly composed system. (For additional information on debugging constraint programs
please see [13].)

4 Extent of Our Approach

CLP Scheme [14,9] defines classes of languages denoted as CLP(X ), where X is a
pre-interpretation defining the primitive constraints, functions, and their interpretation.
Specifically, this description contains the following information [15]: signature, which
defines a set of function and predicate symbols and associates arity with each sym-
bol, hence defining the terms and primitive constraints of the constraint language, do-
main, which defines the intended interpretation of the constraints, theory, which de-
scribes the logical semantics of the constraints, and solver, which is a description of a
mechanism that can determine where a program described in the language is satisfiable,
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unsatisfiable, or undecidable. Next we list the more prominent classes of domain con-
straints. The following summary is based on the CLP survey [9].

– R: The signature consists of linear arithmetic operators, and constants 0 and 1. The
domain is the real number set. Hence CLP(R) is a language that supports arithmetic
operations over real numbers.

– RLin: a constraint domain defined similarly to R with arithmetic operation ∗ re-
moved. Basically, limited to linear inequalities.

– QLin: defined similarly to RLin, but restricted to the domain of rational numbers
only.

– FT : the signature contains a collection of constant and function symbols and the
predicate =. The domain is a set of finite trees. The primitive constraints are equa-
tions between terms. Basically, it is the Herbrand constraint domain, i.e. based on
equations on the algebra of finite terms.

– RT : defined similarly to FT , where the difference is that the domain includes
infinite trees.

– FEAT : the signature consists of a binary predicate symbol =, a set of unary pred-
icate symbols (called sorts), and a set of binary predicate symbols (called features).
The domain is a set of trees (not necessarily finite), where nodes are sorts and edges
are features. Hence, the constraint domain is defined over feature trees.

– WE : is a language is defined over strings and characters with the concatenation and
equality operations. Hence, it is a constraint domain of equations of strings.

– BOOL: the signature consists of 0, 1, and operators ¬, ∧, ∨, ⊗, ⇒, and =. The
domain is limited to two values: true and false. Hence, this is a two-valued Boolean
constraint domain.

– FD: is a constraint domain that is referred to as the finite domain. The signature
contains operators +, =, 	=, and ≤, and the domain is restricted to a bounded set of
integer values.

The literature contains other constraint domains (see [9]). Tools exist that support the
above languages (although not all features may be supported). Some examples of CLP
tools include BNR-Prolog [16], CAL [17], CHIP [18], CLP(R) [19], Prolog family [20],
RISC-CLP(Real) [21], and Choco [8]. Each of these tools supports one or more X and
provides solvers that are able to answer if a CLP program is satisfiable, unsatisfiable, or
is undecidable under supported X . The Choco solver is especially interesting since it is
a constraint programming system that can be used to define a software architecture for
variable domains, constraints, propagation and tree search and implements the basics
of a constraint system.

In addition to the above CLP languages, there exist other more exotic CLP related
languages such as: REF-ARF [22] which is essentially a procedural language and it
supports non-determinism because of constraints used in conditional statements. REF-
ARF also supports statements such as x = x + 1, where such statements are treated as
constraints of the form xi+1 = xi + 1. In [23], it is shown how to translate concurrent
systems with infinite state spaces to CLP programs while preserving the semantics in
terms of transition sequences. Another CLP relative is the Oz [24] language, which
contains most of the concepts of the major programming paradigms, including logic,
functional (both lazy and eager), imperative, object-oriented, constraint, distributed,
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and concurrent programming. Oz has both a simple formal semantics and an efficient
implementation – The Mozart Programming System [25]. Oz is a concurrency-oriented
language that makes concurrency both easy to use and efficient.

To sum up, there is a rich set of CLP languages that can be used to describe and
reason about component compositions. CLP solvers are becoming more powerful and
are able to provide solutions to a plethora of practical problems. Choice of the specific
tool is based on the nature of problem that needs verification and the functionality of
the convolved components.

5 Application Examples

Software systems in civilian and military domain are increasing in complexity and have
ever more significant impact on human safety, financial resources, and national security.
Complexity of these systems requires incremental development by design of subsys-
tems which are composed together to yield the complete complex system of systems.

Large scale software systems share any subset of the following properties:

Fig. 2. Open architecture

long development time, global de-
ployment strategies, mission critical
requirements, significant resource de-
mands, timing constraints, high qual-
ity and reliability standards, ease of
reconfigurability, and interoperability
with other systems.

The key challenges encountered
during design of complex systems in-
clude: how to generate high quality
and high confidence software, how to
support system evolution and accom-
modate changing requirements, how
to enable support for variety of stakeholders, and how to improve efficiency and pro-
ductivity of the development process. The feature that ensures successful development,
implementation, deployment, and sustainability is precise documentation.

Documentation Driven Software Development (DDD). The DDD [26] framework is
a software engineering methodology that provides assistance for all software life cy-
cle processes, most notably, requirements gathering, quality assurance, design, system
evolution and re-engineering, and project management. Each of the software life cy-
cle stages involves communication between stakeholders and the development teams.
These two groups share the same objective, but their expertise is in different and some-
times mutually unfamiliar domains. DDD provides mechanisms that allow project in-
formation to be effectively communicated between all involved parties, hence provid-
ing a bridge between domain of the stakeholders and the domain of developers (which
is software design and implementation). Finally, the developers and stakeholders will
utilize software and hardware tools during each of the software life cycles. The chal-
lenge here is to ensure proper transformation of project requirements, which may be
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specified informally, into the formal and mathematical format that is required by the
utilized tools. The DDD framework provides mechanisms that help to do just that.

Fig. 3. Component trans-
lation wrapper

Documentation is backbone of the DDD framework. The
novel part of the DDD methodology is that all aspects of
project information are considered as documentation, which
means that documentation is not only limited to natural lan-
guage text representing system design specifications, manu-
als, etc. but also includes formal models, knowledge bases,
code, simulations, etc. With this definition, the documenta-
tion in our approach can provide more effective support for
the entire development process.

5.1 Global Architecture

An objective of the DDD framework is to enable systematic
construction of reliable software architectures for mission
critical systems, particularly with respect to timing constraints extracted from require-
ments. To this end an open architecture was proposed in [12,27] that allows dynamic
system reconfiguration and potentially reduces system testing time. This is achieved by
use of standards, requirements/capabilities and environmental assumptions along with
components, connections, and constraints (see Figure 2).

As depicted in Figure 2, standards are developed from system requirements. Com-
position of subsystems is performed on standards. This approach allows system to be
tested by examination of standards and their interactions. Implementation of the stan-
dard is represented as a plug-in component. Components can be replaced at any time,
and the testing needs to be localized to the component/standard interaction. However,
authors in [12,27] do not provide detailed explanation of how the interaction between
the component and the standard is tested. Our framework can be used to reason about
composition of the plug-in and the standard.

5.2 Applications in Open Architecture

The open architecture presented in [12] is an ideal candidate to apply our translation
framework. Specifically, the standards used in that context should be well defined enti-
ties where functionality and outputs are well documented. A reasonable assumption is
that the plug-in component is not an undocumented black-box and partial or complete
information about its inputs, outputs, and functionality is known a priori to the de-
velopers. However, since standards are inflexible entities, available legacy the plug-in
components may be complex to easily modify and its behaviors may not exactly match
that of the standard, translation may be necessary.

Figure 3 depicts under the Open Architecture presented in Figure 2 where we use
translation in conjunction with standards and components. Under our assumptions, the
designer should have ample information to use our framework and test whether the
component supports a sufficient range of outputs in order to enable the functionality
of the standard, and whether the translation preserves all system constraints. Moreover,
our framework enables verification of compatibility of the new component prior to the
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installation, hence avoiding system downtime improving confidence in the system after
the new component is installed. Furthermore, by forcing the developer to think about the
functionality and the composition in terms of the translation and constraints, the testing
process for the new component can become more streamlined, where the test cases can
be developed based on CLP program – i.e., test outer bounds of the constraints.

5.3 Enumeration Example

This section presents a simple example that is representative of a large class of prob-
lems. Specifically, we consider pattern matching via simple enumeration. This type of
problem is often difficult to verify for a human, and is commonly found in genetics,
security, and logic circuits.

Consider a system consisting of two connected components. Without loss of general-
ity, we can assume that there are two versions of the system, the old version and the new
version that is an updated based on the old system – perhaps the old producer component
may need to be replaced due to incomparability with the new deployment platform.

Old system. Component one, Ω1, has one input and two outputs. Component two,
Ω2 has two inputs (outputs are not important). Component one inputs are from the
alphabet {1, 2, 3, 4}, and component one produce 5 output values from the following
sets: output one {AB, BA, CA, CB} and output two {A,B,C}. Note that these are the
simple constraints on the domains and ranges, i.e., C1 from equation (4 in Sec. 3). A
system constraint is that the only legal inputs to component two are the following pairs:
〈 AB,C 〉, 〈 BA,C 〉, 〈 CA,B 〉, and 〈 CB,A 〉 – constraints making up C2. The meaning
of the listed tuples is 〈 input value to Ω2ι(1), input value to Ω2ι(2) 〉 . We know that in
the old system the component one adheres to the system constraint and implements the
following relation: Rold: {〈 1,〈 AB,C 〉 〉, 〈 2,〈 BA,C 〉 〉, 〈 3,〈 CA,B 〉 〉, 〈 4,〈 CB,A 〉 〉}
– a constraint in Ccomposition constraints.

New system. We are asked to replace the componentΩ1 with a new component, Ω1(new),
where the replacement has the following specifications: The new component: one in-
put over the alphabet {1, 2, 3, 4}; and three outputs, two of these are over the alphabet
{A, B, C}, and one over alphabet {A, B}. Specification for the new replacement states
that Rnew: {〈 1,〈 C,A,B 〉 〉, 〈 2,〈 C,B,A 〉 〉, 〈 3,〈 B,C,A 〉 〉, 〈 4,〈 A,C,B 〉 〉} – this
constraint represents C1(new).

The engineer is told that concatenation of some combination of the two outputs
should produce the output sequences consistent with the old component. Therefore,
the translation element is reduced to a simple string concatenation problem. Where the
inputs of to the translation are defined as the outputs of Ωnew, and its outputs are de-
fined as inputs of Ω2. The goal set G in equation (3) defines constraints on domains
and ranges of inputs and outputs between Ωnew and μnew,2, and μnew,2 and Ω2. The
question is whether this can be validated to be true. Clearly in this case an engineer
can preform the manual computation and answer the question accurately and with a
manageable degree of effort. However, the same may not remain true as the logic and
patterns to match become more complex.

CLP provides an alternative to the manual process. A simple Choco [8] program,
see Figure 4, can be written to test various plausible combinations of the outputs and to
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verify whether the new replacement component can be used. The answer to our problem
is yes, where Ω1(new)o(2) · Ω1(new)o(3) ⇒ Ω2ι(1) and Ω1(new)o(1) ⇒ Ω2ι(2). The
designer chose this connection pattern and the solver checked that it does satisfy all of
the intended constraints.

import s t a t i c s r c . choco . Choco .∗ ;
/ / Impor t l i s t i s t r u n c a t e d in o r d e r t o improve p r e s e n t a t i o n .
import s r c . choco .∗ ;

p u b l i c c l a s s TranVer {
p r i v a t e s t a t i c I n t e g e r V a r i a b l e a = makeEnumIntVar ( ”a” , 1 , 1 ) ;
p r i v a t e s t a t i c I n t e g e r V a r i a b l e b = makeEnumIntVar ( ”b” , 2 , 2 ) ;
p r i v a t e s t a t i c I n t e g e r V a r i a b l e c = makeEnumIntVar ( ” c ” , 3 , 3 ) ;

/ / D e f i n e s r e l a t i o n between t h e i n p u t s t o t h e sy s t e m and e x p e c t e d i n p u t v a l u e s t o Omega 2
p r i v a t e s t a t i c C o n s t r a i n t systemTestOmegaTwoInput ( I n t e g e r V a r i a b l e [ ] tup ) {

re turn makeExpression ( or (
and ( eq ( var ( tup [ 0 ] ) , var ( 1 ) ) , eq ( var ( tup [ 1 ] ) , var ( a ) ) , eq ( var ( tup [ 2 ] ) , var ( b ) ) , eq ( var ( tup [ 3 ] ) , var ( c ) ) ) ,
and ( eq ( var ( tup [ 0 ] ) , var ( 2 ) ) , eq ( var ( tup [ 1 ] ) , var ( b ) ) , eq ( var ( tup [ 2 ] ) , var ( a ) ) , eq ( var ( tup [ 3 ] ) , var ( c ) ) ) ,
and ( eq ( var ( tup [ 0 ] ) , var ( 3 ) ) , eq ( var ( tup [ 1 ] ) , var ( c ) ) , eq ( var ( tup [ 2 ] ) , var ( a ) ) , eq ( var ( tup [ 3 ] ) , var ( b ) ) ) ,
and ( eq ( var ( tup [ 0 ] ) , var ( 4 ) ) , eq ( var ( tup [ 1 ] ) , var ( c ) ) , eq ( var ( tup [ 2 ] ) , var ( b ) ) , eq ( var ( tup [ 3 ] ) , var ( a ) ) ) ) ) ; }

/ / D e f i n e s r e l a t i o n between t h e i n p u t s t o t h e sy s t e m and e x p e c t e d i n p u t v a l u e s t o Omega 1
p r i v a t e s t a t i c C o n s t r a i n t systemTestOmegaOneOutput ( I n t e g e r V a r i a b l e [ ] tup ) {

re turn makeExpression ( or (
and ( eq ( var ( tup [ 0 ] ) , var ( 1 ) ) , eq ( var ( tup [ 1 ] ) , var ( c ) ) , eq ( var ( tup [ 2 ] ) , var ( a ) ) , eq ( var ( tup [ 3 ] ) , var ( b ) ) ) ,
and ( eq ( var ( tup [ 0 ] ) , var ( 2 ) ) , eq ( var ( tup [ 1 ] ) , var ( c ) ) , eq ( var ( tup [ 2 ] ) , var ( b ) ) , eq ( var ( tup [ 3 ] ) , var ( a ) ) ) ,
and ( eq ( var ( tup [ 0 ] ) , var ( 3 ) ) , eq ( var ( tup [ 1 ] ) , var ( b ) ) , eq ( var ( tup [ 2 ] ) , var ( c ) ) , eq ( var ( tup [ 3 ] ) , var ( a ) ) ) ,
and ( eq ( var ( tup [ 0 ] ) , var ( 4 ) ) , eq ( var ( tup [ 1 ] ) , var ( a ) ) , eq ( var ( tup [ 2 ] ) , var ( c ) ) , eq ( var ( tup [ 3 ] ) , var ( b ) ) ) ) ) ; }

p u b l i c s t a t i c vo id main ( S t r i n g [ ] args ) {

So lver pb = new CPSolver ( ) ;
I n t e g e r V a r i a b l e omega1in1 = makeEnumIntVar ( ”Omega1 . in ( 1 ) ” , 1 , 4 ) ; / / i n p u t t o Omega 1
I n t e g e r V a r i a b l e omega1out1 = makeEnumIntVar ( ”Omega1 . out ( 1 ) ” , a . g e t B i n f ( ) , c . g e t B i n f ( ) ) ; / / o u t p u t 1 o f Omega 1
I n t e g e r V a r i a b l e omega1out2 = makeEnumIntVar ( ”Omega1 . out ( 2 ) ” , a . g e t B i n f ( ) , c . g e t B i n f ( ) ) ; / / o u t p u t 2 o f Omega 1
I n t e g e r V a r i a b l e omega1out3 = makeEnumIntVar ( ”Omega1 . out ( 3 ) ” , a . g e t B i n f ( ) , b . g e t B i n f ( ) ) ; / / o u t p u t 3 o f Omega 1
I n t e g e r V a r i a b l e omega2in1b1 = makeEnumIntVar ( ”Omega2 . in ( 1 ) . b1” , a . g e t B i n f ( ) , c . g e t B i n f ( ) ) ; / / i n p u t 1 b i t 1 o f Omega 2
I n t e g e r V a r i a b l e omega2in1b2 = makeEnumIntVar ( ”Omega2 . in ( 1 ) . b2” , a . g e t B i n f ( ) , b . g e t B i n f ( ) ) ; / / i n p u t 1 b i t 2 o f Omega 2
I n t e g e r V a r i a b l e omega2in2 = makeEnumIntVar ( ”Omega2 . in ( 2 ) ” , a . g e t B i n f ( ) , c . g e t B i n f ( ) ) ; / / i n p u t 2 o f Omega 2

/ / D e f i n i t i o n s o f problem v a r i a b l e s
I n t e g e r V a r i a b l e [ ] varsOmega1 = new I n t e g e r V a r i a b l e [ 4 ] ;
I n t e g e r V a r i a b l e [ ] varsOmega2 = new I n t e g e r V a r i a b l e [ 4 ] ;
varsOmega1 [ 0 ] = omega1in1 ; / / i n p u t t o Omega 1
varsOmega1 [ 1 ] = omega1out1 ; / / o u t p u t one o f Omega 1
varsOmega1 [ 2 ] = omega1out2 ; / / o u t p u t two of Omega 1
varsOmega1 [ 3 ] = omega1out3 ; / / o u t p u t t h r e e o f Omega 1
varsOmega2 [ 0 ] = omega1in1 ;
varsOmega2 [ 1 ] = omega2in1b1 ; / / i n p u t one ( b i t 1 ) o f Omega 2
varsOmega2 [ 2 ] = omega2in1b2 ; / / i n p u t one ( b i t 2 ) o f Omega 2
varsOmega2 [ 3 ] = omega2in2 ; / / i n p u t two of Omega 2

/ / R e l a t i o n implemented by t h e t r a n s l a t i o n
Model m = new CPModel ( ) ;
m. addConstra int ( eq ( omega1out2 , omega2in1b1 ) ) ;
m. addConstra int ( eq ( omega1out3 , omega2in1b2 ) ) ;
m. addConstra int ( eq ( omega1out1 , omega2in2 ) ) ;

/ / C o n s t r a i n t s d e f i n i n g r e l a t i o n s e x p e c t e d i n p u t s o f Omega two
m. addConstra int ( systemTestOmegaTwoInput ( varsOmega2 ) ) ;
/ / C o n s t r a i n t s d e f i n i n g r e l a t i o n s e x p e c t e d o u t p u t s o f Omega one

m. addConstra int ( systemTestOmegaOneOutput ( varsOmega1 ) ) ;

pb . read (m) ;
CPSolver . s e t V e r b o s i t y ( CPSolver .SOLUTION) ;

/ / Invokes t h e Choco s o l v e r
i f ( pb . s o l v e ( ) ) {

/ / P r i n t v a l u e s o f problem v a r i a b l e s when s o l u t i o n i s reached
do {

f o r ( i n t i = 0 ; i < varsOmega1 . l e n g t h ; i ++) {
System . out . p r i n t ( varsOmega1 [ i ] . p r e t t y ( ) ) ;
System . out . p r i n t ( ” ” ) ;

}
f o r ( i n t i = 1 ; i < varsOmega2 . l e n g t h ; i ++) {

System . out . p r i n t ( varsOmega2 [ i ] . p r e t t y ( ) ) ;
System . out . p r i n t ( ” ” ) ;

}
System . out . p r i n t l n ( ” ” ) ;

} whi le ( pb . n e x t S o l u t i o n ( ) == Boolean .TRUE) ;
}

i f ( ! pb . i s F e a s i b l e ( ) )
System . err . p r i n t l n ( ”No s o l u t i o n s can be found . ” ) ;

} }

Fig. 4. Choco program verifying translation logic from example given in Section 5.3
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5.4 Applications in Plug-in Technology

Proposed framework has applications in the military operations where system safety is
often critical. Following is a brief description of one possible scenario where system
safety requires verification of component composition.

Component translations are needed in applications where the data are sought for a
mission support application that performs electromagnetic spectrum (EMS) predictions
used for surveillance and analysis of radar and communication signals in areas where
military forces will operate. This EMS prediction model has relatively stable data re-
quirements that are provided from various data sources. The EMS application presents
the prediction results of the model as graphical charts or as graphical overlays on a map.
Figure 5 depicts a majority of the data required by the EMS prediction model and the
EMS prediction model outputs.

Our approach allows verification of compatibility of plug-ins with the expected stan-
dards of the EMS module. The process verifies the data formats of the various data
sources against the data formats supported by the EMS model. If new data feeds be-
come available that are not in a standard format (or are in a new standard format), the
developers manually reverse engineer the translating code to derive the data required by
the EMS application. Similarly, our approach can be applied while handling the outputs
of the EMS module. Verification of plug-in compatibility prior to implementation of
the needed translations has potential to reduce risk and production cost, and increases
confidence in the final system.

Fig. 5. EMS component and its plug-ins

6 Conclusion

In this paper we present a novel way of modeling and analyzing software compositions
that advocates software reuse and increases confidence in the system composition. Al-
though the proposed framework is limited to the types of systems that can be modeled
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within the constraint logic programming schema, it can significantly impact reliability
and testing processes of systems that are numerically and computationally intensive.
Practicality of our approach depends on the ability to express system constraints in
terms of the classes of CLP for which constraint satisfaction can be performed in an
efficient time. We also describe an application of our framework within the powerful
DDD software engineering methodology.

We conclude with some open issues relevant to the presented subject. We are inter-
ested in developing methods that allow us to automatically compute attributes describ-
ing inputs, outputs, and functionality of the component. In conjunction with advanced
natural language techniques for system requirement processing and based on the com-
puted component attributes we are interested in developing methods that are capable
of extracting the system of constraints automatically. Component attributes should be
computed based on the available documentation, hence requiring natural language pro-
cessing, and based on the existing black-box (respectively gray-box) reverse engineer-
ing methods. Specifically, we are interested in computation of the domain bounds on
the inputs and outputs, and collecting a sufficient number of results to verify or estimate
component’s functionality. Since the above computations are based on imprecise repre-
sentations of somewhat uncertain information, the proposed infrastructure, needs to be
integrated with validation procedures to increase the dependability of the results. An-
other interesting research direction is automated test scenario generators that use com-
ponent attributes and functionality, and system constraints (such as domain bounds),
where these compute non-trivial testing scenarios to check whether complex compo-
nent realizations meet the standards associated with a given slot in an open architecture.
Resolving these issues will help to reduce the gap between the conceptual verification
of upgrade design and the verification of the physical implementation of the new sub-
system and strengthen the chain of evidence connecting the original raw data about
stakeholder needs to quality assurance procedures for concrete system components..
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Abstract. This paper investigates how existing software engineering
techniques can be employed, adapted and integrated for the develop-
ment of systems of systems. Starting from existing system-of-systems
(SoS) studies, we identify computing paradigms and techniques that
have the potential to help address the challenges associated with SoS
development, and propose an SoS development framework that com-
bines these techniques in a novel way. This framework addresses the
development of a class of IT systems of systems characterised by high
variability in the types of interactions between their component systems,
and by relatively small numbers of such interactions. We describe how
the framework supports the dynamic, automated generation of the sys-
tem interfaces required to achieve these interactions, and present a case
study illustrating the development of a data-centre SoS using the new
framework.

1 Introduction

The functionality and flexibility underpinning today’s applications in areas rang-
ing from transportation and healthcare to aerospace and defence can no longer
be provided by a monolithic information system, however complex this might be.
Instead, the required capabilities can only be achieved through employing collec-
tions of collaborative, heterogeneous and autonomously-operating systems—or
systems of systems.

The crucial importance of many systems of systems and the high rates of
late delivery, over-spending and failure associated with their development have
prompted the initiation of research programmes for the investigation of this
new class of systems [18,24,38,41] and its extensions [15,35,42]. The results of
this research provide valuable insights into the distinguishing features of sys-
tems of systems [3,5,28,36], the challenges posed by their unprecedented size, di-
versity, variability, complexity, unforeseen interactions and emergent behaviour
[15,22,27,37], and some of the high-level principles and practices to be employed
in their development [6,26,27,36].

Most importantly for the progress of the field, broad agreement has been
reached on the main features that set systems of systems apart from traditional,
monolithic systems:
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c© Springer-Verlag Berlin Heidelberg 2010



60 R. Calinescu and M. Kwiatkowska

– The components of a system of systems (SoS) possess a level of operational
autonomy that allows them to pursue their own, local objectives, indepen-
dently and in addition to contributing to the global SoS objective(s) [5,27].

– The components of a system of systems are often developed, procured and
managed independently [26,36].

– SoS components may belong to multiple open and evolving systems of sys-
tems that they could join and leave dynamically [5,6,18,37].

– The behaviour of a system of systems cannot be fully predicted from the
behaviour of its component systems [3,26,27,37].

Additionally, an SoS subclass that typifies key information systems of the future—
i.e., the so-called large-scale complex (IT) systems [35] or ultra-large-scale systems
[15,42]—is characterised by incomplete and continually changing requirements
and components, and by regarding failures as normal events.

The challenges associated with the development of systems of systems are
tremendous. They include the need to ensure the interoperability of a vastly di-
verse range of components [6,36], to convey global objectives to SoS components
in meaningful ways [15,18], to achieve these objectives predictably and depend-
ably in a dynamically changing environment [35,42], and to attain high levels of
SoS longevity [15,37].

These major advances in the understanding of systems of systems laid the
foundation for essential work to identify high-level principles and practices gov-
erning their development [6,15,26,27,36]. Our paper takes this work further by
investigating for the first time ways in which existing software engineering tech-
niques can contribute to the development of IT systems of systems. Thus, com-
puter science paradigms including formal analysis and verification, model-driven
and component-based development, service-oriented architectures and policy-
based autonomic computing are analysed for compliance with the recommended
SoS development principles, and for their ability to help address SoS engineering
challenges. The results of this analysis are presented in Section 2.

In Section 3, we describe a new approach to integrating these techniques
within a framework that extends the authors’ previous work on quantitative
analysis and verification [31,33,34], model-driven development [12] and self-*
computing [7,8,10] to the realm of systems of systems. Our framework sup-
ports the development of IT systems of systems by enabling the online, auto-
mated generation of the interfaces that the system components of an SoS employ
to inter-operate with the other systems within the same SoS. To achieve this,
the systems to be integrated within an SoS are augmented with an autonomic
computing policy engine that exposes their global parameters through runtime-
generated interfaces defined by user-specified policies. This idea was originally
introduced in [8], and in this paper we provide a formal description of the types
of policies that can be used for this purpose and of how they can be realised in
practice.
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Its ability to dynamically generate new interfaces for the system components
of an SoS makes our framework particularly suitable for the development of
systems of systems characterised by high variability in the types of interactions
between SoS component systems, and by relatively small numbers of such in-
teractions. Therefore, the capabilities of the framework are illustrated using a
case study that involves the development of a data-centre SoS with these char-
acteristics, and which is based on a series of real-world use cases that one of the
authors encountered in his previous work on a commercial system for data-centre
resource management [9,11]. To add to the readability of the paper, this case
study is presented as a running example spread over the next three sections.

A prototype version of the framework was implemented as an extension of our
generic autonomic computing framework from [13]. Section 4 describes the novel
features of this prototype implementation, and the combination of dynamic code
generation, model-based development and dynamic reconfiguration techniques
employed to support these features. Finally, Section 5 describes various types of
IT systems of systems that can be developed using the framework, and Section 6
summarises our results and discusses a number of future research directions.

2 Software Engineering Techniques for SoS Development

This section examines existing software engineering paradigms and techniques
that could help tackle some of the challenges associated with the development
of systems of systems, and which are therefore likely to be part of the SoS
development frameworks of the future. A summary of this analysis is presented
in Table 1.

1. Service-oriented architectures (SOA). SoS development involves the
integration and secure interoperation of vastly diverse technical systems
[3,5,6,15,18,26,37]. Thanks to their platform independence, loose coupling and
support for security, SOA solutions [46] represent strong candidates for imple-
menting new computer systems or front-ends to legacy systems that need to be
integrated into an SoS.

2. Policy-based autonomic computing. Ecosystems, cities and economies
are often pointed out as examples of effective systems of systems. A common
characteristic of all these systems of systems is the way in which their global ob-
jectives are specified through high-level incentives, rewards and penalties rather
than by setting concrete, precise targets [15,35,36]. Thus, the behaviour of ecosys-
tems is governed by laws of nature. The development and everyday life of cities
are subject to common or civil laws and regulations. The evolution of economies
is guided by taxation policies. If these successful real-world examples are to
be followed, techniques will be required that can convey the global objectives
of systems of systems as high-level policies to their autonomous components.
(Policy-based) autonomic computing addresses the development of systems that
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can manage themselves based on a set of high-level policies [30], and therefore
represents an ideal paradigm for developing the computer-system components
of an SoS.

3. Formal analysis and verification. A major concern of systems of systems
is their ability to achieve an overall objective in predictable and dependable
ways, through the collaboration of component systems with different (and po-
tentially conflicting) local goals [15,35,39]. Formal analysis and verification, and
in particular model checking [16], quantitative model checking [34] and quanti-
tative analysis and verification [31,33], comprise a range of techniques that could
be used or adapted for use in the verification of SoS policies, and ultimately for
SoS dependability management and assurance.

4. Model-driven development and code generation. The open, evolving
nature of systems of systems allows their components to join and leave dy-
namically [35,39]. Having SoS components collaborate with peer systems whose
characteristics are often unknown until runtime is a major challenge. A com-
bination of model-driven development and runtime code generation in which a
dynamically acquired model of a peer system is used to generate the necessary
interfaces and logic for collaborating with this peer system [13] represents a
promising approach to addressing this challenge.

5. Component-based development. SoS engineering requires the integration
of existing and future commercial, open-source and proprietary systems, and
component-based development provides techniques that can help achieve this
goal [1,2,17].

6. Dynamic reconfiguration. Systems of systems are required to adapt con-
tinually to changes in their environment, structure and objectives [6,26]. Re-
cent advances in the study of dynamically reconfigurable software and hardware
[19,23] provide promising approaches for the development of the computer sys-
tems to be incorporated into the systems of systems of the future.

7. Online machine learning. The levels of self-management that SoS com-
ponents must achieve in impossible to anticipate circumstances are significantly
beyond what can be pre-programmed into a computer system [22,35,42]. The
online use of techniques specific to machine learning [4] is therefore likely to
play a major role in the development of computer-based SoS components.

8. Resource discovery. In the era of mobile computing, SoS components are
expected to actively seek partner systems and establish collaborations with them,
thus joining (and leaving) loosely-coupled federations of systems on a regular
basis [5,15,35]. The rich spectrum of resource1 discovery techniques employed
by today’s distributed (e.g., grid- and web-based) computer systems [43] can be
used as a basis for the development of techniques to support these capabilities.
1 The terms resource and component are used interchangeably in the paper.
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Table 1. Software engineering techniques that can help address SoS challenges



Service-oriented architectures



Policy-based autonomic computing



Formal analysis and verification



Model-driven development/code generation


Component-based development



Dynamic reconfiguration



Online machine learning



Resource discovery
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SoS challenges

3 A Framework for System-of-Systems Development

3.1 Overview

Our approach to integrating the software engineering techniques analysed in
the previous section involves the use of a reconfigurable policy engine with the
structure in Figure 1.2 The SOA implementation of this policy engine as a
web service (described in Section 4) takes a model of a system and a set of
policies, and ensures that the system achieves the objectives specified by these
policies through adapting continually to changes in its environment.

When a running instance of the policy engine is dynamically reconfigured
by means of a system model, its runtime code generator employs model-
driven development techniques to generate manageability adaptor proxies,
i.e., software components whose monitor and control interfaces allow the en-
gine to read and to modify the parameters of the system components, respec-
tively. This functionality is described in our previous work [8,13]. Additionally,
the policy engine in [8,13] supports all types of policies that are standard in
policy-based autonomic computing [44,45], and uses resource discovery
techniques to identify the system components to which these policies need to be
applied. Component-based development techniques introduced in Section 3.3
2 The use of these techniques is emphasised in bold text in the framework overview.
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Fig. 1. Reconfigurable policy engine

are employed to integrate multiple autonomic IT systems into an autonomic sys-
tem of systems.

Furthermore, we recently extended our policy engine with the ability to em-
ploy online formal analysis and verification techniques for the implemen-
tation of a powerful class of autonomic computing policies [10]. Finally, we are
in the process of augmenting our framework with online machine learning
capabilities by integrating it with the work presented in [20].

The remainder of this section provides brief presentations of how each software
engineering technique was or, in the case of online machine learning, will be
integrated into the SoS development framework. References to full descriptions
of these integrations are provided for those interested in learning more about
the framework.
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1. Service-oriented architectures (SOA). For the reasons explained in Sec-
tion 2, the components of the framework were implemented as web services.
This applies to the autonomic computing policy engine from Figure 1, as well
as to the software adaptors between the policy engine and the existing, legacy
components that the engine is managing.

Because systems of systems comprise components that are often unknown
until run time, the policy engine was provided with the capability to handle
such components through run-time reconfiguration. This required the extensive
use of techniques available only in an object-oriented programming environment,
including reflection, polymorphism, automated generation of web-service proxies,
and generic programming. Based on these requirements, J2EE and .NET were
selected as candidate platforms for the framework, with .NET being eventually
preferred due to its better handling of dynamic proxy generation and its slightly
easier-to-use implementation of reflection.

A detailed description of the SOA implementation of the framework, and of
several case studies involving the development of monolithic autonomic systems
using the framework are available in [13].

2. Policy-based autonomic computing. All standard types of autonomic
computing policies [29,44,45] are supported by the framework. A formal de-
scription and simple examples of these policies are provided in Section 3.2. For
real-world applications of each policy type within the scope of the framework,
the reader should refer to [8].

3. Formal analysis and verification. One type of autonomic computing
policy supported by the framework is termed a utility-function policy. This pol-
icy specifies a multi-objective optimisation to be performed through continually
adapting the configuration of a system to its workload and environment. Exam-
ples of utility-function policies taken from [10] are:

– optimise the parameters of a dynamically power-managed disk drive to
achieve user-specified trade-offs between the response time and the power
consumption of the disk drive, under variable workload;

– optimise the allocation of data-centre servers to clusters of different priorities
and variable workloads, subject to using the fewest possible servers and to
ensuring user-prescribed levels of cluster availability, in the presence of data-
centre component failures and repairs.

To achieve such policies, the system model used to configure the policy engine in-
cludes a precise mathematical description of the system behaviour, and formally-
specified quantitative properties derived from the multi-objective functions are
exhaustively analysed at runtime to identify optimal system configurations. This
analysis is performed using PRISM—a free, open-source tool for the formal mod-
elling and analysis of real-time and stochastic systems [31,32] that an extensive,
independent survey [25] ranked as the most effective tool for the quantitative
analysis of large system models.
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For the latter of the above-mentioned policies, for instance, PRISM was used
to calculate the “probability that a cluster can handle its workload success-
fully” (i.e., the expected cluster availability) for each possible configuration of
the cluster. This calculation was performed automatically whenever there was a
significant change in the cluster workload, and the configuration that achieved
the user-prescribed availability using the fewest servers was chosen.

A full description of the use of quantitative analysis within our policy engine
is available from [10].

4. Model-driven development and code generation. Given that many
systems of systems are characterised by dynamically changing components, the
policy engine at the core of our framework was designed to handle IT com-
ponents whose attributes are unknown until run time. This unique capability
necessitates the run-time use of model-driven and automated code generation
techniques within the policy engine. Thus, two software artefacts are generated
automatically based on the system model supplied to a running instance of the
policy engine: (a) data types (i.e., classes) for the new types of IT components;
and (b) proxies for the adaptor web services associated with the new component
types. This code generation process is discussed in detail in [13].

5. Component-based development. In this paper, we define formally a new
type of autonomic computing policy that supports adaptive component-based
development. Originally suggested in [8], this resource-definition policy specifies
how the high-level sensors and high-level effectors interfaces of the policy engine
should expose the system under its control as a single component, thus enabling
its integration into a system of systems.

Figure 2 depicts the generic architecture of an SoS built around an extension
of the policy engine from [13] that supports resource-definition policies. Each
of the top-level autonomic-enabled components 1 to N in this architecture is a
system managed by an appropriately configured instance of the policy engine.
At the SoS level, the policy engine instances expose the state and configuration
of their systems, employ resource discovery to identify peer SoS components,
and collaborate with these. At the local level, the policy engines organise het-
erogeneous collections of components into a single system. These collections can
comprise legacy components whose interfaces are accessed through manageability
adaptors [13] and autonomic-enabled components (i.e., new systems that expose
sensor and effector interfaces permitting their direct management by the pol-
icy engine, or other instances of the top-level autonomic-enabled components in
Figure 2).

The theoretical foundation, implementation and applications of resource-
definition policies are presented in Sections 3.3, 4 and 5, respectively.

6. Dynamic reconfiguration. When supplied with a new system model, the
policy engine within our framework becomes capable of managing the previously
unknown IT components whose characteristics are described in this model. This
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Fig. 2. System-of-systems architecture

dynamic reconfiguration of a running instance of the engine involves the auto-
mated synthesis of component-specific software artefacts for each IT component
specified in the system model, as already mentioned earlier in this section and
described in depth in [8,13].

7. Online machine learning. In a future version of the policy engine, online
machine learning will be employed to continually improve the accuracy of the
formal behavioural model that the engine uses to implement autonomic comput-
ing policies. The approach that we are working on involves learning the actual
values of the model parameters from the observed behaviour of the SoS compo-
nents. This extension of the framework builds on the research described in [20]
and is being carried out jointly with its authors.

8. Resource discovery. The resource discovery mechanism employed by the
framework has two parts. First, the framework includes a resource discovery web
service that policy engine instances can query to identify the locations of the
components they are required to manage—namely the URLs of the web-service
adaptors that enable the engine to inter-operate with existing SoS components.
Additionally, each such adaptor comprises a SupportedResource web method
that policy engine instances call to discover the type of resource that the adaptor
is exposing, as explained in detail in [8].

We will start the detailed presentation of the framework in the next section,
where we formally define the system model from Figure 1 and the standard
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types of autonomic computing policies supported by the policy engine. This will
be followed in Section 3.3 by the specification of the resource-definition policies
that underlie the component-based development of IT systems of systems using
our framework.

3.2 System Model and Standard Autonomic Computing Policies

The system model used to configure the policy engine from Figure 1 is a tuple
that defines the n ≥ 1 resources of the system and their behaviour:

M = (R1, R2, . . . , Rn, f), (1)

where Ri, 1 ≤ i ≤ n is a formal specification for the ith system resource, and f
is a model of the known behaviour of the system. Each resource specification Ri

represents a named sequence of mi ≥ 1 resource parameters, i.e.,

Ri = (resIdi, Pi1, Pi2, . . . , Pimi), ∀1 ≤ i ≤ n, (2)

where resIdi is an identifier used to distinguish between different types of re-
sources. Finally, for each 1 ≤ i ≤ n, 1 ≤ j ≤ mi, the resource parameter Pij is a
tuple

Pij = (paramId ij ,ValueDomain ij , typeij) (3)

where paramId ij is a string-valued identifier used to distinguish the different
parameters of a resource; ValueDomainij is the set of possible values for Pij ; and
typeij ∈ {ReadOnly, ReadWrite} specifies whether the policy engine can only
read or can both read and modify the value of the parameter. The parameters
of each resource must have different identifiers, i.e.,

∀1≤ i≤n • ∀1≤j< k ≤mi • paramId ij 	= paramId ik

We further define the state space S of the system as the Cartesian product of
the value domains of all its ReadOnly resource parameters, i.e.,

S = ×
1≤i≤n

×
1≤j≤mi

typeij=ReadOnly

ValueDomainij (4)

Similarly, the configuration space C of the system is defined as the Cartesian
product of the value domains of all its ReadWrite resource parameters, i.e.,

C = ×
1≤i≤n

×
1≤j≤mi

typeij=ReadWrite

ValueDomain ij (5)

With this notation, the behavioural model f from (1) is a partial function3

f : S × C �→ S

3 A partial function on a set X is a function whose domain is a subset of X. We use
the symbol �→ to denote partial functions.
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such that for any (s, c) ∈ domain(f), f(s, c) represents the expected future state
of the system if its current state is s ∈ S and its configuration is set to c ∈ C.
Presenting classes of behavioural models that can support the implementation
of different autonomic computing policies is beyond the scope of this paper; for
a description of such models see [8,10].

The standard types of autonomic policies described in [29,44,45] can be defined
using this notation as follows:

1. An action policy specifies how the system configuration should be changed
when the system reaches certain state/configuration combinations:

paction : S × C �→ C. (6)

Note that an action policy can be implemented even when domain(f) = ∅
in (1).

2. A goal policy partitions the state/configuration combinations for the system
into desirable and undesirable:

pgoal : S × C → {true, false}, (7)

with the policy engine requested to maintain the system in an operation area
for which pgoal is true.

3. A utility policy associates a value with each state/configuration combination,
and the policy engine should adjust the system configuration such as to
maximise this value:

putility : S × C → R. (8)

Example 1. To illustrate the application of the notation introduced so far, con-
sider the example of an autonomic data-centre comprising a pool of nServers ≥
0 servers that need to be partitioned among the N ≥ 1 services that the data-
centre can provide. Assume that each such service has a priority and is subjected
to a variable workload. The model (1) for this system can be expressed as a tuple

M = (ServerPool ,Service1, . . . ,Servicen, f) (9)

where the models for the server pool and for a generic service i, 1 ≤ i ≤ N , are
given by:

ServerPool = ("serverPool",
("nServers", N, ReadOnly),
("partition", NN , ReadWrite))

Servicei = ("service",
("priority", N+, ReadOnly),
("workload", N, ReadOnly))

(10)

The state and configuration spaces of the system are S = N × (N+ × N)N and
C = N

N , respectively. For simplicity, we will consider that the workload of a ser-
vice represents the minimum number of operational servers it requires to achieve
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its service-level agreement. Sample action, goal and utility policies for the sys-
tem are specified below by giving their values for a generic data-centre state s =
(n, p1, w1, p2, w2, . . . , pN , wN ) ∈ S and configuration c = (n1, n2, . . . , nN ) ∈ C:

paction(s, c) = (�αw1�, �αw2�, . . . , �αwN �) (11)

pgoal(s, c)=∀1≤ i≤N •(ni >0 =⇒ (∀1≤j≤N • pj >pi =⇒ nj =�αwj�)) (12)

putility(s, c)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−∞, if
N∑

i=1
ni >n

N∑
i = 1

wi > 0

piu(wi, ni) − ε
N∑

i=1
ni, otherwise

(13)

We will describe each of these policies in turn. First, the action policy (11)
prescribes that �αwi� servers are allocated to service i, 1 ≤ i ≤ N , at all times.
Notice how a redundancy factor α ∈ (1, 2) is used in a deliberately simplistic
attempt to increase the likelihood that at least wi servers will be available for
service i in the presence of server failures. Also, the policy is (over)optimistically
assuming that n≥

∑N
i=1�αwi� at all times.

The goal policy (12) specifies that the desirable state/configuration combina-
tions of the data-centre are those in which service i, 1 ≤ i ≤ N , is allocated
servers only if all services of higher priority have already been allocated �αwi�
servers.

Finally, the utility policy requires that the value of the expression in (13) is
maximised. The value −∞ in this expression is used to avoid the configurations
in which more servers than the n available are allocated to the services. When
this is not the case, the value of the policy is given by the combination of two
sums. The first sum encodes the utility u(wi, ni) of allocating ni servers to each
service i with wi > 0, weighted by the priority pi of the service. By setting ε to a
small positive value (i.e., 0 < ε � 1), the second sum ensures that from all server
partitions that maximise the first sum, the one that uses the smallest number of

u : R+ × R+ → [0, 1]

u(w, n) =

⎧⎨
⎩

0, if n < (2 − α)w
n−(2−α)w
2(α−1)w , if (2 − α)w ≤ n ≤ αw

1, if n > αw

α ∈ (1, 2)

u(w0, n)

0

1

w0 αw0(2 − α)w0

n

Fig. 3. Sample function u for Example 1 (the graph shows u for a fixed value w0 of its
first argument)
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servers is chosen at all times. A sample function u is shown in Figure 3; a more
realistic u and a matching behavioural model f from (9) are described in [8].

3.3 Resource-Definition Policies for Runtime Interface Generation

Using R to denote the set of all resource models with the form in (2), and E(S, C)
to denote the set of all expressions defined on the Cartesian product S × C, we
can now give the generic form of a resource-definition policy as

pdef : S × C → R× E(S, C)q , (14)

where, for any (s, c) ∈ S × C,

pdef(s, c) = (R, E1, E2, . . . , Eq). (15)

In this definition, R represents the resource that the policy engine is required
to synthesise, and the expressions E1, E2, . . . , Eq specify how the engine will
calculate the values of the q ≥ 0 ReadOnly parameters of R as functions of (s, c).
Assuming that q > 0 and the value domain for the ith ReadOnly parameter of
R, 1 ≤ i ≤ q is ValueDomain i, we have Ei : S × C → ValueDomain i.

Example 2. Consider again the autonomic data-centre from Example 1. A sample
resource-definition policy that complements the utility policy in (13) is given by

pdef(s, c) = (("dataCentre",
("id",String , ReadOnly)
("maxUtility", R, ReadOnly),
("utility", R, ReadOnly)),

"dataCentre A",

max
(x1,x2,...,xN)∈NN

∑1≤i≤N
wi>0 piu(wi, xi),

∑1≤i≤N
wi>0 piu(wi, ni))

(16)

This policy requests the synthesis of a resource termed a "dataCentre". This re-
source comprises three ReadOnly parameters: id is a string-valued identifier with
the constant value "dataCentre A", while maxUtility and utility represent
the maximum and actual utility values associated with the autonomic data-
centre when it implements the utility policy (13). (The term ε

∑N
i=1 ni from the

policy definition is insignificant, and was not included in (16) for simplicity.) Ex-
posing the system through this synthesised resource enables an external policy
engine to monitor how close the data-centre is to achieving its maximum utility.

Note that the generic form of a resource-definition policy (14)-(15) allows users
to request the policy engine to synthesise different types of resources for different
state/configuration combinations of the system. While the preliminary use cases
that we have studied so far can be handled using resource-definition policies in
which the resource model R from (15) is fixed for all (s, c) ∈ S ×C, we envisage
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that this capability will be useful for more complex applications of resource-
definition policies.

We will next explore the semantics and applications of ReadWrite (i.e., config-
urable) parameters in synthesised resources. These are parameters whose iden-
tifiers and value domains are specified through a resource-definition policy, but
whose values are set by an external entity such as another policy engine. Because
these parameters do not correspond to any element of the managed resources
within the autonomic system, the only way ensure that they have an influence
on an individual system from the SoS architecture in Figure 2 is to take them
into account within the set of policies implemented by the policy engine as-
sociated with that system. This is achieved by redefining the state space S of
the system. Thus, in the presence of resource-definition policies requesting the
synthesis of high-level resources with a non-empty set of ReadWrite parameters
{P synth

1 , P synth
2 , . . . , P synth

r }, the state space definition (4) is replaced by:

S =

⎛
⎜⎝ ×

1≤i≤n
×

1≤j≤mi

typeij=ReadOnly

ValueDomain ij

⎞
⎟⎠×

(
×

1≤i≤r
ValueDomainsynth

i

)
,

(17)

where ValueDomainsynth
i represents the value domain of the ith synthesised re-

source parameter P synth
i , 1 ≤ i ≤ r.

Example 3. Consider again our running example of an autonomic data-centre.
The resource-definition policy in (16) can be extended to allow a peer data-centre
(such as a data-centre running the same set of services within the same security
domain) to take advantage of any spare servers:

p′def(s, c) = (("dataCentre",
("id",String , ReadOnly)
("maxUtility", R, ReadOnly),
("utility", R, ReadOnly)),
("nSpare", N, ReadOnly)),
("peerRequest", NN , ReadWrite)),

"dataCentre A",

max
(x1,x2,...,xN )∈NN

∑1≤i≤N
wi>0 piu(wi, xi),

∑1≤i≤N
wi>0 piu(wi, ni),

n −
∑N

i=1 ni)

(18)

The synthesised resource has two new parameters: nSpare represents the number
of servers not allocated to any (local) service; and peerRequest is a vector
(nl

1, n
l
2, . . . , n

l
N) that a remote data-centre can set to request that the local data-

centre assigns nl
i of its servers to service i, for all 1≤ i≤N .
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To illustrate how this is achieved, we will consider two data-centres that
each implements the policy in (18), and which have access to each other’s
"dataCentre" resource as shown in the lower half of Figure 5 from one of the
next sections of the paper. For simplicity, we will further assume that the data-
centres are responsible for disjoint sets of services (i.e., there is no 1 ≤ i ≤ N
such that wi > 0 for both data-centres). To ensure that the two data-centres
collaborate, we need policies that specify how each of them should set the
peerRequestr parameter of its peer, and how it should use its own peerRequestl

parameter (which is set by the other data-centre). The "dataCentre" parame-
ters have been annotated with the superscripts l and r to distinguish between
identically named parameters belonging to the local and remote data-centre,
respectively. Before giving a utility policy that ensures the collaboration of the
two data-centres, it is worth mentioning that the state of each has the form
s = (n, p1, w1, p2, w2, . . . , pN , wN , nr, nl

1, n
l
2, . . . , n

l
N) (cf. (17)); and the system

configuration has the form c = (n1, n2, . . . , nN , nr
1, n

r
2, . . . , n

r
N ). The utility pol-

icy to use alongside policy (18) is given below:

p′utility(s, c) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∞, if
N∑

i=1
ni >n ∨

N∑
i=1

nr
i >nr

N∑
i = 1

wi > 0

piu(wi, ni + nr
i ) − ε

N∑
i=1

ni−

−λ
N∑

i=1
nr

i + μ
N∑

i = 1
nl

i > 0

min
(
1, ni

nl
i

) , otherwise

(19)

where 0 < ε � λ, μ � 1 are user-specified constants. The value −∞ is used
to avoid the configurations in which more servers than available (either locally
or from the remote data-centre) are allocated to the local services. The first
two sums in the expression that handles all other scenarios are similar to those
from utility policy (13), except that ni + nr

i rather than ni servers are being
allocated to any local service i for which wi > 0. The term −λ

∑N
i=1n

r
i ensures

that the optimal utility is achieved with as few remote servers as possible, and
the term μ

∑1≤i≤N

nl
i>0 min(1, ni

nl
i

) requests the policy engine to allocate local servers

to services for which nl
i >0. Observe that the contribution of a term μ min(1, ni

nl
i

)

to the overall utility increases as ni grows from 0 to nl
i, and stays constant if ni

increases beyond nl
i. Together with the utility term −ε

∑N
i=1ni, this determines

the policy engine to never allocate more than the requested nl
i servers to service

i. Small positive constants are used for the weights ε, λ and μ so that the
terms they belong to are negligible compared to the first utility term. Further,
choosing ε � λ ensures that using a local server decreases the utility less than
using a remote one; and setting ε�μ ensures that allocating up to nl

i servers to
a service i at the request of the remote data-centre increases the system utility.

Finally, note that because the requests for remote servers and the allocation
of such servers take place asynchronously, there is a risk that the parameter



74 R. Calinescu and M. Kwiatkowska

values used in policy (19) may be out of date.4 However, this is not a problem,
as the allocation of fewer or more remote servers than ideally required is never
decreasing the utility value for a data-centre below the value achieved when the
data-centre operates in isolation. Additionally, local servers are never used for re-
mote services at the expense of the local services because

∑1≤i≤N
wi>0 piu(wi, ni) �

μ
∑1≤i≤N

nl
i>0 min(1, ni/nl

i)) in the utility expression.

4 Prototype Implementation

The policy engine introduced in [13] was extended with the ability to handle
the new type of autonomic computing policy. Implemented as a model-driven,
service-oriented architecture with the characteristics presented in [12], the policy
engine from [13] can manage IT resources whose model is supplied to the engine
in a runtime configuration step. The IT resource models are represented as XML
documents that are instances of a pre-defined meta-model encoded as an XML
schema [12,13]. This choice was motivated by the availability of numerous off-
the-shelf tools for the manipulation of XML documents and XML schemas—a
characteristic largely lacking for the other technologies we considered. The policy
engine is implemented as a .NET web service, and takes advantage of object-
oriented technology features such as polymorphism, reflection5 and generics6 in
its handling of IT resources whose characteristics are unknown until runtime.

The manageability adaptors from Figure 2 are implemented by the framework
in [13] as web services that specialise a generic, abstract web service Manage-
dResource〈〉. For each type of resource in the system, a manageability adaptor
is built in two steps. First, a class (i.e., a data type) Ti is generated from the
resource model (2) that will be used to configure the policy engine. Second, the
manageability adaptor ManagedTi for resources of type Ti is implemented by
specialising our generic ManagedResource〈〉 adaptor, i.e., ManagedTi : Manage-
dResource〈Ti〉. This process is described in [13].

Adding support for the implementation of the resource-definition policy in
(14)–(15) involved extending the policy engine described above with the following
functionality:

1. Automated generation of a .NET class T for the synthesised resource R from
(15). This class is built by including a field and the associated getter/setter
methods for each parameter of R. The types of these fields are given by the
value domains of the resource parameters.

4 In practical scenarios that we investigated this happened very infrequently relative
to the time required to solve the linear optimisation problem (19) automatically
within the policy engine.

5 Reflection is an object-oriented programming technique that allows the runtime dis-
covery and creation of objects based on their metadata [40].

6 Generics or generic programming represents an object-oriented programming tech-
nique enabling code to be written in terms of data types unknown until runtime
[21].
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resource synthesised from policy (18)manually implemented manageability

ManagedDataCentre :
ManagedResource〈dataCentre〉

service

priority : unsigned
workload : unsigned

serverPool

ManagedServerPool :
ManagedService :

ManagedResource〈service〉

dataCentre

id : String
maxUtility : double
utility : double
nSpare: unsigned
peerRequest : unsigned[1..N]

adaptors

generic autonomic computing framework from [3]

ManagedResource〈〉 :
System.Web.Services.WebService

Fig. 4. Class diagram for Example 4

2. Automated creation of an instance of T. Reflection is employed to create an
instance of T for the lifespan of the resource-definition policy. The ReadOnly
fields of this object are updated by the policy engine using the expressions
E1, E2, . . . , Eq whenever the object is accessed by an external entity.

3. Automatic generation of a manageability adaptor web service ManagedT :
ManagedResource〈T〉. The web methods provided by this manageability
adaptor allow entities from outside the autonomic system (e.g., external
policy engines) to access the object of type T maintained by the policy en-
gine. The fields of this object that correspond to ReadOnly parameters of R
can be read, and those corresponding to ReadWrite parameters can be read
and modified, respectively.

The .NET components generated in steps 1 and 3 are deployed automatically,
and made accessible through the same Microsoft IIS instance as the policy en-
gine. The synthesised IT resource is available as soon as the engine completes
its handling of the resource-definition policy.

Example 4. Returning to our running example of an autonomic data-centre,
the class diagram in Figure 4 depicts the manageability adaptors in place after
policy (18) was supplied to the policy engine. Thus, the ManagedServerPool and
ManagedService classes in this diagram represent the manageability adaptors
implemented manually for the ServerPool and Service resources described in
Example 1. The other manageability adaptor derived from ManagedResource〈〉
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(i.e., ManagedDataCentre) was synthesised automatically by the policy engine as
a result of handling the resource-definition policy.

Also shown in the diagram are the classes used to represent instances of the IT
resources within the system—serverPool and service for the original autonomic
system, and dataCentre for the resource synthesised from policy (18). Notice the
one-to-one mapping between the fields of these classes and the parameters of
their associated resources (described in Examples 1 and 3).

5 System of Systems Development

System-of-systems application development using the framework described in
Sections 3 and 4 involves supplying resource-definition policies to existing auto-
nomic systems whose policy engines support the new policy type. Hierarchical
systems of systems can then be built by setting a higher-level policy engine to
monitor and/or control the resources synthesised as a result of implementing
these policies. Alternatively, the original autonomic systems can be configured
to collaborate with each other by means of the synthesised resource sensors and
effectors. Hybrid applications comprising both types of interactions mentioned
above are also possible, as illustrated by the following example.

Example 5. The policy engine from Section 4 was used to simulate an autonomic
system of systems comprising the pair of autonomic data-centres described in
Example 3, and a top-level policy engine that monitors and summarises their
performance using a dashboard resource (Figure 5). The policies implemented

autonomic data-centre

top-level
autonomic
manager

dashboard

service service service service
autonomic data-centre

synthesised
"dataCentre"

resource

synthesised
"dataCentre"

resource

Fig. 5. Autonomic system of systems for Example 5



Software Engineering Techniques for the Development of Systems of Systems 77

Fig. 6. Dashboard for isolated data-centre (top) and for identical data-centre operating
as part of the autonomic system of systems from Figure 5 (bottom)
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by the policy engines local to each data-centre are policies (18)–(19) from Ex-
ample 3. The top-level policy engine implements a simple action policy that
periodically copies the values of the maxUtility and utility parameters of the
"dataCentre" resources synthesised by the data-centres into the appropriate
ReadWrite parameters of the dashboard. For brevity, we do not give this policy
here; a sample action policy was presented earlier in Example 1.

We used the data-centre resource simulators from [8], and implemented the
dashboard resource as an ASP.NET web page provided with a manageability
adaptor built manually as described in Section 4 and in [13]. Separate series of
experiments for 20-day simulated time periods were run for two scenarios. In the
first scenario, the data-centres were kept operating in isolation, by blocking the
mechanisms they could use to discover each other. In the second scenario, the
data-centres were allowed to discover each other, and thus to collaborate through
implementing policy (19). Figure 6 depicts typical snapshots of the dashboard
for both scenarios and for one of the data-centres; the same simulated service
workloads were used in both experiments shown. As expected from the analysis
in Example 3, the system achieves higher utility when data-centre collaboration
is enabled, thus allowing data-centres to utilise each other’s spare servers.

6 Conclusion

A common finding of SoS studies is that existing techniques and tools are un-
able to address the whole spectrum of challenges associated with the develop-
ment of systems of systems [3,15,22,27]. Notwithstanding the disparity between
what can be achieved using current approaches and these challenges, the SoS
development frameworks of the future are likely to incorporate some of today’s
software engineering techniques or adapted, enhanced variants of them. This
paper examined techniques that are candidates for this role, including formal
analysis and verification, model-driven development, service-oriented architec-
tures, component-based development and policy-based autonomic computing.
Having first identified the SoS challenge(s) that each such technique can help
address, we then proposed a new approach to combining these techniques into a
framework for the development of a class of IT systems of systems.

The administrators of an SoS developed using our framework can specify at
run time how the SoS components inter-operate with each other. To handle
runtime changes in this specification, our framework employs a combination of
model-based and online code generation techniques to automatically build and
deploy the interfaces necessary to support new types of inter-operation among
SoS components. This capability is particularly useful given that SoS components
often belong to open, evolving systems of systems that they could join and
leave dynamically [5,6,18,37]. Additionally, our framework is suitable for the
development of IT systems of systems that need to adapt their inter-component
interactions to changes in the SoS global objectives and/or context.

The automation of time-demanding processes such as the run-time synthesis
of the interfaces between SoS component systems and the reconfiguration of the
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policy engine represents a key benefit of the framework. The use of an earlier
version of the framework to develop monolithic autonomic systems yielded a
tenfold reduction in development time [14], and preliminary experiments with
its extended prototype presented in Section 4 indicate that significant reductions
are also possible in the case of systems of systems.

In the current version of our SoS development framework, the dynamically
generated interfaces among SoS component systems can be used only in asyn-
chronous mode, and involve periodical polling by the reconfigurable policy en-
gines within the SoS. For this reason, the systems of systems whose development
is currently supported by the framework are those characterised by asynchronous
and relatively infrequent interactions between SoS component systems. A tempo-
rary workaround for this limitation is to mix dynamically generated component
interfaces suffering from this constraint with statically implemented interfaces.
For a long-term solution, we are investigating the possibility to use a notifica-
tion mechanism within our reconfigurable policy engine in order to support the
runtime specification of synchronous SoS component interfaces.

Additional areas of future work include the validation of the proposed frame-
work within new application domains, the development of SoS-specific online
machine learning techniques, the synthesis of high-level SoS policies from speci-
fications, and the design of metrics for the assessment of global SoS effectiveness.
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Abstract. This paper describes two different approaches of simulating embedded 
control software whose real-time requirements are explicitly specified by means 
of the Logical Execution Time (LET) abstraction introduced in the Giotto pro-
ject. As simulation environments we chose the black-box MATLAB/Simulink 
product and the open-source project Ptolemy II. The paper first sketches the 
modeling of LET-based components with the Timing Definition Language 
(TDL). As the LET abstraction allows the platform-independent modeling of the 
timing behavior of embedded software, a correct simulation of TDL components 
is equivalent to the behavior on a specific platform. We integrated TDL with 
both MATLAB/Simulink and Ptolemy and highlight the differences and similari-
ties of the particular TDL simulation. 

Keywords: simulation of real-time behavior, real-time modeling, Simulink, 
Ptolemy, Logical Execution Time (LET), Timing Definition Language (TDL). 

1   Introduction 

This work compares the way simulation environments with different goals facilitate the 
simulation of embedded control software modeled with the Timing Definition Lan-
guage (TDL) [2]. TDL harnesses the Logical Execution Time (LET) abstraction for 
deterministically describing the timing behavior of a set of periodic tasks. If the tasks 
can be scheduled for a specific, potentially distributed platform given the worst-case 
execution time for each task for each computing node, the observable behavior of the 
system will be the same on the platform as in a simulation given the same inputs. 

MATLAB/Simulink is a commercially available tool suite used to simulate control 
systems and also to generate C code. Simulink defines a fixed model of computation 
(MoC) that can only be adapted to some extent by means of so-called solvers as well 
as via the triggering of block executions. Ptolemy is an open-source simulation envi-
ronment that serves as playground for experimenting with different MoCs and their 
combination in heterogeneous models.  

We implemented the TDL model of computation in both, Simulink and Ptolemy, and 
describe the different integration approaches we had to take. We first introduce TDL. 
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Sections 2 and 3 sketch the core concepts how TDL components are modeled and 
simulated in Simulink and Ptolemy. Section 4 compares the two approaches. 

 

Timing Definition Language (TDL). While TDL [2] is conceptually based on the 
LET-abstraction introduced in the Giotto project [3], it provides extended features, a 
more convenient syntax, and an improved set of programming tools. The LET asso-
ciated with a computational unit, called task, represents the duration between the time 
instant when the task becomes ready for execution and the instant when the task ter-
minates. A task’s LET is specified independently of the task’s functionality. When 
deploying the model on a platform, the LET specification is satisfied if the total 
physical execution time of the task is included in the LET interval for every task 
invocation, and an appropriate runtime system ensures that task inputs are read at the 
beginning of the LET interval (the release time) and task outputs are made available 
at the end of the LET interval (the termination time). Figure 1 illustrates the LET 
abstraction for one task invocation. Between release and termination points, the out-
put values are those established in the previous execution; default or specified initial 
values are used during the first execution.  

 

task invocation

running running

release termination
Logical Execution Time (LET)

start preempt resume finish

logical
view

physical
view

time

read
inputs

write
outputs

 

Fig. 1. Logical Execution Time (LET) 

TDL is targeted at control applications consisting of periodic software tasks for 
controlling a physical environment. Thus, some tasks take information from the envi-
ronment via sensors and some tasks act on the environment via actuators. Tasks that 
must be executed concurrently are grouped in modes. In TDL, a mode is a set of peri-
odically executed activities that can be task invocations, actuator updates, and mode 
switches. A mode activity has a specified execution rate and may be carried out con-
ditionally. TDL provides a top-level structuring unit called a module, which consists 
of sensors, actuators and modes that typically form a unit that delivers a specific func-
tionality. A TDL module might be a complex combustion engine controller or a PID 
controller in a process automation system. 

Figure 2 shows a schematic representation of a sample TDL module. The module 
contains one sensor variable s1, one actuator variable a1, and two modes called main 
and freeze. The mode main specifies a task invocation activity, an actuator update and 
a conditional mode switch, each of which must be executed once per mode period, 
which is every 5 milliseconds in this example. In other words, the task’s LET is 5 ms. 
The actuator is updated with the task output value at the end of the LET. The mode 
freeze contains no activity at all. 
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module Sender { 

 sensor int s1 uses getS1; 
 actuator int a1 uses setA1; 

 public task t1 { 
  input int i; 
  output int o := 10; 
  uses t1Impl(i, o); 
 } 

 start mode main [period=5ms] { 
  task [freq=1] t1(s1); //LET=5ms 
  actuator [freq=1] a1 := t1.o; 
  mode [freq=1] if exitMain(s1) 
                 then freeze; 
 } 

 mode freeze [period=1000ms] {} 

} 

Fig. 2. TDL sample module 

Executing TDL modules means executing all actions defined in the TDL code in 
the correct order at the specified points in time. A simulation environment for TDL 
modules must enforce the execution of these actions at the correct times and in this 
order. For a simulation time instant t those TDL actions are: 

 
1. Update output ports of task invocations logically terminating at t. 
2. Update actuators that are defined to be updated at t. 
3. Test for mode switches that are defined at t. Switch mode if a switch is enabled. 
4. Update input ports of tasks that are defined to be released at t. 
5. Execute tasks that are defined to be released at t. 

 
A general concept in simulating dynamic systems is that a simulation time is used to 
determine the actions that must be processed. TDL actions that are scheduled for a 
particular simulation time instant are executed without changing the time. If no ac-
tions remain, the simulation time is increased. 

Consider the execution of task t1 in the previously described example. At simula-
tion time 0 actions in the start mode are processed. Output ports are initialized and 
connected actuators are updated. Sensor s1 is read and the value is provided as input 
for the task, which is then executed. There are no more actions to be done at time 0. 
Then the simulation time is increased to 5, which is the end of the LET of t1. At simu-
lation time 5, output ports and actuators are updated. Next, the mode switch condition 
in the guard function exitMain is evaluated. If it evaluates to true, a mode switch to 
the empty mode freeze is performed and no further actions are processed. Otherwise 
the module stays in the mode and the task is executed again. The following sections 
describe how this general approach is implemented in Simulink and Ptolemy. 
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2   TDL Modeling in Simulink 

The MATLAB extension Simulink from The MathWorks [7] was initially targeted for 
simulating control systems. It has significantly grown in popularity and due to numer-
ous specific libraries is used for modeling systems ranging from control systems to 
artificial neural networks. It provides a visual, interactive environment for modeling 
block diagrams based on the data-flow paradigm. Simulink’s model of computation is 
based on continuous time. This MoC is rather complex and there exists no formal 
definition; the implementation is hidden in the simulation engine [9, 10]. A straight-
forward modeling of TDL components with standard Simulink blocks is not feasible 
especially if they comprise several modes [6]. Simulink provides an extension 
mechanism by the so-called S-Function interface [8]. The subsequent section de-
scribes the Simulink integration of TDL by means of a customized S-Function and the 
corresponding model transformation. 

2.1   LET Semantics in Simulink 

The integration of TDL in Simulink requires both the modeling of TDL components, 
and their simulation adhering to TDL semantics. We implemented a custom Simulink 
block that represents a TDL module. As outlined in [6], modeling the TDL timing and 
data-flow relations especially for multiple modes is not feasible using standard Simu-
link facilities. Timing information is spread all over the model and the multitude of 
required signal connections makes it all but impossible to reason about or to maintain 
the model. It is unsolved how to obtain the exact TDL semantics in the general case of 
a multi-mode multi-rate system. Instead, we use a special purpose editor for describ-
ing timing aspects of the tasks, the data-flow between task ports, sensors and actua-
tors, as well as the grouping of tasks to modes, and the mode switching logic. Tasks 
and guards are implemented in standard Simulink subsystems, which are referenced 
by the editor. In order to simulate a model, we automatically generate a simulation 
model consisting of standard Simulink blocks, and customized S-Function blocks. 

Figure 3 shows the Simulink model for the sample TDL module from section 2. 
The model in Fig. 3a contains a TDL module block, a block representing the plant and 
a scope block to display actuator values. The content of the TDL module block in Fig. 
3b shows subsystems for the task and guard function implementations and blocks for 
the sensor and the actuator. Fig. 3c depicts a sample implementation for the task t1. 

To ensure that all TDL actions are executed at the correct time instants we imple-
mented the concepts of E-Code and E-Machine in Simulink [11]. Henzinger et al. [4] 
introduced the E-Code concept in the realm of the Giotto project as a way of encapsu-
lating the timing behavior and the reactivity of real-time applications. E-Code is a 
sequence of instructions for one period of every mode that describes the timing of all 
TDL actions. At run-time, these instructions are interpreted by a virtual machine, the 
E-Machine, which hands tasks to a scheduler or executes drivers. A driver performs 
communication activities, such as reading sensor values, providing input values for 
tasks at their release time, copy output values at their termination time, or updating 
actuators. 
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Fig. 3. (a) Simulink model with the TDL module block Sender, (b) contents of the Sender 
module block, (c) sample implementation of the t1Impl task function 

For simulating the model, the TDL compiler [5] generates E-Code for all modules 
in the Simulink model. We implemented the E-Machine concept by using S-
Functions. Drivers are generated and connected automatically. They are modeled as 
Triggered Subsystems where input ports are directly connected to output ports. This 
corresponds with assignments in an imperative programming paradigm as soon as the 
system is triggered. E-Machine blocks trigger the execution of these subsystems such 
that the TDL semantics are followed.  

Figure 4 shows the generated simulation model for the TDL sample module 
Sender. It links with (a) the task- and guard functionality and (b) the plant model 
using Goto and From blocks. Section (c) contains the drivers (e.g. for reading sensor 
values or writing to actuators). As Simulink requires static single assignment (SSA) 
form, section (d) typically merges signals from drivers of different modes that write to 
the same port. As the sample module only executes activities in one single mode, 
signals are simply forwarded in this example. The remaining parts (e) and (f) together 
implement the 2-step E-Machine architecture described below. 

2.2   Execution Mechanism 

In typical application scenarios, TDL modules are simulated together with non-TDL 
controllers – typically modeled as atomic (nonvirtual) subsystems – or together with 
plants that don’t introduce a delay. The original concept of the E-Machine [11] was 
adopted in order to avoid algebraic loops respectively data-dependency violations 
caused by Simulink’s block execution strategy [12]. To solve the simulation model, 
Simulink derives a sorted block order based on data dependencies in the initialization 
phase. In this order, the simulation engine executes each block only once at a particu-
lar step. This approach is more efficient than using fixed point iteration (e.g. 
Ptolemy), but poses problems when trying to simulate closed control loops if no valid 
block order can be determined. In order to solve this and to allow Simulink to execute 
the plant or other blocks after actuators are updated and before sensors are read, we 
split duties of the E-Machine among two collaborating S-Functions (E-Machine 1 and 
E-Machine 2). 
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Fig. 4. The generated simulation model for the TDL module Sender in Simulink 

The logical execution time of a task is controlled by the cooperating E-Machine 
pair. Additionally, a unit-delay block (1/z) is required for each task to indicate the fact 
that time passes between the task’s release and terminate time. While the E-Machine 
ensures that the delay has effectively no impact on the timing behavior, Simulink needs 
it to derive a valid block update order and thus to be able to simulate the whole system. 

Figure 4 show E-Machine 2 (e) and E-Machine 1 (f) with all triggers required for 
module Sender. Both E-Machines are executed at the same simulation time instants, 
but at different positions in the global block update order. At each simulation time, E-
Machine 1 executes first to terminate tasks and update actuators, then the simulation 
engine executes the plant or other non-TDL blocks, and finally E-Machine 2 reads 
sensor values, decides on mode switches and releases tasks for the next execution. 
Each E-Machine executes only a subset of all drivers. Basically, E-Machine 1 exe-
cutes sensor independent drivers such as task termination and actuator drivers, while 
E-Machine 2 executes task functions and potentially sensor dependent drivers such as 
mode switch or release drivers. In fact, the two E-Machines process different sections 
in the E-Code. We use nop (no operation) instructions together with an argument in 
order to separate the individual sections and to identify them during simulation. 

E-Machine 2 signals mode switches to E-Machine 1 in order to resume with the 
right E-Code instructions at the next simulation step. A detailed description of the  
E-Machine architecture and its implementation is given in [13]. 

3   TDL Modeling in Ptolemy 

Ptolemy II is the software infrastructure of the Ptolemy project at the University of 
California at Berkeley [1]. The project studies modeling, simulation, and design of 
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concurrent, real-time, embedded systems. Ptolemy II is an open source tool written in 
Java, which allows modeling and simulation of systems adhering to various models of 
computation (MoC). Conceptually, a MoC represents a set of rules, which govern the 
execution and interaction of model components. The implementation of a MoC is 
called a domain in Ptolemy. Some examples of existing domains are: Discrete Event 
(DE), Continuous Time (CT), Finite State Machines (FSM), and Synchronous Data 
Flow (SDF). 

Ptolemy is extensible in that it allows the implementation of new MoCs. Most 
MoCs in Ptolemy support actor-oriented modeling and design, where models are built 
from actors that can be executed and which can communicate with other actors through 
ports. A Ptolemy model explaining the main Ptolemy entities is shown in Figure 5. The 
nature of communication between actors is defined by the enclosing domain, which is 
itself represented by a special actor, called the domain director. Simulating a model 
means executing actors as defined by the top-level model director. 

 

 

Fig. 5. Ptolemy II model 

We implemented TDL as an experimental domain in Ptolemy. The implementation 
is based on the modal model variant of the Finite State Machine (FSM) domain in 
Ptolemy. Like modal models, TDL modules consist of modes with different behav-
iors, where only one mode can be active at a time. Transitions between states in mo-
dal models have the same behavior as mode switches in TDL. 

The TDL domain consists of three specialized actors: TDLModule, TDLMode and 
TDLTask. The TDLModule actor (with the associated TDLModuleDirector) restricts 
the basic modal model behavior according to the TDL semantics. In modal models, 
mode switches are made whenever a mode switch guard evaluates to true whereas in 
TDL modules, mode switches are only allowed at predefined points in time. Similar 
restrictions apply to the port updates. To ensure LET semantics of the tasks, input 
ports of TDL tasks are only allowed to be read once at the beginning of the LET, 
output ports are only allowed to be written at the end of the LET and not when a task 
finished its computation. TDL requires a deterministic choice of simultaneously en-
abled transitions, which is not provided by the FSM domain. In this respect, we define 
an order on all transitions from a mode and take the first enabled transition in this 
order. TDL timing information such as the mode period is associated with TDL actors 
in the model. 
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TDL activities are conceptually regarded as discrete events that are processed in 
increasing time stamp order. Thus, a TDL module can be seen as a restricted DE ac-
tor. This enables the usage of TDL modules inside every domain that can deal with 
DE actors. The example from section 2 modeled in Ptolemy is shown in Figure 6. 

 

 

Fig. 6. A TDL module in Ptolemy 

The model shown in the top left box of Figure 6 contains a TDL Module and two 
actors to provide sensor values and display actuator values. The TDL Module con-
tains two modes (see Figure 6, the lower left box). Both modes have the period asso-
ciated as a parameter. The main mode contains the task and the association of sensor 
and actuator values to input and output ports of the task. The frequency of task invo-
cation, which determines the LET, is defined as a parameter. The task is an SDF ac-
tor, which executes in logically zero time. The top-level director is a DE director. The 
DE director uses a global event queue to schedule the execution of actors in the 
model. The TDL module places events in this queue for every time stamp where at 
least one TDL action is scheduled. 

4   Summary and Conclusions 

We presented the modeling and simulation of TDL real-time components with logical 
execution time (LET) in two different simulation environments, namely Simulink and 
Ptolemy. Due to fundamental differences in the simulation environments we had to 
apply two different approaches regarding both, modeling and simulation. Table 1 lists 
the main concepts in modeling and simulation of TDL modules and how they were 
implemented in Simulink and Ptolemy. 

The open and extensible architecture of Ptolemy allowed us to express the com-
plete TDL semantics in the model. In the Simulink integration, the developer only 
models the functionality (task implementations and the plant) with Simulink blocks. 
Timing, mode switching logic and the overall application data-flow are described 
with a special purpose editor. An elaborate model transformation automatically cre-
ates a simulation model that contains data-flow and timing information. 
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Both approaches extend the existing simulation framework with a new actor 
(block) containing tasks with real time requirements described by TDL. In Simulink, 
the timing requirements are enforced by the E-Machine, in Ptolemy the director of the 
TDL domain employs the TDL semantics. 

Table 1. Comparison of TDL Modeling and Simulation in Simulink and Ptolemy 

 Simulink Ptolemy 
Modeling 
TDL Module A TDL module block (actor) was implemented and is available 

in a library. 
TDL Mode  Modes are defined in the 

TDL editor. 
A TDL mode actor was imple-
mented and is available in a 
library. A TDL mode contains 
input and output ports of a TDL 
module (=sensors, actuators) 
and TDL tasks. 

Data-flow  
(Connections be-
tween sensors, task 
ports, and actuators) 

Data-flow is defined in the 
TDL editor. 

Graphically connect TDL mod-
ule ports to task ports. 

An embedded model (subsystem) implements the task func-
tionality. 

Task functionality 

Stub subsystems are gener-
ated, which provide the 
input and output ports. They 
have to be implemented 
with Simulink blocks. 

A TDL task actor was imple-
mented and is available in a 
library. The TDL task is a 
composite actor containing the 
embedded model. 

Simulation 
Triggering of all 
actors (blocks) in 
the model (TDL 
modules and plant) 

Simulink triggers all blocks 
of the plant and the E-
Machine S-Function blocks. 

The top-level director, which 
has to be able to deal with DE 
actors, triggers all actors includ-
ing TDL modules. 

Timing description 
of TDL actions 
 

Generate static E-Code 
before starting the simula-
tion. 

Generate events dynamically 
during the simulation. 

Enforcing the  
timely execution of 
TDL actions 

The E-Machine interprets 
E-Code instructions and 
triggers TDL actions. 

The TDL Director creates 
events for all TDL actions. 

 
Ptolemy uses events to schedule TDL activities dynamically whereas in Simulink, 

we compute a static list of TDL activities in the form of E-Code before starting the 
simulation. The main advantage of the static approach is its low computational over-
head for determining the next TDL actions. Maintaining an E-Code program counter 
is enough, it is not necessary to create events and handle dynamically changing event 
queues. Event queues, on the other hand, potentially require less storage space than E-
Code, because they contain only the immediate follow-up events, not all activities of a 
mode period. 
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Abstract. Ultra-Large Scale Software-Intensive Systems (ULSSIS) are inte-
grated networks of capabilities that serve large communities of stakeholders and 
have a broad spectrum of crosscutting concerns. The added value of an ULSSIS 
emerges from the interplay of a set of constituent systems, both existing and 
emerging systems. We see the systems-of-systems integration challenge as a 
major concern for ULSSIS. System integration has to address systematic and 
seamless composition of services, consider upfront crosscutting concerns such 
as policy and security, assure system dependability and quality of service, and 
show agility to deal with changes in the requirements and the environment in 
which the ULSSIS operates. In this paper, we present some of the challenges 
for service composition, propose an architectural style for addressing them, and 
discuss the experience gain in designing an ULSSIS, namely the infrastructure 
for ocean observatories.  

1   Introduction 

The technological advances of the past decades point us to an exciting challenge, 
namely, ultra-large scale software-intensive systems (ULSSIS). These systems are 
large in multiple dimensions, such as diverse stakeholder communities, number of 
distributed components that have to be integrated, interdependencies between compo-
nents, quality of service, storage and computational infrastructure, to name just a few. 
ULSSIS scalability requirements go beyond what current software and system engi-
neering techniques can address, and require novel approaches for analysis, design, 
deployment, and evolution. As ULSSISs are often built from existing systems as well 
as emerging systems, the requirements for them cannot be comprehensively specified 
upfront; moreover, requirements for the constituent subsystems evolve independently 
from the composite. Therefore, no methodology will support ULSSIS to be built right 
and complete in a single exercise (there is no silver bullet [1]); instead, these systems 
should be designed such that they adapt over time to fit the changing environment and 
meet the expected quality of service.  

Moreover, the complexity of systems of systems results in challenges that go far 
beyond the purely technical ones – ULSSISs are socio-technical ecosystems [2] in-
volving software-intensive systems, organizations, policies, and economics. Thus, 
ULSSIS comprises a set of dynamic, interdependent communities that collaborate or 
compete for resources. [2] describes ULSSIS as having the following characteristics: 
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(1) decentralization regarding data, development, evolution, and operational control; 
(2) inherently conflicting, unknowable, and diverse requirements due to the variety of 
stakeholders; (3) continuous evolution and deployment, as new capabilities need to be 
integrated into an ULSSIS while it is operating; (4) heterogeneous, inconsistent, and 
changing elements – parts have different providers, and will evolve asynchronously; 
(5) erosion of people/system boundary – people will not be just users, but will affect 
the emergent behavior of the ULSSIS; (6) failures will be the norm – they must be 
anticipated and tolerated; (7) new paradigms for acquisition and policy. 

The added value of an ULSSIS emerges from the interplay of a set of constituent 
systems; the interplay often combines capabilities of the constituent systems in a 
novel, typically value-added, often surprising way. ULSSIS constituents are usually 
designed and developed by different organizations with little or no awareness that the 
constituents’ capabilities would later be composed as parts of a larger ULSSIS sys-
tem. As each organization has its own boundaries and policies, the access to resources 
in these organizations must be governed. For instance, for the integrated ULSSIS, 
policy monitoring and enactment has to be enabled across the overall architecture 
rather than by providing ad-hoc solutions for all end-points. We see the systems-of-
systems integration challenge as a major concern for ULSSIS. System integration has 
to address the composition of systems into an integrated network of capabilities, con-
sider upfront negotiations and crosscutting concerns between systems, assure system 
dependability and quality of service, and foster agility to deal with changes in the 
requirements and the environment in which the integrated system operates. The more 
flexible the architecture is with respect to updating or substituting existing subsys-
tems, the easier the ULSSIS will adapt to changes, which is particularly important in 
the context of dynamic system reconfiguration. 

Given the ULSSIS size and massive distribution, it is practically impossible to de-
scribe all the behaviors of all components involved completely. Often, we only have a 
partial view on the requirements of the overall system. Services as partial system 
behaviors and corresponding Service-Oriented Architectures (SOAs) have emerged as 
an accepted solution to assembling large distributed heterogeneous systems out of 
diverse services. SOAs can use standards-based infrastructure to create ULSSIS out of 
loosely coupled, interoperable services by mapping existing systems into services, 
then orchestrating communication between the services. Nevertheless, as proven by 
current state-of-the-art, just using an SOA is not sufficient to solve the multitude of 
problems in ULSSIS, such as governance and constantly changing requirements, 
implied by multiple stakeholders with many business concerns. Each stakeholder 
brings its own business processes, capabilities, and requirements to the integration 
task. The integration of these concerns requires a scalable framework that provides 
decoupling between the various concerns and allows for system-of-systems integra-
tion and hierarchical decomposition according to one or more concerns independent 
of the other concerns.  

In this article, we shed light on the requirements for service composition in 
ULSSIS using the recently developed Rich Services framework [4] as a promising 
solution and the Ocean Observatories Initiative (OOI) – CyberInfrastructure (CI) [3] 
of the National Science Foundation (NSF) as an example of its application. OOI com-
bines oceanographic instrument and sensor and actuator networks, data and computa-
tion grids, and a broad set of end-user applications in a CyberInfrastructure (OOI-CI) 
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with novel capabilities for data distribution, modeling, planning and control of 
oceanographic experiments. OOI has a vast set of stakeholders, ranging from sponsors 
to ocean scientists to architects and implementers to operators and maintainers to the 
general public. The OOI-CI resources are distributed both physically and virtually 
among different organizations, each with their own policies for resource access and 
data delivery or consumption. OOI is an excellent example of ULSSIS; it places tre-
mendous demands on the underlying integration fabric in terms of governance, secu-
rity, dependability, flexibility, maintainability, and other quality properties. 

Outline. The remainder of this paper is structured as follows. In Section 2, we pre-
sent the requirements for service composition in ULSSIS as informed from our ex-
perience in the OOI project. In Section 3, we motivate the need for a service-oriented 
approach in designing and building ULSSIS.  In Section 4, we present the main enti-
ties of the Rich Services framework and show how it can be used to address the chal-
lenges identified in Section 2. In Section 5, we present some aspects of the OOI CI 
and how we applied Rich Services to this case study. Then, we present lessons learnt 
from our experience in OOI CI. A discussion of related work and conclusions round 
out the paper. 

2   Challenges for Service Composition in ULSSIS 

The value and complexity of an ULSSIS emerges from the integration of individual 
subsystems into massively distributed large-scale systems of systems, networked 
federations of capabilities that are exposed to various communities of interest. Key 
challenges of composing the services forming the ULSSIS include understanding and 
modeling both the existing constituent systems and the stakeholder requirements; 
designing an extensible architecture for such a massive integration that meets the 
stakeholder’s needs; yet, creating systems that are robust, performant, and maintain-
able; and evolving the overall system as requirements themselves evolve. In the fol-
lowing, we identify central requirements regarding service composition for ULSSIS 
and detail the challenges they present from a software engineering perspective.  

Evolution and adaptability at all scales represents one of the fundamental char-
acteristics of an ULSSIS. Given their size and complexity, ULSSIS such as OOI-CI, 
do not follow a single regular design/deploy/operate pattern as a whole; instead, they 
evolve continuously through successive iterations along multiple dimensions. In this 
sense, we could consider them as giant cyber-organisms that continuously grow new 
capabilities of various kinds in relationship with the environment in which they oper-
ate. Consequently, classic waterfall development processes are hardly applicable; 
instead, agile development processes [5] with several iterations and corresponding 
system “releases” are required for dealing with emergent, evolving, and ever-
changing requirements that affect the ULSSIS in parts or as a whole.  

The management of distributed resources is one of the key requirements for de-
signing and building ULSSIS. Taking as example the OOI-CI, we have to deal with 
geographically distributed resources spanning from the entire continental US to fur-
ther global instrument platforms in extreme remote locations within the Pacific 
Ocean. In addition, we have to take into account the possibility of disconnected and 
autonomous operation of these resources based on the availability of radio/satellite 
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links and field-determined operation plans. Hence, dynamic addition of new capabili-
ties and resources is critical for the operation of an ULSSIS; approaches using static 
system models with predefined components can hardly face this challenge. 

Federated decentralized operation is a key requirement implied by the number of 
business concerns of the vast number of stakeholders in ULSSIS. Given the various 
factors that differentiate an ULSSIS, from a typical computation infrastructure of 
today, such as massive distribution, platform diversity, overall cost, it is reasonable to 
assume that most ULSSIS have policy, governance, and regulatory constraints on 
each of their constituents. Identity, ownership, authority domains, and operational 
domains are just a few of the concepts of the OOI-CI example that must have equiva-
lent models in the overall system architecture. OOI resources, for instance, belong to 
the organization (read: university and its principle investigator) who has created and 
deployed them; on the other hand, by becoming part of the OOI infrastructure these 
resources must now become accessible to participants of the infrastructure. Policies 
govern the circumstances under which the resources join and leave the infrastructure, 
how they can be discovered, accessed, and utilized. 

High availability with active failure management is a critical requirement for the 
on-going operation of an ULSSIS. As we expect future ULSSIS to continuously 
evolve, we also have to expect that failures will be the norm [2], and not exception in 
its operation. Hence, all its constituents must be designed to operate under the as-
sumption that other parts of the system can fail, or become unavailable. Scalability in 
this sense implies redundant safety-critical capabilities and fail-over mechanisms to 
maintain the system under operation. In the case of OOI-CI, the disconnected opera-
tions of some resources may require mechanisms to mask their unavailability to the 
rest of the system.  

Scalable computational and data storage infrastructure. In the particular case 
of the OOI-CI, the ability to scale data gathering/fusion/distribution and advanced 
ocean-modeling experiments well past current computational limitations is of para-
mount importance. This requirement translates into abstracting from the complexity 
of the hardware and networking infrastructure and exposing their services in a trans-
parent way. In a very real way ULSSIS share many characteristics with operating 
systems; this leads to an understanding of “cyberinfrastructures” as “wide-area operat-
ing systems.” We note that most ULSSIS are built on top of some notion of cyberin-
frastructure. 

The management of distributed state and shared understanding of the semantics 
of the message pattern implementing the intended behavior is also of significant im-
portance to the correct operation of an ULSSIS. Specifically, the integration challenge 
is largely solved via the interplay of the constituent subsystems. When the number of 
stakeholders is significant such as in the case of the OOI-CI, this interplay (the “busi-
ness logic”) often requires negotiation phases, shared understandings, confirmed 
intent, and clear commitments that must be supported by the ULSSIS architecture. 
This is especially true when dealing with concepts such as policies and governance 
that may span well over multiple parts of the system driving the overall system behav-
ior and its interaction with the environment including end-users.  

Extensive and expressive communication with the environment is the base of 
the usability of a ULSSIS. For instance, in the case of the OOI-CI, the environment  
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will be sampled through a wide range of sensor networks and domain specific instru-
ments. Computation results and mission plans for gliders would provide the feedback 
of such ULSSIS into the environment. In addition, an important constituent of an 
ULSSIS are its users, which according to specific criteria, would form virtual com-
munities of interest (VCoI) around the offered capabilities. VCoI members share 
knowledge as intellectual property (along with the associated data), drive the day-to-
day operation of the system, request observation plans, and keep the system running.  

Far from extensive, this set of requirements briefly touches upon the challenges of 
designing an architecture capable of supporting ULSSIS. The continuous evolution of 
such systems implies a continuous evolvement of their architecture in multiple itera-
tions. We believe that SOAs may be up to the challenge, especially when used within 
frameworks such as the Rich Services (detailed in Section 4) and associated agile 
development processes. Nevertheless, establishing and managing in the long run the 
development practices by which these large-scale integrated systems evolve is a fun-
damentally new challenge for Software Engineering.  

3   Why Services? 

It is fair to say that Service-Oriented Architecture (SOA) and Service-Oriented De-
velopment have become widely and successfully used approaches to addressing the 
inherent complexities of ULSSIS. We follow [6] in defining SOA as “A paradigm for 
organizing and utilizing distributed capabilities that may be under the control of dif-
ferent ownership domains. It provides a uniform means to offer, discover, interact 
with and use capabilities to produce desired effects consistent with measurable pre-
conditions and expectations.” This directly speaks to many of the requirements we 
have identified in the previous section. In this definition, services are manifestations 
of capabilities – either in the form of “constituent” capabilities that are “organized and 
utilized”, or the composite capability that emerges from the organization/utilization.  

The ability to “discover” services at both design- and runtime, together with clearly 
specified syntactic service interfaces (similar to APIs, “Application Programming 
Interfaces” formerly known from component-oriented development) leads to the 
benefits of loose coupling, encapsulation, flexible composition, scalability, and reuse, 
commonly associated with SOAs. Specifically, Web Services [7] as the prime imple-
mentation choice for SOAs offer a set of open, core technology standards that enable 
developers to reap these benefits. The core technologies are solely concerned with the 
(1) the specification of service interfaces, (2) offering and discovery of services, and 
(3) the binding to and communication with services. 

Of course, similar benefits and technology solutions were promised already by 
structured analysis and design [8], object-oriented [9] and later component-oriented 
development approaches and infrastructures [10]. However, SOA and its associated 
technologies have proven successful over their predecessors. 

Structured analysis and design favors a top-down, hierarchical decomposition of 
complex systems with little concern or opportunity for dynamic discovery or sharing 
of capabilities across subsystems. Furthermore, the strict hierarchical decomposition 
results in significant redesign effort if capabilities change as requirements change. 
This is especially true if cross-cutting concerns, such as authentication, authorization, 
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logging, failure management, policy and governance (to name but a few), which are 
often discovered late in the development process, yet, may have profound impact on 
the resulting system architecture.  

SOA, in contrast, emerges from the composition of loosely coupled services; this 
composition can be wired at design-time, or at runtime, such that flexible configura-
tion and reconfiguration can occur as requirements change. This facilitates a combina-
tion of top-down and bottom-up design.  

Object- and component-oriented development approaches, with CORBA as the 
flagship implementation and deployment infrastructure, did enable flexibility in com-
posing capabilities across heterogeneous, distributed computation nodes. Furthermore, 
there were explicit mechanisms for infrastructure services addressing the cross-cutting 
concerns mentioned above. However, these approaches were challenged by inade-
quately chosen levels of granularity (capability bloat) per component (typical compo-
nents would implement many services) hindering finely granular reuse, as well as by 
the use of proprietary protocols for discovery, access and information exchange, hin-
dering interoperation across technology platforms and suppliers. The latter, of course, 
largely defeated the purpose of having an integration platform in the first place. 

SOA and its core Web Service implementation technology standards, on the other 
hand, build on open web-based standards for service interface specification, service 
publishing, discovery, access, and information exchange. The infrastructure focus on 
these (rather than on a plethora of infrastructure services as was the case in CORBA’s 
days) has lead to genuine wire-level interoperability. 

However, this advantage came at the expense of “exploding” the cross-cutting con-
cerns into separate, still evolving technology standards [7] that have yet to con-
verge/stabilize. In particular, there is no integrative “service composition” approach 
yet that combines the core technical interoperability with the management of cross-
cutting concerns. Furthermore, we are only beginning to develop an understanding of 
how to slice large-scale systems into SOAs, and what the successful architectural 
design and implementation patterns for these architectures will look like. 

To facilitate this process, we have developed an architectural blueprint, called 
“Rich Services” that combines the flexibility of SOAs with the scoping and system-
atic development processes of its predecessors. 

4   Rich Services 

The number and complexity of various business, functional, and non-functional con-
cerns that need to be addressed for an ULSSIS create a strong demand for a richer 
service-oriented framework that is scalable, dynamic, and provides decoupling be-
tween various concerns. We distinguish between “horizontal” and “vertical” service 
composition. Horizontal service composition refers to managing the interplay of ser-
vices and the corresponding crosscutting concerns at the same logical or deployment 
level. On the other hand, vertical service composition refers to the hierarchical decom-
position of one service (and the crosscutting concerns pertaining to this service) into a 
set of sub-services such that their environment is shielded from the structural and be-
havioral complexity of the embedded sub-services and the form of their composition. 
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Fig. 1. Rich Services architectural pattern for service composition 

For this purpose, we developed the Rich Services architecture [4] as a type of SOA 
that provides decoupling between the constituents of an ULSSIS and allows for hier-
archic service composition according to one or more concerns independent of the 
others concerns. Taking each concern in isolation, the Rich Services framework al-
lows for creating various projections of the overall ULSSIS model particularly tai-
lored for dealing with that concern.  

The main entity of the architecture is the notion of Rich Service. A Rich Service 
could be a simple functionality block (such as a Web service), or it could be hierar-
chically decomposed. A Rich Service is composed of several entities: (a) the Ser-
vice/Data Connector [4], which serves as the sole mechanism for interaction between 
the Rich Service and its environment, (b) the Messenger and the Router/Interceptor, 
which together form the communication infrastructure, and (c) the constituent Rich 
Services connected to Messenger and Router/Interceptor, which encapsulate various 
application and infrastructure functionalities.  

To address the horizontal integration challenge, the logical architecture is organized 
around a message-based communication infrastructure that enables loose coupling 
between the services implementing the system’s business logic. The Messenger layer is 
responsible for message transmission between endpoints. By providing the means for 
asynchronous messaging, the Messenger supports decoupling of Rich Services. The 
second layer, the Router/Interceptor, is in charge of intercepting messages placed on 
the Messenger, then routing them. The routing policies of the communication infra-
structure are the heart of the Router/Interceptor layer. Leveraging the Interceptor pat-
tern [41] readily facilitates dynamic behavior injection based on the interactions among 
Rich Services. This is useful for the injection of policies governing the integration of a 
set of horizontally decomposed services.  
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To address the vertical integration challenge, we distinguish between Rich Applica-
tion Services and Rich Infrastructure Services [4], where both kinds can be further 
hierarchically decomposed. Rich Application Services interface directly with the 
Messenger; they have no influence on how messages are routed. In contrast, the Rich 
Infrastructure Services interface directly with the Router/Interceptor and can change 
the routing of messages. The Service/Data Connector encapsulates and hides the in-
ternal structure of the connected Rich Service, and exports only the description and 
interfaces that the connected Rich Service intends to provide and make visible exter-
nally. The communication infrastructure is only aware of the Service/Data Connector, 
and does not need to know any other information about the internal structure of the 
Rich Service.  

Rich Infrastructure services may be used to orchestrate the business flows between 
the core functionality exposed as Rich Application services, through specialized inter-
ceptors that handle specific concerns. In this way, there is a clear separation between 
the business logic and its external constraints, whereas the composition between them 
happens at the infrastructure level. For instance, support for system-wide encryp-
tion/decryption of the messages can be easily added by using a RIS that (1) intercepts 
messages and routes them through an encryption service, then (2) sends them to the 
destination service, where (3) it intercepts the encrypted messages and routes them 
through a decryption service, before handling them to their final destination. This 
approach avoids implementing such functionality in each RAS and improves system 
flexibility (e.g., the encryption algorithm can be easily changed without influencing 
existing RAS functionality). 

We use Rich Services architectural blueprint both as a logical model and as a guide 
to a deployment architecture leading to an Enterprise Service Bus (ESB) solution. 
ESB technologies such as the Mule ESB framework [15] provide message routing 
amongst well-defined, loosely coupled, coarsely granular services similar to our no-
tion of Rich Services. The close alignment of the logical architecture for the Rich 
Services and the ESB deployment architecture yields a direct logical-to-deployment 
concept mapping, though other deployment architectures would also work. 

In the following paragraphs, we show how Rich Services address the ULSSIS ser-
vice composition challenges identified in Section 2. 
 

Evolution and adaptability at all scales. SOAs provide loose coupling between 
system components and support both agile development and independent develop-
ment of the parts of the system. In particular, the iterative Rich Services development 
process [13] enables changing requirements at all stages of the development, which 
can be integrated into the overall system architecture in future iterations. The devel-
opment process promotes encapsulation, separation of concerns, reusability, and ser-
vice-orientation, where emerging requirements can often be implemented with mini-
mal or no changes to working code. Service recomposition to accommodate changed 
business logic can happen either at the infrastructure or the application service level. 
If it happens at the infrastructure level, the core business application code need not be 
affected by the change; this allows modifications transparent to the services that are 
being composed. The Rich Services infrastructure enables dynamic changes to busi-
ness flows by intercepting and transforming message flows, thereby exploiting the 
loosely-coupled services and leveraging the routing capabilities of SOA platforms 
such as ESBs. 
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Management of distributed resources. SOAs address these concerns by exposing 
the capabilities of resources through services that can be discovered and used dynami-
cally during system operation. In particular, the Rich Services framework goes further 
in supporting dynamic service composition by promoting hierarchical decomposition 
and encapsulation of local business logic at all composition levels. For disconnected 
operations, the Service/Data Connector of each resource may either notify other ser-
vices about the unavailability of the resource, or act as a service proxy and until the 
resource becomes again available. Hence, upper level services may choose between 
resources with similar capabilities based on their availability and mask the temporal 
unavailability of some resources.  
 

Federated decentralized operation. Rich Services enable us to model these concerns 
in isolation and integrate them as needed as infrastructure services at the correspond-
ing level of hierarchy in the overall ULSSIS model. The Rich Services framework, 
through the use of the Router/Interceptor layer, reduces dependencies between ser-
vices and their relative locations in the logical hierarchy. For instance, every Rich 
Service can be part of a different authority domain and have its own internal policies 
and resources. The communication between various services from different authority 
domains is enabled via infrastructure services in the higher level of the hierarchy, 
such as a policy service, encryption service, or authentication service. Concerns such 
as publishing and service discovery can be represented via additional services con-
nected to the communication infrastructure at different levels of the hierarchy.  

This approach enables services from different levels of a hierarchy, possibly with 
different properties (such as encryption and security requirements) to interact with 
each other seamlessly without ever being aware of such incompatibilities. The 
Router/Interceptor, with the help of additional intermediary infrastructure services, is 
the means for providing such a seamless communication. 

High availability with active failure management. A Rich Services-based imple-
mentation is particularly adapted to this mode of operation as its routing/interceptor 
layer can dynamically reroute messages to replicas or proxies of failed/unavailable 
services without interrupting the business logic flow. In this sense, inherently hierar-
chical by nature, the Rich Services design pattern breaks the fault chain by providing 
uninterrupted capabilities to any upper level service. In previous work, we introduced 
a comprehensive approach [11] towards application-level fault tolerance for service-
oriented applications by combining the RS architectural pattern with a model-based 
approach to failure specification, detection and mitigation. We use a similar approach 
for ULSSIS by focusing on the interactions between the system components for speci-
fying and enforcing failure management. Formal models based on interaction specifi-
cations provide the means to specify communication patterns between different sub-
systems. Together, those patterns capture the full behavior of the system. A policy-
based mitigation allows us to support an expandable list of recovery strategies that are 
dynamically chosen and applied to provide high-availability. 

Scalable computational and data storage infrastructure. In a Rich Services-based 
implementation, any Service/Data Connector abstracts the implementation, business 
logic, and platform details of its Rich Service. Coupled with virtual machine tech-
nologies, even the platform-specific requirements of an implementation of a “leaf” 
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Rich Service become irrelevant; hence, computational capabilities can easily scale 
with the demand. Data transformation capabilities of the Service/Data connector also 
enable complete abstraction of the storage mechanisms implemented by a Rich Ser-
vice; thus, a simple database would be indistinguishable from a large cluster of data-
bases. This translates into major cost savings when using COTS components [12] for 
building the underlying physical infrastructure of the ULSSIS according to the Rich 
Service architectural pattern. 

The management of distributed state. Reliable messaging, replication, encapsula-
tion of business logic, and orchestration of interactions are just a few of the elements 
that a Rich Service-based solution would employ to achieve this objective. 

Extensive and expressive communication with the environment. The Rich Services 
framework helps in these scenarios by abstracting from domain-specific entities such 
as physical instruments, providing uniform ways for accessing capabilities, providing 
support for ad-hoc dynamic reconfiguration of services, grouping of services and data 
for community collaboration in hierarchical structures. 

5   Case Study: Ocean Observatories 

We demonstrate the utility of the proposed architecture blueprint by using a case 
study from the domain of Earth sciences, namely the ongoing NSF Ocean Observato-
ries Initiative (OOI) program [3]. The main goal of the OOI is to provide the basic 
infrastructure for sustained, long-term oceanographic and climate-change research. It 
comprises three types of interconnected ocean observatories spanning global, regional 
and coastal scales. The core capabilities and the principal objectives of ocean observa-
tories participating in the OOI program are collecting real-time data, analyzing data 
and modeling the ocean on multiple scales, and enabling adaptive experimentation 
within the ocean. 

The OOI CyberInfrastructure (CI) constitutes the integrating element that links and 
binds the observatories and associated sensors into a coherent large-scale system-of-
systems. CI also enables direct access to instrument data acquisition and control, and 
the opportunity to seamlessly collaborate with other scientists, institutions, projects, 
and disciplines. 

A traditional data-centric CI, in which a central data management system ingests 
data and serves them to users on a query basis, is not sufficient to accomplish the 
range of tasks ocean scientists will engage in when the OOI is fully implemented. 
Instead, a highly distributed set of capabilities are required to facilitate: end-to-end 
data preservation and access; user-driven and automatic control of how data are col-
lected and analyzed; direct, closed loop interaction of models with the data acquisition 
process; virtual collaborations created on demand to drive data-model coupling and 
share ocean observatory resources (e.g., instruments, networks, computing, storage 
and workflows); end-to-end preservation of the ocean observatory process and its 
outcomes; automation of the planning and prosecution of observational programs. 

This case study is an elaboration of the OOI-CI Final Network Design [3]. Clearly, 
in this article we can only scratch the surface of the complexity of building an archi-
tecture of the scale of OOI. However, this case study allows us to show how we ad-
dress the ULSSIS concerns by decomposing the OOI-CI services both horizontally 



Requirements for Service Composition in Ultra-Large Scale Software-Intensive Systems 103 

and vertically through the Rich Services architecture blueprint, and to express valu-
able lessons learned in the interaction with a multi-disciplinary set of stakeholders. 

OOI-CI is a complex ULSSIS with functionality covering multiple business con-
cerns. Figure 2 shows a simplified decomposition of the OOI-CI into six subsystems, 
i.e., collections of services pertaining to different business concerns. Four subsystems 
(namely, Sensing and Acquisition, Data Management, Planning and Prosecution, 
Analysis and Synthesis) address the oceanographic science- and education-driven 
operations of the OOI Integrated Observatory. The other two subsystems provide the 
infrastructure services: the Common Operating Infrastructure provides the distributed, 
message-based, service-oriented integration and communication infrastructure, 
whereas the Common Execution Infrastructure provides the virtualization of computa-
tional and storage resources.  

Evolution and adaptability at all scales. Large-scale projects such as OOI are sub-
ject to requirements changing over time. Not only do user requirements evolve, but 
the technologies used in implementing the subsystems do, too. Rich Services integra-
tion strategy allows constituent subsystems to evolve independently from the compos-
ite system. This also sets the stage for dynamic system reconfiguration to adapt to 
changes in the environment or in the requirements. Subsystem functionality is ex-
posed to the OOI network as services with defined access interfaces, and the only way 
of interacting within the OOI network is by messages. Service-orientation and mes-
saging realize loose coupling of components, resulting in flexibility and scalability. 
For manageability, services are grouped according to business concerns into subsys-
tems, which can be developed independently.  

Extensive and expressive communication with the environment. The environment 
of the OOI ULSSIS involves both users and physical sensors. The Sensing and Ac-
quisition subsystem provides the means for interfacing with oceanographic sensors 
(e.g., for temperature, pressure, salinity), which may be aggregated into research 
instruments deployed on instrument platforms. This subsystem also deals with provid-
ing power ports, connectivity, and other physical observatory infrastructure and pro-
vides state-of-health monitoring and oversight over the data acquisition process. The 
Planning and Prosecution subsystem coordinates all scientific activities. It provides 
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Fig. 2. OOI-CI decomposition according to business concerns 
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resource planning and plan execution, including the development, refinement, con-
figuration, and enactment of observation plans. It also provides the framework for 
autonomous glider control.  

From the user perspective, the Analysis and Synthesis subsystem provides a set of 
basic frameworks to define data analysis and manipulation processes based on user-
provided workflows and computation. In addition, this subsystem provides the basis 
for virtual collaborations, interactive analysis, and visualization. The Data Manage-
ment subsystem provides access to various information products together with their 
associated metadata. For processing and manipulation of data artifacts, it makes use of 
ontology-based mediation to transform information between different syntactic and 
semantic representations.  

Scalable computational and data storage infrastructure. The Common Execution 
Infrastructure subsystem handles the scheduling, provisioning and execution of all 
necessary OOI-CI computations. From a deployment perspective, it uses virtual ma-
chines that abstract from the underlying computational resources. Dynamic provision-
ing of virtual machines inside a computing cloud enables scalable execution of the 
business logic according to the actual demand. 

The Common Operating Infrastructure (COI) subsystem provides a message-based 
exchange (including the router/interceptor and messenger/communicator capability) 
between all services, and ensures pervasive and consistent governance/policy en-
forcement, identity management, and resource management. It also allows subsystem 
services to be composed to handle complex interactions, and manages the overall 
service orchestration. At all abstraction levels, infrastructure services plugged into the 
Exchange service can modify the interaction patterns by re-routing, filtering, or modi-
fying the exchanged messages. This feature allows the validation and signing of mes-
sages and also injection of policies governing the integration of a set of services. For 
instance, Figure 3 depicts a decomposition of the Identity Management service of the 
COI subsystem. The Message Signer service signs all messages, whereas the Message 
Validator validates the identities of the sender and intended recipient from an incom-
ing message through the Authentication Service and the Credential Authority, and 
checks the validity of the message against a set of known interaction patterns via the 
Authentication service and the Attribute Authority. The Authentication Service, Reg-
istration Authority, Credential Authority and Attribute Authority provide the core 

 

Fig. 3. OOI-CI > COI > Identity Management service decomposition  
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services of an Identity Provider, which is a critical component for a scalable infra-
structure with federated decentralized operations. 

Management of distributed resources and their states. The Rich Services frame-
work provide resource location independence; user applications are shielded from the 
complexity of the system and where resources are located. For OOI-CI, the COI sub-
system provides a Resource Management service, which enables seamless utilization 
of resources across the entire CyberInfrastructure (see Figure 4). The Resource Re-
pository service provides references to all resources known to the OOI-CI. Through 
the Resource Integration service, resources can participate in interaction patterns 
implemented by OOI services (e.g., a storage resource may be used to record states of 
various services), or may provide their own services (e.g., a glider may act as an in-
strument platform and proxy for the sensors that it carries). The Resource Collabora-
tion service provides the collaboration framework between different facilities and the 
sharing of resources within the OOI federation. The Resource Lifecycle service pro-
vides the means to track and manage resources throughout their entire lifecycle from 
development to decommissioning.  

Federated decentralized operation. A system satisfying the goals of OOI would 
support scientific discovery by providing eligible oceanographers ubiquitous access to 
instrument networks for sensing and actuation, computational resources, and model-
ing and simulation facilities, as well as means for distributed data storage and access. 
A traditional SOA approach would quickly reach its limits in the face of the chal-
lenges induced by the diverse requirements of supporting governance of the different 
authority domains, access policies, and concerns of the multiple stakeholders involved 
in such a complex system-of-systems. The complexity of the resulting cyber-
infrastructure requires a decomposition methodology and an architecture that supports 
the deployment, operation, and distributed management of thousands of independ-
ently owned taskable resources of various types (e.g., sensors, sensor platforms, proc-
esses, numerical models and simulations) across a core infrastructure operated by 
independent stakeholders.  

In the case of the OOI-CI, the Router/Interceptor layers and the Service/Data con-
nectors of each Rich Service enable the composition and collaboration of different 
concerns, and expose the oceanographer to the capabilities of the Instrument through-
out the hierarchy. Thus, they facilitate a seamless communication along the levels of 
hierarchy without the oceanographer or Instrument being aware of the fact that they 
are communicating with entities outside of their authority domain.  

The Rich Service architectural pattern enables hierarchical structuring of the stake-
holders’ logical roles into the cyber-infrastructure, and encapsulation of crosscutting 
concerns according to their individual policies. In addition, the concerns and authority 
domains of a stakeholder may be extended beyond the infrastructure under its direct 
control through business relations (e.g., contracts), such as owning an entity but having 
it managed by another stakeholder. Figure 5 depicts a Rich Services view of the OOI 
model, organized around authority domains and deployment concepts such as Shore 
station, Research Facility. The fractal nature of the architecture scales from the top-
level view of the OOI system-of-systems down to the lower deployment levels in the 
various participating organizations. The figure displays multiple views of the system, 
illustrating specific roles and showing several stakeholders’ crosscutting concerns. 
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Note that at the logical level, there could be other Rich Services views of the same OOI 
model, organized around different concerns, such as functional subsystems. 

Scenario 1. An oceanographer investigates ocean current flows near seashore and 
decides to retrieve the relevant data from an OOI Archive. This scientist belongs to a 
Research Facility, whereas the physical archive containing the data of interest is lo-
cated under the authority domain of an OOI Distribution Point. Hence, as depicted in 
Figure 5, an application running under the credentials of the oceanographer has to 
cross multiple authority domains to retrieve the data and create the necessary plots of 
ocean currents. Consequently, retrieving the data is subject to the global OOI policies 
set by the Observatory Management (e.g., only public data is available), the additional 
policies of the Distribution Point (e.g., only data at least 3 months old), and finally of 
the Research Facility (e.g., only during regular business hours). 

Scenario 2. Consider the following extension of the first scenario – the oceanogra-
pher needs more recent data from a remote ocean Instrument. Although the oceanog-
rapher owns the Instrument, both entities operate from different authority domains, 
each with its own set of requirements and policies. In more detail, the oceanographer 
belongs to the Research Laboratory, for which the core concerns are the identification 
and authentication of the oceanographer, and the provisioning of the research facilities 
within a specific set of policies regarding the available ocean instruments, knowledge 
bases, and experiments possible at a given time.  

The identification and the management of the remote Instrument also concerns an-
other stakeholder, as the Instrument is located deeper in the hierarchy of the Acquisi-
tion Point’s Shore Station near the seashore. Although the Instrument belongs to an 
Science Instrument Interfacing Service associated with the Research Facility, it still 
has to obey the set of policies regarding the power usage, allowed research activities, 
timing of the activities, and the available mathematical processes for the resulted data 
of the encompassing Measurement Node and the upper-level Shore Station. These 
requirements are instances of additional Rich Services provided by the stakeholders. 
For example, the mathematical processing services could be available in terms of 
CPU processing time on a supercomputer center governed by the Observatory Man-
agement.  

For this scenario, a possible deployment plan might include classic Web services or 
a more general ESB-based technology, such as Mule [15]. Thus, each embedded Rich 
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Fig. 4. OOI-CI > COI > Resource Management service decomposition 
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Service in the path from the oceanographer to the Instrument might have its own set 
of Rich Infrastructure Services that would transparently alter the message flow to 
implement identification, authentication, accounting, or logging of the data/control 
messages of interest at that level. At each level, one or more Rich Services might deal 
with the specific concerns and policies of a stakeholder. Thus, the overall role of a 
stakeholder in the CyberInfrastructure would be the union of all its roles on all levels 
of the architecture. Translated into a flat view, this union is the root of the complexity 
that makes the development of such systems-of-systems difficult. The vertical integra-
tion capability of the proposed architecture solves this problem and allows the de-
coupling of the location concerns of the stakeholders at all levels of the architecture, 
and allows a simplified management over the lifetime of the program. 

5.1   Lessons Learned from the OOI Case Study 

In addition to addressing service composition challenges, we have learnt from OOI 
case study a number of lessons related to ULSSIS system engineering.  

Separation of concerns is key in managing system complexity. The Rich Services 
architectural pattern promotes the separation of business logic from infrastructure 
concerns. Therefore, the complexity of such a large-scale system becomes manage-
able by focusing on each concern separately. In the case of the OOI project, the sys-
tem was decomposed into six subsystems (see Figure 2): each subsystem focuses on 
the services that it enables, assuming that all the infrastructure services are in place. 
For example, when designing the Sensing and Acquisition subsystem, the architecture  
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Fig. 5. Simplified deployment scenario using the Rich Services pattern 
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team focused on concerns related to instrument control and data acquisition. Instru-
ments can belong to a research laboratory, whereas all the deployment platforms and 
marine resources are under different authority domains. However, governance is han-
dled by infrastructure services, and can be abstracted when designing the Sensing and 
Acquisition services. 

Separation of concerns simplifies work breakdown. The responsibility for these six 
OOI subsystems was allocated to different teams, distributed across the U.S. Each 
team has as core deliverable the services of the respective subsystem; in addition, it 
can extend services provided by other subsystems. The Rich Services architecture 
provides the integration strategy that glues all services in an integrated observatory. 
The work-breakdown structure benefits tremendously from having infrastructure 
concerns addressed separately. 

Presentations to stakeholders need to abstract from Rich Services details. The 
OOI project organized a series of workshops for gathering requirements from the 
community and for consolidating the design from different subsystems teams. Besides 
workshops, OOI undergoes a series of project reviews with the funding agency – 
NSF, under the management of JOI (Joint Oceanographic Institutions). All of these 
meetings required presentations to dozens of stakeholders from different domains. 
Although the audience grasps the benefits of Rich Services architecture quickly, we 
found out that simplified architectural diagrams and high-level depictions of the do-
main concepts work best. For instance, grouping all infrastructure services into the 
COI subsystem and presenting the other subsystems as running on top of COI is par-
ticularly adequate for domain experts who understand the science aspects of the OOI 
program but might be unfamiliar with service-oriented software architectures and 
related notations. 

The OOI architecture has been developed in accordance with the Department of 
Defense Architecture Framework (DoDAF [15]) standard, which provides guidelines 
for developing architectures for large-scale systems and for presenting relevant views 
(i.e., all views (AV), operational views (OV), systems views (SV), and technical 
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views (TV)) on the architecture data in a number of products. The target audience for 
the OOI meetings includes decision makers, subsystem implementers, and end users. 
In particular, we found that the OV2 diagrams [15] – which show the operational 
nodes, their responsibilities, and dependencies between them – work best to convey 
the information flow between various system entities. For the Sensing and Acquisi-
tion subsystem, a simplified view is shown in Figure 6. The Sensing & Acquisition 
Services perform instrument management, mission execution, and data acquisition 
tasks. For simplicity, the COI subsystem is represented through its Exchange service. 
The dotted lines represent information flows that are implemented through the  
Exchange. 

Difference between Rich Services and ESBs. Rich Services are useful both as a 
logical and deployment architecture model. ESB is a deployment technology that has 
the advantage of increasing code reuse due to built-in services and intercepting 
mechanisms. However, ESB implementations differ from the logical concepts in Rich 
Services, as for example, the interceptors defined in Mule v1.4 do not map directly to 
our interceptor abstraction. Moreover, Rich Services can be implemented in various 
ways (flattened vs. hierarchical deployments, ESBs vs. JVM message passing), as 
long as all of the logical protocols translate into the chosen implementation. Rich 
Services conceptualize and extend the benefits offered by ESBs at the deployment 
level. In particular, Rich Services are a consistent architectural blueprint that has a 
direct mapping to ESBs but also to other deployment technologies. 

Workflows and service choreographies. Scientific communities use Data Product Gen-
eration Workflows as an automated set of processes that transform input data to output 
data, perform quality control, model, and visualize data. There is a good match between 
service-oriented architectures and workflows, as every service can become an action/step 
within a workflow. Therefore, workflows translate into service choreographies.  

Support for Virtual Communities of Interest. Driven by the needs of stakeholders 
to interact to accomplish their tasks, there is an increasing desire to enable the forma-
tion of virtual communities of interest (VCOI). These VCOIs define themselves by 
shared computational and data resources, common agenda, communication needs, and 
other collaboration characteristics, and also by common policies and workflows. The 
OOI CyberInfrastructure not only needs to provide the core functionalities for these 
VCOIs to perform their tasks, but also to manage the creation, existence, dissolution 
of and membership in these VCOIs. This is particularly important when there is no 
single organization that has all the resources needed and all stakeholders in colloca-
tion: many investigators belonging to a wide range of organizations might collaborate 
and share resources for specific scientific experiments, thus forming a VCOI over the 
integration fabric provided by the OOI. 

6   Related Work 

Architectures. Our Rich Service architecture is an architectural style introduced in 
[4] that leverages well-known enterprise integration patterns [17,18,19]. Rich Ser-
vices is a service-oriented architecture; it complements the OASIS SOA Reference 
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Model [20] and W3C Web Services Architecture [21] by providing an architectural 
style particularly suitable to integrating complex distributed applications such as 
ULSSIS. Architectural styles and patterns [22] define families of architectures whose 
elements are configured according to given constraints. In Rich Services, the com-
munication is carried out by Messages exchanged over Messages Channels [19]. 
Services are decoupled via the Plugin pattern [18] and the Router/Interceptor as an 
instance of the Mediator pattern [17]. Furthermore, our Service/Data Connector uses 
the Façade, Proxy, and Adapter patterns [17], as well as the Messaging Gateway 
pattern [19]. Finally, the Composite pattern [17] enables the hierarchical composition 
of Rich Services. 

Rich Service architecture addresses key integration and extensibility requirements, 
while providing a systematic way to model various stakeholders’ crosscutting con-
cerns. As noted in [23], software architectures define the configuration of architec-
tural elements. [24] argues that to provide adaptability for ULS, we need to pay par-
ticular attention to couple software artifacts and processes with the stakeholders and 
environments that influence the decisions to which systems must adapt. Thus, [24] 
suggests to scope architectures as ontology of decision makers, design decisions, and 
constraints on subsequent design decisions. Our approach is to use a service-oriented 
development process [13] that encompasses activities from use case elicitation, ser-
vice definition, mapping to Rich Services, through physical network deployment. 
With the Rich Services architecture, we see a service composition as the binding of 
participating services in respect not only to the behavior of the services, but also to 
their requirements and policies. Our process is iterative and supports partial require-
ments and partial specifications of the system. For example, at the stage of creating 
Rich Services, it is common to discover additional opportunities for crosscutting con-
cerns such as QoS monitoring and failure management. These concerns reflect func-
tional and non-functional facets of requirements, which may generate additional use 
cases resulting in spiraling back to the initial development stages. 

The elaboration of a formal model for service interfaces and their composition is 
beyond the scope of this paper. However, the work in [25] is a valid foundation for a 
formal underpinning for Rich Services; it introduces the concepts of components and 
services as total and partial behaviors, and uses Message Sequence Charts (MSCs) for 
the definition and composition of services. 

Web Services composition. The Rich Services architecture supports the flexible 
composition of services. Service composition has been one of the most active devel-
opment areas for Web service technologies in recent years. Two interesting directions 
for Web service composition are business workflows and the semantic Web.  

The business world views Web services as interfaces to business processes and 
represents service composition as a workflow: Web services are specified in WSDL, 
and the flow must is explicitly specified in a flow-composition language for orchestra-
tion (e.g., BPEL [26]) or choreography (e.g., WS-CDL [27]). Rich Services support 
these composition approaches – their encapsulation and hierarchy guide developers to 
focus on one hierarchical level at a time. 

The Semantic Web [28] community uses semantic representations of services using 
languages such OWL-S [29] to address the challenging problem of flexible runtime 
discovery, binding, and automatic composition of services. The flexible architecture  
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of Rich Services and the ESB deployment strategy allow us to expose richer inter-
faces and reconfigure communication at run time, thereby enabling the use of ontol-
ogy-based composition techniques. 

Extensibility and Adaptability for ULSSIS. Already in [30] Parnas stresses the im-
portance of designing software in a way that can be tailored to the needs of different 
users. For ULSSIS, this is of utmost importance. We make the recommendation of 
designing for change a central element of the Rich Service architecture. Rich Services 
are decoupled via the Router/Interceptor layer and the Service/Data Connector. Cross-
cutting concerns are handled separated via dynamic behavior injection. Thus, emerging 
requirements can often be implemented with minimal or no changes to working code. 
Instead, changes can be implemented by intercepting and transforming message flows. 

[31] emphasizes the need for adaptations in ULSSIS and proposes to use tech-
niques from autonomic computing [32], which refers to any system that manages 
itself based on high-level objectives and achieves reconfiguration, self-optimization, 
self-healing, and self-protection. Monitoring is an important aspect of self-managing 
systems. In general, monitoring is difficult [33] because, among others, it may impact 
ULSSIS performance, an application might have heterogeneous monitoring tech-
niques from different parties, and the set of techniques might change over time. In 
Rich Services, monitoring is a crosscutting concern that is handled by an infrastruc-
ture service; different monitoring techniques can be used at each level in the hierar-
chy. The system can easily handle changes in the monitoring services, because such 
changes do not affect the actual application services.  

[31] investigates design patterns for self-monitoring systems, such as Content-based 
routing, Look-up Table, Stream Splitter, Stream Merger, etc. Rich Services also use 
service registry, enable dynamic interception and routing of messages, and the Ser-
vice/Data Connector acts as a gateway between different Rich Services levels. [31] 
builds upon results from frameworks such as [34] and [35] for monitoring distributed 
applications, and uses the model-based development process from [36], which sepa-
rates the adaptation behavior and non-adaptive behavior specifications of adaptive 
programs, thus making the models easier to specify and amenable to automated analy-
sis and visual inspection. We also emphasize the need for separation of concerns in 
ULSSIS systems. For example, we see failure management as a crosscutting quality 
concern that requires placing the interactions between components in the center of 
attention to transition from a per-component basis to an end-to-end failure management 
notion in ULSSIS systems. We have introduced a service-oriented development ap-
proach [14] that addresses both component- and service-level failures, and establishes a 
clean separation between the services provided by the system, the failure models, and 
the architecture implementing the services. By exploiting the relationship between 
service specifications and failure management specifications, we were able to formally 
verify (model check) the fail-safety of a system under a given failure hypothesis. 

Development processes for ULSSIS. Traditional approaches to system engineering 
define clear boundaries between a system and its environment and define a software 
engineering development process that matches clear requirements to specific compo-
nents in the architecture. In systems of systems (SoS), individual systems are no 
longer seen as bounded entities, but rather interacting with other participants to form a 
larger system based on end-to-end business processes and requirements [37]. Our 
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Rich Services development process [13] fits well with large-scale SoS integration 
recognizing that system requirements are generally not defined in terms of architec-
tural components; instead, they typically span across the various components of the 
system, establishing complex interaction dependencies. Therefore, we place services 
in the center of the attention: we view services as interaction patterns among the sys-
tem entities involved in establishing a particular piece of functionality. This service-
oriented development process also achieves a clean separation of the logical model of 
the system and its implementation. The process can be integrated with SoS develop-
ment processes such as SoSE [38] and ICM [39], which address the issue of responsi-
bilities and coordination between the integrated SoS and the constituent subsystems. 
Furthermore, cost estimation models and tools [40] support estimating the effort for 
the development and evolution of SoS. 

In the SoSE model (systems-of-systems engineering model) [38] the component 
systems retain their responsibility for management and engineering, and SoS manag-
ers and engineers do not control but collaborate with systems managers and engineers 
to influence the systems developments such as to address SoS objectives. The model 
encourages loose coupling between systems to support adaptability during system 
evolution. 

The Incremental Commitment Model (ICM) [39] is a risk-driven framework that 
combines agile and plan-driven processes, and emphasizes continuous verification 
and validation. ICM has iterative development cycles focusing on incremental growth 
of system definition and stakeholder commitment and satisfaction. For systems of 
systems, ICM implies to coordinate the activities for each system using the Life Cycle 
Objectives (LCO), Life Cycle Architecture (LCA), and Operational Capability Re-
lease (OCR) reviews. The OOI project integrates this model with Rich Services, and 
is currently in the Life Cycle Objectives phase for its subsystems. 

7   Conclusion 

We presented a set of challenging requirements for designing, building, and operating 
ultra large-scale software-intensive systems, using the OOI-CI as running example. 
When using SOAs for modeling such systems, these requirements translate into corre-
sponding challenging service composition requirements. We are successfully using 
the Rich Services framework within OOI-CI to answer these challenges. Rich Service 
is an extension of the standard service notion based on an architectural pattern that 
allows hierarchical decomposition of system architecture according to separate con-
cerns. The Rich Services communication infrastructure enables loose coupling and 
seamless communication between services. Such capability drives the evolution of the 
system by providing the underlying mechanisms to handle changes, dynamic recon-
figuration, and policy enforcement. 

While the Rich Service blueprint covers a significant part of the requirements spec-
trum for ULSSIS, creating a comprehensive engineering approach to service-oriented 
ultra-large-scale systems requires a long-term research endeavor addressing theory to 
modeling to deployment. The focus shifts from the production of components (open 
or monolithic) to the choreography of components or the services they offer; hence, 
our approach with Rich Services pioneers many future research directions. 
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Abstract. The pragmatics of model-based design refers to the practi-
cal aspects of handling graphical system models. This encompasses a
range of activities, such as editing, browsing or simulating models. We
believe that the pragmatics of modeling deserves more attention than
is has received so far. We also believe that there is the potential for
significant productivity enhancements, using technology that is largely
already available. A key enabler here is the capability to automatically
and quickly compute the layout of a graphical model, which frees the
designer from the burden of manual drawing. This capability also al-
lows to compute customized view of a model on the fly, which offers new
possibilities for interactive browsing and for simulation.

1 Introduction

Linguists distinguish the syntax, semantics and pragmatics of languages. To-
gether these three categories are referred to as semiotics—the study of how
meaning is constructed and understood. All three categories can be applied to
programming languages as well as natural languages. In the context of program-
ming languages, syntax is determined by formal rules saying how to construct
expressions of the language, semantics determines the meaning of syntactic con-
structs, and the pragmatics of a language refers to practical aspects of how con-
structs and features of a language may be used to achieve various objectives [1].
In this paper, we argue that the pragmatics of modeling languages deserves more
attention than it has received so far. Specifically, it appears that the practical
issues of how to create, maintain, browse and visualize effective graphical models
have been neglected in the past. This largely offsets the inherent advantages of
visual languages, makes it difficult to design complex systems, and unduly limits
designers’ productivity. Petre [2] quotes a professional developer as follows: “I
quite often spend an hour or two just moving boxes and wires around, with no
change in functionality, to make it that much more comprehensible when I come
back to it.”

Traditionally, “pragmatics” refers to how elements of a language should be
used, e. g., for what purposes an assignment statement should be used, or under
what circumstances a level of hierarchy should be introduced in a model. It is
usually not considered how the practical design activities themselves (editing,
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browsing, etc.) are performed—simply because this is usually not much of an
issue when textual languages are concerned. There may be differences in conve-
nience of use in different text editors, and integrated design environments (IDEs)
can provide various levels of support in building and maintaining large software
artifacts. However, the basic mechanics of writing or changing a line of code is
rather standard and efficient. In comparison, the mechanics of editing a graphical
model are much more involved, and it appears that there is much to be gained
in this area. Hence by “pragmatics of modeling languages” we here slightly ex-
tend the traditional interpretation of “pragmatics” to encompass all practical
aspects of handling a model in a model-based design flow, including the tradi-
tional aspect of how a model should be constructed to effectively communicate
its meaning.

There are several established fields that can provide valuable input here, such
as the area of human computer interaction, cognitive psychology, and the graph-
ical layout community. For example, there are fundamental practical differences
in using textual or graphical languages [1], and freeing the modeler from the
burden of manually drawing a graphical model opens the door to a number
of productivity-enhancing techniques that allow to combine the best of both
worlds [3]. Furthermore, there are already a number of paradigms well estab-
lished in software engineering that could be put to use for model-based design
processes, including the design of the modeling infrastructure itself. For exam-
ple, the state of the practice in creating a graphical model, say, a dataflow
diagram or a Statechart, is to directly construct its visual representation with a
drag-and-drop (DND) What-You-See-Is-What-You-Get (WYSIWYG) editor, and
henceforth rely on this one representation. We here propose instead to apply the
Model-View-Controller (MVC) paradigm [4] to separate a model from its repre-
sentation (view). Together with a modeling environment (the controller/editor)
capable of automatic model layout, one can thus provide flexible representations.
These views can be adapted according to specific design activities, balancing use-
ful information with cognitive complexity [5].

In this paper, we survey the different aspects of the pragmatics of graphical
modeling languages. This covers a broad range of existing work, as well as a
number of observations and proposals that to our knowledge have not been re-
ported on before. As space is limited, we do not attempt to investigate any of
these aspects in much detail here, but rather try to cover as much ground as pos-
sible. A non-trivial question at the onset was how to organize the subject matter.
There exist extensive surveys in the area of model-based design, see for example
Estefan’s overview of model-based systems engineering methodologies [6], or the
overview of hybrid system design given by Carloni et al. [7]. An annotated bib-
liography by Prochnow et al. [8] inspects the visualization of complex reactive
systems. There exist numerous surveys on automatic graph drawing, which we
consider an essential enabler for efficient modeling [9,10]. However, we are not
aware of an existing taxonomy that focuses on the aspect of pragmatics. We
here opt for the aforementioned MVC concept as a guiding principle. For a first
overview, see Fig. 1. In some cases, it may be arguable how a certain aspect
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Fig. 1. The MVC paradigm applied to the pragmatics of graphical model-based system
design

should be classified; e. g., we here consider editing to be part of the model, but it
could also be classified as part of the controller. However, we still find the MVC
classification helpful.

This structure is also reflected in the organization of this paper, except that
we start with the view (Sec. 2), followed by the model (Sec. 3) and the controller
(Sec. 4). We conclude in Sec. 5.

Example figures in the following sections are mainly taken from different
graphical modeling tools like Mathwork’s Matlab/Simulink, Esterel Technol-
ogy’s E-Studio and SCADE and graphical editors basing on the Eclipse plat-
form. None of the tools handles pragmatics very well so far, so the images are
mainly for illustration of the concepts but not for showing the state-of-the-art
in implementation. An implementation of the concepts presented in this paper
is ongoing work in the project Kiel Integrated Environment for Layout Eclipse
Rich Client (KIELER)1.

2 The View—Representing the Model

We believe that a key enabler for efficient model handling is the capability to
automatically compute the layout of a graphical model. If one frees the user from
the burden of manually setting the coordinates of nodes and bendpoints, sizes
of boxes and positions of connection anchor points, this can open up enormous
potentials. The following section explores this further.

1 http://www.informatik.uni-kiel.de/rtsys/kieler

http://www.informatik.uni-kiel.de/rtsys/kieler
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(b) Statecharts (here
SyncCharts)
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Fig. 2. Different graphical syntaxes with different properties for their layout

2.1 Automatic Layout

The correct use of pragmatic features, such as layout in graph-based notations, is
a significant contributory factor to the effectiveness of these representations [2].
Automatic layout has to be appealing to the user such that he or she is willing to
replace optimized manual layout with an automatically created one. Additionally
this layout capability would have to be deeply integrated into the modeling tool
and optimized for the respective graphical language syntaxes.

One must recognize that at this point, the automatic layouting capabilities of-
fered by modeling tools, if they do offer any capabilities at all, tend to be not very
satisfying. A major obstacle is the complexity and unclarity of this task. What
are adequate aesthetic criteria for “appealing” diagrams [11,12,13]? Are there
optimal solution algorithms or heuristics with acceptable results that adhere to
the desired aesthetic criteria? An important aspect is the usage of secondary
notation, which is specific to the modeling language used [14]. Used properly, an
automatic layout does not only provide aesthetically pleasing diagrams, but can
also give the viewer valuable cues on the structure of a model. For example, a
standardized way of placing transition labels (e. g., “to the left in direction of
flow”) can solve the often difficult label/transition matching problem. Similarly
a standardized direction of flow (e. g., “clock wise”) can give a quick overview
of the flow of information, without having to trace the direction of individual
connections.

Fig. 2 shows three examples of different graphical formalisms that pose differ-
ent layout challenges. Unified Modeling Language (UML) Class Diagrams look
quite close to the standard graph layout problem, although sometimes hierarchy
might be added by displaying packages in the diagram. While usual relations
can be regarded as any graph edges, inheritance relations as shown in Fig. 2(a)
have a special role. They are typically drawn from top to bottom, which is a
strong constraint for the layout algorithm. So even here one needs a specialized
layout algorithm for this diagram type [15].
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Statemachines fit pretty well to graph layout, but introducing hierarchy re-
quires special handling. In a diagram with hierarchy and without any inter-level
connections crossing hierarchy boundaries, the layout algorithm for a flat lay-
out can be called recursively. This was employed for Statecharts as shown in
Fig. 2(b) using the layered based Sugiyama layouter of the GraphViz library in
the KIEL project [3]. Small enhancements of the graphical syntax might have
severe consequences for the layout. Inter-level transitions, which are possible in
some Statechart dialects as UML State Machine Diagrams or Stateflow of Mat-
lab/Simulink, cannot be layouted with this approach and would require a special
handling again.

Another special class are actor oriented dataflow languages [16]. The no-
tion dataflow sometimes is used in different contexts resulting in different di-
agram syntaxes. We here consider languages usually used in the control engi-
neering domain such as Ptolemy, the Safety Critical Application Development
Environment (SCADE), or Matlab/Simulink (Fig. 2(c)). The connections denote
flows of data and two distinct connections will likely carry different data and
possibly different data types. Data are consumed by operators, and to distin-
guish the different incoming and outgoing data sources and sinks, an operator
has special input and output ports. For many operators it is very important to
specify explicitly which data flow is connected to which port because an alterna-
tion would also alternate the semantics. The example shows subtraction, division
and switch operators which are not commutative and hence need their incoming
flows exactly at the right input ports. The graphical representation also reflects
this issue by presenting specific anchor points for the connections at the border
of the operators. For the mentioned languages these ports have fixed positions
relative to the operator, usually showing the data flow from left to right by posi-
tioning inputs left and outputs right. However, some special purpose ports may
also be positioned on top or bottom of the operator, in general at pre-defined
and static locations. These port constraints induce a great complexity to the
problem and require special care such as by the approaches of Eiglsperger et al.
[17] or a modified Sugiyama layout as implemented in the KIELER project2.

Summing this up, we cannot hope for one ultimate layout algorithm that is
applicable for all languages and applications. Instead, we need a set of different
layouters to cover a wide range of language syntaxes and layout styles.

2.2 Filtering

Card et al. [18] define approaches for reducing information in a diagram: Filter-
ing, Selective Aggregation, Highlighting and Distortion. A filter simply hides a
set of objects in the diagram, to reduce the complexity of a diagram. For techni-
cal scalability issues it is often not feasible to construct and inspect models with
many objects—hundreds or thousands of nodes—but consistently working with
filters it can be. Only a small set of objects should be visible while all others are
hidden and do not consume graphical system resources. By navigating through

2 http://www.informatik.uni-kiel.de/rtsys/kieler/

http://www.informatik.uni-kiel.de/rtsys/kieler/
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(a) Top-level state (b) Inner state

Fig. 3. Filtering in E-Studio, showing a part from a processor design [19]: The com-
posite state in the lower right corner of (a) displays only a very small part of its inner
life (b)

the model, a user reveals some parts and hides others. In order to properly work,
we need strategies to apply this automatically to free the user of the burden to
manually selecting the items to show and to hide. (This also leads to the focus
and context paradigm, see Sec. 2.4.)

Simple filters can already be found in some tools that hide objects on the
canvas while the canvas size resp. the bounding box stays the same size. Hence
only the number of elements is reduced but not the size and therefore the same
zoom level or paper size is required to display the model and there is hardly any
chance to see more of the surrounding context as before. A rather unusual way
of filtering can be used in Esterel Studio, see Fig. 3. The hierarchy mechanism in
E-Studio allows to create the relatively clearly arranged top-level diagram Fig.
3(a). However, the macrostate Watcher Kernel in the lower right reveals only a
very small part of its contents, the rest is hidden. One has to manually open the
Watcher Kernel state in a new canvas in order to see its whole extend shown in
Fig. 3(b) where a complex inner life is revealed compared to what small part of
it is shown in the parent. This feature becomes more useful in combination with
automatic layout that uses the free space gained from the filters.

Dynamic Visible Hierarchy. Dynamic hierarchy is a special case of a filter
where all children of some parent object are filtered. For filters one might select
to hide items regardless of the hierarchy level to reduce the complexity, see Fig. 4
for a simple example. This corresponds to the folding features of text or XML
editors [20].

2.3 Label Management

Workingwith real-worldapplications quickly leads to the question of how tohandle
long labels. Labelplacement is a big issue in graphdrawing [21] andgeographywith
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(a) Composite Box A
folded

↔
(b) Composite Box A unfolded

Fig. 4. Example for dynamic visible hierarchy, here for an actor oriented data-flow
language implemented in KIELER. This utilizes collapsible compartments and a layer-
based automatic layout algorithm supporting port constraints.

Fig. 5. Long labels prevent good layout. Here a small part of Harel’s wristwatch ex-
ample [25], converted from Esterel to Statecharts [26].

map feature labeling [22]. The problem is computationally intensive, for bended
edges it is NP-hard [23]. In map labeling labels are rather short—city, street or
river names—but in arbitraryDomain Specific Languages (DSLs) they do not need
to be, as Fig. 3(a) shows. We assume to have an automatic layout algorithm that
takes care of the label positioning, taking the label as is and not changing it. There
are innovative approaches changing the diagram syntax, e. g. to replace an edge by
the label itself [24] by optical scaled down distortion. However, we do not consider
such invasive changes as universal option.

Instead, we try to dynamically reduce the complexity of the label to give
the layouter better chances to find appealing layouts and to avoid difficulties as
illustrated in Fig. 5. A label filter might use different strategies, see also Table 1.
Wrapping aims to compact the label by wrapping the text while abbreviation
hides part of the text to actually shorten the length of the string. Syntactically
arbitrary labels might be handled with possibly suboptimal results. Even soft
wrapping respecting identifiers will wrap compound labels inappropriately by
not keeping related identifiers on one line. Semantical abbreviation could hide
specific token types while showing only more important ones, like operators
vs. variable/signal references. With a label manager in charge, the labels can be
dynamically displayed with different levels of detail.
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Table 1. Ways to reduce label complexity temporarily. Here for a Statechart transition
label

Original (not SignalA) and (not SignalB) / SignalC(counter)

hard
(not SignalA) and

(not SignalB) / Signal

C(counter)

Wrapped
syntactical

soft
(not SignalA) and

(not SignalB) / SignalC

(counter)

semantical
(not SignalA) and

(not SignalB) /

SignalC(counter)

syntactical (not SignalA) and (not Si...Abbreviated
semantical SignalA, SignalB / SignalC

Fig. 6. Illustration for the lack of proper view management: showing the whole system
entails loosing details, windows get to small to be usable

2.4 Focus and Context

In classical modeling environments, the user typically has the alternatives of
either seeing the whole model without any detail, or seeing just selected parts
of the model. Fig. 6, from an avionics application, shows what may happen if
one does try to see the whole system. To find a way out of this dilemma, we
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(a) View with focus on state normal

↔

(b) View with focus on state error

Fig. 7. Semantical graphical focus and context in KIEL: The two large composite states
normal (a) and error (b) are only displayed in full detail when the respective state is
active. The inactive state is filtered by dynamic hierarchy and forms the context.

note that when working with a model, it is common that there are parts of the
model of particular interest for the current operation or analysis, which we refer
to as the focus. Other objects next to it comprise the context, which might be
important information to understand the focus objects but may be displayed
with less details. This leads to a focus and context approach where filters are
employed to hide irrelevant objects [27].

Focus and Context in KIEL. The Kiel Integrated Environment for Layout
(KIEL) project [3] uses a semantical graphical focus and context technique to hide
details in the context while highlighting the focus. It is semantical, because the
decision of objects to be filtered is made automatically from semantic background
information from the model [27]. The concept is used during simulation of a
Statechart diagram where the focus seems to be quite natural to state machines:
the currently active states. Hence all active simple states are displayed together
with their whole hierarchy, i. e. all ancestor states (which actually are also active).
Dynamic visible hierarchy, as presented in Sec. 2.2, is used to show all sibling
states but hide their contents. Hence, tidy diagrams are presented always with
reduced complexity as shown in Fig. 7.

During simulation the user never sees the whole diagram but only either one
of the focused views. Smooth animated morphs between the views guide the
mind of the user from one view to the other so he or she can keep the mental
map of the whole application [28].

Alternatives for Focus and Context. Experience showed that KIEL’s spe-
cific interpretation of what objects comprise the focus and which the context is
not always optimal. Sometimes it is difficult to follow the reasons of the view
change, i. e. the switch from state normal to error. Signals emitted in the collapsed
state can cause this change but are immediately hidden and hence the user
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cannot follow the causal event chain. This calls for a more general approach for
applying focus and context techniques. Even for this specific DSL one can come
up with various other schemes to select the focus objects.

– One could show an intermediate step between the transition where the former
active and the new active states are focused both.

– One might decide the focus by active transitions instead of states—this could
also filter parallel regions that do not change configuration.

– The context does not necessarily must go up to the top level, but might be
limited to some number of hierarchy levels.

– Meta focus: one could specify a more abstract focus, e. g. “focus on signal S,”
which would set the concrete focus on transitions/states that reference S.

2.5 View Management

Considering diagram types other than Statecharts, it is not that obvious how to
select the focus of the diagram, because there might be no such thing as an active
state—e. g. in dataflow diagrams sometimes all operators are active in every
step—or there is no visible step-wise simulation at all—e. g. structural diagrams
such as UML class diagrams. To broaden applicability, it appears natural to
upgrade layout information and directives to “first-class-citizens.” By this we
mean that the view of a model becomes part of the state of a model, which can
be controlled by the user, the modeling tool, or the model itself. An engine for
view management could for example categorize graphical entities in focus and
context, maybe even multiple levels of context by setting different levels of detail
as denoted by Musial for UML [29]. These and other aspects of view management
are depicted in Fig. 8.

The view manager needs to listen to triggers, or events, at which it might
change between the dynamic views, showing the user some objects in the focus
and others in the context. These triggers might be user triggers, induced manu-
ally by the user, e. g. manually clicking on fold/unfold buttons at parent nodes
or manually changing the focus by selecting a different node. They could also be
system triggers, produced by the machine by some automatic analysis, seman-
tical information, progress of time (real or logical), etc. Memorized triggers can
for example be trigger annotations stored persistently with a model.

Obviously, this view manager can hardly be one monolithic application that
carries all information and is applicable for all types of DSLs and application
environments. We need a way to efficiently specify both the triggers to listen to
and the effects that shall be performed. This view management scheme (VMS)
needs to be provided by the developer, either by the application developer for
application specific schemes or by the tool creator for more general schemes
applicable for a whole DSL. For a practical user interface this VMS should be
expressed by a simple syntax, maybe close to some general purpose scripting
language. It would require expressions to

1. address different user triggers (mouse clicking, keyboard events),
2. specify custom system triggers,
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Fig. 8. Aspects of view management

3. address different system triggers,
4. address different visualization effects (folding, unfolding, filtering, layout

triggering, choose layout algorithms), and
5. address graphical diagram objects or their properties, either specific objects

(e. g. “State A”) or classes of objects (e. g. “a node of type state”) or specific
patterns of such objects.

Some of the items can be implemented using standard techniques, such as
addressing model elements. A set of predefined user triggers and visualization
effects could be provided. It is not that obvious how to specify custom system
triggers. Most of them will be very semantic-specific for a certain DSL. For
example the trigger “a state has become active” in a Statechart would require
interaction with the simulation engine and hence cannot be implemented only
with the knowledge about the certain DSL meta-model and the modeling and
visualization framework. Therefore an interface to the “outside” is required, the
respective lower level programing environment of the modeling tool.

Such a view management engine could be employed to handle the ideas of
semantical focus and context in a general way. It should also allow, via user trig-
gers, to quickly navigate manually through a model, using for example semantic
zooming and panning where one considers the structure of a model to navigate
through it. For example, one would not just change the zoom on a linear percent-
age scale as is commonly the case, but could also change the zoom by hierarchy
level.
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Fig. 9. Meta Layout: Multiple different automatic layout algorithms applied in one
diagram, here from left to right GraphViz layered based Sugiyama Layout, the Zest
Spring Embedder, a layered layout with radial layouter in child and GraphViz Circo [31]

2.6 Meta Layout

For a given graphical DSL there might be different layouts for the graphical
representation conceivable. There may be different automatic layout schemes
available, either the same algorithm but with different parametrization options,
or completely different layout algorithms. Each layout algorithm results in a
different layout style. We denote the process of selecting and combining different
already existent layout algorithms as meta layout. This should be integrated into
the view management.

Note that this is somewhat contradictory with the concept of having a normal
form [30], where models with the same domain model will have the same graph-
ical representation. The motivation for normalization is to limit ambiguity and
subjectiveness when creating or analyzing diagrams. However, it may be hard
to find one layout algorithm that provides optimal layout results for all possible
applications—even within one DSL. So we may soften the idea of normalization
by varying degrees. One could apply different layouters (1) to different models,
(2) within one model, in different hierarchy levels and (3) within one model, in
different regions of the same hierarchy level (see Fig. 9).

Layouter Choosing Strategies. Having multiple layouters and different re-
gions in the diagram, a question arises: When to apply where what layout? This
is answered by layout choosing strategies.

The simplest strategy could be to let the user decide. The user manually
annotates each part of the model with the specification of which layouter should
be used. This way the user would be able to select the best layouters according
to his or her personal subjective aesthetic criteria. Additionally, the user could
consider application and system specific properties when choosing the layouters.

For a larger benefit, the modeling tool could assist in choosing the right lay-
outer settings by trying to optimize the layout result. The optimization criteria
should be provided by the user while the machine should be able to work with
them. Possible criteria are syntactic aesthetic criteria such as link crossings, link
lengths, diagram area, aspect ratio; semantic aesthetic criteria such as align-
ment, symmetry or zoning [32,33]; prescribed development patterns; or model
element types, e. g. graph-based vs. port-based.
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3 The Model—Synthesis and Editing

A graphical model is nice to look at, but can be effort-prone to create or change.
Common editors have the paradigm of WYSIWYG DND interaction. In general it
is desirable to immediately get visualized effects of editing steps in WYSIWYG.
However, the way of interaction—DND—is the source of plenty of additional
manual editing efforts. Strictly speaking, the term drag-and-drop (DND) denotes
a specific sequence of steps including the dragging of elements. However, we will
refer to DND for all DND style editing in current modeling tools. This includes
all manual layout positioning of objects on the graphical canvas such as the
placement of nodes and edge bendpoints, moving and resizing. Even moving an
object by selecting it first and using the arrow keys on the keyboard falls into
this category.

We advocate to try to avoid the tedium induced by DND editing as much
as possible, to put back into the focus the system instead of its graphical rep-
resentation. The basic enabler is the aforementioned capability for automatic
layout (Sec. 2.1). One issue here again is the preservation of the mental map
of the modeler. In the context of model editing, there exist different schools
of thought. One direction argues that the appearance of a model after an edit
should be changed only minimally, to preserve the mental map [34]. The other
approach is to try to give models a uniform appearance, that “the same should
look the same,” proposing a normal form that is independent of the modeler
and the history of the model (see also Sec. 2.6). There the issue of mental map
preservation is addressed during the editing step by a morphing animation of
the model.

3.1 Structure-Based Editing

The idea of structure-based editing comprises only structural decisions of the
developer, which are (1) to select a position in the model topology and (2) to
select an operation to apply to the model. This changes only the structure of the
model, i. e. its topology, sometimes also referred to as the domain or semantic
model.

The graphical representation also can be updated immediately. The automatic
layout has to be applied to create a fresh view of the new structure of the model
after the user operation. The complexity of the model and the performance of
the layout algorithms determine whether it is feasible to apply the layouter after
every small editing step in order to get immediate visual feedback. Therefore
we eliminate the DND style editing but possibly keep the WYSIWYG nature of
the editor. We believe that this immediate visual feedback is valuable enough
to put a premium on fast layouting algorithms, even if this might give slightly
sub-optimal results.

Structure-Based Editing for Graph-Based Models. For DSLs that are
based on graphs we gained some experience from the KIEL project, which ap-
plies this paradigm to Statecharts. Graphically they consist of states (nodes),
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(a) Simple state is
selected

→

(b) New successor
state added

→

(c) New state is
upgraded

→

(d) After another
upgrade

Fig. 10. Example for structure-based editing of a Statechart

transitions (edges), hierarchy and parallel regions. In this case only a small set of
different structural operations are required to create or modify the charts. For a
selected state these are only (1) create a new following state and (2) upgrade the
state, as shown in Fig. 10. For transitions the operations are only (1) transition
creation and (2) to reverse a transition. Some other “syntactic sugar” can be
provided, but nevertheless the operation set is relatively small. Other changes to
the model are done afterwards, e. g. changes of labels by filling out form fields.

This paradigm would also apply for other graph-based DSLs because the set
of affected model elements in every step is small—up to two. For node operations
one node needs to be selected, for edges there are two nodes, source and target.

Structure-Based Editing for Port-Based Models. For dataflow models
with ports (cf. Sec. 2.1) the case is a bit more complex. Especially adding new
nodes requires more specification than a simple operation like “add a successor
node” can provide. In a graph-based model this operation will generally trans-
form one valid model to another valid model, because it can add a new state
and simply connect old and new state with a transition. Port-based models have
stricter connection requirements. In general there is an arbitrary set of different
kinds of operator nodes; usually this node library is also extensible by the user.
Each node has a certain interface, i. e. the set of input and output ports that
specifies how the node must be connected to other nodes. Hence a new node in
the model likely requires not only one but multiple connections which have to
be specified not only between the nodes but between specific ports. There are
different ways possible for the user interface in this case.

In the first approach the goal is to still provide the diagram itself as the user
interface. To support incremental editing, the operation to be performed can
be divided in small incremental steps where each does not necessarily lead to a
valid dataflow model because it might be not sufficiently connected. After every
step the view manager can update the layout and some meaningful graphical
representation of the intermediate step is created. An example sequence of such
operations is shown in Fig. 11.

In this scenario, the set of operations to connect ports determines the efficiency
of creating or editing models. Shortcut operations to connect multiple ports can
help to reduce the manual steps. For example the SCADE editor provides the
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(a) Original situa-
tion

→

(b) After adding a node
with one initial connection

→

(c) Inputs are fully con-
nected

→

(d) After adding another
node

→

(e) Connections complete

Fig. 11. Possible structure-based editing steps in a port-based language

operations connect by rank and connect by name which will interconnect all
inputs of one with the outputs of another selected node either by name of the
ports or successively by their rank. In SCADE this is not post-processed with the
view management, but this can give a first inspiration for the type of connection
operations that are helpful.

The operations can be hard-coded for each language or language class. Ad-
ditionally, the paradigm can be used in conjunction with model transformation
frameworks. Especially in-place transformations change the underlying domain
model by pattern matching where source and target meta-model are the same.
Hence the original model is only changed instead of transformed into another
DSL. Therefore an in-place transformation framework such as from Taentzer et
al. [35] can be used to specify the transformations while the view management
with automatic layout adds the graphical feedback to get the full WYSIWYG
experience.

3.2 Modification and Deletion

For all possibilities of model changes, the set of model operations must be aug-
mented by operations for removing nodes and connections. Additionally a set
of syntactic sugar operations should be provided to manipulate the models effi-
ciently, e. g.

– replace a node by another node of another type,
– replace a connection by a different connection type,
– redirect a connection, or
– insert a new node into one or multiple connections if the port rank fits—i. e.

break up the connection into two parts, insert the new node and connect the
input and output to the connection endpoints.
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This can reduce manual steps especially by keeping attributes of the objects that
were manually set after the object creation.

Error Handling. We should learn from best practices in textual programming
IDEs and try to adopt features to graphical modeling. For example the Quick Fix
feature of Eclipse allows beginners to learn textual programming—e.g. Java—
in an interactive tutorial-like way. Errors are displayed immediately with the
help of incremental continuous compiling. Additionally the UI presents a list of
possible solution operations which can be triggered by the user.

Features like this can be incorporated into graphical modeling by orchestra-
tion of different building blocks. There are generic modeling frameworks that
support model validation such as the Eclipse Modeling Framework (EMF) with
its Validation Framework3. Hence it is possible to consequently feedback the in-
formation about the model consistency to the user. For specific DSLs there should
be a set of standard error cases provided together with a set of possible solution
operations, again supported by automatic layout of the created solution model.

3.3 Synthesis

With an automatic layout capability, it is not only possible to change models
interactively with the developer. One can also synthesize completely new graph-
ical models, including the domain model and its graphical representation. There
are multiple scenarios where this model synthesis can be of significant benefits
and lead to innovative modeling environments.

Textual Modeling. An alternative to the graphical representation of a model
still is text. Having information in a textual representation can have many ad-
vantages [1,26]. There are already well accepted approaches for textual modeling
available such as the Textual Concrete Syntax (TCS) [36] or Xtext [37], both
frameworks for Eclipse. The developer specifies the meta-model of the DSL and
the textual syntax and the framework generates parsers and textual editors.
The latter are equipped with convenient features like syntax highlighting, auto-
completion, static analysis, structure outline view, source code navigation and
folding. Textual models will be parsed into the actual domain model data struc-
tures so they can be processed like all other domain models.

The missing link is the one to a graphical model. Here, automatic layout and
view management can be used to synthesize the graphical representations from
the textual ones. This can be done in different levels of integration:

1. A graphical model is only once initialized from the text. Afterwards the
graphical model is worked on. Usually there is no way back into the textual
model; an exception here is Eclipse.

2. There is a transformation between textual model and graphical model in
both directions. This is usually denoted as round-trip engineering. Some
dedicated commercial tools support this for special DSLs, usually class dia-
grams, but this is still uncommon.

3 http://www.eclipse.org/modeling/emf/

http://www.eclipse.org/modeling/emf/
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3. The tightest integration perfectly synchronizes textual and graphical repre-
sentation. Hence the user sees two different views and every change in either
of the views automatically updates the other view. So working in the views
is interchangeable even for small steps. This paradigm has been explored in
KIEL for Statecharts and is applicable for other DSLs as well.

To increase the integration further, text and graphics could be mixed in one
view. If there is a textual representation for single graphical objects, there could
be two different views of the graphical model. One view displays all graphical
entities while the other exchanges one of the objects with a text box containing
the textual representation of only this model part.

Scalable Models. Model synthesis can be applied together with scripting
techniques to create complex and large models according to predefined and
parametrizable patterns. Scripts of different flavors could be applied just like
scripts, macros or templates in textual languages. This leads to scalable models,
as investigated in Ptolemy [38]. In this case the scripts that configured the model
creation process are in the same graphical syntax as the models themselves. More
sophisticated automatic layout techniques could enhance the graphical results.
This approach could be applied more generally for arbitrary DSLs and combined
with an appropriate user interface.

Pattern-Based Modeling. Development patterns are a common technique
in software engineering. When creating behavior diagrams such as Statecharts
or dataflow models, one should model common tasks in a common way. This
naturally leads to patterns for graphical modeling [39,40]. Examples are patterns
for error handling, sequencing or loops—depending on the DSLs, many more
can be identified. Graphical modeling environments could support the usage of
pattern-based development in various ways.

– Design patterns can be highlighted in a model [41].
– A specific pattern can be chosen by the user and parametrized to be added

to a graphical model.
– The view management should support user defined automatic layout schemes

according to a given pattern. If in a state diagram a loop should be modeled,
this could correspond to a pre-defined graphical positioning of the nodes, e. g.
in a circle or in a sequence with one back transition.

– Analysis of the model could detect certain patterns for standard operations
such as graph transformations [35,42]. Additionally it should be able to lay-
out existing patterns to given pattern layout schemes.

A simple user interface is necessary so even beginners and intermediates can
quickly start to employ patterns in their development.

Product Lines. Another use case for proper view management and/or model
synthesis are product lines. Here, a set of closely related products is offered,
where each product likely differs only by some specialization or configuration
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from the others. For textual programs, the source code comprises all features,
whereas the build process configures different target products with different fea-
tures deactivated. This could be analogous to the use of pre-processor macros
in textual languages, where e. g. an #ifdef macro can hide parts of the program
source.

A graphical model can also serve as a master model for a product line. To
investigate one of the target products and further processing, the final product
model should be accessible as any other model. To avoid the maintenance of mul-
tiple models, the product model should be synthesized from the master model
and comprise only the elements necessary for the features of the product. This
means omitting certain model objects of the master or configuration of scalable
model parts. In certain cases this can be augmented by static analysis to iden-
tify the required model parts automatically, e. g., by deactivating superfluous
outputs.

3.4 Multi-view Modeling

So far we were considering multiple views only within the same DSL in order
to change the levels of detail in certain circumstances to get the best trade-off
between overview and details. One can drive the idea of multi-view modeling
further by defining completely different views instead of only manipulating the
focus and context configuration.

The term multimodeling is referred to employing multiple modeling seman-
tics in one single model [43]. For example mixing different semantics such as
synchronous data flow with state machines and discrete events or others is a
preeminent feature of the Ptolemy modeling framework. This still keeps only
one view on the same model, although the model itself is of very heteroge-
neous character. However, one can for example establish semantical equivalence
between Statecharts and mixed synchronous reactive and state machine mod-
els [43]. Hence for the same semantics, there exists a Statechart and a Ptolemy
model that implements that behavior. This means for the same semantical be-
havior there exist multiple different graphical representations, each with their
advantages and disadvantages. Considering the example in Fig. 12, one might
argue that the Statechart model is more compact, but the Ptolemy model makes
further information explicit, notably the information flow. We could exploit the
equivalence by transforming a Statechart into a Ptolemy model or vice versa—at
least for suitable Ptolemy subsets. The disadvantage would be that we still have
two completely different models including two different domain models. Both
models could be transformed only as whole in a global transformation of all
model parts.

An alternative could be to keep only one common domain model and on top
of that create two different graphical representations, one for Statecharts and
one for Ptolemy. This would be always applicable where one model part can
be expressed in multiple ways. Then the model part could have multiple com-
pletely different views. The major benefit would be that the different graphical
representations could be interchanged in any hierarchy level resulting in a mixed
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(a) Statechart model (b) Ptolemy model

Fig. 12. From Statecharts to Ptolemy: both models implement the same behavior [43]

graphical model. The different views could be handled by the view management
just as the other views proposed above.

4 The Controller—Interpreting the Model

Sophisticated static analyses can determine properties of a model, for example
causality issues for dataflow models [44]. If such an analysis determines certain
properties of a set of model elements, it can be used as a trigger for the Meta
Layouter in order to get a visual feedback of the analysis. Especially a catego-
rization of model elements in two sets can be interpreted as a categorization into
focus and context objects.

4.1 Dual Modeling

The graphical representation depicts the main model objects as nodes, where
the containment relations can be reflected by hierarchy in the model. Explicit
connections display some other relations between the model objects. However,
there is typically a set of model attributes that is hidden in simple property
dialogs or simply represented by a label in the graphical representation. Relations
between those attributes are usually not visible.

We propose a dynamic extension of the graphical representation by its dual
model, i. e. a graphical representation of the relations between referenced objects
where this reference is not yet visualized. We again examine the example of
Statecharts. The dual model of a Statechart is a graph where the transition
labels are the nodes and the relations between guards and actions form the
connections. The graph shows which transition produce triggers and which ones
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Fig. 13. Dual Model for Statecharts: Two parallel controllers communicate via broad-
cast. The dataflow is displayed as an overlay of the original control flow graphical
representation.

read those triggers. It makes explicit how the broadcast communication is used
by showing the flow of data and signals in the model. By graphically overlaying
the original graphical representation with its dual model, we reuse the same
graphical view in order to keep the mind map within the user, as illustrated in
Fig. 13.

The dual model methodology should not only be helpful for Statecharts, but
applies to very different types models. References to other model parts are quite
common where an explicit graphical representation is omitted for the sake of
clarity in the original model.

4.2 Dynamic Behavior Analysis

We usually distinguish the structure and the behavior of a model. To validate
behavior, it is common practice to employ simulations prior to physical deploy-
ment. Therefore we employ DSLs with known specified semantics such that the
models can be executed.

Simulation Management. Employing the meta layouter during testing gives
us the same benefits as for simple manual browsing, as interesting parts can be
put into the focus while the context is still visible. Additionally, a simulation
run gains a new dimension: time. Hence there might be times where nothing of
relevance happens and other points in time with interesting events. The problem
is to determine “interesting” parts and times during simulation.

Therefore we propose to extend the meta layout view management by simula-
tion management. It defines an additional set of system events for triggering view
management effects and additional effects for manipulating simulation time.
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(a) Original controller (b) All dependencies of Actuator A,
two sub-controllers and only Sensor
A

(c) Dependencies of Actuator B (d) Dependencies of Actuator C, which are
all prior inputs

Fig. 14. View Management in a dataflow language for some embedded controller with
three sensors and three actuators

Both simulation triggers and effects are highly dependent on the language
semantics. Hence a simulation manager is usually only applicable for a small set
of DSLs.

Visual Breakpoints. Simulation triggers are customizable conditions over in-
ternal states and variables of the simulation. Hence both the specification and
the interpretation of those triggers require access to the semantics of the model
and the simulation engine. The triggers cause effects, on the one hand usual
view changing effects, such as graphical focus change events, on the other hand
simulation effects that alter the behavior of simulation time, such as simulation
pause or stop.

A simulation manager should allow to specify visual breakpoints, the combi-
nation of a specific target view with the condition under which this view will be
shown and possibly the suspension of the simulation to give time for analysis
of the situation. A properly configured simulation manager knows what “inter-
esting” items are, both in time and model objects. So during simulation a user
always gets to see the right parts of interest without any manual user interaction;
no manual navigation actions are required.

An example for dataflow diagrams is shown in Fig. 14. Here a focus is set to
one actuator and all components in the dataflow towards that actuator. Other
components are filtered. This results in tidy diagrams that illustrate specific
aspects, e. g. for analyzing Actuator B. During a simulation run, the respective
view could be shown, whenever some specific value is received by one of the
actuators. The way of actually displaying the data is another issue but could be
integrated into the diagram. The dynamic focus and context technique imple-
mented in KIEL for Statecharts (cf. Sec. 2.4) could be implemented in a straight
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forward fashion by adding simulation events for every state change and setting
the set of focus objects to the the active states.

Simulation Tracking and Control. It is common practice to show (highlight)
the current state of a system. In some areas, it is also common to show the current
change of state (e. g., a transition in a Statechart). There are natural extensions
that one could consider, such as showing the recent past (e. g., the last n states),
or the possible future (states that might be reachable in the next n steps, this
would require some kind of static/dynamic analysis).

A desirable feature is to be able to not just run a simulation and to stop it
at certain points, but also to step backwards again. This tape recorder paradigm
has already been integrated into some modeling tools, e. g., Statemate [25].

5 Conclusions

We have presented an overview of different aspects of modeling pragmatics. A
guiding principle has been the model view controller paradigm, which has been
quite successful in software engineering and which we believe has much to offer
in the world of model based design as well.

We consider automatic layout of the graphical representation to be one of the
basic key enablers for good pragmatics. We build upon layouters by dynamic
filters that reduce the complexity of diagrams and focus and context as a special
case of such filters. A view management engine organizes different dynamic views
synthesized with filters in order to assist the user in seeing the “interesting” parts
of the model. We extend the view management by meta layout, which plays with
different layout styles even within different parts of one graphical model in order
to get optimal layout results.

With these building-blocks we support a set of use-cases in the modeling
process that will help us to cope with very large model instances. For creation
and modification we propose structure-based editing to free the user of many
manual effort prone tasks. Auto-layout enables graphical model synthesis and
opens the door for perfectly synchronized textual and graphical representations,
scalable models, pattern-based modeling and support for product lines.

This survey cannot hope to be complete in any way. What we do hope to
achieve is to raise the level of awareness about the importance and possibilities
of modeling pragmatics in general. In a way, this paper might thus be regarded
as a (partial) road map for possible future developments in modeling pragmatics.
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27. Köth, O., Minas, M.: Structure, Abstraction, and Direct Manipulation in Diagram
Editors. In: Hegarty, M., Meyer, B., Narayanan, N.H. (eds.) Diagrams 2002. LNCS
(LNAI), vol. 2317, pp. 290–304. Springer, Heidelberg (2002)

28. Branke, J.: Dynamic graph drawing. In: Kaufmann, M., Wagner, D. (eds.) Drawing
Graphs: Methods and Models. LNCS, vol. 2025, p. 228. Springer, Heidelberg (2001)

29. Musial, B., Jacobs, T.: Application of focus + context to UML. In: APVis 2003:
Proceedings of the Asia-Pacific symposium on Information visualisation, Dar-
linghurst, Australia, pp. 75–80. Australian Computer Society, Inc. (2003)

30. Prochnow, S., von Hanxleden, R.: Comfortable modeling of complex reactive sys-
tems. In: Proceedings of Design, Automation and Test in Europe (DATE 2006),
Munich, Germany (March 2006)

31. Schipper, A.: Layout and Visual Comparison of Statecharts. Diploma thesis,
Christian-Albrechts-Universität zu Kiel (December 2008),
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/

theses/ars-dt.pdf
32. Kosak, C., Marks, J., Shieber, S.: Automating the layout of network diagrams with

specified visual organization. Transactions on Systems, Man and Cybernetics 24(3),
440–454 (1994)

33. Purchase, H.C.: Which aesthetic has the greatest effect on human understanding? In:
Di Battista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248–261. Springer, Heidelberg
(1997)
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Abstract. This paper describes how relay interlocking systems as used
by the Danish railways can be formally modelled and verified. Such sys-
tems are documented by circuit diagrams describing their static layout.
It is explained how to derive a state transition system model for the dy-
namic behaviour of a relay system from such diagrams. Safety properties
are identified and formalised as LTL formulae. Model checking is finally
used to verify that a model satisfies the safety properties. The method
is tested for an existing station in Denmark.

1 Introduction

The task of railway interlocking systems is to control signals and points in such
a way that the railway traffic keeps safe, i.e. collisions and derailing of trains are
avoided.

The Danish railways use a route based approach to interlocking. The idea is
that two trains must never drive on two conflicting (i.e. overlapping) train routes
at the same time (to avoid collisions), and a train must only drive on a train
route in which the points are locked in the positions that allow travel along the
route (to avoid derailing).

For many Danish railway stations the interlocking systems are implemented
using electrical circuits containing relays. The Danish railways document their
relay systems by drawings (diagrams of the electrical circuits) and currently
the only way to verify desired properties of the relay systems is to inspect the
drawings and manually draw conclusions. This is hard to do as the number of
drawings for a single system is very high and the logic described in each of
them is complicated with many mutual dependencies. Certainly such a manual
verification process is not only difficult and time consuming, but may also be
error prone. This is not satisfactory for a safety-critical system.

In this paper we will report on the first results from a project the goal of
which is to automate the verification process. Our approach to verify a relay
interlocking system has been as follows: first a formal state transition system
model of the behaviour of a relay interlocking system is specified in RSL-SAL1,
1 RSL-SAL [8,9] is an extension of the RAISE Specification Language [10] with con-

structs for defining state transition systems and desired properties of these.
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and the safety properties are formalised as LTL formulae, also in RSL-SAL.
Then the RSL-SAL model and properties are translated into SAL[1,4] using
the RAISE tools, and the verification that the model satisfies the properties is
performed using a model checker for SAL.

Formal modelling and verification have previously been performed for other
kinds of Danish interlocking systems (electronic ones), see [7,6], however, the
work reported in this paper is, to the authors’ knowledge, the first formal model
and verification made for Danish relay interlocking systems. For other comple-
mentary and competing approaches for the development of railway control sys-
tems the reader is referred to the contributions in [13,11,12,5], and for a survey
of results and current trends the reader is referred to the paper [2].

First, in Section 2, we give an introduction to train route based interlocking.
Then in Sections 3–4, we describe the syntax of relay circuit diagrams and explain
how a behavioural model of a relay system can be derived from its diagrams. In
Section 5 we sketch how to model behaviour of the environment that interacts
with the relay interlocking system. In Sections 6–7 we give examples of how
to formalise safety related requirements and other desired properties. Then, in
Section 8, we report on how we have applied the presented method to create
a model and requirements for Stenstrup station in Denmark, and how we have
used the SAL model checker to check that the model satisfies the requirements.
Finally, in Section 9 some conclusions are drawn.

2 Train Route Based Interlocking

In this section we introduce the concepts of train route based interlocking
systems.

2.1 Equipment at a Station

Train route based interlocking systems use various track-side equipment to mon-
itor and control trains:

Track circuits: The railway tracks are divided into sections each having equip-
ment (a circuit) for train detection. The interlocking system uses this for
monitoring the occupancy status of the individual track sections.

Points: Tracks are joined at points which can guide trains into different direc-
tions depending on the position of the point. An operator can switch the
points by pushing some buttons. The interlocking system monitors and
controls the positions of points.

Signals: Signals are placed at the entrance of some track sections. They can
show GO and STOP aspects. The interlocking system sets the signals to
inform the train drivers whether they are allowed to enter these sections.

2.2 Train Routes and Their Use

The stations we are considering in this paper use a route based approach to
interlocking. The basic ideas of this approach are:
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– Trains should drive on routes through the network.
– Each route is covered by an entrance signal that informs whether it is allowed

for a train to enter the route or not. The trains must respect the signals.
– Two trains must never be allowed to drive on conflicting (i.e. overlapping)

routes at the same time. (To prevent collisions.)
– Before a train is allowed to enter a route, the points must be locked in

positions making the route connected (i.e. it is physically possible to go
from one end of the route to the other end without derailing), and the route
must be empty (i.e. there are no trains on the route). (To prevent derailing
and collisions, respectively.)

– The points of a route must not be switched while a train is driving on the
route. (To prevent derailing.)

For each station to be controlled by an interlocking system, an interlocking table
is used to specify routes through that station. Such tables define for each train
route

– which positions points must have for the route to be connected,
– which track sections must be unoccupied for the route to be empty, and
– which settings of signals are required for the route to be open (i.e. for allowing

trains to enter the route).

The tables also define which train routes are conflicting.

Sample Scenario. It is outside the scope of this paper to give all the details of
the interlocking protocol, but in this section we will show a typical scenario for
a train t to go along a route R from A to B. The route consists of three track
sections of which the middle one is a point. In all figures below, the point will be
shown in its straight position. A signal is placed at the route entrance A. When
the rightmost lamp is red it means STOP, and when the leftmost lamp is green
it means GO.

– Initially the train waits in front of the entrance signal that is set to STOP:

BA
t

– As a first action the operator sets the points to the positions required for the
route R to be connected. In this example, there is only one point involved
in the route, and it is set to its straight position.

– Then the operator pushes a button to lock R.
– When the system detects that the button is pushed, it locks the route (after

having checked that no conflicting routes are locked and that the points are
in the positions that ensure R is connected).

– Then the system sets the entrance signal to GO (after having checked that
R is empty):
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A B
t

– Now the train enters the route:

B
t

– When the system detects that the first track section of the route is occupied,
it sets the entrance signal to STOP (to prevent additional trains to enter
the route):

B
t

– The system unlocks the route when the train is entirely on the last section
of R:

A B
t

Now if a second train is to use the route, the protocol is to be followed
again. It would be possible to lock the route again, but the signal can first
be set to GO when the first train has completely left the route (i.e. is on the
right-hand side of B).

3 Relay Circuits and Diagrams

3.1 Relay Circuits

The interlocking systems we are considering are implemented by electrical cir-
cuits. The circuits are made up of components such as power supplies, relays,
contacts, and buttons, connected by wires.

A relay is an electrical switch operated by an electromagnet to connect or
disconnect a number of contacts in a circuit. When current goes through the
relay, the magnet is drawn and some of the associated contacts are connected
(these contacts are said to be upper contacts) while others (the lower contacts)
are disconnected. When no current goes through the relay, the magnet is dropped
and the associated upper and lower contacts will be disconnected and connected,
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Fig. 1. Diagram for circuit controlling relay RR1

respectively. When contacts are connected/disconnected this may imply that
sub-circuits containing these contacts become live/dead. This again may imply
that relays of these sub-circuits are drawn or dropped.

The system can get input from the environment:

– buttons can be pushed (and later released) by an operator
– track relays are dropped/drawn when trains enter/leave track sections
– point relays are dropped/drawn when points are moved into a new position

The track relays and point relays are said to be external, while the relays con-
trolled by the interlocking system are said to be internal.

An input may lead to a chain of internal events: relays that are drawn and
dropped. In practise such chains are very short and take almost no time. There-
fore, in this work we will assume that new inputs do not happen until no more
internal events can happen.

3.2 Diagrams

The Danish railways use diagrams to document the electrical circuits of a relay
system.

For each internal relay one of the diagrams shows the sub-circuit that controls
that relay. An example of such a diagram is shown in Figure 1. This diagram
shows the sub-circuit controlling a relay named RR1. The circuit consists of
a number of components connected by wires. The wires are depicted as black
lines. At the top is the positive pole and at the bottom is the negative pole of
the power supply. Relay RR1 is shown using this signature:



146 A.E. Haxthausen, M. Le Bliguet, and A.A. Kjær

The downwards arrow informs that in the initial state this relay is dropped. (If
it had been drawn the arrow would have been upwards.) A number of contacts
belonging to other relays occur in this circuit. E.g. a contact belonging to a relay
named A1 is shown using this signature:

The downwards arrow informs that in the initial state relay A1 is dropped. The
horizontal bar breaks the wire – this indicates that the contact is disconnected
in the initial state. If it had not been breaking the wire it would have indicated
that the contact had been connected in the initial state. Also a button B1 is
shown on the diagram using this signature:

A pushed button is shown by this signature:

3.3 Electrical Behaviour

In this section we present an example of the dynamics of a circuit.
The example shows a scenario where a button of a circuit is pushed. In Figure 2

the first four states of the circuit in this scenario are visualised on a diagram of
the circuit. Wires that are current carrying are shown by a grey colour. State 0
is the initial state. In the initial state, no wires are current carrying. When the
button is pushed, current is going from plus to minus through relay 37, see state
1. As a consequence of this, relay 37 is drawn and its associated upper contact
becomes connected, opening a second path of current from plus to minus through
relay 33, see state 2. As current is going through relay 33, this will be drawn,
see state 3. In state 3 no more internal events can happen.

4 Modelling a Relay Interlocking System

We are now going to explain how one from circuit diagrams can derive a state
transition system model of a relay system.

State Space. The following components may change state:

– buttons may be pushed or released,
– relays may be drawn or dropped,
– contacts may be connected or disconnected.
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State 3State 2

State 1State 0 : initial state

Fig. 2. A state sequence for a circuit
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We introduce a Boolean variable for each button and for each relay. When
a variable is true it means pushed and drawn, respectively, and false means
released and dropped, respectively. We do not need to introduce variables for
contacts as their state can be derived from the other states. The initial state of
the buttons is false, and the initial states of the internal relays is as stated on
the diagrams.

Transition Rules for Internal Relays. For each internal relay r there are
two rules, one for drawing it and one for dropping it:

[ draw r ] ∼r ∧ conducting r → r′ = true,
[ drop r ] r ∧ ∼ conducting r → r′ = false

The first rule expresses that r can be set to true (meaning that r becomes drawn)
when r is dropped and conducting current, while the second rule expresses that
r can be set to false (meaning that r becomes dropped) when r is drawn and
not conducting current.

The condition conducting r for current to go through a relay r is a logical
formula determined as follows.

Current will go through the relay if there is a path from the positive pole to
the negative pole that goes through the relay, and all contacts within this path
are connected and all buttons are pushed.

Now for a given relay there are several potential paths, p1, ..., pn, for current
to go through it. For each potential path pi we express the condition cp i for
that path to be conductive. Then the condition for the relay to be conducting is
the disjunction of these conditions:

conducting r = cp 1 ∨ ... ∨ cp n

The condition for a potential path to be conductive is a conjunction of conditions
for its contacts to be connected and its buttons to be pushed. The condition for
a button b to be pushed is b. The condition for an upper contact and a lower
contact belonging to relay r to be connected is r and ¬r, respectively.

As an example, for relay RR1, we can from the diagram in Figure 1 deduce
the following condition for current to go through the relay:

conducting RR1 = (A1 ∧ ∼A2) ∨ (B1 ∧ ∼A2)

5 Modelling the Environment

The system is said to be in an idle state, when it is ready for input, i.e. no
internal event is possible, cf. the assumption mentioned in the end of Section 3.1.
In order to easily keep track of when the system is idle, we add to the state space
a Boolean variable idle.

The rule for the system to become idle is of the form

∼idle ∧ ∼c → idle′ = true
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where c is the disjunction of all guards for internal relay events.
Transition rules for external events will then always take the form:

idle ∧ ... → ..., idle′ = false

Below we consider transition rules for track sections and points.

Transition Rules for Track Sections. The tracks are divided into track
sections, each of which is monitored by an associated track relay. The track
relays are controlled by the movement of trains: when a train enters or leaves
a track section, the associated track relay is dropped and drawn, respectively.
Therefore the rules for track relays should reflect possible train movements and
will depend on the track layout for the station and in particular on the placement
of signals. The rules reflect that trains

– only enter the station from entry sections
– only leave the station at exit sections
– follow the tracks
– do not pass signals showing STOP
– do not change direction while using a route
– do not split

Transition Rules for Points. Point control is also done using relay circuits.
This means that in principle we could have used our techniques for deriving
transition rules from relay circuit diagrams that describe the behaviour of points.
However, as these relay circuits are rather complex, we have in this work decided
to directly formulate transition rules that express the desired point behaviour
without inspecting the diagrams. It is then another task to verify that the circuits
correctly implement the point control expressed by our rules. As the points we
are considering all use a standard implementation that has been validated and
used for more than 60 years, we have good confidence that they behave correctly.

Points can be in one of three positions: plus (straight), minus (branching), and
intermediate (between plus and minus). Each point p has its position monitored
by two relays, p+ and p−. p is in its plus position when p+ is drawn (and p−
is dropped), p is in its minus position when p− is drawn (and p+ is dropped),
and p is in its intermediate position when p+ and p− are both dropped. The
point also constitutes a track section, so as for all other track sections there is
an associated relay tp that is dropped when p is occupied by a train.

A point is only allowed to be switched, when (1) the track section tp of the
point is unoccupied, and (2) all routes that include the point are unlocked (this
condition can be determined as for each route there is a relay that is drawn when
the route is unlocked).

There are four rules associated with a point p. Here are the rules for switch-
ing p from its minus to its intermediate position, and for switching p from its
intermediate to its minus position:
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[ p minus to intermediate ]
idle ∧ p− ∧ tp ∧ r1 ∧ ... ∧ rn → p−′ = false, idle′ = false,

[ p intermediate to minus ]
idle ∧ ∼p− ∧ ∼p+ ∧ tp ∧ r1 ∧ ... ∧ rn → p−′ = true, idle′ = false

where r1, ..., rn are the “locking relays” for those routes that use the point.
There are two similar rules for switching between the plus position and inter-

mediate position.

6 Confidence Conditions

In this section we will consider some properties that are desired for relay circuits.

6.1 No Internal Cycles

A desirable property of a relay circuit is the absence of internal cycles where the
same sequence of internal relay events is repeated over and over again as the
reaction to an input to the system. In our context, the absence of internal cycles
is equivalent to require that the system will always eventually become idle again.
In LTL, this can be formulated as follows:

G(F(idle))

6.2 No Critical Races

It is also desirable that the system is deterministic, i.e. whenever the system is
given the same input in the same state, the next idle state is the same. There
is the danger that this is not the case, if there is a (reachable) state for which
several internal relay events are possible. For such a state the next idle state
might depend on which of the possible relay events happens first. Such a case
is also called a race condition. In the following we will look for an LTL formula
that expresses that there are no race conditions.

Consider two internal relay events described by rules of the form

g1 → r1′ = e1,
g2 → r2′ = e2

and assume that the system is in a state where both events are possible (because
both guards g1 and g2 are true). The two events must be associated with two
different relays r1 and r2 as the guards for drawing and for dropping the same
relay r can never be true at the same time (as they require r to be false and
true, respectively), and therefore the two events change different variables r1
and r2. Hence, to avoid a race condition, it is sufficient to require that if one
event happens first, it must still be possible for the other event to happen. (In
this way both events will happen before the next idle state, and the order does
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not matter, as they change different variables.) In other terms taking one of the
transitions must not falsify the guard of the other transition. This leads to the
idea of having the following confidence condition for each relay r:

G(can draw(r) ⇒ X(∼can draw(r) ⇒ r))

where can draw(r) is the guard for drawing the relay r. The condition expresses
that for any reachable state in which r can be drawn, the following will hold for
the next state: if r can’t anymore be drawn then its is because it has just been
drawn. In other words, only the drawing event for r can falsify the can draw(r)
guard. We have similar confidence conditions for dropping relays.

7 Safety Related Requirements

In this section we give examples of how to formalise safety related requirements
that an interlocking system must satisfy. We distinguish between requirements
at two different levels of abstraction. At the highest level of abstraction we
have the ultimate, functional requirements that are independent of the chosen
interlocking approach, while at the lower level we have requirements specific for
the route based interlocking approach. The requirements are formalised as LTL
formulae in RSL-SAL.

7.1 Higher Level Requirements

The requirements at the higher level are concerned with the avoidance of derail-
ing and collisions.

As an example, the following condition expresses the higher level requirement
that when a train is occupying a point p, it must not be in a switching state:

[ no derailing p ] G(∼tp ⇒ (p+ ∨ p−))

Here tp is the track relay of p, and p+ and p− are the two (external) point relays
associated with p.

7.2 Lower Level Requirements

The requirements at the lower level are concerned with conditions specific for
train route based interlocking: they express that the route based protocol has to
be followed.

Examples of lower requirements are:

1. Two conflicting train routes must not be locked at the same time.
2. When a route is locked, the points must be in positions making the route

connected.
3. When a route is locked, it must retain being locked until the last section of

the route is occupied.
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4. When a route becomes open (i.e. the entrance signal is set to GO), the route
must be locked and empty. This implies that when a train enters a route,
the signal must change to STOP.

For a specific station, these requirements can be formalised as LTL formulae by
using the data of the interlocking table for that station. For instance, for each
pair of routes r1 and r2 that are conflicting according to the interlocking table,
the first requirement gives rise to the following condition:

[ no r1 r2 conflict ] G(r1 ∨ r2)

where r1 and r2 are relays that are drawn when routes r1 and r2 are unlocked,
respectively.

8 Experiments

Following the principles explained in previous sections, we made a state transi-
tion system model of the interlocking system for Stenstrup station and formu-
lated confidence conditions and safety conditions. The station layout for Sten-
strup is shown in Figure 3. The system had 4 buttons, 46 internal relays and 10
external relays. The transition system model contained > 61 Boolean variables,
92 transition rules for internal relays and additional rules for the environment.
There were 100 confidence conditions and 36 safety conditions. We translated
the model and conditions into SAL using the RAISE tools, and then we used
the SAL model checker to verify that the model satisfies all the conditions.

Fig. 3. Stenstrup station

9 Conclusions

In this paper we have explained how relay interlocking systems as used by the
Danish railways can be formally verified by model checking. The method has
successfully been applied to the relay interlocking system for Stenstrup station
in Denmark. Further information on this work can be found in [3].

It should be mentioned that we have also implemented a tool (see [3]) that
generates models and confidence conditions from relay circuit diagrams using the
general principles described in this paper. We plan in the future also to make a
tool that can extract safety conditions from interlocking tables.
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Abstract. Components are strongly encapsulated behaviours which interact with
the environment by exchanging messages. Interaction may, amongst others, fol-
low a synchronous rendezvous mechanism for message exchange or an asyn-
chronous paradigm where sending and handling a message happens at different
points in time. We extend our previously defined component model by integrat-
ing synchronous and asynchronous communication. As the formal background
we use I/O-transition systems and consider asynchronous communication with
fifo-ordered message buffers. We identify compatibility properties that should be
satisfied when components communicate along synchronous and asynchronous
connectors. As a first result we show that synchronous compatibility is a sufficient
condition to ensure buffered compatibility in asynchronous communications. We
introduce the notion of connection-safe assemblies which requires compatibil-
ity of both kinds of communication. We define a refinement relation and show
its compositionality with respect to synchronous and asynchronous connectors in
connection-safe assemblies. Finally, we provide results showing the preservation
of connection-safety under component refinement.

1 Introduction

Structuring of large-scale software systems in terms of components and their intercon-
nections is nowadays a standard in software development. Components can be char-
acterised by the ability to encapsulate internal behaviour and to provide well-defined
access points (often called ports) to the outside. This supports the construction of com-
ponent assemblies, by connecting components via their ports, and the substitutability
of components by relying only on their observable behaviour. Various software compo-
nent models have been proposed; for an overview see [1] and for a comparison in the
context of a “common component modelling example” (CoCoME) see [2].

The current paper sets out from our component model provided in [3] which has been
equipped with a precise formalisation of the structural and behavioural aspects of com-
ponents. This model distinguishes between simple (i.e., basic) components, component
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assemblies, i.e., network structures of components connected via their ports, and com-
posite components which encapsulate assemblies. For the formal representation of be-
haviours we use I/O-transition systems which are based on interface automata [4]. Ex-
plicit I/O-labellings allow us to distinguish between input, output and internal actions,
which can be hidden to compute (derive) the observable behaviour of a component. The
behaviour of an assembly is also an I/O-transition system which is derived from the
composition of the observable behaviours of the components connected within the as-
sembly. We assume that connections are always binary. For the computation of an as-
sembly behaviour, the communication behaviour between connected components plays,
of course, a central role. In [3] we have considered the case of synchronous communica-
tion, where communication is achieved by a rendezvous mechanism such that the sender
and the receiver of a message synchronise on message exchange. This case is also con-
sidered in most other approaches like in ADLs such as Wright, Darwin or PADL [5]; but
also software component models such as SOFA 2.0 and Fractal, both using behaviour
protocols, or CoIn [6] with component interaction automata follow the synchronous
communication scheme.

The first goal of this paper is to extend our component model in [3] by taking into
account synchronous and asynchronous communication where a fifo-buffering mech-
anism is used when a message is sent along an asynchronous connector. Even though
asynchronous communication with buffering is frequently used in practice, in particular
in the context of distributed systems, its semantic properties are often neglected when
it comes to behavioural analysis. One contribution of this paper lies in the rigorous
formal treatment of asynchronous communication in our component model. For this
purpose we provide a detailed definition for the computation of an assembly behaviour
on the basis of synchronous and asynchronous connectors integrating explicit buffer be-
haviour and component behaviour on the level of I/O-transition systems. The resulting
systems resemble communicating finite state machines (CFSM) with unbounded fifo-
channels [7], and, in fact, we expect the theoretical results from the broad literature on
the verification of CFSM systems, e.g., testing approaches to the unboundedness prob-
lem [8], to be more or less readily applicable to our semantics. In the realm of software
component models, Maréchal et al. [9] give an approach to the analysis of components
with asynchronous communication for Korrigan [10] based on symbolic transition sys-
tems. Asynchronous communication is explicitly taken into account by an integration
of mailboxes for messages received but not yet processed; this work aims at develop-
ing algorithms for mailbox analysis, such as boundedness checks for mailboxes with
(fifo) or without order (dictionary). Other approaches such as SOFA 2.0, Fractal, or
Java/A [11] usually cope with asynchronous communication only in terms of an imple-
mentation which is not directly applicable to formal analysis. More recently, a Fractal
extension [12] aims at a formal semantics for the behavioural modelling of distributed
systems based on pNets [13]. However, the latter focuses on remote method calls as a
mechanism for asynchronous communication.

None of the mentioned approaches provides equivalence or refinement relations for
component behaviour, which directly leads to our second important goal, focusing
on the study of component refinement and the investigation of properties concerning
the communication behaviour of components (in assemblies) to be preserved under
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refinements. To consider component refinement we must compare the observable be-
haviours of components which are given by I/O-transition systems. Since I/O-transition
systems are based on the interface automata of de Alfaro and Henzinger [4], we can
reuse their quite appealing ideas for refinement defined in terms of an alternating sim-
ulation relation. Essentially, any input of an abstract behaviour must be accepted as an
input of the concrete behaviour (in related states) and, conversely, any output produced
by a concrete behaviour must be producible as an output of the abstract behaviour (in
related states). In principle, we adopt this idea but we suggest two extensions. First, we
distinguish between internal actions and the invisible action τ , because internal actions
naturally appear to express communications between components (which are neither in-
put nor output actions) but which can not be abstracted away since we are interested in
communication behaviours within component assemblies. Secondly, in contrast to [4],
we require additional conditions for refinement, similar to the requirements of stuck-
free conformance as defined in [14], to ensure that reactiveness of abstract behaviours
is also valid in concrete behaviours.

On the basis of our refinement notion we study relationships between component
refinement and communication behaviour exposed by component assemblies. For this
purpose, we have to distinguish between synchronous and asynchronous communica-
tion. In the synchronous case two components (more precisely, observable component
behaviours) are called (synchronously) compatible if any output issued by one compo-
nent meets the other component in a state where this output will be accepted as an in-
put, and vice versa. This notion, however, cannot be directly applied for asynchronously
communicating components since then there is a delay between the action of sending
a message to a buffer and the action of the target component taking the message from
the buffer. Hence, in the asynchronous case, the interesting question is whether any
message sent by one component will eventually be taken from the buffer by the other
component for further processing. If this property is satisfied the two components are
called buffered compatible. In our component model we allow both, synchronous and
asynchronous connectors and we call a component assembly connection-safe if com-
patibility is ensured, for each kind of connectors, in any global system run.

As one major result we draw a connection between synchronous and asynchronous
communication behaviour and show, by extending a theorem of [15], that synchronously
compatible components are also buffered compatible if they are put in an asynchronous
environment. From the practical point of view this result is rather relevant because
checking buffered compatibility directly may soon become unmanageable while checks
for synchronous compatibility are usually much easier. Our main theorems show that for
closed assemblies with two connected components the following holds: First, the refine-
ment relation is compositional for synchronous as well as for asynchronous component
connectors and, secondly, the properties of synchronous and buffered compatibility, i.e.
connection safety, are preserved by component refinement. In particular, this implies
substitutability of components within an assembly by preserving connection-safety.

The paper is organised as follows: The basic definitions and facts for I/O-transition
systems needed for this study are summarised in Sect. 2. In Sect. 3 we present the
extension of our component metamodel to synchronous and asynchronous connectors
and introduce a running example. In Sect. 4, we provide a detailed account on the
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corresponding extension of the algebraic formalisation of our component model, in-
tegrating the definition of assembly behaviour with synchronous and asynchronous
connectors. Sections 5 and 6 constitute our main results. In Sect. 5, the notion of
connection-safe assembly is introduced and the relationship between the different com-
patibility notions is analysed. In Sect. 6 we define the refinement relation for I/O-
transition systems and components and we provide the compositionality results for
synchronous and asynchronous connectors. Finally, we give some concluding remarks
in Sect. 7.

2 I/O-Transition Systems

We use I/O-transition systems to describe behaviours of ports, components, and as-
semblies with their provided (input) and required (output) operations as well as their
internal actions. Our definition of I/O-transition system is similar to the notion of in-
terface automata of de Alfaro and Henzinger [4]. However, we distinguish between
internal actions and the invisible (or silent) action τ , because we are also interested in
behaviours where internal actions should not be abstracted. For instance, we will focus
on assembly behaviours of connected components where interactions between compo-
nents are internal (because they are neither input nor output). Then we are interested
in properties of interaction behaviours which can only be studied if internal actions are
not abstracted. But, of course, when climbing up the hierarchal structure of components
then the behaviour of a composite component, which encapsulates an assembly, will be
obtained by abstracting the internal interactions to τ . In the following we summarise
our notions for I/O-transition systems presented in [3] which will be used hereafter.

An I/O-labelling, iol for short, L = (I, O, T ) consists of three mutually disjoint
sets of input labels I , output labels O, and internal labels T ; we write

⋃
L for the set

of labels I ∪ O ∪ T . An I/O-transition system, iots for short, A = (L, S, s0, Δ) is
given by an iol L, a set of states S, an initial state s0 ∈ S and a transition relation
Δ ⊆ S × (

⋃
L ∪ {τ}) × S (with τ /∈

⋃
L). We write L(A) for the iol of A.

2.1 Operators on I/O-Transition Systems

For deriving behaviours in our component framework we will use the following op-
erators on iotss: hiding, relabelling and the formation of products. Hiding and rela-
belling on iotss are generalisations of the usual operators used in process algebras (see,
e.g., [16,5], and the product is defined in accordance with the product of interface au-
tomata [4].

Hiding. Hiding is used to turn a subset of the labels of an iots into the invisible action
τ . Formally, the hiding of an iol L = (I, O, T ) w.r.t. a subset H ⊆

⋃
L is the iol

L/H = (I \ H, O \ H, T \ H). The hiding of an iots A = (L, S, s0, Δ) w.r.t. a label
set H ⊆

⋃
L is the iots A/H = (L/H, S, s0, Δ/H) where Δ/H = {(s, τ, s′) |

(s, a, s′) ∈ Δ ∧ a ∈ H} ∪ {(s, a, s′) | (s, a, s′) ∈ Δ ∧ a /∈ H}.
In some cases we will choose H = T , i.e., we will hide all internal labels. Then, for

an iol L = (I, O, T ), we write Lξ for L/T and for an iots A with L(A) = (I, O, T ),
we write Aξ for A/T .
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Relabelling. A relabelling is used for renaming labels and for changing the kind of
labels. Formally, a relabelling ρ : L → L′ from an iol L = (I, O, T ) to an iol L′ =
(I ′, O′, T ′) is defined by a function from

⋃
L to

⋃
L′ for which we also write ρ. The

relabelling of an iots A = (L, S, s0, Δ) w.r.t. a relabelling ρ : L → L′ is the iots
Aρ = (L′, S, s0, Δρ) where Δρ = {(s, ρ(l), s′) | (s, l, s′) ∈ Δ∧l ∈

⋃
L}∪{(s, τ, s′) |

(s, τ, s′) ∈ Δ}.
Given two relabellings ρ1 : L → L′ and ρ2 : L → L′, we define their union by

ρ1 ∪ ρ2 : L → L′ with (ρ1 ∪ ρ2)(l) = ρ1(l) if ρ2(l) = l, (ρ1 ∪ ρ2)(l) = l otherwise.

Product. The formation of the product of two iotss expresses their parallel composition
with synchronisation on identical input and output labels. To construct the product the
iols of the given iotss must be composable. Two iolss L1 = (I1, O1, T1) and L2 =
(I2, O2, T2) are composable if I1 ∩ I2 = ∅, O1 ∩ O2 = ∅, T1 ∩ (I2 ∪ O2 ∪ T2) = ∅,
and T2 ∩ (I1 ∪ O1 ∪ T1) = ∅. The shared labels of composable iolss L1 and L2,
written L1 �� L2, are given by (I1 ∩ O2) ∪ (O1 ∩ I2). The product of two composable
iolss L1 and L2 is the iol L1 ⊗ L2 = ((I1 ∪ I2) \ (L1 �� L2), (O1 ∪ O2) \ (L1 ��

L2), T1 ∪ T2 ∪ (L1 �� L2)) which moves the shared labels to the internal labels. Two
iotss A1 and A2 are composable if L(A1) and L(A2) are composable. The product of
two composable iotss A1 = (L1, S1, s0,1, Δ1) and A2 = (L2, S2, s0,2, Δ2) is the iots
A1 ⊗ A2 = (L1 ⊗ L2, S1 × S2, (s0,1, s0,2), Δ) where

Δ = {((s1, s2), a, (s′1, s2)) | (s1, a, s′1) ∈ Δ1 ∧ s2 ∈ S2 ∧ a /∈ L1 �� L2} ∪
{((s1, s2), a, (s1, s

′
2)) | (s2, a, s′2) ∈ Δ2 ∧ s1 ∈ S1 ∧ a /∈ L1 �� L2} ∪

{((s1, s2), a, (s′1, s
′
2)) | (s1, a, s′1) ∈ Δ1 ∧ (s2, a, s′2) ∈ Δ2 ∧ a ∈ L1 �� L2} .

Pairwise composability for a set of iols implies that all composable pairs of this set have
mutually disjoint shared labels. In the context of iots products, mutually disjoint shared
labels guarantee that the synchronisation between different iotss is always binary. The
product is commutative and associative. For a finite index set I , we write

⊗
i∈I Ai for

the product of the iotss Ai with i ∈ I .

3 Component Model with (A-)Synchronous Communication

We extend our component model presented in [3] to take into account not only syn-
chronous but also asynchronous communication. By synchronous communication we
understand a rendezvous mechanism where sender and receiver of a message synchro-
nise on message exchange. In contrast, asynchronous communication works with fifo-
buffering where the messages issued by a sender are buffered and can be taken (and
processed) later on by the receiver. In our component model we distinguish between
synchronous and asynchronous connectors which both are binary. For technical reasons
we have considered in [3] also unary connectors, but apart from this point the compo-
nent model described in the following is a conservative extension of the one in [3].

We consider components to be strongly encapsulated behaviours. Encapsulation is
achieved by ports which regulate any interaction of components with their environment.
Components can be hierarchically structured containing again an assembly of compo-
nents and connectors. Figure 1 shows the metamodel of our component model. A port
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* * *
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Fig. 1. Component metamodel

describes a view on a component. The operations offered by a port are summarised in
its provided interface; the operations needed in its required interface. The sequencing
of operation invocations issued and received by a port is described in a port protocol
specification. To be precise, a port is in fact considered as a port type that can be used
in local port declarations of a component.

There are two kinds of components, simple components and composite components
which are abstracted in the metaclass component. Any kind of component has a set of
port declarations, which introduce locally unique port names with corresponding port
types, and an associated observable behaviour which describes the ordering of input
and output actions of the component. In our metamodel a component represents in fact
a component type that can be used in component declarations when building compo-
nent assemblies. Each component should be correct with respect to its ports, i.e., the
protocol of its ports should indeed be supported by the observable behaviour of the
component. This correctness issue has been studied in [3]. For each simple component
an internal behaviour specification is given which involves not only input and output
actions but also transitions with internal actions. A composite component encapsulates
an assembly of components. An assembly defines the internal structure of the com-
posite component in terms of a set of local component declarations and local (binary)
assembly connector declarations that connect local components via their ports. Assem-
bly connectors can be synchronous or asynchronous. In a composite component, non-
connected (open) ports of local components may be connected to so-called relay ports
of the composite component, using delegate connector declarations. Also an assembly
has an associated behaviour. As indicated by the slash symbol in Fig. 1 the observable
behaviour of a component as well as the assembly behaviour are derived behaviours.
The observable behaviour of simple components is derived from the components’ given
internal behaviour specification; for composite components the observable behaviour is
derived from the behaviour of its assembly which in turn is derived from the observable
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<<async>>

ab:Bat
a:AtmCom [1]

bank:Bank [1]

BankAtm

atm:Atm [1]

s:Srv [1]

verifyPin()
withdraw()

pinOk()
pinNotOk()
giveMoney()

AtmRequest

BankAck

BankAck

AtmRequest AtmRequest

BankAck

AtmCom
<<port>>

Srv
<<port>>

Fig. 2. Static structure of a simple Bank–Atm application

/a.pinNotOk

a.verifyPin/

/a.giveMoney

a.withdraw/

/a.pinOk

/s.withdraw

s.pinOk/

/s.verifyPin

s.pinNotOk/

s.giveMoney/

Fig. 3. Observable behaviour of Bank (left) and Atm (right)

behaviours of the local components within the assembly and their connections. In this
paper we will particularly focus on assembly behaviours which depends on the syn-
chronisation mechanisms used for the connectors.

Example 1 (Static structure and behaviours). Consider the simple Bank–Atm appli-
cation in Fig. 2. A composite component type BankAtm contains an assembly of two
simple components with types Bank and Atm introduced by the component declara-
tions bank : Bank and atm : Atm.1 The simple component types Bank and Atm have port
declarations a : AtmCom and s : Srv resp. which are connected with an asynchronous
assembly connector with name ab and type Bat.2 The two simple component declara-
tions and the connector form an assembly. The provided and required interfaces of the
port types with their operations are depicted with the UML ball-and-socket notation on
the right-hand side of Fig. 2. We do not consider operations with parameters here. If
two ports are connected by an assembly connector, the provided interface of the one
port has to be equal to the required interface of the other, and vice versa.3

Concerning behaviours we do not show port protocols and internal behaviour spec-
ifications of the simple component types Bank and Atm, but only give their derived
observable behaviours in Fig. 3. Input and output messages are indicated by p.m/ and
/p.m, respectively, where p is the port name on which the message is sent or received.
Figure 4 shows the assembly behaviour of the asynchronously communicating Bank

1 The UML2 declarations in Fig. 2 also show multiplicities, indicating how many instances of
a component or port may exist. However, we only specified singletons (multiplicity 1) leaving
the discussion of arbitrary multiplicities to future work.

2 UML2 would allow for arbitrary n-ary connectors with n > 2 which we do not consider here.
3 In general, one could use a more flexible condition such that the required interface of one

port is included in the provided interface of the other one. However, it is technically more
convenient to use the more restrictive condition from above.
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ab.verifyPin?ab.verifyPin!

ab.giveMoney?

ab.withdraw? ab.withdraw!

ab.pinNotOk? ab.pinNotOk!

ab.giveMoney!

ab.pinOk!

ab.pinOk?

Fig. 4. Assembly behaviour of the Bank–Atm assembly

and Atm components. In this case a buffering behaviour of the connector ab is involved.
Labels of the form ab.m! represent the action of sending a message m on the connector
ab which, at the same time, will be put into the input buffer on the opposite side of the
connector. Labels of the form ab.m? represent the action of taking a message out of the
buffer. Taking out a message of the buffer semantically corresponds to the input of a
message at a port as indicated in the observable behaviour of a component.

4 Formalisation of the Component Model

We will now provide a precise formalisation of our concepts for the static structure
and for the dynamic behaviour of components with synchronous and asynchronous
communication. For this purpose we complement the metamodel presentation of our
component model with an algebraic description, which defines formally all previously
mentioned concepts and behaviours in terms of algebraic structures and iotss resp.; see
Sect. 2. In particular, we distinguish between those behaviours which have to be pro-
vided by the component developer and those that are computed (derived), by rendering
the latter as definitions. We use italics to denote all kinds of derived operators. This
section extends our formalisation in [3] to the asynchronous case.

4.1 Technical Prerequisites

Buffered I/O-Transition Systems. For asynchronous communication we need a mecha-
nism for buffering (queueing) of messages. Technically, we use for this purpose buffered
I/O-transition systems which model queues over a given set M of messages such that
enqueueing a message m is an input action of the form m! and dequeueing a message
m is an output action of the form m?. The contents of a queue define the queue’s states
which are formally represented by the set M∗ of finite sequences over M . The empty
sequence is denoted by ε, the extension of s ∈ M∗ by an m ∈ M at the front is denoted
by m · s, extension of the back end by s · m.

Definition 1 (Queue iots). Let M be a set. The queue iots over M is given by Q�
M =

((I, O, T ), S, s0, Δ), where I = {m! | m ∈ M}, O = {m? | m ∈ M}, T = ∅;
S = {s | s ∈ M∗}, s0 = ε; and Δ ⊆ S × (I ∪ O ∪ T ∪ {τ}) × S is the smallest
relation such that
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1. for all m! ∈ I and all s ∈ S, there exists (s, m!, s · m) ∈ Δ,
2. for all m? ∈ O and all m · s ∈ S, there exists (m · s, m?, s) ∈ Δ.

For an iol (I, O, T ) and a set of labels M we define the sets of labels IM? = {l? | l ∈
I ∩ M} ∪ (I \ M), OM ! = {l! | l ∈ O ∩ M} ∪ (O \ M) and analogously for IM ! and
OM?. If I ⊆ M or O ⊆ M we write I?, I! or O!, O? respectively. The relabelling for
buffered communication βM : (I, O, T ) → (IM?, OM !, T ) is defined by βM (l) = l? if
l ∈ I ∩ M , βM (l) = l! if l ∈ O ∩ M , and βM (l) = l otherwise.

Specialised Relabellings. For the computation of the behaviours of components and
assemblies we employ several relabelling functions, which specialise the relabelling
introduced in Sect. 2.1. These relabellings are needed for creating shared labels when
I/O-transition systems, representing behaviours, are composed. Even for asynchronous
compositions shared labels will be needed for appropriate synchronisations with queue
labels. We assume a primitive domain Nm of names.

A prefix relabelling prefixes all labels in an iots by a given name. For an iol L =
(I, O, T ) and some name n ∈ Nm, we define the iol n.L = (n.I, n.O, n.T ) where
n.I = {n.i | i ∈ I} and similarly for n.O and n.T . The prefix relabelling ρn : L →
n.L is defined by ρn(l) = n.l for l ∈

⋃
L. Given an iots A and a name n ∈ Nm, we

write n.A for the iots Aρn.
A match relabelling maps differently prefixed labels to labels with a single common

prefix. For an iol L = (I, O, T ), X ⊆ Nm and y ∈ Nm, we define the iol Lμ(X,y) =
(Iμ(X,y), Oμ(X,y), Tμ(X,y)) where Iμ(X,y) = {y.l | ∃x ∈ X . x.l ∈ I} ∪ {l | l ∈
I∧∀x ∈ X . l �= x.l′} and analogously for Oμ(X,y) and Tμ(X,y). The match relabelling
μ(X,y) : L → Lμ(X,y) is defined by μ(X,y)(x.l) = y.l if x ∈ X and x.l ∈

⋃
L, and

μ(X,y)(l′) = l′ otherwise.
For an iol L = (I, O, T ), X ⊆ Nm and y ∈ Nm, a (binary) synchronisation rela-

belling σ(X,y) is given by a match relabelling μ(X,y) with |X | = 2 and T = Tμ(X,y).
An asynchronous relabelling α(X,y) is given by the composition σ(X,y) ◦ βM of a re-
labelling βM for buffered communication (cf. above) with M = {x.l ∈ I ∪ O | x ∈
X, l ∈ Nm} and a synchronisation relabelling σ(X,y). Finally, a relay relabelling ρ(x,y)
is given by a match relabelling μ(X,y) with X = {x}.

4.2 Formalisation of Ports and Connectors

Ports. For the formalisation of ports we assume a domain Port of ports (more precisely,
port types), a domain If of interfaces and a domain Msg of messages, together with
functions msg : If → ℘Msg to return the messages constructed from the operations of
an interface, and prv : Port → If and req : Port → If for the provided and required
interfaces of a port such that for all P ∈ Port, msg(prv(P ))∩msg(req(P )) = ∅. For a
port P we write msg(P ) for msg(prv(P )) ∪ msg(req(P )). We also assume a domain
of port declarations PortDcl with a function nm : PortDcl → Nm for the name and a
function ty : PortDcl → Port for the port (type); we write p : P for a port declaration
d with nm(d) = p and ty(d) = P .

If ports are used for asynchronously communicating components, a queue iots is
defined with respect to the messages provided at the particular port.
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Definition 2 (Queue of a port). The queue of a port (type) P is given by que(P ) =
Q�

msg(prv(P )).

For each port P ∈ Port we assume given its protocol (specification), written prot(P ),
which is an I/O-transition system ((I, O, T ), Q, q0, Δ) with I = msg(prv(P )), O =
msg(req(P )) and T = ∅.

Connectors. For building component assemblies and composite components we will
connect port declarations of components. We assume a domain Conn of connectors
(more precisely, connector types) with a function ports : Conn → ℘PortDcl yielding
the connected port declarations such that |ports(K)| = 2 for each K ∈ Conn, i.e. we
consider binary connectors. We assume a domain of connector declarations ConnDcl
with a function nm : ConnDcl → Nm for the name and ty : ConnDcl → Conn for
the connector (type); we write k : K for a connector declaration d with nm(d) = k and
ty(d) = K and we write k : (p : P, q : Q) if ports(K) = {p : P, q : Q}.

The domain Conn has two disjoint sub-domains AsmConn ⊆ Conn, DlgConn ⊆
Conn of assembly and delegate connectors, resp. Assembly connectors are used to con-
nect port declarations of components when building up a component assembly. For an
assembly connector with port declarations {p1 : P1, p2 : P2} the required interface
req(P1) has to be equal to the provided interface prv(P2) and vice versa. There are
again two disjoint sub-domains AsynchConn ⊆ AsmConn, SynchConn ⊆ Conn for
asynchronous and synchronous connectors, resp.

Delegate connectors are used to connect open ports of an assembly with the relay
ports of a surrounding composite component. For a delegate connector the provided
and required interfaces of its port declarations must coincide.

Asynchronous connectors are used for asynchronous communication between the
ports of components. Hence, they must show a buffering behaviour on each end of the
connector in accordance with the messages that can be received (i.e. are provided) at a
particular port.

Definition 3 (Buffering connector behaviour). The buffering behaviour of an asyn-
chronous connector k : (p : P, q : Q) is given by buf (k : (p : P, q : Q)) =
k.(que(P ) ⊗ que(Q)).

To obtain a uniform definition of assembly behaviour below (Def. 4) we need for tech-
nical reasons a notion of “empty iots” which acts as a neutral element w.r.t. the product
of iotss. Define 1 to be an iots (L, S, s0, Δ) with

⋃
L = ∅, S = {s0} and Δ = ∅. If a

connector k : K is synchronous we set buf (k : K) = 1.

4.3 Formalisation of Components and Assemblies

Components. We assume a domain Cmp of components (more precisely, component
types) and a function ports : Cmp → ℘PortDcl returning the ports declared for a
component. For a component C and port declaration p : P we write C[p : P ] to
indicate that p : P ∈ ports(C). The port names p used in port declarations p : P of
one component C must be unique (but this is not necessary for port types P ). Like for
ports and connectors, we assume a domain of component declarations CmpDcl with a
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function nm : CmpDcl → Nm for the name and a function ty : CmpDcl → Cmp for
the component (type); we write c : C for a component declaration d with nm(d) = c
and ty(d) = C. The ports of a component declaration are given by ports(c : C) =
{c.p : P | p : P ∈ ports(C)}.

For each component (type) C ∈ Cmp there is a derived observable behaviour, writ-
ten obs(C), which is an iots ((I, O, T ), Q, q0, Δ) with I =

⋃
{p.msg(prv(P )) | p :

P ∈ ports(C)}, O =
⋃
{p.msg(req(P )) | p : P ∈ ports(C)} and T = ∅. Hence, the

observable labels of a component (type) are just the labels according to the (provided
and required) messages of the ports of the component prefixed with the port name in
the corresponding port declaration. The only additional action that can occur in the ob-
servable behaviour of a component is the invisible action τ . As already indicated in the
component metamodel in Fig. 1 the observable behaviour of a component is a derived
behaviour. Its definition depends on whether the component is simple or composite;
cf. Def. 5 and Def. 6 below. The observable behaviour of a component declaration
c : C is given by obs(c : C) = c.obs(C).

Assemblies. Let us now formalise the static structure and the behaviour of component
assemblies. An assembly contains a set of component declarations and a set of connec-
tor declarations which connect ports (more precisely, the connector declarations connect
port declarations belonging to component declarations of the assembly). We assume a
domain Asm of assemblies with functions cmps : Asm → ℘CmpDcl returning an
assembly’s declared components and conns : Asm → ℘ConnDcl yielding its declared
connectors. The component names c used in component declarations c : C of an assem-
bly a must be unique (but this is not necessary for the component types C). Similarly,
connector names within the assembly must be unique. For an assembly a we define the
subset of asynchronous connectors by acs(a) ⊆ conns(a) such that k : K ∈ acs(a) iff
K ∈ AsynchConn, and the subset of synchronous connectors by scs(a) ⊆ conns(a)
such that k : K ∈ scs(a) iff K ∈ SynchConn.

An assembly a ∈ Asm has to be well-formed: (i) it shows only assembly connectors,
i.e., if k : K ∈ conns(a), then K ∈ AsmConn; (ii) only ports of components inside
a are connected, i.e., for all k : K ∈ conns(a) we have that ports(K) ⊆

⋃
{ports(c :

C) | c : C ∈ cmps(a)}; and (iii) there is at most one connector for each port, i.e., if
c.p : P ∈

⋃
{ports(c : C) | c : C ∈ cmps(a)} and k : K, k′ : K ′ ∈ conns(a) with

c.p : P ∈ ports(K) ∩ ports(K ′), then k : K = k′ : K ′.
To retrieve component declarations from port declarations within an assembly a we

define cmp :
⋃
{ports(c : C) | c : C ∈ cmps(a)} → cmps(a) by cmp(c.p : P ) =

c : C if c.p : P ∈ ports(c : C). The components of an assembly a may show open
ports which are not connected and we let open(a) =

⋃
{ports(c : C) | c : C ∈

cmps(a)} \
⋃
{ports(K) | k : K ∈ conns(a)}.

Let us now focus on the definition of the behaviour of an assembly. The idea is that
the behaviour of an assembly is determined by the composition of the observable be-
haviours of the components occurring in the assembly. But, of course, the composition
must be defined in accordance with the possible communications between components
which are connected via their ports. Since connectors may be asynchronous the buffer-
ing behaviour of connectors (cf. Def. 3) plays a crucial role. Moreover, some matching
relabellings are necessary to achieve the desired behaviour.
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c : C p : P
c.p.m

α�→ k.m? k.m! α←� d.q.m

comp.
in

qu.
out

qu.
in

comp.
out

d : Dq : Q
c.p.n

α�→ k.n! k.n? α←� d.q.n
comp.

out
qu.
in

qu.
out

comp.
in

m ∈ prv(P ) = req(Q)

n ∈ prv(Q) = req(P )

Fig. 5. Assembly with asynchronous connector

Figure 5 illustrates how the behaviour of an assembly with two asynchronously com-
municating components is constructed. There are two component declarations c : C and
d : D. The component type C has one port declaration p : P which, in the context of
the assembly with component declaration c : C, is considered as a port declaration
c.p : P to ensure uniqueness of port names within an assembly. Similarly, the com-
ponent type D has one port declaration q : Q. Thus the messages sent out from the
component c via its port p have the form c.p.n where n is a message of the required
interface of P . The two ports are connected by a connector declaration of the form
k : (c.p : P, d.q : Q). Thus the required interface of P must coincide with the provided
interface of Q. According to the buffering behaviour of the connector k there is a queue
que(Q) (cf. Def. 2) which allows inputs of the form k.n! with n being a message ac-
cording to the provided interface of Q. To achieve that the issued message c.p.n will
indeed be put into the queue que(Q), we use a matching relabelling α which maps c.p.n
to k.n!. The message n can be dequeued from que(Q) later on with the action k.n?.
Since the component d inputs on its port q messages of the form d.q.n we use again the
matching relabelling α which now maps d.q.n to k.n?. The communication in the other
direction works analogously.

Figure 6 illustrates how the behaviour of an assembly with two synchronously com-
municating components is constructed. Here, the necessary relabelling to synchronise
input and output actions is much easier. Indeed, in this case a message c.p.n sent from
component c via its port p must be matched with the input action d.q.n on the port q
of the component d. For this purpose both actions are simply matched to the label k.n
with the relabelling σ, where k is again the connector’s name.

c : C p : P
c.p.m

σ�→ k.m
σ←� d.q.m

comp.
in

comp.
out

d : Dq : Q
c.p.n

σ�→ k.n
σ←� d.q.n

comp.
out

comp.
in

m ∈ prv(P ) = req(Q)

n ∈ prv(Q) = req(P )

Fig. 6. Assembly with synchronous connector
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For general assemblies, we apply the match relabellings defined in Sect. 4.1 to define
the relabelling α for asynchronous and σ for synchronous connectors.

α ≡
⋃
{α({c.p,d.q},k) | k : K ∈ acs(a) . ports(K) = {c.p : P, d.q : Q}} ,

σ ≡
⋃
{σ({c.p,d.q},k) | k : K ∈ scs(a) . ports(K) = {c.p : P, d.q : Q}} .

We have now the technical ingredients to define the behaviour of an assembly. In the
definition the successive application of α and σ cannot lead to conflicts because both
relabellings are disjoint. Note also that in the case of synchronous connectors buf (k :
K) is trivial as explained in Sect. 4.2. Moreover, the assembly behaviour is well-defined
because all participating behaviours are composable. This is due to the disjointness of
provided and required operations on port types, to the uniqueness of names for ports (in
component declarations) as well as for components and connectors (in the assembly),
and to the commutativity and associativity of the composition operator for iotss.

Definition 4 (Assembly behaviour). The behaviour of an assembly a is given by

beh(a) =
⊗

c:C∈cmps(a)(obs(c : C)ασ) ⊗
⊗

k:K∈conns(a) buf (k : K) .

We write 〈C;K〉 for an assembly a with the set of component declarations cmps(a) = C
and the set of connector declarations conns(a) = K.

Example 2 (Assembly behaviour). The static structure of the Bank–ATM application
in Fig. 2 is formally represented by an assembly 〈bank : Bank, atm : Atm; ab : Bat〉. The
assembly behaviour, shown in Fig. 4, is obtained from the composition of the observ-
able behaviours of the components Bank and Atm with the buffering behaviour of the
asynchronous connector Bat:

beh(〈bank : Bank, atm : Atm; ab : Bat〉) =
obs(bank : Bank)ασ ⊗ obs(atm : Atm)ασ ⊗ buf (ab : Bat) .

Simple Components. We assume a sub-domain SCmp ⊆ Cmp of simple components.
Each SC ∈ SCmp has a user defined internal behaviour specification beh(SC), which
is an iots ((I, O, T ), Q, q0, Δ) with I = {p.msg(prv(P )) | p : P ∈ ports(SC)} and
O = {p.msg(req(P )) | p : P ∈ ports(SC)}. The observable behaviour of a simple
component SC is derived from its internal behaviour specification by hiding all internal
labels. Technically this is achieved with the hiding operator ξ; see Sect. 2.

Definition 5 (Observable behaviour of simple component). The observable behaviour
of a simple component SC is given by obs(SC) = beh(SC)ξ.

Example 3 (Observable behaviours). The observable behaviour hides internal transi-
tions, i.e. relabels internal transition to τ . In order to keep our running example simple
and illustrative we refrained from modelling internal behaviour and assumed observable
behaviours without τ transitions instead (cf. Fig. 3).

Composite Components. Composite components are constructed by encapsulating an
assembly and by connecting, with delegate connectors, the open ports of the assem-
bly with relay ports of the composite component. Formally, we assume a sub-domain
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CCmp ⊆ Cmp of composite components, disjoint to SCmp and functions asm :
CCmp → Asm returning the underlying assembly of a composite component, and
conns : CCmp → ℘ConnDcl returning the connectors declared in a composite compo-
nent. Similar to assemblies we require a composite component CC to be well-formed:
(i) it shows only delegate connectors, i.e., if k : K ∈ conns(CC), then K ∈ DlgConn;
(ii) all open ports of the asm(CC) are connected, i.e., for all c.p : P ∈ open(asm(CC))
there is k : K ∈ conns(CC) such that c.p : P ∈ ports(K); and (iii) all relay ports are
connected, i.e., for all r : R ∈ ports(CC) there is a unique k : K ∈ conns(CC) with
ports(K) = {c.p : P, r : R} and c.p : P ∈ open(asm(CC)).

The observable behaviour of a composite component is derived from the behaviour
of its underlying assembly by hiding all internal actions, which in the case of assemblies
are the communications on the connectors, and by matching the labels on the open ports
of the assemblies with the labels on the relay ports in accordance with the delegate
connectors.

Definition 6 (Observable behaviour of composite component). The observable be-
haviour of a composite component CC is given by

obs(CC) = (beh(asm(CC))ξ)ρ ,

where ρ =
⋃
{ρ(c.p,r) | k : K ∈ conns(CC) . ports(K) = {c.p : P, r : R}}.

We write 〈a;P ;K〉 for a composite component CC with assembly asm(CC) = a, set
of (relay) port declarations ports(CC) = P and set of (delegate) connector declarations
conns(CC) = K.

Example 4 (Observable behaviour of composite components). Since the Bank–Atm ap-
plication is a closed system, the observable behaviour of the composite component
〈〈bank : Bank, atm : Atm; ab : Bat〉; ∅; ∅〉 consists of τ -transitions only.

4.4 Buffered Components

The assembly behaviour has been defined on the basis of connectors which may show
an asynchronous buffering behaviour. We show that the assembly behaviour can also
be computed by rearranging the buffers in such a way that they do not belong to the
connectors but to the components. For this purpose we introduce a new kind of compo-
nent behaviour which integrates observable behaviour and message buffers for a single
component based on a notion of buffered iotss.

An iots A = (L, S, s0, Δ) is without queue labels if L does not contain labels of the
form m? or m! (dequeue and enqueue labels of queue iotss; cf. Def.1).

Lemma 1. If A = ((I, O, T ), S, s0, Δ) is without queue labels, X ⊆ I and Y ⊆ O,
then AβX∪Y and Q�

X are composable. ��

The relabelling βX∪Y , defined in Sect. 4.1, prepares A on the one hand for the syn-
chronisation with its queue Q�

X , and, on the other hand for synchronisation with an iots
which provides matching inputs for the asynchronous outputs of A on Y .
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Definition 7 (Buffered iots). Let A = ((I, O, T ), S, s0, Δ) be an iots without queue
labels. Let X = {X1, . . . , Xn} where Xi ⊆ I and Xi ∩ Xj = ∅ for all i �= j ∈
{1, . . . , n}. The buffered iots for A with buffered input X and buffered output Y ⊆ O
is given by

ΩX,Y (A) = AβX1∪···∪Xn∪Y ⊗ Q�
X1

⊗ · · · ⊗ Q�
Xn

,

If X = I and Y = O, then the iots is completely buffered and we write Ω(A).

Lemma 2. If A = ((I, O, T ), S, s0, Δ) is without queue labels, X = {X1, . . . , Xn}
where Xi ⊆ I and Xi ∩ Xj = ∅ for all i �= j ∈ {1, . . . , n}, and Y ⊆ O, then
L(ΩX,Y (A)) = (I(X1∪···∪Xn)!, OY !, T ∪ (I(X1∪···∪Xn)? \ I)). ��

Buffered iotss are later used to develop and analyse notions of refinement and compati-
bility on the level of iotss. The results are then applied to our formal component model.
Therefore, we detail in the following on buffered iotss and their intended application as
a formal representation of asynchronously communicating components.

Example 5 (Buffered iots). Buffered iotss for the observable behaviour of components
are obtained from their composition with input queues defined w.r.t. the ports of the
given component. For instance, the Bank component is equipped with one port only,
therefore we have ΩX,Y (obs(Bank)) = obs(Bank)βX∪Y ⊗ Q�

X , where X = {{a.m |
m ∈ {verifyPin, withdraw}}} and Y = {a.m | m ∈ {pinOk, pinNotOk, giveMoney}}.

Definition 8 (Communication behaviour of component). The communication be-
haviour of a component C buffered on a set of port declarations P is given by

comP(C) = ΩX,Y (obs(C)) ,

where X = {Xp:P | p : P ∈ P ∩ ports(C)}, Xp:P = {p.m | m ∈ msg(prv(P ))},
Y = {p.m | p : P ∈ P ∩ ports(C) ∧ m ∈ msg(req(P ))}.

The communication behaviour of a component declaration c : C w.r.t. a set of port
declarations P ⊆ ports(C) is given by comP(c : C) = c.comP(C).

In order to obtain a characterisation of assembly behaviour in terms of communicat-
ing buffered components we have to ensure commutativity and associativity of compo-
sitions of buffered iotss. Concerning composability we record only the special case of
completely buffered iotss, which is later needed in our analysis.

Lemma 3. Let A and B be iotss without queue labels. If A and B are composable,
then Ω(A) and Ω(B) are composable. ��

The lemma holds also for arbitrary buffered iotss, if we ensure that the input partitions
determining the asynchronous input of one iots is consistent with the relabelling for
asynchronous output of its communication partner. As a consequence the composition
of buffered iotss is associative and commutative. The proof of these facts is tedious but
rather straightforward.

Definition 8 includes the synchronisation of the observable behaviour of a compo-
nent with its input queues. By composition of communication behaviours, we syn-
chronise output transitions of one component behaviour with input transitions of the



Refinement of Components in Connection-Safe Assemblies 169

queues of other components. Hence we can obtain an assembly behaviour by com-
position of communication behaviours of components which is equivalent to Def. 4.
For taking into account the names of asynchronous connectors, we replace the asyn-
chronous relabelling α used in Def. 4 by a slightly simpler relabelling, defined by
κ ≡

⋃
{μ({c.p,d.q},k) | k : K ∈ acs(a) . ports(K) = {c.p : P, d.q : Q}}.

Proposition 1. If a is an assembly, then beh(a) =
⊗

c:C∈cmps(a)(comP(c : C)κσ),
where P =

⋃
{ports(K) | k : K ∈ acs(a)}. ��

5 Connection-Safe Assemblies

A safe communication of two components over a synchronous connector is charac-
terised by the fact that if one component is about to send a message the other component
is indeed willing to accept this message. For the iotss underlying the components this
means that if the one iots has reached a state where it does an output, the other iots is
in a state where it does the corresponding input. This idea of synchronous safe commu-
nication is captured by the following notion of compatibility of iotss as introduced by
Gouda, Manning, and Yu for communicating finite state machines [17] and used by de
Alfaro and Henzinger for iotss [4], which is based on the reachable states of iotss: The
reachable states R(A) of an iots A = (L, S, s0, Δ) are inductively defined as follows:
s0 ∈ R(A); and if s ∈ R(A) and there is an a ∈

⋃
L ∪ {τ} and an s′ ∈ S with

(s, a, s′) ∈ Δ, then s′ ∈ R(A).

Definition 9 (Compatibility). Let A = ((IA, OA, TA), SA, s0,A, ΔA) and B = ((IB ,
OB, TB), SB, s0,B, ΔB) be composable iotss. B is a compatible context for A, if for
all l ∈ OA ∩ IB and all (sA, sB) ∈ R(A ⊗ B), if (sA, l, s′A) ∈ ΔA, then there exists
(sB, l, s′B) ∈ ΔB . The iotss A and B are compatible if A is a compatible context for B
and vice versa.

Example 6 (Compatible iotss). The iotss representing the observable behaviours of the
components Bank and Atm in Fig. 3 are obviously compatible. All outputs are immedi-
ately synchronised in both directions (modulo port relabelling).

For asynchronously communicating components which are connected by buffers the sit-
uation of safe communication is different: We have to ensure that each message sent out
by one component is eventually understood by the receiving component. For technical
reasons we restrict our attention to infinite communication sequences. Then safe com-
munication means that if we observe an infinite communication sequence with output
labels putting a message into a buffer and input labels taking a message from a buffer
we have to be able to pair off the corresponding output and input labels. We thus base
the notion of buffered compatibility of buffered iotss as an analogue to (synchronous)
compatibility of iotss on infinite label sequences and require for buffered compatibility
a pairing function for sending and taking. An infinite run of an iots A = (L, S, s0, Δ)
is an infinite sequence s0, l0, s1, l1, . . . with sn ∈ S, ln ∈

⋃
L, and (sn, ln, sn+1) ∈ Δ̂

for all n ∈ N. An infinite weak trace of A is a sequence l0, l1, . . . with ln ∈
⋃

L such
that there is a run s0, l0, s1, l1, . . . of A.
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/s.verifyPin

s.giveMoney/

s.pinOk/

/s.withdraw

a.verifyPin/

/a.giveMoney

a.withdraw/

/a.pinOk

Fig. 7. Example for buffered compatible iotss

Definition 10 (Buffered compatibility). Let (L, S, s0, Δ) be an iots and μ : U → V
a mapping with U, V ⊆

⋃
L. An infinite weak trace l0, l1, . . . of (L, S, s0, Δ) is μ-

buffered compatible, if for each u ∈ U there is a bijection ϕu : {k ∈ N | lk = u} →
{k ∈ N | lk = μ(u)} with k < ϕu(k).

Let A and B be composable iotss without queue labels and L(A) = (IA, OA, TA)
and L(B) = (IB , OB, TB). Let μ : {m! | m ∈ OA ∪ OB} → {m? | m ∈ IA ∪ IB} be
defined by μ(m!) = m?. An infinite weak trace of Ω(A)⊗Ω(B) is buffered compatible,
if it is μ-buffered compatible. A and B are buffered compatible, if all infinite weak
traces of Ω(A) ⊗ Ω(B) are buffered compatible.

Example 7 (Buffered compatible iotss). Asynchronous communication allows for si-
multaneous sending of messages as illustrated, for instance, in the iotss of Fig. 7. Com-
pared to the behaviours known from Fig. 3, the order of s.withdraw and s.pinOk in the
right-hand iots was swapped and both iots were reduced to one path. The composition of
the corresponding buffered iotss results in an iots where the possibility of simultaneous
sending is modelled by the respective queue actions (cf. Fig. 8).

Obviously the iotss in Fig. 7 are not synchronously compatible, due to the output of
the messages a.pinOk and s.withdraw. However, they are buffered compatible. Figure 8
shows the product iots, which would be obtained along appropriate relabellings (cf.
Prop. 1) and an asynchronous connector ab : Bat as above. The infinite weak traces of
the product allow to match the enqueue actions ab.verifyPin!, ab.withdraw!, etc. with their
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Fig. 8. Product of buffered iotss with simultaneous sending
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dequeuing counterparts ab.verifyPin?, ab.withdraw?, etc. as required by the definition of
μ-buffered compatibility.

In the context of component assemblies, compatibility of two synchronously or asyn-
chronously communicating iotss has to be lifted to an arbitrary number of communicat-
ing components. We therefore introduce the notion of connection-safe assemblies.

Definition 11 (Connection-safety). An assembly a = 〈c1 : C1, . . . , cn : Cn;K〉 is
connection-safe, if for all connector declarations k : (ci.p : P, cj .q : Q) ∈ K the
following conditions hold:

1. If k is synchronous, let obs(ci : Ci) = (Lci , Sci , s0,ci, Δci) and obs(cj : Cj) =
(Lcj , Scj , s0,cj , Δcj ). Then for all (sc1 , . . . , scn , K) ∈ R(beh(a)), if (sci , ci.p.m,
s′ci

) ∈ Δci for some m ∈ msg(req(P )), then there is a (scj , cj .q.m, s′cj
) ∈ Δcj ;

and if (scj , cj.q.m, s′cj
) ∈ Δcj for some m ∈ msg(req(Q)), then there is a

(sci , ci.p.m, s′ci
) ∈ Δci .

2. If k is asynchronous, let μ : {k.m! | m ∈ msg(req(P )) ∪ msg(req(Q))} →
{k.m? | m ∈ msg(prv(Q)) ∪ msg(prv(P ))} with μ(k.m!) = k.m?. Then all
infinite weak traces of beh(a) are μ-buffered compatible.

Note that for assemblies consisting of just two components with one port each and
being connected by a single either synchronous or asynchronous connector, connection
safety just means (synchronous) compatibility or buffered compatibility of the iotss
underlying the communication behaviour of components of Def. 8.

The different concepts of compatibility for rendezvous and buffered communica-
tion raise the question whether synchronous compatibility of two iotss induces their
buffered compatibility when they are put into an asynchronous context; we concentrate
on closed compositions, where an iots ((I, O, T ), S, s0, Δ) is closed if I = O = ∅. In
order to answer this question, we first extend a result by Cécé and Finkel [15, Thm. 35]
that, under some restrictions, two compatible finite state machines yield, when com-
municating through queues, a so-called half-duplex system. In our context of iotss,
a composition Ω(A) ⊗ Ω(B) is half-duplex, if in every reachable state ((sA, qA),
(sB, qB)) ∈ R(Ω(A)⊗Ω(B)) one of the queues is empty: qA = ε∨qB = ε. The proof
of this result was by contradiction and used the restriction that the two compatible com-
municating finite state machines are deterministic and have no so-called mixed states,
i.e., states where both an input and an output can happen. For iotss, this corresponds to
input separation, that is, for each state showing some outgoing input transition all out-
going transitions are labelled by inputs: An iots A = (L, S, s0, Δ) with L = (I, O, T )
is input separated, if for all s ∈ R(A) with (s, l, s′) ∈ Δ for some s′ ∈ S and l ∈ I ,
then {a ∈

⋃
L∪{τ} | ∃s′ ∈ S . (s, a, s′) ∈ Δ} ⊆ I . For example the iotss in Fig. 3 are

input separated, since all states with outgoing input transitions show only input transi-
tions. Input separation may be understood as a property which reflects single-threaded
execution: output and internal transitions succeeding an input are considered to encode
the reaction of the component to this input.

Moreover, the restriction to deterministic iotss would not be appropriate for our set-
ting because in the context of invisible actions non-determinism arises quite naturally.
After establishing the result that compatible, input separated iots A and B induce a half-
duplex asynchronous system Ω(A)⊗Ω(B) by a direct proof based on an invariant, we
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show that if we additionally require A and B to always eventually take an input, then A
and B are buffered compatible. An iots A = (L, S, s0, Δ) with L = (I, O, T ) is always
eventually inputting, if all weak infinite traces l0, l1, . . . show infinitely many ln ∈ I .

Lemma 4. Let A and B be composable, input separated iotss without queue labels,
and let A⊗B be closed. If A and B are compatible, then Ω(A)⊗Ω(B) is half-duplex.

Proof. Let us first fix some terminology: For an iots (L, S, s0, Δ) the transitive closure
of Δ is the relation Δ∗ ⊆ S×

⋃
L∗×S defined inductively as follows: (s, ε, s′) ∈ Δ∗, if

s = s′; (s, l ·λ, s′) ∈ Δ∗, if there is an s′′ ∈ S with (s, l, s′′) ∈ Δ, and (s′′, λ, s′) ∈ Δ∗.
The transitive τ -closure of Δ is the relation Δ̂∗ ⊆ S ×

⋃
L
∗ × S defined inductively

by: (s, ε, s′) ∈ Δ̂∗, if (s, τ, s′) ∈ Δ̂; (s, l · λ, s′) ∈ Δ̂∗, if there is an s′′ ∈ S with
(s, l, s′′) ∈ Δ̂, and (s′′, λ, s′) ∈ Δ̂∗. The safe label sequences Δ∗(s) ⊆

⋃
L
∗ in a

state s ∈ S are inductively given by: ε ∈ Δ∗(s) for all s ∈ S; l · λ ∈ Δ∗(s), if there
is an s′ ∈ S with (s, l, s′) ∈ Δ, and for all s′ ∈ S with (s, l, s′) ∈ Δ it holds that
λ ∈ Δ∗(s′). For an iots A = ((I, O, T ), S, s0, Δ) we write IA for I , OA for O and
similarly for the other parts.

Define, using the hiding operator ξ defined in Sect. 2.1,

R = {(((sA, qA), (sB, qB)), (rA, rB)) |
((sA, qA), (sB, qB)) ∈ R(Ω(A) ⊗ Ω(B)) ∧ (rA, rB) ∈ R(A ⊗ B) ∧
((qA = ε ∧ qB = ε ∧ (sA, sB) = (rA, rB)) ∨
(qA = ε ∧ qB �= ε ∧ sB = rB ∧ (rA, qB, sA) ∈ Δ̂∗

Aξ ∧ qB ∈ Δ∗
B(rB) ∨

(qA �= ε ∧ qB = ε ∧ sA = rA ∧ (rB , qA, sB) ∈ Δ̂∗
Bξ ∧ qA ∈ Δ∗

A(rA)))}

We show that for all reachable ((sA, qA), (sB, qB)) ∈ R(Ω(A) ⊗ Ω(B)) it holds
that ∃(rA, rB) . (((sA, qA), (sB, qB)), (rA, rB)) ∈ R. Then, by definition of R, al-
ways one of the queues in Ω(A)⊗Ω(B) is empty. In fact, (((s0,A, ε), (s0,B, ε)), (s0,A,
(s0,B))) ∈ R. Let (((sA, qA), (sB, qB)), a, ((s′A, q′A), (s′B , q′B))) ∈ ΔΩ(A)⊗Ω(B). We
only consider transitions originating from Ω(A), the cases for transitions from Ω(B)
are symmetric.

If a ∈ TA ∪ {τ}, then (sA, a, s′A) ∈ ΔA and qA = q′A, (sB, qB) = (s′B , q′B). If
qA = qB = ε, then (sA, sB) = (rA, rB) and thus (((s′A, qA), (sB, qB)), (s′A, rB)) ∈
R. If qA = ε and qB �= ε, then (((s′A, qA), (sB , qB)), (rA, rB)) ∈ R. But qA �= ε and
qB = ε is impossible, as then sA = rA and hence A would not be input separated, since
qA ∈ Δ∗

A(rA).
If a ∈ TΩ(A) \ TA, then a = m? for some m ∈ IA, (sA, m, s′A) ∈ ΔA, qA =

m · q′A, (sB , qB) = (s′B, q′B). Thus sA = rA, (rB , qA, sB) ∈ Δ̂∗
Bξ, and qA ∈ ΔA(sA).

Moreover, q′A ∈ Δ∗
A(s′A). If q′A = ε, then ((rA, rB), m, (s′A, sB)) ∈ Δ∗

Aξ⊗Bξ and

(((s′A, q′A), (sB, qB)), s′A, sB) ∈ R; if q′A �= ε, ((rA, rB), m, (s′A, r′B)) ∈ Δ̂∗
Aξ⊗Bξ

with (r′B , q′A, sB) ∈ Δ̂Bξ and hence (((s′A, q′A), (sB , qB)), r′A, r′B) ∈ R.
If a ∈ OΩ(A), then a = m! for some m ∈ OA, (sA, m, s′A) ∈ ΔA, qA = q′A,

sB = s′B , q′B = qB · m. If qA = qB = ε, then (sA, sB) = (rA, rB). As (rA, rB) ∈
R(A ⊗ B) and because A and B are compatible, there is a state (s′A, s′B) ∈ SA⊗B

with ((sA, sB), m, (s′A, s′B)) ∈ ΔA⊗B and thus (((s′A, qA), (sB, qB ·m)), (rA, rB)) ∈
R. If qA = ε and qB �= ε, then sB = rB . We have (rA, qB · m, s′A) ∈ Δ̂∗

Aξ . In
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order to show that qB · m ∈ Δ∗
B(rB), let r′B ∈ SB with (rB , qB, r′B) ∈ Δ∗

B . Then
((rA, rB), qB , (sA, r′B)) ∈ Δ̂Aξ⊗Bξ and, in particular, (sA, r′B) ∈ R(A ⊗ B) and
hence, by the compatibility of A and B, we have (r′B , m, r′′B) ∈ ΔB . Thus (((s′A, qA),
(sB, qB · m)), (rA, rB)) ∈ R. But qA �= ε and qB = ε is impossible, as then sA = rA

and hence A would not be input separated, since qA ∈ Δ∗
A(rA). ��

Theorem 1. Let A and B be composable, input separated iotss without queue labels,
and let A ⊗ B be closed. Let A and B be always eventually inputting. If A and B are
compatible, then A and B are buffered compatible.

Proof. Let A and B be compatible. Then Ω(A) ⊗ Ω(B) is half-duplex by Lem. 4.
Consider an infinite weak trace λ of Ω(A) ⊗ Ω(B). As A and B are always eventually
inputting, λ shows infinitely many labels of the form m? with m an input label of A
and infinitely many labels of the form n? with n an input label of B. In each state of
Ω(A)⊗Ω(B) with an outgoing transition with a label marked with ? the corresponding
queue of A and B resp. is not empty, thus the queue of the other iots is empty. Hence
each output of Ω(A) and Ω(B) is eventually answered by an input of A and B resp.
and hence λ is buffered compatible. ��

Example 8 (Compatiblity and buffered compatibility). The theorem is applicable to the
iotss given by Fig. 3. The iotss are obviously input separated. They are compatible by
Ex. 6, and they are always eventually inputting, since all of their weak infinite traces
show infinitely many input labels. Therefore the iotss are indeed buffered compatible.
Note that the input assumption for A and B is necessary. The iots on the left-hand side
of Fig. 9 is not always eventually inputting and even though the iotss are synchronously
compatible, they are not buffered compatible. The sender may proceed infinitely often
with output actions while the receiver never dequeues resulting in an infinite weak trace
that is not μ-buffered compatible.

/m m/

Fig. 9. Buffered incompatible I/O-transition systems

As witnessed by Ex. 7 (Fig. 7), the converse of Thm. 1, that buffered compatibility
induces synchronous compatibility of the non-queued iotss, is not true in general.

6 Compositional Refinement of Connection-Safe Assemblies

When substituting a refined version of a component for another component in an assem-
bly context, it should be ensured that relevant properties of the original assembly are
preserved. In the following we introduce a notion of refinement of components based
on alternating simulations of interface automata [4] and show that, at least for binary
assemblies, component refinement is compositional and preserves connection-safety of
assemblies.
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6.1 Refinement of I/O-Transition Systems and Components

When an alternating simulation, as defined by de Alfaro and Henzinger [4], puts two
states of an abstract and a concrete behaviour in relation, each input of the abstract be-
haviour must be accepted as an input of the concrete behaviour and, conversely, each
output of a concrete behaviour must be an output of the abstract behaviour; these re-
quirements correspond to clauses (1) and (2) in the definition below. We adopt this gen-
eral idea, but formally extend the definition of alternating simulations in several points:
Since we study connection-safety of assemblies, we do not allow a concrete behaviour
to fall silent w.r.t. outputs, when the abstract behaviour showed some output; this con-
dition is inspired by one part of stuck-freedom introduced by Rajamani and Rehof [14]
and is represented in clause (5). As we are interested in the communication behaviour of
assemblies, we do not abstract from internal actions and use an action τ for invisible be-
haviour; we require concrete internal actions to exist on the abstract level by clause (3).
In contrast, concrete τ actions are optional on the abstract level as long as the iots-
simulation relation is taken into account (cf. clause 4). Abstract internal and τ actions
are treated by clause (6) and (7) like output actions in clause (5). Finally, and more tech-
nically, we remove the requirement of input determinism of interface automata, saying
that for each input label there is at most one successor state. Instead, we introduce the
weaker condition (8) below, that inputs of the concrete behaviour do not introduce more
non-determinism than the corresponding inputs in the abstract behaviour.

Definition 12. Let A = ((IA, OA, TA), SA, s0,A, ΔA) and C = ((IC , OC , TC), SC ,
s0,C , ΔC) be iotss such that IA ⊆ IC , OC ⊆ OA and TC ⊆ TA. A relation R ⊆
SA × SC is an alternating iots-simulation for A and C, if for all (sA, sC) ∈ R it holds
that

1. ∀l ∈ IA . ∀s′A ∈ SA . (sA, l, s′A) ∈ ΔA =⇒ (∃s′C ∈ SC . (sC , l, s′C) ∈ ΔC ∧
(s′A, s′C) ∈ R) ,

2. ∀l ∈ OC . ∀s′C ∈ SC . (sC , l, s′C) ∈ ΔC =⇒ (∃s′A ∈ SA . (sA, l, s′A) ∈ Δ̂A ∧
(s′A, s′C) ∈ R) ,

3. ∀l ∈ TC . ∀s′C ∈ SC . (sC , l, s′C) ∈ ΔC =⇒ (∃s′A ∈ SA . (sA, l, s′A) ∈ Δ̂A ∧
(s′A, s′C) ∈ R) ,

4. ∀s′C ∈ SC . (sC , τ, s′C) ∈ ΔC =⇒ (∃s′A ∈ SA . (sA, τ, s′A) ∈ Δ̂A ∧(s′A, s′C) ∈R),
5. (∃l′ ∈ OA . ∃s′′A ∈ SA . (sA, l′, s′′A) ∈ ΔA) =⇒ (∃l ∈ OA . ∃s′A ∈ SA . ∃s′C ∈

SC . (sA, l, s′A) ∈ ΔA ∧ (sC , l, s′C) ∈ ΔC ∧ (s′A, s′C) ∈ R) ,
6. (∃a′ ∈ TA . ∃s′′A ∈ SA . (sA, a′, s′′A) ∈ ΔA) =⇒ (∃a ∈ TA . ∃s′A ∈ SA . ∃s′C ∈

SC . (sA, a, s′A) ∈ ΔA ∧ (sC , a, s′C) ∈ ΔC ∧ (s′A, s′C) ∈ R) ,
7. (∃s′′A ∈ SA . (sA, τ, s′′A) ∈ ΔA) =⇒ (∃s′A ∈ SA . ∃s′C ∈ SC . (sA, τ, s′A) ∈

ΔA ∧ (sC , τ, s′C) ∈ ΔC ∧ (s′A, s′C) ∈ R) .
8. ∀l ∈ IA . (∃s′′A ∈ SA . (sA, l, s′′A) ∈ ΔA) =⇒ (∀s′C ∈ SC . (sC , l, s′C) ∈

ΔC =⇒ (∃s′A ∈ SA . (sA, l, s′A) ∈ ΔA ∧ (s′A, s′C) ∈ R)) ,

The iots C is a refinement of the iots A, written C � A, if there exists an alternating
iots-simulation R for A and C with (s0,A, s0,C) ∈ R.

The concept of refinement can be immediately transferred to components by consider-
ing their observable behaviours:
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a.verifyPin/

/a.giveMoney

a.withdraw/

/a.pinOk

Fig. 10. Refined behaviour of Bank (cf. Fig. 3)

Definition 13. A component C′ is a subtype of a component C, written C ≥ C′, if
ports(C) = ports(C′) and obs(C) � obs(C′).

Example 9 (Refinement). In the context of our Bank–ATM example, the iots in Fig. 10
refines the observable behaviour of the component Bank given in Fig. 3, where the
transition of outputting the message that the PIN is not correct has been removed. In
particular, the new behaviour is more deterministic than the old one.

6.2 Refinement of Compatible I/O-Transition Systems

Let us first consider refinements of synchronously compatible iotss. In [4], de Alfaro
and Henzinger proved that compatibility of input deterministic iots is preserved by their
notion of alternating simulations. We extend this result to general iotss and our extended
concept of refinement.

Theorem 2. Let A, B and C be iotss. Let A, B and C, B be composable, and let A⊗B
and C ⊗B be closed. Let A and B be compatible. If A�C, then A⊗B �C ⊗B and
C and B are compatible.

Proof. Let A = ((IA, OA, TA), SA, s0,A, ΔA), and similarly for B and C. Let A⊗B =
((IAB , OAB, TAB), SAB, s0,AB, ΔAB) and C⊗B = ((ICB , OCB, TCB), SCB, s0,CB,
ΔCB). Then IAB = OAB = ICB = OCB = ∅.

Let RAC be an alternating iots-simulation for A and C with (s0,A, s0,C) ∈ R. Let

R = {((sA, sB), (sC , sB)) | (sA, sC) ∈ RAC ∧ (sA, sB) ∈ R(A ⊗ B)} .

Then ((s0,A, s0,B), (s0,C , s0,B)) ∈ R. Let ((sA, sB), (sC , sB)) ∈ R. We have to check
clauses (1–8) for alternating iots-simulations for R. Since IAB = OAB = OCB = ∅,
clause (1), clause (2), clause (5) and clause (8) are satisfied vacuously. We only detail
clause (3) for l ∈ L(A) �� L(B); clause (6) for these labels is analogous to (3) and the
remaining cases merely transfer the alternating iots-simulation RAC to R.

Let l ∈ L(A) �� L(B) and ((sC , sB), l, (s′C , s′B)) ∈ ΔCB . Then l ∈ OA = IB or
l ∈ IA = OB and (sC , l, s′C) ∈ ΔC , (sB , l, s′B) ∈ ΔB . If l ∈ OA = IB , by clause (2)
for RAC , there is an s′A ∈ SA with (sA, l, s′A) ∈ Δ̂A and thus ((sA, sB), l, (s′A, s′B)) ∈
Δ̂AB and also ((s′A, s′B), (s′C , s′B)) ∈ R. If l ∈ IA = OB , then, since (sA, sB) ∈
R(A ⊗ B) and A and B are compatible, there is an s′′A ∈ SA with (sA, l, s′′A) ∈ ΔA.
Thus there is an s′A ∈ SA with (sA, l, s′A) ∈ ΔA and (s′A, s′C) ∈ RAC by clause (8).
Hence ((sA, sB), l, (s′A, s′B)) ∈ Δ̂AB and also ((s′A, s′B), (s′C , s′B)) ∈ R.
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In order to show the compatibility of C and B, let (sC , sB) ∈ R(C ⊗ B). Then
there is an (sA, sB) ∈ R(A ⊗ B) with ((sA, sB), (sC , sB)) ∈ R, by induction using
clause (3) for R. If (sC , l, s′C) ∈ ΔC with l ∈ OC ∪ TC , then there is an s′A ∈ SA with
(sA, l, s′A) ∈ ΔA by clause (2) for RAC and thus (sB, l, s′B) ∈ ΔB for some s′B ∈ SB

by the compatibility of A and B. If (sB , l, s′B) ∈ ΔB with l ∈ OB = IA, then there is
an s′A ∈ SA with (sA, l, s′A) ∈ ΔA by the compatibility of A and B. Thus there is an
s′C ∈ SC with (sC , l, s′C) ∈ ΔC by clause (1) for RAC . ��

From this theorem we immediately obtain the desired compositionality result for refine-
ment in the case of synchronously compatible iots.

Corollary 1. Let A, B, C, and D be iotss. Let A, B and C, B and C, D be composable,
and let A⊗B, C ⊗B, and C ⊗D be closed. Let A and B be compatible. If A�C and
B � D, then A ⊗ B � C ⊗ D and C and D are compatible. ��

Example 10 (Refinement and compatibility). The iotss for the behaviours of the Bank–
Atm application in Fig. 3 are compatible (modulo port relabelling). The iots in Fig. 10
is a refinement of the original behaviour of the Bank component. By application of
Thm. 2 to a synchronous composition of the iotss, we may replace the original Bank
behaviour by its refined version and obtain, first, that the composition is a refinement
of the original composition and, second, that the refined iots is still (synchronously)
compatible with the iots of the Atm behaviour.

For refinements in the context of buffered compatible asynchronous compositions the
analogue of Thm. 2 holds. Here, clauses (5), (6) and (7) of Def. 12 for keeping at least
one abstract output or internal label in the concrete behaviour are not only conceptually
relevant, but also play a major technical role. For technical reasons, we restrict ourselves
to a concrete input separated iots and we have to ensure that there are only infinite runs
of the composition: An iots A = (L, S, s0, Δ) is deadlock free, if for all s ∈ R(A)
there is an l ∈

⋃
L and an s′ ∈ S with (s, l, s′) ∈ Δ̂.

Theorem 3. Let A, B and C be iotss without queue labels. Let A, B and C, B be
composable, and let A⊗B and C ⊗B be closed. Let A and B be buffered compatible,
C input separated, and Ω(A) ⊗ Ω(B) deadlock-free. If A � C, then Ω(A) ⊗ Ω(B) �
Ω(C) ⊗ Ω(B) and C and B are buffered compatible.

Proof. Let A = (LA, SA, s0,A, ΔA), and similarly for B, C, Ω(A), Ω(B), and Ω(C).
Since A, B and C, B are composable, Ω(A), Ω(B) and Ω(C), Ω(B) are composable
by Lem. 3. Let Ω(A) ⊗ Ω(B) = ((IAB , OAB, TAB), SAB, q0,AB, ΔAB), Ω(C) ⊗
Ω(B) = ((ICB , OCB, TCB), SCB, s0,CB, ΔCB). By the closedness of A ⊗ B and
C ⊗ B, we have IA = OB = IC and OA = IB = OC , hence IΩ(A) = OΩ(B) =
IΩ(C) and OΩ(A) = IΩ(B) = OΩ(C), and hence IAB = OAB = ICB = OCB = ∅.
Furthermore TAB = TΩ(A) ∪ L(Ω(A)) �� L(Ω(B)) ∪ TΩ(B) with TA ⊆ TΩ(A).

Let RAC be an alternating simulation for A and C with (s0,A, s0,C) ∈ RAC . Let

R = {(((sA, q), (sB, qB)), ((sC , q), (sB , qB))) |
(sA, sC) ∈ RAC ∧ ((sA, q), (sB , qB)) ∈ R(Ω(A) ⊗ Ω(B))} .
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Then (((s0,A, ε), (s0,B, ε)), ((s0,C , ε), (s0,B, ε))) ∈ R. Let (((sA, q), (sB , qB)), ((sC ,
q), (sB, qB))) ∈ R. We have to check the clauses (1–8) for alternating iots-simulations
for R. Since IAB = OAB = OCB = ∅, clause (1), clause (2), clause (5) and clause (8)
are satisfied vacuously. We only detail clause (3) for l ∈ (TΩ(A) \ TA) ∪ (L(Ω(A)) ��

L(Ω(B))); clause (6) for such labels is analogous to (3) and the remaining cases merely
transfer the alternating iots-simulation RAC to R.

If l ∈ TΩ(A)\TA and (((sC , q), (sB, qB)), l, ((s′C , q′), (s′B , q′B))) ∈ ΔCB . Then l =
m? for m ∈ IA, (sC , m, s′C) ∈ ΔC , q = m·q′, and (sB, qB) = (s′B, q′B). Since Ω(A)⊗
Ω(B) is deadlock-free and A and B are buffered compatible, there is an a ∈

⋃
LA∪{τ}

and an s′′A ∈ SA with (sA, a, s′′A) ∈ ΔA; but a ∈ OA ∪ TA ∪ {τ} would contradict
the input separation of C at sC by clauses (5), (6) and (7) for RAC , respectively. Thus
a ∈ IA and a = m, since otherwise A and B would not be buffered compatible. In
particular, there is an s′A ∈ SA with (sA, m, s′A) ∈ ΔA such that (s′A, s′C) ∈ RAC by
clause (1) for RAC . Thus (((sA, m · q′), (sB , qB)), m?, ((s′A, q′), (sB , qB))) ∈ Δ̂AB

and also (((s′A, q′), (sB , qB)), ((s′C , q′), (sB, qB))) ∈ R.
If l ∈ L(Ω(A)) �� L(Ω(B)), then l = m! with either m ∈ OA = IB or m ∈

IA = OB . If m ∈ OA = IB , then (sC , m, s′C) ∈ ΔC , q = q′, sB = s′B , q′B =
qB · m. By clause (2) for RAC there is an s′A ∈ SA with (sA, m, s′A) ∈ Δ̂A and thus
(((sA, q), (sB, qB)), m!, ((s′A, q), (sB , qB · m))) ∈ Δ̂AB and also (((s′A, q), (sB , qB ·
m)), ((sC , q), (sB, qB · m))) ∈ R. If m ∈ IA = OB , then (sB , m, s′B) ∈ ΔB , q′ = q ·
m, sC = s′C , q′B = qB . Thus (((sA, q), (sB, qB)), m!, ((sA, q · m), (s′B, qB))) ∈ Δ̂AB

and also (((sA, q · m), (s′B, qB)), ((s′C , q · m), (s′B, qB))) ∈ R.
C and B are also buffered compatible: First, for each infinite run p0, l0, p1, l1, . . .

of Ω(C) ⊗ Ω(B) we can inductively construct a simulating run p′0, l0, p
′
1, l1 . . . of

Ω(A) ⊗ Ω(B) such that (pk, p′k) ∈ R for all k ∈ N: if (pk, p′k) ∈ R, then we have
(pk, lk+1, pk+1) ∈ Δ̂CB and thus there is a p′k+1 ∈ SAB with (p′k, lk+1, p

′
k+1) ∈ Δ̂AC

and (pk+1, p
′
k+1) ∈ RAC by clause (3) for R. Thus, if there would be an infinite weak

trace of Ω(C)⊗Ω(B) which is not buffered compatible, there would be an infinite weak
trace of Ω(A) ⊗ Ω(B) which is not buffered compatible, contradicting the buffered
compatibility of A and B. ��
From Thm. 3 we immediately obtain the desired compositionality result for the refine-
ment of buffered compatible iotss.

Corollary 2. Let A, B, C, and D be iotss without queue labels. Let A, B and C, B
and C, D be composable, and let A⊗B, C ⊗B, and C ⊗D be closed. Let C and D be
input separated. Let A and B be buffered compatible, and Ω(A ⊗ B) and Ω(C ⊗ B)
deadlock-free. If A � C and B � D, then Ω(A) ⊗ Ω(B) � Ω(C) ⊗ Ω(D) and C and
D are buffered compatible. ��
Example 11 (Refinement and buffered compatibility). As an example for the application
of Thm. 3 consider the observable behaviours in Fig. 3. Assume again, that the Bank
behaviour is refined by an iots as given by Fig. 10. In order to apply the theorem we
need to make sure that (1) the iotss in Fig. 3 are buffered compatible, (2) the product of
the corresponding buffered iotss is deadlock-free and (3) the refined behaviour is input
separated. (1) follows from Ex. 8, (2) is derived from the product in Fig. 4 and (3) is
obvious from Fig. 10.
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6.3 Substituting Components in Connection-Safe Assemblies

Having shown that refinement preserves (synchronous) compatibility and buffered com-
patibility, we can finally apply this result to the refinement of components in connection-
safe assemblies and show that, under some mild restrictions, connection-safety is pre-
served when substituting components by refined components. As a technical prerequi-
site we note that refinement is a pre-congruence w.r.t. relabellings which preserve the
kinds of labels:

Lemma 5. Let A and C be iotss with L(A) = (IA, OA, TA) and L(C) = (IC , OC , TC)
and IA ⊆ IC , OC ⊆ OA, and TA = TC . Let ρ : (IC , OA, TA) → (I, O, T ) be a re-
labelling with ρ(li) ∈ I , ρ(lo) ∈ O, ρ(lt) ∈ T for li ∈ IC , lo ∈ OA, and lt ∈ TA. If
A � C, then Aρ � Cρ. ��

Theorem 4. Let 〈c : C, d : D; k : K〉 be an assembly with ports(C) = {p : P} and
ports(D) = {q : Q} and K = (c.p : P, d.q : Q). Let C′ and D′ be components. If
k is asynchronous, let obs(C′) and obs(D′) be input separated and let beh(〈c : C, d :
D; k : K〉) and beh(〈c : C′, d : D; k : K〉 be deadlock-free. If C ≥ C′, D ≥ D′ and
〈c : C, d : D; k : K〉 is connection-safe, then 〈c : C′, d : D; k : K〉 is connection-safe.

Proof. Let a = 〈c : C, d : D; k : K〉 and a′ = 〈c : C′, d : D′; k : K〉. Then
beh(a) = obs(c : C)ασ ⊗ obs(d : D)ασ ⊗ buf (k : K) and beh(a′) = obs(c :
C′)ασ ⊗ obs(d : D′)ασ ⊗ buf (k : K). Moreover, beh(a) and beh(a′) are closed. Let
a be connection-safe and C ≥ C′, D ≥ D′.

If k is synchronous, then buf (k : K) = 1 and α is the identity relabelling. The
connection-safety of a thus amounts to the compatibility of obs(c : C)σ and obs(d :
D)σ; and a′ is connection-safe, if, and only if obs(c : C′) and obs(d : D′) are compat-
ible. From C ≥ C′ and D ≥ D′, we have obs(C) � obs(C′) and obs(D) � obs(D′)
and thus obs(c : C)σ � obs(c : C′)σ and obs(d : D)σ � obs(d : D′)σ by Lem. 5.
From Cor. 1, it follows that obs(c′ : C) and obs(d : D′) are compatible.

If k is asynchronous, then σ is the identity relabelling and by Prop. 1 we have
beh(a) = com{c.p:P,d.q:Q}(c : C)κ ⊗ com{c.p:P,d.q:Q}(d : D)κ which is the same
as ΩXp,Yp(obs(c : C))κ ⊗ ΩXq ,Yq(obs(d : D))κ by Def. 8 with Xp = {c.p.m |
m ∈ msg(prv(P ))}, and analogously for Yp, Xq, Yq . Now ΩXp,Yp(obs(c : C))κ =
Ω(obs(c : C)κ) and similarly for d : D, as C and D have only a single port each and
κ is a match relabelling which does not introduce queue labels. Thus the connection-
safety of a amounts to the buffered compatibility of obs(c : C)κ) and obs(d : D)κ;
and a′ is connection-safe, if, and only if obs(c : C′)κ and obs(d : D′)κ) are buffered
compatible. But C ≥ C′ and D ≥ D′ induce obs(c : C)κ � obs(c : C′)κ and
obs(d : D)κ � obs(d : D′)κ by Lem. 5 and leave obs(c : C′)κ and obs(d : D′)κ
input separated; hence obs(c : C′)κ and obs(d : D′)κ are buffered compatible by
Cor. 2. ��

Example 12. [Connection-safe assemblies] The behaviours of the Bank–ATM applica-
tion discussed so far are readily applicable to illustrate Thm. 4. For the implication in
Fig. 11 to hold, we need to meet two assumptions in case of an asynchronous connec-
tor: first the behaviour of the subtype Bank’ must be input separated, i.e. the component
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atm:Atm

s:Srv
ab:Bat

a:AtmCom

bank:Bank atm:Atm

s:Srv
ab:Bat

a:AtmCom

bank:Bank’

Bank       Bank’connection−safe connection−safe

Fig. 11. Subtype substitution preserves connection safety

should behave like a single-threaded system and, second, the original assembly must
be deadlock-free. Then connection-safety is preserved when replacing component Bank
by its subtype Bank’.

Let Bank and Atm be components with observable behaviours as in Fig. 3. Let Bank’
be a component with ports(Bank) = ports(Bank’) and an observable behaviour as in
Fig. 10. Then,

– 〈bank : Bank, atm : Atm; ab : Bat〉 is connection-safe due to Ex. 6 if the connector is
synchronous and due to Ex. 8 in the asynchronous case,

– Bank ≥ Bank’ holds due to Ex. 9
– the observable behaviour of Bank’ is obviously input separated,
– 〈bank : Bank, atm : Atm; ab : Bat〉 is deadlock-free, since the product of the corre-

sponding buffered iotss in Fig. 4 is deadlock-free.

Hence 〈bank : Bank’, atm : Atm; ab : Bat〉 is connection-safe by Thm. 4. ��

7 Conclusions

We have presented a component model which supports synchronous and asynchronous
communication. For the formal foundation of behaviours we have used I/O-transition
systems. The main focus has been on the study of communication behaviours between
components in component assemblies. As a crucial desirable property we have required
connection-safety of component assemblies which relies on compatibility conditions
for iotss with synchronous and asynchronous communication. We have shown that
synchronous compatibility is a sufficient criterion for buffered compatibility in asyn-
chronous communications if both communication partners show observable behaviours
which are input separated and always eventually inputting. Moreover, we have defined
a refinement relation which is compositional w.r.t. synchronous and asynchronous con-
nections of components and which preserves connection-safety.

Our compositionality results are proved for closed systems with only two connected
components which already involves a lot of technical efforts due to the formal treat-
ment of asynchronous communication with buffering behaviours. We believe that these
results provide a solid basis for an extension of our theorems to closed assemblies with
an arbitrary number of components. For the case of open systems further investigation
incorporating assumptions on the environment as considered e.g. in [18] is necessary.
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Abstract. Model Driven Development (MDD) focuses on the intensive
use of models during software development. In this paradigm, models
are the central development artifact: transformations are used to derive
executable programs, or tests for a given platform. This makes building
quality models a cost-effective approach, as the models can be reused
for many analysis or generation goals, and not just document a design.
However, high quality models are needed for the approach to be suc-
cessful. Hence the goal of performing analysis of high-level behavioral
specifications such as UML, to enhance their quality and detect defects
or ensure desired behavior.

High-level specifications provide many facilities to handle large spec-
ifications (such as hierarchical structuring mechanisms) and provide so-
phisticated features to handle programming language’s rich semantics.
However, the price of these features is that these specifications are diffi-
cult to analyse, the semantics are not necessarily formally defined, and
the complexity of the language features usually limits analysis to manual
inspection, or in the best cases simulation.

On the other hand, formal specifications have been developed specif-
ically with analysis purposes in mind. In particular, model checking is
an automatic approach suitable to analyse formally defined behaviors.
However, formal specifications languages such as CSP, PROMELA, Petri
nets, etc. have a steep learning curve, and are not cost effective since they
are not directly linked to code.

In this paper, we explore an approach to integrate formal methods
with high-level notations, by translating high-level specifications to for-
mal ones to enable analysis. We are thus bringing Model Driven Engineer-
ing to Verification Driven Engineering. We show how this approach was
put in practice with UML within the context of the ModelPlex project.

1 Introduction

Industry has always faced a major challenge in the design and implementation
of complex systems: how to ensure that they behave appropriately. To do so,
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the emerging consensus emphasizes the need for models. We use ”models” in
the broad sense, meaning tool manipulable descriptions of software design and
artifacts. Although simulation and testing are the most common tools used to
improve quality assurance, they only increase user’s confidence in a piece of
software, since by nature they are not exhaustive techniques.

Furthermore, in distributed systems that are becoming the norm, the inherent
asynchronous behavior produces non-determinism that testing may have trouble
detecting correctly. Only formal methods are capable of proving properties for
such systems.

Current practice of software development strongly gravitate around Model
Driven Engineering (MDE) that provides guidelines on how to elaborate models
at each step of the development process. However, with the notable exception of
hardware design, formal specifications are not widely accepted because they are
difficult to operate:

– Their application to real-size systems most often requires heavy use of ab-
stractions and tricky encodings of the specification,

– They must be operated using an appropriate formal notation and the re-
lated tools. Each one has its strengths and weaknesses, and all are relatively
complex to acquire for an engineer,

– The models produced for verification of a design are usually not reusable for
other goals such as code generation. Thus a rupture exists between the mod-
els and reality, and the investment in the models is considered too expensive
for the quality assurance results provided.

This process usually require highly skilled engineers in both their application
domain and various formal methods. These people are difficult to find. Thus,
adoption by industry remains limited to niche applications, partly because the
formalisms used for model checking purposes are considered too difficult to be
used by average developers.

In contrast, Model-Driven Engineering (MDE) techniques are gaining atten-
tion since machine-readable specifications (models) are more precise, less error
prone, can be processed by automated tools, and can allow by code generation
to be less dependent on fast evolving technologies [19].

So, the use of formal methods suffer from methodological and technical issues
and decrease the benefits of MDE. In [24], we proposed to define Verification
Driven Engineering (VDE) as an an addition to the use of models all over
the software development cycle. Since there is no “silver bullet”, the idea is to
provide enough information to help picking up the correct technique and tools.
By providing model transformations and self configuration mechanisms to choose
the adapted formal verification techniques and tools, we can increase their use
by industry.

Models and related notations are crucial. When a community uses a notation,
and links from that notation to formal methods can be operated, then it is
possible to exploit tools and help designers to build safer systems while requiring
limited knowledge of underlying techniques.
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The objective of this paper is to show how VDE can be operated to provide
such help to engineers in an automated way, to answer simple questions such
as deadlock detection, bounds of resources, etc. To do so, we propose a general
schema for relating high-level notations to formal methods (section 2). Then, this
schema is instantiated for UML (section 3) and we present an implementation
on some useful properties (section 4) before a conclusion.

2 Connecting High-Level Notations with Formal Methods

It is now widely accepted that models should be throughout the design and
implementation procedure. However, our specific goal here is to make the best
possible usage of these models, for example to check if expected behavioral prop-
erties are verified or not.

To perform verification through model-checking, a process like the one de-
scribed in figure 1 is required. First, it is important to have specifications and
associated properties (for example, invariants modeling safety properties). These
can be expressed using standard high-level notations of an application domain
such as UML.

Specifications

Properties

formal
specification

Properties
Model

transformation

Formal
verification

Feed-back to designer

Fig. 1. Development process involving models and verification

Most high-level specifications are not directly suitable for the computation
of properties. Therefore, they must be transformed into formal specifications on
which properties can be verified. When the procedure succeeds a positive answer
or an error diagnostic is provided. The verification procedure however may fail
due to time or memory constraints. This error diagnostic feedback allows system
architects to improve their design.

In an iterative development cycle, model validation is introduced in every
iteration. It thus is applied on specifications that are successively refined. As
suggested in [24], the MDE (Model Driven Engineering) process come to a VDE
(Verification Driven Engineering) process. Figure 2 shows the overall develop-
ment process that is helicoidal. Each step corresponds to a version of the system
specifications that are verified and then, potentially corrected or enriched.

We first briefly investigate several types of verification techniques and then
identify the main issues to be solved when using formal methods in a VDE
approach. Section 3 shows how such an approach can be instantiated for UML.
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modeling

verification+
analysis

feed-back analysis

V2 V4V1

correction or 
enrichment of the model

Fig. 2. Helicoidal development life cycle

UML is by far the most popular and tool-supported language used for indus-
trial specifications [14]. For the formal verification community, this offers the
possibility of defining model checking based verification as one of many services
on industrial UML models. It thus helps adoption of these formal techniques
into mainstream software development methods.

2.1 Choosing a Class of Verification Techniques

There are several classes of formal verification techniques that allow one to reason
on a model based on formal grounds. Through different theories (sets, automata,
stochastic, etc.), there is a large panel of methods. Let us list two of them.

Algebraic Approaches and Axiomatic Logic. such as Z [23] or B [1] allow
to describe a system using axioms and then, prove properties of this specifica-
tion as a theorem to be demonstrated from these axioms. For example, these
methods allow one to check for the consistency of interfaces through a complete
type checking mechanism, or even to go further and prove theorems (lemmas,
invariants) on a system.

These are of particular interest because the proof is parametric and abstract ;
for instance a property can hold for a number of entities taken in the natural
range. However, theorem provers that help elaborate the proof are difficult to
use and still require highly skilled and experienced engineers.

Model Checking. [10] is an active research domain [11]. It consists in the
exhaustive investigation of a system state space. A designer expresses a property
to be tested on a model, using a temporal logic formula expressing (un)desired
behaviors of the system. This formula is compared with all the paths in the
system’s state space. If there is a path that does not satisfy the property, then
the property does not hold and the returned path (or execution trace) exhibits
a counter-example for the property.

The main advantage of this technique is that it is fully automated given a
system and a property. However, results obtained are rarely parametric, they an-
swer for a particular set of resources (e.g. N threads). Besides, model-checking
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is limited by the combinatorial explosion and can mainly address finite sys-
tems. However, many efficient techniques exist such as symbolic decision diagram
(BDD) [5], partial order and abstraction methods [12], or symmetry based tech-
niques [7]. They allow to scale up to more complex systems. Some recent studies
also investigate model checking of infinite-state systems [25]. Other extensions
allow the verification of time-related or probabilistic properties on a model.

The complexity of current software systems and their parallel, distributed
and heterogeneous nature raises many challenges when trying to ensure their
correctness. In this respect, model checking [22] is a formal verification technique
which promises to automatically check whether a system satisfies some stated
properties. Thus, it seems that model checking is currently a better solution for
building push-button tools implementing VDE.

2.2 Raised Issues

However, several important issues must be solved in order to operate such an ap-
proach:

– specification issues
– transformation issues
– complexity issues

Specification Issues. To be suitable for verification purpose, the specification
must contain precise information about the behavior of its components. If the
description is structured, an appropriate way of combining behaviors of compo-
nents must be provided.

For instance, in a notation like UML, information is consistent in diagrams
but lacks semantics when diagrams are connected. For example, state-machines
describe the behavior of a Classifier (Class or Component). But how this behav-
ior is connected to a description based on sequence diagrams is rather unclear.
Therefore, if verification can be performed on isolated diagrams like in [32] for
state-machines or in [13] for sequence diagrams, it is difficult to ensure consis-
tency of the entire system specification.

To overcome this first problem, profiling can be considered. The missing se-
mantic information can be stated by means of annotations that are exploited to
fix identified ”semantic variation points” and other places where the semantic is
imprecisely defined.

Another important point concerns the specification of properties. Invariant
specification is currently used in industry, for example to specify the profile
of unexpected events in the system. OCL is the standard notation to express
invariants in UML specifications. However, temporal logic is more difficult to
use and is not fully standardized.

To overcome this second problem, sequence diagrams can be used as a more
friendly way of specifying temporal logic formulae. These diagrams provide a
way to help designers to describe expected causalities between events (since
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sequence diagrams express a partial order over events). These descriptions of
expected behavior can be used for verification.

Let us note that a notation like AADL [29] solves these problems by providing
a unified way to relate component to annotations1. AADL components describe
a piece of the system while annotations define either component features or com-
ponent properties. Thus, both the system, its behavior (in an annotation) and
its expected properties are defined together. This is helpful when transforming
the full specification of a system into a formal notation.

Transformation Issues. High-level concepts must be mapped to formal speci-
fications. When elaborating the transformation rules, it is important to consider:

– The granularity of atomic events: it must be tuned appropriately to limit
complexity and while remaining precise in the specification.

– The traceability of transformation to provide comprehensive feed-back to
engineers in terms of the high-level specification.

– The consistency between the transformation of the specification and its as-
sociated properties, particularly if different modeling notations are used.

Since no formal verification technique fits all the needs it is necessary to choose
the most appropriate one. Therefore, several transformations from the high-level
notation to various formal models must be considered. Each transformation is
dedicated to the verification of a given property using a given technique.

Complexity Issues. Combinatorial explosion in the verification process is an-
other reason to consider several transformation. It is important to select, for a
given formal notation, the most efficient verification technique. Such a technique
depends on the formal notation but also on the property to be verified. There-
fore, there can be several transformation from the high-level notation to a given
formal notation, each one being optimizing some configuration.

As an example, let us consider deadlock detection in Petri nets. It can be
achieved by means of model checking but also trough structural analysis for
certain types of Petri Nets like in [2,3]. The structural approach usually scales
much better, though it is less general than full model-checking. Customizing a
transformation for deadlock detection is thus of interest.

2.3 An Approach to Enable VDE

The elaboration of a VDE approach requires a methodology: one must cope with
the issues and elaborate its transformation and verification tools. The approach
we propose has four steps:

1. Selection of the semantic scope to be handled in the high-level specification.
This is necessary to bound the transformations rules. It is possible to extend
the scope when a first set of transformation rules are validated.

1 In AADL, annotations are called “properties”.
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2. Selection of the appropriate formal notation according to the type of property
to be verified. It is also necessary to identify the technique to be used for
verification.

3. Identification of the abstraction level to be considered in the high-level spec-
ification. This corresponds to the selection of the elements to be considered
in the high-level notation for the transformation to be elaborated.

4. Mapping of the selected elements to the formal notation. It is important
to identify the elements that correspond to the “glue” in the system such
as hierarchical composition or communication mechanisms. The transforma-
tion rules handling these elements are of particular importance because they
orchestrate others.

Through these phases, it is important to preserve traceability information so
that results can be expressed in the original notation.

3 From UML to Formal Methods

Model-Driven Engineering (MDE) development methods are gaining increasing
attention from industry. In MDE, the model is the primary artifact and serves
several goals among which code generation, requirements traceability, and model-
based testing. MDE thus enables cost-effective building of models vs. direct
coding of an application. In this context, model-based formal verification of
behavioral consistency is desirable as it helps improve model quality.

In this section we present a translation based approach using (parts of)
UML [28] as source and Instantiable Petri Nets (IPN) as target, to enable formal
verification. IPN is a hierarchical formalism defined expressly for this purpose;
it is not meant to be used as a front-end modeling language but rather as a pow-
erful back-end verification formalism. The semantics and concepts are thus kept
simple, they are described in detail in [30]. We show that IPN are adequate to
support the introduction of model checking in an MDE process. The approach is
implemented in a prototype tool called BCC: Behavioral Consistency Checker.

3.1 Verification of UML

UML is a standard defined using a meta-modeling approach to establish the con-
cepts of the various diagrams, and plain English to describe dynamic aspects of
the specification. UML2 has introduced an important refactoring of the descrip-
tion of actions and behaviors, which allows to describe the behavioral diagrams
(activity, state machine and interaction diagrams) using a common base. The
semantics of a UML2 model is thus more precise than in UML 1.x. But so-called
semantic variation points are deliberately left in the standard, to help UML fit
all possible application fields of software engineering. The semantics of UML
thus remains imprecise and subject to interpretation.

The idea of providing formal semantics to (at least parts) of the UML by trans-
lation to a more formal description is widely used [4]; it allows to use the UML as
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a (relatively) user friendly graphical environment and exploit the existing formal
verification techniques and tools without redeveloping them specifically for the
UML. It also is compatible with the ideas of Model-Driven Engineering (MDE)
in which the model is the central artifact, and translations from the model to
other artifacts (code, tests. . . ) with specific goals in mind is the norm.

One of the challenges when defining such a translation is to handle the com-
position of parts of a behavior, defined using different types of diagrams. This
touches on the problem of consistency among UML diagrams of a given sys-
tem: although structural consistency rules are defined (using OCL) and can be
checked mostly syntactically, the multiple viewpoints offered by the UML induce
the possibility of defining incompatible behaviors quite easily.

Given the wealth of work on translation of UML models for analysis purposes,
we focus here on a few propositions which are the most similar to this work,
particularly those targeting dialects of Petri nets in the translation.

Merseguer et al. have done an important work ([6] gives an overview) on
translation of the UML to labeled generalized stochastic Petri nets (LGSPN) for
performance analysis purposes. Tool support is provided through the ArgoSPE
tool set and the model checker GreatSPN. This work is perhaps the closest to
ours because the semantics used to compose the LGSPN is based on synchroniza-
tions, like in our IPN. However, that work is centered on performance evaluation
rather than consistency checking. Moreover LGSPN do not allow hierarchical
compositions.

The work of Eshuis et. al [17] also gives a formal semantics to activity diagrams
through translation to workflow nets, and more recently to NuSMV. However
they concentrate mainly on a subset of activity diagrams compatible with UML
1.5, and do not handle hierarchy of the description.

Shatz et al. have also done a large body of work [21,31] on formalization of
UML semantics, mostly centered on state charts, that uses Petri nets as transla-
tion target. The focus of that work is in correctly capturing the full run to com-
pletion semantics of UML state machines. It thus does not address the problem
of inter diagram consistency checking.

Engels et al. [16] have elaborated a formalization framework based on CSP as
semantic domain. This work is mainly focused on protocol state charts of UML
1.4. It does not handle hierarchy as to enable scalability in the specification.

Overall the main originality of this work is in the composition mechanisms
used and the fact we natively support hierarchy instead of requiring a flatten-
ing of the representation, which leads to scalability issues. We also present an
implementation in section 4.

3.2 Instantiable Petri Nets

In this work we have used Instantiable Petri Nets (IPN) as a target in the
transformation. This formalism is presented in detail in [30], we give an informal
presentation here sufficient to explain the subsequent transformation.

IPN explicitly support the concepts of type and instance that allow to ade-
quately match the structure of high-level models designed with UML. They also
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allow to reuse parts of a model in various scenarios, and offer good scale up
properties to handle large and complex specifications. Finally, since instances of
a type share a common definition, they allow to capture internal regularity or
symmetries of a system, which can be exploited for model checking.

IPN explicitly support a compositional definition based on the notion of syn-
chronizations. A wide corpus of theoretical [18] and empirical [8] results (intro-
duced by process algebra such as CSP [26], up to applicability to probabilistic
systems [15]) show that this mode of composition is favorable to better compo-
sitional verification algorithms.

Their definition is split in two parts.
First, we define Elementary Petri Nets, which are essentially standard Petri

nets in which transitions bear a visibility that may be private or public. A public
transition is part of the interface of the net; it can only be fired if it is sollicited
through an external synchronization. Transitions private to a net can be fired
according to usual Petri net semantics.

We then define a Composite type, to hold instances of elementary nets, or,
recursively, instances of a composite type. A Composite may contain synchro-
nizations, again labeled with a visibility. A synchronization forces synchronous
firing of its parts, that is transitions belonging to the interface of the contained
instances.

This hierarchical formalism uses a semantic largely inspired by process calculi
such as CSP. It also borrows from component based formalisms (such as Corba
component model (CCM), or Fractal) the notions of components defined as
hierarchical composition of simpler bricks.

Examples of IPN will be provided in the next sections, a formal definition of
IPN can be found in [30].

3.3 How to Translate

The issues relating to transformation of UML to a formal notation are explained
here through an example.

We use in this paper UML activity diagrams. A similar approach can be applied
to other UML diagrams that represent a Behavior. The essential characteristic of
a behavior is that it begins with an occurrence of a start event and ends with a
termination event occurrence (UML Superstructure, section 13, p.419 [28]).

The transformation is based on a set of patterns of transformation. The princi-
ple consists in building one IPN type per diagram of the UML specification. These
types will then be instantiated and assembled according to various verification sce-
narios. Hence for each activity diagram we build an elementary IPN type.

We first apply the translation rules for the various types of nodes of the UML
activity diagram, using the patterns described in figure 3.

Places: Each node gives rise to one or more places and zero or more public
transitions. The most complex case is the callBehavior pattern where the place
b represents a state where we are waiting for the called behavior to complete. We
keep track during the application of this transformation of the in and out places
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private
transition

public
transition
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graphical
notation

UML name UML graphics IPN pattern Connections

Fig. 3. Translation rules for nodes of UML2 activity diagrams. Patterns are expressed
here in a simplified form: each generated public transition is also associated to sufficient
information to enable appropriate connections in the linking phase (see section 3.4).

generated for each UML object. After this first pass all places of the resulting
IPN have been produced; each control flow has a source (the “out” place of the
source activity) or a destination (the “in” place of the target activity) or both.
An additional case not represented on this figure (but used in the example see
fig. 6) arises for control flows that link two control nodes (e.g. merge to fork):
we produce an additional place for these edges that acts as both as source and
destination in the translation.

Interface: The public transitions produced are meant to be synchronized with
other diagrams: the transition labeled t of the initial pattern is meant to be
synchronized with the transition t of the callBehavior pattern. Similarly, the
transition t of the final pattern is meant to be synchronized with the transition
t′ of the callBehavior pattern. Transition t of the sendEvent pattern is meant to
be synchronized with the appropriate corresponding transition t of the recvEvent
pattern of the receiving object.

States: We additionally define two labeled states for each diagram, active which
assigns one token to the place corresponding to the UML initial node, and passive
(the default) in which all places are initially empty.

Transitions: We then translate the control flows and control nodes of the UML
activity diagram, using the patterns described in figure 4. In these patterns,
the activities noted a, b and c are just placeholders for the actual nodes that
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Fig. 4. Translation rules for edges of UML2 activity diagrams

the edges connect to: the translation pattern is centered on a control node, and
queries the control flows that link to it to obtain the appropriate source or target
place that was defined in the first translation step.

These patterns are mostly straightforward Petri net interpretations of UML
semantics, so we hope a reader familiar with both UML and Petri nets will
understand these translation patterns without further ado.

All the transitions produced in this phase have private visibility: interaction
with other diagrams happens within nodes in activity diagrams. This is to be
contrasted with the reactive semantics of UML state-machines, in which edges
are the main point of interaction with other diagrams.

Application to an Example. Figure 5 presents a small example that de-
scribes an order and shipping process. It contains many of the UML features
our translation supports. The action HandlePayment of the “Order” activity
is a CallBehavior action that refers to the behavior described by the “Handle-
Payment” activity. The translation yields one elementary net for each activity,
graphically depicted in figure 6. Names and graphical layout have been added
to the figure to help the reader track the transformation.

3.4 Composing Diagrams

The first translation step has allowed to build an IPN type for each diagram of
the original specification. Additionally we have built a trace that gives for each
UML behavior of the original specification the name of the IPN type produced
and the set of links to other behaviors that need to be resolved.
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Fig. 5. An example adapted from the UML standard, p.357
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Fig. 6. IPN elementary net types obtained by application of the translation rules

Inter-Diagram Links: The information contained in a link depends on its
nature:

– For send event type links, we have the target UML object instance and the
name of the transition that sends this event (i.e. noted t in Fig.3).

– For receive event type links, we have the event and the name of the reception
transition (i.e. noted t in Fig.3)

– For CallBehavior actions, we have the target UML Behavior and the name
of the transitions corresponding to the call and behavior end (i.e. t and t′ in
Fig.3)

– Finally for CallOperation actions, we have the target operation name and
the target UML object instance as well as the names of the call/return
transitions of the IPN.

We then incrementally build more complex scenarios by using different linking
strategies.
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Diagrams in Isolation: The most basic strategy consists in building “isolated”
behaviors from each behavior (see Fig.7 top). For a net type n representing a
behavior b, we build isolated(b)as a composite type containing a single instance
i of type n, two public transitions call and end that synchronize to i.call and
i.end respectively, and one private transition synchronizing to each transition of i
mentioned in the links. The public link transitions corresponding to interactions
with the environment are made private in the isolated type, thus enabled at will
provided local conditions allow it.The states active and passive are also defined,
as associating the corresponding state to i. The isolated construction thus allows
to control the consistency of a diagram in an uncontrolled environment setting.

call

end

i:Ordercall

end

callPay

endPay

Isolated(Order)

call

end

i:Ordercall

end

callPay

endPay

Connected(Order,1)

p:Isolated(Payment)call

end

synchronization

parts
instance

private
synchronization

public
synchronization

i:Order

Fig. 7. Composite IPN types produced to analyze composed behaviors

Composing Diagrams: Inductively, we can then build types connected(b, k)
(see Fig.7 bottom) corresponding to connections resolved up to depth k, where
isolated(b) is equivalent to connected(b, 0). The type connected(b, k+1) contains
one instance i of type n (representing b) and for each behavior b′ mentioned as
a link target, an instance of the connected(b′, k) net type. The call and end
transitions are again exported with public visibility, and the links are actually
resolved by synchronizing the link transitions of n with the call and receive of
the depth k behavior instances.

UML behaviors can be associated to classifiers or operations. The main use
case we have considered is a model where operations may be defined by activity
diagrams. Class diagrams are exploited in the following way: when operations
of the class are associated with activity diagrams, we construct an IPN type
that contains instances of the IPN types corresponding to the activities and
“export” the public transitions of the nested activity diagrams. In particular the
transitions that allow to start (initial node pattern) and detect the end (final
node pattern) of an operation are made visible to connect to CallBehavior of
other objects.



194 F. Kordon and Y. Thierry-Mieg

When the class contains objects by composition, the corresponding IPN types
are instantiated. This gives us a context necessary to determine the target of a
CallBehavior or SendEvent action.

3.5 Defining Consistency Checks

One of the main issues when defining properties to verify is that the user (at
the UML level) should not explicitly manipulate the formalisms used to specify
properties, typically LTL or CTL formulae. This limits the scope of what we can
verify, but as we show here, many useful checks can already be defined without
user intervention.

Verifying Properties. A model-independent property can be defined regard-
less of the model instance considered. Typical examples include absence of dead-
locks or livelocks, boundedness. . . These are the easiest to handle as they natu-
rally do not require user input.

We first run a structuralbounds computation tool (based on [27]), that produces
for eachplace its structuralmin/maxbounds. This tool scales verywell as the check
is structural so the complexity is linked to the number of places and transitions of
the specification, and not to the state space size. This tool allows to detect:

– dead code: [0..0] bounded places indicate unreachable model elements. The
interpretation here is that the model element associated to the place is ei-
ther unreachable (logical design error) or disconnected from the rest of the
diagram (modeling bug). In practice, the second interpretation is often cor-
rect, as a common error, due to the GUI of UML modeling tools, is to delete
elements from a diagram but not from the model;

– unbounded behavior: if a place marking is bounded by +∞ this usually
indicates a serious misuse of fork/join constructs. This error was actually
raised several times in the models provided by industrial partners of Mod-
elPlex. Neither testing, nor simulation tasks which were working with the
same models correctly identified this issue. Simulation actually detected a
choke point during performance evaluation and suggested attributing more
resources to this faulty activity. Testing would need an infinite test sequence
to correctly tag this problem.

When the previous check does not detect unbounded behavior, we can proceed
to use model checking based tools for more advanced checks. At this stage we
check for absence of deadlocks in the specification. Existence of deadlocks is
tagged as an error.

We also check for activity diagrams that their final state is reachable when
the initial state is set to “active” (see section 3.3). This is tagged as an error if
it is not verified.

The list of verification goals is extensible as we think of new checks interesting
for the end-user.
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3.6 Conclusions on the Transformation

We thus support the BasicActivities, IntermediateActivities and StructuredAc-
tivities packages of the standard, which means our tool handles UML compliance
level 2 (see UML2 superstructure [28] for definition of compliance levels).

The weakness of this translation is in the non-determinism of decision nodes,
and the absence of any data manipulation. While this may seem a severe re-
striction, in practice the diagrams we studied (within ModelPlex) were mostly
annotated in plain text. They correspond to early phases of design where the
logic of the control flow is the focus. Other diagrams we studied were obtained
by translation from BPEL, a language for describing the workflow of a business
process, where again data manipulation is not the focus. In any case, supporting
code level annotations requires extending the standard with a tool specific profile,
as the UML standard does not define any data types other than String, Boolean
and UnlimitedNatural, or any concrete syntax for actions (e.g. arithmetic).

To overcome this weakness, the transformation could be refined to take into
account data, possibly using a CEGAR like approach [9] to limit the induced
complexity. This is a perspective at this stage.

The strength of the approach is that it preserves the modularity of the UML
specification. Thanks to the concepts of IPN, a UML translation is quite easy to
set up, and only one IPN type is produced per UML diagram. When considering
several scenarios and a system composed of interacting objects, the fundamental
notion of instantiation from object-orientation which is preserved in IPN allows
to adequately reuse a model defined in parts. The semantics of IPN are sufficient
to capture the concepts of UML behavioral diagrams (sequence, alternative, fork
join and parallel behavior, synchronization on events, multiple instantiation. . . ).

Backward correspondence between generated IPN and the original specifica-
tion is easy to trace since the transformation preserves the structure of UML
model. Thanks to this, namespaces are preserved and propagated to IPN objects,
thus allowing to trace each transition or place to the corresponding UML model
element. THus, when errors are detected in the IPN, it is possible to reconstruct
and display a trace in the original UML notation (see figure fig:cs:sap in section 4
where the problems reported refer directly to the UML specification).

4 Behavioral Consistency Checker

We have implemented the approach described in section 3 as a proof of concept
in the BCC (Behavioral Consistency Checker) tool.

BCC is designed on top of Eclipse to transparently use formal model checking
to provide behavioral consistency checks on UML specifications. Requirements
on the tool include that it should need minimal user training, and that the
underlying verification technology has to be transparent. To reach these aims,
BCC uses UML diagrams as input, and produces easily understandable compiler-
style errors and warnings when consistency rules are violated.
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This tool was developed as a contribution to the European integrated project
ModelPlex2 (21 industrial and academic partners, 20 MAC, 36 months). Within
the project, models produced by industrial use case providers are used for sev-
eral other goals than just verification, such as code generation, requirements
traceability and test generation. Thus the investment in the modeling effort is
amortized, and any check we can implement that improves the quality of the
models is valuable, as the approach is model-centric, and model quality is a goal
in itself in this setting. BCC will be integrated in a “model-based simulation,
verification and testing (SVT) workbench” that is one of the project deliverables.

The tool is implemented in Java using the EMF framework to parse standard
XMI UML models. The transformation is written entirely in Java, rather than us-
ing a model transformation engine such as ATL: we had non trivial traceability is-
sues otherwise. Model-checking tools (written in C or C++) are run transparently
on the CPN-AMI model-checking platform [20]. Post-interpretation of verification
results is again written in Java, using the transformation traces intensively.

A prototype of the tool is available at http://move.lip6.fr/software/BCC/
and uses services of our CPN-AMI Petri net Framework as a back-end to com-
pute some properties. It currently handles activity diagrams and a subset of
state-machine diagrams. It will be completed by the end of ModelPlex (March
2010). We are working on improved class and component diagram handling.
Component diagrams allow to have a specific connection topology as the parts
are class instances. We also work on a sequence diagram translation to IPN.
It will allow to control that the sequences describing an expected behavior are
indeed executable. Thus it is a means for the user of specifying model-specific
properties to check.

Case Study. BCC was used on the case study models from industrial partners in
the project. We briefly present here some verification results obtained using BCC.

BCC can be run directly on a XMI UML file, but it is integrated as an
Eclipse plugin relying on the EMF/GMF validation service and Eclipse UML2
tools. The user simply sets the scope by selecting one or more UML packages
(folders) to be analyzed, and selects the ”Validate” action. The model is explored
to detect diagrams to be checked, then transformations Preconfigured properties
are selected by the designer and then it really works as a push-button tool that
can be operated without any knowledge of the underlying techniques.

One study provides a good illustration about the use of such tools. The SAP
case study where a small portion is represented in figure 8. This model specifies
the activity diagram of a web store system. When payment is to be done, the
system must both check credit card and stock. If one condition fails, then it
restart the payment procedure (back to ask client state).

BCC automatically performs all implemented checks and shows that the spec-
ification contained structurally unbounded parts, meaning that, whatever the
number of resources provided to execute check stock and check credit, these
transition will still constitute a bottleneck.

2 http://www.modelplex.org

http://move.lip6.fr/software/BCC/
http://www.modelplex.org
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ask client

check credit

check stock

validate 
transaction

[OK]

[OK]

[else]

[else]

Fig. 8. Portion of the web store system specification

Fig. 9. Window showing bad results for the web store system

Figure 9 show the BCC user interface in Eclipse. The tool is invoked through
the contextual menu “validate model” in the model subwindow. Then, the de-
tected problems are reported in the standard “problem view” (below the main
window) which usually contains compilation errors. Messages refer to UML ob-
jects, double clicking on an error outline the problematic model element in the
model browser window.

In parallel with BCC, model-based simulations and test generation for the
same system have been performed. Performance oriented simulation detected
potential bottlenecks in both check stock and check credit procedures. However,
no explanation of this phenomena was provided. Testing may not be able to
capture this bad property of the system, as the bad behavior is exhibited only
in infinite traces. Thus model-based verification is a good complement to other
model-based validation techniques.
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Such model-independent properties (no dead code or boundedness) are of
interest to compute on any type of specification. Therefore, a tool like BCC is
valuable to help engineers to improve systems early in the software life cycle (in
our case, at design level), which is typically a goal of VDE.

5 Conclusion

This paper proposes an approach to extend MDE (Model Driven Engineering) to
VDE (Verification Driven Engineering). VDE is MDE together with an intensive
use of formal verification techniques to compute properties directly from models,
as soon as possible in the software life cycle.

We exemplify this by providing a way to verify automatically some basic prop-
erties on UML model without any intervention from an engineer. This example
has been implemented in a tool BCC (Behavioral Consistency Checker) ; its
experimentation in a project shows that it produces interesting information to
engineers to debug their models.

A main point of this paper is the presentation of an original translation mech-
anism based on Instantiable Petri Nets (ITS), as a basis to express concepts of
a higher level modeling language (such as UML). ITS offers a hierarchical way
to assemble subsystems or elementary Petri Net components by means of a well-
suited set of synchronization mechanisms. ITS also enable efficient verification
techniques suitable to tackle large specifications.

So, ITS appear to be an pivot language suitable to:

– Define an operational semantics for a high-level modeling language (here, it
was experimented for UML collaboration diagrams and state charts),

– Use this semantics to perform formal verification on the system by means of
appropriate techniques such as structural analysis or model checking.

This paper also provides a step-by-step method to elaborate a verification schema
based on transformation techniques and patterns associated to the concepts
provided in a high-level modeling language. One could use this method, to im-
plement VDE for other languages as soon as its behavioral semantics can be
captured by means of appropriate patterns.
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Abstract. Systems-of-systems are formed through integration of indi-
vidual complex systems, often not designed to work together. A num-
ber of factors can make this integration very challenging which often
leads to catastrophic failures. In this paper, we focus on three ma-
jor classes of system-of-system integration problems: managerial inde-
pendence, interface incompatibility, and component-system complexity.
We then present an aspect-oriented requirements description language
(RDL) which uses natural language analysis capabilities to reason about
dependencies across the documentation of the constituent systems of a
system-of-systems. The aspect-oriented compositions in the RDL also
facilitate specification of cross-document constraints and inconsistency
resolution strategies, which can be used for deriving proof obligations
and test cases for verification and validation of the emergent behaviour
of a system-of-systems. We showcase the capabilities of our RDL through
a case study of a real-world emergency response system. Our analysis
shows that the querying and composition capabilities of the RDL pro-
vide valuable support for reasoning across documentation of multiple
systems and specifying suitable integration constraints.

1 Introduction

As software systems become increasingly pervasive in our daily lives, we are see-
ing the emergence of a new class of systems, that of, systems-of-systems (SoS)
[1]. These SoS are at least an order of magnitude greater in complexity than their
conventional counterparts. Examples of such systems are airport management
systems, airline alliances, healthcare systems, disaster response and recovery
systems, etc. However, for a SoS to function effectively, all the constituent sys-
tems need to work towards a common overall goal. This is not always the case
given that a SoS comes into being as a consequence of emergent rather than
pre-planned requirements. Even in case of pre-planned integration, unforeseen
problems can arise owing to the dichotomy between individual system goals and
those of the SoS. A recent example of such dichotomy can be observed in the
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Heathrow Airport Terminal 5 problems, due to incompatibilities between the
baggage handling system and the check-in system. The problem was further
compounded by the fact that, as is usual in SoS, both constituent systems were
under the control of different organisations—the goals of a SoS have to be un-
derstood and maintained across such organisational and system administration
boundaries.

Reconciling the goals of a SoS with those of its constituent systems is non-
trivial—a SoS is an ultra large-scale system [2] that comes into being by the
collaboration of a number of systems that may belong to different domains.
This multi-domain characteristic of SoS is often referred to as heterogeneity (or
diversity) [3,4,5,6,7] and has been identified as one of the basic properties of
SoS. Another common characteristic in SoS is distribution [1,4,5,8,9,10] which
entails geographical distribution of the collaborating systems forming part of a
SoS. Furthermore, because of its scale, a SoS affects and is also directly affected
by external forces such as political, economic, social, and legal factors.

The need for taking a holistic view of the SoS means that the stakeholders from
the constituent systems need to communicate with each other and understand
each other’s perspectives. The heterogeneity and distribution inherent to a SoS
make such communication extremely challenging. Furthermore, the influence
of external factors needs to be understood when reasoning about the overall
behaviour of a SoS.

The key challenge for stakeholders in a SoS is, therefore, to understand or
learn about other systems (besides their own) and external influences [4,11]. A
large portion of this learning takes place by studying the various description and
specification documents of other systems as well as legal guidelines, operational
procedures, etc. Especially during the process of integrating different systems
to form a SoS the system specifications, operational procedures, user manuals,
business case documents, test reports, etc. of the different systems need to be
analysed, perhaps cross-examined, to find conflicts and also opportunities for
optimisation. The scale of this task, similar to the extreme complexity of a
SoS, is beyond what can reasonably be achieved by a team of engineers without
scalable automation support.

Substantial advances have been made in the field of natural language analysis
in the past two decades that can be exploited to study large document sets.
Similarly, with the recent emergence of aspect-oriented requirements engineering
(AORE) techniques [12,13], there are new reasoning mechanisms available to
both study and specify constraints that crosscut multiple system specifications.
In this paper, we present an aspect-oriented requirements description language
(RDL) [14] and show how we utilise the semantics of the natural language itself
to both explore and capture cross-document dependencies, as well as conflict
resolution strategies, in RDL-based aspect-oriented composition specifications.
Since the composition specifications are based on natural language semantics,
they facilitate intentional reasoning about cross-document dependencies; that
is, reasoning about the stakeholders’ intentions as expressed in the document
text. This allows us to better understand stakeholders’ requirements for SoS
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and identify and resolve any discrepancies between the overall goals of the SoS
and those of its constituent systems.

The remainder of the paper is structured as follows. In Sect. 2 we discuss
three main classes of SoS integration problems. Section 3 presents the natu-
ral language analysis concepts pertinent to our RDL, its semantic queries and
semantics-based composition specifications which are, respectively, used to iden-
tify cross-document dependencies of interest and specify resolution policies. Sec-
tion 4 details a case study from the emergency-related communications domain
to show how the RDL can be used to tackle the three classes of integration
problems highlighted in Section 2. We discuss some of the open research prob-
lems in Sect. 5 and how the RDL’s capabilities may be extended to tackle these.
Section 6 reviews related work and Sect. 7 concludes the paper.

2 Integration Challenges in Systems-of-Systems

The key factors underpinning the integration problems in SoS fall intro three
main classes:

1. The collaborating systems in a SoS are managerially independent;
2. The evolution trajectory of the processes and interfaces of individual systems

does not account for potential future collaboration or communication with
other systems in a SoS context;

3. The individual systems are often, themselves, extremely complex and there-
fore difficult to understand and integrate with other systems.

We next discuss each of these classes in detail, with the help of some well-known
examples of SoS integration failures.

2.1 Managerial Independence

Our notion of Managerial Independence is that different systems in a SoS are
being managed as well as operated by different groups of people. Though man-
agerial independence is a key characteristic of SoS [15], it also poses two major
integration challenges:

– Decision-making and maintenance of an overall vision at the SoS level: The
managers of individual systems are often unaware of the protocols and pro-
cedures of other systems so there is a lack of overall vision and control.
Furthermore, the decisions required for integration and co-working have to
be made by the cooperation and agreement of all the concerned parties. Ob-
taining this agreement can often be non-trivial even impossible. An example
of this is the European Union. In June 2008 the people of the Republic of
Ireland (which represent only one percent of the EU population) voted to
reject the Treaty of Lisbon. For the treaty to come in to force, it requires
ratification from all 27 countries in the EU. Even though 25 countries had
ratified the treaty, rejection from just one country meant that the treaty
could not come into effect. Such problems faced by decision-makers in the
SoS context have also been highlighted in [4].
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– Managing a large-scale socio-technical system: A SoS is inherently a socio-
technical system that encompasses the activities of the humans as well as
the hardware and software systems in its boundary. The individual systems
that collaborate in a SoS will often continue to operate independently in
order to provide some functionality independent of the SoS. Participating in
a SoS puts additional stress on the human part of the individual systems.
People may have to concentrate on two different lines of work. Concerns
about errors arising from excessive workload and the interactions of various
human roles in a SoS have also been put forward as a major issue [16].

An example of SoS integration failure due to Managerial Independence is the
failure of Heathrow Terminal 5 (T5) on its opening day. T5 was built at a
cost of 4.3 billion pounds. The period from project commencement to terminal
opening day was approximately five and a half years. The last six months were an
operations readiness period in which the final preparations before opening—staff
training and terminal systems and process testing—were to take place [17].

The terminal fell seriously short of expectations on its opening day. Thousands
of people faced a chaotic situation when the terminal’s baggage handling system
stopped working. Sixty eight flights were cancelled [17] and thousands of people
were deprived of their luggage.

The examination of what went wrong on the opening day reveals that the
cause of the problems was a systems integration and coordination problem be-
tween the two main agencies responsible for operating T5: the British Airport
Authority (BAA), which is the agency that built the terminal, and British Air-
ways (BA), the (only) airline operating from the terminal. Both of these agencies
were working together and were responsible for the operations of the terminal.
The lack of communication, coordination, and integration between BAA and BA
prior to and on the opening day was the root cause of the following problems:
– Many amongst the BA staff were not familiar with the equipment that

they were supposed to operate. This equipment had been provided by BAA
[17,18].

– BA claimed that they were unable to completely test the software systems
under their control because BAA did not finish construction of the building
in time [19].

– The baggage system failed because BAA had responsibility for the system at
baggage check-in while BA had responsibility for the baggage loading part
of the system [17]. The system finally shutdown because the rate of baggage
check-in was higher than the rate of baggage loading [17].

– There was no crisis management system setup between BA and BAA at the
terminal level [17].

Colin Matthews (chief executive of BAA) noted the lack of cooperation between
the management of BA and BAA as the main cause of the problems at Terminal
5. In a statement [17] he said:

“However well the airport operator and the airline operator, BA, are
working it is also vital that the two are absolutely integrated and to-
gether. I think that during the construction of Terminal 5 that appeared
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to be the case. Around about or just prior to the opening of T5 it seems
that that togetherness deteriorated. It is that togetherness that allows
you to cope with the issues that arise on the day.”

2.2 Incompatible Interfaces

Systems evolve over the course of their lifetime to meet new demands. Often
this evolution takes place in a stove-pipe-like narrow domain. The protocols
and interfaces that the system defines are often not meant for communication,
collaboration, or evolution beyond this specific domain. This lack of foresight in
the systems’ architecture places extra strain [20] when these systems are required
to collaborate with other systems. There is also the principle of encapsulation
[21] in systems engineering to consider. This principle calls for systems to be
closed off from the outside and to hide their implementation and inner working.
In order for individual systems in a SoS to collaborate, they may need to break
the principle of encapsulation and allow invasive access [22] to their inner working
from other systems [3].

The interoperability challenge [23] facing the various emergency response agen-
cies in the US is an example of this class of problems. The emergency-response
communication systems of various agencies and jurisdictions often evolve with-
out taking into consideration the need to communicate with other agencies and
jurisdictions.

An example of SoS integration failure, due to Incompatible Interfaces, is the
chaotic rescue operation that took place after the Air Florida Flight 90 disaster
in Washington DC [24]. On 13 January 1982 the Air Florida Flight 90 crashed
into the Potomac River shortly after takeoff. A number of federal, state, and
local emergency response agencies took part in the rescue effort. The rescue
effort was greatly hampered due to the lack of compatibility between the com-
munication systems of the different agencies. The different emergency-response
agencies had evolved their communication systems independently without tak-
ing into consideration the requirements of integrated rescue efforts with other
agencies. Consequently, the rescue personnel from different agencies could not
communicate with each other [24].

2.3 Complexity of the Collaborating Systems

The complexity of a system has a direct impact on its understandability. Given
that the constituent systems in a SoS are often highly complex themselves, inte-
gration problems arise because of one’s inability to fully comprehend the work-
ings of the individual systems. As a result, it is often not possible to predict
the behaviour of the participating systems within the context of the SoS. As the
participating systems in a SoS are often interdependent on each other, it may
take only one system to malfunction for the entire SoS to break down. Such
reliability problems in highly complex systems have been discussed in [4].

An example of SoS integration failure due to the complexity of collaborating
systems is the loss of the Mars Climate Orbiter. The Mars Climate Orbiter
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(MCO) started its journey to Mars on December 11, 1998 from Cape Canaveral,
Florida. Its mission was to gather information about the Martian atmosphere
and to act as a relay station for the Mars Polar Lander Mission. On September
23, 1999 it was lost while trying to setup an orbit around Mars. The MCO was
designed, developed, and operated by the collaboration of two agencies—NASA
and Lockheed Martin Astronautics (LMA) [25]. The cause of the crash was in a
piece of software that was producing its results in English units instead of metric
units. But according to Dr. Edward Weiler, NASA’s Associate Administrator for
Space Science:

“The problem here was not the error, it was the failure of NASA’s sys-
tems engineering, and the checks and balances in our processes to detect
the error. That’s why we lost the spacecraft.” [26]

The review panel that conducted the analysis of the failure found that the best
processes and standards for software development had been followed. As noted in
[27], the problem was not that of methodology. The failure instead arose from the
“sheer complexity” of the system . The different consituent systems of the space
craft were so complex that errors within them could not be detected despite the
use of rigorous means and best practices.

Of course, the above three classes of problem are not orthogonal. As shown
in Table 1, all three SoS integration failure cases: T5, Air Florida Flight 90 and
MCO, exhibit multiple classes of failures.

Table 1. Multiple causes of SoS integration failures

Class of Failure
SoS

Manager ial 
Independence

Incompatible 
Inter faces

Complexity of 
Collaborating Systems

Heathrow T5
Air Florida Flight 90
Mars Climate Orbiter

In this paper, we propose natural-language document-processing techniques
to help uncover the above classes of problems. Any such cross-document analysis
must provide three capabilities:

– Querying over multiple documents in a fashion that accounts for diverse
writing styles and usage of different terms to refer to the same concepts;

– Specification of constraints across multiple documents in order to explic-
itly capture conflict resolution strategies and, subsequently impose them,
through derivation of proof obligations or suitable test cases for the SoS;

– Automation support to aid the engineers and stakeholders in such querying
and constraint specification during SoS integration.

In the next section, we discuss RDL—our natural-language based requirements
description language—and its support for these capabilities.
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3 Requirements Description Language (RDL)

Our RDL, detailed in [14], is based on the observation that the natural language
used in systems’ documentation already reveals semantics that can be used as
a basis for both analysis of dependencies and specification of compositions that
relate process specifications that span multiple documents or specify constraints
that resolve inconsistencies. For this, we utilise the vast body of work on natural
language grammar, semantics, and natural language processing (NLP) [28,29,30].
The RDL is based on scalable tool support from the WMatrix NLP engine [31],
which has been shown to provide high accuracy: up to 97% for part-of-speech
analysis and 93% for semantic analysis of English language texts [32].

Any document to be analysed using the RDL capabilities needs to be an-
notated with suitable grammatical and semantic information. This annotation
is fully automated via WMatrix as the relevant information can be extracted
directly from the document text. The composition specifications use these an-
notations as a basis of semantic queries which can be used both for uncovering
dependencies across documents as well as specifying points of interest to specify
crosscutting constraints and resolution strategies across documents. Naturally,
this requires human input to encode relevant domain knowledge. The RDL is,
therefore, not a substitute for a human analyst but instead a tool that can aid
the complex task of studying reams of documentation and specifying constraints,
resolution strategies or operational procedures that crosscut multiple documents.

The RDL was conceived as an aspect-oriented mechanism [33] to provide
support for more modular representation and analysis of natural language-based
requirements texts. It lends itself to analysis of SoS integration problems (and
subsequent encoding of resolution strategies) as it uses:

– natural-language grammar to identify the grammatical elements that are
prominent in conveying the semantics of the natural-language sentences,
and, thus, are relevant for studying cross-document dependencies;

– natural-language semantics for expressing the meaning of the identified gram-
matical elements, and various ways of referencing them when querying the var-
ious documents under consideration;

– aspect-oriented composition mechanisms to specify crosscutting constraints
and conflict resolution strategies. These constraints and strategies can be
subsequently used as a basis for proof obligations or test cases for verification
and validation of overall SoS behaviour.

In the following sub-sections, we first present the NLP fundamentals underpin-
ning the RDL. We then present how this semantic and grammatical information
is used as a basis for the semantic queries. Finally, we discuss how aspect-oriented
composition mechanisms are utilised to specify cross-document constraints and
conflict resolution strategies.

3.1 Fundamentals of the RDL

The RDL is build upon two main pillars: semantic and grammatical fundamen-
tals. Each of these is further discussed below.



208 S.A. Naqvi et al.

Semantics Foundations. In this work, semantics refers to the meaning ex-
pressed in text. In particular, we draw on the:

– principles of similarity of meaning (i.e., synonymy) for main parts of speech
groups (i.e., nouns, verbs, adjectives, and adverbs) since mostly these are
the groups undertaking the main grammatical functions in a clause.

– We also use some properties of word formation (i.e., word morphology) that
allow reduction of word forms.

– We propose to utilise the domain specific knowledge of entities and their
dependencies captured in ontology building.

– Finally, we propose to utilise a number of semantic categories, i.e., group-
ings of words in accordance with their relevance to a particular classifica-
tion scheme, e.g., per domain, such as words describing human activities, or
Animal-related words, etc.

Each of these concepts is briefly presented below.
Synonyms are different morphological forms (i.e., words) with same sense (i.e.,

used with a similar or same meaning) [34, pp 70–71]. Synonymous words are
generally interchangeable. For instance, in an online auction system, “to place a
bid” means the same as “to make a bid”, or “to bid”; or “concurrently” is the
same as “in parallel” and “goods” is the same as “products”. Synonymy is widely
used in natural language, thus synonyms must be recognised and regarded as
the carriers of the same semantics for successful natural language text analysis
and understanding. For the RDL this implies that a reference to an element via
its synonyms is supported.

Word Form Reduction (Lemmatisation): A given word normally has a number
of possible forms, for instance “to bid”, “bidding”, “bids” are all about bidding
and are all formed by modifications of the basic word form “bid”. This most
basic form of a word is called lemma. Lemmatisation (or reduction of the word
to its most basic form) is widely used in natural language processing in order
to simplify natural language text analysis. For the RDL, we take the view that
a lemma is representative of a single part of speech only. For instance, if the
text contains “bidder” as well as “to bid” we will have two lemmas, one for
“to bid” as a verb and another for “bid” as a noun. Consequently, in the RDL
compositions a reference to the verb’s lemma will not be confused with that of
the noun’s [35].

From the perspective of RDL design, using lemma-based referencing allows a
narrower scoping of the reference (i.e., only to all forms of the specific word),
while synonym-based referencing allows for a wide scoping—to all words with a
given meaning.

Ontology: an ontology is a schematisation of knowledge of a domain, represent-
ing the concepts of the domain, properties of each concept, and the relationships
between the concepts. Ontologies have a number of uses, including building com-
mon understanding of information, representation, analysis, and reuse of domain
knowledge, etc. However, each ontology is built to answer a specific set of ques-
tions, and, for this reason, the same domain can be represented via a number of
differing ontologies [36].
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For the RDL, the ontologies can be used for retrieving ontology-supported
information from the requirements documents (as is done in such disciplines as
information management, semantic web [37]). For instance, if the “is-a” hierar-
chy is represented, it could be used to identify all classes and subclasses of a
given concept relevant to a given composition specification; if “part-of” relation-
ship is provided, the ontology can help in identifying all constituents of a given
stakeholder concern, etc.

Semantic Categories for Nouns and Verbs: a number of categorisations for
major grammatical categories have been developed. For instance, in accordance
with Quirk [34] nouns can be grouped into 5 main categories for concrete nouns
denoting physical world entities (e.g., grass, hill, etc.), abstract which refer to
abstract notions (e.g., happiness, friendship, etc.); states and properties reflecting
mental and corporeal states and properties (e.g., hunger, pleasure, etc.); activities
which are nouns describing activities (e.g., sale, decision, etc.). Each of these can
be sub-categorised into smaller, more specialised groups.

Similarly, verbs can be categorised in accordance with their specific properties.
We use one of such verb groupings for RDL, as discussed below.

Verb classifications and Role-based Interaction Patterns. Several promi-
nent results in linguistics [29,30,38] have shown that there is a clear link between
the meaning of the words and their grammatical behaviour. Such a link can be
illustrated via a simple experiment presented in [38]: two English speakers were
asked about the correct use of an archaic English verb gally which was used in
whaling. They were presented with a sentence “Sailors gallied the whales.” Then
they were asked if use of gally in the sentence “Whales gally easily.” is appro-
priate. The speaker who thought that gally meant “see”, believed that it was
incorrect, as we don’t say “Sailors saw the whales. Whales see easily.” On the
other hand, the speaker who thought gally to mean “frighten”, believed that it
was correct to say “Whales gally easily”, as it is correct to say “Whales frighten
easily”.

In line with the above experiment, Dixon [29] suggests that the varying gram-
matical behaviour of verbs is the result of the differences in their meaning. Thus,
using this principle, he groups verbs into several semantic categories. The verbs
in each semantic category require the same type of participating roles. For in-
stance, all Giving type verbs require a Donor, Gift, and Recipient roles, as in
“Allan (Donor) gave the keys (Gift) to Peter (Recipient)”; all Attention verbs
require a Perceiver and an Impression role, as in “The instructor (Perceiver)
witnessed the accident (Impression)”, etc. In some cases certain roles can be
omitted, or understood from the context or from the most common use of the
verb.

In our work we use the semantic categories of [29] as basis for identifying the
types of relationships between concerns and, deriving composition operators.

We observe, that generally in natural language, the semantics of action-type
dependencies (denoted by action-operators, or actions as per [13,39]) are ex-
pressed by verbs or verb phrases. But, in accordance with Dixon’s verb classi-
fication [29] there is only a limited set of broad meanings of verbs, thus, there
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Fig. 1. Requirements analysis specific rearrangement of Dixon’s verb classes

must only be a limited set of broad dependency types (and, correspondingly,
operators of action type) that correspond to the verb categories. There are 63
verb classes suggested by Dixon [29]. Having reviewed these categories for suit-
ability from the perspective of composition semantics for requirements [40], we
have identified the set of verb categories presented in Figure 1 for use in RDL.

Grammar Foundations. In natural language, a sentence is considered the
highest-ranking unit of grammar [34]. Thus, we utilise a sentence and its main
constituents—subject, verb, and object—to form RDL elements. One or more
sentences make up a Requirement.

A Requirement is a description of a service the stakeholders expect of the
system, the system behaviour, and constraints and standards that it should meet
[41]. The requirements specified using the RDL are annotated natural language
sentences. Each requirement may contain one or several clauses [34]. Each clause
contains sub-elements for subject, relationship and optionally for object(s).

One or more requirement elements are encapsulated within a concern which
is a module for encapsulating requirements pertaining to a specific matter of
interest (e.g., selling and account management). A concern can be simple (con-
taining only requirements), or composite (containing other concerns as well as
requirements). Each concern is identified by its name.

A subject is the entity that undertakes actions described within the require-
ment clause. Subject in our RDL corresponds to the grammatical subject in the
clause. In order to support interaction (i.e., composition) specifications involving
a subject denoted with different words representing the same semantics, a set of
synonymous definitions must be provided. These synonyms could be provided
either through a standard synonym dictionary or per project through project
specific dictionaries.

An object is the entity which is being affected by the actions undertaken by
the subject of the requirement sentence, or in respect with which the actions
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are undertaken. Object in our RDL corresponds to the grammatical object in
the clause. Usage and properties of an Object are very similar to those of the
Subject. However, in a requirement there could be several objects associated
with (affected by) a single subject.

Relationship depicts the action performed (state expressed) by the subject on
or with regards to its object(s). Relationships can be expressed by any of the
verbs or verb phrases in natural language. Using Dixon’s verb categories [29], we
classify relationships into a set of types (the second level nodes in Fig. 1, such as
Move, etc.) and their more specific sub-types (the 3rd level nodes in Fig. 1, Set
in Motion, etc.). The various relationship categories derived from Dixon’s verb
classification are detailed in [14,40].

It must be noted, that we do not suggest that ALL semantics of a requirement
are reduced to Subject-Relationship-Object constructs (SRO). Indeed, elsewhere
we are looking at such element of requirements as degree of importance (i.e.,
which requirements are more urgent compared to others) or quality satisfaction,
among others. However, we suggest that SROs are the main elements with re-
spect to which the rest of the requirement semantics are formulated. Thus, SROs
are the elements which participate in relations with other requirements, and are
qualified, constrained or otherwise defined by both single requirement semantics,
and the inter-requirements dependencies. Such semantics and dependencies can
be both queried and captured in the RDL compositions, as discussed below and
detailed in [14].

Tool Support for RDL. The annotation of the subjects, relationships, and
objects is supported via a set of links on top of the tags assigned by the Wmatrix
part-of-speech (POS) tagger. The links are inserted by matching flexible patterns
of POS tags. These patterns have been identified by linguists using a combination
of linguistic knowledge and corpus evidence. For example, a simple rule to link
a verb to its object is as follows:

N*o[.] (RR*/RG*/XXn3) VVN*v[.]

This matches the sequence ’Noun’ (N*), followed by between 0 and 3 possibly
negated ’adverbs’ (RR*/RG*/XX), followed by a past participle ’verb’ (VVN). In
the case of a match, the noun is marked as the object of the verb. The subjects,
verbs and objects are marked explicitly by Wmatrix along with the result of
lemmatisation.

The annotation of verb types is realised via a mapping from the Wmatrix
verb categories onto an RDL-specific tagset. In some cases the large classes of
Wmatrix words were directly compatible with the RDL verb classification, for
instance, the verbs of domain for Movement, Location, Travel and Transport
in Wmatrix largely correspond to the RDL verbs of Motion type. On the other
hand, there are semantic classes in the Wmatrix (e.g., Education, Time, etc.)
tagset which have no correspondence to that of the RDL verbs tagset and their
contents have been mapped to the RDL verb classes on an individual verb by
verb basis.
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This annotation has been automated and is quite fast. In a recent test with a
file of 56, 031 words (237 pages), it took about 20 minutes to complete the initial
annotation [42]. However, the quality of the annotation is significantly influenced
by the quality of the input document, since every sentence of the input document
is annotated with the RDL. Our POS-based patterns work rather well for well
structured sentences with clearly defined subjects, verb, and objects, achieving
roughly 80% of accuracy1. These patterns perform poorer when very long, multi-
level nested sentences or grammatically incorrect sentences are used. Similarly,
the quality of verb class annotation suffers if the verbs used in the text have not
been covered in the RDL tagset.

3.2 Semantic Queries

The query expressions in the RDL are called semantic queries, since they select
concerns/requirements on the basis of the semantics of (parts of) these con-
cerns or requirements. The queries can use all kinds of annotations provided by
the RDL, including the SRO, verb types and semantics (e.g., relationship.type=
“Modify”), concern names, etc.2 It should be noted that a requirement may
have several sentences, but if one clause of one of its sentences matches the spec-
ified semantics, the requirement will be relevant for this query. Benefits of the
semantic queries are twofold: firstly, we avoid syntactic matching (e.g., based
on specific labels) in the queries and associated composition specifications, thus
avoiding unintended element matching. Instead, queries and associated compo-
sitions are specified based on the semantics of the requirements. Secondly, it
ensures that any compositions specified are semantically justified, rather than
arbitrarily provided by an analyst. We provide examples of the semantic queries
when discussing the composition specifications next.

3.3 Semantics-Based Composition of Concerns

A composition rule in the RDL comprises three elements: Constraint, Base and
Outcome. Each of these elements has an operator attribute and a semantic query
expression. The query expression can select whole concerns or individual require-
ments from within concerns. A concern is selected if the concern keyword is used
in the query, otherwise requirements are selected.

The Constraint element specifies what constraint/restriction will be placed on
some requirements and what action must be taken in imposing these constraints
(e.g., a conflict resolution strategy to address mismatch across constituent sys-
tem specifications). The restriction that this element imposes is defined in its
query expression. The action that needs to be taken is defined by the constraint
operator.
1 This is an estimate based on our experiments, but is not formally validated yet.

Currently we cannot provide exact time measurement for automated and manually
corrected specification generations.

2 The RDL has an XML-based syntax, which is used to automatically annotate the
natural language text. For simplicity, in this paper, we omit the XML-based syntax.
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An example of two Constraint elements are shown in Fig. 2 (note we omit the
XML-based RDL syntax for simplification):

– Here the first Constraint element has a query (relationship= “assign” and
object = “liaison station”) stating that all requirements where a something
is assigned to be a liaison station should be selected.

– The second Constraint element has a query (subject= “liaison station” and
relationship = “contact” and object= (“Assistant Section Manager” OR
“Section Manager”)) stating that all requirements where liaison stations
contact the Assistant Section Manager or Section Manager should be se-
lected.

Note, these queries do not specify where physically such requirements
should be located and do not refer to any additional characteristics of these
requirements. They directly point to the relevant meaning of requirements:
assigning as a liaison station and the liaison station contacting the (Assis-
tant) Section Manager.

– The “create” operator in the first Constraint specification implies that the
roles of Agent, Manipulation Entity, and Target are relevant for this com-
position. From the Constraint query we can identify the “liaison station” as
the Target; that is, something will be made into such a station.

– The “correspond” operator in the second Constraint specification implies
that the roles of Speaker, Addressee, Medium and Message are relevant.
From this query we also know that the Speaker is the liaison station who
contacts the Addressee—here the (Assistant) Section Manager.

The Base element reveals the set of requirements that are affected by the el-
ements selected in the Constraint element’s query. The operator in the Base
element depicts the temporal or conditional dependency between the require-
ments selected by the Base element query and those of the Constraint query.

An example of a Base element is shown in Fig. 2:

– The base query (relationship=“activate” and object= “RACES net”) notes
that all requirements where activation of RACES net is mentioned are to be
selected.

– The base operator (meets) denotes that immediately upon realisation of Base
query, the relevant Constraint query requirement(s) must be applied. In this
case, as soon as RACES net is activated, a “liaison station” must be assigned
and the liaison station must contact the (Assistant) Section Manger. In
addition, we can see that the RACES net will act in the Manipulation role,
whereby some Actor will create a liaison station from a RACES net station
as per the operator of the first Constraint.

It is worth noting that since the RDL is based on a symmetric model, it is
possible to choose any set of concerns (using semantic queries) as Constraint and
any other set as Base. The same requirement may be selected by a Constraint
query in one composition, and by a Base query in another. We do not discuss
the automation of the actual composition process and its subsequent analysis in
this paper (details are available in [14,43] using ideas from [39]).
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Finally, the Outcome element defines how imposition of constraint require-
ments upon the base set of requirements should be treated. For instance, the
outcome element may specify a set of requirements that must be satisfied as
post-conditions upon application of the Constraint; in this case the respective
operator, such as satisfy will be used with that query. Unlike for Base and Con-
straint elements, the semantic query of the Outcome element can be empty,
if no additional requirements/concerns are affected due to the Base and Con-
straint element interactions. In this case the ensure operator can be used to indi-
cate that though there is no additional Output query, the relationships between
Constraint and Base must be ensured.

4 Case Study: Reasoning about System-of-System
Integration

Having discussed the three classes of SoS integration problems in Sect. 2 and
presented the main elements of the RDL in Sect. 3, we now illustrate how the
RDL can facilitate handling of the integration problems.

RDL works on requirements documents. Therefore, to show how RDL can be
used for SoS, we would ideally possess some requirements documents where real
issues of SoS integration have arisen. Unfortunately, such requirements docu-
ments are typically not available in the public domain. In the absence of require-
ments documents from known cases of SoS integration problems, we sampled and
analysed arbitrary documents from a domain in which cases of such integration
problems exist. For this paper, we selected the domain of emergency-related
communications-based on the Air Florida disaster. This domain is attractive
since a large number of related documents on this subject are freely available
at a dedicated portal3. From this domain we randomly selected two: one detail-
ing the radio communication procedures for the Virginia Emergency Net (VEN)
that supports emergency communications for the state of Virginia, USA4, and
the other detailing the same for the Radio Amateur Civil Emergency Service
(RACES) for the counties of Carroll, Grayson and the City of Galax in Virginia
and California5. We treated these documents as prototypes of requirements doc-
uments as they may be used for SoS in the domain of emergency communication.
We then applied the RDL to these documents analysing them for examples of
managerial independence, interface incompatibility, and complexity issues. In
the following, we discuss one such example for each of these integration problem
classes. In the following examples, while discussing the RDL, we leave out the
XML annotations for better readability.

It is interesting to note that for each case, our use of RDL essentially follows
the same three steps:

1. Using natural-language processing, we produce a formal encoding of the two
documents in RDL.

3 http://www.safecomprogram.gov/SAFECOM/
4 http://www.w4ghs.org/vensop2.pdf
5 http://www.w4ghs.org/Twin_County_SOP.pdf

http://www.safecomprogram.gov/SAFECOM/
http://www.w4ghs.org/vensop2.pdf
http://www.w4ghs.org/Twin_County_SOP.pdf
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2. Using RDLs query mechanism, we search both documents for statements
that may indicate potential problems arising when the two systems need
to collaborate. We then check with experts and stakeholders to understand
whether these statements indeed represent problems and, if so, what should
be done about them.

3. We use the RDL’s composition mechanism to encode any resolutions to the
problems we found or to explicitly encode any conflict-resolution schemes
that are already implicitly present in the documents.

4.1 Resolving Managerial Issues for SoS Integration

Since the VEN and RACES will need to cooperate to handle emergency-related
communications, we need to understand who will activate the emergency proce-
dures and how these two organisations will interact. In order to identify informa-
tion related to activating these organisations, we can query the RDL-annotated
document texts for the relevant information. Thus, we:

1. Find where the activation topics are treated in the documents by finding
the activation related verbs, such as activate and its synonyms make active,
set in motion, set off, turn on, trigger, get going, trigger, prompt, initiate.
Activate is a verb of Set in Motion type which has defined roles for the
Causer (normally taking the subject function) who sets into motion a Moving
Object (normally taking the object function) with the optional noun phrase
to specify the Locus (i.e., where?) role.

2. Identify what actors are filling in the appropriate roles with these action
verbs:
(a) Roles in RACES:

i. Upon notification from the OEM or E-911 Director (Causer, though
not directly defined) the plan (Moving Object) will be set in mo-
tion.

ii. EOC locations (Moving Object) may be activated and covered with
Amateur Radio (Causer) but net control should be posted outside
this busy area.

iii. An Amateur Radio Hospital Volunteer (Causer) will activate this
station (Moving Object).

iv. The Twin County RACES Emergency net (Causer) operates as the
Virginia/Carolina Training and Information Net and meets every
Sunday at 3:00 pm (1500 hrs) on the Fishers Peak repeater (145.130
- 600 with a tone of 103.5).

(b) Roles in VEN:
i. Either the SM or SEC (Causer) shall activate The Virginia Emer-

gency Nets (Moving Object).
3. Check if there are any parallels in the activation procedure and the involved

actors. In the above example:
– The Causers are: OEM, E-911, Amateur Radio, Amateur Radio Hospital

Volunteer, Twin County RACES Emergency Net, SM, SEC.
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– The Moving Objects are: plan, EOC locations, station, Virginia/Carolina
Training and Information Net, Virginia Emergency Nets.

– In points (2a: i and iv) we find that OEM, E-911 and Twin County
RACES Emergency net may have some common responsibilities in acti-
vating the RACES net in an emergency. From 2b: i, we can see that the
SM (Section Manager) or SEC (Section Emergency Coordinator) will
activate the Virginia Emergency Net. Thus, there needs to be a protocol
of interaction between these bodies to coordinate emergency handling in
Virginia.

4. Since there is a need to unify the activation of these emergency bodies,
there needs to be a managerial procedure to coordinate these bodies. We
check if such a procedure already exists by looking at cross-references and/or
collocations of the above-identified bodies in our two different documents.

In Virginia Emergency Net document we find:
– “VEN/D 3620 kHz (7105 & 14103.3 kHz alt) Packet, Pactor; Digital

Operations - NON-RACES OPS ASM/ASEC/D”
– “VEN/D RACES 3543 kHz (7105 & 14103.3 kHz alt) Packet, Pactor,

Digital Operations - ONLY REAL RACES OPS ASM/ASEC/D”
Here we also find that ASM/ASEC/D corresponds to Assistant Section Man-
ager/Assistant Section Emergency Coordinator for Digital Operations. Thus,
from this document we have identified that the Assistant Section Manager
is assigned to the communications involving RACES operations.

In RACES document we find:
– “Liaison stations to the following National Traffic System nets will be as-

signed (Old Dominion Emergency Net-3947) (Old Dominion Emergency
Net 7240) (Virginia Emergency Net 3910).”

Here we have identified that a liaison station will be assigned to communi-
cate with the Virginia Emergency Net.

Thus a procedure of communication between these two systems has be-
come clearer: it transpires that the Assistant Section Manager or Section
Manager will be responsible for managing the communication between VEN
and RACES via a RACES liaison station.

5. Finally, we assert this communication procedure by defining a specific com-
position (Fig. 2).

Thus, by using the synonym-based querying of the RDL we were able to iden-
tify the areas in the input documents where issues related to activation were
discussed. We then identified entities that carry out same roles for the activa-
tion process in different documents and were able to consider their relations to
each other in the management of the two systems and their co-working. Based
on these considerations, we then defined a composition to assert a managerial
process for the interaction of the two systems.

4.2 Addressing Incompatible Interfaces in SoS Integration

The second problem in SoS integration, discussed in Sect. 2.2 of this paper,
relates to the incompatibility of interfaces between systems. We will now consider
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Composition: VEN_RACES_Communication

Constraint: create

operator: enable

query: (relationship= "assign" and object = "liaison station")

Constraint:

operator: correspond

query: (subject= "liaison station" and relationship = "contact" and

object= (Assistant Section Manager" OR "Section Manager"))

Base:

operator: meets

query: (relationship="activate" and object= "RACES net")

Outcome:

operator: ensure

Fig. 2. Composition for Communication Procedure between VEN and RACES

how such incompatibility requirements can be identified and resolved with our
RDL-based approach.

The previously discussed integration failure in the case of Air Florida Flight
90 was caused due to the use of different communication frequencies by different
emergency teams. Let us now check if such a problem may arise in integration
of the VEN and RACES systems. To do this, we need to:

1. Verify that the frequencies listed against each of the nets are consistent
across documents. Here we use domain knowledge about the format of de-
scribing nets and their frequencies by listing the frequency immediately be-
fore/after the name of the net—for example, “Old Dominion Emergency Net
7240”—without explicitly using the term “frequency” or its synonyms in the
description.

2. Look up where use of frequencies is explicitly mentioned by looking up the
term frequency and its synonyms, such as Hz and checking with stakehold-
ers/managers that these are correct for each net.

In these two example documents we have a number of references to nets and tier
respective frequencies, such as:

– In the RACES document there are references to:
• Old Dominion Emergency Net 7240
• Virginia Emergency Net 3910

– In Virginia Emergency Net document there are references to:
• 3543 kHz (7105 & 14103.3 kHz alt) RACES
• 7240 kHz Alt . . . ODEN (i.e., Old Dominion Emergency Net)

Thus the reference from the RACES document to ODEN frequencies is consistent
with that from the Virginia Emergency Net.

The next reference from RACES document is to Virginia Emergency Net 3910.
However, in the document on Virginia Emergency Net there is no mention of a
frequency of 3910. Instead, it refers to 3543 kHz (7105 & 14103.3 kHz alt)
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frequencies for RACES. This obviously is an area that needs clarification with
the stakeholders:

– do the documents have the correct different frequencies listed, or
– is there an incompatibility in the specification and these documents must use

the same frequency? If there is an incompatibility here, what is the correct
frequency to be used?

For this example we assume that the communication protocols used require that
the stations use the same frequency to communicate. In which case, we have
identified an integration problem for which a resolution decision must be made.
Let us assume that the specification in the document for the Virginia Emergency
Net is chosen as the correct one. We can now define a composition specification,
as shown in Fig. 3, asserting that the values of frequencies for VEN listed in the
VEN document (frequency.value=doc.VEN and object=“VEN”) will dominate
over those listed in the RACES document (frequency.value=(doc.RACES and
object= “VEN”)). This composition will ensure harmonised resolution of this
issue in future requirements.

Composition: VEN_RACES_Frequency_Harmonisation

Constraint:

operator: modify

query: frequency.value=doc.VEN and object="VEN"

Base:

Operator: concurrent

Query: frequency.value=(doc.RACES and object= "VEN")

Outcome: ensure

Fig. 3. Composition for Interface Harmonisation between VEN and RACES

4.3 Support for Handling Complexity in Systems’ Documentation

We have previously discussed the issue of complexity in understanding behaviours
of the systems to be integrated. From the perspective of requirements analysis,
this complexity manifests in the need to identify and understand the behaviours of
interest from a large volume of written documentation (since our discussion relates
to the documents written in natural language). Thus, here the complexity mainly
manifests itself in the need to treat large volumes of information.

The utility of our approach lies in the ability to:

1. identify and separate concerns of interest from the rest of the documentation
and

2. define localised compositions to assert a particular set of rules/interaction
resolutions that crosscut multiple documents and/or concerns within these
documents.
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This aspect-oriented basis of the RDL provides inherent support for modular
(studying a particular concern of interest in isolation from other concerns in
a system, in this case a SoS) and compositional reasoning (reasoning about
the interdependencies and relationships amongst concerns to understand the
emergent behaviour, in this case the behaviour of the SoS) [44].

An example of such modular and compositional reasoning was illustrated in
Sect. 4.1, whereby a particular behaviour related to activation was studied inde-
pendently from the rest of the documents’ contents. This behaviour was consid-
ered in tandem with the set of entities required to carry out the given behaviour
in different documents and the relationships of these entities were also consid-
ered. In Sect. 4.2, we also presented an example composition definition which
was used to harmonise differences between the two input documents.

The example documents in this case study are largely unstructured natural
language texts. The RDL compositions can also be used to define crosscutting
behaviour across sets of more structured requirements artifacts, such as use
case specifications. For instance, a behaviour related to sending message will be
discussed in a number of use cases detailing the RACES and VEN systems. A
single localised composition may be used to specify that an encryption protocol
should be employed at any point when a message is sent. Such a composition
specification will not require any change/rewriting of the existing use cases.
Yet, when the relevant use cases are viewed/analysed in an appropriately tooled
environment, the additional detail on encryption use will be incorporated across
the relevant use case steps. Further details on the crosscutting nature of the
RDL compositions is provided in [14,45].

5 Discussion

In Sect. 4, we have discussed how our RDL can be used to study the three major
classes of integration failures in SoS: managerial independence, incompatible
interfaces and complexity of constituent systems. Significant benefit can also be
derived from our RDL-based approach when we consider a set of documents
containing natural language requirements for which a large number of economic,
social, political factors of heterogeneity must be observed, constraints enforced
and priorities maintained. In these cases the semantics-based queries of the RDL
can assist in direct identification of relevant points in the documents where, for
instance, a particular policy is discussed, etc. Moreover, when needed, a locally
defined composition specification can be used, for instance, to enforce a new
policy, or introduce the behaviour of new system into a broad set of existing
operations specification documents.

However, there are a number of other SoS-characteristic problems that can
occur during the analysis and cross-examination of specification documents. Be-
low we discuss some of them as well as some potential extensions of our RDL
approach to address them:

1. Different languages: Because of the geographic distribution of collaborating
systems in a SoS, their specification documents may be written in different



220 S.A. Naqvi et al.

languages e.g. one set of specification documents may be in English and the
other in German.

To handle such differences the RDL approach can be furnished with a
cross-language analysis support. Such a cross-language support is indeed
feasible, since all the grammatical and semantic features of the RDL are
manifest in the vast majority (if not all) human languages whereby an entity
(subject) carries out some activity (verb) on or in respect with other entities
(objects). Moreover, the verb classes identified by Dixon, and used in the
RDL, are also largely language-independent, as discussed in [29].

2. Regional syntax: It is a well known fact that the same language may have re-
gional dialects. These dialects can become so well rooted as to make their way
in to the written word and thus establish themselves as different versions of the
same language. A well-known example is the difference between the US and UK
versions of the English language. For example two different words—soccer and
football—refer to the same sport in the US and UK respectively. However, the
same word football refers to two different sports in the US and UK.

The RDL approach can be furnished with support to identify the dialects
and automatically establish correspondences between relevant entities. For
this we will need to build a language corpus for each relevant dialect and pro-
vide a set of algorithms which would identify the dialect used in each docu-
ment from the natural language clues. Clues such as use of words/expressions
unique to a given dialect (e.g., “fall semester” in US English); spelling and/or
grammar peculiarities (e.g., “behavior vs. behaviour”), frequencies of partic-
ular word use, etc. can be utilised for the purpose.

3. Domain specific syntax: This problem can be further divided into two sub-
categories.
(a) Domain specific jargon in specifications of the collaborating systems:

certain words like “Tympanum” from the “Anatomy” domain may not
be understandable to non-experts.

(b) Different domain specific meaning of the same word: for example, the
word “Delta” means different things in Geology and Mathematics.

The first of these problems can be resolved by providing domain specific
lexicons and/or ontologies, where required. However, building these can be a
substantial effort in itself. This can be facilitated (or substituted) with a set
of algorithms which could use the previously discussed techniques (i.e., most
frequently used concepts, unique words, and combinations etc.) to identify
the general domain of the document and to provide a summation of relevant
term occurrences and/or definition from a set of sample documents of that
domain (e.g., by obtaining these from the Web).

The resolution of the second of these problem can already be supported
via word sense disambiguation techniques used in NLP, such as realised in
the Wmatrix [31] tool.

A number of other problems, such as varying formats of specification documents
(e.g., some written using use case specifications, some using viewpoint-based
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templates); inconsistent detail (e.g., some systems may be specified in great
detail while others may have almost no documentation); misinterpretation of
data (e.g., in one specification a mean value is used as representative, while in
the other system a mode), etc. will also arise in distributed heterogeneous SoS.
While these require further research and development effort, it could be relevant
to note that the RDL would be well positioned in supporting such problem
resolutions since:

– The RDL is based on natural language characteristics and does not require
any other specific format or restrictions;

– It has been shown that the RDL approach is amenable to automation [14],
and already has automated support for a number of processing activities
[14,43];

– The RDL uses the semantics of natural language to identify relevant portions
in the different system specification documents, allowing domain experts to
focus only on details relevant to their work;

– The RDL compositions are able to support localised specifications of cross-
document dependencies/constraints.

6 Related Work

Ultra large scale (ULS) systems have been defined in [2] as “A system at least
one of whose dimensions is of such a large scale that constructing the system
using development processes and techniques prevailing at the start of the 21st
century is problematic.” These futuristic systems will exhibit characteristics not
unlike SoS today. These characteristics include decentralized control, conflicting
requirements, heterogeneity, evolution, failures of parts of the system, and ero-
sion of the people/system boundary etc. [2] Problems similar to the ones facing
the requirements analysis of SoS have also been raised for ULS systems. These
include finding compatibility, redundancy, inconsistency, emergent properties, in
requirements and reasoning about requirements in the presence of uncertainty
and ambiguity [2]. Therefore, the approach presented in this paper, may also be
relevant for ULS systems.

A number of approaches have been proposed in recent years focusing on the
use natural language processing and information retrieval techniques for analysis
of crosscutting concerns. The EA-Miner tool [45,46] uses the WMatrix toolset
to mine for crosscutting concerns in natural language requirements specifica-
tions. EA-Miner is a tool that provides integrated support for the RDL, generat-
ing RDL specifications from the mined (and, subsequently edited) requirements
model.

Other relevant works include Theme/Doc LSA [47] and Repertory Grid [48].
Theme/Doc LSA uses the Latent Semantic Analysis technique [49] to build a
concern-requirement matrix. In the matrix concerns correspond to terms while
requirements correspond to documents used in the analysis. The LSA algorithm
is then used to identify relevant concern-requirements associations. Threshold
values can be set to filter out associations that are less pertinent or not of
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interest. However, too low a threshold value can lead to cluttered concern-
requirement association graphs while too high a value can lead to more sparsely
populated graphs. We have found that a hybrid approach, combining LSA with
NLP, yields better results as the NLP-based analysis can be used to identify
elements of interest which can then be subject to an LSA analysis for identifying
relationships [50].

The work of Niu and Easterbrook [48] is based on the Repertory Grid tech-
nique from Psychology which aims at capturing how people construct mental
models of objects in their environment. Using this technique, one can study how
two constructs may be similar or different in a particular document set, hence
identifying the contributions of specific tasks to high-level system goals. However,
in contrast to our approach, this technique requires structured requirements as
input and the construction of the grid is not automated. However, its integra-
tion with the RDL can yield fruitful results by allowing one to study the mental
model of a SoS (for instance, based on observations from ethnographic studies)
from the perspective of the various stakeholders of the constituent systems. This
can facilitate a more top-down analysis of SoS integration challenges compared
to the bottom-up documentation-based analysis supported by our approach.

7 Conclusion and Future Work

The conception and development of a SoS poses a number of challenges, not
least due to the fact that SoS are created opportunistically owing to some social
or business need. Since the constituent systems are often not designed to work
together in the first place or, when they are they remain under the control of dif-
ferent autonomous organisations, incompatibilities are almost inevitable owing
to the inherent complexity of the individual systems, their managerial indepen-
dence, and past (often divergent) evolution trajectories. Reasoning about the
overall behaviour of a SoS is, therefore, non-trivial in the presence of such diver-
sity and heterogeneity. We cannot escape the fact that mostly such reasoning is
based on reading reams of documentation about the individual systems-almost
80% of system specifications remain in natural language. The simple search facil-
ities in word processing or file rendering systems are not able to relate concepts
that may have been referred to using different terms. Furthermore, it is not
possible, without specialist tools that create vendor lock-ins and require use of
specific specification notations, to specify constraints across the documentation.

Our RDL presents a solution to these challenges. It is based on well-establish-
ed natural language processing concepts and can be deployed across domains.
The semantic queries in the RDL work on rich information clues already inherent
in natural language specifications hence making it possible to relate concepts as
well as specify composition rules that work on this natural language semantic
basis. This, in turn, means that the composition rules are resilient to changes in
documentation structure. Most significantly, the RDL approach can be utilised
with any documentation written in natural language. Our case study has shown
that the approach can uncover integration issues in real-world SoS and can be
used to specify suitable resolution strategies.
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We do not consider the RDL to be the final solution to these challenges.
Instead we see it as a stepping-stone towards scalable mechanisms for reasoning
about SoS integration issues. In Sect. 5 we have identified a number of future
work paths for this work. They will be our focus in the long-term. In the short-
term, we aim to apply the RDL to further case studies of real-world SoS to
gather more empirical data about its efficacy based on a larger corpus of SoS
examples.

We are also currently working to develop a more detailed, hierarchical tax-
onomy of expected SoS integration problems and faults. Such a taxonomy may
help to focus the attention of the SoS engineer towards finer grained problems.
These problems include, but are not limited to, technical incompatibilities, qual-
ity of service issues, and regulatory compliance problems. Once developed, this
taxonomy can be used as the basis of a library of RDL query templates. These
templates can assist the SoS engineer by lessening the work of writing queries
for expected SoS problems. The SoS engineer will of course have to customise
or instantiate the templates for the particular problem at hand. For example,
a query template can be written to help the SoS engineer query the system’s
documentation to find out what kind of communication protocols are used or
supported by the system. The template method is expected to be useful in per-
forming quick, cursory comparisons of different requirement and specification
documents. Detailed analysis of requirement documents is still expected to re-
quire writing unique, standalone queries in RDL.

Acknowledgements

This work is supported by EC FP6 project, AMPLE: Aspect-Oriented Model-
Driven Product Line Engineering and the EC FP7 project DiVA: Dynamic Vari-
ability in Adaptive Systems. Awais Rashid is also supported by a Chair Regionale
by the Pays de la Loire Regional Government in France.

References

1. Sage, A.P., Cuppan, C.D.: On the systems engineering and management of systems
of systems and federations of systems. Information, Knowledge, Systems Manage-
ment 2(1), 325–345 (2001)

2. Northrop, L., Feiler, P., Gabriel, R.P., Goodenough, J., Linger, R., Longstaff, T.,
Kazman, R., Klein, M., Schmidt, D., Sullivan, K., Wallnau, K.: Ultra-Large-Scale
Systems: The Software Challenge of the Future. Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA (July 2006)

3. Boardman, J., Sauser, B.: System of systems: The meaning of of. In: IEEE Int’l.
System of Systems Conf., April 2006, pp. 118–123 (2006)

4. DeLaurentis, D., Callaway, R.: A system-of-systems perspective for public policy
decisions. Review of Policy Research 21(6), 829–837 (2004)

5. DeLaurentis, D.: Role of humans in complexity of a system-of-systems. In: Duffy,
V.G. (ed.) HCII 2007 and DHM 2007. LNCS, vol. 4561, pp. 363–371. Springer,
Heidelberg (2007)



224 S.A. Naqvi et al.

6. Jamshidi, M.: System of Systems Engineering: Innovations for the 21st Century.
John Wiley & Sons, Inc., Chichester (2008)

7. Keating, C., Rogers, R., Unal, R., Dryer, D., Sousa-Poza, A., Safford, R., Peterson,
W., Rabadi, G.: System of systems engineering. EMJ – Engineering Management
Journal 15, 36 (2003)

8. Sage, A.P.: Conflict and risk management in complex system of systems issues. In:
IEEE Int’l. Conf. on Systems, Man and Cybernetics (2003)

9. Eisner, H.: RCASSE: rapid computer-aided systems of systems engineering. In:
3rd Int’l. Symposium of the National Council of System Engineering (NCOSE),
pp. 267–273 (1993)

10. Kotov, V.: Systems of systems as communicating structures. Technical report,
Hewlett Packard Computer Systems Laboratory Paper HPL-97-124 (1997)

11. Popper, S.W., Bankes, S.C., Callaway, R., De-Laurentis, D.: System of sys-
tems symposium: Report on a summer conversation. In: 1st System of
Systems Symposium (2004), http://www.potomacinstitute.org/academiccen/

SoSSummerConversationreport.pdf

12. Baniassad, E.L.A., Clements, P., Araujo, J., Moreira, A., Rashid, A., Tekinerdogan,
B.: Discovering early aspects. IEEE Software 23(1), 61–69 (2006)

13. Rashid, A., Moreira, A., Araujo, J.: Modularisation and composition of aspectual
requirements. In: International Conference on Aspect-Oriented Software Develop-
ment (AOSD), pp. 11–20. ACM, New York (2003)

14. Chitchyan, R., Rashid, A., Rayson, P., Waters, R.W.: Semantics-based compo-
sition for aspect-oriented requirements engineering. In: International Conference
on Aspect-Oriented Software Development (AOSD), pp. 36–48. ACM, New York
(2007)

15. Maier, M.: Architecting principles for systems of systems. Systems Engineer-
ing 1(4), 267–284 (1998)

16. Madni, A.M., Sage, A.P., Madni, C.: Infusion of cognitive engineering into systems
engineering processes and practices. In: IEEE Int’l. Conf. on Systems, Man and
Cybernetics, October 2005, pp. 960–965 (2005)

17. House of Commons Transport Committee: The opening of Heathrow Terminal 5.
Twelfth Report of Session 2007-08. HC 543, Published on 3 November 2008 by
authority of the House of Commons London (2008), http://www.publications.
parliament.uk/pa/cm200708/cmselect/cmtran/543/543.pdf (December 16,
2008)

18. BBC News: What went wrong at heathrow’s T5? (March 2008), http://news.bbc.
co.uk/1/hi/uk/7322453.stm (December 16, 2008)

19. Thomson, R.: British airways reveals what went wrong with Terminal 5
(May 2008), http://www.computerweekly.com/Articles/2008/05/14/230680/

british+airways+reveals+what+went+wrong+with+terminal.htm (December 16,
2008)

20. Ellison, R.J., Goodenough, J., Weinstock, C., Woody, C.: Survivability assurance
for system of systems. Technical report, CMU Software Engineering Institute,
CMU/SEI-2008-TR-008, ESC-TR-2008-008 (May 2008)

21. Rechtin, E.: Systems Architecting. Prentice-Hall, Upper Saddle River (1990)
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Abstract. Architecture Analysis and Design Language (AADL) cap-
tures both platform and software architectures of embedded systems in
a component-oriented fashion. Properties embedded in an AADL model
enable several high-level analysis techniques. In this work, we explore
how to perform analysis of end-to-end timing characteristics of an AADL
model using Real-Time Calculus (RTC). We identify properties of AADL
models that are necessary to enable such analysis and develop an al-
gorithm to transform an AADL model into an RTC model. We use
the proposed technique to identify analyze the infrastructure for sensor
network architecture.

1 Introduction

Architecture Analysis and Design Language (AADL) [5,13] is a modeling frame-
work for embedded systems. It captures both platform and software architectures
of an embedded system in a component-oriented fashion. A typical AADL model
captures system threads, their mapping to processors, and connections between
threads that represent flows of control and data through the system.

Because systems are specified at a high level, without much behavioral detail,
AADL models can be developed relatively early in the development cycle and
used for the evaluation of design alternatives. Therefore, there is a great need for
analysis techniques that can be applied to AADL models in order to establish
global properties of the models, such as schedulability, reliability, latency of data
flows through the system, etc.

Many such analysis techniques are available, and analysis models can be ex-
tracted from AADL models. For example, fault tree models [7] can be extracted
from AADL models equipped with error modeling information. Resource alloca-
tion decisions are analyzed in [3]. In [9], the authors consider simulation of AADL
fragments. Rate monotonic schedulability analysis can be applied to AADL mod-
els with periodic tasks in a straightforward ways, and in [14] we presented an
approach for the schedulability analysis of more complicated AADL models.
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Real-Time Calculus (RTC) is a high-level analysis technique that allows to
compute quantitative estimates of end-to-end timing of stream-processing hard
real-time systems. In this work, we show that it is possible to extract an RTC
model from an AADL model and perform the analysis of relatively large mod-
els. The structure of the RTC expression directly reflects dependencies between
AADL components, making the translation easy to understand and implement
in a tool.

As an illustration of the proposed analysis technique, we consider an archi-
tecture for a wireless sensor network from the industrial automation domain.
The architecture includes sensor nodes and gateways that connect the wireless
network to the wired network that connects it to various data consumers. We
show how the RTC-based analysis helps us understand performance of the ar-
chitecture as more sensor nodes and gateways are added. The case study also
allows us to assess the scalability of the proposed analysis method.

The paper is organized as follows. Section 2 offers brief overviews of AADL
and RTC. Section 3 describes the translation of AADL into RTC. Section 4
introduces the case study and shows analysis results. Finally, we conclude by
offering a discussion of future work in Section 5.

2 Background

2.1 AADL Overview

AADL is an architecture description language for distributed embedded sys-
tems [5]. In addition to graphical and textual syntax and high-level operational
semantics defined in [13], AADL incorporates a modeling methodology, formu-
lated in [4]. This work incorporates property sets defined in version 2 of the
AADL standard.

AADL modeling and analysis is supported by an open-source extensible devel-
opment environment OSATE [6] based on Eclipse. The open nature of OSATE
facilitates the development of analysis tools by providing an API to explore and
navigate the model and present analysis results in a uniform way. A number of
analysis tools are available for AADL models, offering simulation, schedulability
analysis, resource budgeting, etc. To the best of our knowledge, there are no
available performance analysis tools for AADL.

Components. The main modeling notion of AADL is a component. Components
can represent a software application or an execution platform. A component can
have a set of externally accessible features and an internal implementation that
can be changed transparently to the rest of the model as long as the features
of the component do not change. Implementation of a component can include
interconnected subcomponents. The features of a component include data and
event ports and port groups, subroutine call entries, required and provided re-
sources. Data ports represent sampled communication and are unbuffered. Event
and event data ports represent message passing. Each input event or event data
port has a FIFO buffer associated with it. Interacting components can have their
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features linked by event, data, and access connections. In addition, application
components can be bound to execution platform components to yield a complete
system model. Properties, specific to a component type, can be assigned values
that describe the system design and can be used to analyze the model. We will
discuss properties relevant to the RTC transformation in Section 3. Component
types are illustrated in Figure 1. Different component types are shown as differ-
ent shapes, according to the standard. Solid lines represent connections, while
double lines represent bindings.

bus

s1

proc2proc1

s2

t11

t12

t21

t22

p_in

p_out2p_out1

Fig. 1. Simple AADL model

Execution platform components include processors, buses, memory blocks, and
devices. Properties of these components describe the execution platform. Proces-
sors are abstractions of hardware and the operating system. Properties of proces-
sors specify, for example, processing speed and the scheduling policy. Buses can
represent physical interconnections or protocol layers. Their properties identify
throughput and latency of data transfers, data formats, etc.

Application components include threads, processes, and systems. Threads are
units of execution. Each thread has an associated semantic automaton that de-
scribes thread states and conditions on transitions between thread states. A
thread can be halted, inactive, or active. An active thread can be waiting for
a dispatch, computing, blocked on resource access, or preempted. A thread can
also be recovering from a fault or in the state of non-recoverable error. Proper-
ties of the thread specify computation requirements (execution time ranges) and
deadlines in active states of the thread, dispatch policy, etc. Threads are classi-
fied into periodic, aperiodic, and sporadic threads. They differ in their dispatch
policies and their response to external events. A periodic thread is dispatched
by a timer, while aperiodic and sporadic threads are dispatched by the arrival
of events, as discussed below. A process component describes the scope of mem-
ory protection: all components in a process share the same address space. As
processes are transparent to our analysis technique, we do not discuss them any
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further. A system component is a unit of composition. It can contain application
components along with platform components, and specifies bindings between
them. Systems can be hierarchically organized.

In an AADL model, threads can be bound to processors and connections
can be bound to buses. Threads bound to the same processor are scheduled
according to the scheduling policy of the processor and collectively utilize the
resource offered by the processor components. Similarly, data transmitted along
the connections bound to the bus component impose a load on the respective
communication resource.

Figure 1 shows a simple AADL model that we will use throughout the paper
to illustrate features of the language, the transformation into RTC, and RTC
analysis. The system component contains two processors connected by a bus,
and two software subsystems. Each of the subsystems is bound to a separate
processor. Subsystem s1 contains one periodic and one aperiodic thread and
subsystem s2 contains two aperiodic threads. The system has one input event
data port and one output event data port. Threads communicate via event data
ports. Note how features of a component – in this case, input and output event
data ports – are mapped by connections to features of its subcomponents.

Connections. AADL connections can connect ports of two components within
the same system, or of a system and one of its subcomponents. A sequence of
connections, connected by ports at their end points, forms a semantic connec-
tion. Each semantic connection has an ultimate source and ultimate destination.
Ultimate sources and destinations can be thread or device components. Starting
from an ultimate source, a semantic connection follows connections up the com-
ponent containment hierarchy via the outgoing ports of enclosing components,
includes one “sibling” connection between two components, and then follows
connection down the component hierarchy until it reaches the ultimate destina-
tion. One of the semantic connections in Figure 1 is between threads t11 in the
system s1 and t21 in the system s2. This connection contains three syntactic
connections and is bound to the bus component. When a sporadic or aperiodic
thread is the ultimate destination of an event connection, it is dispatched by the
arrival of an event via that connection. If another event arrives while the thread
is executing, it is queued at the port. The next dispatch occurs as soon as the
thread becomes idle. By contrast, periodic threads, which are dispatched by a
timer, treat events in the queues of their event ports as data.

Similarly, semantic access connections describe resources required by a thread
that is the ultimate source of an access connection. A resource that serves as
the ultimate destination of an access connection is typically a data component.
Properties of access connections specify concurrency control protocols for shared
resources.

Modes. AADL can represent multi-modal systems, in which active components
and connections between them can change during an execution. Mode changes
occur in response to events, which can be raised by the environment of the sys-
tem or internally by one of the system components. For example, a failure in
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one of the components can cause a switch to a recovery mode, in which the
failed component is inactive and its connections are re-routed to other compo-
nents. The AADL standard prescribes the rules for activation and deactivation
of components during a mode switch.

In this work, we do not consider multimodal systems. Analysis described here
can be applied to each global system mode separately. The OSATE toolset sup-
ports this way of analysis by offering a separate single-mode AADL model for
each global mode of a multimodal AADL model. Direct support of multiple
modes may be achieved by extending RTC model with event sequence automata
considered in [17]. Event sequence automata will represent changes to the AADL
model during a mode switch. This approach is left for future work, however.

2.2 Real-Time Calculus

RTC [15,1] is a formalism that is based on the network calculus [10]. Our pre-
sentation of RTC closely follows that of [17], which give a much more detailed
exposition of the approach. RTC is used for system-level performance analysis of
stream-processing systems with hard real-time constraints. Modular performance
analysis based on RTC [19] represents the embedded system as a collection of
abstract processing components, which process incoming events and require a
certain amount of resource in order to perform this processing. Such a compo-
nent can represent either computation or communication in the system. When
representing computation, an abstract component can represent, for example, a
real-time task. The task is dispatched for execution when an event arrives and
requires some amount of time - typically represented as best-case and worst-case
execution times - in order to complete the execution. When representing com-
munication, incoming events are messages to be transmitted, and the resource
required for processing is the communication link on which the transmission
occurs, described by the transmission time. In either case, it is assumed that in-
coming events are queued as they arrive. Once processing of an event is finished,
a new event is generated and sent to other components. This event represents
result of the task computation or delivery of the message on the communica-
tion link. Availability of resources to perform the processing is affected by other
components sharing the resource.

An abstract component, then, has two types of inputs and outputs: event
streams and resource supplies. Characteristics of an event stream are represented
as a function e : R+ → N × N , where R+ is the set of non-negative reals and
N is the set of non-negative integers. The function e(Δ) gives upper and lower
bounds on the number of events in any interval of time of duration Δ. Similarly,
resource supply is represented as a function r : R+ → R+ × R+, giving a lower
and an upper bounds on the amount of resource available to the component in
any interval of duration Δ. We refer to functions e and r as event arrival and
resource curves, respectively. Note that each function contains both the lower
and upper bound curves. When we need to refer to one of the two bounds or an
event arrival or resource curve, we add the superscript to indicate this: el or rl

for lower bound curves and eu, ru for upper bound curves.
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Fig. 2. Abstract processing components

A commonly used way to specify event streams that are input to the whole
system is the (p, j, d) model. (p, j, d)-curves are roughly periodic but at the same
time are subject to significant bursts in the short term. Here, p is the long-term
period of the stream; j is jitter, which characterizes burstiness of the stream,
and d is minimal separation between two consecutive events. For a (p, j, d)-curve
e, we have

el(Δ) =
⌊

Δ − j

p

⌋

eu(Δ) = min

(⌈
Δ − j

p

⌉
,

⌈
Δ

d

⌉)

Each abstract component transforms input event arrival and resource curves into
respective output curves. A simple example of a component is the generalized
processing component (GPC), shown in Figure 2,a. The component represents,
for example, a single preemptible task scheduled under a fixed-priority scheduler.
The task is characterized by the execution time e, a tuple of real numbers repre-
senting best-case and worst-case execution times. Resources that are unused by
a task are available to lower-priority tasks. Thus, the output resource curve of a
GPC, which characterizes the unused resource after the execution of the GPC,
becomes the input resource curve of the component representing the task at the
next lower priority level. If all tasks scheduled on the same processor by a fixed
priority scheduler have distinct priorities, components representing them can be
chained together via their resource curves in the order of decreasing priorities,
as shown in Figure 2,b. RTC expressions used to calculate output event and re-
source curves of a GPC component from its input event and resource curves and
the e parameter can be found in [1]. In more complicated cases, a component
represents multiple tasks. For example, if earliest deadline first (EDF) schedul-
ing is used, all tasks have to be analyzed together, represented by a component
that has one input and one output resource curves, but multiple pairs of input
and output event arrival curves corresponding to different tasks, as illustrated
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in Figure 2,c. In addition to the execution time, each task specifies a deadline.
Calculation of output curves for an EDF component are based on the demand
bound function technique similar to [11]. A similar component is defined for
FIFO scheduling - for example, covering the case of fixed-priority threads with
equal priorities as well as non-preemptible transmission of messages on a bus.
The deadline is not specified in this case.

There are several auxiliary components that operate on streams. We use three
kinds of auxiliary component in our modeling. The first kind, which we visually
denote in diagrams as ⊕, lets you merge two streams. Given two event arrival
curve functions e1 and e2, e1 ⊕ e2(t) = e1(t) + e2(t), and similarly for resource
curves. The second auxiliary operator allows us to split streams into multiple
substreams. Given an event arrival curve function e, we use an operator �p

defined as �pe(t) =  p · e(t)!. Finally, RTC includes a greedy shaper component
(GSC). A GSC component ensures that its output event stream is bounded from
above by a curve e given to it as a parameter. It achieves this by delaying events
in the incoming stream. Thus, a GCS component allows us to limit the amount
of traffic at the expense of increasing processing delay and buffer requirements.
GSC components will be useful for modeling sporadic threads as we discuss
below.

Real-time calculus allows us to calculate two important performance measures
for a component. One is the maximum delay dmax, an upper bound on the latency
of processing an event. The other is the maximum buffer space bmax, an upper
bound on the size of a buffer necessary to avoid losing incoming events. In the
case of the GPC, these values are computed as follows [10]:

dmax ≤ sup
λ≥0

{
inf{τ ≥ 0 : eu(λ) ≤ rl(λτ )}

}

bmax ≤ sup
λ≥0

{eu(λ) − rl(λ)}

Tool support for the RTC analysis. Modeling and analysis described above are
supported by the RTC toolbox for Matlab [18], implemented by Lothar Thiele
and his collaborators at the Swiss Federal Institute of Technology (ETH) in
Zürich. The toolbox provides Matlab functions to create event arrival and ser-
vice curves, such as rtcpjd for a PJD arrival curve, as well as functions that
implement abstract components, such as rtcgpc for the GPC component. The
toolbox is freely available and can be downloaded from the project web site,
along with extensive tutorial for its use.

Abstract components are processed by the toolbox one by one. Given the
component and the input event arrival and service curves, output arrival and
service curves are computed. Since the input curves may be produced by an-
other component in the model, abstract components need to be processed in
the topological order of dependencies between the components. If the graph of
dependencies contains cycles, a fixed point needs to be computed, which may
require several iterations of abstract component processing. In order to compute
the fixed point, cycles in the dependency graph are broken until the graph is
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acyclic. Let a curve e be produced by a component c1 and used as input by a
component c2. If e is used to break a cycle, the input to c2 is initialized with a
PJD curve e0 = (0, 0, 0). After one iteration of component processing, an output
curve e1 is produced and used as input to c2 for the next iteration. The process
is repeated until the computed curve ei+1 is equal to the input curve ei. The
fixed point is computed iteratively in a Matlab script.

3 Translating AADL to RTC

3.1 Properties Used in the Translation

The AADL model should contain enough information to extract parameters
necessary to populate the RTC model. These parameters, primarily, describe
duration of individual processing or communication steps as well as input event
arrival and resource curves.

Processor components. Every processor that has thread components bound to
it should have the Scheduling Protocol property set. Supported scheduling
protocols are RMS (rate-monotonic scheduling), EDF (earliest deadline first),
and FPS (fixed priority scheduling with explicitly assigned priorities).

Thread components. Every thread component in the AADL model should specify
the property Dispatch Protocol. Allowed values of this property are periodic,
aperiodic, and sporadic. If the dispatch protocol is periodic or sporadic, the
property Period needs to be specified. Thread execution time needs to be spec-
ified using the property Compute Execution Time. The property specifies an
interval, [b, w], b ≤ w, where b is the best-case execution time and w is the
worst-case execution time.

If the thread is bound to a processor with the FPS scheduling policy, the
thread should have the Priority property specified. If the thread is bound to
a processor with the RMS scheduling policy, the thread should be periodic or
sporadic. In this case, threads mapped to the processor have priorities implicitly
assigned according to the RMS policy; that is, inversely proportional to the pe-
riod of the thread. If the thread is bound to a processor with the EDF scheduling
policy, it should have the Deadline property specified. If the thread is periodic
or sporadic, the deadline is, by default, equal to the value given by the Period
property. A thread cannot have the Priority property specified for the case
RMS and EDF cases.

Bus components. The time to transmit a message across a bus depends on
the bandwidth and propagation delay of the bus, given by the Bandwidth and
Propagation Delay properties. In addition, the size of the message needs to be
obtained from the data type of the connection that is bound to the bus. The
data type in AADL is specified by the data component type, which offers the
property Source Data Size.
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Ports. Input event and event data ports of the system are the points where flows
of messages enter the system. Their properties are used to construct event arrival
curves in the RTC model. We use two properties of a data port to capture pa-
rameters of the arrival curve. Property Input Rate specifies a range [rmin, rmax]
of time values. We interpret rmax as the long-term period of the stream and rmin

as the minimum separation d between two events in the (p, j, d) stream model.
If the jitter in the stream needs to be specified, the property Input Jitter is
used. By default, the value of jitter is 0.

If a thread has multiple outgoing ports event, by default an event is produced
on every output port at the end of every invocation of the thread. This can
lead to an overly pessimistic message traffic. More precise information can be
specified using Output Rate property. In its simplest form, the property can
specify a number between 0 and 1, representing the fraction of thread outputs
that are transmitted through the port. This information can be used to bound
event curve and achieve more accurate calculations. More complicated probabil-
ity distributions can be associated with the Output Rate property, which we do
not consider in this work. While RTC analysis techniques do not utilize proba-
bilistic information directly, it appears that such information can still be useful
to improve precision of the analysis. In particular, we plan to investigate how
these distributions can be used to limit bursts of events on the arrival curve.

3.2 Abstract Component Graph Construction

The first stage in the construction of the RTC model is to extract a graph of
dependencies between threads and network messages in the AADL model. Each
node in the graph corresponds to a thread or a network message (that is, AADL
connection mapped to a bus), and each edge represents an event or resource
dependency between them. A precise definition of the graph is given below.
Intuitively, this dependency graph is very close to the graph of abstract compo-
nents, except that some abstract components may contain multiple threads (e.g.
the EDF component, see Section 2.2). In the second stage, we collapse some of
the nodes in the graph together to form abstract components. For the remainder
of this section, the term node refers to a node in the dependency graph.

The graph of dependencies, which we denote D, has its set of nodes partitions
into the following sets of nodes: 1) computation nodes nc; 2) message nodes nm;
3) event source nodes ne; and 4) resource nodes nr. The set nc contains the
node nc

t for every thread t in the AADL model. The set nm contains the node
nm

c for every semantic connection c in the AADL model that is bound to a bus.
The set nr contains the node nr

p (respectively, nr
b) for each processor p or bus

b component in the AADL model. Finally, the set ne contains the node ne
pt for

each input event or event data port pt at the top level of the AADL model and
one node ne

t for each periodic thread t, which represents invocation of the t by
the system timer.

Further, D has the set of directed edges, partitioned into event edges →e and
resource edges →r. Event edges represent the flows of events through the system,
according to the following rules:
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– For each periodic thread t, there is an edge ne
t →e nc

t ;
– For each semantic event connection c with the ultimate source t and ultimate

destination t′, there is an edge nc
t →e nc

t′ if c is not bound to a bus and two
edges nc

t →e nm
c and nm

c →e nc
t′ , otherwise;

– Finally, for each port pt and each thread t that can be reached from pt by
traversing a chain of entry connections, there is an edge ne

pt →e nc
t .

Resource edges are added to represent resource supply. Let t1, t2, . . . , tk be a
sequence of threads mapped to a processor p, such that the order of the sequence
is consistent with the decreasing order of priorities of the threads. That is, if i <
j, the priority of ti is no less than the priority of tj . If p has the EDF scheduling
policy, any order is acceptable. Then, D contains resource edges nr

p →r nc
t1 ,

nc
t1 →r nc

t2 , nc
t2 →r, . . . , →r nc

tk
. For a bus component and connections bound

to it, a chain of resource nodes is constructed in a similar way.
Once D is constructed, we transform it into a graph of abstract components by

adding several auxiliary nodes as described below and by merging the nodes that
have to be processed together. Three kinds of auxiliary nodes are introduced:

– if a node n has multiple incoming event edges, all of them are redirected to
a new merge node n+ and a new edge n+ →e n is added (see Figure 4);

– if a thread t has an output port with the output rate less than one, a scaling
node is added to the respective outgoing edges of the thread node. A scaling
node with factor 0 < q < 1 transforms an event arrival curve by multiplying
both lower and upper bounds of the curve by q;

– a GSC node is added to the incoming event edge of a node corresponding to
a sporadic thread. We discuss this in more detail below.

Let nc
ti
, nc

ti+1
, . . . , nc

ti+j
be the nodes corresponding to threads bound to the

same processor, or connections bound to the same bus, which have equal prior-
ities. In the case of an EDF processor, these would be all threads bound to the
processor. All of these nodes are merged into a new node and any edge incident
to any of these nodes is now incident to the new node.

Once the graph of abstract components is constructed, the RTC model can be
generated in the format accepted by the RTC Matlab toolbox. First, if the graph
contains cycles, the need to be broken to enable fixed point computation. Graph
edges that close cycles are identified by depth-first search of the abstract com-
ponent graph. Whenever a backward edge is found, it is replaced with auxiliary
input stream necessary for the fixed point computation as described at the end
of Section 2.2. Then, the resulting acyclic graph is topologically sorted, and each
node is translated into an abstract component in the format of the RTC Matlab
toolbox. Nodes that correspond to processors with EDF policies are turned into
the EDF abstract components; merged fixed-priority nodes with equal priorities
are turned into FIFO abstract components; finally, nodes that were not merged
appear as GPC components.

Parameters of the abstract components are taken from AADL properties. For
a component that corresponds to a thread or a group of threads, parameters are
obtained from the Compute Execution Time and, in the case of EDF compo-
nents, Deadline properties. For a component that corresponds to a bus message
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or a group of messages, parameters are computed from the Propagation Delay
and Bandwidth properties of the connection, and the size of the message that is
given by the data type of the incident ports. Given the message with the size of
s bytes, which is transmitted over the connection with delay d and bandwidth
b, the resource requirement for the respective abstract component is computed
as b ∗ s + d.

Example. Consider again the example in Figure 1. Assume that proc1 is using
the FPS policy and proc2 is using EDF. Further, let t11 have a higher priority
than t12, and that messages from s1 have higher priority than messages from s2.
Finally, assume that the output rate for port p out1 is 0.8 and for port p out2 it
is 0.2. The graph D for this example is shown in Figure 3. Next, we add auxiliary
nodes to the dependency graph. Both messages from the network and externally
arriving events cause the dispatch of the thread t21, therefore the arrival curves of
the two streams are added together. Also, the output event stream of thread t22
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Fig. 3. Graph of dependencies between threads and messages
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is scaled differently according to the Output Rate properties of its output ports.
The resulting graph is shown in Figure 4. Note that we abuse the notation for
the operator �p for visual convenience, and show scaling factors on the outgoing
edges of the single scaling node. Finally, since threads on the processor proc2 are
scheduled according to EDF, they need to be put together into the same abstract
component. Note that the event edge from t21 to t22 becomes a self-loop, which
would require us to iterate the analysis in order to compute the fixed point. The
graph of abstract components is shown in Figure 5.
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Fig. 5. Graph of abstract components

Sporadic threads. Sporadic threads have the Period property that specified the
minimum separation between incoming events that cause the dispatch of the
thread. The AADL standard specifies that if events arrive more often, they are
queued until minimum separation is achieved. This is exactly the behavior that
GSC components offer. If the value of the thread’s period is p, we create a PJD
curve (p, 0, 0)u – that is, the worst-case curve for a perfectly periodic arrival of
events. This curve is used as the parameter of the GSC component. By placing
this GSC component in front of the GPC component representing the thread, we
achieve the additionalbuffering that differentiates sporadic from aperiodic threads.

Data connections. Unlike event connections considered above, flows along AADL
data connections do not cause thread dispatches. Therefore, these data flows
typically do not appear as input event streams to RTC abstract components.
However, data connections that are bound to buses introduce additional traffic
on the bus and contribute to the delay in transmitting of other messages on
the same bus. Thus, a data connection d from thread t to thread t′ yields an
event message node nm

d in D, in exactly the same was as message nodes for
event connections. We also introduce an event edge from the computation node
nc

t of the source thread node to the message node nm
d . Because this is a data

connection that does not cause dispatch, there is no event edge from nm
d to the

destination thread node nc
t′ .
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4 Case Study

In order to evaluate the proposed transformation and scalability of the analysis,
we conducted a case study of a wireless sensor network architecture based on
the application level ISA100 proposal [8].

4.1 Overview

The case study represents a collection of sensor nodes connected by a multihop
backbone to a gateway, which is in turn connected to a wired network that in-
cludes operator nodes, alarm handlers, history loggers, etc. The architecture of
the system is informally represented in Figure 6. We do not model the wire-
less network explicitly; however, it affects the wireless subsystem in two ways.
On the one hand, the wired network provides a load to the wireless subsystem,
which comes in the form of a stream of operator requests. These requests are
passed by the gateway to the wireless subsystem. On the other hand, other kinds
of load are assumed to directly affect only the gateway. These loads can have
widely varying characteristics, from firmware downloads, which are infrequent
transmissions of large size on the one end of the spectrum; to frequent bursts
of short requests that are handled by the gateway - for example, ARP broad-
cast messages - on the other end of the spectrum. We refer to the latter kind
of load on the wired network as network noise. Although these additional loads
from the wired network are handled by the gateway, they can affect the wire-
less subsystem when it comes to handling flows of messages from sensor nodes.
Messages from sensor nodes need to be transmitted across the wired network.
If the wired network is busy, these messages need to be stored in the gateway,
delaying their processing and increasing the buffer space requirements in the
gateway.

sensor
node

sensor
node

sensor
node

sensor
node

sensor
node

station
operator

history
log

upgrade
center

...

gateway

gateway

wired
network

network

wireless

Fig. 6. System architecture for the case study
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Data communication with sensor nodes. Sensor nodes support three modes of
communication. First, sensor data are periodically published using the TDMA
mechanism. Second, sensor nodes can transmit their status information (referred
to as parameter values) in response to requests from operators. This communi-
cation proceeds in the “client-server” mode using a CSMA protocol, which does
not guarantee the absence of collisions. Finally, sensor nodes can spontaneously
report alarms that indicate abnormal conditions. Alarm handling is described in
detail below. Alarm messages compete with client-server messages for access to
the medium.

In order to minimize the number client-server messages traversing the wireless
network, the gateway uses a cache. When a request for a particular parameter
value arrives, it is checked against the cache and, if found, the value is returned
immediately. Otherwise, the request is forwarded to a sensor node across the
wireless network. The received response is stored in the cache and then returned
to the operator node that issued the request.

Alarm handling. The gateway receives alarm messages from sensor nodes and
forwards them to alarm handlers across the wired network. In order to cope
with bursts of alarms, incoming alarm messages are stored in a FIFO queue.
Each alarm message is acknowledged upon being queued to the node that raised
the alarm. The stream of alarm acknowledgment messages adds to the CSMA
traffic on the wireless network. If the alarm queue becomes full, further incoming
alarms are dropped without being acknowledged. The alarming sensor node, in
that case, eventually times out and retransmits the alarm.

4.2 Architecture Modeling in AADL

We modeled the system in the graphical AADL notation. Figures in this section
are screen captures from the AADL graphical editor developed by the TOP-
CASED project [16]. Figure 7 shows the overall architecture of the system with
one gateway and one sensor node. We model the TDMA and CSMA parts of
the wireless medium as two separate networks1. Note that we do not model the
nodes on the wired network that serve the sources and destinations of message
flows through the system. Instead, we model an open system, where sources and
sinks of message streams are represented as input and output ports. This mod-
eling device allows us to represent parameters of input streams as properties of
the ports and easily vary them in the architecture evaluation. The port labeled
fault is another modeling device that allows us to represent spontaneous raising
of alarms by sensor nodes and capture parameters of alarm streams.

Figure 8 represents the architecture of a gateway. The assumption used in
modeling was that each kind of incoming message is handled by a separate
thread. Ports on the left-hand side of the diagram represent communication on

1 AADL version 2 provides a more natural way of modeling by using virtual buses,
which would reflect that both parts are the same medium. However, AADL 2 lacks
tool support that we needed in this work.
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Fig. 7. AADL architecture of the case study

Fig. 8. AADL architecture of the gateway
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the wired network, while ports on the right-hand side represent wireless commu-
nication.

The top portion of Figure 8 represents the alarm stream. The logger thread
receives alarm messages from the wireless network, puts them into the alarm
queue, and sends acknowledgments back. The handler thread takes alarm mes-
sages from the queue and transmits them across the wired network. Note that
the alarm queue is not represented explicitly. Instead, we utilize the fixed-size
FIFO queue of the input data port of the handler thread defined by the AADL
semantics. Since alarms are dropped when the alarm queue is full, we choose the
Drop Newest value for the Overflow Handling Protocol, which specifies the
behavior of the port in the case of the queue overflow.

The middle portion of Figure 8 represents the parameter request stream. The
dispserver threads accepts operator requests from the wired network, consults
the cache and either returns the parameter value or forwards the request through
the wireless network. The csupdate thread receives the response messages from
the wireless network, updates the cache, and transmits the updated value to the
operator. Note that the sensor values periodically published by sensor nodes are
also stored in the cache and served to operators by the mechanism described
above.

Finally, the bottom part of the diagram shows the additional load imposed on
the gateway by the wired network in the form of firmware updates or network
noise as described above. It is represented by the dlget thread that serves as the
sink for the flow of these messages.

Fig. 9. AADL architecture of the sensor node
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All software on the gateway execute on the same processor under fixed-priority
scheduling. The dlget thread is given the highest priority to maximize the effect of
extraneous loads onto the core of the system. The periodic publish thread has the
next highest priority, followed by the alarm logger thread, alarm delivery thread,
dispserver thread, and, finally, csupdate thread. This priority assignment lets
the client-server communication suffer the most interference from other aspects
of the system. Priority assignments can be easily changed at the AADL level
and analysis can be repeated to stress other parts of the system such as alarm
handling.

Figure 9 shows the architecture of the sensor node. It contains a periodic
thread that publishes sensor data, a fault detection thread that transmits alarms,
a thread to service parameter requests, and a thread that collects alarm acknowl-
edgments. Here, we also assume that the processor uses fixed-priority schedul-
ing, with the periodic publish thread having the highest priority, followed by
the alarm handling thread, client-server thread, and acknowledgment thread, in
that order.

4.3 RTC Model for the Case Study

Figure 10 shows the RTC model of the architecture described above, with one
gateway and one sensor node. Note that the client-server messages on the wireless
network are processed together in one abstract component. All other resources
are assumed to use fixed priorities. The event source node a pub represents the

a_par

TDMA leafgatewaywired

CSMA

a_dl

a_alm

a_pub

Fig. 10. RTC model of the architecture with one sensor node
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Fig. 11. RTC model of the architecture with three sensor nodes

periodic publishing of sensor readings, while the other three event source nodes
correspond to the three input ports of the AADL system in Figure 7.

Figure 11 shows the evolution of the RTC model as more sensor nodes are
added. The part of the RTC model that describes the wired network is unchanged
compared to Figure 10 and is not shown to avoid cluttering the figure. Event
streams from the sensor nodes are merged together before entering the gateway,
and event streams from the gateway to the nodes are split and proportionally
scaled as they enter the sensor nodes. Each sensor node publishes its readings
using a separate TDMA slot, without interference from other nodes. In the RTC
model, every TDMA slot is represented as a separate resource. CSMA commu-
nication happens in the interval that remains after all TDMA slots have been
allocated. This interval is assumed to be contiguous (that is, TDMA slots are
allocated next to each other within the service interval. Note that, as more sen-
sor nodes are added, the CSMA interval becomes smaller, affecting performance
of client-server communication.

One can notice that the RTC model does not capture the following aspect of
the sensor node behavior. If an alarm is not acknowledged by the gateway, the
sensor node is supposed to retransmit the alarm. In the initial version of the
model, we tried to represent this aspect directly: the acknowledgment traffic was
split in some proportion into two flows. One flow, representing acknowledgments,
traveled as client-server messages though the network. This flow is present in the
current model. The other part represented a virtual flow, capturing the fact that
each dropped message causes an invocation of the thread responsible for alarm
transmission. We thus viewed dropped messages as the stream of timeouts, which
was merged, with the appropriate delay, with the flow of faults that also trigger
the same alarm thread. It turns out that this model, which seems more faithful
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to the real system, has two drawbacks. First, it is not clear, in which propor-
tion should the acknowledgment traffic be split. It becomes another parameter
to be provided by the user, who does not have any principled basis to supply
this parameter value. More seriously, the RTC model with such feedback turned
out to be hard to analyze: the fixed point computation did not converge in a
reasonable number of steps, and the processing time of a step increased dramat-
ically with each next iteration. To avoid this problem, the final version of the
model shown above followed a different approach. We assumed that every alarm
is acknowledged, so no retransmissions were necessary. We then calculated the
buffer requirements for the alarm queue. Once the system satisfies the buffer
requirements, no alarms are dropped and the assumption is satisfied.

4.4 Analysis Results

During the analysis, we considered several configurations of the model. The con-
figurations differed in the parameters of the highest-priority load imposed on the
system by the wired network. This turned out to be the most significant factor
to affect the running time of the analysis of a single model instance (that is,
with the number of nodes fixed). Three configurations were explored. Two con-
figurations describe the “firmware download” kind of wired network load. One
had a period of 0.5 hours with very high bursts (jitter equal to 2 hours), and a
minimum separation of 1 minute. The other configuration has a reduced jitter
parameter value equal to 15 minutes with the other parameters unchanged. The
third configuration was the “network noise” load with 1.8 second period, 0.6 sec-
onds minimum separation, and 7.2 seconds jitter. Parameters of configurations
were chosen to be on the opposite ends of the parameter spectrum and do not
directly represent traffic parameters of the real system.

All experiments described below were performed using Matlab version R2007b
and the RTC toolbox Version 1.1 beta 1.03. The platform used was a ThinkPad
T61 laptop with a 2.0 GHz dual-core processor and 1GB of main memory, run-
ning Ubuntu linux.

End-to-end delay calculations. The first set of results describes end-to-end delays
for different event streams in the system. As an example, Figure 12 shows end-to-
end delay of the alarm stream, measure from the moment an fault is detected by
a sensor node to the moment the alarm is delivered to the destination, an alarm
handler node on the wired network. For relatively low network utilization, up
to eight sensor nodes, the calculated delay is growing linearly with the number
of nodes. However, as Figure 12,b demonstrates, once the network capacity is
exceeded, the delay grows up dramatically.

Alarm queue. Figure 13 shows the buffer requirements for the alarm queue as
a function of the number of nodes. In this case, also, we can see that buffer
requirements initially increase linearly with the number of sensor nodes and
then, upon reaching a threshold suffer a sharp increase that indicates that the
network capacity needs to be enhanced.



246 O. Sokolsky and A. Chernoguzov

a)

b)

Fig. 12. End-to-end delay of the alarm stream

Fig. 13. Required alarm queue size
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Scalability. Figure 14 gives the total running times of the experiments as reported
by the RTC toolbox. Clearly, the running time is superlinear with respect to the
number of nodes. Note that not only the total running time of each experiment in-
creases with the range of timing constants in different configurations, but also the
rate of increase (slope of the curve) depends on the range as well. Note, however,
that larger numbers of nodes required more fixed point iterations to complete the
analysis: from four iterations for up to four nodes to six iterations for sixteen nodes.
To account for the increased number of iterations, we also calculated analysis time
per one iteration, which is shown in Figure 15. For comparison, the total time for
the network noise configuration is also shown in Figure 15. Time per iteration can
be seen to grow much slower than the total time.

The obvious conclusion from the data is that RTC-based analysis is sensitive
to the range of time constants. In all cases, the smallest time constant was on

Fig. 14. Total running time of experiments

Fig. 15. Running time per iteration



248 O. Sokolsky and A. Chernoguzov

the range of 1 ms. The bursty firmware download configuration was by far the
most time-consuming configuration to analyze. It had the jitter parameter value
as the largest time constant in the model, and reducing just this value in the
second firmware download configuration improved analysis time dramatically.
Further reducing timing parameters of that event stream in the network noise
configuration improved analysis time further.

5 Conclusions and Future Work

We consider analysis of timing and performance properties of systems expressed
in the architecture description language AADL. We presented an algorithm to ex-
tract from such an architectural model an analytical model based on Real-Time
Calculus, and discussed properties that can be determined using this model. We
applied this analysis technique to a case study based on a wireless sensor net-
work architecture. The case study included modeling of a typical architecture
and analysis of several variants of the model different number of network nodes
and workload parameters and comparative analysis of these configurations.

The case study identified two areas, where this modeling and analysis ap-
proach requires improvement before it can be applied to real industrial-scale
systems. One deficiency is scalability. Current tools allow analysis of relatively
small-scale systems. On the one hand, existing tools can be substantially im-
proved with a more efficient implementation using new data structures for event
curve representation. On the other hand, research is needed into improved algo-
rithms that would reduce the dependency of running time on the range of timing
constants. In the current implementation of RTC, an attempt to combine very
small timing constants (such as the millisecond-level scale of message transmis-
sion) with very large ones (such as the minute-level of scale of periodic sensor
updates) results in a very space-inefficient representation of arrival curves, which
in turn adversely affects analysis running time. The other area that needs im-
provement is the precision of analysis. Results may be excessively conservative,
because arrival curves do not reflect any temporal aspects of flow propagation.
Precision can be improved by incorporating existing techniques for considering
workload variability and event correlations, for example, based on event count
automata [2,12].
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Abstract. In this paper we begin by examining the “certification” of a
consumer product, a baby walker, that is product-focused, i.e., the certifi-
cation process requires the performance of precisely defined tests on the
product with measurable outcomes. We then review current practices in
software certification and contrast the software regime’s process-oriented
approach to certification with the product-oriented approach typically
used in other engineering disciplines. We make the case that product-
focused certification is required to produce reliable software intensive
systems. These techniques will have to be domain and even product
specific to succeed.

1 Introduction

This paper deals briefly with the current state of software certification, why it
is generally ill-conceived and some reasons for how (and why) we landed in this
mess, and suggestions for improving the situation.

2 Motivation

A certification story: Let us start the discussion with an item that has little to
do with software, but is typical of engineered artifacts - a baby walker. Consider
a typical baby walker, as shown in Figure 1.

In recent years, there has been considerable concern regarding the safety and
effectiveness of baby walkers. In reaction to this concern, we can now consider a
certification process we may wish to advocate in order that we may regulate the
sale of particular baby walkers. So, what should be the overall thrust of such a
certification process? Well, humbly we may suggest that we model the process
on certification processes that are common in our domain (software). What may
such a process look like? Perhaps something like the list shown below:

1. Evaluate manufacturer’s development process.
2. Evaluate list of materials used in manufacture of baby walker.
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Fig. 1. A Typical Baby Walker

3. Evaluate manufacturer’s test plan.
4. Evaluate manufacturer’s test results.

Additionally, let us imagine what the manufacturer’s submission to the regu-
lators may contain:

1. Process.
(a) Requirements
(b) Requirements review
(c) Design
(d) Design review
(e) Manufacturing process
(f) Manufacturing process review

2. Materials.
(a) List of materials for each design part
(b) Safety analysis for each material used

3. Test plan.
4. Test results.

Perhaps a little more detail regarding the testing is required. The manufac-
turer decided to test two main problems. The first problem was related to quality
of manufacture. In this regard, a number of tests were planned and performed re-
garding the uniformity of the production line and the degree to which the resulting
baby walkers complied with the specified design. The second problem related to
the tendency of the baby walker to tip. In this regard, two tests of stability were
executed. The first test, shown in Figure 2(a), records the force required to tip
the baby walker when it is stopped at an abutment. The second test, Figure 2(b),
records the moment required to tip the baby walker - simulating a child leaning
over.



252 A. Wassyng, T. Maibaum, and M. Lawford

(a) Stability Test 1 (b) Stability Test 2

Fig. 2. Stability Tests from ASTM Standard F977-00 [1]

So, what may we observe from this example? Our observations may include:

1. It is extremely unlikely that regulators of baby walkers are going to evaluate
the manufacturer’s development process.

2. The regulator may evaluate the manufacturer’s tests, but will definitely run
tests independently.

3. The regulator will examine the materials used in the baby walker and deter-
mine if they expose the baby to potential harm.

4. Important: The regulator is likely to publish and use tests specifically de-
signed to test baby walkers.
(a) For this example, a number of countries published very specific require-

ments for baby walkers. For example, United States Standard ASTM F
977-00 - Standard Consumer Safety Specification for Infant Walkers [1].
The tests mentioned in Figures 2(a), and 2(b) are not nearly sufficient.
A number of dynamic tests have been added to those static tests. The
static tests would have been completely useless in determining whether
a baby in the walker would fall down unprotected stairs.

(b) Product-focus is not a panacea either. Canada banned the use of all baby
walkers, since Health Canada determined that baby walkers are (prob-
ably) not effective, and even product-focused standards may not guar-
antee safety when the product is ill-conceived [2]. The product-focused
standard helped Health Canada arrive at these conclusions, since they
could be confident that the products were designed and manufactured
well enough to satisfy stated requirements, and so the problems were
more fundamental.

Still, it seems strange to us that to certify a baby walker, a
regulator devised a product-based standard and tests baby
walkers to that standard, whereas, to certify a pacemaker
(for example), regulators use generic software process-
oriented standards and regulations!

Government oversight: The easiest software certification to motivate is where
the government mandates licensing/certification anyway. In this case, we want
to make the case to the regulators/certification authorities that product-focused
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certification will result in much more dependable systems than will process-based
certification. We believe that this will improve the objectivity and measurability
of evidence, thus improving the evaluation process, and thus making the certi-
fication process more predictable for all parties. It should also reduce the post-
licensing failure rate and facilitate the identification of the cause. This would
certainly, ignoring political issues, induce regulators to adopt a more product-
focused approach.

Social expectations: Over the past three or four years, we have seen growing
interest in software certification, driven in some cases by the public’s dissatis-
faction with the frailty of software-based systems. Online banking and trading
systems have experienced failures that were widely publicized and have caused
wide-spread chaos. Software driven medical devices have killed people. Security
breaches in software systems have disrupted peoples’ lives. There is no reason
that software systems should not be certified as fit-for-use and safe - just as most
other products are.

Market advantage: There is also a growing realization by commercial compa-
nies that if they can market their software with a warranty, that will give them a
tremendous marketing edge. So, as soon as they can manufacture certified soft-
ware at reasonable cost (and that is the difficulty right now), manufacturers will
be driven to consider software certification through normal marketing forces.

Component assurance/qualification: Many industries have to use compo-
nents manufactured by a myriad of different suppliers. For instance, auto manufac-
turers manufacture some components themselves and buy others from suppliers.
These components are becoming more complex and have to work under stringent
timing constraints. Product-focused standards and certification are going to be
unavoidable if the components are going to be able to deliver dependable service.

Political considerations: Many software producers find the idea of software
regulation anathema: witness the move in various jurisdictions (in the US and
an abortive one in the European Union) to lower the liability of software man-
ufacturers from even the abysmal levels in place today.

Governments are woefully ignorant of the dangers represented by the low or
non-existent levels of regulation in some industries, such as those producing med-
ical devices, cars and other vehicles, financial services, privacy and confidentiality
issues in many information systems, etc.

However, the issue is much too large for us, as a society, to ignore any longer.

3 Current Practice

This section describes approaches to software certification in three different ap-
plication domains. It presents one of our main hypotheses: current practice in
software certification is primarily focused on the process used to develop the
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software, and that process-focused certification is never going to give us enough
confidence that, if a software product is certified, then the product will be effec-
tive, safe and reliable.

The domains we are going to discuss are:

• medical systems (in the U.S.);
• security systems (primarily in Europe, Japan and North America);
• nuclear power safety systems (in Canada).

3.1 Medical Systems

As an example, we will consider, briefly, the regulatory requirements for medical
systems in the U.S. The U.S. Federal Drug Administration (FDA) is responsi-
ble for regulating medical systems in the U.S., and they publish a number of
guidelines on software validation, e.g., [3,4]. The FDA validation approach, as
described in the FDA guidance documents falls short on describing objective
criteria which the FDA would use to evaluate submissions. The documents do
not do a good enough job of describing the artefacts that will be assessed. In
particular, the targeted attributes of these artefacts are not mentioned, and ap-
proved ways of determining their values are never described. The focus of these
documents is on the characteristics of a software development process that is
likely to produce high quality software. It shares this approach and concern with
almost all certification authorities’ requirements (as well as those of standards
organisations and approaches based on maturity, such as CMMI [5]).

3.2 Security Systems

The Common Criteria (CC) [6] for Information Technology Security Evaluation
is an international standard for specifying and evaluating IT security require-
ments and products, developed as a result of a cooperation between many na-
tional security and standards organisations. Compared with the FDA’s approach
for medical systems, the CC has a more systematic and consistent approach to
specifying security requirements and evaluating their implementation. The CC
does fall into the trap of prescribing development process standards (ISO/IEC
15408) in detail, but, on the other hand, it does a much better job than the FDA
guidelines of being measurement oriented.

One very good idea in the CC is that it defines seven levels of assurance, as
shown below.

EAL1: functionally tested
EAL2: structurally tested
EAL3: methodically tested and checked
EAL4: methodically designed, tested and reviewed
EAL5: semiformally designed and tested
EAL6: semiformally verified design and tested
EAL7: formally verified design and tested
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It is interesting to note that formal methods are mandated, if only at the
highest levels of assurance. Testing occurs at all levels, reinforcing that all certi-
fication regimes place a huge emphasis on testing. In keeping with a wide-spread
movement in trying to make software engineering more of an engineering dis-
cipline, we see that CC has introduced the concept of “methodical” processes
into their assurance levels. Our only cause for concern in this regard, is that
the CC community does not seem to require the process to be both methodical
and formal (or semi-formal). We do not agree with this, since formality really
relates to the rigour of the documentation. It does not necessarily imply that
the process is systematic/methodical.

The taxonomy of the CC describes Security Assurance Requirements (SARs)
in terms of action elements for the developer, and for the content and presen-
tation of the submitted evaluation evidence for the evaluator. Each evaluator
action element corresponds to work units in the Common Evaluation Method-
ology [7], a companion document, which describes the way in which a product
specified using the CC requirements is evaluated. Work units describe the steps
that are to be undertaken in evaluating the Target of Evaluation (TOE), the
Security Target (security properties of the TOE), and all other intermediate
products. If these products pass the evaluation, they are submitted for certifica-
tion to the certification authority in that country.

There are a number of important principles embedded in this approach: the
developer targets an assurance level and produces appropriate evidence that
is then evaluated according to pre-determined steps by the certifier; this un-
doubtedly helps in making the certification process more predictable; and the
certification process is designed to accommodate third-party certification.

3.3 Canadian Nuclear Power Safety Systems

While proponents of formal methods have been advocating their use in the devel-
opment and verification of safety critical software for over two decades [8,9,10],
there have been few full industrial applications utilizing rigorous mathematical
techniques. This is in part due to industry’s perception that formal methods
are difficult to use and fail to scale to “real” problems. To address these con-
cerns, a method must supply integrated tool support to automate much of the
routine mechanical work required to perform formal specification, design and
verification.

There have been some notable industrial and military applications of tool
supported formal methods, especially for the analysis of software systems re-
quirements (e.g., [11,12,13,14]). Unfortunately, the formal methods advocates
concerned, typically were not given the opportunity to fully integrate their
techniques with the overall software engineering process. As a result these ap-
plications required at least some reverse engineering of existing requirements
documents into the chosen formalism. A potential problem of this scenario is
that two requirements specifications may result: the original, often informal,
specification used by developers; and the formal specification used by verifiers.
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An example of this problem occurred in 1988. Canadian regulators were strug-
gling with whether to licence the new nuclear power station at Darlington in On-
tario. At issue was the “certification” of the shutdown system - it was the first
software controlled shutdown system in Canada. The regulators turned to Dave
Parnas for advice, and his advice was to require formal proofs of correctness as
well as other forms of verification and validation. The regulators and Ontario
Hydro - OH (now Ontario Power Generation - OPG) worked together to agree
on an approach to achieve this. Most of the time, OH prepared process docu-
ments and interacted with the regulator to obtain an agreement in principle.
The correctness “proofs” were eventually delivered to the regulator (more than
twenty large binders for the two shutdown systems), and a walkthrough was con-
ducted for each of the shutdown systems [15,16]. The end result was a licence to
operate the Darlington Nuclear Generating Station. However, the regulator also
mandated a complete redesign of the software to enhance its maintainability.

As a result, OPG, together with Atomic Energy of Canada Limited (AECL),
researched and implemented a new safety-critical software development process,
and then used that process to produce redesigned versions of the two shutdown
systems [17]. As a start, OPG and AECL jointly defined a detailed engineer-
ing standard to govern the specification, design and verification of safety-critical
software systems. The CANDU Computer Systems Engineering Centre of Excel-
lence Standard for Software Engineering of Safety Critical Software [18] states
the following as its first fundamental principle:

The required behavior of the software shall be documented using math-
ematical functions in a notation which has well defined syntax and se-
mantics.

Not only was the software redesigned along information hiding principles, but
new requirements documents were also produced. These requirements are for-
mally described, primarily through the use of tabular expressions (function ta-
bles) [19]. In fact, the current implementation of the software engineering process
makes extensive use of tool supported tabular expressions [20]. The process re-
sults in the production of a coherent set of documents that allows for limited
static analysis of properties of the requirements. The process also includes a
mathematical verification of the design, described in the Software Design De-
scription (SDD), against the software requirements documented in the Software
Requirements Specification (SRS). This project is then an example of one in
which, from the start, the software development process itself was designed to
use formal methods and associated tools to deliver evidence for the licensing
(certification) of the resulting system.

A model of the process, including integrated tool support, that was applied to
the Darlington Nuclear Generating Station Shutdown System One (SDS1) Trip
Computer Software Redesign Project is shown in Figure 3.

The Darlington Shutdown Systems Redesign Project represents one of the
first times that a production industrial software engineering process was de-
signed, successfully, with the application of tool supported formal methods to
specification and verification as a primary goal. As we have seen, this was
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necessitated by regulatory requirements, a situation that is becoming increas-
ingly common for industries utilizing software in safety-critical applications. The
major factors considered in choosing the particular formal methods for the Re-
design Project were: (i) learning curve and ease of use and understanding of
the formal specifications, (ii) ability to provide tool support, and (iii) previous
history indicating the ability to successfully scale to industrial applications. We
now address these three points in more detail.

Since tables are frequently used in many settings and provide important in-
formation visually, they are easily understood by domain experts, developers,
testers, reviewers and verifiers. From the original Darlington licensing experi-
ence, and a trial example of the same verification procedure applied to a smaller
scale Digital Trip Meter System [21], OPG had strong evidence that a verification
procedure using tabular methods would meet the requirements of the Redesign
Project. OPG’s confidence in the use of tabular expressions was re-affirmed by
domain experts working on SDS1 being able to read and understand the formal
requirements specifications, documented almost exclusively by tabular expres-
sions. Also, tabular expressions provide a mathematically precise notation with
a formal semantics [19]. Other methods such as VDM or Z utilize unfamiliar
notation and special languages with a significant learning curve [22]. The OPG
Systematic Design Verification (SDV) procedure avoids this problem through
the use of tabular notation in both the requirements and design documents
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utilized by all project team members. To create the tabular specifications, cus-
tom “light-weight” formal methods tools (in the sense of [23,24]) are used to help
create and debug the tables from within a standard word processor. To perform
the verification these tools then extract the tables from the documents and gen-
erate input files for SRI’s Prototype Verification System (PVS) automated proof
assistant [25].

Tabular methods are well suited to the documentation of the Shutdown Sys-
tem’s control functions that typically partition the input domain into discrete
modes or operating regions. Some of the other major benefits of this, and other,
tool supported formal methods, include:

• Independent checks which are unaffected by the verifier’s expectations,
• Domain coverage through the use of tools that can often be used to check all

input cases – something that is not always possible or practical with testing,
• Detection of implicit assumptions and ambiguous/inconsistent specifications,
• Additional capabilities such as the generation of counter-examples for de-

bugging, type checking, verifying whole classes of systems, etc.

The creation of the specialized tools that allowed verification to be done with
the help of PVS played a large role in making the methods feasible for the
larger Redesign Project. A further reason for the adoption of tabular methods
is that they have been successfully applied to a wide variety of applications. In
particular, they have been used successfully with PVS on problems such as the
verification of hardware division algorithms similar to the one that caused the
Pentium floating point bug [26].

There are some important points to note about the licensing of the redesigned
Darlington Shutdown Systems. Compared with the licensing process for the orig-
inal system, the redesign licensing process progressed remarkably smoothly. A
major contributing factor was that the manufacturer (OPG) had asked the reg-
ulator to comment ahead of time on the deliverables for the licensing process. It
is true that the regulator wanted to understand (and comment on) the software
development process that was to be used in the project. However, the regulator’s
primary role was to evaluate the agreed upon set of deliverables. The evaluation
was more in the form of an audit, in that post factum, the regulator specified a
slice through the system for which a guided walkthrough was held. The regulator
also reviewed major project documents.

3.4 Software Engineers Get It Wrong Again!

The aim of certification is to ascertain whether the product, for which a certifi-
cate is being sought, has appropriate characteristics. Certification should be a
measurement based activity, in which an objective assessment of a product is
made in terms of the values of measurable attributes of the product, using an
agreed upon objective function.

Given the choice between focusing on process or product as a means of assess-
ing whether software intensive systems possess the appropriate characteristics,
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Software Engineers have again made the wrong choice. Classical engineers invari-
ably use product-focused assessment and measurement in evaluating manufac-
tured products. Software products are typically evaluated using process-focused
standards. This is tantamount to trying someone on a murder charge - based
solely on circumstantial evidence! The process based guarantee is a statistical
one over all products, not a guarantee of an individual product.

The focus on CMM (and now CMMI) and other process-oriented standards
was (perhaps) necessary to force companies to begin adopting proper engineering
methods, but CMMI, as an example, has not progressed to the point where it
achieves this.

We are advocating a product-focused approach to software certification - we
are not saying, however, that software certification regimes should completely
ignore the software process. We believe we will always need some notion of
an idealized software development process in the software certification process.
The idea is similar to Parnas and Clement’s exhortation to “fake it” [27], in
that there has to be agreement on mandatory documents produced during the
software development process. For example, a simplified version of the SDS1
development process (Figure 3), could describe a mandated idealized process (see
Figure 4 for example), and the certifiers could then evaluate product evidence
such as documents and the application itself, without any consideration given
to the quality of the development process that actually was followed.
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4 Evaluating Process Is Easier

An obvious question arises: “Why did we (software engineers) turn to evaluating
process rather than evaluating the final product(s) directly”? The answer, as
usual in multi modal disasters, is complicated.

Evaluating the software development process is much easier than evaluating
the software product itself.

• We have no real consensus on absolutely essential metrics for products.
• Ironically, even if we did have consensus on essential metrics, what metrics

would help us evaluate the dependability of software products directly?
• It is widely accepted that testing software products completely is not possi-

ble. One of the major differences between software products and more tradi-
tional, physical products, is that the principle of continuity does not apply
to software products. Since software engineers felt that even a huge num-
ber of test cases could not guarantee the quality of the product, we turned
to supportive evidence, hoping that layers of evidence will add up to more
tangible proof of quality/dependability.

Other disciplines introduced an emphasis on process. From general manu-
facturing to auditing, the world started putting more and more emphasis on
process. We should be clear - there is a huge difference between the manufacture
of a product and the certification of that product. We need good manufacturing
processes and we also need effective certification processes. We have no hesita-
tion in agreeing that a company needs a good software development process.
When we discuss the difference between process-focus and product-focus, we are
really looking at where the certification process should place its emphasis. The
world-wide emphasis on manufacturing process made it easy for software certi-
fiers/regulators to concentrate on evaluating a manufacturer’s software develop-
ment process and thus appear to be achieving something worthwhile in terms
of certifying the manufacturer’s products. We think that certification standards
like CMMI and ISO 9000 tell us about the care and competence with which a
company manufactures its products. It tells us very little directly about a specific
product manufactured by the company.

5 Engineering Methods

We want to make the distinction between a proper engineering method, on the
one hand, and having a well defined process as usually understood in software
engineering, on the other hand. We begin by discussing the nature of engineering
as a discipline. Over the years, engineering has been defined in a number of ways.
A useful definition of engineering is the one used by the American Engineers’
Council for Professional Development (AECPD). It defines Engineering as: “The
creative application of scientific principles to design or develop structures, ma-
chines, apparatus, or manufacturing processes, or works utilizing them singly
or in combination; or to construct or operate the same with full cognizance of
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their design; or to forecast their behavior under specific operating conditions;
all as respects an intended function, economics of operation and safety to life
and property.” Within this context, we need to consider what it means to use
“engineering methods”. A classic description of the Engineering Method was pre-
sented by B.V. Koen [28] in 1985. Koen presents the view that the Engineering
Method is “the use of engineering heuristics to cause the best change in a poorly
understood situation within the available resources”. When one reads the expla-
nation of this, it becomes clear that Koen is talking about a systematic process,
that uses a set of state-of-the-art heuristics to solve problems. He also makes
the point that the state-of-the-art is time-dependent. Before we discuss software
engineering in particular, we lay the foundation by exploring concepts in the
epistemology of science and engineering, and how they fit into the framework
envisaged by the AECPD. We begin below by outlining the difference between
engineering method and the use of craftsmanship principles based on intuition,
but not proper science.

5.1 Engineering Intuition

(Sections 5 and 6 are heavily based on extracts from [29,30,31].) We typically
think of intuition as the ability to know something without having to reason
about it, or without being able to give a proper explanation, in the sense of
science or engineering, of it. We have “intuitive” people in all walks of life -
including engineering. In fact, we would go so far as to say that one role of a
university engineering education is to try to foster “engineering intuition”. How-
ever, we also claim that engineering intuition is not sufficient for the solution of
engineering problems. We believe that engineering intuition guides the engineer
in the choice of heuristics to try in the current problem. The engineering method,
on the other hand, constrains the engineer to apply and test those heuristics in
a very systematic way. So, intuition is not the difference between solving the
problem and not solving it. Rather, it affects the speed with which the engineer
arrives at a solution.

Exacerbating this intuition-science based engineering gap, it is our observa-
tion that there is a fundamental confusion between the scientifically and math-
ematically based practice of engineers and the day-to-day use of mathematics
in the engineering praxis. This confusion results in discussions about “formal”
versus “rigorous” (e.g., in the formal methods community), as if the dichotomy
being explored was that between science/mathematics, on the one hand, and
engineering, on the other. Actually, this difference resides completely in the sci-
ence/mathematics camp. Only ‘good” mathematicians and scientists are capa-
ble of doing rigorous mathematics. They know when they can leave out steps in
proofs because they know or they are confident (they have good intuition) that
the gaps can be filled. More typical mathematicians, scientists and engineers
are not so good at doing this and have to rely more on not leaving such big
gaps, or any at all. Thus less skilled mathematicians and scientists are capable
of using only the formal, formulaic versions. Engineers use quite different scien-
tific principles and mathematical techniques in their daily work [32]. It is with
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respect to these practical uses of mathematics and science that engineers develop
“intuitions”. (The hydraulic engineer called in to resolve a knotty problem cer-
tainly recalled Bernoulli’s equations when his intuition told him that the relation
between the diameter of the tube and its effect on water flow is not linear, a rec-
ollection that enabled him to explain certain water shortages at Neuschwanstein
castle in upper Bavaria, a shortage that the operatic stage designer who de-
signed the castle could not explain.) In [29], Haeberer and Maibaum formulated
a number of ad hoc principles that we would like to put forward and discuss.
We will do this in the context of some ideas from epistemology that we believe
can provide a framework for discussions of the nature of (Software) Engineering
and for forming critical judgments of contributions to research and practice in
the subject. The principles are:

1. Intuition is a necessary but not sufficient basis for engineering design.
2. Intuitions are very difficult to use in complex situations without well-founded

abstractions or mental models. (The term “mental model” is used here as
a synonym of a somewhat vague abstraction of a /emphframework in the
Carnapian sense; see below.)

3. An engineer has our permission to act on intuition only when:
• Intuitions can be turned into mathematics and science, and
• Intuitions are used in the context of normal design processes (see below).

4. The abstractions, mental models, cognitive maps, ontologies used by engi-
neers are not the same as those used by mathematicians and scientists.

5.2 Carnap’s Statement View

Carnap’s Statement View of Scientific Theories provides a setting for discussing
these issues [33,34,35]. The primary motivation for the Statement View was to
explain the language (and practice) of science. Haeberer and Maibaum, [29,30],
adapted it to engineering and provided a framework to discuss issues such as
intuition, method, and mathematics. According to Carnap, a scientific theory,
relating some theory to observable phenomena, always has two disjoint sub-
theories: a theoretical one, not interpreted in terms of observable entities, and
a purely observational one, related by a set of correspondence rules (often mea-
surement procedures), which connect the two subtheories. According to Carnap’s
metaphilosophy, when we state some theory (or set of theories) to explain a set
of observations stated in the observational language, therefore constructing an
instance of the Statement View, we are putting in place a framework by making
some ontological commitments. Once a framework is established, we automati-
cally divide our (scientific) questions into two disjoint subsets, so-called internal
questions (e.g., is it true that E = mc2, and is it true that the halting problem
is undecidable in the classical computability framework?) and so-called external
questions (e.g., does Church’s thesis provide a useful model of computation or
not?). To assert that something is of utility, we must have in mind some task for
which it is to be of utility.
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Engineering, perhaps unlike science, is a normative subject. In our case, we
are interested in discussing software engineering as a proper engineering disci-
pline and use it as a basis for certifying its artefacts. That is, we want to ensure
that the framework (in the Carnapian sense) is of utility in accomplishing the
stated or intended purposes of engineering, generally, and software engineering,
in particular. According to Vincenti [32], the day-to-day activities of engineers
consist of normal design, as comprising the improvement of the accepted tradi-
tion or its application under ‘new or more stringent conditions’ ”. He goes on to
say: “The engineer engaged in such design knows at the outset how the device in
question works, what are its customary features, and that, if properly designed
along such lines, it has a good likelihood of accomplishing the desired task”.
Note the relationship to the definition of engineering above and Koen’s view of
engineering.

6 What Makes Software Engineering an Engineering
Discipline?

The ongoing debate on engineering versus intuition motivated Haeberer and
Maibaum to investigate the epistemology of software engineering, the role of
mathematics in the software engineering curriculum, and the engineering nature
of software engineering. This section is very heavily based on portions of that
work, [29]. Mathematics is undoubtedly an essential tool in engineering. There
are software engineers who still claim that mathematics is not necessary for
producing software. Luckily, fewer and fewer are willing to say this. The real
problem here is not the fact that mathematics is necessary, but that people
tend to associate the mathematics required with that of theoretical computer
science, rather than some appropriate engineering mathematics. In addition,
many software engineers underestimate the importance of the role of heuristics
(see Koen) and systematic method (see Vincenti), used in engineering to guide
and constrain intuition.

Vincenti [32] argues the case for engineering being different, in epistemologi-
cal terms and, consequently as praxis, from science or even applied science: “In
this view, technology, though it may apply science, is not the same as or entirely
applied science”. GFC Rogers [36] argues that engineering is indeed different
from science. He argues this view based on what he calls “the teleological dis-
tinction” concerning the aims of science and technology: “In its effort to explain
phenomena, a scientific investigation can wander at will as unforeseen results
suggest new paths to follow. Moreover, such investigations never end because
they always throw up further questions. The essence of technological investi-
gation is that they are directed towards serving the process of designing and
manufacturing or constructing particular things whose purpose has been clearly
defined. [...] It is also more limited, in that it may end when it has led to an
adequate solution of a technical problem.” He makes a further claim: “Because
of its limited purpose, a technological explanation will certainly involve a level of
approximation that is certainly unacceptable in science (our emphasis).” Going
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back to the distinctions between the aims of science and engineering, we have,
again from [36]: “We have seen that in one sense science progresses by virtue of
discovering circumstances in which a hitherto acceptable hypothesis is falsified,
and that scientists actively pursue this situation. Because of the catastrophic
consequences of engineering failures - whether it be human catastrophe for the
customer or economic catastrophe for the firm - engineers and technologists must
try to avoid falsification of their theories. Their aim is to undertake sufficient
research on a laboratory scale to extend the theories so that they cover the
foreseeable changes in the variables called for by a new conception.

So science is different from engineering. Proceeding on this basis, we can
ask ourselves what the praxis of engineering is (and ignore, at least for the
moment, the specifics of scientific praxis). Vincenti defines engineering activities
in terms of design, production and operation of artefacts. Of these, design and
operation are highly pertinent to software engineering, while it is often argued
that production plays a very small role, if any. In the context of discussing the
focus of engineers’ activities, he then talks about normal design as comprising
“the improvement of the accepted tradition or its application under new or more
stringent conditions’ ”. He goes on to say: “The engineer engaged in such design
knows at the outset how the device in question works, what are its customary
features, and that, if properly designed along such lines, it has good likelihood
of accomplishing the desired task” (see [34].)

Another important aspect of engineering design is the organizing principle of
hierarchical design: “Design, apart from being normal or radical, is also multilevel
and hierarchical. Interesting levels of design exist, depending on the nature of
the immediate design task, the identity of some component of the device, or
the engineering discipline required.” An implied, but not explicitly stated, view
of engineering design is that engineers normally design devices as opposed to
systems. A device, in this sense, is an entity whose design principles are well
defined, well structured and subject to normal design principles. A system, the
subject of radical design, in this sense, is an entity, which lacks some important
characteristics making normal design possible. Examples of the former given
by Vincenti are aeroplanes, electric generators, turret lathes; examples of the
latter are airlines, electric-power systems and automobile factories. The software
engineering equivalent of devices may include compilers, relational databases,
PABXs, etc. Software engineering examples of systems may include air traffic
control systems, mobile telephone networks, etc. It would appear that systems
become devices when their design attains the status of being normal. That is,
the level of creativity required in their design becomes one of systematic choice,
based on well-defined analysis, in the context of standard definitions and criteria
developed and agreed by engineers. This is what makes everyday engineering
practice possible and reliable.

Let us now consider the particular characteristics of software engineering as a
discipline. We want to address the question: “Is the knowledge used by software
engineers different in character from that used by engineers from the conven-
tional disciplines?” The latter are underpinned not just by mathematics, but
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also by some physical science(s) - providing models of the world in terms of
which artefacts must be understood. (The discussion above illustrates this sym-
biosis.) We might then ask ourselves about the nature of the mathematics and
science underlying software engineering. It is not surprising, perhaps, that a large
part of the mathematics underlying software engineering is formal logic.

Logic is the mathematics of concepts and abstractions. Software engineering
may be distinguished from other engineering disciplines because the artefacts
constructed by the latter are physical, whereas those constructed by the former
are conceptual. There are some interesting and significant differences between the
two kinds of mathematics and engineering mentioned above. One of these is that
the real world acts as a (physical) constraint on the construction of (physical)
artefacts in a way which is more or less absent in the science and engineering
of concepts and abstractions. There seems to be a qualitative difference in the
dimensions of the design space for software engineering as a result.

What distinguishes the theoretical computer science and software engineering
dependence on logic is the day-to-day invention of theories (models) by engineers
and the problems of size and structure introduced by the nature of the artefacts
with which we are dealing in software engineering. Now, the relationship between
the mathematics of theoretical computer science and that of (formal methods
and) software engineering should be analogous to the difference between con-
ventional mathematics and its application and use in engineering. As an exam-
ple, program construction from a specification has a well-understood underlying
mathematics developed over the last 25 years. (We are restricting our attention
to sequential programs. Concurrency and parallelism are much less mature top-
ics.) We might expect to find a CAD tool for program construction analogous
to the “poles and canvas” model used in electronics for the design of filters. In-
stead, what we find is just a relaxation on the exhaustiveness requirement, i.e.,
we can leave out mathematical steps (proofs of lemmas) on the assumption that
they can be filled in if necessary, the so-called rigorous approach. Where is the
abstract model (analogous to the “poles and canvas” one) that encapsulates the
mathematics and constrains manipulation in a (mathematically / scientifically)
sensible manner?

6.1 An Epistemological Framework for Software Engineering

As Carnap (and others) have pointed out, an ontological framework, cannot be
said to be correct or incorrect, it can only be of some utility, or not. Hence,
in discussing a framework for software engineering, we are left with the task of
convincing our colleagues that the proposed framework will be of some utility.
We outline some details of the software engineering framework we proposed in
terms of Figure 5, illustrating that we can give the diagram a semantics. That is,
all the objects and relationships and processes denoted by the diagram could be
given exact, mathematical/scientific definitions. (We say “could” because some
of the relationships are presently the subject of research!) Nor do we claim that
this is the only framework of utility for software engineering. (We only induce the
reader to think about it as to be the last word in software engineering frameworks
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Fig. 5. Carnapian Framework for Software Engineering from [29]

by means of the background omega letter!) There may be others, more or less
detailed, that are of equal utility. Actually, to assert that something is of utility,
we must have in mind some task for which it is to be of utility. In our case, we are
interested in making software engineering a proper engineering discipline (see,
e.g., [30]) and supporting the practice of certification. Superficially, the elements
of the diagram (objects and relationships) are just a more or less detailed version
of diagrams used to represent the development process of software systems from
conception to final realization as an executable system. As examples to illustrate
that the elements of the diagram can be formalized, we give the following def-
initions: Correctness is a relation between two constructed artefacts asserting
that the properties required by one are preserved in the other. Preservation of
properties may be mediated by translation (between ontologies). Also, preserva-
tion does not exclude the inclusion of new (consistent) properties. Validation is
the activity of determining, by means of experiments (i.e., testing), whether or
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not we are constructing the appropriate positive analogy. Positive analogy is a
relation between two entities (frameworks) consisting of a map between the two
underlying ontologies (an interpretation between languages), which correlates
positively (in the sense of essential and non-negative) properties of the source
of the mapping with the positive properties of the target. We call the source
an iconic model of the target. Testing is the application of tests. A test is an
experiment to determine if some entity may have (can be assumed to have) some
ground property (in the sense of logic).

We can use the framework to demonstrate the necessity of testing. We say
that a relation is epistemological if it cannot, in principle, be formally (i.e.,
mathematically) corroborated. Hence, whether the relation holds or not is in-
herently contingent. That is, the existence of the relationship requires some form
of testing (or experiment, in the sense of science) for its establishment. Despite
its logical character, the truth of a logical relation is often checked by verifica-
tion testing, in which case the character of this truth becomes contingent. The
truth of an epistemological relation cannot be definitively established, just as a
scientific theory cannot be “proved” once and for all.

6.2 Evidence and Measurement

Certification of any form requires evidence supporting the case for certification
and judgements based on this evidence (the utility function mentioned above).
The framework outlined above is intended to provide the foundation for building
a framework for certification. The epistemological basis of science has established
the principles and practice of using evidence in science. The adaptation to engi-
neering ([29,30,31]), and software engineering in particular, enables us to apply
informed judgements about proposals related to software development and cer-
tification. In particular, it provides a setting in which definitions of measurable
attributes of software and their role in certification can be scientifically assessed.
It also enables us to attempt assessments of their utility for the objectives of
certification. It is on this basis that process-based approaches to certification
should be rejected as insufficient to make certification judgements. The process-
based assessment may well provide a statistical basis for confidence about the
products of the process. But it does not provide sufficient levels of confidence
about a particular product. The only way to obtain sufficient confidence about
the product itself is to measure relevant product attributes and then make a
judgement based on this evidence. Normally, in science, it is not sufficient for
experiments to usually be successful in verifying some hypothesis about a theory.
If an experiment fails to verify the hypothesis, there are only two possibilities:
the experimental procedure was faulty, or the theory on which the hypothesis
was based is false. (The former is probably the more usual cause for failure.) In
the case of process-based predictions, there is a third possibility, namely that
the process-based evidence was incorrect in relation to this particular product.
Hence, the process-based approach does not pass the utility test: it fails to be
reliable enough, and cannot, in principle, be “improved” to overcome this short-
coming. There is a lot more that could usefully be learned from the epistemology
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of science and engineering. In particular, the concept of explanation in science
([37]) might form a useful basis for assessing the evidence produced by a man-
ufacturer to support the licensing of a product. A basic question that needs to
be asked during the assessment of the evidence is: Does the evidence provide a
sufficiently good explanation (in this technical sense borrowed from epistemol-
ogy) of the effectiveness and safety of the product to be accepted as a guarantee
warranting certification? However, we shall not pursue this interesting topic here.

7 The Certification Initiative

In mid-2005, a number of researchers in academia and industry decided to start
working on a Certification Initiative. The initiative was spearheaded by members
of the Software Quality Research Laboratory (SQRL) at McMaster University in
Canada, primarily Alan Wassyng, Tom Maibaum, Mark Lawford and Ryszard
Janicki. Within a very short time, a small group of “Founding Members” was
formed:

• SQRL faculty - McMaster University (Canada)
• Jo Atlee, University of Waterloo (Canada)
• Marsha Chechik, University of Toronto (Canada)
• Jonathan Ostroff, York University (Canada)
• Stefania Gnesi, ISTI-CNR (Italy)
• Connie Heitmeyer, NRL (USA)
• Brian Larson, Boston Scientific (USA)

The idea was to put software certification on the primary research agenda,
and a number of activities have since resulted directly from this initiative.

7.1 The PACEMAKER Grand Challenge

With some encouragement from SQRL and Jim Woodcock, Brian Larson of
Boston Scientific (Guidant), worked hard to release a natural language spec-
ification of a ten year-old model of a pacemaker. The specification forms the
basis of a Grand Challenge to the software engineering community [38]. The
PACEMAKER specification has also been used as a project for the first Student
Contest in Software Engineering (SCORE) that is part of the 31st International
Conference on Software Engineering (ICSE 2009). A reference hardware platform
was designed by students at University of Minnesota, supervised by Brian Lar-
son, and Mark Lawford arranged to have 50 (slightly modified) PACEMAKER
boards manufactured. They have been available through SQRL [39] for use in
the PACEMAKER Grand Challenge, SCORE, and other academic endeavours.

The benefits we hope to realize from the PACEMAKER Grand Challenge and
related activities are:

• Demonstrate the state-of-the-art in safety-critical software development.
• Provide a comparison of development methods.
• Develop product-focused certification methods.
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7.2 The Software Certification Consortium

During 2007, SQRL researchers and Brian Larson spearheaded the formation
of the Software Certification Consortium (SCC). Its purpose is to develop and
promote an agenda for the certification of systems containing software (ScS),
by forming a critical mass of industry, academic and regulatory expertise in
this area. We held an inaugural meeting in August 2007, at SEI’s Arlington
location, and two further meetings in December 2007 (hosted by Mats Heimdahl,
University of Minnesota) and late April 2008 (hosted by Austin Montgomery and
Arie Gurfinkel, SEI). The current steering committee for SCC is:

• Richard Chapman (U.S. Federal Drug Administration)
• John Hatcliff (Kansas State University)
• Brian Larson (Boston Scientific)
• Insup Lee (University of Pennsylvania)
• Tom Maibaum (McMaster University)
• Bran Selic (Malina Software)
• Alan Wassyng (McMaster University)

A description of the goals of SCC, its objectives, and SCC’s view of the major
hurdles facing us in meeting those objectives was presented at SafeCert 2008
[40]. The goal of certification, SCC’s goals and objectives are repeated below.
The hurdles and their descriptions are also paraphrased below.

Goal of Certification - SCC: The Goal of Certification is to systematically
determine, based on the principles of science, engineering and measurement the-
ory, whether an artefact satisfies accepted, well defined and measurable criteria.

SCC Objectives:

(i) To promote the scientific understanding of certification for Systems con-
taining Software (ScS) and the standards on which it is based;

(ii) To promote the cost-effective deployment of product-focused ScS certifica-
tion standards;

(iii) To promote public, government and industrial understanding of the con-
cept of ScS certification and the acceptance of the need for certification
standards for software related products;

(iv) To investigate and integrate formal methods into ScS certification and de-
velopment;

(v) To co-ordinate software certification initiatives and activities to further
objectives i-iv above.

Goals to Achieve SCC Objectives: The Primary Goals are:

(i) Develop and document generic certification models that will serve as a
framework for the definition of domain specific regulatory and certification
requirements; and
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(ii) Proof of concept: Develop and document software regulatory requirements
that help both developers of the software and the regulators of the soft-
ware in the development of safe, reliable software applications in specific
domains.

A number of Detailed Goals were also identified: (i) Use existing software en-
gineering and formal methods knowledge to develop appropriate evidence-based
standards and audit points for critical software in specific domains, including
hard real-time, safety-critical systems; (ii) Create software development meth-
ods that comply with the above standards and audit points for the development
of critical software; and (iii) Research and develop improved methods and tools
for the development of critical software.

Hurdles in Achieving Objectives: During the December 2007 SCC meeting,
participants identified the following 9 hurdles. The first 4 of these were voted
as the top 4 hurdles, in the order shown. The remaining 5 hurdles were not
prioritized.

1. Clarity of regulator’s expectation and method of communicating with the
regulator. Application developers do not know what to produce, and often
have to pay consultants - who get it wrong.

2. Lack of clear definition of evidence and how to evaluate it. We know very
little about the effectiveness of attributes and metrics related to dependability,
and do not really understand how to combine different evidentiary artefacts.

3. Poor documentation of requirements and environmental assumptions. We
need accurate and complete requirements in order to produce evidence of
compliance. Poor requirements invariably lead to poor products.

4. Incomplete understanding of the appropriate use of inspection, testing and
analysis. We do not know when to use inspection, testing and mathematical
analysis to achieve specific levels of dependability.

• No overarching theory of coverage that enables coverage to accumulate across
multiple verification techniques. In our opinion, this is the most important
hurdle of all. It was not voted #1 simply because it was felt that we need to
tackle easier hurdles first. We know of no single quality assurance technique
that is solely sufficient for effective certification. Each of these techniques
differs in strength of properties verified, types of behaviours covered, and the
life-cycle stage in which they are most naturally applied. Sharing coverage
across techniques via a single unified framework will enable the successes
of one technique to reduce the obligations of associated techniques, and will
clarify gaps in verification that must be filled by other techniques. The most
convincing arguments of correctness will rely on being able to accurately state
in quantitative ways how multiple verification techniques each contribute ev-
idence of overall correctness.

• Theories of coverage for properties like timing, tolerances as well as concur-
rent programs. Structural coverage for testing plays a key role in development
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and certification of safety-critical software. Existing coverage measures fail to
take into account properties such as timing and tolerance ranges for data values
and the degree to which interleavings in concurrent computations are exercised
As a result, even development efforts that succeed in achieving high levels of
mandated coverage measures often fail to fully explore and validate common
sources of program faults.

• Hard to estimate a priori the V&V and certification costs. Currently, it is
difficult to make a business case for the introduction of formal techniques,
because it is difficult to estimate both the time required to carry out vari-
ous forms of formal analysis and the reductions that can be obtained either
in costs of the certification process itself or long-term costs associated with
fewer defects found late in the development life-cycle, greater reuse in subse-
quent development of similar systems, fewer recalls of deployed systems, and
decreased liability costs.

• Lack of interoperable tools to manage, reason, and provide traceability.
• Laws, regulation, lawyers and politics. Certification has legal implications,

and as difficult as the technical problems may be, political considerations
complicate the process immeasurably.

8 Research Overview

Below, we list a number of broad research questions that we need to answer.
In addition to these questions, the specific hurdles that were identified above in
section 7.2 round out an initial research agenda for software certification.

• Is there a generic notion of certification, valid across many domains?
• What, if anything, needs to be adapted/instantiated in the generic model to

make it suitable for use in a particular domain?
• What benefit do we achieve by creating product-specific software certification

standards and processes?
• What simple process model is sufficient to enable the “faking” of real pro-

cesses and providing a platform for evaluation by certification authorities?
• What is the difference between software quality, of a certain level, and cer-

tifiability?
• In what situations can we safely use process-based properties as a proxy for

product qualities?
• If we have levels of certifiability, as in the Common Criteria, how does the

mix of formal verification and testing change with the level?
• Since evaluating evidence about software is an onerous task, how can we

assist evaluators to perform their tasks by providing tools? (Amongst exam-
ples of such tools may be proof checkers (to check proofs offered in evidence),
test environments (to re-execute tests offered in evidence), data mining tools
to find “interesting” patterns in artefacts, etc.)
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9 Conclusions

Engineering methods are identifiable as those that are systematic, depend on
theories and heuristics derived from relevant basic sciences, and rely on being
able to measure relevant values in a repeatable way. Software engineering meth-
ods are moving - slowly - in that direction. Another important factor is the role
of measurement in engineering and science. One of the major problems facing
us is that we have not built or discovered adequate, meaningful metrics that
can be used to measure attributes of software artefacts, either to support engi-
neering methods, or more crucially, certification regimes. Unfortunately, existing
software certification methods are primarily focused on evaluating the software
development process that was used to develop the system being certified. This
does not seem to qualify as an engineering approach to certification of software
products. Almost all engineering certification regimes we have seen are product-
focused. In any case, it seems that reliance on indirect evaluation of artefacts is
a poor way of determining whether a product is effective, safe, and dependable.

We believe that software certification methods should be primarily product-
focused. There are technical, social, commercial and political pressures being
brought to bear on this movement. We also believe that there is growing agree-
ment on this issue. We also think that there are good reasons why we should be
examining whether or not we should be developing not just domain specific soft-
ware certification methods, but even product specific, product-focused software
certification methods. Interestingly, the FDA is also considering similar ideas
[41], which would be a major change in direction for their certification regime.

The previous section briefly describes a research agenda that we believe will
lead us to fundamental results that will aid in building new product-focused soft-
ware certifications processes. In order to accomplish the goals of certification for
software, we also have to undertake fundamental research on appropriate metrics
for software and software design artefacts. We must develop significantly better
engineering heuristics and methods, to make software development more reliable
and repeatable, akin to classical engineering disciplines. Almost certainly, these
heuristics and methods, and the accompanying certification regimes, will also be
domain specific. This appears to be an inescapable attribute of engineering.
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