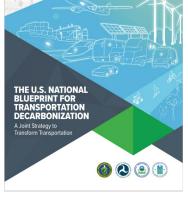


Maritime Decarbonization Action Plan

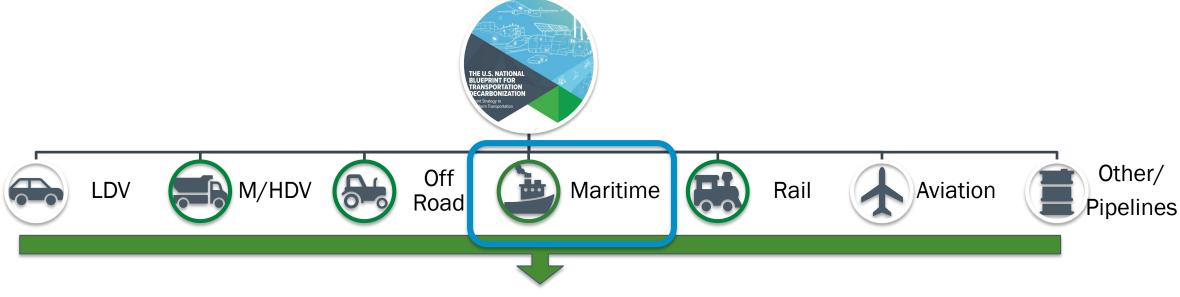
Josh Messner, BETO Technology Manager and EERE Maritime Lead

01/12/2024

- Maritime Decarb Action Plan
- Fuel pathways
- GREET
- Billion Ton Study
- BETO Marine Fuels Work
- International Work
- H2 Hub
- Sustainable Aviation Fuel Challenge


A Coordinated Approach

Four agency MOU established a historic, whole-of-government approach to transportation decarbonization


- Consistent and expanded stakeholder outreach
- Clear signals to industry
- Coordination at all staff levels:
 - RDD&D planning and execution
 - Infrastructure deployment
 - Policy & regulation development
 - Data, tools, education and training

Underpinned by a singular aligned transportation decarbonization vision/blueprint

Transportation Decarbonization Blueprint Modal Sector Action Plans

DEEP DIVE: Build on the foundation set forth in Blueprint for each sector.

PATH TO ZERO: Define strategic actions that leverage advanced and emerging technologies, address barriers with solutions, and support demonstration and research,

ENGAGEMENT: Collaborate with stakeholders (industry, non-profits, governments, etc.) to inform actions as critical players for implementation.

ACCOUNTABILITY: Establish key metrics to track and monitor progress towards decarbonization.

Bounding the MAP

Covered within MAP

Vessel Types (U.S. Fleet only)

Low CI Fuels / Energy

Companies multiple modal plan to form strategy Maritime, Rail, Medium-/Heavy-Duty Off Dintermediates), Methanol, Ammonia, Renewable Natural Gas, Electrification, Hydrogen, Small Modular Resources

Gas, Electrification, Hydrogen, Small Modular Reactors

Engine Types

Full & Hybrid Electric Poular Fuel, Retrofits, Fuel Cell (H2, NH3, MeOH) BUTE.

From Production

- **U.S. Fleet Requirements**
- Non-U.S. Fleet Bunker Requirement

Regional Strategies and Workforce Development

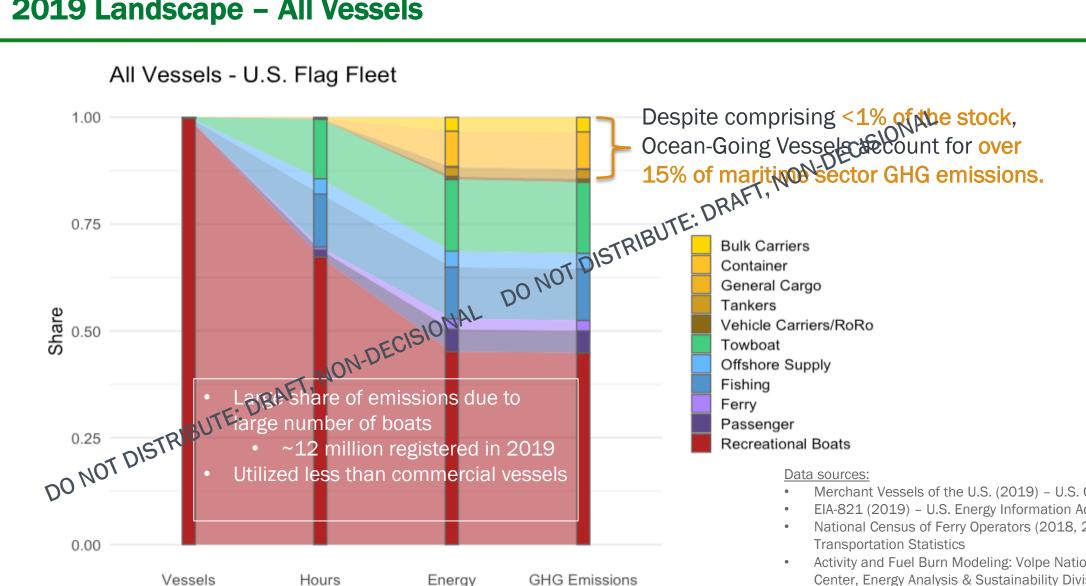
MAP Adjacent

Shoreside Port OperationsONAL

- Covered within The U.S. Zero Emissions Ports Strategy

Maritime, Rail, Medium-/Heavy-Duty, Off Road

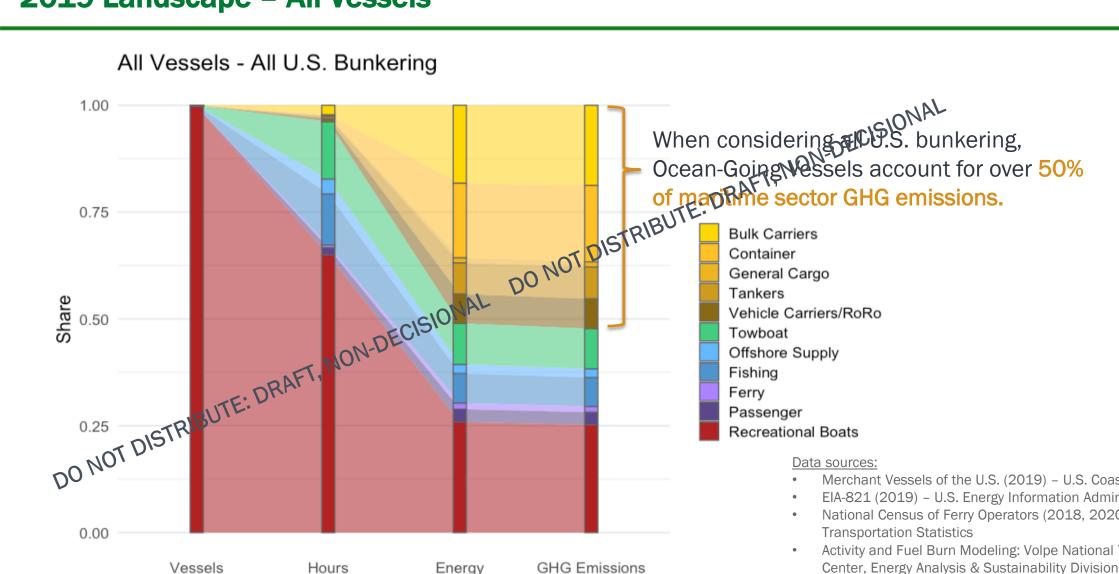
DOD Fleet or Operations


Non-U.S. Fleet

Accounts for volumes

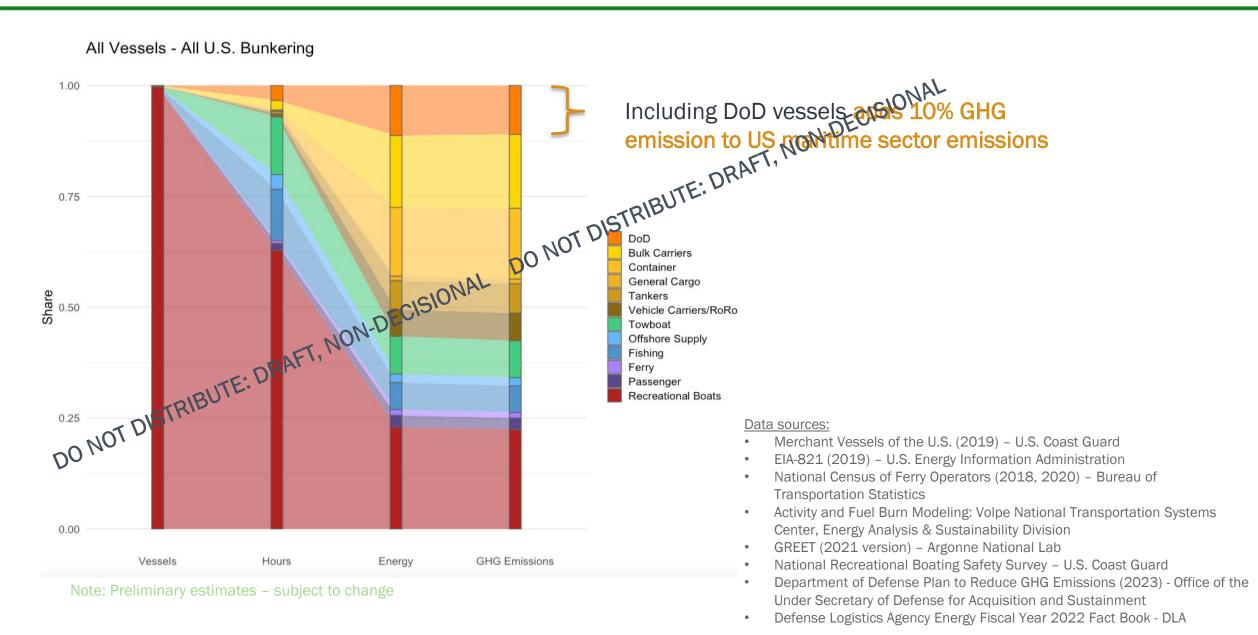
Specific Policy and Regulation

2019 Landscape – All Vessels

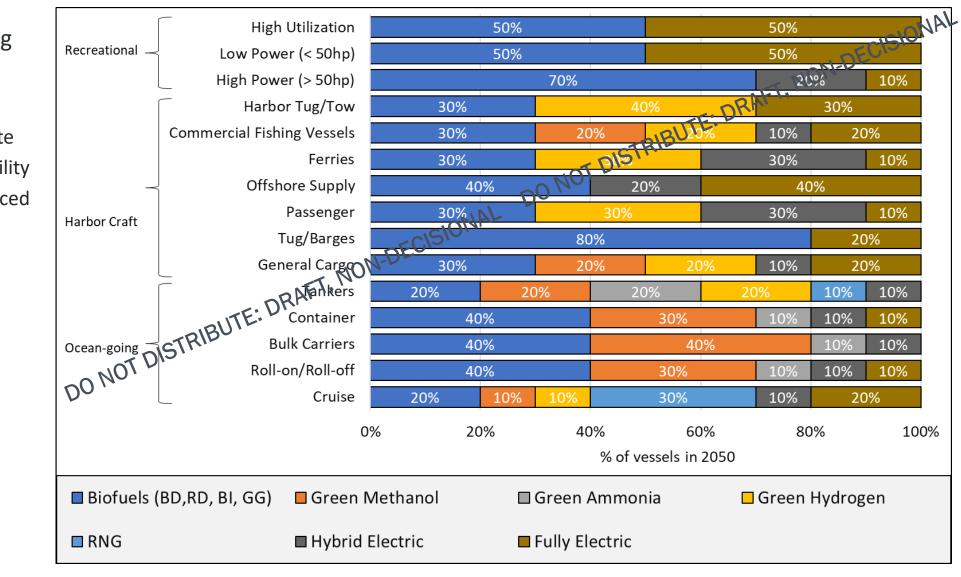

All Vessels - U.S. Flag Fleet

Note: Preliminary estimates – subject to change

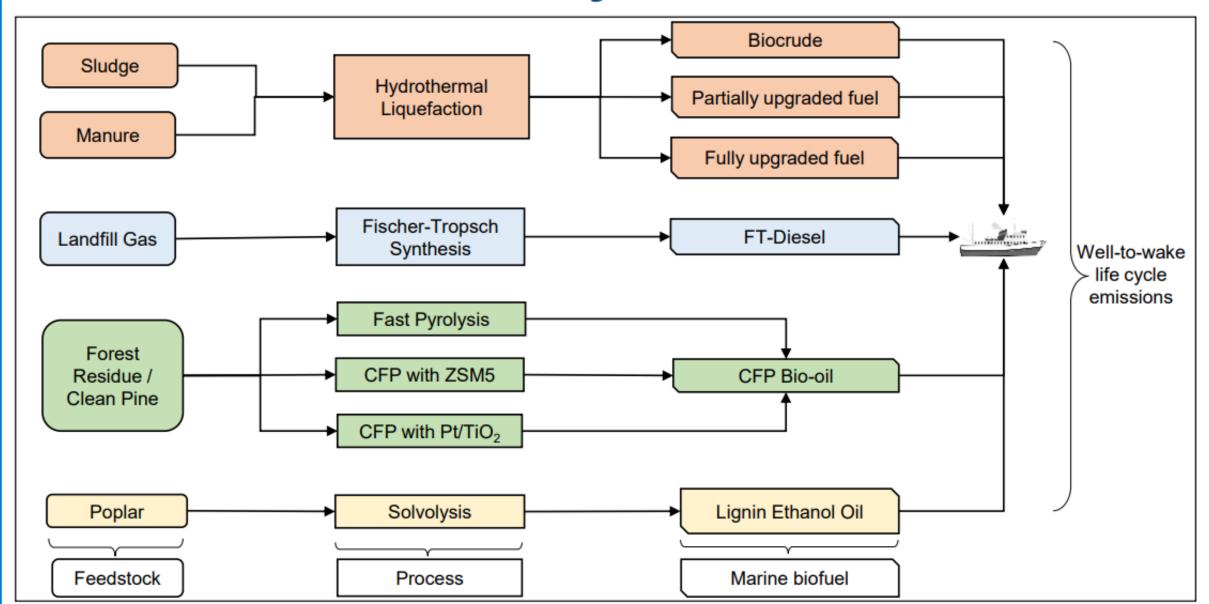
- Merchant Vessels of the U.S. (2019) U.S. Coast Guard
- EIA-821 (2019) U.S. Energy Information Administration
- National Census of Ferry Operators (2018, 2020) Bureau of
- Activity and Fuel Burn Modeling: Volpe National Transportation Systems Center, Energy Analysis & Sustainability Division
- GREET (2021 version) Argonne National Lab
- National Recreational Boating Safety Survey U.S. Coast Guard


2019 Landscape – All Vessels

Note: Preliminary estimates – subject to change


- Merchant Vessels of the U.S. (2019) U.S. Coast Guard
- EIA-821 (2019) U.S. Energy Information Administration
- National Census of Ferry Operators (2018, 2020) Bureau of
- Activity and Fuel Burn Modeling: Volpe National Transportation Systems Center, Energy Analysis & Sustainability Division
- GREET (2021 version) Argonne National Lab
- National Recreational Boating Safety Survey U.S. Coast Guard

2019* Landscape - All Vessels *2020 DoD data used


Draft Vessel Composition for 2050

- Major factors influencing projection decision:
- Market Characteristics
 - Annual replacement rate
 - Alternative fuel availability
 - Adoption rate of advanced technologies
- Route Characteristics
 - Route predictability
 - Route distance
- Vessel Characteristics
 - Vessel size
 - Cargo to power ratio
 - Energy efficiency

BD: Biodiesel; BI: Bio-Intermediates; GG: Green Gasoline; RD: Renewable Diesel; RNG: Renewable Natural Gas

Marine Bio-Oil Pathways

Methanol Pathways

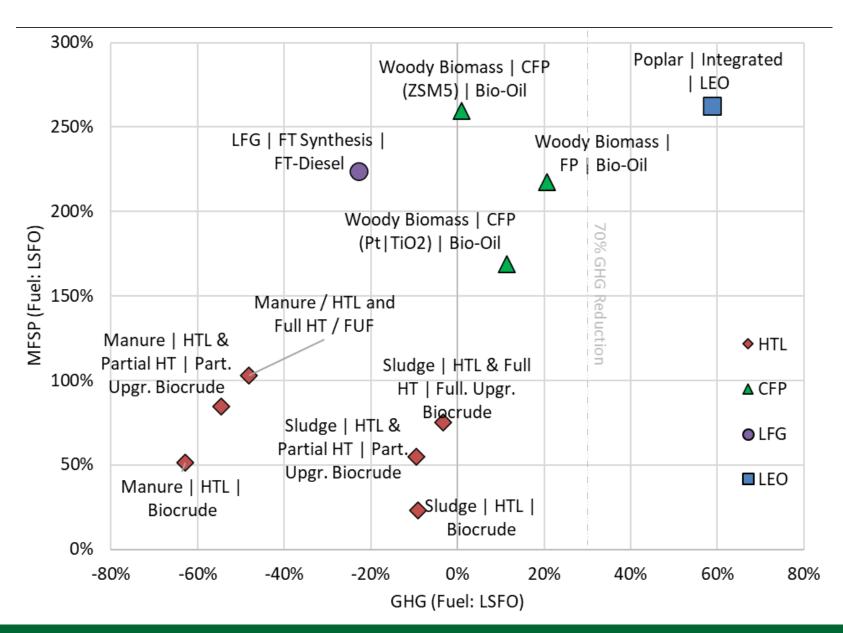
Ammonia Pathways

Conversion **Feedstocks** Marine Fuel **Natural Gas** Steam Methane H_2, N_2 NG via SMR Ammonia Reforming w/ CCS Food w/o CCS Sludge Waste Renewable · RNG from waste Capture, NG Compression & CO2 Manure FOG **Pipeline** Transport Capture, Compression & Coal CO2 **Pipeline** H_2 Gasification w/ ASU*1 **Transport** Gasification · Coal w/ CCS **Biomass** Biomass Haber-Bosch N_2 N_2 Air Air Separation Nuclear or renewable Electrolysis w/ ASU energy H_2 Nuclear (SOEC*2) Electrolysis Water •Nuclear (PEM*3) Haber-Bosch •Renewable Energy N_2 N_2 Air (PEM) Air Separation

Maritime Fuel Pathways and Initial LCA

		Fuel Product	Conversion Process	Feedstock
////	11/1///5////	Bio-Liquified Natural Gas	Anaerobic Digestion	Sludge
	1//0//	Biocrude	Hydrothermal Liquefaction & Partial Hydrotreating	Manure
•// j i		Bio-Fischer-Tropsch Diesel	Fischer-Tropsch Synthesis	Landfill Gas
		Biocrude	Hydrothermal Liquefaction & Partial Hydrotreating	Sludge
• !		e-Fischer-Tropsch Diesel	Fischer-Tropsch Synthesis	Waste Carbon Dioxide
•		e-Methanol	Electrolysis	Waste Carbon Dioxide
II i		Pyrolysis Oil	Pyrolysis	Woody Biomass
■ i !		Bio-Methanol	Methanol Synthesis	Woody Biomass
■ • i		Straight Vegetable Oil	Oil Extraction	Soybean
i i		Renewable Diesel	Hydrotreating	Yellow Grease
-	Emissions Credit Feedstock	Ammonia*	Ammonia Synthesis	Low Carbon Hydrogen
		Bio-Oil	Fast Pyrolysis	Woody Biomass
		Bio-Diesel	Transesterification	Soybean
• i	Conversion	Bio-Liquified Natural Gas	Anaerobic Digestion	Landfill Gas
•	Combustion	Bio-Lignin Ethanol Oil	Solvolysis	Poplar
•	Well-to-Wake Emissions	Bio-Fischer-Tropsch Diesel	Fischer-Tropsch Synthesis	Woody Biomass & Natural Gas
•		Liquified Natural Gas	Liquefaction	Natural Gas
•	- 70% Reduction	Methanol	Methanol Synthesis	Natural Gas
•	50% Reduction	Heavy Fuel Oil (0.5% S)	Refining	Crude Oil
•		Ammonia*	Ammonia Synthesis	Natural Gas

Life cycle analysis for ammonia as a fuel assumes no nitrous oxide emissions. In practice, nitrous oxide formation may occur and would increase the carbon intensity of ammonia fuels.

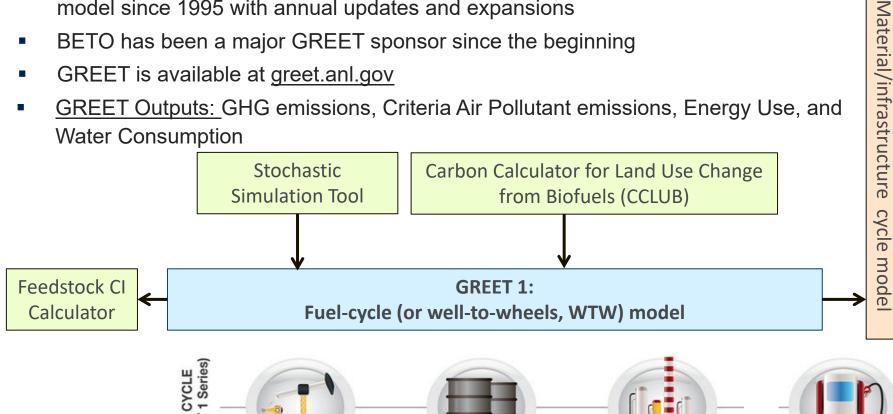

g CO₃e/MJ = grams of carbon dioxide equivalent per megajoule

Life Cycle Greenhouse Gas Emissions, g CO2e/MJ

(GHG reductions are relative to conventional heavy fuel oil)

Cost versus GHG for biomass pathways

- Bio-Oil Pathways Offer GHG Reductions with Range of Costs
- HTL pathways offer negative GHGs at or below the cost of conventional fuel.
- Catalytic fast pyrolysis
 of more abundant wood
 resources will benefit
 from further R&D to
 reduce cost.


The GREET (Greenhouse gases, Regulated Emissions, and **Energy use in Technologies) Model Framework**

(Vehicle manufacturing cycle as the example)

VEHICLE CYCLE (GREET 2 Series)

- BETO has been a major GREET sponsor since the beginning
- GREET is available at greet.anl.gov
- GREET Outputs: GHG emissions, Criteria Air Pollutant emissions, Energy Use, and Water Consumption

WELL TO PUMP

GREET

GREET Sustainability Metrics Include Energy Use, Criteria Pollutants, Greenhouse Gases, and Water Consumption

Energy use

- Total energy: fossil energy and renewable energy
- Fossil energy: petroleum, natural gas, and coal
- Renewable energy: biomass, nuclear energy, hydro-power, wind power, and solar energy

Air pollutants

- VOC, CO, NOx, PM₁₀, PM_{2.5}, and SOx
- Estimated separately for total and urban (a subset of the total) emissions

Greenhouse gases

- CO₂, CH₄, N₂O, black carbon, and albedo
- CO_{2e} of the five (combined with their global warming potentials)

Water consumption

 Addressing water supply and demand (energy-water nexus)

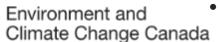
DOE is the Main Sponsor for GREET Development and Application

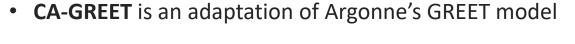
- DOE EERE
 - Vehicle Technology Office
 - Hydrogen and Fuel Cell Technology Office
 - Bioenergy Technology Office
 - Building Technology Office
 - The Strategic Analysis Office
- DOE ARPA-E
- DOE Fossil Energy and Carbon Management Office
- DOE Nuclear Energy Office
- Other federal agencies
 - Federal Aviation Administration of DOT
 - Federal Maritime Administration of DOT
 - Federal Rail Administration of DOT
 - USDA
 - The National Institute of Standards and Materials of Department of Commerce
 - Bureau of Offshore Energy Management of Department of Interior
- Numerous trade associations and corporate sponsors in energy, automotive, materials, and agriculture sector

Informing Policies and Regulations

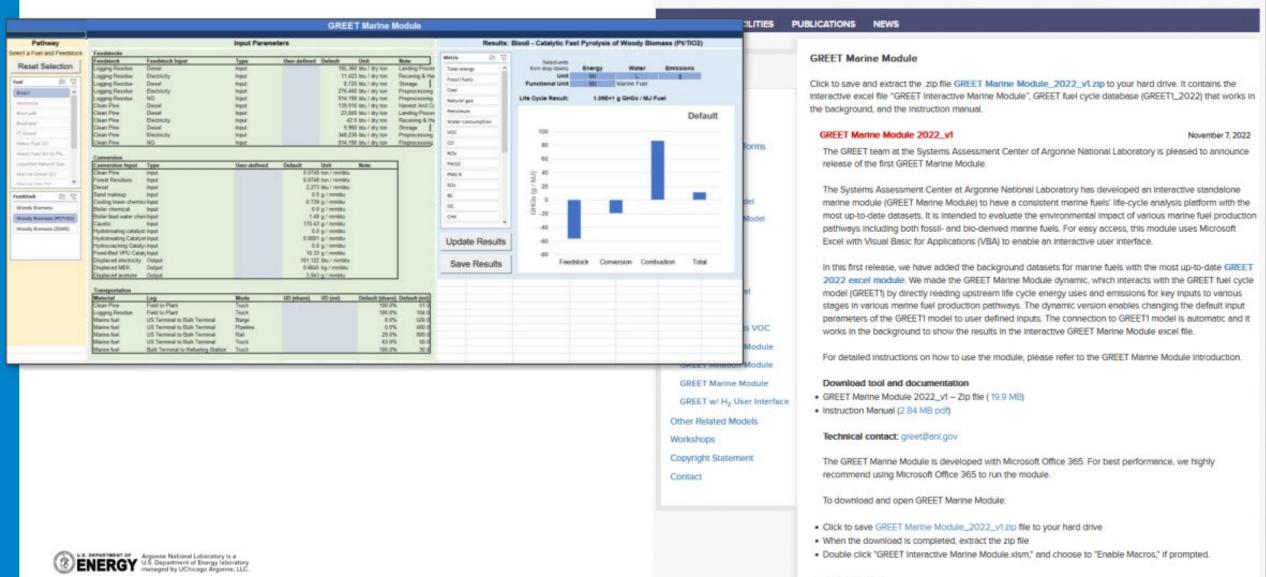
California Environmental Protection Agency

Air Resources Board

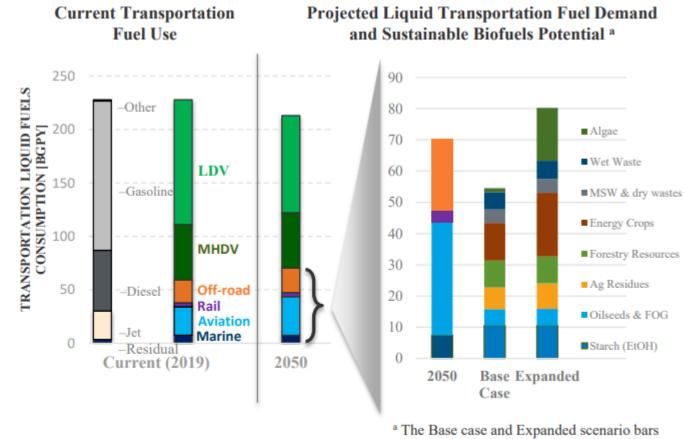




- Oregon Clean Fuels Program also uses an adaptation of Argonne's GREET model
- U.S. EPA uses GREET with other sources for Renewable Fuels Standard pathway evaluations
- National Highway Traffic Safety Administration for fuel economy regulation
- Federal Aviation Administration and International Civil Aviation Organization using GREET to evaluate aviation fuel pathways
- **USDRIVE** Well-to-Wheels Report
- U.S. Maritime Administration renewable marine energy options for IMO GHG intensity and sulfur limits
- U.S. Dept. of Agriculture bioenergy LCA and carbon intensity of farming practices
- Canadian Clean Fuel Standard for Environment and Climate Change Canada fuel pathways
- LCA results for use in different provisions of the 2021 **Bipartisan Infrastructure Law** and the 2022 **Inflation Reduction Act**



New GREET Marine Module


Energy Systems

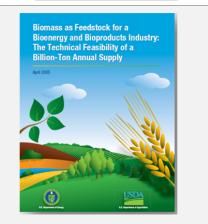
Prior Revisions

US Biomass Supply Projections

above are reported on a GGE basis

NREL | 3

Biofuel Production and Greenhouse Gas Reduction Potential (nrel.gov)


¹ Hydrogen inputs are assumed to be sourced from steam reformed natural gas without carbon capture and sequestration.

2023 Billion-ton Report, in Preparation

To inform research, development, and deployment strategies.

- Policy agnostic
- End-use agnostic
- Not predictions
- Not targets

2005

2011

2016 (BT16)

Add new feedstocks Update waste and algae Refine forest resources

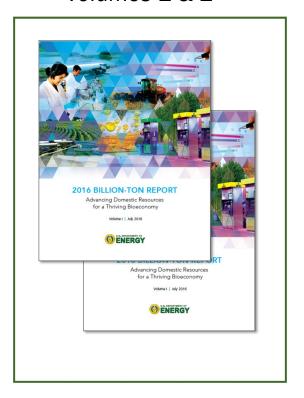
Supply...

Can we displace 30% of the country's petroleum consumption?

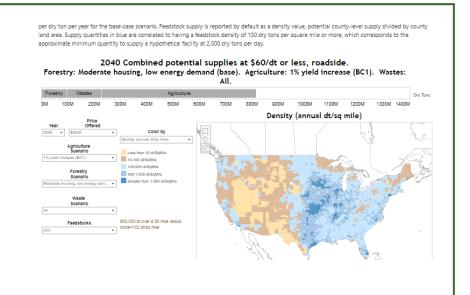
...Cost...

- County-level supplies by cost.
- Economic model of ag+energy crops.

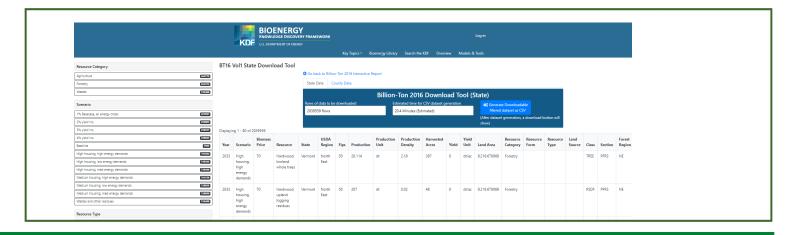
- 44 feedstocks w/ modeled crop yields
- Forest model
- Delivered costs
- 2 Volumes + visualization tools

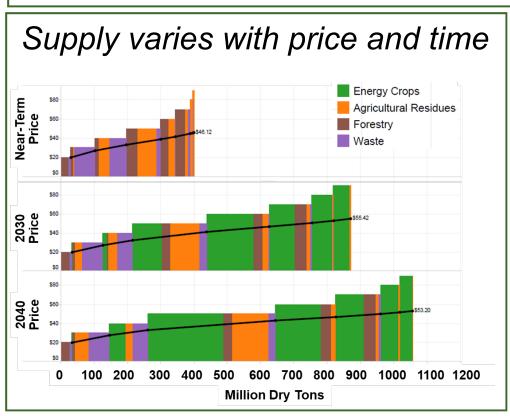

Billion Ton 2016 Products

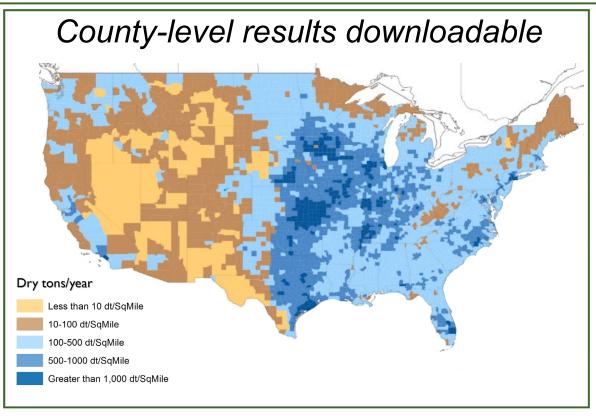
Report landing page


Interactive visualizations

Reports


Volumes 1 & 2



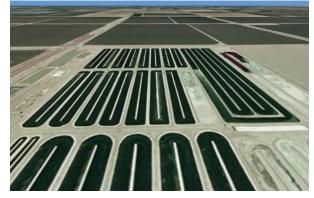

Data download tool

Building on State-of-the-Art: 2016 Billion-ton Report

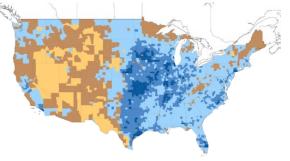
Feedstocks Being Updated in BT23

Economic and spatial data

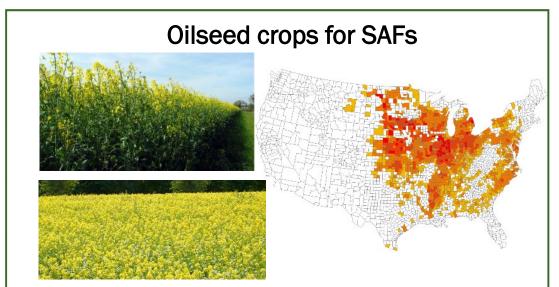
- 2023 USDA baseline data
- Updated costs & food demands
- 2022 Spatial data for environmental effects


Wastes

- Adding county-level fats, oils, and
 - greases
- Accounting for maturemarket price competition



- Updating to 2021 Microalgae
 - Harmonization
- Updating to latest microalgae yield and costs



Agricultural and Forestry Residues

- Agricultural residues (e.g. corn stover)
- Logging residues, thinnings, pine plantations
- Biomass crops

New Feedstocks in BT23

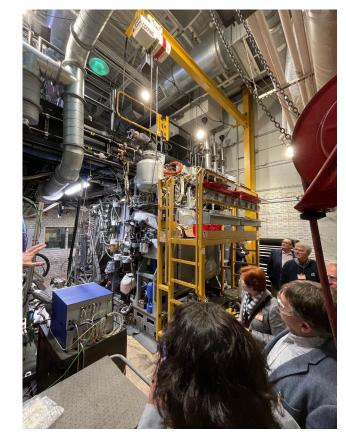
Western Forest Fuels for biomass with USFS

 Biomass from 2022 USFS Wildfire Crisis Strategy

Macro- ("seaweed" algae)

 Collaboration with ARPA-E

MarineCadastre.gov


CO₂ to e-fuels

- Proximity to renewable electricity
- High concentration (e.g. fermentation)

BETO Maritime Work

- Increasing blending of HFO and biointermediates
- Use of biofuels as pilot fuel
- "Smaller" 4 stoke engines at ORNL and ANL
 - MeOH and Ammonia (VTO)
 - BD/RD as pilot
 - Bio-oil / biocrude blends
- Larger 2 stoke cross head single cylinder test engine at ORNL
 - 15% biofuels blends
 - Ammonia retrofit
 - Bio-intermediates, BD, RD as pilot fuel

BETO Maritime Focus

Lab Projects (ORNL, PNNL, NREL, ANL)

- Bio-intermediate blends, straight biofuels, biofuel/intermediates as blends
 - Characteristics, miscibility, engine testing
- Co-production of SAF and Sustainable Marine Fuels
- LCA and TEA
- Marine GREET module
- Fuel burn modeling
- Scalable Biofuel Supply at U.S. Ports

FOA Projects

- Allowable product in most BETO FOA
 - Comstock (pre-pilot)
 - UC Riverside (pre-pilot)
 - Unnamed Demo Project (co-production)

BETO Maritime Focus

International work

- MI: Zero-Emission Shipping Mission
 - Mission Co-lead and Fuels Pillar Lead
 - Green Shipping Corridor Hub
 - US/ROK Green Shipping Corridor Pre-feasibility Study (with MMM)
 - Scalable Biofuel Supply for International Ports (with RMI)
 - Port Readiness Level Tool (with IAPH)
- Green Shipping Challenge
 - Green Shipping Corridor Initiation Project
 - GSC between U.S. and developing countries (Panama, PBSP, more to come)
 - U.S. / UK Green Shipping Corridor Task Force
- IMO LCA discussion

Mission Innovation: Zero-Emission Shipping Mission

Co-leads

Denmark

Ministry of Industry, Business and Financial Affairs, Ministry of Climate, Energy and Utilities and Ministry of Foreign Affairs

Norway

Ministry of Climate and Environment

The United States

U.S. Department of Energy

Global Maritime Forum

Representing the Getting to Zero Coalition

Mærsk Mc-Kinney Møller Center for Zero Carbon Shipping Core Mission Members

The United Kingdom

Department for Transport

Morocco

Ministry of Energy Transition & Sustainable Development

India

Ministry of Science and Technology

Singapore

Maritime and Ports Authority Mission Support Group

France

Ministry of the Sea

Ghana

Ghana Maritime Authority

South Korea

Ministry of Trade, Industry and Energy

New to the Mission

Australia

European Commission

Executive Committee Chair

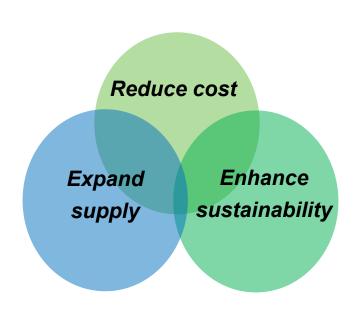
Michael Berube US DOE, EERE, DAS-T

US Led ZESM Work

- Zero-Emission Shipping Mission (ZESM): Progression to Net-Zero Emission Fuels State of the Industry
 - Run through BETO
 - Information on the maritime industry's current alternative fuels trajectory, the driving forces behind
 it, and the key barriers to achieving this transition
- Zero-Emission Fuels at Ports (biofuels portion)
 - GMF, RMI (e-ammonia, bio-methanol, e-methanol, RNG, hydrogen)
 - NREL (biofuels) contingent on DAST and Dept State funds
- Share performance data of engines using zero-emission fuels
- Assess effectiveness of biofuels as a pilot fuel
- Research biofuel fuel properties and blend ratios for compatibility
- Global biomass assessment (in development)
 - Biofutures Initiative, Biorefineries Mission
 - NREL, MMM, others

Green Shipping Challenge

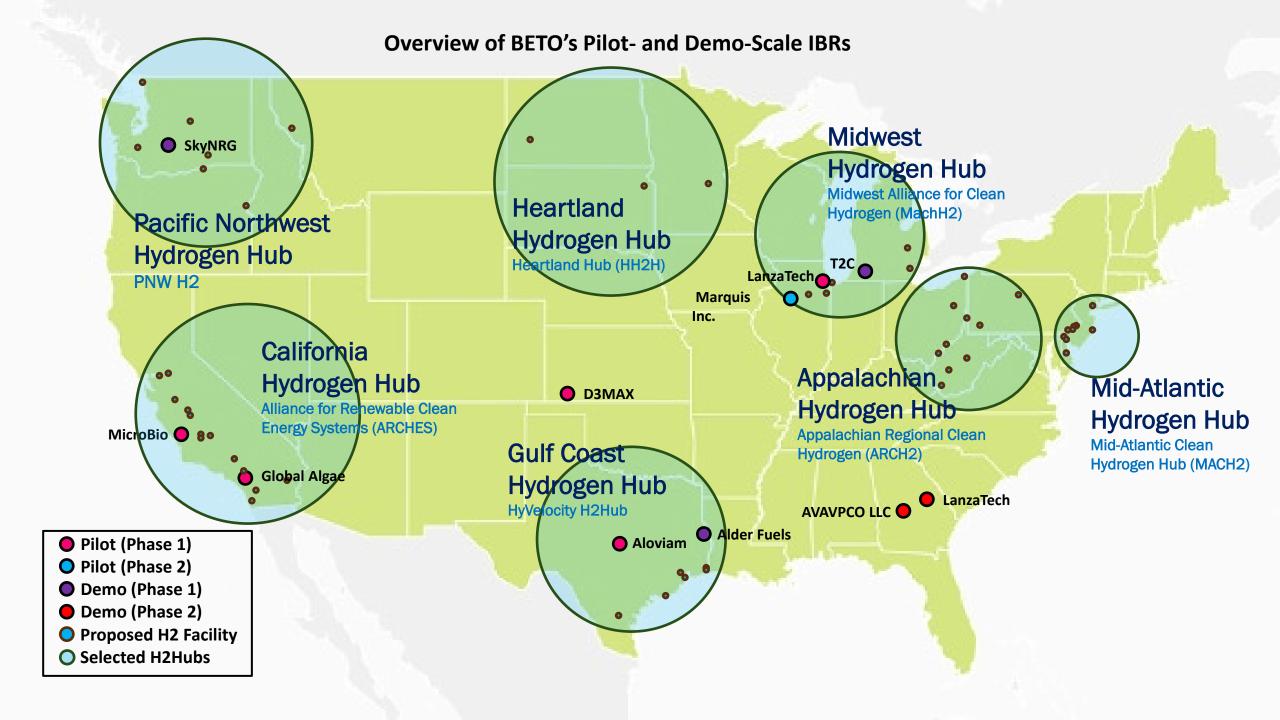
Encourages countries, ports, companies, and other actors in the shipping value chain to come forward with concrete announcements that will help put the shipping sector on a pathway this decade to align with the goal to limit global temperature rise to 1.5 degrees C.


US Commitments

- Facilitating Green Shipping Corridors Worldwide
 - Green Shipping Corridor Initiation Project (BETO Managing)
 - Panama and Pacific Blue Shipping Partnership (8 pacific islands led by Fiji)
 - Green Corridors Hub (BETO Managing)
- Facilitating U.S. Green Shipping Corridors
 - ROK / US Green Corridor (BETO Managing)
 - Canada / US Great Lakes St. Lawrence Seaway Green Corridor (BETO consults)
 - UK-US green shipping corridor task force (BETO on Task Force)
- Creating a U.S. National Action Plan for Maritime Decarbonization
 - DOE, DOT (OST & MARAD), EPA, HUD (BETO consult and review)

SAF Grand Challenge

- Agreement by the Departments of Transportation,
 Energy and Agriculture coordinated with EPA
- Achieve 3 billion gallons of domestic SAF production in 2030 and put U.S. on trajectory to 35 billion gallons per year by 2050
- At least a 50% reduction in life cycle greenhouse gas emissions, as compared to conventional jet fuel
- Multi-agency roadmap to focus federal actions to support industry scale-up



SAF Grand Challenge Roadmap

- A coordinated approach to federal agency actions that derisks technology, supply chains, and markets, and reduces barriers
 - Actions that support near-term production
 - Ongoing innovation to support future production
 - Data collection and analysis to support markets for SAF through strong policies and focus on sustainability

https://www.energy.gov/sites/default/files/2022-09/beto-saf-gc-roadmap-report-sept-2022.pdf

