

Executive Summary

BLUF:

- Decarbonizing Navy ships requires R&D to enable integration of lower carbon fuels, alternative propulsion systems, efficiency technologies, and carbon capture
- Continued emphasis on demand reduction and efficiency technologies are key to early emission reduction efforts
- Navy will only pursue decarbonization measures that maintain or enhance warfighting capability and mission effectiveness
- Key objectives of this initial effort:
 - Assessed and identified research focus areas for highest potential to enable <u>Navy ship</u> decarbonization
 - Solicited and accepted proposals for Year 1 Research Agenda
 - Developed decarbonization roadmap structure and initial roadmap to guide research and lay the foundation for future efforts
 - Identified key next steps required to advance the research agenda and develop potential technology transition
- Other key points:
 - Majority of current Navy investment supporting decarbonization objectives has been with the goal of increasing combat capability and addressing contested logistics challenges
 - Integrating new technologies on naval platforms is a challenge; <u>decarbonization is a unique challenge</u>
- Increased and ongoing collaboration with DOE, DOT and across the Navy is critical to meeting the decarbonization challenge

Decarbonization Roadmap

- Mission Statement & Objective
 - Why Decarbonize?

4

5

6

7

8

9

10

11

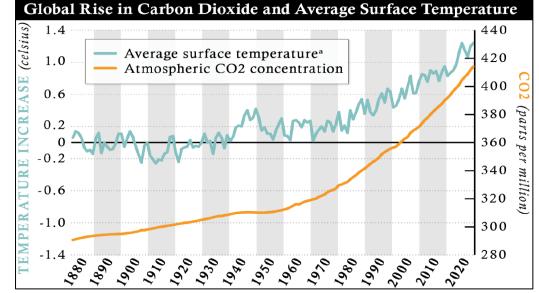
- Directives & Key Guidance Documents
 - Navy Emissions & Navy Unique Challenge
 - Target Ship Classes for Decarbonization
 - Decarbonization Thrusts for Navy Operations
 - Assessment of Current Activities & Research Focus Areas
 - Year 1 Research Agenda
 - Advance the Technology S&T Evolution
 - Collaboration Strategy
 - Roadmap Key Actions

Mission Statement & Objective

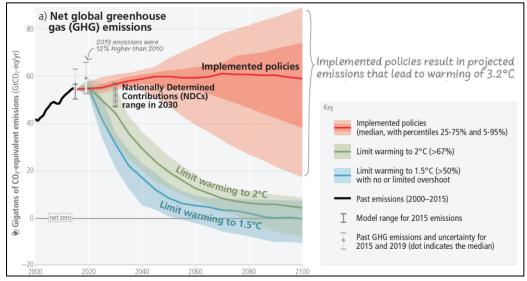
- Mission Statement
 - The Navy Decarbonization Research Consortium is a public-private collaboration with the goal to advance interdisciplinary research to help the Navy meet the complex challenges of platform decarbonization, with a focus on ships and aircraft.
 - The Consortium will evaluate and identify technologies that show promise for adaptation on naval platforms and accelerate adoption as appropriate.
- Objective
 - Establish a consortium of individuals, institutions and companies to address the Navy platform decarbonization challenge, whose membership and structure is adaptable over time
 - Develop a Decarbonization Research Agenda for ONR that includes interdisciplinary research and analysis and research gaps (August 2023)
 - Continue the Consortium to collaborate on research to solve complex problems of platform decarbonization

Why Decarbonize?

IPCC Reporting

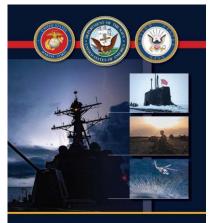

- Human activities, principally through emissions of greenhouse gases, have unequivocally caused global warming, with global surface temperature reaching 1.1°C above 1850-1900 in 2011-2020
- The likelihood of abrupt and irreversible changes and their impacts increase with higher global warming levels
- Limiting human-caused global warming requires net zero CO₂ emissions

US Intelligence Reporting (US Annual Threat Assessment)

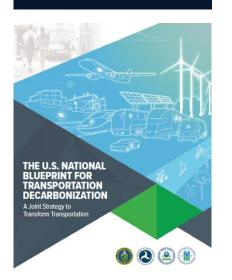

 Climate change will increasingly <u>exacerbate risks to U.S. national</u> <u>security</u> interests as the physical impacts increase and geopolitical tensions mount about the global response to the challenge

DoD Climate Risk Analysis

- Climate change presents serious risks, but DoD, along with the entire U.S. government, as well as our allies and partners, is determined to address this common threat
- The Department will work to prevent, mitigate, and respond to the defense and security risks associated with climate change



National Intelligence Council report, *Climate Change and International Responses Increasing Challenges to US National Security Through 2040*, 2021



IPCC AR6 Synthesis Report (SYR), 2023

Directives & Key Guidance Documents

CLIMATE ACTION 2030 Department of the Navy

<u>Primary</u>

- EO 14008 Tackling the Climate Crisis at Home and Abroad (*Jan 2021*)
- DoD Climate Adaptation Plan (*Sept 2021*)
- DoD Climate Risk Analysis (Oct 2021)
- EO 14057 Catalyzing Clean Energy Industries and Jobs Through Federal Sustainability (*Dec 2021*)
- Federal Sustainability Plan (*Dec 2021*)
- DoN Climate Action 2030 (May 2022)

<u>Secondary</u>

- US National Blueprint for Transportation Decarbonization (Jan 2023)
- FAA Aviation Climate Action Plan (2021)
- IMO GHG Strategy (2018)
- DOE Hydrogen Shot (June 2021)
- U.S. National Clean Hydrogen Strategy & Roadmap (*June 2023*)
- Clean Fuels & Products Earthshot (June 2023)
- DOE SAF Grand Challenge (Sept 2022)
- USAF Climate Action Plan (Oct 2022)
- US Army Climate Strategy (Feb 2022)
- USCG Climate Framework (Jan 2023)
- Summary of World Military Activities (NPS 2023)

6% Agencies

37%

Force

Navy

28%

Navy Emissions & Navy Unique Challenge

- FY21 DON emissions were ~16.7M MT CO2e
 - ~70% operational, ~30% installations
 - Operational emissions ~50/50 split between jet fuel (JP-5) & ship fuel (F-76)
- ***Significant reductions in energy use have been realized since FY08
 - Majority of reduction is attributable to reduced operating hours & lower speed
 - Energy demand is expected to increase going forward
 - Past trendline is not indicative of future projections
- Platforms in-service/in-design today will be in the fleet *past 2050*, with conventional diesel and gas turbine engines
- Energy demand is increasing, due to growth in new platforms (including unmanned vessels) and increased onboard energy demand
- Navy ships must maintain ability to <u>refuel underway</u> and at <u>remote</u> locations
 we operate <u>forward</u>, <u>distributed</u>, and in <u>contested</u> environments
- Must maintain <u>interoperability</u> with partners and allies
- Space, weight, power, and cooling *margins are limited*
- Integration of technologies on new and existing ships must meet <u>strict</u>
 <u>standards</u> (MIL-STD and Technical Warrant Reviews)

Figure 4.1: DoD Total Energy Consumption as Percent of Federal Total, DoD Total Energy Consumption as Percent OE vs IE, and DoD Service-level Installation Facility Energy Use

Operational

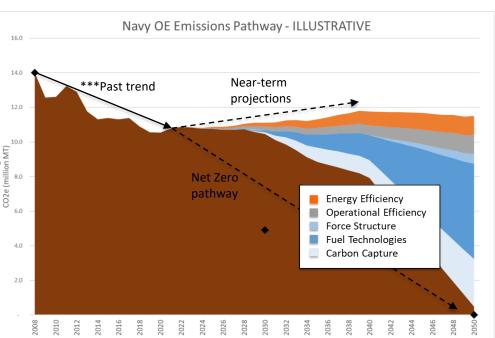
Energy

31%

Installation

Energy

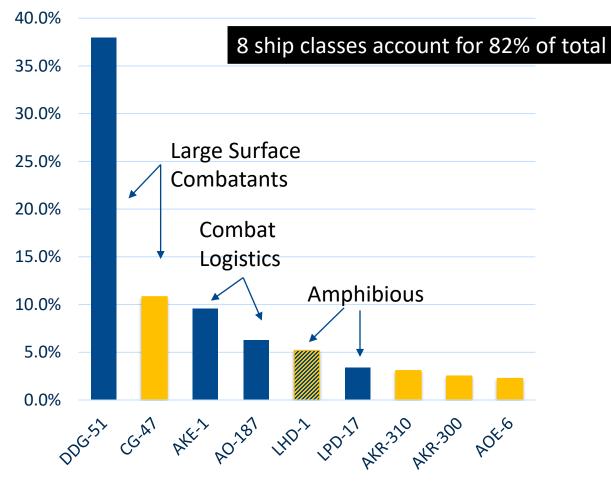
24%


Other

Agencies

Department

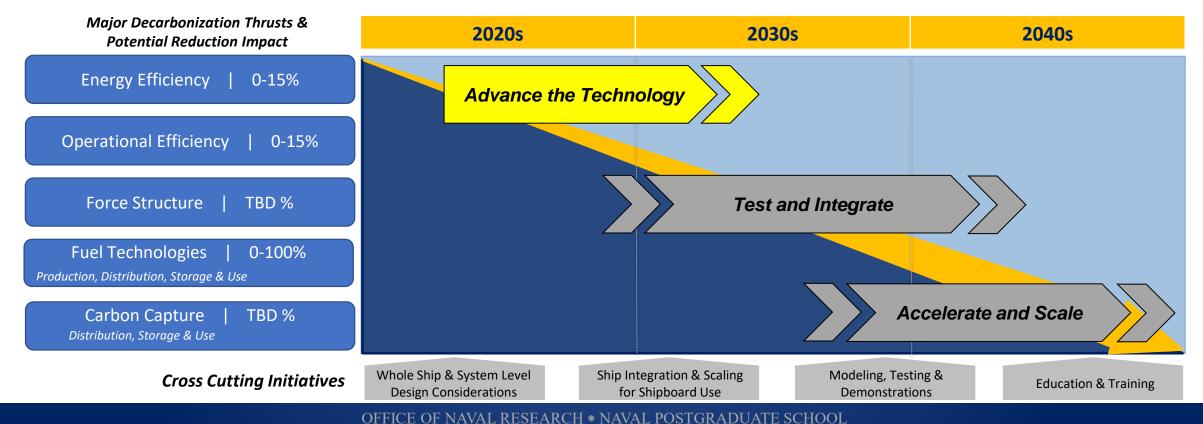
of Defense


76%

GHG Emissions by Ship Class: Opportunities for Decarbonization

% of Total Ship Emissions FY20 – FY22

Priority ship classes



OFFICE OF NAVAL RESEARCH * NAVAL POSTGRADUATE SCHOOL

Decarbonization Thrusts for Navy Operations

- Current Consortium efforts focused on *maritime platform decarbonization*
- Roadmap structure was informed by numerous other decarbonization and Net Zero products, to ensure alignment with Navy, other government and commercial strategies
- Consortium identified <u>five (5) major decarbonization thrust areas</u>, supported by four (4) cross-cutting initiatives
 - Also developed Rough Order of Magnitude (ROM) levels of potential emissions reduction impact for Navy platforms

Decarbonization Thrusts – Detail

Approx Impact to Operational Navy Decarbonization (%)

0% - 15%

0% - 15%

TBD

0% - 100%

TBD

Category	Sub-Category
Energy Efficiency	Propulsive efficiency improvements & direct drag reduction
	Propulsion & power generation improvements
	Electrification & hybridization
	Thermal management, Waste Heat Recovery (WHR)
	Power demand reduction
	Energy storage
	Lightweight materials
Operational Efficiency Improvements	Route optimization
	Plant line-up & speed optimization (single generator ops, etc.)
	Trim optimization
Force Structure	Unmanned systems
	"Single mission optimized" platforms
	Attritable assets
	UxV system modeling
Fuel Technologies: Production, Distribution, Storage and/or Use	Blended or drop-in fuels (bio-, renewable-)
	Non drop-in liquid fuels (ammonia, methanol, etc.)
	Hydrogen
	Batteries
	Nuclear
	Renewable energy
	Fuel cell technology

Other emissions capture/reduction (high GWP refrigerants, etc.)

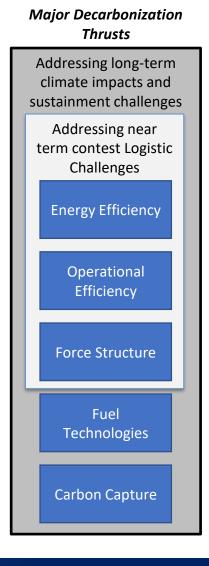
OFFICE OF NAVAL RESEARCH * NAVAL POSTGRADUATE SCHOOL

Shipboard

Terrestrial

Carbon Capture: Distribution,

Use and Storage


Assessment of Current Activities & Research Focus Areas

- Assessment of Current Activities
 - Navy prioritizes investment in efficiency, electrification, and force structure enabling employment and sustainment of combat capabilities
 - Navy investment in lower carbon fuels and carbon capture technologies are primarily focused on fuel generation in theater
 - DOE active across all relevant sectors, funding fuels R&D under several focused projects:
 - SAF Grand Challenge
 - Energy Earthshot Clean Fuels and Production
 - Zero-Emissions Shipping Mission (ZESM)
 - DOT partnered with DOE on ZESM and is active in maritime decarbonization with a focus on Low Carbon Fuels, Electrification, Energy Efficiency, Carbon Capture, and Green Shipping Corridors

Year 1 Research Agenda Focus Areas

- <u>Use</u> of lower carbon fuels in Navy relevant prime movers
- Shipboard carbon capture technologies
- Energy efficiency technologies
- Modelling and analysis of energy systems, ship design process and systems architecture
- Operational Efficiency and Force Structure were not prioritized for Year 1 efforts

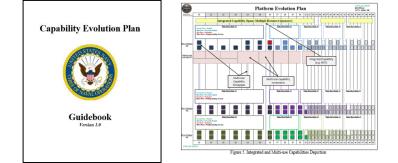
Year 1 Research Agenda

Fuel Technologies & Carbon Capture

- Collaboration of USC, CSU, PSU, USNA
 - University of South Carolina: Fuel Flexible Gas Turbine Technology Integrated with Exhaust Gas Recirculation and Hydrogen Carrier Fuels
 - Colorado State University: Liquid-Fueled Solar Centaur 40 Gas Turbine Testing with High EGR Fraction to Support Carbon Capture System Integration
 - Penn State University: Fuel Flexible Gas Turbine Technology Integrated with Carbon Capture and Utilization
 - USNA: Working Towards Zero-Carbon Naval Energy Technologies with Midshipmen at the USNA
- University of Wisconsin: Enabling mixing-controlled combustion of low carbon fuels in naval reciprocating engines
- University of Illinois: Sustainable Power for Decarbonization of Naval Vessels

Energy Efficiency: Electrification & Hybridization

NSWC Philadelphia: Evaluation of Propulsion Derived Ship Service and Weapons Power to Support Decarbonization


Cross-Cutting: Modeling - Energy Systems, Ship Design, System Architecture

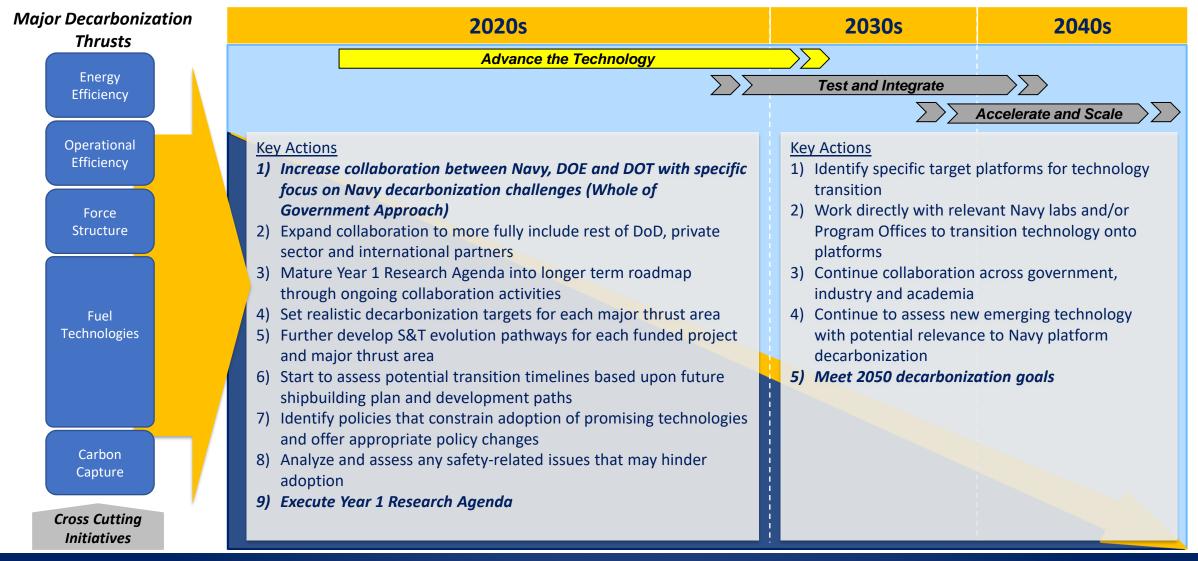
- Collaboration of GWU, NPS, ABS, USNA
 - George Washington University: Energy Systems Modeling, Prediction, and Planning Tool for Navy Decarbonization Technologies
- NPS: Trade space exploration for climate impact and quality attributes for navy ships
- NPS: High-level system architecture, modeling and performance evaluation of a fleet of green-energy ships producing hydroelectric energy and hydrogen at sea

Advance the Technology – S&T Evolution

- Take initial steps towards transitioning solutions onto Navy platforms
 - Identify transition/integration pathway(s) and begin to document as evolution plan
 - Assess and elevate technology readiness level (TRL)
 - Continually assess impacts to decarbonization objectives

Major Decarbonization Thrusts & Potential Reduction Impact	2020s	2030s	2040s
Energy Efficiency 0-15%	Advance the Technology		
Operational Efficiency 0-15%	Applied Research in maritime decarbonization Feasibility assessments 	Test and Integrate Integration and demonstrate	
Force Structure TBD %	 Concept Development Technology Development Component Testing 	 in operational environment Navy and MIL-STD Testing Ship Integration 	Integrate across all intended applications Increase production
Fuel Technologies 0-100% Production, Distribution, Storage & Use	Prioritizing: - Large Surface Combatants - Large Combat Logistics	 Measurement & Validation (M&V) Tech Warrant Approval 	 Accelerate integration Measure performance
Carbon Capture TBD % Distribution, Storage & Use	- Large Amphibious Ships - Future propulsion systems	Engage industry reps	
Cross Cutting Initiatives		tegration & Scaling Modeling, Tes Shipboard Use Demonstrat	- Education & Training

OFFICE OF NAVAL RESEARCH * NAVAL POSTGRADUATE SCHOOL


Collaboration Strategy

- Develop and mature a robust collaboration strategy, with <u>six</u> core communities
 - Current Consortium group foster increased collaboration amongst Consortium members
 - Internal Navy and other DoD operational energy, climate and resilience constituencies
 - Other USG Agencies DOE, DOT, ARPA-E and others (e.g. EPA, NOAA, etc.)
 - International partners NATO, Pacific Islands Partnership, etc.
 - Industry potentially via the DOT/MARAD U.S. Center for Maritime Innovation (in work)
 - Academia identify leading researchers in other technology areas
- Two major goals for collaboration activities are:
 - Better understand ongoing efforts and identify most impactful areas of research to guide and prioritize future years' research agenda
 - Identify appropriate Navy "role" in various thrust areas, considering:
 - Government-wide approach and R&D portfolios of other partner entities
 - Navy unique requirements that may not otherwise be addressed

Roadmap – Key Actions

Next Steps

- Develop and implement Collaboration Strategy with core partners
 - Continue potential research opportunity identification process
- Execute Year 1 Research Agenda
 - Support required Navy-project team collaboration and data collection
 - Develop project specific S&T evolution pathways with each funded research team
- Assess impact of Year 1 research concepts and technologies to overall Navy decarbonization objectives
 - Further develop Roadmap to include more specific targets, as needed
- Align with other roadmap and data collection efforts
 - Work with other efforts to develop methodology to synthesize R&D and project information across technical areas for efficiency, leverage and gap identification purposes
- Explore applying Consortium model and findings to Aircraft
 - Potentially extend to installations at a later date?

NAVAL POSTGRADUATE SCHOOL

IMMEDIATE IMPACT | FUTURE ADVANTAGE | ENDURING LEADERSHIP

NPS/Navy Support for Research Project Execution

Research teams expressed desire to get support/help from Navy regarding:

- Access to data and Navy operational context
- Better understanding of the impact of the Navy specific constraints on the research and how these parameters "limit" the trade space; "maximize combat capability" and acceptable trade-offs to that; integration limitations/challenges
- Transition planning and pathways to demonstrate/test and mature research and have it advanced by Navy enterprise
- Continued development towards the Capability Evolution Plan approach, with development of more quantitative targets
- Collaboration between research teams/programs, and collaboration with external partners (DOE, etc.)