Research Roadmap Development

 INITIAL ASK: If any members have roadmaps or roadmap development processes that have worked well in the past, please share as we'd like to leverage your collective experience and see no need to re-create the wheel

- Today's Focus:
 - Discuss Initial Technology Focus Areas
 - Consortium Partners Existing Efforts
 - Identify core areas where existing research can be extended to address Navy-specific concerns
 - Identify commercial tech that could be adapted to Navy use

Bill Muras

703-261-5059

william.j.muras.ctr@us.navy.mil

- Identify gaps in R&D efforts that need to be pursued
- Develop white papers for high priority efforts for potential FY23
 ONR Funding

Platform Decarbonization Focus Areas

- Across multiple existing studies, there seems to be general agreement on technology "focus areas"
 - MARAD META-funded Glosten report "Energy Efficiency and Decarbonization Technical Guide" – November 2022
 - OECD/International Transport Forum –
 "Decarbonising Maritime Transport" 2018
 - IATA Fly Net Zero
- Broad Focus Areas
 - Technology this is primary focus for this Consortium
 - Operations
 - Fuels

MARAD META Glosten Report

Part 2 –	Technology Evaluation		WASTE LIEAT DESCOVEDY
2.1	Efficiency Technologies (ET)		WASTE HEAT RECOVERY
→	DIRECT DRAG REDUCTION		Waste Heat Recovery Systems
	Advanced Hull Coatings		HVAC Optimization
	Anti-Fouling Coatings		RENEWABLE ENERGY
	Nanocoatings		Kite Sails
	Hull Cleaning and Maintenance		Rotor Sails
	Hull Form Optimization		Rigid Wingsails
	Air Lubrication		Flexible Sails
\rightarrow	PROPULSIVE LOSS REDUCTION		Inflatable Sails
	Propellers		Wave-Assisted Propulsion
	Pre-Swirl Devices	2.2	Solar Power
	Post-Swirl Devices	2.2	Fuel Calara
	PROPULSION AND POWER GENERATION		Fuel Colors
	Diesel-Electric propulsion (DEP)		Transitional Fuels
	Variable Speed Generator (VSG)		Hydrogen
	Power Take-Off/Power Take-In (PTO/PTI)		Ammonia
	Magnetic Gearing		Biofuels Piecel (FTD)
	Printed Circuit Board (PCB) Stator Motor		Fischer Tropsch Diesel (FTD) Methanol
\rightarrow	ELECTRICAL ENERGY STORAGE		
	Hybrid Mechanical/Electrical		ICE Technology
	Battery (All-Electric)		Fuel Boardy Vessel Design
	Shore Power		Fuel-Ready Vessel Design
	Supercapacitor Energy Storage (ScES)		Onboard Carbon Capture and Storage (oCCS)
	Superconducting Magnetic Energy Storage (SMES)		Marine Nuclear Power
	Superconducting Magnetic Energy Storage (SMES)	2.3	Operational Measures (OM)

Navy Specific Constraints/Considerations

Some aspects of the Navy unique mission(s) to keep in mind

- Navy platforms operate:
 - Forward presence
 - Contested logistics
 - Replenishment at sea
- Navy platforms are:
 - Space constrained
 - Often/Sometimes power constrained
 - Operated by 18-19 year old sailors
 - Long-lived \$1B+ assets

Some other Consortium considerations

- Short-, Mid- and Long-Term Horizons
- Retro-fit versus new build
- Not just an economic decision
- Potential future force structure UxVs
- "Collaborate with the past"

BACKUP

OECD / International Transport Forum

Table 1. Overview of measures to reduce shipping's carbon emissions

Type of measures	Main measures
Technological Light materials, slender design, less friction, waste heat recovery	
Operational	Lower speeds, ship size, ship-port interface
Alternative fuels/energy	Sustainable biofuels, hydrogen, ammonia, electric ships, wind assistance

Table 2. Main technological measures

Measures	Potential fuel savings
Light materials	0-10%
Slender design	10-15%
Propulsion improvement devices	1-25%
Bulbous bow	2-7%
Air lubrication and hull surface	2-9%
Heat recovery	0-4%

Table 3. Main operational measures

Measures	CO ₂ emissions reduction potential
Speed	0-60%
Ship size	0-30%
Ship-port interface	1%
Onshore power	0-3%

Table 4. Main measures related to alternative fuels and energy

Measures	CO ₂ emission reductions
Advanced biofuels	25-100%
LNG	0-20%
Hydrogen	0-100%
Ammonia	0-100%
Fuel cells	2-20%
Electricity	0-100%
Wind	1-32%
Solar	0-12%
Nuclear	0-100%

IATA Fly Net Zero

The plan

Contribution to achieving Net Zero Carbon in 2050

Net Zero 2050 is achievable through:

Combination of measures

 Sustainable Aviation Fuel, new, technologies, operational and infrastructure improvements, and offsetting/carbon capture

Collective effort

 of the entire industry together with governments, oil producers and investors

