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Energy is the Engme of the
Economy

Vast and complex

Touches Everything

Concurrent daunting challenges

In the Face of stunning global growth
Many sources of inertia

There is a wide portfolio of options
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The Global Energy
Challenge

A ftriple challenge

» Global prosperity

* Energy demand growth
e Energy security

* Supply challenges
* Climate protection

e Carbon constraints
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Why Is This Not Going Away?
/ A: Energy Translates to GDP

Climbing The Energy Ladder

A Continuously Changing Relationship
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Energy:
Where Do We Get It?
How Do We Use It?




Sankey Diagram of Energy Flows in US Economy

. . Lawrence Livermore
Estimated U.S. Energy Use in 2014: ~98.3 Quads National Laboratory
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Source: LLNL 2015. Data is based on DOE/EIA-0035(2015-03), March, 2014. If this information or a reproduction of it is used, credit must be given to the Lawrence Livermore National Laboratory
and the Department of Energy, under whose auspices the work was performed. Distributed electricity represents only retail electricity sales and does not include self-generation. EIA reports
C of r ble resources (i.e., hydro, wind, geothermal and solar) for electricity in ETU-equivalent values by assuming a typical fossil fuel plant "heat rate." The efficiency of electricity production
is calculated as the total retail electncnty delivered divided by the primary energy input into electricity generation. End use efficiency is estlmated as 65% fa the residential and commercial sectors 80%
for the industrial sector, and 21% for the transportation sector. Totals may not equal sum of comp. due to indep TC g. LLNL-MI-410527
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Energy Generation and Use

2012 Primary Energy Supply
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/ Buildings: Energy Supply and Use

Building Sector Energy Supply
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Industry: Supply and Use

Industry Sector Energy Supply
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Transportation: Supply and Use

Transportation Sector Energy Supply
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US Carbon Dioxide Emissions

Carbon Dioxide Emissions by Source
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Global Energy Demand Growth

History 2010 Projections
/ Figure 3.6 = PLDV fleet in selected regions in the New Policies Scenario
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Global Energy Growth Patterns

Fiegional consumption by fusl 2017
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Caoal: Production by region Coal; Consumption by region
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Global Petroleum Flows

Major trade movements 2017

Trade flows worldwide (million tonnas)
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Oil and Gas Transporiation Choke Points

Figure 2.18 == Share of inter-regional oil and gas trade through key choke
points in the New Policies Scenario
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2017 Gas Flows

-ﬂ Low U.S. natural gas prices motivate LNG production

and exports
Global natural gas landed prices ($/MMBtu) - January 2018
UK
elglum
s
Cove Point pain &
Japan
$6.24 *S X 5k '$8.10
Mexico *Lake Charles hina
s10.18 Kk 5287 * $10.86
India
$10.73
Argentina
* 10,52

sources: U.S. FERC, World Bank

» At the beginning of 2018, U.S. natural gas prices were as low as 30 percent of
international levels, which motivated U.S. production and exports
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Projected Global Net Gas Flows

Figure 4.10 == Net inter-regional natural gas frade flows between major regions in the New Policies Scenario (bcm)
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Shale and Fracking

aYe) | 0)!
=]
m ‘— Shallow
— aquifer
— Coalbed
—Multiple steel and
2,000~ cement castings

— Impermeable
rock layers

22 .
Deep aquifer
»- »
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DNAL ~ - L fractures — Typical

gas-rich
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| I e = i EEER 90% Wat e
— ~ o Water
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<1% Additives

Common Water-Based Fracking Fluid Additives

Hydrochloric acid  Clears debris from well bore _
Guar gum _ Increases viscosity of fluid to disperse proppant
Polyacrylamide

_ Ethyleneglycol _ Prevents carbonate/sulfate deposits
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THE PROCESS

using pressurised fluid, trucks
generally for the purpose
of extracting natural gas

Cemented
well casing
protects aquifer

Waste cuttings
generated
during drilling
are broughttoa
plastic-lined pit
at the surface

“Kickoff” point -
Drillers begin
arc that levels
off horizontally
when shale
layer is reached

Approx. distance from
surface: 2,400 m

Hydraulic fracturing, Data
commonly known as monitoring
fracking, is the creation Man

of fractures in rock Chemical
formations in the earth storage

é(\,

Sources: National Geographic, Chesapeake Energy, EIA., USGS

Common Fracturing Equipment

Wellhead Frac tanks -
stimulation
fluid storage

l— Frac

\ pumps

&Frac

Sand

blender units

Waste water pit

Municipal water well

(over 300 m)
Private well

Horizontal Drilling

Welldrilled  Production casing
horizontally  inserted into borehole, detonated
at 914- then surrounded with inside a

cement

1,524 m

storage

lllustration not to scale

Hydraulic fracturing - how it works

RISKS

Air emissions
Methane gas associated *
with natural gas extraction
can leak into air

Drinking water .,
Chemicals used in "y
fracking pr

have the potential
to contaminate
aquifers

Earthquakes

The disposal of waste
fluid from the fracking
process is cited as a cause
of earth-quakes. Disposed
fluids migrate below the
injection area,
destabilising the natural
fractures in the rock
formation

Charges then Pressurised
mixture of
water, sand
perforating and chemi-
gun, blasting calsthen
small holes pumped

into the into the well

shale at 15,900
litres a
minute

Waste
water well

Injection

The fluid
generates
numerous
small fissures
in the shale,
freeing
trapped gas
that flows to
the surface

Coanbl A2 /11 /011
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EIA / ARI assessed
Shale Oil and Shale Gas resources 2013

Legend i e
( »

I Assessed basins with resource estimate /

Assessed basins without resource estimate

(‘ Advanced Resources
ela’ U.S. Encrgy Information International, Inc.

Administration www adv-res. com
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Larger, Taller Turbines to Capture
Improved Wind Flelds

Empire State

Building
1,454 ft
Eiffel
Tower
1,063 ft New GE
Haliade-X
853 ft
Tallest Block Island
onshore offshore wind
Average USturbine project
onshore  574ft 590 ft
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m | S\ _ 2/1/2019
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US Solar Insolation

/
bout 1his Map »

Click on the links below to
switch layers on and off.

PROPOSED LINES

v Solar power
transmission
lines

EXISTING CAPACITY

Solar power capacity 7
In kWh / sq. R. per year

B 260 B 186

B 248 B 173

B 235 161

B 223 149

B 211 136

B 198 112-124
No data

EXISTING LINES

Knot




CAIZ0 Laad, 'Wind & Salar Prafiles — High Load Case
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Small Modular Reactors:
Safety, Reliability, Cost

Containment

Reactor
. Pressure Vessel

Hot Leg Riser
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Origins of Anthropogenic CO2
Data: CDIAC/NOAA-ESRL/GCP/Joos et al 2013/Khatiwala et al 2013
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IPCC ARS
Carbon-Budget
310 Gt C50%
odds for 2°C

IPCC ARS

_ . Carbon Budget
250 Gt C 66%
odds for 2°C
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Carbon Budget
175GtC?
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CHINA

Paris

1 International INDCs 20 2030, compared with Global Carbon Budgets 1

IPCC ARS medium estimate 531 GtC emitted globally since mid 19th Century.

INDCs = ‘ad hoc-Budget’

presented to COP-21 Dec 2015
Just 2010 to 2030 sum to 272 Gt C |
i.e. that’s the whole global budget for 2°C!

Overall it is 83 Gt C 2010 - 2015

+ 189 Gt C 2015 - 2030
+ 198 Gt C (?) 2031 - 2100
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National Academy Analysis of CDR: A Scenario

GHG emissions (GtCO.e/year)

80 - | Gross positive GHG emissions

CO, from fossil fuels, industry Mitigate_d Examples of associated technologies

: and land use changes GHG emissions

o CHs, N;O and F-Gases
60

’ Conventional
e /9  abatement technologies
) -1
40 c/
¥
+44
30 | r_\, & N
v
20
Net zero .
10 GHG emissions ® 'e Emitting =re
."e+ technologies g[:] o

0

10 Net negative . * Carbon removal %
i Gross negative GHG smisslons technologies

CO; emissions

2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

FIGURE S.1. Scenario of the role of negative emissions technologies in reaching net zero emissions.” SOURCE:
UNEP, 2017.
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Geological Sequestration Resources
For CO2 Mineralization

33 Michael L Knotek, PhD 10/4/2018




Why Are Folks Freaking Out???1ll
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Electrlflcaho nis a Fundamental Global Trend |
+ Global Elec’rnﬁc@mon Path to Growth and Economic Security 1 Ly

« Accommoddtion’of Asymmetric Supply and Demand Technolog|es (Renewobles +)
« The Engine for Carbon Constraint Response :




The Future Grid differs Radically from the Present:
Characterized by More Flexibility and Agility
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* Operator-Based Grid Management
* C(Centralized Control
* Off-Line Analysis / Limit Setting

* Flexible and Resilient Systems
* Sensors and Data Acquisition
* Algorithms and Computer Infrastructure

*  Multi-Level Coordination / Precise Control
* Faster-than-Real-Time Analysis

Growing Vulnerabilities to Instability, Internet Related
Intrusion, Foreign Adversaries, Natural Disasters



Dynamic Range of the Grid

distance to premium
renewable resources

stability problems
oscillations

DG interconnection
criteria transmission

- o distribution ~ congestion
harmonic / voltage
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hour-ahead scheduling and
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switching devices, day-ahead goals
inverters ~demand scheduling
' response
3 | T T T |/|\|/ | T
106 103 100 103 10° seconds
millisecond second minute hour day year decade



Modelling and the Grid: Toward Faster-
Than-Real-Time Operational Models

Bulk power operational
planning madels

Long-term infrastructure
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Distribution system
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Storage Has A Wide Variety of Values

Bulk Power MgL

Hydro

Flow Batteries: Zn-Cl Zn-Air Zn-Br CAES

VRB PSB New Chemistries

Na$S Battery
High-energy Advarjced Lead-acid Battery
Supercapacitors NaN|CI2 Battery

Li-lon Battery

Lead-acid Battery

hours

minutes

High-power Flywheels

High-power Supercapacitors

1kWw 10 kW 100 kW 1MW 10 MW 100 MW 1GW
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Discharge Time at Rated Power

seconds




Efficiency as a
Core National Strategy
(and an indispensable global strategy)

) Potential Limits of Building Energy Efficiency
=" (Commercial)

Commercial Energy (Composite, All Regions)
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How Will We Support The Emerging
Economies and Technologies???

V"% U.S. DEPARTMENT OF ENERGY

~ Critical
- Materials
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Battery pack structures

Battery pack cells

Connectors and cable jacketing

Film capacitors

Power control unit

Thermal management systems Electric motors

hybrid-electric.automotive.dupont.com

The miracles of science™
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Critical Materials Found in Clean Technologies

Technology Component Material
Wind Generators Neodymium
Dysprosium
Vehicles Motors Neodymium
Dysprosium
Li-Hon Batteries Lithium
(PHEVs and EVs)
Cobalt
NiMH Batteries Rare Earths: Cenum,
(HEVs) Lanthanum, Neodymium,
Praseodymium
Cobalt
PV Cells Thin Film PV Tellunum
Panels General*
Gallium
Germanium
Indium
Selenium
Sikver
Cadmium**
CIGS Thin Films Indium
Gallium
CdTe Thin Films Tellunum
Lighting Phosphors Rare Earths: Yttrium, Cerium,
(Solid State Lanthanum, Europium, Terbium
and Fuorescent)
Fuel Cells* Catalysts and Platinum, Palladium and other
Separators Platinum Group Metals, Yttrium
Soumes: Table data extactad fom Baugr, 201 1 (20§ and expanded wpon with 4ata fom othor Sowroes per
astorsks. *AFS/MRS, 2011 (2). **Lfton, 2011 (109




Critical Materials Institute Palette for Study
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Global Rare Earth Elements Deposits
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Figure 3. Distribution of documented REE deposits as
presented by A. Mariano in (Mariano, 2010).
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Selected rare earth projects outside of China (numbers 1-9 denote most advanced projects)
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Rare earth
elements
(in rare earth
oxide/ REO)

Lithium

(in lithium
carbonate
equivalent/LCE)

Cobalt

Indium

Production
characteristics
Occur in dilute
concentrations
in metal ores.
oOften co-
produced with
other metals.
Concentrations
vary widely
from ore to ore.
Most lithium is
recovered from
subsurface
liquid brines or
from mining of
lithium-
carbonate rocks

Primary cobalt
(15%)

Byproduct of
nickel mining
(50%)

Byproduct of
copper mining
(35%)

Byproduct of
Zinc processing

Table 3-1. Production and Reserves Information on Key Materials:®

2009 top-ranked global primary and
refinery producers plus U.S.-related
information (in tonnes unless otherwise

indicated)

Mine production:

China 125,000"
Russia 2,470
India 50
United States 0
(processing of

stockpiled ore at

Mt. Pass, CA led

to 2,150t REO ™!

chile 38,720
Australia 23,020
china 12,033
United States withheld

Ores, concentrates, or semi-

refined materials:

DRC 25,000
Australia 6,300
china 6,200
Russia 6,200
us. 0

Global: Not available

Michael L Knotek,|PhD

Refined metal:
Not available
Not available
Refined metals &
chemicals:
china~ = 23,00
0
Finland = 8,900
Canada 4,900
U.s. 0
Metals, alloys,
etc:
China 300
South 85
Korea
Japan 60

us. 0

Top-ranked
reserve

holding
countries, in
rank order
China 36%
CIs 19%
U.S. 13%
Chile 76%
Argentina 8%
Australia 6%
DRC 51%
Australia 23%
Cuba 8%
china 73%
Others 16%
U.Ss. 3

Total
global
reserves
(in
tonnes)
29 million
in REO
content

9.9 million
in lithium
content

6.6 million
in cobalt
content

Not
available



Things to Read

» The Quadrennial Technology Review: energy.gov/qtr

» Plys the technology assessments
» The Quadrennial Energy Review
» The Annual Energy Outlook: DOE.EIA.GOV/AEO
» World Energy Outlook: hitps://www.iea.org/weo2018/

» BP Statistical Review of World Energy 2018
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https://www.iea.org/weo2018/

Thank You




