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US Net Electricity Production
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Renewable Electricity Cost

LCOE ($/MWHh, 2018 real)
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includes charging costs assumed to be 60% of whole sale base power price in each country.
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Solar Electricity Costs

Concentrating Solar Power
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Solar Irradiance on Earth

Solar Radiation Research Laboratory (BMS)
September 9, 2012
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Annual DNI
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US Solar Radiation Map

Direct Normal Solar Radiation

Model estimates of monthly average daily total radiation using inputs
derived from satellite andfor surface observations of cloud cover,
aerosol optical depth, precipiteble water vapor, albedo, atmospheric
pressure and ozone resampled to a 40km resolution. See

http: fiwww nrel gov/gisfil_csp html documentation for more details
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DNI Effect CSP Costs
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Quaschning V, Kistner R, Ortmanna W (2001) Simulation of parabolic trough power plants. Proceedings of the 5th
Cologne Solar Symposium, Cologne, 46-50
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CSP System

Concentrating Solar Thermal Field

Thermal Energy Storage

Power Block ~ Electricity

» Waste Heat




System Efficiency

Power generation subsystem
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B
Daily Summer Output Pattern at the SEGS IV

Plant in Kramer Junction, CA
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I
Concentration Ratio

Area concentration ratio (geometric):
Aa
A

r

C =

1
X [ 144,

I

a

Optical concentration ratio: C, =

T, is the averaged irradiance
I, is the insolation incident on the collector aperture

Duffie JA, Beckman WA (2006) Solar engineering of thermal processes, 3rd edn. Wiley, New York
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System Efficiency
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Collector Configurations
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a) Tubular absorbers with diffusive back reflector; b) Tubular absorbers with specular

cusp reflector; ¢) Plane receiver with plane reflector; d) parabolic concentrator; e)
Fresnel reflector f) Array of heliostats with central receiver

Duffie JA, Beckman WA (2006) Solar engineering of thermal processes, 3rd edn. Wiley, New York
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Concentration Ratio vs. Receiver
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Steel structure Parabolic trough reflector

Adsorber pipe

— AR-coated glass tube

ensures high transmittance
and high abrasion resistance

Durable glass-to-metal seal

|
material combination with matching |
coefficients of thermal expansion

New absorber coating
achieves emittance <10%

L and absorptance 295%
Vacuum insulation

minimized heat conduction losses

Improved bellow design
increased the aperture length
to more than 96%
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Parabolic Cross Section

Parabolic Trough Technology

Trough Efficiency vs. Operating Temperature
Thermal
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Thermal Conversion Efficiency = net heat collected/
incident solar radiation over the trough aperture area

Krothapalli, A. and Greska, B., "Concentrated Solar
Thermal Power”, Hand Book of Climate Change Mitigation
and Adaption Editors: Wei-Yin Chen, Toshio Suzuki and
Maximilian Lackner, Springer-Verlag, 2017, 1503-1536.



l Flow of heat transfer fluid
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Solar collectors

Parabolic Trough Plant with
and Without Storage
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Hot Salt

Power Tower Solar Power System

565 °C

Storage Task l
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Cold Salt Storage Task
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Ivanpah Solar Power Facility
The steam plant was designed
for 28.72% gross efficiency.

The local irradiance near the
area is about 7.4 kW-h/m?2/day
(annual average)
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Operating Temperature
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Dish-Stirling CSP
Operating Temperature Range: 600-940°C

Dish-Stirling system (n~ 20 - 30%), USA



Maximum Receiver Temperature
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5MW CSP/Biomass Power Plant

A hybrid solar thermal/biomass scheme that improves the typical solar thermal
capacity factor from 20% to 80%

An organic Rankine cycle (ORC) serves as a bottoming cycle to extract
additional energy
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Industrial Process Heat

Greatest Potential for Solar Thermal Use

Industrial Sector m Temperature (°C)

Food and Drying 30-90
Beverages Washing 40 - 80
Pasteurizing 80-100
Boiling 95 -105
Sterilizing 140 — 150
Heat Treatment 40 - 60
Textile Industry Washing 40 - 80
Bleaching 60 - 100
Dyeing 100 — 160
Chemical Boiling 95 -105
Industry Distilling 110 - 300
Various Chemical Processes 120 - 180
All Sectors Pre-heating of boiler feed water 30-100
Heating of production halls 30-80

Medium Temperature Heat: 80°C - 200°C



Modern Solar Thermal Collectors

Pool heating,
crop drying

Space woling

\ 4

Water and space heating
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Industnal process heat

o r
Concentrating collectors " ;

Advanced flat-plate,
evacuated tube collectors,
CPC collectors

Platplate collectors

Unglazed collectors
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Working temperature °C

Note: adapted from the IEA Solar Heating and Cooling Implementing Agreement.

Technology Roadmap: Solar Heating and Cooling. IEA, 2012
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Concept

Stationary Panel
CR>1

l

Tracking Receiver

Designed Working Fluid Temperature: 150°C

This work was carried out by Dr. John Pandolfini as part of his Ph.D. Dissertation at FSU



Ray Tracing




Ray Tracing

Incident Radiation
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Parabolic Reflector with Moving Receiver
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Concept




D
Intercept Factor

Fraction of Rays Reaching Receiver with Incident Angle to Parabola
Axis, CR=6, 0, =60°
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Collector Model
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Energy Density

Method kWh/kg
Gasoline 14
Li-Ion Batteries 0.3
Hydrostorage 0.3/m?
Flywheel, Steel 0.05

Flywheel, Carbon Fiber 0.2
Flywheel, Fused Silica 0.9
Hydrogen 38

Compressed Air 2/m?




Hydrogen Powered Fuel Cell Cars
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Typical Range : 585 Km
Top Speeds: 170 km/h

H2 Storage: 5.5 kg @ 689 bar

Expected cost of fuel
cell stack: $50/kW

Expected Hydrogen
cost:$6/kg

(produced at the point of delivery)
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Sustainable Paths to Hydrogen

Renewable Energy

y y

Heat Biomass

y

Mechanical Energy
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m Electrolysis Photolysis
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Hydrogen

-

D. Brent MacQueen
Brent.macqueen@sri.com

Source: SRI International, Menlo Park CA
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Hydrogen-Electricity
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200 | mm Commercial system efficiencies (54-67 kWh/kg)

— |deal system (HHV of hydrogen 39 kWh/kg)

H, cost ($/kg)
poow s o o
o o o o o
o o o (@ o

1.00

0.0o-x'lll'l'(‘
0.000 0.010 0.020

0.030 0.040 0.050 0.060 0.070
Electricity costs ($/kWh)

1 1 I 1
| I

0.080 0.090 0.100

Technical grade Hydrogen currently costs about $6/kg

Compressing the gas, delivering it to a filling station, storing it and
dispensing it to fuel cell vehicles cost about $13/kg



Energy Efficiency of Electrolysis

Chemical Potential _ 1.23
Electrolysis Potential 1.45

= 85 %

Coupling to a 20% Photo Voltaic array gives a

solar to hydrogen efficiency of about 17.5%.

Requirement for Electrolysis: High Purity Water &
Electricity



Water Splitting -
4 Hydrogen Production

750 kW Facility

Sun heats redox materials, such as nickel ferrite or cerium oxide, in the interior of the reactor to 1400
degrees Celsius At these temperatures, the metal oxide is chemically reduced, that is oxygen is released and
transported out of the reactor.

The actual water splitting occurs in the second step, which takes place at 800 to 1000 degrees Celsius. Here,
the water vapor flow through the reactor. The previously reduced material is reoxidised. As the oxygen is
now bound into a metal oxide, it remains in the reactor, whilst the hydrogen is free to be transported out of
the reactor.

Once the material is completely reoxidised, it is regenerated through the first step of the

procedure and the cycle starts again.

CERTH-CPERI-APTL



Hydrogen Production From Biomass

Exhaust Air Solar Thermal
Char Field Producing [ suates
Combustor Treatment
Steam
T 1 lzso o T
o 7 800 °C 350 °C Wéter
Biomass i Ch[;pp.mg+ G s::an:i —— £ };eat —3 Scrubber /
rying asification Steam + xchanger Condenser
Syngas
Steam @ Steam
800°C Combustor [ @700 *C
CO +CH,
' H, Gas Clean
Pure H, Separator Up

Source: John Dascomb, Ph.D dissertation, FSU, 2013
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Hydrogen Production Efficiency

Steam |
generator I*

Fluidized [700C 25C H>

e [ bed * I3 )@ a0 [ Emiched
with single
As tested | heat exchanger
Hydrogen (mol %) 68.3 68.3
Total energy efficiency (%) 50 68
Elemental Hy prod. effic. (%) 29 40




Hydrogen Enriched Synthesis Gas Production Plant

1 Steam injection

2 Biomass screw feeder

3 Ceramic heaters

4 Reactor tube

5 Cyclonefilter

6 Heat exchanger

7 Water scrubber / condenser
8 Cooled nroduct gas exhaust

Dascomb, J., and Krothapalli, A., "Hydrogen Enriched Syngas from Biomass Steam Gasification for Use in Land Based Gas
Turbines”, Novel Combustion Concepts for Sustainable Energy Development, Eds: A.K. Agarwal et al., Springer, 2014,
Qa_11N




Dascomb, J., and Krothapalli, A., "Hydrogen Enriched Syngas from Biomass Steam Gasification for Use in Land Based Gas
Turbines”, Novel Combustion Concepts for Sustainable Energy Development, Eds: A.K. Agarwal et al., Springer, 2014,

QAQ-_-11N

Steam Gasification with CaO

Test # 1 2 3
Reactor temperature (°C) 657 | 690 | 701
S/B ratio 2.9 2.9 2.1
Gas residence time (sec) 2.7 2.6 2.7

Syngas component

Average gas conc.

(dry mol %)

Hydrogen
Methane

Carbon monoxide
Carbon dioxide
Ethylene

Ethane

Acetylene

Propylene
HHV (dry MJ/m?)

65.5
11.1
10.8
9.4
1.6
0.5
0.1
0.4
15.6

69.4
8.8
7.5
12.0
1.3
0.8
0.1
0.8
14.2

68.3
8.7
9.3
11.3
1.4
0.6
0.1
0.4
14.3




Conclusions

Concentrated Solar Thermal Technologies best suited for
energy storage

Multiple Parabolic Reflector Flat Panel Collector design for
Industrial process heat

Most Efficient Solar energy to Split Water to Hydrogen is
Concentrated Solar Power



