

NAVAL POSTGRADUATE SCHOOL

INSTALLATION MICROGRID AND NETWORKED STANDBY POWER DESIGN CRITERIA (US DOD UFC 03-550-4)

Naval Post Graduate School Defense Energy Seminar Monterey, CA Aug, 2022

Tarek Abdallah Senior Power and Energy Resilience PM US Army

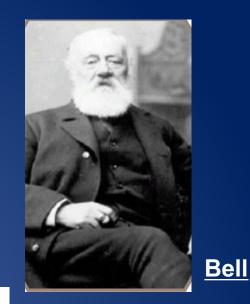
Course Outline

CHAPTER 1 BACKGROUND

CHAPTER 2 TECHNICAL DEFINITION

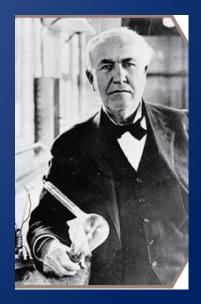
CHAPTER 3 MAJOR COMPONENTS

CHAPTER 4 OPERATIONAL FLEXIBILITY AND PERFORMANCE METRICS


CHAPTER 5 SEQUENCE OF OPERATIONS

CHAPTER 6 UNIFIED DESIGN CRITERIA AND TECHNICAL HIGHLIGHTS

CHAPTER 7 INSTALLATION POWER QUALITY



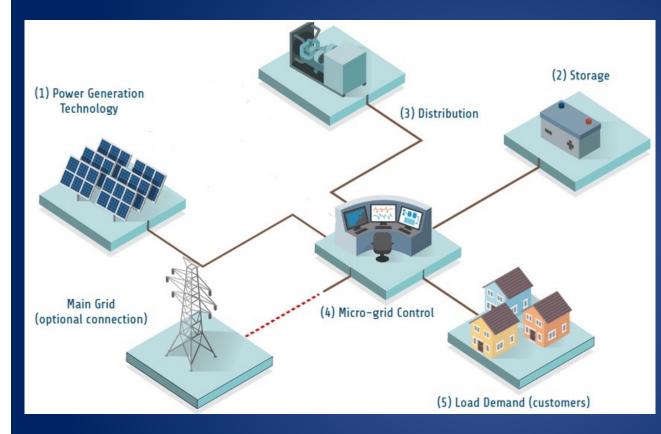
There is a popular comparison that underscores the pace of change – or lack thereof – regarding our nation's grid.

The story goes like this:

If Alexander Graham Bell were somehow transported to the 21st century, he would not begin to recognize the components of modern telephony – cell phones, texting, cell towers, PDAs, etc. – while Thomas Edison, one of the grid's key early architects, would be totally familiar with the grid.

Edison

Microgrids Support Elevated Mission Assurance


- Traditional power system technology for contingency (standby) at DoD installations has <u>not kept pace with technological</u> <u>advancements</u> for 21st Century Operations
- Most critical facility loads use dedicated diesel generators to provide spot generation (US DOD - UFC 340-01)
- In vast majority of cases, <u>contingency power systems are</u> <u>oversized (under utilized)</u>
- Primary benefit of networking energy infrastructure at an installation is <u>elevating the level of mission assurance.</u>

"Military installations are almost completely dependent on a fragile and vulnerable commercial power grid, placing critical military and Homeland defense missions at unacceptable risk of extended outage."

- Defense Science Board Task Force (2008)

Technical Definition

Architecture and Source Agnostic

A microgrid is a decentralized group of electricity sources and loads but is able to disconnect from the interconnected grid and to function autonomously in "island mode"

- Wiki

The operational mode for <u>stand-alone power</u> <u>production</u> ... <u>that is</u> <u>disconnected from an</u> <u>electric power production</u> <u>and distribution network or</u> <u>other primary power source</u>.

- NEC Article 705

Major Components

- **Sources** Generation (Distributed or Centralized) including turbines, engines, photovoltaic, fuel cells, hydropower, etc
- 2. Loads Facilities, Operations Centers, or other Installation Energy Consumers
- 3. <u>Distribution</u> Electrical Distribution between installation substation and facility transformer
- 4. **Switchgear** Distribution level switches, electrical breakers, and paralleling gear
- 5. **Point of Common Coupling** the point of demarcation between the bounded microgrid and the external grid or interconnection (there may be more than one depending on the design).
- 6. <u>Secure Controls</u> Utility Control Hardware, Software, and Human- Machine Interface (Require Cybersecure Controls)
- 7. <u>Energy Storage</u> (Optional) Chemical Storage (batteries), Hydrogen, or Fuel-based Storage

History of Microgrid Development in DoD

Research Phase (2005-2010)

Fielding and Demo Phase (2010-2015)

- Basic Research and Applicability to Installation Power Systems
- Lab scale/Bench
 Scale Testing
- Modeling, simulation

- Initial Fielding to USbased Installations
- US DOD Smart Power Infrastructure Demo for Energy Reliability and Security
- Performance Validation

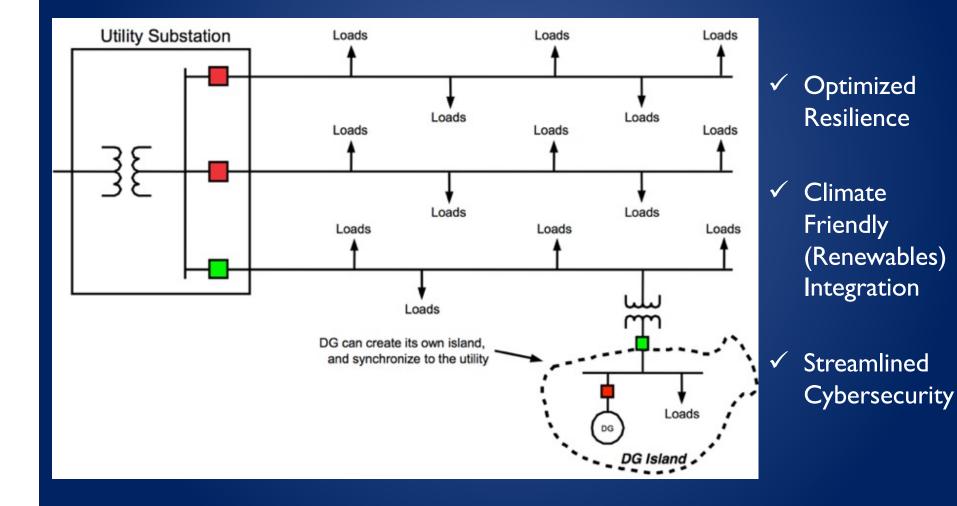
(2015-2021) Microgrid Projects Integrated into Military Construction (MILCON) and Energy Savings Performance Contracts

(ESPC)

Integration Into

Real Property

Infrastructure


Phase

Mass Adoption Phase (2022 → Present)

- US DOD Tri-Service Unified Design Criteria (in Draft)
- Army Climate Strategy Calls for 140 Microgrid Systems on Installations
- Navy/Marine Corps Accelerated Design

Defined Boundary, Autonomous Operation

How Microgrids Address Installation and Operational **Requirements**

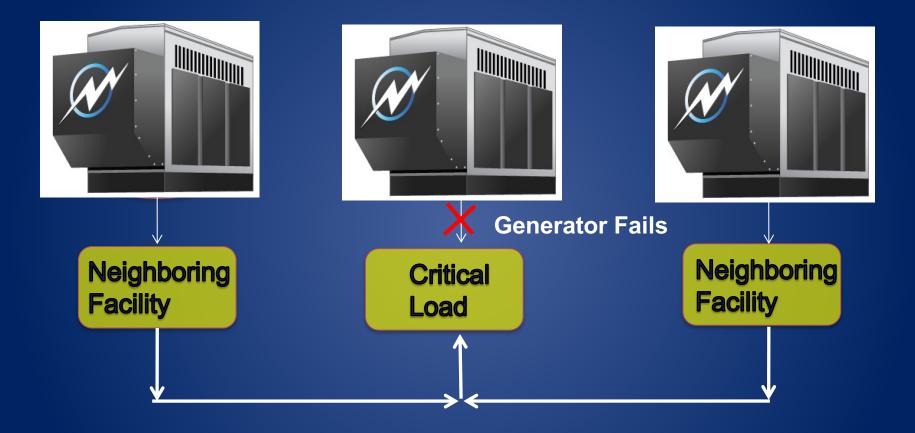
Energy Security/Resiliency

- Maximize Off-Grid Mission Endurance
- Isolate & service Critical Facility Loads
- Fully Automated CONOPS, Rapid **Restoration**, and Optimized Operational Visibility

Sustainable, Renewable

Energy

Installation Microgrids


- Cybersecurity
- Air gapped ICS systems

- Enable Renewables to Support mission during outages without utility signal
- Allow Renewables to defer consumption of valuable fossil fuel during contingency operation

- Cyber Sustainability with **Platform Approach to ICS** Hardening and IA Accreditation
- Cyber security hardware, software, system integration into RMF

Operational Flexibility

Eliminate single points of failure and route power throughout the microgrid for maximum operational flexibility

Performance Metrics

- OFF-GRID SYSTEM ENDURANCE total duration the microgrid can carry the peak critical load without the return of commercial power or refueling service
- <u>PEAK CRITICAL LOAD SERVED</u> capacity to support the peak-load demand of critical systems when they are engaged in normal mission activity.
- <u>LOAD SHEDDING</u> capacity of the design to shed load to maximize endurance of higher priority mission operations.
- **RESTORATION TIME AND SOFT TRANSITION** Time to supply power to all critical loads in the network; the time required for the system to island at all points of interconnection, and deliver power to the designated critical load
- OPTIMIZED LOAD FACTOR Extent to which the design minimizes low load factor operation including operation of assets in spinning reserve
- DEGREE OF RENEWABLE ENERGY CONTRIBUTION Extent to which the system leverages new and existing renewable energy technology
- EXPANDABILITY AND RECONFIGURABILITY Extent to which system design accommodates load growth or mission expansion with minimal design reconfiguration, reprogramming, and recurring engineering costs.
- **<u>POWER QUALITY</u>** Extent to which system delivers consistent power quality and high grid stiffness

Sequence of Operations

- 1) Normal Operation Grid-Connected, Stand-By
- 2) Islanding Isolation from External Utility
- 3) Black Start and Formation (Soft transition or Black Start)
- 4) Islanded Operation (Optimized Operation for Resilience and Endurance)
- 5) <u>Re-Synchronization</u> Reconnect Back to External Utility (Soft Transition Only)
- 6) <u>Testing and Diagnostics</u> Supports Regularly Scheduled Loaded Testing, Troubleshooting

Draft Unified Design Criteria

- ✓ Architecture and Source Agnostic
- Allow for the widest "aperture" of design solutions and acquisition vehicles, – <u>minimize</u> <u>restrictive/prescriptive statements</u>
- Open, Performance-based Design Standard (not prescriptive)
- Standby back up power is <u>complementary</u> to traditional, facility-dedicated back up (defense-indepth concept for energy resilience)

Criteria Technical Highlights

To be in technical compliance of the specified criteria, the design must provide the following:

- **1.** Be a Bounded System with autonomous generation, distribution, and controls
- 2. Be capable of islanding *with ability* to parallel and network more than one disparate source of generation
- 3. Black Start: Be capable of grid-independent, autonomous black start
- 4. System Balancing: Contain grid-independent ability to energize critical loads and optimize load factor
- 5. Contain sufficient inverter-based sources and spinning reserve to meet the peak critical load within the system boundary
- 6. Fail-Safe Operation deliberate return to load dedicated operation following loss of communication or other network impact

Criteria Technical Highlights

To <u>exceed</u> the specified criteria, the design may include the following:

I. Soft, "blinkless" Transition

- > Be capable of re-synchronization and soft (seamless) transition to islanded operation
- Be capable of re-synchronization and soft (seamless) transition back to the external grid
- 2. Energy Storage paralleling, forming, improved renewables utilization, improved power quality, blinkless transition, peak shaving or other grid incentives
- 3. Grid Connected Operation for load curtailment, demand response or grid services
- 4. Redundant (min 2) grid forming assets (generator or inverters)
- 5. Redundant (min 2) HMI Visualization Front-Ends
- 6. Redundant (min 2) Independent Black Start Sources)
- 7. Load Shedding Capability or Prioritized load restoration

End of Microgrid Course

Installation Power Quality

Major Transitions in Installation Metering

Legacy

Facility Level/Discrete Metering

Bulk Energy Consumption, typically at installation or building level for cost accounting

2010-2020

Smart Meters/AMI/Digital Relays

Energy Trending Informs Energy Audits and Reduction Targets Report *energy usage*, typically at 15min resolution

Delivers raw data only, no warfighter relevant information

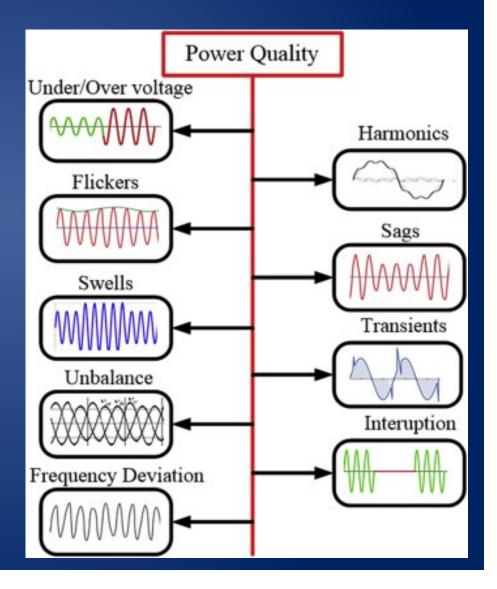
Future of Power Metering

2022 →

Mission-relevant power data analytics at Thousands of samples/sec

Interpret battlespace condition through power data analytics

Why Does Power Quality Matter


- **Power quality analysis** is a vast reservoir of actionable operational battlespace information
 - One of the greatest areas of unharnessed potential to provide information to battlespace operation
- **Digitally-dependent forces** are **at greater mission risk** due to complex, interconnected operational platforms
- Current enterprise energy metering <u>does not deliver usable</u> information; presents unmanaged risk
- DoD POWERS Platform delivers optimal integration of hardware and software to <u>capture big data analytics and convert into warfighter</u> <u>relevant information</u>

Classes of Power Quality Events

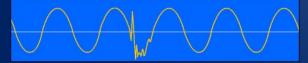
Classes of Events

- Voltage Based
- Frequency Based
- Harmonic
- Transients, Surges, and Oscillatory

Classes of Power Quality Events

Sag or Undervoltage

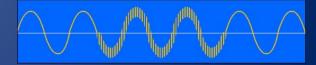
•Description: A decrease in voltage •Duration: Milliseconds to a few seconds, under voltages are sags that are longer than a few seconds


Swell or Overvoltage

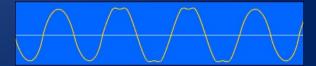
•Description: An increase in voltage

Transient, Impulse, or Spike

•Description: A sudden change in voltage up to several hundred to thousand volts. •Duration: Microseconds


Notch

•Description: A disturbance of opposite polarity from the


Noise

•Description: An unwanted electrical signal of high frequency from other equipment •Duration: Sporadic

Harmonic Distortion

•Description: An alteration of the pure sine wave (sine wave distortion), due to non-linear loads, on the power supply •Duration: Sporadic

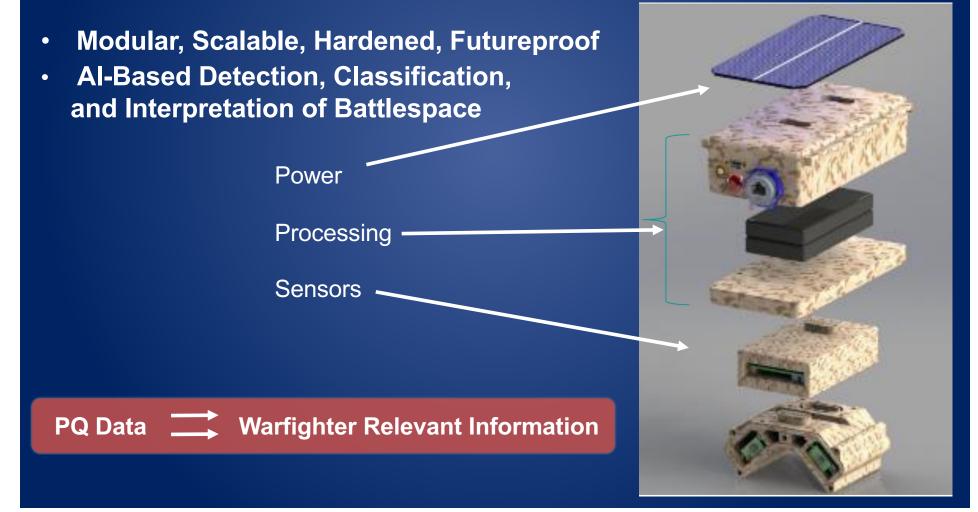
NAVAL POSTGRADUATE SCHOOL				
Classification	<u>Event Type</u>	Waveform Behavior		
Voltage Based	Under/Over Voltages			
	Sags			
	Unbalanced Phases			
Frequency Based	Frequency Variation			
Harmonic	Harmonic Waveform Distortion			
Transient and Oscillatory	Notching			
	Short Impulse			
	Signal Noise			

DoD POWERS Platform

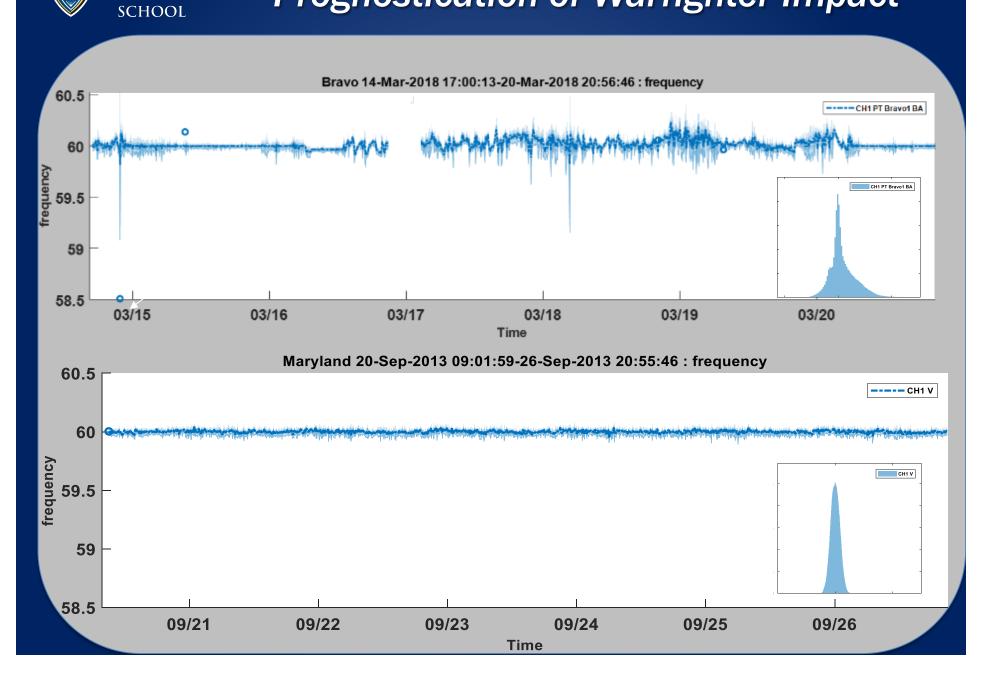
Power and Operational Warfighter Electronic and Resilient Sensing System

Mobile Unattended Ground Sensor (MUGS)

<u>True Operational Power Visibility</u>



Miniaturized, redesigned, outdoor enclosure


- Deep Integration of <u>Hardware</u>, Software, and DoD IP
- Years of Development and Remote Sensing/Power Analytics Research Supported by Intel Agencies
- Developed at <u>US Combat Capabilities Development Command Army</u> <u>Research Laboratory</u> (CCDC-ARL), Adelphi, MD (Sensor and Electronic Device Directorate)

NAVAL POSTGRADUATE DOD POWERS Platform

Power and Operational Warfighter Electronic and Resilient Sensing System

Prognostication of Warfighter Impact

NAVAL

POSTGRADUATE

NP

References and Standards

ANSI C84.1 – Standard for Electric Power Systems and Equipment – Voltage Ratings		
IEC 61000 – Electromagnetic Compatibility		
IEEE 519 - Recommended Practices and Requirements for Harmonic Control in Electric Power Systems		
IEEE 1100 (Emerald Book) - Recommended Practice for Powering & Grounding Electronic Equipment		
IEEE 1159 - Recommended Practice for Monitoring Electric Power Quality		
IEEE 1250 - Guide for Service to Equip Sensitive to Momentary Voltage Disturbances		
IEEE 1346 - Recommended Practice for Evaluating Electric Power System Compatibility with Electronic Process Equipment		
IEEE 1453 - Recommended Practice for Measurement and Limits of Voltage Fluctuations and Associated Light Flicker on AC Pow Systems		
IEEE 1531 - Guide for Application and Specification of Harmonic Filters		
IEEE C2 – National Electrical Safety Code		
IEEE C62.41 - Recommended Practice on Surge Voltages in Low-Voltage AC Power Circuits		
IEEE 1433 – Standard Glossary of Power Quality Terminology		
IEEE 1531 – Guide for the Application and Specification of Harmonic Filters		
IEEE 1564 – Guide for Voltage Sag Indices		
NEMA LA 1 – Surge Arresters		
NEMA LS 1 – Low Voltage Surge Protection Devices		
NEMA PE1 – Uninterruptible Power Systems	US Army Pov	
NFPA 70 - National Electrical Code		
NFPA 780 – Lightning Protection Code	David Hull (U	
UL 96A - Standard for Safety Installation Requirements for Lightning Protection Systems	Brandon Parl	
UL 1283 - Standard for Safety Electromagnetic Interference Filters	Nathàn Peter	

UL 1449 - Surge Protective Devices

US Army Power Quality Program POCs

E (41

POWER QUALITY STUDY FOR NAVFAC MARIANAS December 2018 Prepared by: Brandon Parks, Steven Vinci, Nathan Peterson, Tarek Abdallah (US Army)

Prepared for: NAVFAC Pacific, PW6

ARL

Increasing Cost to

Minimum Cost

Increasing PQ

December 20

Improve PQ

100

1.01

David Hull (US Army) Brandon Parks (US Army) Nathàn Peterson (US Army)

ver

Ś

Mission

Disruption Cost