Altering Course

Plotting the Maritime Energy Transition

Aug 2, 2022

David Hume

M&O, EERE, Maritime Decarbonization Lead U.S. Department of Energy david.hume@ee.doe.gov

Marine Energy Manager Pacific Northwest National Lab david hume@pnnl.gov

Grew-up working on Boats...

... Then Graduated to Ships

What is the Maritime Industry?

Transportation of materials, products, and people on the sea or connected waterways and the supporting coastal infrastructure.

SHIPS

The Maritime Industry is Truly Global

Shipping underlies the global economy – 90% of all world trade is carried by ship

The Global Fleet of Commercial Vessels

 Ships are getting bigger on average

 Many ships operating are 20 years old or more (e.g. General cargo)

Vessel type, country grouping by flag of registration and indicator		Years				Average age		
		0-4	5-9	10–14	15–19	More than 20	2021	2020
World								
Bulk carriers	Percentage of total ships	18	37	24	10	10	10.6	10.2
	Percentage of dead-weight tonnage	22	40	23	9	6	9.5	9.3
	Average vessel size (dead-weight tonnage)	90 447	78 409	68 583	68 087	46 623	NA	NA
Container ships	Percentage of total ships	14	19.21	32	17	17	13.2	12.7
	Percentage of dead-weight tonnage	20	29	29	14	7	10.4	9.9
	Average vessel size (dead-weight tonnage)	74 632	78 802	46 897	42 345	21 975	NA	NA
General cargo	Percentage of total ships	5	10	16	9	59	27.1	26.3
	Percentage of dead-weight tonnage	8	20	23	10	40	19.9	19.3
	Average vessel size (dead-weight tonnage)	5 992	7 493	5 494	4 372	2 660	NA	NA
Oil tankers	Percentage of total ships	14	17	21	13	35	19.5	19
	Percentage of dead-weight tonnage	25	21	28	19	8.	10.9	10.4
	Average vessel size (dead-weight tonnage)	96 122	65 148	72 208	80 802	12 346	NA	NA
Other types of ships	Percentage of total ships	10	17	17	9	47	23.6	23.0
	Percentage of dead-weight tonnage	20	16	23	11	30	16.1	15.8
	Average vessel size (dead-weight tonnage)	9 236	4 562	6 524	5 953	3 014	NA	NA
All ships	Percentage of total ships	11	18	19	10	42	21.6	21.1
	Percentage of dead-weight tonnage	22	29	25	13	11	11.2	10.80
	Average vessel size (dead-weight tonnage)	43 364	34 175	28 112	27 809	5 505	NA	NA

Source: "Review of Maritime Transport 2021" UNCTAD

DRAFT – DO NOT CITE

The U.S. Fleet of Maritime Vessels

11 million motorized recreational boats

6,500 government owned boats and ships

16,000 fishing vessels

600 Ferries

180 Ocean-going 6,000 Tugboats cargo ships and more...

38,000 commercial vessels

Port Energy Consumers

Ports Consume Lots of Energy

Port electrical loads are already sizeable and will likely increase

183,00

MWh and

\$20

Million

Annually

PORT OF LONG

BEACH

233,00 MVVh and \$30 Million Annually

2013 Values

Total Electricity Cost = \$50 million total each year

Source: "Moving Towards Resiliency: An Assessment of the Costs and Benefits of Energy Security Investments for the San Pedro Bay Ports". UCLA Luskin Center for Innovation. 2013. <u>https://innovation.luskin.ucla.edu/wp-content/uploads/2019/03/Moving Towards Resiliency.pdf</u>

PORT OF LOS

ANGELES

Electricity Demand at Ports is Forecasted to Grow

Annual Total UK Port Electricity Demand Under an Ambitious Decarbonization Scenario

Source: UMAS modelling

Note: The three components of energy demand are battery propulsion which refers to the energy demand from electrified ships (recharging batteries); port auxiliary power demand which refers to the electrification of port infrastructure; and shore power.

ets and Economic Instruments: A Report for the Department for Transport" July 2019

Major Energy Consumers on a Vessel

Energy Flows on a Vessel

Energy Demands of a Container Ship

This Maersk Triple E Class vessel can carry more than 18,000 containers

Main propulsion power Auxiliary power and boiler Annual operating hours Annual energy demand 60 Megawatt (MW) 2 - 7 MW 4,000 - 7,000+ hours 200,000 MWh

Energy Demands of a Ferry

Main propulsion power11.9 Megawatt (MW)Annual operating hours3,000 – 5,000 hoursAnnual energy demand40,000 MWh

The Mark II Jumbo class ferry used by Washington State Ferries can carry 2,500 passengers and 200 vehicles

Commercial Ships are Industrial Power Plants

Commercial Ships Have Really Big Engines

Ships and Energy

Heavy Fuel Oil is Industry Standard for International Shipping

Spot Market Rates - Very Low Sulfur Fuel Oil (VLSFO)

Maritime Emissions from Internal Combustion Engines

Annual Emissions and Fuel Consumption Comparison

Mark II Jumbo Ferry

- 1,670,000 gallons fuel
- \$6,700,000 in fuel costs
- 18,000 metric tons CO₂e
- Equivalent to the emissions of 3,700 passenger vehicles

Commercial Container ship

- 15,230,000 gallons fuel
- \$49,300,000 in fuel costs
- 200,000 metric tons CO₂e
- Equivalent to the emissions of 48,500 passenger vehicles

Commercial Fleet Energy Needs Similar to Government

T-AO

Annual Fuel Consumption

Annual Fuel Costs

Annual Emissions

1,890,000 gallons

\$7,500,000

19,000 metric tons CO2e

CO2 Emissions from Fossil Fuel Combustion in U.S. Maritime Sector (2015-2019)

Includes domestic and international vessel fuel consumption. Source Data - 2019 EPA GHG Inventory Assessment Table 3-13

The GHG emissions of global shipping is more than one gigaton per year as of 2018, or about 2.9% of <u>global</u> GHG emissions.

Rank	Country	2018 CO ₂ emissions (gigatons)
1	China	10.06
2	United States	5.41
3	India	2.65
4	Russa Federation	1.71
5	Japan	1.16
6	Global Shipping	1.056 ²
7	Germany	0.75
8	Islamic Republic of Iran	0.72
9	South Korea	0.65
10	Saudi Arabia	0.62

Top CO₂ Emitting Countries

¹ Source: Union of Concerned Scientists - <u>https://www.ucsusa.org/resources/each-countrys-share-co2-emissions</u>

² Source: IMO Fourth GHG Study (2020)

International Shipping Emissions Projected to 2050 with Business as Usual

Source: Fourth IMO GHG Study 2020, IMO, London, UK,

Shipping is believed to be responsible for an estimated 18% of global NOx and 9% of global SOx pollution

An estimated 70% of shipping emissions occur within 250 miles of land, exposing hundreds of millions of people in coastal communities to NOx and SOx pollutants

"Health risks of shipping pollution have been 'underestimated" The Guardian, 2009.

27 | Water Power Program

International Emissions by Ship Class

"Black Carbon Emissions and Fuel Use in Global Shipping, 2015." The ICCT. https://theicct.org/sites/default/files/publications/Global-Marine-BC-Inventory-2015_ICCT-Report_15122017_vF.pdf

Maritime Regulator Hierarchy

International Emission Regulation Milestones from the IMO

International Shipping Emissions Projected to 2050

Note – pathways shown are notional

Source: Fourth IMO GHG Study 2020, IMO, London, UK,

Stacking Emission Reduction Measures to Reach Goals

Emissions Reduction Measures of Varying Potential

Technology and Fuel Pathways

Source: Frontier Economics for DfT

Many fuels and production pathways to consider, each with unique lifecycle emissions

Not All Fuels are Created Equal - Lifecycle Assessment is Needed

Image source: Argonne National Lab, GREET Model, personal communication

Vessel owners/operators are hesitant to commit to a fuel for a vessel that may operate for 30 years

Uptake of Alternative Fuels in Global Maritime Fleet

Source data: DNV Alternative Fuels Insight, accessed June 2022

To Recap...

- Ports and vessels need lots of energy for their operations, and every ship is unique. Heavy fuel oil and diesel have been the main energy carriers for more than 100 years
- The global maritime industry ranks amongst the top ten largest GHG emitting countries
- Pollutants such as NOx and SOx stemming from maritime activities near seaports can lead to local health issues for port communities
- The global regulator for shipping is moving too slowly and not aggressively enough to reduce maritime emissions.
- There are many different fuels, tools, and technologies that can reduce maritime emissions at varying levels of technology readiness
- We need zero-emissions by 2050 to keep us in-line with the Paris Agreement, this necessitates action TODAY

Decarbonization is part of a Broader Sustainable Transportation Approach

Meet Everyone's Needs

Reliable mobility solutions for people and goods recognizing diverse needs of different communities and stakeholders Affordable (for consumers) and competitive for industry by supporting economy/jobs

Affordable

Environmental Quality

High quality local air and water in addition to GHG emissions

Maritime Decarbonization Pathways DRAFT – DO NOT CITE

Maritime Decarbonization Pathway	Low-carbon Liquid and Gaseous Fuels	Hybridization and All-electric	Energy efficiency and optimization	Exhaust treatment and carbon capture	
Example Technologies	 Methanol Hydrogen Ammonia Advanced Biofuels 	 Marine Batteries Hybrid-electric Engines Cold-ironing Fast charging 	 Waste heat recovery Wind assist Voyage optimization Hull cleaning 	 Onboard carbon capture PM Control Scrubbers Combustion strategy 	
GHG Reduction Potential	0 – 100%	0 – 100%	5 – 30%	0 – 30%	
Timeframe for large-scale impact	2030 and beyond	2030 and beyond	2022 and beyond	2025 and beyond	

How DOE Offices Support Maritime Decarbonization Pathways DRAFT – DO NOT CITE

Office	Low- Carbon Fuels	Hybrid & Electric	Energy Efficiency	Exhaust Treatment & CC
Advanced Research Projects Agency – Energy (ARPA-E)	Х	Х	Х	Х
OS - Advanced Scientific Computing Research			Х	
OS - Biological & Environmental Research				
FE - Oil and Natural Gas	Х			
FE - Clean Coal and Carbon Management (NETL)	Х			Х
NE - Reactor Fleet and Advanced Reactor Deployment	Х	Х	Х	
OE - Energy Planning and Strategy		Х	Х	
OE - Recovery and Critical Energy Infrastructure		Х	Х	
EERE - Vehicle Technologies Office (VTO)	Х	Х	Х	Х
EERE - Bioenergy Technologies Office (BETO)	Х			Х
EERE - Hydrogen Fuel Cell Technologies Office (HFTO)	Х	Х		
EERE - Water Power Technologies Office (WPTO)	Х	Х	Х	
EERE - Wind Energy Technologies Office (WETO)	Х		Х	
EERE - Solar Energy Technologies Office (SETO)			Х	
EERE - Building Technologies Office (BTO)			Х	
EERE - Advanced Manufacturing Office (AMO)			Х	
Loan Program Office (LPO)	Х	Х		

What is DOE Doing on Maritime Decarbonization? DRAFT – DO NOT CITE

DOE's International Maritime Engagements

- Mission Innovation Zero-Emission Shipping Mission International PPP focused on innovation gaps that limit the adoption of zero-emission fuels for ocean-going vessels. DOE is a co-lead of the Mission.
- The Clydebank Declaration and Green Shipping Corridors The Declaration commits signatories to establish >6 green shipping corridors by 2025. U.S. Framework for Green Shipping Corridors announced in April 2022 outlines desired ambition and how to build these routes. DOE working with other agencies on implementation.
- International Maritime Organization DOE is supporting U.S. delegates to the IMO to evaluate new proposals and emission reduction measures
- Quad Shipping Task Force Supporting DOT and USG actions with Australia, India, Japan to establish green shipping corridors in Indo-Pacific
- Marine Battery Forum Supporting collaboration and innovation on vessel electrification.
 DOE participates as an observer.
- International Energy Agency Technology Collaboration Programs (IEA- TCP)
 - Bioenergy TCP Task 39, Transport Biofuels
 - Hybrid and Electric Vehicle TCP Task 38, Marine Applications

The Goal: By 2030 ships capable of running on <u>well-to-wake</u> zero-emission fuels make up at least 5% of the global deep-sea fleet measured by fuel consumption and that at least 200 of these ships primarily use these fuels across the main deep sea shipping routes.

Three Mission Pillars

Government Co-Leads

Industry Co-Leads

Mærsk Mc-Kinney Møller Center for Zero Carbon Shipping

> GLOBAL MARITIME FORUM

DOE's Maritime RDD&D Activities

- Office of Electricity Port Microgrids
- Office of Nuclear Energy Small modular nuclear reactors for maritime
- Office of Carbon Management Shipboard Carbon Capture
- Loan Program Office AVTM loans and loan guarantees for vessels
- Office of Energy Efficiency and Renewable Energy
 - HFTO: hydrogen fuel cells for vessels, cold-ironing, hydrogen bunker barge
 - BETO: biofuels for marine diesel engines, life-cycle emissions inventories, fuel testing
 - VTO: improving engine technologies and combustion techniques for alternative fuels, electrification
 - WPTO: TA for coastal communities, fishing fleet and ferry electrification
 - WETO: Offshore wind support vessels, shipyard capacity
 - BTO: Cruise ship energy efficiency

David Hume <u>david.hume@pnnl.gov</u> <u>david.hume@ee.doe.gov</u> MAMBURG SUD