

Nuclear Power: Present Status, Future Trends, and Proliferation

George M. Moore PhD, JD, PE

U.S. Naval Postgraduate School November 28, 2023

What We'll Cover

• Nuclear Reactors (Worldwide and U.S.)

- Electrical Generation Nuclear Power Plants (NPPs)
- Research Reactors/Training Reactors/Propulsion Reactors/ Space Reactors
- Is there a "Nuclear Renaissance?" New builds, Problems for developers, Generation IV
- Small Modular Reactors where are we and why
- Nuclear Fuel Cycles and Waste
- Military Reactors Reactors in War -Zaporizhzhia, the Geneva Protocols and AUKUS

FORMERLY THE MONTEREY INSTITUTE OF INTERNATIONAL STUDIES

Numbers of NPPs

Worldwide NPPs

- ~ 436 reactors in 32 countries
- 92 reactors operating in U.S. in 28 states
 - ~ 92 GigaWatts (GW)
 - Rule of thumb ~ 33% efficient

FORMERLY THE MONTEREY INSTITUTE OF INTERNATIONAL STUDIES

Number of operable nuclear power reactors worldwide as of May 2023, by country

Nuclear Electricity Production 1985–2021 in the World...

in TWh (net) and Share in Electricity Generation (gross)

FORMERLY THE MONTEREY INSTITUTE OF INTERNATIONAL STUDIES

Fission or Fusion? Thermal or Fast Neutrons?

Pu235 ^{dvrr} 24.3m	Pu236 2.05y usratered	Pu237	Pu238 8789 05493,5486	Pu239 ^{In} 8µ12/439x10 ⁴ y a5.155,6.143,	Pu240 6540y asiee,siza	Pu 241 57 23µs) 15y ar 01.0200	Pu242 3.87 x 10 ⁵ y a 4360, 4856
0490,0341 05.85 EI.1 235.0453	ALLEX OT	17.1456 8.44 17.1456 8.44 1.2.1462 10.2.2 8704841	1.085 SF 2.5.102 A 17,425 14120 238,04558	Transform	911 07, 2, 9 110, 6 a 27 17 4 .08 240,03363	ATTENDED	5,19, (21.10 ⁸ 19-0.3 540.00827
Np 234 8- 448 , 8+5 ,0455-1802 6(1.10 ³	Np235 396d a 504, 4.936, 4.915, y 0842, 0256 £.123 235, 04408	1" Np236" 22.5h 1.3x10" y 5,7-5h 2453 0453 880 E154 E158	Np237 2,14×10 ⁶ y 4,767,4,770, y0294-280 6,18×10 ⁸ ,6×10 ⁸ 9,0 ² 27,04813	Np238	Np239 2.350d 2.3	7.5m 65m <i>a</i> -2.14,1.6 <i>a</i> -86 <i>b</i> -5.544, <i>b</i> -167 <i>b</i> -17 <i>b</i> -17 <i>b</i> -165 <i>b</i> -165	Np241 ⁶⁰⁴ 16.0m 9155,174
U 233 14 1,58 x 10 ⁵ y 04,124,4763, 0250,3830,46, 04,0763,31,05 1,44,0763,31,05 1,44,0763,31,05 1,44,0763,31,05		10235 26.1m 11-173ev 14-173ev 14-173ev 14-173ev 14-173ev 14-173ev 14-173ev 14-173ev 14-173ev 14-173ev 14-173ev 14-173ev 14-173ev 14-173ev 14-173ev 14-173ev 14-173ev	U236 2.342 x 10 ⁷ y	U237 6754 135,539 1455 1460, 1455 1460, 1455 1460, 1455 1460, 1455 1460, 1455 1460, 1455 1460, 1455 1460, 1455 1460, 1456 1460, 1466 1460, 1460	U238 U1 99,28 447,402 000 at 1000 at 1000 at 1000 at	U239 (54) 23.5m p+121,128,	U240 14.1h 9 ^{.36} 9.0441,
Po232 L32d = 327, 583, posts, onc str à, suct à, 7 + 10 ⁴	P0233 ** 27.04 #-260,155 * 119,0404-4158 #,(20+19),9 + 10 ⁹ 4+01 £,572	¹⁰ Po234 *** UX 2 UZ LIZ 667h	Pa235 ¹³⁴⁻¹ 24.1m 7 ⁰⁷⁵⁻⁰⁵⁹	Pa236 ¹¹⁻¹ 9.1m 9.20,11,3.1 7,642,059-2.182 63.1	Pa237 ⁽³⁺⁾ 8.7m (*143,176,230,- y.834, 660, 529 .179-1403 E~2.30	Pg238 ⁽¹⁾ 2.3m 91712,22,239 91015,650,440 068-1.10	
Th231 MA UX 25:52h #-303. 7.09420, 0172-320 E 367	Th232 Th2 (00 ACTO Y 40) ACTO Y 40 ACTO Y 40 A	Th233 ^(1/1) 22.2m P ^{-1.245} 0253:508 2.41 0 ² 0 x0 ² 018 61 245	Th234 0x1 24.10d 2-193, 10, 100 , 06940, 030-093 0, R. 0, 4001 E 263	Th235 6.9m ,416932			
Ac230	Ac231 84						1

Reactors—It's All About the Neutrons and the Nucleus

- Fast—Fission Energy (~2 MeV)
 - •Must be slowed for a thermal reactor to work
- Prompt neutrons
- Delayed—make reactor possible

FORMERLY THE MONTEREY INSTITUTE OF INTERNATIONAL STUDIES

How Reactors Work

Delayed 87 Br example

FORMERLY THE MONTEREY INSTITUTE OF INTERNATIONAL STUDIES

57

FORMERLY THE MONTEREY INSTITUTE OF INTERNATIONAL STUDIES

What types of Reactors Are in Use?

- Power Reactors (thermal vs. fast)
 - Pressurized Water (PWR) a type of LWR
 - Boiling Water (BWR) also an LWR
 - CANDU
 - Gas Cooled
- Research Reactors and Test Reactors
- Propulsion Reactors
- Space Reactors + nuclear aircraft, cruise missiles and cars

FORMERLY THE MONTEREY INSTITUTE OF INTERNATIONAL STUDIES

Pressurized Water Reactors (PWR)

FORMERLY THE MONTEREY INSTITUTE OF INTERNATIONAL STUDIES

Boiling Water Reactors (BWR)

FORMERLY THE MONTEREY INSTITUTE OF INTERNATIONAL STUDIES

CANDU (HWR)

FORMERLY THE MONTEREY INSTITUTE OF INTERNATIONAL STUDIES

Gas Cooled Reactors

FORMERLY THE MONTEREY INSTITUTE OF INTERNATIONAL STUDIES

Operable nuclear power plants

Reactor type	Main countries	Number	GWe	Fuel	Coolant	Moderator
Pressurized water reactor (PWR)	USA, France, Japan, Russia, China, South Korea	307	292.8	enriched UO ₂	water	water
Boiling water reactor (BWR)	USA, Japan, Sweden	60	60.9	enriched UO ₂	water	water
Pressurized heavy water reactor (PHWR)	Canada, India	47	24.3	natural UO ₂	heavy water	heavy water
Light water graphite reactor (LWGR)	Russia	11	7.4	enriched UO ₂	water	graphite
Advanced gas-cooled reactor (AGR)	UK	8	4.7	natural U (metal), enriched UO ₂	C0 ₂	graphite
Fast neutron reactor (FNR)	Russia	2	1.4	PuO_2 and UO_2	liquid sodium	none
High temperature gas-cooled reactor (HTGR)	China	1	0.2	enriched UO ₂	helium	graphite
TOTAL		436	391.7			

For reactors under construction, see information page on Plans for New Reactors Worldwide.

In all of these reactor types we need to consider how they can be safeguarded and their risk for proliferation.

Generally, the risks depend on fuel type and ease of diversion. Don't forget that proliferation has a human aspect and that there are dual use aspects inherent in any nuclear power program.

FORMERLY THE MONTEREY INSTITUTE OF INTERNATIONAL STUDIES

Zaporizhzhia

Zaporizhzhia

- VVER-1000 6 units—current status
- Dnieper River Cooling (note cooling towers)
- Connection to Ukrainian Power Grid
- Emergency Diesels (days of fuel?)
- IAEA onsite Rosatom onsite
- Vulnerabilities?

FORMERLY THE MONTEREY INSTITUTE OF INTERNATIONAL STUDIES

Additional Protocol I VS.

DOD Law of War Manual

AP I

Article 56 of Protocol I reads as follows:

Protection of works and installations containing dangerous forces

1. Works or installations containing dangerous forces, namely dams, dykes and nuclear electrical generating stations, **shall not be made the object of attack, even where these objects are military objectives, if such attack may cause the release of dangerous forces and consequent severe losses among the civilian population.** Other military objectives located at or in the vicinity of these works or installations shall not be made the object of attack if such attack may cause the release of dangerous forces from the works or installations and consequent severe losses among the civilian population. (emphasis added)

FORMERLY THE MONTEREY INSTITUTE OF INTERNATIONAL STUDIES

Fuel Cycle UraniumWhat about Thorium?

The Nuclear Fuel Cycle

Uranium enrichment terms

Mine	Country	Main owner	Туре	(tU)	world
McArthur River	Canada	Cameco	underground	7356	13
Tortkuduk & Moinkum	Kazakhstan	Katco JV/Areva, Kazatomprom	ISL	4322	8
Olympic Dam	Australia	BHP Billiton	by-product/ underground	3351	6
SOMAIR	Niger	Areva	open pit	2331	5
Budenovskoye 2	Kazakhstan	Karatau JV/Kazatomprom, Uranium One	ISL	2084	4
South Inkai	Kazakhstan	Betpak Dala JV/Uranium One, Kazatomprom	ISL	2002	4
Priagunsky	Russia	ARMZ	underground	1970	4
Langer Heinrich	Namibia	Paladin	open pit	1947	4
Inkai	Kazakhstan	Inkai JV/Cameco, Kazatomprom	ISL	1922	3
Central Mynkuduk	Kazakhstan	JSC Ken Dala, Kazatomprom	ISL	1790	3
Top 10 total				29,075	54%

Uranium mines operate in some 20 countries, though in 2014 some 54% of world production

FORMERLY THE MONTEREY INSTITUTE OF INTERNATIONAL STUDIES

Thorium Explained

Accidents

- Fukushima
- Windscale
- Chernobyl
- Three Mile Island
- SL-1

FORMERLY THE MONTEREY INSTITUTE OF INTERNATIONAL STUDIES

The New Kids On the Block (SMRs and Gen IV)

Small Modular Reactors

SMRs range in size up to 300 megawatts electrical (MWe), employ modular construction techniques, ship major components from factory fabrication locations to the plant site by rail or truck, and include designs that simplify plant site activities required for plant assembly. SMRs can employ light water coolant or any of a number of non-light water coolants.

- •SMRs offer many advantages such as relatively small size, reduced capital investment, ability to be sited in locations not possible for larger nuclear plants, and provisions for incremental power additions. SMRs also offer distinct safeguards, security and nonproliferation advantages.
- •Well, maybe if you get by NIMBY and other concerns

Newly announced Westinghouse SMR

- Replaces IRIS as Westinghouse's SMR design
- Integral PWR configuration
- 225 MWe capacity
- Standard 17x17 pin fuel assemblies
- Heavy reliance on AP-1000 and past reactor experience
- Internal control rod drive mechanisms
- Straight tube steam generator
- External primary coolant pump motors
- Small volume containment vessel

FORMERLY THE MONTEREY INSTITUTE OF INTERNATIONAL STUDIES

Advanced Reactor Designs

Fast Reactors

EBR-1 and -2

https://www.youtube.com/watch?v=cBThTwFhRlA

A pro nuclear power "rant" https://www.youtube.com/watch?v=c1QmB5bW_WQ

Generation I reactors were developed in 1950-60s, and the last one shut down in the UK in 2015. **Generation II reactors are typified by the present US** and French fleets and most in operation elsewhere. So-called Generation III (and III+) are considered advanced reactor, though the distinction from **Generation II is arbitrary.** The first ones are in operation in Japan and others are under construction in several countries. Most Generation IV designs are still on the drawing board and the first are just under construction.

FORMERLY THE MONTEREY INSTITUTE OF INTERNATIONAL STUDIES

Advanced power reactors operational

Developer	Reactor	Size – MWe gross	Design progress, notes
GE Hitachi, Toshiba	ABWR	1380	Commercial operation in Japan since 1996-7. US design certification 1997. UK design certification application 2013. Active safety systems.
KHNP	APR1400 (PWR)	1450	Shin Kori 4 in South Korea, operating since Jan 2016. Under construction: Shin Hanul 1&2 in South Korea, Barakah in UAE. Korean design certification 2003. US design certification application.
Gidropress	VVER- 1200 (PWR)	1200	Novovoronezh II, from mid-2016, as AES-2006. Under construction at Leningrad. Planned for Akkuyu in Turkey and elsewhere.
OKBM	BN-800	880	Beloyarsk 4, demonstration fast reactor and test plant.

FORMERLY THE MONTEREY INSTITUTE OF INTERNATIONAL STUDIES

Advanced power reactors under construction

Developer	Reactor	Size – MWe gross	Design progress, notes
Westinghouse	AP1000 (PWR)	1250	Under construction in China and USA, many units planned in China (as CAP1000). US design certification 2005, UK generic design approval 2017. Canadian design certification in progress.
Areva (& EdF)	EPR (PWR)	1750	Was to be future French standard, French design approval. Being built in Finland, France & China.
CNNC & CGN (China)	Hualong One (PWR)	1170	Main Chinese export design, under construction at Fangchenggang and Fuqing, also Pakistan.
INET & CNEC (China)	HTR-PM, HTR- 200 module	2x105 (one module)	Demonstration plant being built at Shidaowan.

FORMERLY THE MONTEREY INSTITUTE OF INTERNATIONAL STUDIES

Advanced power reactors ready for deployment

Developer	Reactor	Size – MWe gross	Design progress, notes
GE Hitachi	ESBWR	1600	Planned for Fermi and North Anna in USA. Developed from ABWR, but passive safety systems. Design certification in USA Sept 2014.
Mitsubishi	APWR	1530	Planned for Tsuruga in Japan. US design certification application for US-APWR, but delayed. EU design approval for EU-APWR Oct 2014.
Areva & Mitsubishi	Atmea1 (PWR)	1150	Planned for Sinop in Turkey. French design approval Feb 2012. Canadian design certification in progress.
Candu Energy	EC6 (PHWR)	750	Improved CANDU-6 model. Canadian design certification June 2013.
Gidropress	VVER-TOI (PWR)	1300	Planned for Kursk II, Nizhny Novgorod and many more in Russia. Russian design certification in progress for EUR.
	VVER-600	600	Planned for Kola.

FORMERLY THE MONTEREY INSTITUTE OF INTERNATIONAL STUDIES

Nonproliferation And Nuclear Weapons

Murrah Building, Oklahoma City 5000 lbs. of ANFO ~1.5 ton equivalent (0.0015 kT) Fatalities – 168

World Trade Center, New York City 2 aircraft, ~180 tons each @ ~500 mph ~20,000 total gallons of jet fuel ~2 kiloton (kT) of TNT equivalent Fatalities - 2980

Nuclear Weapons Dropped on Japan Little Boy: 12.5 kT (~6 times larger) Small yield compared to modern arsen: Fatalities 48 hours - 66,000 1945 - 145,000 1950 - 200,000

TABLE 8.2 Effect of Reflector on Critical Mass^a

	Percentage of	Reflector Thickness (Utilizing Beryllium)					
	Uranium-235	None	5 cm	15 cm			
_	15%	1351.0 kg	758.3 kg	253.8 kg			
	30%	367.4 kg	171.2 kg	68.7 kg			
	45%	184.7 kg	80.5 kg	35.6 kg			
	70%	87.2 kg	36.5 kg	18.2 kg			
	93%	53.3 kg	22.3 kg	11.7 kg			

^a Alexander Glaser, "On the Proliferation Potential of Uranium Fuel for Research Reactors at Various Enrichment Levels," *Science & Global Security*, 14(1): 18, (2006), http://www.princeton.edu/~aglaser/2006aglaser_sgsvol14.pdf (accessed 03/01/08).

FORMERLY THE MONTEREY INSTITUTE OF INTERNATIONAL STUDIES

Spontaneous fission rates

Spontaneous fission rates:^[2]

Nuclide	Half-life	Fission prob. per decay	Neutrons per fission	Neutrons per gram- second
²³⁵ U	7.04x10 ⁸ years	$7.0 \mathrm{x10}^{-11}$	1.86	$1.0 \mathrm{x} 10^{-5}$
²³⁸ U	4.47x10 ⁹ years	5.4×10^{-7}	2.07	0.0136
²³⁹ Pu	2.41x10 ⁴ years	4.4×10^{-12}	2.16	$2.2 \text{x} 10^{-2}$
²⁴⁰ Pu	6569 years	$5.0 \mathrm{x10}^{-8}$	2.21	920
²⁵⁰ Cm	8300 years	0.80	3.3	$2x10^{10}$
²⁵² Cf	2.638 years	$3.09 \mathrm{x} 10^{-2}$	3.73	2.3x10 ¹²

In practice ²³⁹Pu will invariably contain a certain amount of ²⁴⁰Pu due to the tendency of ²³⁹Pu to absorb an additional neutron during production. ²⁴⁰Pu's high rate of spontaneous fission events makes it an undesirable contaminant. Weapons-grade plutonium contains no more than 7.0% ²⁴⁰Pu.

The rarely-used gun-type atomic bomb has a critical insertion time of about one millisecond, and the probability of a fission during this time interval should be small. Therefore only 235 U is suitable. Almost all nuclear bombs use some kind of implosion method.

- Proliferation by material access
- Proliferation by technology access
- Proliferation by education

Let's Talk a little about bombs and designs

- •Gun vs. Implosion
- •Timing and mechanics
- •Effects are largely design independent

Single stage fission devices

-Relationship to nuclear reactors

- •Neutron energies
- •Timing
- •Lack of reliance on delayed neutrons
- •Can a reactor explode like a bomb?
- -Timing: one "shake" is 10⁻⁸ seconds. Device requires approximately 50 to 60 shakes or about 0.5 μs to produce a yield on the order of 1 kt

Weapons-grade materials

- -Plutonium with less than 7% plutonium 240 (typical reactor Pu is 25% Pu 240)
- -Uranium 235 generally the HEU definition of greater than 20% uranium 235 (remember that Oralloy is 93.5%)
- –Uranium 233 has no formal definition for weapons grade, but it is desirable that uranium 232 content is less than 10 ppm

FORMERLY THE MONTEREY INSTITUTE OF INTERNATIONAL STUDIES

Gun and Implosion Designs

Figure 2-VII. Gun Assembly Principle

FORMERLY THE MONTEREY INSTITUTE OF INTERNATIONAL STUDIES

Test Firing of "Atomic Cannon" at Nevada Test Site 1953

Gun assembled nuclear weapons

- -Initiator with a crushable alpha emitter and a low-Z material, typically beryllium. Polonium 210 was used in early weapons
- -Spontaneous fission is a problem and can produce a "fizzle" yield. Why a plutonium gun doesn't work well! Thin Man
- For a 10 kg quantity of 50% uranium 238 the spontaneous fission rate will be about 10⁻⁴ to 10⁻³ neutrons in about 10 μs. For a 10 kg quantity of weapons grade plutonium there will be approximately 2.5 spontaneous fissions in the 10 μs timeframe
- -Uranium 233, bred from thorium 232 is less likely to pre-initiate than a uranium 235 device

Implosion Systems and Boosting Fusion Reactions

 $^{2}H + ^{2}H = ^{3}He + n + 3.2$ MeV,

 $^{2}H + ^{2}H = ^{3}H + ^{1}H + 4.0$ MeV,

 $^{2}H + ^{3}H = n + ^{4}He + 17.6$ MeV,

 ${}^{3}\text{H} + {}^{3}\text{H} = {}^{4}\text{He} + 2n + 11.3$ MeV.

Background for Two-stage nuclear explosive (Hydrogen Bomb or Thermonuclear Bomb)

- –Joe-one in 1949
- -Oppenheimer security problems
- -By mid-1949 two concepts proposed for the hydrogen bomb
 - •Alarm Clock
 - •Super (Classic super tested in November 1952 10 Mt Mike test using liquid deuterium)

FORMERLY THE MONTEREY INSTITUTE OF INTERNATIONAL STUDIES

Finally AUKUS

What We'll Cover

• Nuclear Reactors (Worldwide and U.S.)

- Electrical Generation- Nuclear Power Plants (NPPs)j
- Research Reactors/Training Reactors/Propulsion Reactors/ Space Reactors
- Is there a "Nuclear Renaissance?" New builds, Problems for Developers Generation IV
- Small Modular Reactors- where are we and why
- Nuclear Fuel Cycles and Waste
- Military Reactors- Reactors in War-Zaporizhia and Geneva Protocols and AUKUS