

Novel Membrane Technologies for Cost Effective Hydrogen Production by Electrolysis

Phase 2 Project Number: 1172061-1-93083

Damian Amiruddin, Dufei Fang, Devinder Mahajan and Benjamin S. Hsiao,

Outline

Introduction

- Motivation
- Project Overview
- Membrane Distillation
- Water Splitting (Electrolysis)

System Simulations

Results and Discussion

- System Design
- Material Selection
- Future Work

Non-Sustainable Resources for Battery Needs

By 2030, expected to need production of

- 250,000-450,000 t of lithium
- •....250,000-420,000 t cobalt....
- 1.3-2.4 million t of nickel

Global mined cobalt production in 2015, plus reserves (the color of the countries indicates the reserves; the data in the countries represent the annual production)

National library of medicine, ATZ Worldw. 2021; 123(9): 8–13. .PMhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8390110/C (nih.gov)

Hydrogen Shot "Earthshot" [1:1:1]

- Development of a method to produce low-cost ultra pure water
- Development of a low-cost membrane for separation of gases after water splitting

DOE National Clean Hydrogen Strategy roadmap, September 2022, U.S Department of Energy

Current Industrial Ultrapure Water Production – Reverse Osmosis

- Large systems that require lots of energy
- Excess water usage
- Prone to fouling

Current H₂ Gas Production Method - Steam Methane Reformation

 $CH_4 + H_2O \iff CO + 3H_2 \quad \Delta H_{295} = -206 \text{ Kj/mol}$ $CO + H_2O \iff CO_2 + H_2 \quad \Delta H_{298} = -41 \text{ Kj/mol}$ $CH_4 + 2H_2O \iff CO_2 + 4H_2 \quad \Delta H_{295} = 165 \text{ Kj/mol}$

- Cheapest and most utilized production of hydrogen gas
- Around \$2/kg of hydrogen
- Large production of unwanted products

Energy Procedia 37 (2013) 7221-7230 J. Am. Chem. Soc. 2008, 130, 4, 1402–1414

• • • • • • • • • • • • •

Membrane Distillation

Hydrophobic Hydrophobic membrane Nonisothermal membrane • membrane Coolant Feed Condensing fluid Feed separation process inlet outlet inlet Permeate outlet Driving force is partial pressure • differences induced by temperature gradients Feed Condensing Coolant Feed Hydrophobic membrane • outlet fluid inlet outlet inlet Permeate outlet Requires a source of heat • DCMD AGMD

- As temperature increases, efficiency of the Solar cells decreases
- Efficiency drops, and creates excess heat (>80% solar energy)

Voudoukis, Nikolaos. (2018). Photovoltaic Technology and Innovative Solar Cells. European Journal of Electrical Engineering and Computer Science. 2. 10.24018/ejece.2018.2.1.13. www.sciencedirect.com Energy Procedia 33 (2013) 311 – 321 www.sciencedirect.com Nature Communications, 10, 3012, (2019)

Water Splitting by Electrolysis

COMSOL Multiphysics Simulation Software

- Analysis, solver, design and simulation software
- Utilized for physics and engineering applications
- Used for the simulation and development of the flat top membrane distillation system

Layer Considerations in PV-MD System Simulations

1.Heat Transfer

Whole domain

2.Fluid (water) Flow

- Flow type
- Heat convection

3. Moist Air Flow

- Moisture flux (through membrane)
- Moisture evaporation (in membrane)
- Moisture transportation
- Moisture condensation

4. Coupling of Physics

- Heat transfer and water flow
- Moisture transportation and Moisture flow
- Heat transfer and moisture flow

Membrane Properties

• Mass transfer judged by Knudsen Number

$$K_n = \frac{\gamma}{d}$$

• Knudsen Number is the ratio of the molecular mean free path length to physical length scale

$$\gamma = \frac{K_B T}{P\sqrt{2}\pi\sigma^2}$$

Three possible cases for Knudsen Number

- 1. $K_n > 1$, the influence of pore radius dominates due to collision of diffusion molecules with membrane pore wall, known as Knudson Diffusion
- *2.* K_n < .01, mass transfer resistance is the primary collision between diffusion molecules
- 3. $.01 < K_n < 1$, mass transfer is combined with the molecular diffusion mechanism known as Knudson Diffusion

Coefficient C_{mf} (= β_p)**vs Temperature T**

p_{sat} and p_{v} Differences Across Condensation Layer

- The partial pressure difference between channels is similar at each step
- Driving force of membrane distillation

2-Layer Temperature Cross Section

Temperature (K)

Five-Layer PV-MD p_{sat} and p_v Differences

Vapor pressure cross the cut line

Five-Layer MD Condensation Channel Humidity

* Stony Brook University

Air Cooling Simulation Design

- Cooling system designed to increase surface area
- Wind meant to come in contact with as much surface area as possible
- Difficult to control windspeed and keep it constant

FAR BEYOND

Water Cooling Vs. Air Cooling Simulation Results

Air Cooling Effects

FAR BEYOND

PV-MD System Schematic – Evaporation Channel

PV-MD System Schematic – Condensation Channel

Material Selection- Condensation Sheet

Polyethylene Terephthalate (PET)

Name	PET	
Phase at STP	solid	
Density	1350 kg/m3	
Ultimate Tensile Strength	150 MPa	
Yield Strength	40 MPa	
Young's Modulus of Elasticity	9 GPa	
Brinell Hardness	20 BHN	
Melting Point	267 °C	
Thermal Conductivity	0.3 W/mK	
Heat Capacity	1250 J/g K	
Price	0.8 \$/kg	

- Low surface energy
- Inert
- Quite Cheap to utilize

304 vs 316 Stainless Steel sheet

Comparison of the Elements of Series 304 Stainless Steel and Series 316 Stainless Steel

	304 SS	316 SS		Туре 304	Type 316
Tensile Strength	520-750 MPa	520-700 Mpa	Carbon	0.08% Max.	0.08% Max.
Yield Strength	215 MPa	290 MPa	Manganese	2.00% Max.	2.00% Max.
Hardness	70 Rockwell B	79 Rockwell B	Phosphorus	0.045% Max.	0.045% Max.
Modulus of			Sulfur	0.030% Max.	0.030% Max.
elasticity	193-200 Gpa	164 Gpa	Silicon	1.00% Max.	1.00% Max.
Thermal	16.2/21.5	16.2/21.5	Chromium	18.00 - 20.00	16.00 - 18.00
Conductivity	W/m⋅K	W/m∙K	Nickel	8.00 - 10.50%	10.00 - 14.00
Price per kg	\$5	\$6.57	Molybdenum		2.00 - 3.00%

- Chemical composition of the different types of stainless-steel sheets is very similar
- Molybdenum is the major difference in 316 steel

https://www.rapiddirect.com/blog/304vs-316-stainless-steel/https://www.iqsdirectory.com/articles/stainless-steel/stainless-steel-316.html https://www.stindia.com/316-stainless-steel-supplier.html

Material Selection- Membrane

Polytetrafluoroethylene (PTFE)

Property	Value		
Melting Temperature (°C)	317-337		
Tensile Modulus (MPa)	550		
Elongation at Break (%)	300-550		
Dielectric strength (kV/mm)	19.7		
Dielectric Constant	2.0		
Dynamic Co-efficient of Friction	0.04		
Surface Energy (Dynes/g)	18		
Appl. Temperature (°C)	260		
Refractive Index	1.35		

- Contact angle of 125 degrees
- Highly hydrophobic
- Low thermal conductivity

Material Selection - Compatible Glue

Small Scale Prototype Design

Water Cooling Assembly

Current Shortcomings of the 4-Layer PET System

Synthetic Seawater tests

2-Layer Stainless Steel Test

West System G/Flex 650 vs 655 Comparison

34

2-Layer 12x12 System

12x12 with Honeycomb Plate Design

- Configuration: 2 layer with 50 micron thick 316L stainless steel as the middle condensation plate.
- The top plate is a 1/4" aluminum honeycomb plate and the bottom plate are 0.9 mm thick 316 stainless steel plate.

12x12 with Honeycomb Plate Design

- Honeycomb design still works to a degree
- Does not produce good water for electrolysis
- Leak also developed

Concluding Remarks

- The team has proved that waste heat can be utilized as an impressive energy source for membrane distillation
- Ultrapure water can be achieved through the desalination of salt water by the developed membrane distillation device
- With further study, the team has the capabilities of propelling hydrogen production to lower costs and has the potential of achieving the ambitious 1:1:1 goal

Acknowledgments

I would like to take the time to thank the Office of Naval Research for providing funding for the investigation and development of the membrane distillation device

