
DevOps with Software, Data, and Models
Mathias Kölsch, PhD – 2021aka DevSecAIOps, DevSecOps

for AI/ML, MLOps

What I am about to tell you:

DevOps is crucial for agility
Agility is necessary to achieve readiness and responsiveness.

Data, models, and security must be first-class considerations
Owing to their dissimilarity to software and increased complexity.

Workforce education and close collaboration is essential
Culture shift starts with customer relationships and data entry.

DevOps with Software, Data, and Models. Mathias Kölsch 2

Special thank you to Erin Paciorkowski, JAIC

What is DevOps?

Automation and monitoring at all
steps of software system
construction and operation:
• Coding & implementation
• Component integration
• Testing and QA
• Deployment
• Infrastructure management, monitoring, scaling

DevOps with Software, Data, and Models. Mathias Kölsch 3

Image Credit: Dukesn, Shutterstock.com

Software Development

• Traditional SD Life Cycle (SDLC):
Requirements specification  Implementation  QA
 Deployment  Usable application. Operation and maintenance.

• DevOps: Iterate!
Demo the first prototype,
then deliver regular incremental updates.

Planning:
Prioritize features (not releases) regularly for
short-term requirements towards long-term
goals.

DevOps with Software, Data, and Models. Mathias Kölsch 4

Requirements

Design

Development

Testing

Deployment

Maintenance

customer is not involved during these steps

Software Development: Who does what?

• Traditional SD Life Cycle (SDLC):
Requirements specification  Implementation  QA  Ops  Use
Customer & product manager  developer tester ops team  customer

• DevOps:

DevOps with Software, Data, and Models. Mathias Kölsch 5

Iterate!
Demo the first prototype to the customer,
then deliver regular incremental updates.

Planning:
Customer & project manager & developer…
prioritize features (not releases) regularly for
short-term requirements and long-term
goals.

Software Development: Who does what?

• Traditional SD Life Cycle (SDLC):
Requirements specification  Implementation  QA  Ops  Use
Customer & product manager  developer tester ops team  customer

• DevOps:
Developers write tests and automation

(together with test engineers)
Developers write infrastructure-as-code

(specialized infrastructure engineers)
Developers automate the CI/CD pipeline

(specialized DevOps engineers)
Developers monitor and operate

(together with ops/security team)
DevOps with Software, Data, and Models. Mathias Kölsch 6

DevOps: Why?

• Avoids late surprises, costly fixes and patches, overrun deadlines
• Avoids requirements creep and feature bloat
• Faster deployment times by leveraging Continuous Integration &

Continuous Deployment (CI/CD)
• Use of containers and immutable infrastructure gives high consistency in

build and deployment procedures
• Fosters close collaboration of cross-functional multi-org teams
• Enforces and monitors compliance with security, requirements tests, and

development standards through scripted steps
• Shift Left: earlier and repeated QA, testing, release, customer validation,

etc. since it’s part of every loop iteration

DevOps with Software, Data, and Models. Mathias Kölsch 7

DevOps Untruths
Common DevOps misconceptions:

❌ DevOps for AI/ML will solve all your software
product development headaches

❌ Customers can expect a newly requested
feature in the next release

❌ Security and testing are built into the pipeline
and hence automatic

❌ Once the CI/CD pipeline is automated, it will
run hands-off

❌ Infrastructure as code means that IT
administration is a task of the past

❌ Cloud-hosted applications are inherently
scalable

DevOps with Software, Data, and Models. Mathias Kölsch 8

Data

DevOps and AI/ML
DevOps
• System behavior depends on source

code and configuration
• Pipeline is fixed and one-way

DevOps with Software, Data, and Models. Mathias Kölsch 9

DevOps with AI/ML component
• System behavior depends on source

code, configuration, and data
• Manual steps of data exploration and

ML experimentation
• Data and Model traceability (pedigree)
• Mix and match data, models, and code

Data
Extraction Data Prep Model

Training
Model

Validation
Model

Repository

DevOps with Software, Data, and Models. Mathias Kölsch 10

DevOps and AI/ML (continued)
• The manual exploration and experimentation process is essential to AI/ML (yes!)

and should not be impeded by a rigid pipeline.
• Hence, data and models are usually not as well controlled (versioned, updated, reproducible)

as is code.
• “ML is experimental in nature. You should try different features, algorithms, modeling

techniques, and parameter configurations to find what works best for the problem as quickly
as possible. The challenge is tracking what worked and what didn't, and maintaining
reproducibility while maximizing code reusability.”
Google Cloud, MLOps: Continuous delivery and automation pipelines in machine learning

• System testing and validation now needs to take all three into account: code,
configuration, and data. Specifically:

• Data validation (is the data truly what we think it is?)
• Model evaluation (during and after training)
• Model validation (while in use)

• Continuous Validation: real-world data characteristics can drift or change suddenly.
• Model might self-update: “continual learning” with data observed in operation
• Model behavior needs to be monitored continuously for degradation
• Example: Microsoft’s chatbot Tay

• Deploy as Webservice or Micro Service
• reproducible model deployments with low coupling to client software system
• highly scalable

• Integrated via Backend Queue
• inference on backend
• higher latency than edge
• efficient scaling

• Deploy to Browser (ex: Tensorflow.js)
• inference locally
• no transmission of private data to server
• transmits model to the end user

• Deploy to Edge (end device)
• hardware limitations
• feedback concerns
• inference on site may be required for some situations

• Deploy to Network Edge
• 5G provides compute power near end device
• blend of benefits: low latency, good scalability

AI and Model Deployment Destinations

Slide modified from Erin Paciorkowski, JAIC

ML Deployment to the Edge
Case Study: 160th Airborne (SOAR),
Digital Integrated Maintenance Environment (DIME)

Jason Slusser: The Power of Data Analytics in Aviation Sustainment. Army Aviation.
http://www.armyaviationmagazine.com/index.php/archive/not-so-current/1849-the-power-of-data-analytics-in-aviation-sustainment

DevOps with Software, Data, and Models. Mathias Kölsch 12

“As part of operationalizing the [ML system], and to provide timely
information in an edge environment with limited transport for data
backhaul, DIME developers built the Model at the Edge (MaTE) Kit. The
MaTE Kit consists of a laptop computer loaded with the [data]
download tool, containerized [ML model], and a web-based
visualization of AI predictions for operational users. The intent of the
MaTE Kit is to provide the user on the ground with an “all in one” tool
to interface the aircraft, download data, process and store data, and
visualize the [model predictions].”

A Long Pipeline

DevOps with Software, Data, and Models. Mathias Kölsch 13

Data
Extraction Data Prep Model

Training
Model

Validation
Model

Repository

Requirements
Analysis

Software
Design Build Test Secure Store Artifacts

QA Review Deployment
Configuration

Deploy &
Operate Monitor Scale

Data

Secure

• Automated testing, vulnerability scans, encapsulation
• Secure: development, data, deployments, operations
• Secret management
• ML specific threat vectors

• Also covered in other lectures

DevOps with Software, Data, and Models. Mathias Kölsch 14

Secure

Pipeline Disambiguation
• DevOps Pipeline

• Defines the process for software code to turn into a product/service and how
to maintain it

• Mostly synonymous with Continuous Integration (of code and components)
and Continuous Delivery (CI/CD)

• MLOps = DevSecAIOps
• DevOps for systems that have an ML component

• Data Pipeline
• Data ingest, cleaning, labeling, versioning of curated data sets

• ML training pipeline
• Upon receiving new (often labeled) data, update or re-train the model

• ML inference (prediction) pipeline
• Defines data preparation for input into the model, followed by prediction

(object detection or regression or ...), and result presentation
• ML model pipeline

• The part of the MLOps pipeline that creates and tests candidate models,
handles model artifacts, configures and deploys the model into the inference
pipeline, provides traceability

DevOps with Software, Data, and Models. Mathias Kölsch 15

DevOps, Security, and AI/ML (summary)
• More components, more steps, more artifacts, more tests, more validation, more configuration
• More people involved (data scientists, ML engineers, model testers, AI ethics reviewer)
• More distinct, asynchronous processes (software dev and data/models) that need to co-evolve
• More frequent updates (of dependencies, data, code, other input)
• More monitoring: “uptime” is insufficient, need to verify real-word results from inference
• More desire to close the loop: observe the performance during inference, and feed newly

encountered data back into the pipeline for continual learning
• More demand on traceability and for data pedigree information
• More enforcement of security compliance (continuous checks in the pipeline)
• More expedient vulnerability fixes (to combat zero-day exploits), lower

mean-time-to-repair
• More questions, more complexity!

DevOps with Software, Data, and Models. Mathias Kölsch 16

The solution is not to give up and to revert to Waterfall.
The solution is to expect more DevOps and automation needs,
to use best-practices, proven pipelines, and principles.

Pitfalls

• DevOps should strive for full automation, but that
should not be an expected goal

• DevOps should enable agile development and CI/CD,
but not get in the way of development through…

• Brittle automation
• Resource drain on application developers and/or QA testing

• Agile does not remove the need for long-term planning
• Short-term focus can be distracting from a higher, ultimate

goal (compare to company shareholders!)

DevOps with Software, Data, and Models. Mathias Kölsch 17

Agile does not mean you should release every
iota of code or model version

• Feature granularity needs
to be a cohesive and
meaningful unit

DevOps with Software, Data, and Models. Mathias Kölsch 18

• This is especially important
with AI and ML models and
their validation on the actual
inference data

• Not every domain allows for
failures

Machine Learning in the Big Picture

From Scully et al., Hidden Technical Debt in Machine Learning System, 2015.

DevOps with Software, Data, and Models. Mathias Kölsch 19

Conclusions

• DevOps is crucial for agility
• Security, data and models must be first-class considerations
• Workforce education and close collaboration is essential

• Iterate
• Don’t wait until you know exactly what you want
• Expect more DevOps and automation needs
• Use best-practices, proven pipelines, and available tools

DevOps with Software, Data, and Models. Mathias Kölsch 20

Thank you!

Contact:
Mathias Kölsch, kolsch@nps.edu

DevOps with Software, Data, and Models. Mathias Kölsch 21

Backup Slides

DevOps with Software, Data, and Models. Mathias Kölsch 22

References
• In-depth discussion of MLOps

• https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf

• Data and model versioning:
• Data Version Control, https://www.dvc.org
• Mlflow, https://mlflow.org/

• Source control with built-in CI/CD:
• Gitlab: https://docs.gitlab.com/ee/ci/README.html
• Github: https://github.com/features/actions
• Bitbucket: https://bitbucket.org/product/features/pipelines

• CI/CD self-hosted, also available in cloud:
• Circle CI, https://circleci.com/
• Jenkins, https://www.jenkins.io/
• TeamCity, https://www.jetbrains.com/teamcity/

• CI/CD, cloud:
• https://aws.amazon.com/codepipeline/
• https://azure.microsoft.com/en-us/services/devops/pipelines/
• https://cloud.google.com/docs/ci-cd

DevOps with Software, Data, and Models. Mathias Kölsch 23

https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
https://www.dvc.org/
https://mlflow.org/
https://docs.gitlab.com/ee/ci/README.html
https://github.com/features/actions
https://bitbucket.org/product/features/pipelines
https://circleci.com/
https://www.jenkins.io/
https://www.jetbrains.com/teamcity/
https://aws.amazon.com/codepipeline/
https://azure.microsoft.com/en-us/services/devops/pipelines/
https://cloud.google.com/docs/ci-cd

Self-Assessment Questions

• What takes more person-hours, preparing data or training on data?
• When should the product customer get involved?

A. Requirements specification
B. Review of intermediate product prototypes and ML/AI output
C. At least monthly reviews
D. No more than quarterly touch points
E. Final system acceptance review
F. A, D, E
G. A, B, C, E

• Software pipeline automation: Check all that apply:
• Automation is time and resource intensive and is not appropriate for data science/ML/AI

projects because they are of more exploratory nature than traditional software products.
• Full (100%) automation is essential for every step of modern software development, from

data ingest to data collection to result delivery.

DevOps with Software, Data, and Models. Mathias Kölsch 24

Software Engineering Data Science

Project Feasibility Generally known upfront whether a project is executable Might not be known until late project phases

Focus Delivering functioning software systems Delivering actionable insights
Longest Phase Development (coding) Data preparation

Scope Largely defined by stakeholders and product managers
Somewhat define-able by stakeholders and product managers but
also needs to be uncovered based on what the data scientists
discover

Task Estimation Task completion time is generally estimate-able The time required to deliver many steps are unknown

Progress Tracking Somewhat definitive through metrics like number of
features or story points complete

More ambiguous. Example: Being 50% done with a model doesn’t
mean anything.

Knowing it works
Mostly binary. Software either works per the
specifications or it does not (e.g. the user interface loads
or it doesn’t)

Many shades of gray. Given a model, one person can say it is
working and another could say it is not. Both can be right given
their frame of reference.

Data Science Projects in Comparison

DevOps with Software, Data, and Models. Mathias Kölsch 25
https://www.datascience-pm.com/data-science-vs-software-engineering/

https://www.datascience-pm.com/data-science-vs-software-engineering/

CRISP-DM

• https://www.datascience-pm.com/crisp-dm-2/

DevOps with Software, Data, and Models. Mathias Kölsch 26

	DevOps with Software, Data, and Models
	What I am about to tell you:
	What is DevOps?
	Software Development
	Software Development: Who does what?
	Software Development: Who does what?
	DevOps: Why?
	DevOps Untruths
	DevOps and AI/ML
	DevOps and AI/ML (continued)
	AI and Model Deployment Destinations
	ML Deployment to the Edge�Case Study: 160th Airborne (SOAR),�Digital Integrated Maintenance Environment (DIME)
	A Long Pipeline
	Secure
	Pipeline Disambiguation
	DevOps, Security, and AI/ML (summary)
	Pitfalls
	Agile does not mean you should release every iota of code or model version
	Machine Learning in the Big Picture
	Conclusions
	Thank you!
	Backup Slides
	References
	Self-Assessment Questions
	Data Science Projects in Comparison
	CRISP-DM

