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Outline


•  The	data	required	for	supervised	learning	is	not	always	available	
•  In	some	of	these	situaIons,	it	is	possible	to	solve	the	problem	anyway	
•  These	techniques	are	called	“unsupervised	learning”	
•  They	oLen	depend	upon	using	the	same	algorithms	as	supervised	
learning,	but	applied	in	a	clever	way	
• We	will	discuss	two	of	the	most	significant	algorithms	in	this	family,	
anomaly	detecIon	and	deep	reinforcement	learning	
• We	will	discuss	what	these	algorithms	do	and	the	main	principle	that	
makes	them	work	
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Part 1: Anomaly Detec@on




Example Task: Gearbox Failure Predic@on


• Given	a	characterizaIon	of	the	vibraIon	of	a	helo	gearbox,	determine	
whether	the	gearbox	is	healthy	or	about	to	fail	
• Despite	the	smoke	in	my	cartoon,	there	was	no	easy	way	to	
determine	which	were	about	to	fail!!	

Healthy	gearbox	 Failing	gearbox	



Supervised Learning Approach: 
Gearbox Classifica@on


• Roadblock	
• We’re	only	sure	that	a	gearbox	is	failing	when	a	helo	fails,	and	more	helo	
failures	is	the	last	thing	we	want	

Gather	a	large	amount	of	
	healthy	and	failing	data	

Train	neural	net	on	both	

Neural	net	will	now	classify	
data	from	unknown	gearboxes	



The Unsupervised Approach: 
Anomaly Detec@on

• Given	a	set	of	data	records	from	healthy	gearboxes	only,	determine	
how	similar	a	new	record	is	
•  If	it	is	similar,	we	consider	it	normal,	otherwise	anomalous	
•  The	anomalous	records	are	reported	to	a	human	user	who	makes	the	
determinaIon	as	to	whether	“anomalous”	means	“failing”	
•  This	type	of	system	is	called	an	anomaly	detector	
•  The	trick	here	is	to	find	a	good	measure	of	similarity.	The	simplest	
ones	are	oLen	not	the	best.	
• Neural	autoencoders	are	one	of	the	most	successful	measures.	



One Anomaly Detector: Neural Autoencoder


•  Input	the	healthy	vibraIon	data	into	a	neural	
net,	and	train	it	to	output	the	exact	same	data	
that	was	input	
• Neural	net	is	limited	so	as	to	make	learning	the	
idenIty	funcIon	impossible	
• ALer	training,	the	neural	net	does	be\er	on	
records	like	the	ones	it	trained	on	
• More	error	in	the	neural	net’s	predicIon	
indicates	that	new	data	is	different	from	the	
training	data,	i.e.	is	anomalous	
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Part 2: Reinforcement Learning




Example Ac@on Selec@on Task: 
Peg Jump Puzzle

•  State	

•  Each	board	posiIon	is	a	state.	
•  AcIon	

•  Jump	one	peg	over	another	and	remove	the	
jumped	peg	

•  Reward	
•  Maximize	the	long	term	discounted	reward	
•  Maximum	reward	of	1	for	achieving	the	goal	state	
•  “Reward”	of	-1	for	gecng	stuck	
•  Zero	reward	otherwise	(almost	all	the	8me)	
•  We	reduce	the	reward	by	a	fracIon	f	each	move	
to	encourage	quick	soluIons!	
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Supervised Learning Approach:  
Behavioral Cloning

•  Procedure	

•  Let	an	expert	play	the	game.	
•  Record	the	states	and	the	acIons	the	expert	chooses	in	
those	states	

•  Use	supervised	learning	to	create	a	neural	net	that	predicts	
acIons	from	states	

•  Then	use	the	neural	net	to	choose	acIons,	imitaIng	the	
expert’s	behavior	

•  Roadblock	
•  The	neural	net	isn’t	perfect	copy	of	the	expert’s	behavior	
•  So	there	will	be	differences	in	acIon	choice	from	the	expert	
•  This	will	eventually	result	in	states	which	an	expert	would	
never	encounter	

•  The	neural	net’s	choices	on	such	states	will	generally	be	very	
poor	
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Neural (“Deep”) Reinforcement Learning (1/4)


•  Key	Idea	
•  Use	a	neural	net	to	represent	the	long	term	reward	funcIon:	
Q(a,s)	where	a	is	an	acIon	and	s	is	the	current	state.		

•  Such	a	funcIon	would	allow	easy	determinaIon	of	the	
best	acIon	in	any	state	

acIon	a,	
state	s	

long-term	reward	
Q(a,s)	

a1	
a2	

a3	

a4	

Current	state	s	

Q(a1,s)	=	0.8	 Q(a2,s)	=	-0.9	 Q(a3,s)	=	-0.9	 Q(a4,s)	=	-0.8	



Neural (“Deep”) Reinforcement Learning (2/4)


•  But	how	can	the	neural	net	be	trained?	
•  Assume	that	in	state	s1	acIon	a1	is	taken,	with	immediate	reward	r1	and	
ending	up	in	state	s2	
•  In	state	s2,	we	have	a	choice	of	either	acIon	a2	or	a3	
• What	do	we	know	about	Q(a1,s1)?			

acIon	a1	

state	s1	 acIon	a2	

reward	r1	received	

acIon	a3	



Neural (“Deep”) Reinforcement Learning (3/4)


•  Q(a1,s1)	is	the	long	term	reward	we	get	from	taking	acIon	a1	in	state	s1	
•  But	the	long	term	reward	is	just	the	immediate	reward,	r1,	plus…	
•  The	reward	we	get	later,	which	will	be	the	discounted	long	term	reward	from	
taking	a2	or	a3,	whichever	is	be\er	
•  I.e.	Q(a1,s1)	ought	to	be	r1	+	f	max_over_a	Q(a,s2)	
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state	s1	 acIon	a2	
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acIon	a3	
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Neural (“Deep”) Reinforcement Learning (4/4)

•  Since	we	know	what	Q(a1,s1)	should	be,	we	can	train	the	neural	net	to	
produce	it	
•  Then	we	can	use	the	corrected	neural	net	to	choose	our	next	acIon	
•  As	we	take	acIons,	see	new	states,	and	get	rewards,	we	conInue	to	train	the	
neural	net,	which	will	become	more	and	more	accurate	
•  And	that’s	the	principle	that	makes	neural	reinforcement	learning	work!	

r1	+	f	max_over_a	Q(a,s2)	
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state	s1	
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Example of the Algorithm in Ac@on


• h\ps://youtu.be/aX9S6MGh90Y	



Superhuman Reinforcement Learners


•  DQN	(2015)	
•  Superhuman	play	in	dozens	of	Atari	2600	games	(subhuman	in	others)	
•  Insighsul	play	in	Breakout	surprised	its	developers	

•  Alpha	Go	(2016)	
•  Beat	Lee	Sedol	(second	in	internaIonal	Itles	at	the	Ime)	four	games	to	one.	
•  Move	37	of	the	second	game	is	an	example	of	insighsul	AI	play	

•  Alpha	Zero	(2017-18)	
•  Single	system	that	can	learn	chess,	Shogi,	or	Go	
•  Learns	enIrely	from	self-play	

•  Alpha	Star	(ongoing)	
•  Beat	a	strong	professional	StarCraL	player	(Grzegorz	“MaNa"	Komincz)	5-0	

These	are	all	deep	reinforcement	learners	built	by	Alphabet’s	(formerly	Google’s)	DeepMind.	



Fitness for Military Applica@ons


•  Input/output	matches	many	military	tasks	
•  Flexibility	(e.g.	mulIple	video	games/chess,	Shogi,	or	Go)	
•  Superhuman	performance	
•  TacIcs	that	surprise	all	human	experts	



Issues


• CreaIng	the	state	representaIon	can	be	difficult	
•  Recurrency	(to	try	to	capture	how	the	state	depends	on	older	informaIon	
automaIcally)	and	cross	training	on	related	tasks	(including	predicIon)	

• Reliability	
•  There	are	dozens	of	algorithm	variants	and	each	has	dozens	of	consequenIal	
parameters	whose	values	must	be	set	(typically	by	human	trail	and	error)	

•  Speed	
•  One	run	can	take	hours	or	days	on	a	fast	computer,	and	many	runs	may	be	
required	to	achieve	success	



Ques@ons?



