
Unsupervised Learning

CS4000:	Harnessing	AI	
October	16,	2019	
Chris	Darken	

Outline

•  The	data	required	for	supervised	learning	is	not	always	available	
•  In	some	of	these	situaIons,	it	is	possible	to	solve	the	problem	anyway	
•  These	techniques	are	called	“unsupervised	learning”	
•  They	oLen	depend	upon	using	the	same	algorithms	as	supervised	
learning,	but	applied	in	a	clever	way	
• We	will	discuss	two	of	the	most	significant	algorithms	in	this	family,	
anomaly	detecIon	and	deep	reinforcement	learning	
• We	will	discuss	what	these	algorithms	do	and	the	main	principle	that	
makes	them	work	

Black Box Supervised Learning

input	
(list	of	
numbers)	

ALer	Learning	

desired	
output	
(one	followed	
by	zero)	

output	
(list	of	
numbers)	

Before	Learning	 During	Learning	

improved	
output	

Part 1: Anomaly Detec@on

Example Task: Gearbox Failure Predic@on

• Given	a	characterizaIon	of	the	vibraIon	of	a	helo	gearbox,	determine	
whether	the	gearbox	is	healthy	or	about	to	fail	
• Despite	the	smoke	in	my	cartoon,	there	was	no	easy	way	to	
determine	which	were	about	to	fail!!	

Healthy	gearbox	 Failing	gearbox	

Supervised Learning Approach:
Gearbox Classifica@on

• Roadblock	
• We’re	only	sure	that	a	gearbox	is	failing	when	a	helo	fails,	and	more	helo	
failures	is	the	last	thing	we	want	

Gather	a	large	amount	of	
	healthy	and	failing	data	

Train	neural	net	on	both	

Neural	net	will	now	classify	
data	from	unknown	gearboxes	

The Unsupervised Approach:
Anomaly Detec@on

• Given	a	set	of	data	records	from	healthy	gearboxes	only,	determine	
how	similar	a	new	record	is	
•  If	it	is	similar,	we	consider	it	normal,	otherwise	anomalous	
•  The	anomalous	records	are	reported	to	a	human	user	who	makes	the	
determinaIon	as	to	whether	“anomalous”	means	“failing”	
•  This	type	of	system	is	called	an	anomaly	detector	
•  The	trick	here	is	to	find	a	good	measure	of	similarity.	The	simplest	
ones	are	oLen	not	the	best.	
• Neural	autoencoders	are	one	of	the	most	successful	measures.	

One Anomaly Detector: Neural Autoencoder

•  Input	the	healthy	vibraIon	data	into	a	neural	
net,	and	train	it	to	output	the	exact	same	data	
that	was	input	
• Neural	net	is	limited	so	as	to	make	learning	the	
idenIty	funcIon	impossible	
• ALer	training,	the	neural	net	does	be\er	on	
records	like	the	ones	it	trained	on	
• More	error	in	the	neural	net’s	predicIon	
indicates	that	new	data	is	different	from	the	
training	data,	i.e.	is	anomalous	

Tr
ai
ni
ng
	

De
te
cI
on

	

subtract	
and	sum	
differences	

Part 2: Reinforcement Learning

Example Ac@on Selec@on Task:
Peg Jump Puzzle

•  State	

•  Each	board	posiIon	is	a	state.	
•  AcIon	

•  Jump	one	peg	over	another	and	remove	the	
jumped	peg	

•  Reward	
•  Maximize	the	long	term	discounted	reward	
•  Maximum	reward	of	1	for	achieving	the	goal	state	
•  “Reward”	of	-1	for	gecng	stuck	
•  Zero	reward	otherwise	(almost	all	the	8me)	
•  We	reduce	the	reward	by	a	fracIon	f	each	move	
to	encourage	quick	soluIons!	

State	

AcIon	

Goal	
State	

Result	
State	

pegs	

Supervised Learning Approach:
Behavioral Cloning

•  Procedure	

•  Let	an	expert	play	the	game.	
•  Record	the	states	and	the	acIons	the	expert	chooses	in	
those	states	

•  Use	supervised	learning	to	create	a	neural	net	that	predicts	
acIons	from	states	

•  Then	use	the	neural	net	to	choose	acIons,	imitaIng	the	
expert’s	behavior	

•  Roadblock	
•  The	neural	net	isn’t	perfect	copy	of	the	expert’s	behavior	
•  So	there	will	be	differences	in	acIon	choice	from	the	expert	
•  This	will	eventually	result	in	states	which	an	expert	would	
never	encounter	

•  The	neural	net’s	choices	on	such	states	will	generally	be	very	
poor	

expert	
acIon	

board	
state	

Tr
ai
ni
ng
	

board	
state	

expert-like	
acIon	

Pl
ay
in
g	

Neural (“Deep”) Reinforcement Learning (1/4)

•  Key	Idea	
•  Use	a	neural	net	to	represent	the	long	term	reward	funcIon:	
Q(a,s)	where	a	is	an	acIon	and	s	is	the	current	state.		

•  Such	a	funcIon	would	allow	easy	determinaIon	of	the	
best	acIon	in	any	state	

acIon	a,	
state	s	

long-term	reward	
Q(a,s)	

a1	
a2	

a3	

a4	

Current	state	s	

Q(a1,s)	=	0.8	 Q(a2,s)	=	-0.9	 Q(a3,s)	=	-0.9	 Q(a4,s)	=	-0.8	

Neural (“Deep”) Reinforcement Learning (2/4)

•  But	how	can	the	neural	net	be	trained?	
•  Assume	that	in	state	s1	acIon	a1	is	taken,	with	immediate	reward	r1	and	
ending	up	in	state	s2	
•  In	state	s2,	we	have	a	choice	of	either	acIon	a2	or	a3	
• What	do	we	know	about	Q(a1,s1)?			

acIon	a1	

state	s1	 acIon	a2	

reward	r1	received	

acIon	a3	

Neural (“Deep”) Reinforcement Learning (3/4)

•  Q(a1,s1)	is	the	long	term	reward	we	get	from	taking	acIon	a1	in	state	s1	
•  But	the	long	term	reward	is	just	the	immediate	reward,	r1,	plus…	
•  The	reward	we	get	later,	which	will	be	the	discounted	long	term	reward	from	
taking	a2	or	a3,	whichever	is	be\er	
•  I.e.	Q(a1,s1)	ought	to	be	r1	+	f	max_over_a	Q(a,s2)	

acIon	a1	

state	s1	 acIon	a2	

reward	r1	received	

acIon	a3	

state	s2	

Neural (“Deep”) Reinforcement Learning (4/4)

•  Since	we	know	what	Q(a1,s1)	should	be,	we	can	train	the	neural	net	to	
produce	it	
•  Then	we	can	use	the	corrected	neural	net	to	choose	our	next	acIon	
•  As	we	take	acIons,	see	new	states,	and	get	rewards,	we	conInue	to	train	the	
neural	net,	which	will	become	more	and	more	accurate	
•  And	that’s	the	principle	that	makes	neural	reinforcement	learning	work!	

r1	+	f	max_over_a	Q(a,s2)	

acIon	a1,	
state	s1	

Tr
ai
ni
ng
	

acIon	a,	
state	s	

esImate	of	
Q(a,s)	

Pl
ay
in
g	

Example of the Algorithm in Ac@on

• h\ps://youtu.be/aX9S6MGh90Y	

Superhuman Reinforcement Learners

•  DQN	(2015)	
•  Superhuman	play	in	dozens	of	Atari	2600	games	(subhuman	in	others)	
•  Insighsul	play	in	Breakout	surprised	its	developers	

•  Alpha	Go	(2016)	
•  Beat	Lee	Sedol	(second	in	internaIonal	Itles	at	the	Ime)	four	games	to	one.	
•  Move	37	of	the	second	game	is	an	example	of	insighsul	AI	play	

•  Alpha	Zero	(2017-18)	
•  Single	system	that	can	learn	chess,	Shogi,	or	Go	
•  Learns	enIrely	from	self-play	

•  Alpha	Star	(ongoing)	
•  Beat	a	strong	professional	StarCraL	player	(Grzegorz	“MaNa"	Komincz)	5-0	

These	are	all	deep	reinforcement	learners	built	by	Alphabet’s	(formerly	Google’s)	DeepMind.	

Fitness for Military Applica@ons

•  Input/output	matches	many	military	tasks	
•  Flexibility	(e.g.	mulIple	video	games/chess,	Shogi,	or	Go)	
•  Superhuman	performance	
•  TacIcs	that	surprise	all	human	experts	

Issues

• CreaIng	the	state	representaIon	can	be	difficult	
•  Recurrency	(to	try	to	capture	how	the	state	depends	on	older	informaIon	
automaIcally)	and	cross	training	on	related	tasks	(including	predicIon)	

• Reliability	
•  There	are	dozens	of	algorithm	variants	and	each	has	dozens	of	consequenIal	
parameters	whose	values	must	be	set	(typically	by	human	trail	and	error)	

•  Speed	
•  One	run	can	take	hours	or	days	on	a	fast	computer,	and	many	runs	may	be	
required	to	achieve	success	

Ques@ons?

