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MA4404 Complex Networks
Groups of vertices and

Core-periphery structure




Learning

Outcomes

* Understand and contrast the different k-
cligue relaxation definitions:

1. k-dense
2. k-core
3. k-plex

e Contrast macro-scale to meso-scale to
micro-scale structure analysis.

* Determine which nodes are part of a
densely connected core and which are part
of a sparsely connected periphery:

* A node belongs to a core if and only if it is well
connected both to other core nodes and to
peripheral nodes
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Most observed real networks have:
* Heavy tail (powerlaw, exponential)

* High clustering (high number of triangles especially in social
networks, lower count otherwise)

* Small average path (usually small diameter)
* Communities/periphery/hierarchy

 Homophily and assortative mixing (similar nodes tend to be
adjacent)

Where does the structure come from? How do we model it?



Macro and Meso Scale properties

Macro Scale properties (using all the interactions):

Small world Powerlaw degree distr.
(small average path, high clustering) (generally pref. attachment)

A 4

Meso Scale properties applying to groups (using k-clique, k-core, k-dense):

Community structure Core-periphery structure

Micro Scale properties applying to small units:

Edge properties Node properties
(such as who it connects, being a bridge) (such as degree, cut-vertex)




Direct influence
General feel for the distribution of the edges

Closeness, distance between nodes

Connectedness of the network

How critical are vertices to the connectedness of the
graph?

How much damage can a network take before
disconnecting?

Tight node/edge neighborhoods, important nodes as
a group

cal and global metrics
ng to structure of networks

Structure they capture Local Statistics Global statistics

Vertex degree,
in and out degree

Geodesic (shortest path between
two nodes)

Distance (numerical value —
length of a geodesic)

Existence of a bridge (cut-edge)
Existence of a cut vertex

Cligue, plex, core, community,
k-dense (for edges)

Degree distribution

Diameter, radius,
average path length

Vertex cut

Edge cut

Community detection
Core-periphery structure



Some common approaches to subgroup
identification and analysis:

e K-cliques

 K-cores (k-shell)

* K-denseness

* Components
 Community detection

Communities are used to explore how large
networks can be built up out of small and
tight groups.

Core structure in a network is thus not
merely densely connected but also tends to
be “central” to the network(e.g.,in terms of

short paths through the network)
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k-clique




k-clique

A clique of size k: a complete subgraph on k nodes
(i.e. s subset S of k nodes such that
degG[S] v=k— 1)

We usually search for the maximum cliques, or the
node count in a maximum cliques (the clique
number).

s it realistic and useful in large graphs?

Why is it hard to use this concept on real _‘
networks? _

* Because one might not infer/know all the edges of
the true network, so clique may exist but it may not
be captured in the data to be analyzed

* Hard to find the largest clique in the network
(decision problem for the cligue number is NP- K, K, K,
Completes)

A relaxed version of a clique might be just as useful in
large networks.

"




In class exercise >_<

A cligue of size k: a complete
subgraph on k nodes (i.e. s
subset S of k nodes such that
deggis)v = k — 1).

|dentify a:
1-clique
2-clique
3-clique
4-clique

Relaxed versions of a
k -clique are k -dense
and k -core
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@ Core number ¢ = 1 @® Core number ¢ =2 @ Core number ¢ -3




* A k-core of size n: maximal subset
of @ nodes (@ = k + 1), each with
deggis)v = k, where G[S] is the
subgraph induced by S

* [dea for a k-core: enough edges
are present between the group of
a nodes to make a group strong
even if it is not a clique.

Algorithm for finding the core:
* eliminate lower order k-cores

* the k-core is subgraph of nodes
associated with the highest k value

_ . u




* A k-core of size n: maximal

subset of « = k + 1 nodes, each
with degg(s) v = k, where G[S]
is the subgraph induced by S

* |dentify the:
* 1-core
* 2-core
* 3-core
* 4-core
* the core.




NEIGHBOR -(2) NEIGHBOR -k - 3)

NEIGHBOR ~(1) NEIGHBOR - (k-2)

k-dense




k-dense

* A k- dense sub-graph is a group of some « vertices (@ = k), in
which each pair of vertices {j, j} has at least k-2 common

neighbors.

NEIGHBOR =(2)

NEIGHBOR (1)

NEIGHBOR - (k - 3)

NENGHBOR - (k- 2)

ldea: a relaxed k clique (k —dense looks at neighbors of
edges/friendships rather than vertices, in making the @ nodes

part of the a group)



In class exercise

* A k- dense sub-graph is a group of
some a = k vertices, in which
each pair of vertices {j, j} has ¢
least k-2 common neighbors.

* |[dentify a:
e 2-dense
e 3-dense
e 4-dense
* 5-dense
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* A k- dense sub-graph is a group of some a = k vertices, in which
each pair of vertices {i, j} has at least k-2 common neighbors.
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Other extensions

Table 1.

Definition of (locally) dense network structures

Name of dense Definition References

k-plex A maximal connected subgraph, where each of the n [37,44]
network elements of the subgraph is linked to at leastn — k
it other elements in the same subgraph
Clqus ?h(;??rﬂii;l;?i?lheiiiz ;:ijnc:ézg jtviirtTLeZ?Sh [36.371 Strong LS-set A maximal connected subg.ra ph, \..r'urhere e.ach_ s_u bset of [37,45]
other elements of the subgraph (including the individual
elements themselves) have more connections with other
k-clan A maximal connected subgraph having a subgraph- [37,38,39] elements of the subgraph than with elements outside the
diameter < k, where the subgraph-diameter is the subgraph
maximal number of links amongst the shortest paths
inside the subgraph connecting any two elements of the LS-set amaximal connected subgraph, where each element of [37,45,46]
subgraph the subgraph has more connections with other elements
of the subgraph than with elements outside of the
k-club A connected subgraph, where the distance between [37,38,39] subgraph
elements of the subgraph < k, and where no further
elements can be added that have a distance < k from all y
theasitinealamonisof thesubpaph lambda-set a maximal connected subgraph, where each element of [37,47]
the subgraph has a larger element-connectivity with
k-clique A maximal connected subgraph having a diameter < k, [37,38,39,40] othe.r clerentsoftha subsraphfposih elemen.t§
where the diameter is the maximal number of links outside of th? s_ubgraph (where element-connectivity
amongst the shortest paths (including those outside the means the minimum number of elements that must be
subgraph), which connect any two elements of the removed from the network in order to leave no path
subgraph between the two elements)
k-clique A union of all cliques with k elements that can be reached [41,42] weak amaximal connected subgraph, where the sum of the [37,45]
community from each other through a series of adjacent cliques with (modified) LS- inter-modular links of the subgraph is smaller than the
k elements, where two adjacent cliques with k elements set sum of the intra-modular edges
share k — 1 elements (note that in this definition the
term k-clique is also often used, which means a clique
with k elements, and not the k-clique as defined in this k-truss the largest subgraph, where every edge is contained in at [48,49,50,51]
set of definitions; the definition may be extended to ork-dense least (k — 2) triangles within the subgraph
include variable overlap between cliques) subgraph
k-component A maximal connected subgraph, where all possible [43] k-core a maximal connected subgraph, where the elements of [37,45,52]
partitions of the subgraph must cut at least k edges the subgraph are connected to at least k other elements
of the same subgraph; alternatively: the union of all
k-plex A maximal connected subgraph, where each of the n [37,44] k-shells with indices greater or equal k, where the k-shell

elements of the subgraph is linked to at least n — k
other elements in the same subgraph

is defined as the set of consecutively removed nodes and
belonging links having a degree < k

2392115/Structure-and-dynamics-of-core-periphery-networks




Using them
globally




Communities vs. core/dense/clique

A clique of size k: a complete subgraph on k nodes (i.e. s subset S of k nodes such
that deggsv = k — 1),

A k-core of size n: maximal subset of @ = k + 1 nodes, each with deg; ) v =k,
where G[S] is the subgraph induced by S

A k- dense sub-graph is a group of some a = k vertices, in which each pair of
vertices {i, j} has at least k-2 common neighbors.

1 2 3 4 5 6 7 8 9 10
K-core/dense/clique: look at the connections 1 1111 0 0 0 0 O
inside the group of nodes 2|1 1 140 1 1 1 0 0
3|11 1 110 0 0 1 1 O
Communities look both at internal and external al1 1 1 1 000 0 1
ties (high internal and low external ties) 57 0 0 1 0 0 0 0 0
Core-periphery decomposition is 60 1 0 00 0 0 0 O
also looking at internal and external 7101 0 010 O 0 0 O
to the core (doesn’t have to be a k-core) 810 1 1 010 0 O 0 0O
9|0 0 1 0|0 O O O 0

100 0 0 110 0 O O O
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corenness | @

corenness 2

corenness3 @

The decomposition identifies the shells for different k-values.

Generally (but not well defined): the core of the network (the k-core for the largest k) and
the outer periphery (last layer: 1-core taking away the 2-core). There are modifications
where several top values of k make the core.

http://3.bp.blogspot.com/-

Tljz3nstWDO/ToGwUGivEjl/AAAAAAAAsWw/etkwklinPNw4/s1600/k-
_es |




The shells in the k-core and degree

The degree is sirongly correlated Degree and shell index are correlated
with the shell index. but with large fluctuations.

shell index shell index
@ fnax @ Finax
@ ko1 Q kpax—1
®: ®:

L g @ kit ]
L J Y

Figure 3: Correlations between shell index and degree. On the left, we report a graph
with strong correlation: the size of the nodes grows from the periphery to the center, in
correspondence with the shell index. In the right-hand case, the degree-index correlations
are blurred by large fluctuations, as stressed by the presence of hubs in the external shells.

http://papers.nips.cc/paper/2789-large-scale-networks-fingerprinting-
and-visualization-using-the-k-core-decomposition.pdf
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Whiskers -
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Core-

periphery
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https://www.researchgate.net/figure/Stochastic-block-
modeling-identifies-network-communities-HVR-6-is-shown-
in-two-forms fig7 257839768




Core-periphery decomposition

* The core-periphery decomposition captures the notion that
many networks decompose into:

* a densely connected core, and
* a sparsely connected periphery (see Ref [6] & [12]).

* The core-periphery structure is a pervasive and crucial
characteristic of large networks [13], [14], [15].

* If overlapping communities are High school = SRR < (1T
considered: the network core . A
forms as a result of many Stanford S50 7 R ..

overlapping communities

http://ilpubs.stanford.edu:8090/1103/2/paper-IEEE-full.pdf
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Measuring core-periphery

Not standardized, but generally the density of the k-core must be
high, checked against the ideal matrix for core-periphery. This is
computer by the correlation, p, defined as p = Zi,j a;jo;j,

where a;; is the (i,j) adjacency matrix entry of the network, and
1,if either node i or jis in the core

61" — .
J 0, otherwise
1 2 3 4 5 6 7 8 9 10
1 1 it{y1 7+ + 11+t HA 0 e~mIoT/==
The 2| 1 1101 1 1 1 1 1
. 311 1 1711 1 1 1 1 1 corenness | @
Ideal 411 1 1 11 1 1 1 1
core- 511 1 1 1 0 0 0 0 O , corenness 2
. 6|1 1 1 110 0O 0 0 O
perlphery 711 1 1 110 0 0 0 O corenness 3 @
t . 8(1 1 1 110 0 O 0 O
matrix 9({1 1 1 1]l0o 0o 0 o 0
i0j1 1 1 110 0 0 0O O

http://www.sciencedirect.com/science/article/pii/S0378873399000192




Extensions of core-periphery?!

Limitation:

e There are just two classes of nodes:
core and periphery. |

 |sathree-class partition consisting of &
core, semi-periphery, and periphery
more realistic? =8

Or even partitioning with more

nnnnn

classes? )

*  The problem becomes more difficult N
as the number of classes is increased, L
and good justification is needed.

http://www.sciencedirect.com/science/article/pii/S0378873399000192
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Possible structures

assortative disassortative ordered core-periphery

edges within groups edges between groups linear group heerarchy dense core, sparse perphery
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From Aaron Clauset and Mason Porter

dark shade = 0 (nonadjacent) -
light shade =1 (adjacent) __



Core and communities

* The network core was traditionally viewed as
a single giant community (lacking internal
communities, see references [7], [8], [9], [10]).

* Yang and Leskovec (2014, reference [11])
showed that dense cores form as a result of
many overlapping communities.

* General observations:

* foodweb, social, and web networks exhibit a
single dominant core, while

* protein-protein interaction and product co-
purchasing networks contain many local cores
formed around the central core

http://ilpubs.stanford.edu:8090/1103/2/paper-IEEE-full.pdf




Finding the Core in Gephi
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1-core
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4-core
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ring back the whole network

Graph X | ¥ | context x -
4 raging (Configure) Nodes: 244 (54.22% visble)
|| Edges: 2548 (89.67% visile)
Undirected Graph
Statistics | Filters X | -
S/ Reset ‘ B2 A
Cary |
+ Attributes .
:._ 3 Dynamic
Ve + Edges
) Operator
” = Topology
X I Degree Range
Ego Network
7 Giant Component
g Has Self4oop
G T InDegree Range
e K-core
Mutual Degree Range
T Neighbors Network
I OutDegree Range v
T Queries
#- T K-core
j5)
a
A
— K-core Settings
A e
| T| TP | | A~ A- Arial Bold, 32 | & Select || i Stop




The core of the network

For this network the core is the
2-core, since the 23-core
vanishes
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Let’s practice in Gephil
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