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Learning 
Outcomes

• Understand and contrast the different k-
clique relaxation definitions:

1. k-dense
2. k-core
3. k-plex

• Contrast macro-scale to meso-scale to 
micro-scale structure analysis.

• Determine which nodes are part of a 
densely connected core and which are part 
of a sparsely connected periphery:

• A node belongs to a core if and only if it is well 
connected both to other core nodes and to 
peripheral nodes



Why?

• Most observed real networks have:
• Heavy tail (powerlaw, exponential)
• High clustering (high number of triangles especially in social 

networks, lower count otherwise)
• Small average path (usually small diameter)
• Communities/periphery/hierarchy
• Homophily and assortative mixing (similar nodes tend to be 

adjacent)
• Where does the structure come from?  How do we model it?
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Macro and Meso Scale properties

4

Micro Scale properties applying to small units:

Edge properties 
(such as who it connects, being a bridge)

Node properties 
(such as degree, cut-vertex)

Meso Scale properties applying to groups (using k-clique, k-core, k-dense):

Community structure Core-periphery structure

Macro Scale properties (using all the interactions):

Small world 
(small average path, high clustering)

Powerlaw degree distr. 
(generally pref. attachment)



Some local and global metrics 
pertaining to structure of networks
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Structure they capture Local Statistics Global statistics

Direct influence
General feel for the distribution of the edges

Vertex degree, 
in and out degree

Degree distribution

Closeness, distance between nodes Geodesic (shortest path between 
two nodes)
Distance (numerical value –
length of a geodesic)

Diameter, radius, 
average path length

Connectedness of the network
How critical are vertices to the connectedness of the 
graph?
How much damage can a network take before 
disconnecting?

Existence of a bridge (cut-edge)
Existence of a cut vertex

Vertex cut
Edge cut

Tight node/edge neighborhoods, important nodes as 
a group

Clique, plex, core, community,
k-dense (for edges)

Community detection
Core-periphery structure



Groups and subgroups identifications

Some common approaches to subgroup 
identification and analysis:
• K-cliques
• K-cores (k-shell)
• K-denseness
• Components 
• Community detection
Communities are used to explore how large 
networks can be built up out of small and 
tight groups.
Core structure in a network is thus not 
merely densely connected but also tends to 
be “central” to the network(e.g.,in terms of 
short paths through the network)
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k-clique



k-clique
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A clique of size : a complete subgraph on nodes 
(i.e. s subset of nodes such that 

ீ[ௌ] ).
We usually search for the maximum cliques, or the 
node count in a maximum cliques (the clique 
number).
Is it realistic and useful in large graphs?
Why is it hard to use this concept on real 
networks?  

• Because one might not infer/know all the edges of 
the true network, so clique may exist but it may not 
be captured in the data to be analyzed

• Hard to find the largest clique in the network 
(decision problem for the clique number is NP-
Complete) 

A relaxed version of a clique might be just as useful in 
large networks.



In class exercise
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A clique of size : a complete 
subgraph on nodes (i.e. s 
subset of nodes such that 

ீ[ௌ] ).
Identify a:

1-clique
2-clique
3-clique
4-clique

Relaxed versions of a 
-clique are -dense 

and -core



k-core



k-core
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• A -core of size n: maximal subset 
of nodes ( ), each with 

, where is the 
subgraph induced by 

• Idea for a -core: enough edges 
are present between the group of 

nodes to make a group strong 
even if it is not a clique.

Algorithm for finding the core: 
• eliminate lower order -cores
• the k-core is subgraph of nodes 

associated with the highest value
http://iopscience.iop.org/article/10.1088/1367-2630/14/8/083030



In-class exercise
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• A -core of size n: maximal 
subset of nodes, each 
with ீ[ௌ] , where 
is the subgraph induced by 

• Identify the:
• 1-core
• 2-core
• 3-core
• 4-core
• the core.



k-dense



k-dense
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• A k- dense sub-graph is a group of some vertices ( ), in 
which each pair of vertices {i, j} has at least -2 common 
neighbors.

Idea:  a relaxed clique  ( –dense looks at neighbors of 
edges/friendships rather than vertices, in making the nodes 
part of the group)



In class exercise
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• A k- dense sub-graph is a group of 
some vertices, in which 
each pair of vertices {i, j} has at 
least -2 common neighbors.

• Identify a:
• 2-dense
• 3-dense
• 4-dense
• 5-dense



k-dense
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• A k- dense sub-graph is a group of some vertices, in which 
each pair of vertices {i, j} has at least -2 common neighbors.

k - clique k - dense k-1 – core



Other extensions
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https://academic.oup.com/comnet/article/doi/10.1093/comnet/cnt016/2392115/Structure-and-dynamics-of-core-periphery-networks



Using them 
globally



Communities vs. core/dense/clique
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A clique of size : a complete subgraph on nodes (i.e. s subset of nodes such 
that ீ[ௌ] ).

A -core of size n: maximal subset of nodes, each with ீ[ௌ] , 
where is the subgraph induced by 

A k- dense sub-graph is a group of some vertices, in which each pair of 
vertices {i, j} has at least -2 common neighbors.

K-core/dense/clique: look at the connections 
inside the group of nodes
Communities look both at internal and external 
ties (high internal and low external ties)

Core-periphery decomposition is
also looking at internal and external
to the core (doesn’t have to be a k-core)



K-core (k-shell) decomposition

http://3.bp.blogspot.com/-
TIjz3nstWD0/ToGwUGivEjI/AAAAAAAAsWw/etkwklnPNw4/s1600/k-
cores.png

The decomposition identifies the shells for different k-values.

Generally (but not well defined): the core of the network (the -core for the largest ) and 
the outer periphery (last layer: 1-core taking away the 2-core).  There are modifications 
where several top values of make the core.



The shells in the k-core and degree
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http://papers.nips.cc/paper/2789-large-scale-networks-fingerprinting-
and-visualization-using-the-k-core-decomposition.pdf



Core-
periphery



Core-periphery adjacency matrix
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https://www.researchgate.net/figure/Stochastic-block-
modeling-identifies-network-communities-HVR-6-is-shown-
in-two-forms_fig7_257839768



Core-periphery decomposition

• The core-periphery decomposition captures the notion that 
many networks decompose into: 
• a densely connected core, and 
• a sparsely connected periphery (see Ref [6] & [12]). 

• The core-periphery structure is a pervasive and crucial 
characteristic of large networks [13], [14], [15].

• If overlapping communities are 
considered: the network core 
forms as a result of many 
overlapping communities
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http://ilpubs.stanford.edu:8090/1103/2/paper-IEEE-full.pdf



Measuring core-periphery

Not standardized, but generally the density of the -core must be 
high, checked against the ideal matrix for core-periphery.  This is 
computer by the correlation, , defined as 

where is the (i,j) adjacency matrix entry of the network, and 
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http://www.sciencedirect.com/science/article/pii/S0378873399000192

The 
ideal 
core-
periphery
matrix



Extensions of core-periphery?!
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Limitation: 
• There are just two classes of nodes: 

core and periphery. 
• Is a three-class partition consisting of 

core, semi-periphery, and periphery 
more realistic?

• Or even partitioning with more 
classes?

• The problem becomes more difficult 
as the number of classes is increased, 
and good justification is needed.

http://www.sciencedirect.com/science/article/pii/S0378873399000192



Possible structures
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From Aaron Clauset and Mason Porterdark shade = 0 (nonadjacent)
light shade = 1 (adjacent)



Core and communities
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• The network core was traditionally viewed as 
a single giant community (lacking internal 
communities, see references [7], [8], [9], [10]). 

• Yang and Leskovec (2014, reference [11]) 
showed that dense cores form as a result of 
many overlapping communities. 

• General observations: 
• foodweb, social, and web networks exhibit a 

single dominant core, while 
• protein-protein interaction and product co-

purchasing networks contain many local cores 
formed around the central core

http://ilpubs.stanford.edu:8090/1103/2/paper-IEEE-full.pdf



Finding the Core in Gephi
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Under “Statistics” run 
“average degree” and 

then use “Filters”



1-core
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4-core
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Bring back the whole network
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The core of the network
For this network the core is the 
22-core, since the 23-core 
vanishes



Let’s practice in Gephi!
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