Prof. Ralucca Gera, rgera@nps.edu
Applied Mathematics Department, Naval Postgraduate School

MA4404 Complex Networks
Closeness Centrality

Learning Outcomes

- Understand the new categories of centralities that includes closeness centrality.
- Compute Closeness Centrality per node.
- Interpret the meaning of the values of Closeness Centrality.

Recall...back to Degree Centrality

Quality: what makes a node important (central)	Mathematical Description	Appropriate Usage	Identification
Lots of one-hop connections from v	The number of vertices that v influences directly	Local influence matters Small diameter	Degree centrality (or simply the $\operatorname{deg}(v))$
Lots of one-hop connections from v relative to the size of the graph	The proportion of the vertices that v influences directly	Local influence matters Small diameter	Normalized degree centrality
In the "middle" of the (v) graph	HOW?	$\frac{\operatorname{dV(G)\|}}{}$	

How to measure it?

Quality: what makes a node important (central)	Mathematical Description	Appropriate Usage	Identification
Lots of one-hop connections from v	The number of vertices that v influences directly	Local influence matters Small diameter	Degree centrality (or simply the $\operatorname{deg}(v)$)
Lots of one-hop connections from v relative to the size of the graph	The proportion of the vertices that v influences directly	Local influence matters Small diameter	Normalized degree centrality $\frac{\operatorname{deg}(v)}{\|\mathrm{V}(\mathrm{G})\|}$
In the "middle" of the graph - closeness centrality	Close to everyone at the same time	The efficiency of a vertex of reaching everyone quickly (spreading news or a virus for example)	$C_{i}=1 / \sum_{j=1}^{n} d(i, j)$

MA4404: Centralities categories

Intuition Closeness Centrality

Why?!

- What if it's not so important to have many direct friends?
- But one still wants to be in the "middle" of the network by being close to many friends.
- What metric could identify these central nodes?
- Graph theory:

Cen(G) $=\{v: e(v)$ is the smallest of all vertices in G \}

- Complex networks:

Closeness centrality

Closeness centrality: definition

Closeness centrality for node i is the average distance between a vertex i and all vertices in the graph (consider vertices in the same component only):

$$
C_{i}=1 / \sum_{j=1}^{n} d(i, j)
$$

The formula depends on inverse distance to other vertices.
Closeness centrality can be viewed as the efficiency of a vertex in spreading information to all other vertices.

Drawback: only computed per component

Closeness Centrality

$$
\begin{gathered}
C_{i}=1 / \sum_{j=1}^{n} d(i, j) \\
C_{A}=\frac{1}{d(A B)+d(A C)+d(A D)+d(A E)+d(A F)+d(A G)}
\end{gathered}
$$

$$
C_{A}=\frac{1}{1+1+1+2+1+2}
$$

$$
C_{A}=\frac{1}{8}=0.125
$$

In class exercise: closeness centrality

- What is the centrality of a vertex in K_{4} ?
- What is the centrality of a vertex in K_{14} ?
- What is the centrality of a vertex in K_{n} ?
- Should they be the same regardless of the n ?

Sometimes, we care for a relative centrality, so it should be the same for all n values, since it identifies a certain structure.

- How would you fix the "problem" so that it scales with n ?

$$
C^{\text {normalized }_{i}}=\frac{n}{\sum_{j=1}^{n} d(i, j)}
$$

where n is number of vertices in the graph.

- In class exercise: What is the normalized closeness centrality of a vertex in K_{n} ?

$$
C_{i}=1 / \sum_{j=1}^{n} d(i, j)
$$

Well Defined?!

Closeness centrality

- In a typical network the closeness centrality might span a factor of five or less
- It is difficult to distinguish between central and less central vertices
- a small change in network might considerably affect the centrality order
- It is well defined?! Consider it in a disconnected network: $C_{i}=1 / \sum_{j=1}^{n} d(i, j)$
- Alternative computations exist but they have their own problems:
- Such as the harmonic mean: $C^{\prime}{ }_{i}=\frac{1}{n-1} \sum_{j} \frac{1}{d(i, j)}$

Which works for disconnected graphs since $\frac{1}{d(i, j)} \rightarrow 0$ if i and j are in different components.
But still small range of values for most networks.

- Both closeness centrality and harmonic closeness centrality are hardly ever used

Extensions

- How would

you
generalize
the
closeness centrality?

- This is a
good time to share your thoughts

Beauchamp (1965):

Improved index of centrality in graph.

Bavelas (1948,1950):
First defined centrality measure to apply in communication network

Borgatti\& Everett
(1997):
Extened the
standard centrality
measures to groups
and classes.

Kitsak (2010): Found that the most efficient spreaders are located within the core of a network by k-shell decomposition.

Zeng (2013) \& Liu (2014): Improved the k-shell decomposition method and improved ranking method respectively.

