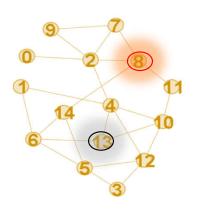
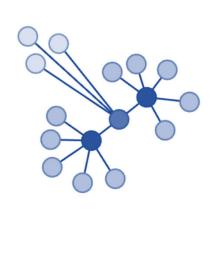
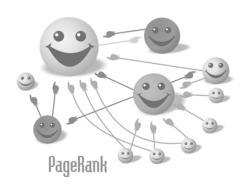
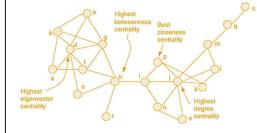
Prof. Ralucca Gera, rgera@nps.edu Applied Mathematics Department, Naval Postgraduate School









MA4404 Complex Networks **Closeness Centrality**

Learning Outcomes

- Understand the new categories of centralities that includes closeness centrality.
- Compute Closeness Centrality per node.
- Interpret the meaning of the values of Closeness Centrality.

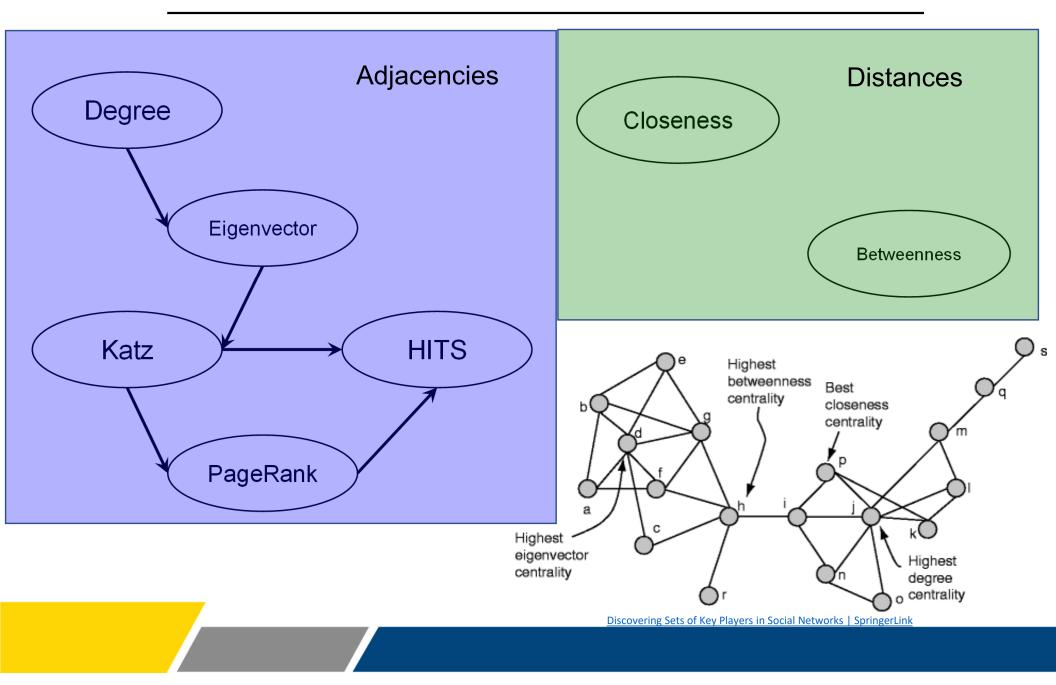
Recall...back to Degree Centrality

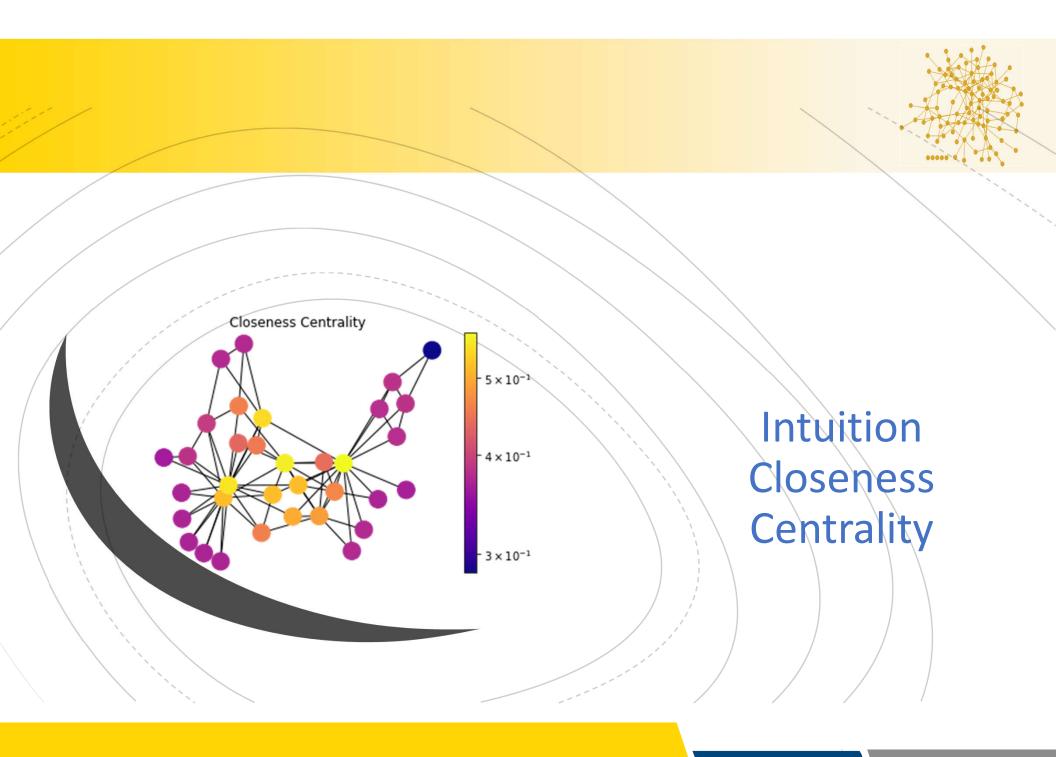
Quality: what makes a node important (central)	Mathematical Description	Appropriate Usage	Identification
Lots of one-hop connections from <i>v</i>	The number of vertices that <i>v</i> influences directly	Local influence matters Small diameter	Degree centrality (or simply the $deg(v)$)
Lots of one-hop connections from v relative to the size of the graph	The proportion of the vertices that v influences directly	Local influence matters Small diameter	Normalized degree centrality $\frac{\deg(v)}{ V(G) }$
In the "middle" of the graph	HOW?		

How to measure it?

Quality: what makes a node important (central)	Mathematical Description	Appropriate Usage	Identification
Lots of one-hop connections from <i>v</i>	The number of vertices that <i>v</i> influences directly	Local influence matters Small diameter	Degree centrality (or simply the $deg(v)$)
Lots of one-hop connections from v relative to the size of the graph	The proportion of the vertices that <i>v</i> influences directly	Local influence matters Small diameter	Normalized degree centrality $\frac{\deg(v)}{ V(G) }$
In the "middle" of the graph - closeness centrality	Close to everyone at the same time	The efficiency of a vertex of reaching everyone quickly (spreading news or a virus for example)	$C_i = 1 / \sum_{j=1}^n d(i,j)$

MA4404: Centralities categories

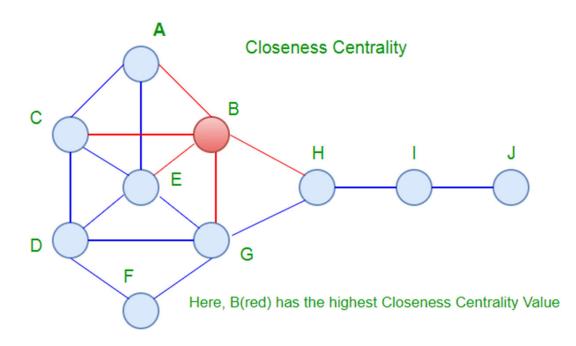




Why?!

- What if it's not so important to have many direct friends?
- But one still wants to be in the "middle" of the network by being close to many friends.
- What metric could identify these central nodes?
 - Graph theory:
 - Cen(G) = {v : e(v) is the smallest of all vertices in G}
 - Complex networks:

Closeness centrality



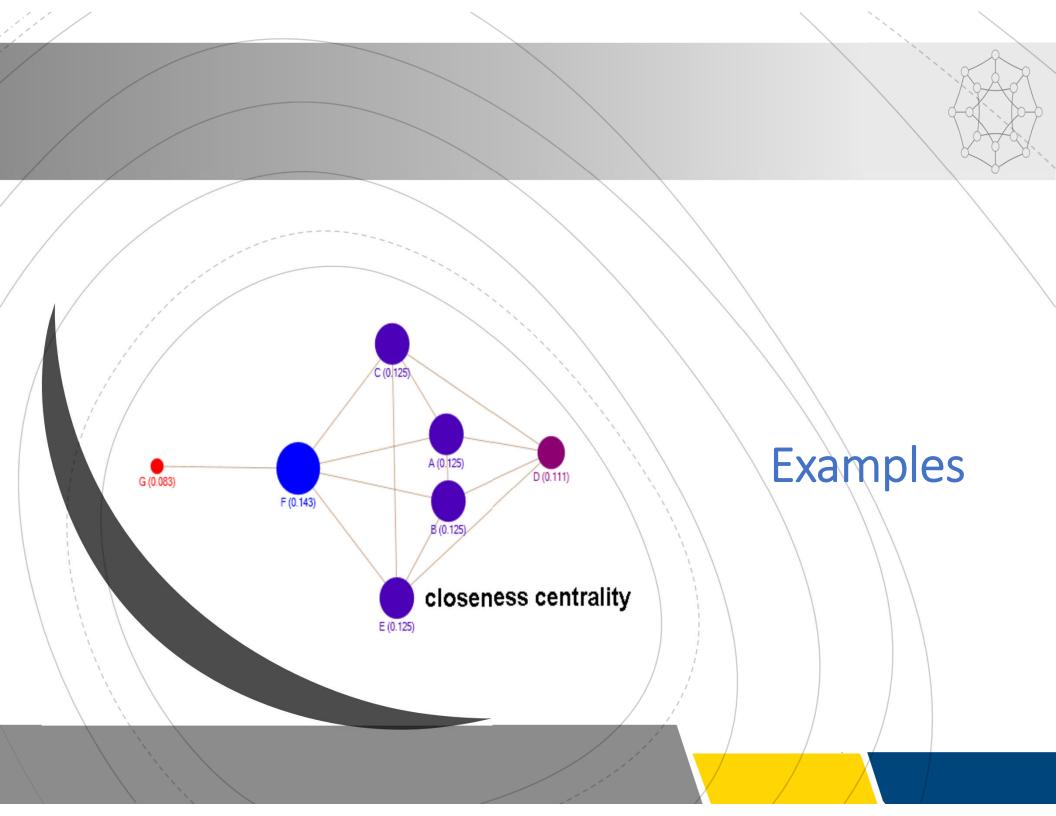
Closeness centrality for node *i* is the average distance between a vertex *i* and all vertices in the graph (consider vertices in the same component only):

$$C_i = 1 / \sum_{j=1}^n d(i,j)$$

The formula depends on inverse distance to other vertices.

Closeness centrality can be viewed as the efficiency of a vertex in spreading information to all other vertices.

Drawback: only computed per component



Closeness Centrality

$$C_{i} = 1 / \sum_{\substack{1 \\ j=1}}^{n} d(i, j)$$

$$C_{A} = \frac{1}{d(AB) + d(AC) + d(AD) + d(AE) + d(AF) + d(AG)}$$

$$C_{A} = \frac{1}{1 + 1 + 1 + 2 + 1 + 2}$$

$$C_{A} = \frac{1}{8} = 0.125$$

In class exercise: closeness centrality

- What is the centrality of a vertex in K_4 ?
- What is the centrality of a vertex in K_{14} ?
- What is the centrality of a vertex in K_n ?
- Should they be the same regardless of the *n*?

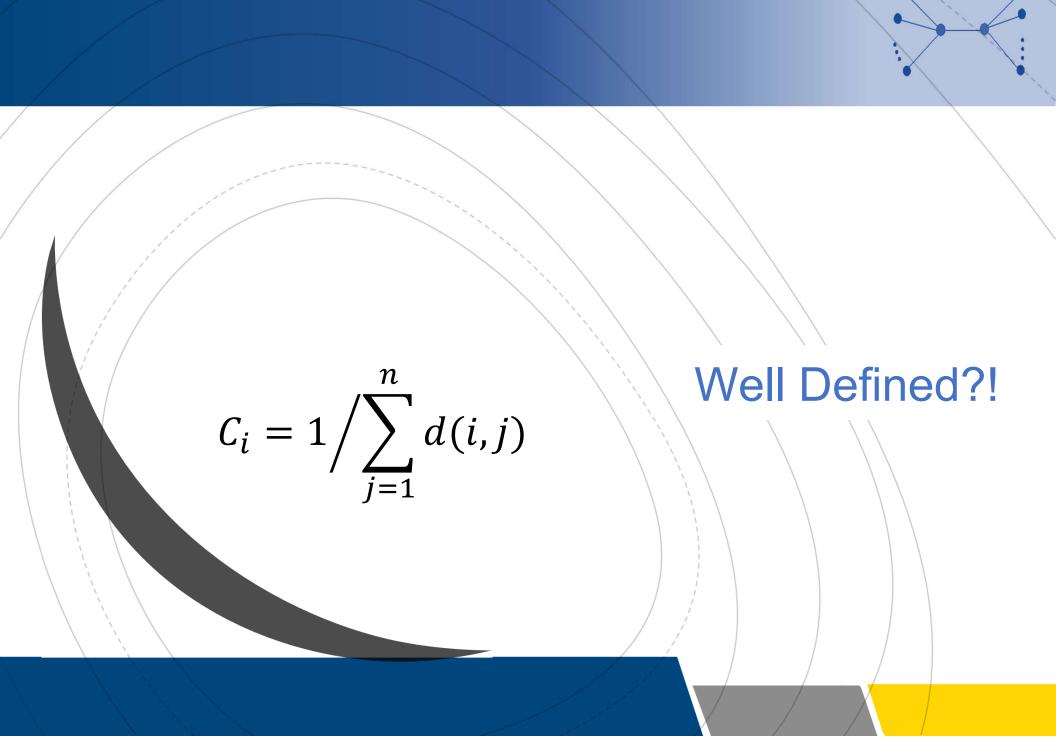
Sometimes, we care for a relative centrality, so it should be the same for all n values, since it identifies a certain structure.

• How would you fix the "problem" so that it scales with *n*?

$$C^{normalized}_{i} = \frac{n}{\sum_{j=1}^{n} d(i, j)}$$

where *n* is number of vertices in the graph.

• In class exercise: What is the normalized closeness centrality of a vertex in K_n ?

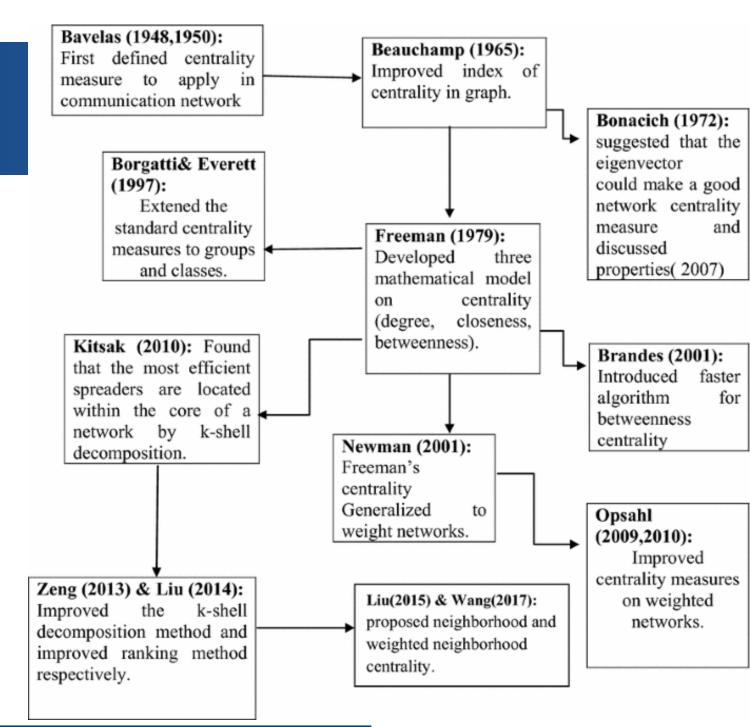


Closeness centrality

- In a typical network the closeness centrality might span a factor of five or less
 - It is difficult to distinguish between central and less central vertices
 - a small change in network might considerably affect the centrality order
- It is well defined?! Consider it in a disconnected network: $C_i = 1 / \sum d(i, j)$
- Alternative computations exist but they have their own problems:
 - Such as the harmonic mean: C'_i = 1/(n-1) ∑_j 1/(d(i,j))
 Which works for disconnected graphs since 1/(d(i,j)) → 0 if i and j are in different components.
 But still small range of values for most networks.
- Both closeness centrality and harmonic closeness centrality are hardly ever used

Extensions

- How would you generalize the closeness centrality?
- This is a good time to share your thoughts



https://link.springer.com/article/10.1007/s13278-018-0493-2