Prof. Ralucca Gera, rgera@nps.edu
Applied Mathematics Department, Naval Postgraduate School

MA4404 Complex Networks

Eigenvector Centrality

Learning Outcomes

- Compute eigenvector centrality.
- Interpret the meaning of the values of eigenvector centrality.
- Explain why the eigenvector centrality is an extension of degree centrality.

MA4404: Centralities categories

Recall:

Quality: what makes a node important (central)	Mathematical Description	Appropriate Usage	Identification
Lots of one-hop connections from v	The number of vertices that v influences directly	Local influence matters Small diameter	Degree $\operatorname{deg}(i)$
Lots of one-hop connections from v relative to the size of the graph	The proportion of the vertices that v influences directly	Local influence matters Small diameter	Degree centrality $\mathrm{C}_{\mathrm{i}}=\frac{\operatorname{deg}(i)}{\|\mathrm{V}(\mathrm{G})\|}$
Lots of one-hop connections to high centrality vertices	A weighted degree centrality based on the weight of the neighbors (instead of a weight of 1 as in degree centrality)	For example when the people you are connected to matter.	HOW? Eigenvector centrality (recursive formula): $C_{i} \propto \sum_{\mathrm{j} \in N(i)} C_{j}$

Eigenvector Centrality

- A generalization of the degree centrality: a weighted degree vector that depends on the centrality of its neighbors (rather than every neighbor having a fixed centrality of 1)
- How do we find it? By finding the largest eigenvaluє and its associated eigenvector (leading eigenvector) of the adjacency matrix

- Let's see why

Eigenvector Centrality	
0.32031738126868514	(62.5%)
0.3468185782928418	(18.75%)
0.9125315779202242	(12.5%)
1.0	(6.25%)

Example 1 (Eigenvector centrality)

Node i	Eigenvector centrality C_{i}
0	0
1	0.5298987782873977
2	0.3577513877490464
3	0.5298987782873977
4	0.3577513877490464
5	0.4271328349194304

Notice that $\operatorname{deg}(5)=\operatorname{deg}(1)=\operatorname{deg}(3)$.
Why $C_{5}>C_{2}$ and $C_{5}>C_{4}$?

$x_{i}(t)=\sum_{j} A_{i j} x_{j}(t-1)$

Computing

 Eigenvector Centralitywith the centrality at time $\mathrm{t}=0$ being

$$
x_{j}(0)=1, \forall j
$$

Eigenvector Centrality

- Define the centrality x_{i}^{\prime} of i recursively in terms of the centrality of its neighbors

$$
x_{i}^{\prime}=\sum_{k \in N(i)} x_{k} \quad \text { or } \quad x_{i}^{\prime}=\sum_{j} A_{i j} x_{j}
$$

With initial vertex centrality $x_{j}=1, \forall j$ (including i)-we'll see why on next slide

- That is equivalent to:

with the centrality at time $\mathrm{t}=0$ being $x_{j}(0)=1, \forall j$

In class: Eigenvector Centrality

Adjacency matrix A for the graph to the right:

$$
A=\left(\begin{array}{llllll}
0 & 1 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0
\end{array}\right)
$$

Then the vector $\mathrm{x}(\mathrm{t})=\left(\begin{array}{c}x_{1} \\ x_{2} \\ : \\ x_{n}\end{array}\right)$ gives a random surfer's behavior at time t .
Answer the following questions based on the information above

In class activity: Eigenvector Centrality

Q1: Find $\mathrm{x}(1)$. What does it represent?
Answer: $x(1)=\left(\begin{array}{llllll}0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0\end{array}\right)\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right)=(?)$

In class activity: Eigenvector Centrality

Q1: Find $\mathrm{x}(1)$. What does it represent?
Answer: $x(1)=\left(\begin{array}{llllll}0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0\end{array}\right)\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right)=\left(\begin{array}{l}3 \\ 3 \\ 3 \\ 0 \\ 3 \\ 2\end{array}\right)$

In class activity: Eigenvector Centrality

Q2: Find $\mathrm{x}(2)$. What does it represent?
Answer: $x(2)=\left(\begin{array}{llllll}0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0\end{array}\right)\left(\begin{array}{l}3 \\ 3 \\ 3 \\ 0 \\ 3 \\ 2\end{array}\right)=(?)$

In class activity: Eigenvector Centrality

Q2: Find $\mathrm{x}(2)$. What does it represent?
Answer: $x(2)=\left(\begin{array}{llllll}0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0\end{array}\right)\left(\begin{array}{l}3 \\ 3 \\ 3 \\ 0 \\ 3 \\ 2\end{array}\right)=\left(\begin{array}{l}9 \\ 9 \\ 8 \\ 0 \\ 8 \\ 6\end{array}\right)$

A weighted degree vector (distance 2 or less)

In class activity: Eigenvector Centrality

Q3: Find $\mathrm{x}(3)$. What does it represent?
Answer: $x(3)=\left(\begin{array}{llllll}0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0\end{array}\right)\left(\begin{array}{l}9 \\ 9 \\ 8 \\ 0 \\ 8 \\ 6\end{array}\right)=(?)$

In class activity: Eigenvector Centrality

Q3: Find $x(3)$. What does it represent?
Answer: $x(3)=\left(\begin{array}{llllll}0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0\end{array}\right)\left(\begin{array}{l}9 \\ 9 \\ 8 \\ 0 \\ 8 \\ 6\end{array}\right)=\left(\begin{array}{c}25 \\ 25 \\ 24 \\ 0 \\ 24 \\ 16\end{array}\right)$

A weighted degree vector (distance 3 or less)

In class: Eigenvector Centrality Results

Node i	Eigenvector centrality C_{i}
0	0.49122209552166
1	0.49122209552166
2	0.4557991200411896
3	0
4	0.4557991200411896,
5	0.31921157573304415

A normalized weighted degree vector

Discussion: What did you notice?

- What is $x(3)$?

Answer: $\left.x(3)=A\left(A\left(A\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right)\right)\right)\right)=A^{3} x(0)$
$x(3)$ depends on the centrality of its neighbors of distance 3 or less

- What is $\mathrm{x}(\mathrm{t})$?

Answer: $\left.x(\mathrm{t})=A\left(A \ldots\left(A\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right)\right)\right)\right)=A^{t} x(0), t>0$
$x(\mathrm{t})$ depends on the centrality of its neighbors of distance t or less

Eigenvector Centrality Derivation

- We can consolidate the eigenvector centralities of all the nodes in a recursive formula with vectors:

$$
\mathbf{x}(t)=A \cdot \mathbf{x}(t-1)
$$

with the centrality at time $t=0$ being

$$
\mathbf{x}(0)=\mathbf{1} \text { (as a vector) }
$$

- Then, we solve: $\mathbf{x}(t)=A^{t} \cdot \mathbf{x}(0)$, with $\mathbf{x}(0)=\mathbf{1}$

Eigenvector Centrality Derivation

Let:

- $\mathbf{x}(t)=A^{t} \cdot \mathbf{x}(0)$, with $\mathbf{x}(0)=1$
- $\boldsymbol{v}_{\boldsymbol{k}}$ are the eigenvectors of the adjacency matrix A
- $\mathbf{x}(0)=\sum_{k} c_{k} v_{k}$ is a linear combination of $\boldsymbol{v}_{\boldsymbol{k}}$
- λ_{1} be the largest eigenvalue.

Then
$\mathbf{x}(t)=A^{t} \cdot \mathbf{x}(0)=A^{t} \sum_{k} c_{k} v_{k}=\sum_{k} c_{k} \lambda_{k}^{t} v_{k}=$
$=\lambda_{1}^{t} \sum_{k} c_{k} \frac{\lambda_{k}^{t}}{\lambda_{1}^{t}} v_{k}=\lambda_{1}^{t}\left(c_{1}\left(\frac{\lambda_{1}^{t}}{\lambda_{1}^{t}}\right) v_{1}+c_{2}\left(\frac{\lambda_{2}^{t}}{\lambda_{1}^{t}}\right) \nu_{2}+c_{3} \frac{\lambda_{3}^{t}}{\lambda_{1}^{t}} v_{3} \ldots\right)$
$\mathbf{x}(t) \rightarrow \lambda_{1}^{t} c_{1} v_{1}$
since $\frac{\lambda_{k}^{t}}{\lambda_{1}^{t}} \rightarrow 0$
as $t \rightarrow \infty$ (as you repeat the process)

Eigenvector Centrality

- Thus, the eigenvector centrality is

$$
\boldsymbol{x}(t)=\lambda_{1}^{t} c_{1} \boldsymbol{v}_{1}
$$

where $\boldsymbol{v}_{\mathbf{1}}$ is the eigenvector corresponding to the largest eigenvalue λ_{1}^{t}

- So the eigenvector centrality (as a vector), $\boldsymbol{x}(t)$, is a multiple of the eigenvector \boldsymbol{v}_{1}, i. e. $\boldsymbol{x}(t)$ is an eigenvector of A.

$$
\mathrm{A} \boldsymbol{x}(t)=\lambda_{1}^{t} \boldsymbol{x}(t)
$$

- Meaning that the eigenvector centrality of each node is given by the entries of the leading eigenvector (the one corresponding to the largest eigenvalue $\lambda=\lambda_{1}^{t}$)

Is it well defined?

- That is:
- Is the eigenvector guaranteed to exist?
- Is the eigenvector unique?
- Is the eigenvalue unique?
- Can we have negative entries in the eigenvector?
- We say that a matrix/vector is positive if all of its entries are positive
- Perron-Frobenius theorem: A real square matrix with positive entries has a unique largest real eigenvalue and that the corresponding eigenvector has strictly positive components
- Perron-Frobenius theorem applies to positive matrices (but it gives similar information for nonnegative ones)

Perron-Frobenius theorem for nonnegative symmetric (0,1)-matrices

Let $\mathrm{A} \in R^{n X} n$ be symmetric $(0,1)$-nonnegative, then

- there is a unique maximal eigenvalue λ_{1} of the matrix A (for any other eigenvalue λ, we have $\lambda<\lambda_{1}$, with the possibility of $|\lambda|=\lambda_{1}$ for nonnegative matrices)
- λ_{1} is real, simple (i.e., has multiplicity one), and positive (trace is zero so some are positive and some negative),
- the associated eigenvector is nonnegative (and there are no other nonnegative ones since all eigenvectors are orthogonal)
If you have not seen this and its proof in linear algebra, see a proof on pages 346-347 of Newman's textbook

Note

Consider the vectors computed:

$$
\left(\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
3 \\
3 \\
3 \\
0 \\
3 \\
2
\end{array}\right),\left(\begin{array}{l}
9 \\
9 \\
8 \\
0 \\
8 \\
6
\end{array}\right),\left(\begin{array}{c}
25 \\
25 \\
24 \\
0 \\
24 \\
16
\end{array}\right)
$$

- In finding the eigenvector, these vectors get normalized as they are computed using the power method from Linear Algebra, and eventually converge to a normalized eigenvector as well.
- Note that $\frac{x_{i}(2)}{x_{i}(1)} \neq \frac{x_{i}(3)}{x_{i}(2)}$, where x_{i} is the $i^{\text {th }}$ entry, however, the ratios will converge to λ_{1}

Conclusion: Eigenvector Centrality

- Eigenvector Centrality:
- a generalized degree centrality (takes into consideration the global network)
- extremely useful, one of the most common ones used for non-oriented networks
- $C_{i} \propto \sum_{\mathrm{j}} C_{j}$ or $C_{i}=\lambda^{-1} \sum_{j} A_{i j} C_{j}$ or $C_{i}=\sum_{i j \in E(G)} C_{j}$
- Why is Eigenvector Centrality not commonly used for directed graphs?
- Adjacency matrix is asymmetric...use left or right leading eigenvector?
- Choose right leading eigenvector...importance bestowed by vertices pointing toward you (same problem with left).
- Any vertex within degree zero has centrality value zero and "passes" that value to all vertices to which it points.
- The fix: Katz centrality

Extra example 2 (Adjacency matrix, eigenvector centrality and the graph)

0: 0.08448651593556764, 1: 0.1928608426462633, 2: 0.3011603786470362, 3: 0.17530527234882679, 4: 0.40835121533077895, 5: 0.2865100597893966, 6: 0.2791290343288953, 7: 0.1931920790704947, 8: 0.24881035953707603, 9: 0.13868390351302598, 10: 0.336067959653752, 11: 0.16407815738375933,
 12: 0.33838887484747293, 13: 0.2871391639624871, 14: 0.22848023925633135

Extra example 2 (Eigenvector centrality)

$C 2=0.3011603786470362$

$C 4=0.40835121533077895$

