Prof. Ralucca Gera, rgera@nps.edu Applied Mathematics Department, Naval Postgraduate School

MA4404 Complex Networks Eigenvector Centrality

Learning Outcomes

- Compute eigenvector centrality.
- Interpret the meaning of the values of eigenvector centrality.
- Explain why the eigenvector centrality is an extension of degree centrality.

MA4404: Centralities categories

Recall:

Quality: what makes a node important (central)	Mathematical Description	Appropriate Usage	Identification
Lots of one-hop connections from <i>v</i>	The number of vertices that v influences directly	Local influence matters Small diameter	Degree deg(i)
Lots of one-hop connections from v relative to the size of the graph	The proportion of the vertices that v influences directly	Local influence matters Small diameter	Degree centrality $C_{i} = \frac{\deg(i)}{ V(G) }$
Lots of one-hop connections to high centrality vertices	A weighted degree centrality based on the weight of the neighbors (instead of a weight of 1 as in degree centrality)	For example when the people you are connected to matter.	HOW? Eigenvector centrality (recursive formula): $C_i \propto \sum_{i \in N(i)} C_j$

Eigenvector Centrality

- A generalization of the degree centrality: a weighted degree vector that depends on the centrality of its neighbors (rather than every neighbor having a fixed centrality of 1)
- How do we find it? By finding the largest eigenvalue and its associated eigenvector (leading eigenvector) of the adjacency matrix
- Let's see why

Eigenvector Centrality	~
0.32031738126868514	(62.5%)
0.3468185782928418	(18.75%)
0.9125315779202242	(12.5%)
1.0	(6.25%)

Example 1 (Eigenvector centrality)

Node i	Eigenvector centrality C_i
0	0
1	0.5298987782873977
2	0.3577513877490464
3	0.5298987782873977
4	0.3577513877490464
5	0.4271328349194304

Notice that deg(5) =deg (1) = deg(3). Why $C_5 > C_2$ and $C_5 > C_4$?

7

with the centrality at time t=0 being $x_i(0) = 1, \ \forall j$

 $x_i(t) = \sum_i A_{ij} x_j(t-1)$

Computing Eigenvector Centrality

Eigenvector Centrality

• Define the centrality x'_i of i recursively in terms of the centrality of its neighbors

$$x'_i = \sum_{k \in N(i)} x_k$$
 or $x'_i = \sum_j A_{ij} x_j$

With initial vertex centrality $x_j = 1$, $\forall j \ (including \ i)$ —we'll see why on next slide

In class: Eigenvector Centrality

Adjacency matrix A for the graph to the right:

$$A = \begin{pmatrix} 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \end{pmatrix}$$

Then the vector x(t) = $\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$ gives a random surfer's behavior at time t.
Answer the following questions based on the information above

Q1: Find x(1). What does it represent?

Answer:
$$x(1) = \begin{pmatrix} 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} = (?)$$

Q1: Find x(1). What does it represent?

Answer:
$$x(1) = \begin{pmatrix} 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \\ 3 \\ 0 \\ 3 \\ 2 \end{pmatrix}$$

The degree vector

Q2: Find x(2). What does it represent?

Answer:
$$x(2) = \begin{pmatrix} 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 3 \\ 3 \\ 3 \\ 0 \\ 3 \\ 2 \end{pmatrix} = (?)$$

Q2: Find x(2). What does it represent?

Answer:
$$x(2) = \begin{pmatrix} 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 3 \\ 3 \\ 3 \\ 0 \\ 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 9 \\ 9 \\ 8 \\ 0 \\ 8 \\ 6 \end{pmatrix}$$

A weighted degree vector (distance 2 or less)

Q3: Find x(3). What does it represent?

Answer:
$$x(3) = \begin{pmatrix} 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 9 \\ 9 \\ 8 \\ 0 \\ 8 \\ 6 \end{pmatrix} = (?)$$

Q3: Find x(3). What does it represent?

Answer:
$$x(3) = \begin{pmatrix} 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 9 \\ 9 \\ 8 \\ 0 \\ 8 \\ 6 \end{pmatrix} = \begin{pmatrix} 25 \\ 25 \\ 24 \\ 0 \\ 24 \\ 16 \end{pmatrix}$$

A weighted degree vector (distance 3 or less)

In class: Eigenvector Centrality Results

Node <i>i</i>	Eigenvector centrality C_i
0	0.49122209552166
1	0.49122209552166
2	0.4557991200411896
3	0
4	0.4557991200411896,
5	0.31921157573304415

A normalized weighted degree vector

 $x(t) = A(A \dots (A \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix})) = A^{t}x(0), t > 0$

1

The derivation of eigenvector centrality

Discussion: What did you notice?

• What is
$$x(3)$$
?
Answer: $x(3) = A(A(A\begin{pmatrix} 1\\1\\1\\1\\1\\1 \end{pmatrix})) = A^3x(0)$

1010

VA/L

. .

x(3) depends on the centrality of its neighbors of distance 3 or less

• What is x(t)?
Answer:
$$x(t) = A(A \dots (A \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix})) = A^t x(0), t > 0$$

$$x(t) \text{ depends on the controlity of its paidbhars of discussion.}$$

x(t) depends on the centrality of its neighbors of distance t or less

Eigenvector Centrality Derivation

• We can consolidate the eigenvector centralities of all the nodes in a recursive formula with vectors:

$$\mathbf{x}(t) = A \cdot \mathbf{x}(t-1)$$

with the centrality at time t=0 being $\mathbf{x}(0) = \mathbf{1}$ (as a vector)

• Then, we solve: $\mathbf{x}(t) = A^t \cdot \mathbf{x}(0),$ with $\mathbf{x}(0) = \mathbf{1}$

Eigenvector Centrality Derivation

Let:

- $\mathbf{x}(t) = A^t \cdot \mathbf{x}(0)$, with $\mathbf{x}(0) = 1$
- v_k are the eigenvectors of the adjacency matrix A
- $\mathbf{x}(0) = \sum_k c_k v_k$ is a linear combination of v_k
- λ_1 be the largest eigenvalue.

Then

$$\mathbf{x}(t) = A^{t} \cdot \mathbf{x}(0) = A^{t} \sum_{k} c_{k} v_{k} = \sum_{k} c_{k} \lambda_{k}^{t} v_{k} =$$

$$= \lambda_{1}^{t} \sum_{k} c_{k} \frac{\lambda_{k}^{t}}{\lambda_{1}^{t}} v_{k} = \lambda_{1}^{t} (c_{1} \frac{\lambda_{1}^{t}}{\lambda_{1}^{t}} v_{1} + c_{2} \frac{\lambda_{2}^{t}}{\lambda_{1}^{t}} v_{2} + c_{3} \frac{\lambda_{3}^{t}}{\lambda_{1}^{t}} v_{3} ...)$$

$$\mathbf{x}(t) \rightarrow \lambda_{1}^{t} c_{1} v_{1} \leftarrow$$
since $\frac{\lambda_{k}^{t}}{\lambda_{1}^{t}} \rightarrow 0$

$$as t \rightarrow \infty$$
 (as you repeat the process)

Eigenvector Centrality

• Thus, the eigenvector centrality is

$$\mathbf{x}(t) = \lambda_1^t c_1 \boldsymbol{v}_1$$

where $\boldsymbol{v_1}$ is the eigenvector corresponding to the largest eigenvalue λ_1^t

• So the eigenvector centrality (as a vector), x(t), is a multiple of the eigenvector v_1 , i.e. x(t) is an eigenvector of A.

$$\mathbf{A}\,\mathbf{x}(t) = \lambda_1^t \mathbf{x}(t)$$

• Meaning that the eigenvector centrality of each node is given by the entries of the leading eigenvector (the one corresponding to the largest eigenvalue $\lambda = \lambda_1^t$)

Is it well defined?

- That is:
 - Is the eigenvector guaranteed to exist?
 - Is the eigenvector unique?
 - Is the eigenvalue unique?
 - Can we have negative entries in the eigenvector?
- We say that a matrix/vector is positive if all of its entries are positive
- Perron-Frobenius theorem: A real square matrix with positive entries has a unique largest real eigenvalue and that the corresponding eigenvector has strictly positive components
- Perron-Frobenius theorem applies to positive matrices (but it gives similar information for nonnegative ones)

Perron-Frobenius theorem for nonnegative symmetric (0,1)-matrices

Let $A \in \mathbb{R}^{n \times n}$ be symmetric (0,1)-nonnegative, then

- there is a unique maximal eigenvalue λ_1 of the matrix A (for any other eigenvalue λ , we have $\lambda < \lambda_1$, with the possibility of $|\lambda| = \lambda_1$ for nonnegative matrices)
- λ_1 is real, simple (i.e., has multiplicity one), and positive (trace is zero so some are positive and some negative),
- the associated eigenvector is nonnegative (and there are no other nonnegative ones since all eigenvectors are orthogonal)

If you have not seen this and its proof in linear algebra, see a proof on pages 346-347 of Newman's textbook

Note

Consider the vectors computed:

$$\begin{pmatrix} 1\\1\\1\\1\\1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 3\\3\\0\\3\\2 \end{pmatrix}, \begin{pmatrix} 9\\9\\8\\0\\8\\0\\8\\6 \end{pmatrix}, \begin{pmatrix} 25\\25\\24\\0\\24\\16 \end{pmatrix}$$

- In finding the eigenvector, these vectors get normalized as they are computed using the power method from Linear Algebra, and eventually converge to a normalized eigenvector as well.
- Note that $\frac{x_i(2)}{x_i(1)} \neq \frac{x_i(3)}{x_i(2)}$, where x_i is the i^{th} entry, however, the ratios will converge to λ_1

Conclusion: Eigenvector Centrality

- Eigenvector Centrality:
 - a generalized degree centrality (takes into consideration the global network)
 - extremely useful, one of the most common ones used for non-oriented networks
 - $C_i \propto \sum_j C_j$ or $C_i = \lambda^{-1} \sum_j A_{ij} C_j$ or $C_i = \sum_{ij \in E(G)} C_j$
- Why is Eigenvector Centrality not commonly used for directed graphs?
 - Adjacency matrix is asymmetric...use left or right leading eigenvector?
 - Choose right leading eigenvector...importance bestowed by vertices pointing toward you (same problem with left).
 - Any vertex within degree zero has centrality value zero and "passes" that value to all vertices to which it points.
 - The fix: Katz centrality

Extra example 2 (Adjacency matrix, eigenvector centrality and the graph)

0:0.08448651593556764, 1:0.1928608426462633, 2:0.3011603786470362, 3: 0.17530527234882679, 4: 0.40835121533077895, 5: 0.2865100597893966, 6: 0.2791290343288953, 7: 0.1931920790704947, 8: 0.24881035953707603, 9:0.13868390351302598, 10: 0.336067959653752, 11: 0.16407815738375933, 12: 0.33838887484747293, 13: 0.2871391639624871, 14: 0.22848023925633135

Extra example 2 (Eigenvector centrality)

C2 = 0.3011603786470362

Adjacent to vertices of small degree

C4 = 0.40835121533077895

Adjacent to vertices of large degree