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Learning 
Outcomes

• Compute eigenvector centrality.
• Interpret the meaning of the values of 

eigenvector centrality.
• Explain why the eigenvector centrality is an 

extension of degree centrality.
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Recall:
Quality: what makes a 
node important (central)

Mathematical Description Appropriate Usage Identification

Lots of one-hop
connections from 𝑣

The number of vertices that 
𝑣 influences directly

Local influence 
matters
Small diameter

Degree 
deg (𝑖)

Lots of one-hop
connections from 𝑣
relative to the size of the 
graph

The proportion of the 
vertices that 𝑣 influences 
directly

Local influence 
matters
Small diameter

Degree centrality

C୧ =  
deg (𝑖)

|V(G)|

Lots of one-hop
connections to high 
centrality vertices 

A weighted degree
centrality based on the 
weight of the neighbors 
(instead of a weight of 1 as 
in degree centrality)

For example when
the people you are 
connected to 
matter.

HOW?
Eigenvector centrality 
(recursive formula):

𝐶௜ ∝ ෍ 𝐶௝

୨∈ே(௜)



Eigenvector Centrality
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• A generalization of the degree centrality: 
a weighted degree vector that depends on the 
centrality of its neighbors (rather than every 
neighbor having a fixed centrality of 1) 

• How do we find it?  By finding the largest eigenvalue 
and its associated eigenvector (leading eigenvector) 
of the adjacency matrix

• Let’s see why
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Example 1 (Eigenvector centrality)

Notice that deg(5) =deg (1) = deg(3). 
Why ହ ଶ and ହ ସ ?

Node 𝑖 Eigenvector centrality  𝐶௜

0 0

1 0.5298987782873977

2 0.3577513877490464

3 0.5298987782873977

4 0.3577513877490464

5 0.4271328349194304



Computing
Eigenvector
Centrality

with the centrality at time t=0 being 
௝



Eigenvector Centrality

9

• Define the centrality ௜ of recursively in terms of the centrality of its 
neighbors 

௜
ᇱ

௞

௞∈ே(௜)

௜
ᇱ

௜௝ ௝

௝

With initial vertex centrality ௝ —we’ll see why 
on next slide

• That is equivalent to:

௜ ௜௝ ௝

௝

with the centrality at time t=0 being ௝

The centrality of vertices 
and at time t and t-1, 

respectively



In class: Eigenvector Centrality
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Adjacency matrix A for the graph to the right:

A= 

Then the vector x(t) = gives a random surfer’s behavior at time t.      

Answer the following questions based on the information above



In class activity: Eigenvector Centrality
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Q1:  Find x(1). What does it represent?

Answer: =



In class activity: Eigenvector Centrality
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Q1:  Find x(1). What does it represent?

Answer: = 

The degree vector



In class activity: Eigenvector Centrality
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Q2:  Find x(2). What does it represent?

Answer: = 



In class activity: Eigenvector Centrality
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Q2:  Find x(2). What does it represent?

Answer: = 

A weighted degree vector (distance 2 or less)



In class activity: Eigenvector Centrality
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Q3:  Find x(3). What does it represent?

Answer: = 



In class activity: Eigenvector Centrality
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Q3:  Find x(3). What does it represent?

Answer: = 

A weighted degree vector (distance 3 or less)



In class: Eigenvector Centrality Results
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Node 𝑖 Eigenvector centrality  𝐶௜

0 0.49122209552166

1 0.49122209552166

2 0.4557991200411896

3 0

4 0.4557991200411896,

5 0.31921157573304415

A normalized weighted degree vector



The derivation 
of eigenvector 

centrality
))) = ௧ , 



Discussion: What did you notice?
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• What is x(3)?

Answer: ))) = ଷ

depends on the centrality of its neighbors of distance 3 or less
• What is x(t)?

Answer: ))) = ௧ , 

depends on the centrality of its neighbors of distance t or less



Eigenvector Centrality Derivation

• We can consolidate the eigenvector 
centralities of all the nodes in a 
recursive formula with vectors:

x
with  the centrality at time t=0 being 

x (as a vector)

• Then, we solve:  
x , 
with x



Eigenvector Centrality Derivation

Let:
• x , with x
• are the eigenvectors of the adjacency matrix A
• x is a linear combination of 
• be the largest eigenvalue.

Then
x = 

= ೖ
೟

భ
೟ = ( భ

೟

భ
೟ + మ

೟

భ
೟ +  య

೟

భ
೟ …)

x 

since ೖ
೟

భ
೟ 0 

as t ∞  (as you repeat the process)



Eigenvector Centrality
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• Thus, the eigenvector centrality is 

is the eigenvector corresponding to the largest 
eigenvalue
• So the eigenvector centrality (as a vector), , is a multiple of the 

eigenvector is an eigenvector of .

• Meaning that the eigenvector centrality of each node is given by 
the entries of the leading eigenvector (the one corresponding to 
the largest eigenvalue )



Is it well defined? 
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• That is: 
• Is the eigenvector guaranteed to exist?   
• Is the eigenvector unique? 
• Is the eigenvalue unique?  
• Can we have negative entries in the eigenvector?

• We say that a matrix/vector is positive if all of its entries are positive
• Perron-Frobenius theorem: A real square matrix with positive entries has a 

unique largest real eigenvalue and that the corresponding eigenvector has strictly 
positive components

• Perron-Frobenius theorem applies to positive matrices (but it gives similar 
information for nonnegative ones)



Perron-Frobenius theorem for 
nonnegative symmetric (0,1)-matrices

Let A ௡ ௑ ௡ be symmetric (0,1)-nonnegative, then
• there is a unique maximal eigenvalue λଵ of the matrix A (for any other 

eigenvalue λ, we have λ < λଵ with the possibility of |λ| = λଵ for nonnegative 
matrices)

• λଵ is real, simple (i.e., has multiplicity one), and positive (trace is zero so 
some are positive and some negative), 

• the associated eigenvector is nonnegative (and there are no other 
nonnegative ones since all eigenvectors are orthogonal) 

If you have not seen this and its proof in linear algebra, see a proof on pages 
346-347 of Newman’s textbook



Note
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Consider the vectors computed:  , 

• In finding the eigenvector, these vectors get normalized as they are 
computed using the power method from Linear Algebra, and eventually 
converge to a normalized eigenvector as well.  

• Note that  ௫೔ ଶ

௫೔ ଵ

௫೔ ଷ

௫೔ ଶ
, ௜ is the ௧௛ entry, however, the ratios will 

converge to  λଵ



Conclusion: Eigenvector Centrality

• Eigenvector Centrality:
• a generalized degree centrality (takes into consideration the global network)
• extremely useful, one of the most common ones used for non-oriented networks
• ௜ ௝୨ or ௜

ିଵ
௜௝ ௝௝ or    ௜ ௝௜௝ є ா(ீ)

• Why is Eigenvector Centrality not commonly used for directed 
graphs?

• Adjacency matrix is asymmetric…use left or right leading eigenvector?
• Choose right leading eigenvector…importance bestowed by vertices pointing 

toward you (same problem with left).
• Any vertex within degree zero has centrality value zero and “passes” that value to all 

vertices to which it points.

• The fix: Katz centrality
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Extra example 2 (Adjacency matrix, 
eigenvector centrality and the graph)
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0.  0.  1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.

0.  0.  0.  0.  1.  0.  1.  0.  0.  0.  0.  0.  0.  0.  0.

1.  0.  0.  0.  1.  0.  0.  1.  1.  1.  0.  0.  0.  0.  0.

0.  0.  0.  0.  0.  1.  0.  0.  0.  0.  0.  0.  1.  0.  0.

0.  1.  1.  0.  0.  0.  0.  0.  0.  0.  1.  0.  1.  1.  0.

0.  0.  0.  1.  0.  0.  1.  0.  0.  0.  0.  0.  1.  0.  1.

0.  1.  0.  0.  0.  1.  0.  0.  0.  0.  0.  0.  0.  1.  1.

0.  0.  1.  0.  0.  0.  0.  0.  1.  1.  0.  0.  0.  0.  0.

0.  0.  1.  0.  0.  0.  0.  1.  0.  0.  0.  1.  0.  0.  1.

0.  0.  1.  0.  0.  0.  0.  1.  0.  0.  0.  0.  0.  0.  0.

0.  0.  0.  0.  1.  0.  0.  0.  0.  0.  0.  1.  1.  1.  0.

0.  0.  0.  0.  0.  0.  0.  0.  1.  0.  1.  0.  0.  0.  0.

0.  0.  0.  1.  1.  1.  0.  0.  0.  0.  1.  0.  0.  0.  0.

0.  0.  0.  0.  1.  0.  1.  0.  0.  0.  1.  0.  0.  0.  0.

0.  0.  0.  0.  0.  1.  1.  0.  1.  0.  0.  0.  0.  0.  0.

0: 0.08448651593556764,
1: 0.1928608426462633,
2: 0.3011603786470362,
3: 0.17530527234882679,
4: 0.40835121533077895,
5: 0.2865100597893966,
6: 0.2791290343288953,
7: 0.1931920790704947,
8: 0.24881035953707603,
9: 0.13868390351302598,
10: 0.336067959653752,
11: 0.16407815738375933,
12: 0.33838887484747293,
13: 0.2871391639624871,
14: 0.22848023925633135



Extra example 2 (Eigenvector centrality)
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C4 = 0.40835121533077895C2 = 0.3011603786470362

Adjacent to vertices of small degree Adjacent to vertices of large degree 


