Katz Centrality for directed graphs
Learning Outcomes

• Understand how Katz centrality is an extension of Eigenvector Centrality to directed graphs.
• Compute Katz centrality per node.
• Interpret the meaning of the values of Katz centrality.
Recall: Centralities

<table>
<thead>
<tr>
<th>Quality: what makes a node important (central)</th>
<th>Mathematical Description</th>
<th>Appropriate Usage</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lots of one-hop connections from v</td>
<td>The number of vertices that v influences directly</td>
<td>Local influence matters</td>
<td>Degree $\deg(i)$</td>
</tr>
<tr>
<td>Lots of one-hop connections from v relative to the size of the graph</td>
<td>The proportion of the vertices that v influences directly</td>
<td>Local influence matters</td>
<td>Degree centrality $C_i = \frac{\deg(i)}{</td>
</tr>
<tr>
<td>Lots of one-hop connections to high centrality vertices</td>
<td>A weighted degree centrality based on the weight of the neighbors (instead of a weight of 1 as in degree centrality)</td>
<td>For example, when the people you are connected to matter.</td>
<td>Eigenvector centrality (recursive formula): $C_i \propto \sum_j C_j$</td>
</tr>
</tbody>
</table>

What changes in directed graphs?!
Recall: Strongly connected

Definition: A directed graph $D = (V, E)$ is **strongly connected** if and only if, for each pair of nodes $u, v \in V$, there is a path from u to v.

How do we compute centralities if the graph is not strongly connected?

- For example, the Web graph is not strongly connected since
 - there are pairs of nodes u and v, there is no path from u to $v \text{ and from } v \text{ to } u$.
- This presents a challenge for nodes that have an in-degree of zero
 - Why? What is the cascading effect?
 - What is a solution?

[Diagram of a directed graph showing nodes and edges, along with the Wikipedia link for Directed acyclic graph.]
Katz Centrality

• Recall that the eigenvector centrality $x(t)$ is a weighted degree obtained from the leading eigenvector of A: $A x(t) = \lambda_1 x(t)$, so its entries are

$$x_i = \frac{1}{\lambda_1} \sum_j A_{ij} x_j$$

Thoughts on how to adapt the above formula for directed graphs (maybe not all being strongly connected)?

• Katz centrality: $x_i = \frac{1}{\lambda_1} \sum_j A_{ij} x_j + \beta$, where β is a constant initial weight given to each vertex so that vertices with zero in degree (or out degree) are included in calculations.

• After this augmentation, a random surfer on a particular webpage, has two options:
 ✓ He randomly chooses an out-link to follow (A_{ij})
 ✓ He jumps to a random page (β)

Does β have to be the same for each vertex?

• An extension: β_i is an initial weight given to vertex i as a mechanism to differentiate vertices using some quality not modeled by adjacencies. Vertices with zero in degree (or out degree) will be included in calculations.
Katz Centrality

Does
• Generalize the concept of eigenvector centrality to directed networks that are not strongly connected

Does not
• Control for the fact that a high centrality vertex imparts high centrality on those vertices “downstream,” or all those vertices reachable from that high centrality vertex → PageRank
Updated Overview:

<table>
<thead>
<tr>
<th>Quality: what makes a node important (central)</th>
<th>Mathematical Description</th>
<th>Appropriate Usage</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lots of one-hop connections relative to the size of the graph</td>
<td>The proportion of the vertices that (v) influences directly</td>
<td>Local influence matters Small diameter</td>
<td>Normalized degree centrality (C_i = \text{deg}(i))</td>
</tr>
<tr>
<td>Lots of one-hop connections to high centrality vertices</td>
<td>A weighted degree centrality based on the weight of the neighbors</td>
<td>For example when the people you are connected to matter.</td>
<td>Eigenvector centrality (C_i \propto \sum_j C_j)</td>
</tr>
<tr>
<td>Lots of one-hop connections to high out-degree vertices (where each vertex has some pre-assigned weight)</td>
<td>A weighted degree centrality based on the out degree of the neighbors</td>
<td>Directed graphs that are not strongly connected</td>
<td>Katz centrality (x_i = \frac{1}{\lambda_1} \sum_j A_{ij} x_j + \beta), Where (\beta) is some initial weight</td>
</tr>
</tbody>
</table>