Prof. Ralucca Gera, rgera@nps.edu Applied Mathematics Department, Naval Postgraduate School

MA4404 Complex Networks Katz Centrality for directed graphs

Learning Outcomes

- Understand how Katz centrality is an extension of Eigenvector Centrality to directed graphs.
- Compute Katz centrality per node.
- Interpret the meaning of the values of Katz centrality.

Recall: Centralities

Quality: what makes a node important (central)	Mathematical Description	Appropriate Usage	Identification
Lots of one-hop connections from <i>v</i>	The number of vertices that <i>v</i> influences directly	Local influence matters Small diameter	Degree deg(i)
Lots of one-hop connections from v relative to the size of the graph	The proportion of the vertices that v influences directly	Local influence matters Small diameter	Degree centrality $C_{i} = \frac{\deg(i)}{ V(G) }$
Lots of one-hop connections to high centrality vertices	A weighted degree centrality based on the weight of the neighbors (instead of a weight of 1 as in degree centrality)	For example, when the people you are connected to matter.	Eigenvector centrality (recursive formula): $C_i \propto \sum_j C_j$

What changes in directed graphs?!

Recall: Strongly connected

Definition: A directed graph D = (V, E) is strongly connected if and only if, for each pair of nodes $u, v \in V$, there is a path from u to v.

How do we compute centralities if the graph is not strongly connected?

- For example, the Web graph is not strongly connected since
 - there are pairs of nodes *u* and *v*, there is no path from *u* to *v* and from *v* to *u*.
- This presents a challenge for nodes that have an in-degree of zero
 - Why? What is the cascading effect?
 - What is a solution?

http://en.wikipedia.org/wiki/Directed_acyclic_graph

Katz Centrality

• Recall that the eigenvector centrality $\mathbf{x}(t)$ is a weighted degree obtained from the leading eigenvector of A: A $\mathbf{x}(t) = \lambda_1 \mathbf{x}(t)$, so its entries are

$$x_i = \frac{1}{\lambda_1} \sum_j A_{ij} x_j$$

Thoughts on how to adapt the above formula for directed graphs (maybe not all being strongly connected)?

- Katz centrality: $x_i = \frac{1}{\lambda_1} \sum_j A_{ij} x_j + \beta$, where β is a constant initial weight given to each vertex so that vertices with zero in degree (or out degree) are included in calculations.
- After this augmentation, a random surfer on a particular webpage, has two options:
 - ✓ He randomly chooses an out-link to follow (A_{ij})
 - He jumps to a random page (β)

Does β have to be the same for each vertex?

 An extension: β_i is an initial weight given to vertex i as a mechanism to differentiate vertices using some quality not modeled by adjacencies. Vertices with zero in degree (or out degree) will be included in calculations.

Katz Centrality

Does

 Generalize the concept of eigenvector centrality to directed networks that are not strongly connected

Does not

 Control for the fact that a high centrality vertex imparts high centrality on those vertices "downstream," or all those vertices reachable from that high centrality vertex → PageRank

Updated Overview:

Quality: what makes a node important (central)	Mathematical Description	Appropriate Usage	Identification
Lots of one-hop connections relative to the size of the graph	The proportion of the vertices that v influences directly	Local influence matters Small diameter	Normalized degree centrality $C_i = deg(i)$
Lots of one-hop connections to high centrality vertices	A weighted degree centrality based on the weight of the neighbors	For example when the people you are connected to matter.	Eigenvector centrality $C_i \propto \sum_j C_j$
Lots of one-hop connections to high out-degree vertices (where each vertex has some pre- assigned weight)	A weighted degree centrality based on the out degree of the neighbors	Directed graphs that are not strongly connected	Katz centrality $x_i = \frac{1}{\lambda_1} \sum_j A_{ij} x_j + \beta,$ Where β is some initial weight