
MA4404 Complex Networks

PageRank

Excellence Through Knowledge

Prof. Ralucca Gera, rgera@nps.edu 
Applied Mathematics Department, 
Naval Postgraduate School



Learning 
Outcomes

• Understand how PageRank is an extension 
of Katz and Eigenvector Centrality to 
directed graphs.

• Compute PageRank per node.
• Interpret the meaning of the values of 

PageRank.



Why PageRank?!

• Who knows how PageRank works?  Guesses?
• In directed graphs:  some in-degrees are zero.
• Fix:  Katz centrality used a “free” weight of β
• New problem: should the weight of the following 

edges be the same:
(11, 9), 
(5, 11), 
(3, 8)?

• How should we decide 
on the weight?  Think
about it while we’re
going through the slides.
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Source: http://en.wikipedia.org/wiki/Directed_acyclic_graph



Introduction –web search
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• Early search engines mainly compared content similarity 
of the query and the indexed pages. i.e., 
• They use information retrieval methods, cosine 

similarity, TF-IDF, ... 
• In the mid 1990’s, it became clear that content similarity 

alone was no longer sufficient. 
• The number of pages grew rapidly in the mid 1990’s. 

• How to choose only 30-40 pages and rank them suitably to 
present to the user?

• Content similarity is easily spammed. 
• Webpage can repeat words and add related words to boost 

the rankings of his pages and/or to make the pages relevant to 
a large number of queries. 



Introduction (cont …)
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• Starting around 1996, researchers began to work on the 
problem. They resorted to hyperlinks. 

• In 1997, Yanhong Li, Scotch Plains, NJ, created a hyperlink 
based search patent. The method uses words in anchor text of 
hyperlinks.

• Web pages on the other hand are connected through 
hyperlinks, which carry important information. 

• Some hyperlinks: organize information at the same site 
(anchors). 

• Other hyperlinks: point to pages from other Web sites. Such 
out-going hyperlinks often indicate an implicit conveyance of 
authority to the pages being pointed to. 

• Those pages that are pointed to by many other pages 
are likely to contain authoritative information. 



Introduction (cont …)
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• During 1997-1998, two most influential hyperlink based
search algorithms PageRank and HITS were published. 

• Both algorithms exploit the hyperlinks of the Web to rank 
pages according to their levels of “prestige” or “authority”. 

• HITS (Section 7.5): Prof. Jon Kleinberg (Cornell University), at Ninth 
Annual ACM-SIAM Symposium on Discrete Algorithms, January 1998. 
(HITS stands for Hyperlink-Induced Topic Search)
• PageRank (Section 7.4): Sergey Brin and Larry Page, PhD students 

from Stanford University, at Seventh International World Wide 
Web Conference (WWW7) in April, 1998. 

• Which one have you heard of?  Why?
• HITS is part of the Ask search engine (www.Ask.com).
• PageRank has emerged as the dominant link analysis model 

• due to its query-independence, 
• its ability to combat spamming, and 
• Google’s huge business success. 



Intuition 
behind

PageRank



The PageRank Algorithm 
for WWW

• Invented the PageRank Algorithm to rank the returned key word searches 
• PageRank is based on: A webpage is important if it is pointed to by other 

important pages.
• The algorithm was patented in 2001, and refined since.

Sergey Brin and Larry Page
in 1998

(quitting their PhD programs at Stanford
to start Google)



PageRank: the intuitive idea
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• PageRank relies on the democratic nature of the Web by using its vast link structure as 
an indicator of an individual page's value or quality. 

• PageRank interprets a hyperlink from page i to page j as a vote, by page i, for page j. 

• However, PageRank looks at more than the sheer number of votes; it also analyzes the 
page that casts the vote. 

• A vote casted by an “important” page i weighs more heavily and helps to make 
page j more "important." (like eigenvector and Katz)

• Also, the vote of page i is shared among the pages that it points to, so page j gets a 
fraction of the vote.

• How do we find that fraction? Think about it while we’re going through the 
slides



More specifically
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• A hyperlink from a page to another 
page is an implicit transmission of 
authority to the target page. 

 The more in-links that a page i receives, 
the more prestige the page i has. 

• Pages that point to page i also have 
their own prestige scores. 

 A page of a higher prestige pointing to i
is more important than a page of a 
lower prestige pointing to i. 

 In other words, a page is important if it 
is pointed to by other important pages. 

https://ahrefs.com/blog/google-pagerank/



The web can be viewed 
as directed graph

• The nodes or vertices are the web pages.
• The edges are the hyperlinks between websites
• This digraph has more than  10 billion vertices and it is growing 

every second!
• Google is useful 

because it ranks
these outputs well,
not because it finds
all relevant pages 

http://orleansmarketing.com/web-development1/microsites/#.VMX4xntHEqI



The web at a glance

PageRank Algorithm

Query-independent

Source: M. Ram Murty, Queen’s University

Mapping
content to 
location

Forward Index:
mapping
document 
to content



Computing
PageRank

with the centrality at time t=0 being 
௝



PageRank algorithm

14

• Eigenvector centrality: i’s Rank score, ௜ is the sum of the Rank scores ௝ of all 
pages j that adjacent  to i :

௜ ௝

௝,௜ ∈ா

• Then Katz centrality adds the teleportation by adding a small weight edge to 
each node (using a weight of ):

௜
ଵ

஛భ
௜௝ ௝௝ +

• BUT, since a page j may point to many other pages, its prestige score should be 
shared among these pages.

(For example, NP’ main website pointing to many sites)

௜ ௜௝
௫ೕ

௢௨௧ ௗ௘௚ೕ
௝ +



Matrix notation
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• Let be a n-dimensional column vector of PageRank values, i.e., 𝟏 𝟐 𝒏)T.

• Let A be the adjacency matrix of our digraph with entries ௜௝

• Then the PageRank centrality of node is given by: 

௜ ௜௝
௫ೕ

௢௨௧ ୢୣ୥ ௝௝

or
ିଵ

Where is the damping factor, generally set for = .85 (more on the next page).

Recall from eigenvector centrality:  

x = ଵx or     x = 𝟏

𝝀𝟏
x

• Small values (close to 0): the contribution given by paths longer than one hop is small, so centrality  
scores are mainly influenced by (teleportation).

• Large values (close to 𝟏

ఒభ
): allows long paths to be devalued smoothly, and centrality scores influenced 

by the topology of G and less by the teleportation captured by .

• Recommendation: choose 𝟏

ఒభ
, where the centrality diverges at α = 𝟏

ఒభ
.  The default is usually .85



Updated Overview
Quality: what makes a 
node important (central)

Mathematical
Description

Appropriate Usage Identification

Lots of one-hop
connections to high 
centrality vertices 

A weighted degree
centrality based on 
the weight of the 
neighbors

For example when
the people you are 
connected to 
matter.

Eigenvector centrality 

௜ ௜௝ ௝

௝

Where A is the in degree matrix

Lots of one-hop
connections to high 
out-degree vertices

A weighted degree
centrality based on 
the out degree of 
the neighbors

Directed graphs
that are not 
strongly connected

Katz
௜ ௜௝ ௝௝ + β

Where β is some small weight 
for each node

As above but 
distribute the weight 
that a node has to 
the nodes it points to

௝ As above but 
distributing the 
wealth of a node to 
the ones it points 
to

Page Rank:

௜ ௜௝
௝

௝

or
ିଵ



An example 
using the 
Adjacency 

and Diagonal 
Matrices 


























06131000

216131000

21610000

061310212/1

06101021

06100210

1-AD



An example as just described:

0 1 0 0 0 0

1 0 1 0 0 0

1 1 0 1 0 0

0 0 0 0 0 1

0 0 0 1 0 1

0 0 0 1 0 0

 
 
 
 

  
 
 
  
 

A

Problem vertex
(no outgoing links)

Recall that the problem
with vertices with indegree = 0
was solved by using .

௜ ௜௝
௝

௝

or 
ିଵ

Is the formula above
well defined? 

each row
shows 
the
in degree 

in-degree matrix 

each column  shows 
the out degree 

If not, how could we fix 
the formula or the matrix? 



How can we fix the problem?
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1. Remove those pages with no out-links during the PageRank computation as 
these pages do not affect the ranking of any other page directly (these pages 
will get outgoing links in the future). 

2. Add a complete set of outgoing links from each such page i to all the pages on 
the Web. 

0 1 0 0 1 0

1 0 1 0 1 0

1 1 0 1 1 0

0 0 0 0 1 1

0 0 0 1 1 1

0 0 0 1 1 0

 
 
 
 

  
 
 
  
 

A

The second choice 
is used in PR since 

matrix may get 
updated

in-degree matrix 
each row
shows 
the
in degree 

each column  shows 
the out degree 



How can we fix the out degree = 0?
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1/ 2 0 0 0 0 0

0 1/ 2 0 0 0 0

0 0 1/1 0 0 0

0 0 0 1/ 3 0 0

0 0 0 0 1/ 6 0

0 0 0 0 0 1/ 2

 
 
 
 

  
 
 
  
 

-1D

Inverse of the out-degree matrix 

0 1 0 0 1 0

1 0 1 0 1 0

1 1 0 1 1 0

0 0 0 0 1 1

0 0 0 1 1 1

0 0 0 1 1 0

 
 
 
 

  
 
 
  
 

A

in-degree matrix 

ିଵ



PR centrality formula is well defined
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By multiplying them we obtain the  matrix that captures:
1. The in and out degree per vertex
2. Divides the centrality of each 

vertex by its degree

The contribution
of node 5 is 
insignificant, 
and the formula 
is now well defined

in-degree matrix 

out-degree matrix 



























06131000

216131000

21610000

061310212/1

06101021

06100210

1-AD

ିଵ



Transition probability matrix
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• This modified matrix is called the state transition 
probability matrix.  Denote its entries by pij :

• pij represents the transition probability that the surfer in state i
(page i) will move to state j (page j).

• An extra example in the backup slides of this PPT deck.




























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...
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22221

11211

1-AD



Updated Overview
Quality: what makes a 
node important (central)

Mathematical
Description

Appropriate Usage Identification

Lots of one-hop
connections to high 
centrality vertices 

A weighted degree
centrality based on 
the weight of the 
neighbors

For example when
the people you are 
connected to 
matter.

Eigenvector centrality 

௜ ௜௝ ௝

௝

Where A is the in degree matrix

Lots of one-hop
connections to high 
out-degree vertices

A weighted degree
centrality based on 
the out degree of 
the neighbors

Directed graphs
that are not 
strongly connected

Katz
௜ ௜௝ ௝௝ + β

Where β is some small weight 
for each node

As above but 
distribute the weight 
that a node has to 
the nodes it points to

௝ As above but 
distributing the 
wealth of a node to 
the ones it points 
to

Page Rank:

௜ ௜௝
௝

௝

Where outdeg j = max{1, out degree 
of node  j}, or

ିଵ



Final 
Comments



Some comments

• Newman’s book gives: ௜ ௜௝
௫ೕ

௢௨௧ ୢୣ௝

where α is called the damping factor which can be set to between 0 
and 1(or the largest eigenvalue of A).
• And the formula in the original PageRank is:

௜ ௜௝
௝

௝

where d is the damping factor (d = 0.85 as default)
• Gephi: the default value for is the probability  =  0.85 and Epsilon 

is the criteria for eigenvector convergence based on the power 
method 



Final Points on PageRank
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• Fighting spam. 
• A page is important if the pages pointing to it are important. 
• Since it is not easy for Web page owner to add in-links into his/her page from 

other important pages, it is thus not easy to influence PageRank. 

• PageRank is a global measure and is query independent. 
• The values of the PageRank algorithm of all the pages are computed and saved 

off-line rather than at the query time => fast 

• Criticism: 
• There are companies that can increase your PageRank by adding it to a cluster 

and increasing its indegree
• It cannot not distinguish between pages that are authoritative in general and 

pages that are authoritative on the query topic.
• But it works based on the keyword search 



Back up slides: one smaller example



A 4-website Internet 

28Source: http://www.math.cornell.edu/~mec/Winter2009/RalucaRemus/Lecture3/lecture3.html



A 4-website Internet 
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Source: http://www.math.cornell.edu/~mec/Winter2009/RalucaRemus/Lecture3/lecture3.html

pij represents the transition 
probability that the surfer on
page j will move to page i:

 




















002/13/1

210213/1

0003/1

2/1100

ijp1-AD



A 4-website Internet 
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Source: http://www.math.cornell.edu/~mec/Winter2009/RalucaRemus/Lecture3/lecture3.html

Random surfer: each page has equal probability ¼ to be chosen as a starting point.

The probability that page i will be visited after k steps (i.e. the random surfer ending up at 
page i ) is equal to 𝒕𝒉 entry of A kx.  

Simplification for this example: No β was involved since id i > 0, for all i

 




















002/13/1

210213/1

0003/1

2/1100

ijp1-AD


