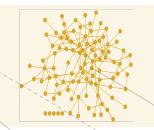

Prof. Ralucca Gera, rgera@nps.edu Applied Mathematics Department, Naval Postgraduate School



MA4404 Complex Networks
Clustering Coefficient

Learning Outcomes

- Differentiate between:
 - Local clustering coefficient,
 - Global clustering coefficient, and
 - Average clustering coefficient
- Understand the computation of clustering coefficients
- Create extensions of clustering coefficient

$C(G) = \frac{\# of K_3}{\# of connected triples}$

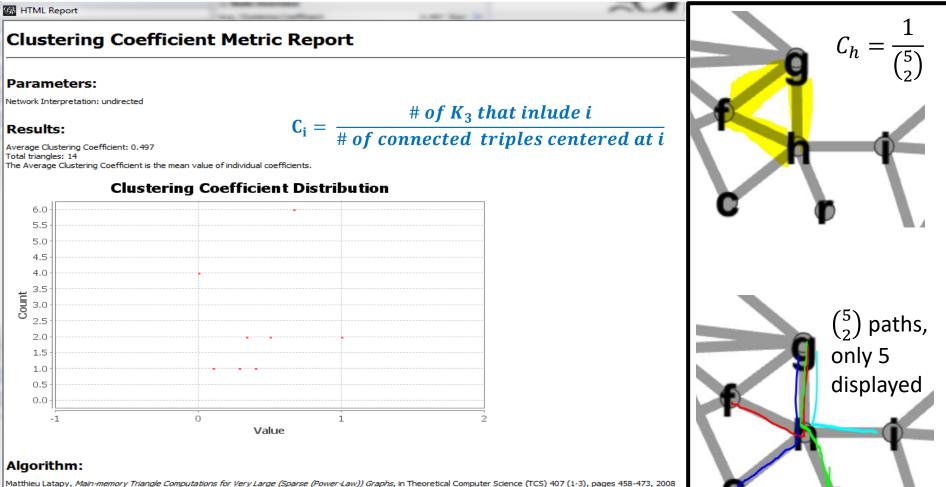
Definition of Clustering Coefficient

Clustering coefficients for real networks

- The clustering coefficients measure the average probability that two neighbors of a vertex are themselves neighbors (a measure of the density of triangles in a network).
- There are three versions:
 - 1. Clustering coefficient of the graph (overall network clustering):

$$C(G) = \frac{\# of K_3}{\# of connected triples}$$

2. Local Clustering coefficient (locally dense communities):


 $C_{i} = \frac{\# of K_{3} that inlude i}{\# of connected triples centered at i} = \frac{number of edges between neighbors of i}{\deg i \ (\deg i \ -1)/2}$

3. Avg. clustering coefficient of G:

$$C_{ws}(G) = \frac{1}{n} \sum_{i \in V(G)} C_i$$

Clustering coeff distribution example in Gephi

Observed: Networks are globally sparse, but locally dense

Statistics for real networks

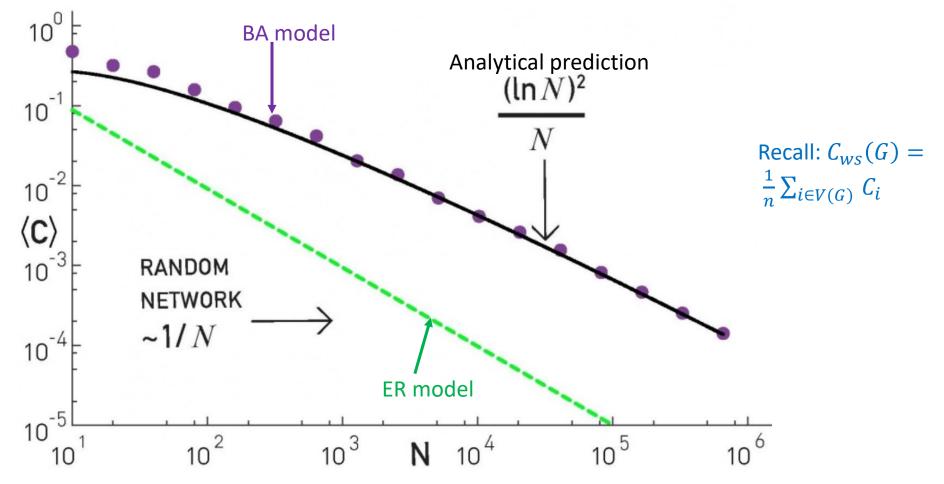
	Network	Туре	п	m	С	S	l	α	С	Cws	
	Film actors	Undirected	449 913	25 516 482	113.43	0.980	3.48	2.3	0.20	0.78	0.
	Company directors	Undirected	7673	55 392	14.44	0.876	4.60	-	0.59	0.88	0.
	Math coauthorship	Undirected	253 339	496 489	3.92	0.822	7.57	-	0.15	0.34	0.
Social	Physics coauthorship	Undirected	52,909	245 300	9.27	0.838	6.19	-	0.45	0.56	0.
	Biology coauthorship	Undirected	1520251	11 803 064	15.53	0.918	4.92	-	0.088	0.60	0.
	Telephone call graph	Undirected	47 000 000	80 000 000	3.16			2.1			
	Email messages	Directed	59812	86300	1.44	0.952	4.95	1.5/2.0		0.16	
	Email address books	Directed	16881	57 029	3.38	0.590	5.22	-	0.17	0.13	0.
	Student dating	Undirected	573	477	1.66	0.503	16.01	-	0.005	0.001	-0.
	Sexual contacts	Undirected	2810					3.2			
=	WWW nd.edu	Directed	269 504	1 497 135	5.55	1.000	11.27	2.1/2.4	0.11	0.29	-0.
tio	WWW AltaVista	Directed	203 549 046	1466 000 000	7.20	0.914	16.18	2.1/2.7	2006264		
ma	Citation network	Directed	783 339	6716198	8.57			3.0/-			
Information	Roget's Thesaurus	Directed	1022	5103	4.99	0.977	4.87	-	0.13	0.15	0.
	Word co-occurrence	Undirected	460 902	16 100 000	66.96	1.000		2.7		0.44	
	Internet	Undirected	10697	31 992	5.98	1.000	3.31	2.5	0.035	0.39	-0.
al	Power grid	Undirected	4941	6594	2.67	1.000	18.99	-	0.10	0.080	-0.
ğ	Train routes	Undirected	587	19603	66.79	1.000	2.16	-		0.69	-0.
lechnological	Software packages	Directed	1439	1723	1.20	0.998	2.42	1.6/1.4	0.070	0.082	-0.
chr	Software classes	Directed	1376	2 2 1 3	1.61	1.000	5.40	-	0.033	0.012	-0.
Te	Electronic circuits	Undirected	24 097	53 248	4.34	1.000	11.05	3,0	0.010	0.030	-0,
	Peer-to-peer network	Undirected	880	1 2 9 6	1.47	0.805	4.28	2.1	0.012	0.011	-0.
	Metabolic network	Undirected	765	3 686	9.64	0.996	2.56	2.2	0,090	0.67	-0.
ca	Protein interactions	Undirected	2115	2 2 4 0	2.12	0.689	6.80	2.4	0.072	0.071	-0.
80	Marine food web	Directed	134	598	4.46	1.000	2.05	-	0.16	0.23	-0.
Biological	Freshwater food web	Directed	92	997	10.84	1.000	1.90	-	0.20	0.087	-0.
	Neural network	Directed	307	2359	7.68	0.967	3.97	-	0.18	0.28	-0.

C= clustering coefficient

C_{ws}= ave clustering coefficient

Newman, "The Structure and Function of Complex Networks" http://epubs.siam.org/doi/p df/10.1137/S003614450342 480

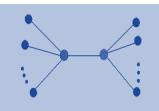
Observed vs. random

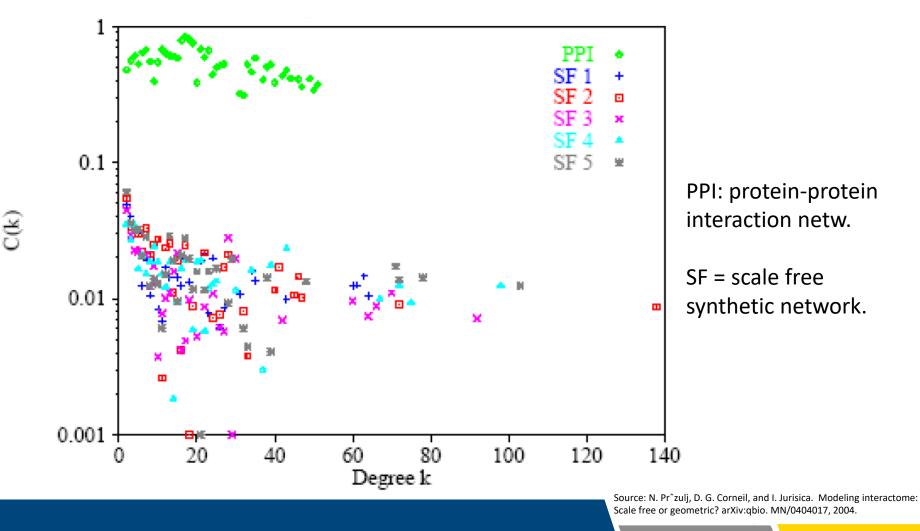


Network	n	z	$C_{\sf ws}$	G_{ws} for
			measured	random graph
Internet [153]	6,374	3.8	0.24	0.00060
World Wide Web (sites) [2]	$153,\!127$	35.2	0.11	0.00023
power grid [192]	4,941	2.7	0.080	0.00054
biology collaborations [140]	$1,\!520,\!251$	15.5	0.081	0.000010
mathematics collaborations [141]	253,339	3.9	0.15	0.000015
film actor collaborations [149]	449,913	113.4	0.20	0.00025
company directors [149]	$7,\!673$	14.4	0.59	0.0019
word co-occurrence [90]	460,902	70.1	0.44	0.00015
neural network [192]	282	14.0	0.28	0.049
metabolic network [69]	315	28.3	0.59	0.090
food web [138]	134	8.7	0.22	0.065

Why are they different?

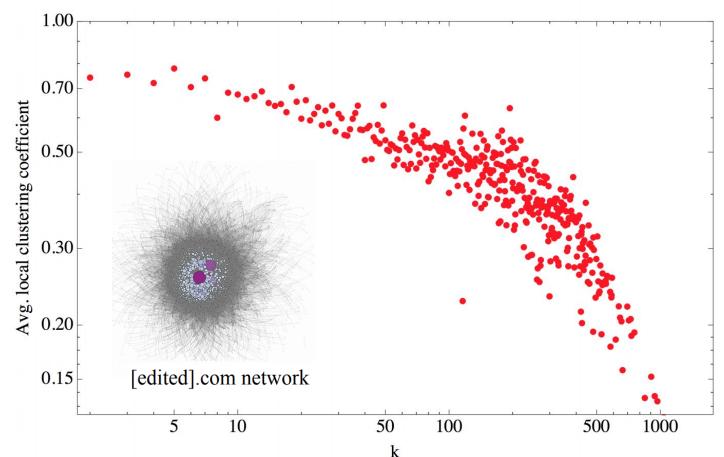
Source: N. Przulj. Graph theory analysis of proteinprotein interactions. 2005. Clustering dependency on degrees or size of network


ER & BA model: C_{ws} as a function of the network size (N)



Barabási–Albert network is locally more clustered than a random network.

L. Barab'asi. http://barabasi.com/networksciencebook/chapter/5#diameter

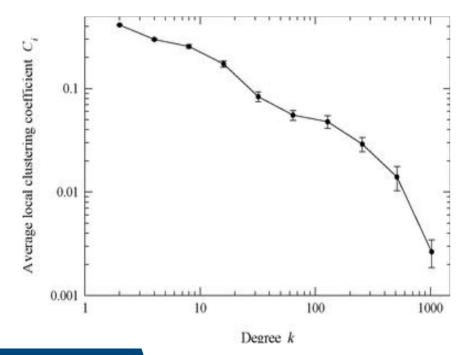

PPI and SF: clustering as a function of degree k

10

Online Social Networks: Avg Local Clustering as a function of degree

A node chosen at random has higher clustering than the one of a hub

DissertationResearchGateversion.pdf


Internet: Local Clustering Coefficient as a Function of Degree k

Notice: higher degree nodes exhibit lower local clustering coefficient (with larger variance as well) Thoughts on why?

Example: Internet network at the Autonomous System level, averaged over all of the vertices of degree k. For nodes of degree k, the best fit is:

$$C_i(k) = k^{-\alpha},$$

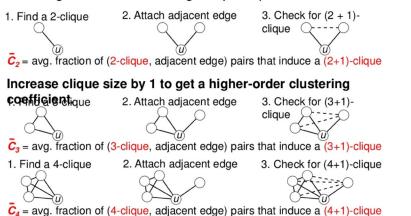
where .75 $\leq \alpha \leq 1$

MIS 644 Social Newtork Analysis 2017/2018 Spring - ppt download)

Local clustering coefficient

Possible explanations for the decrease in C_i as degree increases:

Vertices tend to group in communities, sharing mostly neighbors within the same community


Some vertices have small/large degree based on the size of the community

Smaller communities are denser \rightarrow larger C_i

Communities may be connected by large degree nodes and being a connector will decrease its value of C_i of these large degree nodes.

Extension of Clustering Coefficient

Benson, Yin, Leskovec, "Higher-order clustering coefficient" (2017) https://www.slideshare.net/arbenson/higherorder-clustering-coefficients-80864022

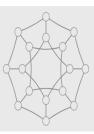
Our higher-order view through clique expansion. Local, average, an

Frequency of cliques in clique+edge occurrences:

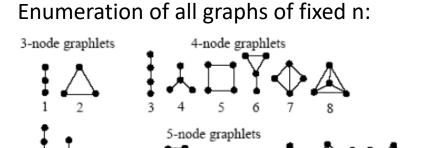
Local, average, and global higher-order clustering coefficients.

Third-order *local* clustering coefficient at node *u*.

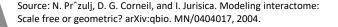
Third-order average clustering coefficient.


Third-order global clustering coefficient.

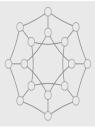
 $\bar{C}_3 = \frac{1}{n} \sum_u \frac{\# \mathcal{C}_0}{\# \mathcal{C}_0} = \frac{1}{n} \sum_u C_3(u)$

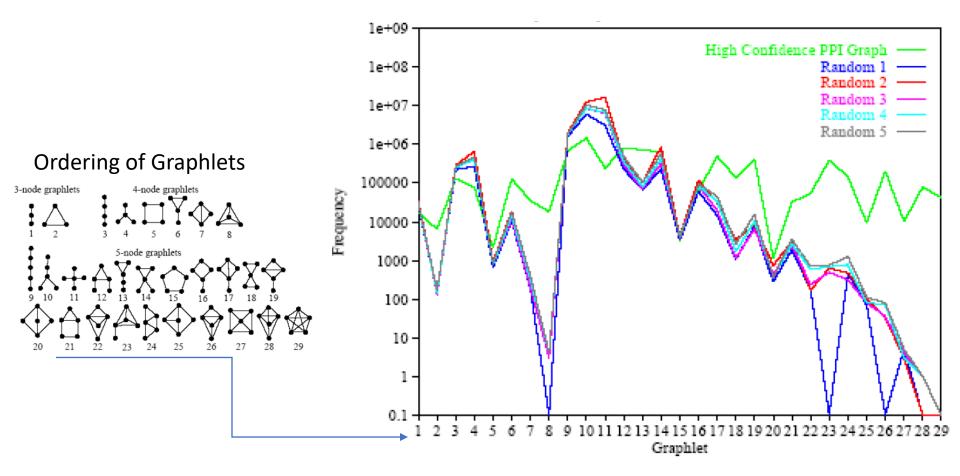

$$C_3 = \frac{\sum_u \# \mathcal{O}}{\sum_u \# \mathcal{O}}$$

Additional Extensions



Clustering coefficient measures the density of K_3 in networks

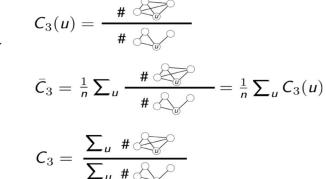

• Count the density of other motifs

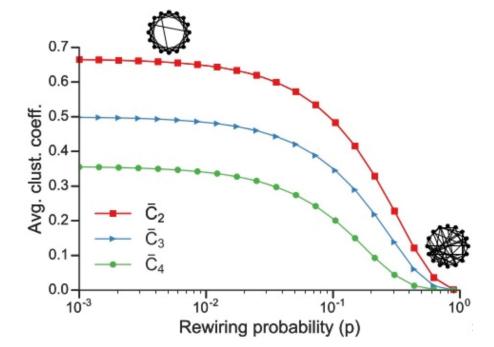

21

26

Graphlet frequency in Scale Free network

Source: N. Pr[^]zulj, D. G. Corneil, and I. Jurisica. Modeling interactome: Scale free or geometric? arXiv:qbio. MN/0404017, 2004.


Higher order clustering in WS networks


Local, average, and global higher-order clustering coefficients.

Third-order *local* clustering coefficient at node *u*.

Third-order average clustering coefficient.

Third-order *global* clustering coefficient.

Benson, Yin, Leskovec, "Higher-order clustering coefficient" (2017) https://www.slideshare.net/arbenson/higherorder-clusteringcoefficients-80864022

References

- Newman, "The Structure and Function of Complex Networks" http://epubs.siam.org/doi/pdf/10.1137/S003614450342480
- Source: L. Barabasi. <u>http://barabasi.com/networksciencebook/chapter/5#diameter</u>
- Benson, Yin, Leskovec, "Higher-order clustering coefficient" (2017) <u>https://www.slideshare.net/arbenson/higherorder-</u> <u>clustering-coefficients-80864022</u>
- N. Pr[^]zulj, D. G. Corneil, and I. Jurisica. Modeling interactome: Scale free or geometric? arXiv:qbio. MN/0404017, 2004.