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ANGEL: A Synthetic Model for Airline Network
Generation Emphasizing Layers

Marzena Fügenschuh, Ralucca Gera, and Andrea Tagarelli

Abstract—Air transportation networks develop independently
based on the needs of carriers, economic and political factors, as
well as their interactions. A deeper study of these networks can
provide insights into the growing process and the characteristics
of this multi-billion dollar industry. In this regard, reliable
network-formation models are required. Generating synthetic
models for airline transportation networks is a difficult and
current endeavor. The subnetworks induced by airline companies
lead naturally to a multilayer structure. Upon a profound
analysis of the benchmark European Air Transportation Network
(EATN), we propose a novel approach, called Airline Network
Generation Emphasizing Layers (ANGEL), to create synthetic
multilayer networks mimicking the two patterns typical in air
transportation networks, i.e., hub-and-spoke and point-to-point
structures. Moreover, we introduce new statistics to analyze the
EATN and to validate the synthetic network model, which can
be applied to study multilayer networks in general.

Index Terms—synthetic multilayer network generation, air
transportation systems, multiplex network analysis

I. INTRODUCTION

The global transportation system is a dynamic and intricate
network, rapidly linking cities and thus presenting the most
connected physical network seen to date. In 2010, the global
air transportation network transported 2.4 billion passengers
and 43 million tons of cargo, it has been responsible for
32 million jobs, 2% of global carbon emissions and 545
billion dollars in revenue [1]. Optimizing travel through this
network to efficiently transport goods and people, as well as
analyzing its resilience to disruption, is highly desirable based
on the real-world limitations of airports, aircraft, financial and
personnel resources, and the unpredictability of passengers,
weather and natural disasters. In order to effectively study the
real-world development of this complex network, a method-
ology for creating synthetic networks comparable in size and
behavior is needed.

The natural development of air networks is difficult to model
because of the lack of historical data and their multilayered
nature. Here, each airline company is captured by one layer,
which is itself a network, and independently creates routes
based on market analysis for profit, competitor routes, and
available resources and destinations. However, each airport
develops separately driven by the municipalities they service.
Since each airline attempts to gain routes to increase market
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share and revenue, the response to these market forces is
the basis for the growing multilayer network. Based on our
analysis of a benchmark airline network, our goal in this work
is to develop a method for generating layers of airline networks
and their representation under a multilayer network model.

A. Related work
Multilayer networks add an extra dimension to the single-

layer networks [2], [3], [4]. Their structural properties have
been analyzed on the ensemble of layers, as studied in [4], as
well as their spectral properties [5], [6]. Most of the existing
works have traditionally studied the relationships between
the layers rather than within the layers; particularly, it has
been shown that different layers can influence the community
structure based on communities between layers [7], over-
lapping communities between layers [8], and redundancy of
pairwise connections across layers [9]. Given the complexity
of multilayer network systems, generative models for synthetic
networks have been studied as a tool to create artificial
(fictitious) system models with capability of representing
characteristic features of actual networks. This becomes of
paramount importance for modeling, simulating, tuning and
validating the system dynamics in a controlled environment.
Single-layer network models introduced in the last decade have
been reviewed in [10], whereas synthetic multilayer networks
are reviewed in [4]. The general trends to model growing
multiplex networks are based on preferential attachment [11],
[12], [13], [14], statistical models [15], [16], [17], ensembles
of multiplex networks [18], [19] such as multilayer exponential
random graphs [20], [21], [22], [23], and multilayer stochastic
block models [24], [25].

Air transportation systems represent a prototypical example
for a multilayer network. A corpus of studies based on network
analysis provides insights into their topological structure and
dynamics. [26] investigates the world-wide airport network to
understand its anomalous centrality distribution. Using k-core
decomposition, [27] analyses the structural properties of the
Chinese Airline Network as a multiplex consisting of three
layers; the core layer includes airports of provincial capital
cities and supports most flight flow, while the bridge layer
connects the core layer with a periphery layer comprising
more remote areas with no direct flight between them. [28]
proposes a theoretical framework of causality test to inves-
tigate interaction and propagation patterns of delay between
airport systems. [29] focuses on multimodal aspects relating
to temporal characteristics of the UK public transport system
for a given period; each transportation mode is associated with
a different layer in a multilayer network framework.
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The European Air Transportation Network (EATN) has
received particular attention in studying its vulnerability to
disruption by spacial hazards [30]. The EATN has also been
used to generate synthetic networks given by a scale-free
structure based on preferential attachment to investigate con-
nections of most connected cities versus central cities [31], or
the network flow in multilayer networks [32] or to observe
how the aggregated network is affected by the emergence of a
single layer [33]. In [34], the multilayer approach is combined
with the scale-free structure of the network to generate a model
imitating the EATN. This approach, based on an enhanced
preferential attachment, has been further enhanced in [35] to
enforce a higher diversity in the node counts of the layers.

B. Our contributions

In this work, we present Airline Networks Generation
Emphasizing Layers (ANGEL), a novel approach to construct
synthetic multilayer networks, especially but not only air
transportation networks. We pay particular attention to the
structure of the layers and their overlap. In contrast to the
preferential attachment approach in [34] or [35], where the
multiplex grows edge by edge, in ANGEL the network is built
layer by layer on a-priori determined overlapping subsets of
nodes. In the creation process of each layer, we distinguish
between layers mimicking hub-and-spoke and point-to-point
structures, the two patterns typical for air transportation net-
works. In both approaches, we take the spatial location of
the nodes into consideration. Although ANGEL is originally
designed to mimic an air transportation network, the flexibility
of our model enables a straightforward generalization to create
diverse multilayer networks of arbitrary sizes that certainly are
of interest to the network science community in general. We
follow the air transportation network representation proposed
in [33], where an edge in a layer corresponds to a flight offered
by the particular airline being modeled by the layer. Nodes
represent airports and can show up in several layers. They are
captured by connections offered by a particular airline.

The paper is structured as follows. In Section II, we analyze
the EATN data and introduce metrics to investigate the mul-
tilayer structure of this network. The modular construction of
the ANGEL methodology is elaborated in Section III, where
we define methods for creating single layers mimicking hub-
and-spoke patterns (Section III-A) and point-to-point patterns
(Section III-B), and for integrating the layers into a multiplex
network (Section III-C). We generalize ANGEL to a model for
an arbitrary multilayer network in Section IV. In Section V,
we validate the ANGEL model against the EATN. Section VI
provides concluding remarks and pointers to future research.

II. ANALYSIS OF THE EATN
This section is divided into three parts. In Section II-A, we

present a selection of graph statistics on the 37 distinct layers
of the EATN. Since the majority of the layers is distinguished
by a hub-and-spoke formation, in Section II-B we seek to
formulate a definition to indicate hubs among the other nodes
in the layer. In Section II-C, we investigate the multiplex as
a composition of the layers. An important aspect of our study
is the subnetwork of the EATN induced by hubs.

TABLE I
STATISTICS ON THE LAYERS AND THE MULTIPLEX (M) OF THE EATN.
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1 35 35 0.059 0.006 2.0 5.32 1.99 0.34 0.06 0.23
2 35 34 0.057 0 1.94 5.5 1.94 0.23 0.0 0.0
3 36 63 0.1 0.148 3.5 4.76 2.19 0.68 0.21 0.27
4 36 37 0.059 0 2.06 3.79 2.44 0.64 0.0 0.0
5 37 43 0.065 0.038 2.32 5.54 1.98 0.34 0.14 0.32
6 38 67 0.095 0.165 3.53 5.59 2.14 0.56 0.43 0.47
7 38 53 0.075 0.103 2.79 4.92 2.19 0.55 0.35 0.45
8 40 57 0.073 0.044 2.85 4.7 2.43 0.88 0.24 0.4
9 42 53 0.062 0.045 2.52 6.14 1.97 0.31 0.27 0.44
10 42 42 0.049 0.004 2.0 5.94 2.0 0.31 0.05 0.21
11 42 41 0.048 0 1.95 6.1 1.95 0.21 0.0 0.0
12 43 99 0.11 0.188 4.6 5.21 2.28 0.7 0.24 0.31
13 44 43 0.045 0 1.95 6.26 1.95 0.21 0.0 0.0
14 44 55 0.058 0.041 2.5 5.98 2.03 0.38 0.2 0.36
15 44 67 0.071 0.074 3.05 5.84 2.05 0.45 0.34 0.43
16 45 92 0.093 0.022 4.09 3.48 2.66 0.88 0.01 0.03
17 45 58 0.059 0.028 2.58 5.88 2.11 0.53 0.07 0.16
18 45 58 0.059 0.06 2.58 5.43 2.19 0.52 0.27 0.42
19 45 45 0.045 0.004 2.0 5.89 2.08 0.41 0.04 0.21
20 45 90 0.091 0.34 4.0 2.54 3.35 1.43 0.5 0.36
21 48 60 0.053 0.034 2.5 6.63 1.95 0.22 0.23 0.4
22 48 69 0.061 0.034 2.88 4.91 2.51 0.86 0.08 0.2
23 51 93 0.073 0.105 3.65 7.06 1.97 0.34 0.4 0.42
24 52 87 0.066 0.126 3.35 6.02 2.21 0.56 0.37 0.44
25 53 73 0.053 0.104 2.75 4.63 2.55 0.72 0.17 0.32
26 53 61 0.044 0.023 2.3 4.6 2.56 0.73 0.11 0.29
27 59 69 0.04 0.007 2.34 6.38 2.19 0.5 0.04 0.18
28 63 62 0.032 0 1.97 7.62 1.97 0.18 0.0 0.0
29 65 66 0.032 0 2.03 5.63 2.76 1.04 0.0 0.0
30 66 110 0.051 0.107 3.33 6.62 2.31 0.59 0.4 0.46
31 67 72 0.033 0.009 2.15 7.65 2.02 0.29 0.12 0.31
32 75 184 0.066 0.187 4.91 7.15 2.37 0.65 0.38 0.4
33 86 118 0.032 0.026 2.74 9.05 2.02 0.28 0.26 0.4
34 94 180 0.041 0.144 3.83 4.03 3.31 1.26 0.14 0.26
35 99 307 0.063 0.176 6.2 9.0 2.34 0.69 0.26 0.31
36 106 244 0.044 0.1 4.6 11.14 2.16 0.49 0.55 0.47
37 128 601 0.074 0.215 9.39 11.55 2.25 0.61 0.35 0.31
min 35 34 0.032 0 1.94 2.54 1.94 0.18 0 0
max 128 601 0.11 0.34 9.39 11.55 3.35 1.43 0.55 0.47
µ 54.97 96.97 0.06 0.07 3.13 6.07 2.25 0.56 0.20 0.28
σ 22.04 103.00 0.02 0.08 1.45 1.85 0.34 0.29 0.16 0.16
M 417 3588 0.041 0.304∗ 17.21 27.78 2.76 0.8 0.42∗ 0.33∗
∗ These values are calculated for the multiplex downgraded to a simple graph

Fig. 1. Node counts, edge counts and degree boxplots per EATN layer.

A. Layer description

Table I shows a number of statistics for all layers of the
EATN. The 37 layers are sorted by the increasing number
of nodes. The subsequent four rows report global statistics
over the layers, i.e., minimum, maximum, mean and standard
deviation. Finally, the last row starting with ’M’ corresponds
to the multiplex, which is a multigraph spanned on all edges
belonging to the 37 layers. Figure 1 shows node and edge
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Fig. 2. Boxplots with layer statistics displayed in Table I (left). Boxplots
with percentage of node-set overlap per layer in the EATN (right).

counts as well as boxplots with node degrees per layer.
Again, layers are sorted increasingly by the node-set size.
The boxplots in Fig. 2 consolidate values on the density, the
transitivity, the average shortest path and the average clustering
coefficient per layer presented in Table I. The right plot in
Fig. 2 also shows the node-set overlap of layers. For each
layer Li, we compute the overlap percentage of each remaining
layer Lj with layer Li as pij =

|VLi
∩VLj

|
|VLi
| · 100%, where VL

corresponds to the node set of layer L. One boxplot merges
pij-values, 1 ≤ j ≤ 37, i 6= j, for layer i. The ordering on
the x-axis is based on the median of the boxplots.

B. Hubs

Most of EATN layers have a simple hub-and-spoke struc-
ture, especially those representing smaller national airlines.
However, there are few layers, usually expanded by a commer-
cial airline, which follow the point-to-point strategy. The term
hub-and-spoke refers to a model of development of the airline
network consisting of a relatively small number of central
airports, i.e., the hubs, through which most of the flights are
routed. Spokes are the routes that planes take out of the hub
airport. Major airlines have multiple hubs. However, the bigger
an airline is in terms of the number of links, the less planar
is the structure of its network. It grows into a mixture of a
hub-and-spoke and point-to-point patterns [36]. A substantial
step in the replication of a network of a single airline is to
decide which structure and how strictly it should develop.

In the analysis of EATN layers, we seek a simple and
significant criterion for a node to be a hub. One approach
to identify candidates for hubs could be to find nodes of a
high degree centrality, or of a high betweenness centrality.
Given a layer as a simple graph GL = (VL, EL), VL being
the set of nodes and EL the set of edges, in addition to the
two above measures, we consider the s-metric defined in [37]
as sm(GL) =

∑
(u,v)∈EL

deg(u)deg(v), where deg(u) is the
degree of node u. The s-metric measures the extent to which a
graph has a hub-like core as it is maximized when high-degree
nodes are connected to other high-degree nodes. To break it
down on the node level, we define for each u ∈ VL

sm(u) =

∑
v∈N(u) deg(u)deg(v)

|EL|2
,

where N(u) is the set of neighbours of node u.
Generally, nodes achieving high values for any of the above

measures would be tagged as hubs. To figure out the exact
limit value, we proceed as follows. We iterate over the layers
and the rates 0.1, 0.2, . . . , 0.9, and we tag a node as a hub if
its corresponding measures value exceeds the rate. Moreover,

TABLE II
STATISTICS FOR A HUB CRITERION.

degree centr. betweenness centr. s-metric
rate (r) σ(dc, r) σ(bc, r) σ(sm, r)

0.1 65.69 5.22 35.28
0.2 5.36 1.14 2.28
0.3 0.44 0.78 0.14
0.4 0.47 1.03 0.58
0.5 0.83 1.31 0.97
0.6 1.19 1.58 1.31
0.7 1.69 1.61 1.61
0.8 2.19 1.94 2.14
0.9 2.36 2.36 2.39

we collect in Table II the standard deviation of normalized
degree centrality (dc), normalized betweenness centrality (bc),
and s-metric (sm),1 w.r.t. the number of hubs in the EATN
layers,

σ(m, r) =

∑
L(hL − hL(m, r))2

#layers− 1
,

where hL is the number of hubs in the EATN layer L and
hL(m, r) is the hub count resulting from the value of measure
m (i.e., dc, bc, sm) compared to the rate r.

As it can be noted from Table II, the rate 0.3 appears to be
the limit value for all statistics, i.e., the value associated with
the smallest standard deviation. Also, the minimum standard
deviation corresponds to the s-metric. This leads us to a
definition of hub, referred to in the remainder of this work.

Definition 2.1: A hub is a node having s-metric greater than
0.3. Consequently, a layer has a hub-and-spoke structure, if it
contains at least one hub.

In the upper plot of Fig. 3, we display hub numbers per layer
resulting from each statistic, and compare them with the EATN
reference. The ticks on the x-axis correspond to layers sorted
by the increasing number of hubs in the reference layers. On
the y-axis, for each layer, we plot the number of nodes for
which the values of the degree centrality (green triangles), the
betweenness centrality (blue squares), and the s-metric (black
diamonds) exceeded the limit value 0.3, and the reference hubs
count (red circles). Layers with the number of hubs equal to
zero are considered point-to-point structured.

Exploring the EATN layers, we also found out that the hub
count can be roughly linked with the ratio rL = |VL|

|EL| . This
relation is shown in the bottom plot of Fig. 3. Here, all 37
EATN layers are sorted increasingly by rL and the x-axis
is labeled by rL-values. On the y-axis, a dot matches the
number of hubs in the corresponding layer. As it can be noted,
the highest hub counts belong to layers with rL-value in the
range (0.4, 0.7) and the majority of layers with the ratio greater
than 0.8 contains only one hub. This dependency between hub
count and node-to-edge-count ratio is helpful to forecast how
many hubs will evolve on a layer with a given node and edge
counts. In fact, this is leveraged by Algorithm 2 to assign a
number of hubs to a layer. Only layers with rL value close
to 1, and usually those having exactly one hub, evolve a clear
hub-and-spoke structure. Most of the layers build a mixture
of the hub-and-spoke and point-to-point patterns and have the

1All considered measures range within [0,1].
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Fig. 3. Number of hubs per layer in the EATN: actual, according to the
degree and betweenness centrality, and s-metric value (top). Number of hubs
per layer in the EATN with respect to the ratio rL = |VL|/|EL| (bottom).

Fig. 4. The hub-subnetwork of the
EATN with the degree histograms and
uniform fit.

Fig. 5. A cumulative histogram of
the layer repetition count per node in
the EATN multiplex.

rL value in the range [0.5, 0.9]. Examples of the layouts are
shown in the top row of Fig. 9.

C. Multiplex description

The EATN multiplex network consists of 417 non-zero
degree nodes and 3, 588 edges; after discarding the edge
multiplicity, the number of edges is 2, 953. Further statistics
are shown in the last line of Table I. In this and the following
sections, unless otherwise specified, the probability distribu-
tion functions we will present are complementary cumulative.

We begin with the analysis of the subnetwork induced by
hubs, according to Def. 2.1. The hub-subnetwork has 54 nodes,
out of which only 11 are duplicates belonging exactly to two
layers. Counting edge multiplicities, the multigraph induced
by the 43 unique hubs has 851 edges, a density of 0.942 (and
516 edges, a density of 0.571 if discarding duplicate edges),
and a high transitivity of 0.733. Figure 4 shows the degree
histograms for both the simple (blue line) and the multigraph
(orange line), and their distribution fittings. According to the
Kolmogorov-Smirnov (KS) test, the degree distribution of the
multigraph as well as of the simple graph fit the uniform
distributions U(2.99, 72.00) and U(2.99, 35.38), respectively,
with the p-value greater than 0.5 in both cases.2

In the EATN, a small number of nodes (11) are distin-
guished as hubs in different layers, but many hubs repeat
in other layers (even as one-degree nodes). Therefore, to

2Small p-values (usually < 0.05) will indicate that the test rejected the
hypothesis that the original data could have been drawn from the fitted
distribution.

Fig. 6. Distribution fittings to layer
repetition counts per non-hubs in the
EATN multiplex.

Fig. 7. Node (frame) and edge (in-
set) counts of the EATN layers with
distribution fitting.

capture an essential indicator of the inter-layer structure of the
multiplex, we counted the number of layers every node appears
in. Figure 5 shows the cumulative histogram of the layer
repetition count values for all nodes in the EATN multiplex
(yellow line). These counts are broken down by hubs (red
line) and non-hubs (green line). We observe that most of the
non-hub nodes repeat in just a few layers as opposed to hubs
tending to have a high layer overlap. In fact, the non-hub
distribution has a tailed shape, that we fit to both power-
law and exponential probability distributions. The fitting to
the power-law probability density function,

PDFp(x, α, xm) =
α− 1

xm

(
x

xm

)α
, (1)

yields the parameters α = 2.039 and xm = 1 . When fitted to
the exponential probability density function,

PDFe(x, l, s) =
1

s
e(−

x−l
s ), (2)

we obtain s = 3.88 and l = 1.0. Corresponding plots are
shown in Fig. 6 (with log-scaled y-axis and non-cumulative
distribution plot, in the inset). With the p-value 0.424 returned
by the KS test, we find out a good fit of the power-law
distribution. The test applied for the exponential distribution
does not confirm the apparently good fit due to the big skip
caused by the large count of nodes appearing in exactly one
layer. This corresponds to a maximum positive deviation of the
sample cumulative distribution from the hypothesized curve
equal to D+ = 0.3871; nonetheless, the maximum negative
deviation is D− = 0.0488, with p-value 0.169.

A simple but meaningful indicator of the diversity of the
layers composing a multiplex is the shape of the distribution
of their node and edge counts. Cumulative histograms along
with fitted power-law and exponential distribution functions
are shown in Fig. 7. The outcomes of the fittings are as
follows. For node counts, we obtained PDFp(x, 4.231, 35) and
PDFe(x, 34.99, 19.75). For edge counts, the fitted probability
functions are PDFp(x, 2.87, 38) and PDFe(x, 33.99, 62.86).
According to the KS test, both power-law distributions can be
highly trusted with p-value close to 1 for both node and edge
counts. The exponential distributions deliver p-values 0.4326
and 0.4301, respectively.

As we shall describe next, the outcomes of the above
analysis of the EATN layers will have effect on the definition
of our proposed network generation model.
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Algorithm 1: ANGEL hub-and-spoke layer
Input: layer node count n, layer edge count m

(a) Assign the number of hubs to the layer
(b) Assign nodes to grid points and compute

the minimum spanning tree
(c) Contract the tree till hubs evolve
(d) Select nodes for bridges - linked to two hubs
(e) Add remaining edges

Output: A synthetic layer with n nodes and m edges

Algorithm 2: Assigning the number of hubs to a layer
Input: layer node count n, layer edge count m
rL = n

m
, nh = 1

if rL < 0.95 then
foreach 1 ≤ i ≤ b10(1− rL)c do

if rand(0, 1) < 1− rL then
nh = nh + 1

Output: nh, number of hubs
rand(0, 1) is a random number within the range (0, 1).

III. THE ANGEL MODEL

In this section, we establish a methodology to simulate
the discussed structure of networks of the EATN type. We
focus on the multilayer structure of the EATN to reproduce
its inner formation of the layers as well as its inter-layer
composition. Our approach is first to distribute the nodes of
the multiplex among the layers, enforcing their overlapping.
Then, each layer attaches edges separately but simultaneously
contributes the links to the whole multiplex due to nodes
shared with other layers. In Section III-A and III-B, we
propose algorithms to create a layer with a hub-and-spoke
and point-to-point formation, respectively. Consequently, in
Section III-C, we introduce a methodology to compose the
layers into a multiplex.

A. Generating a hub-and-spoke-structured layer

Given n nodes and m edges, our method for creating a hub-
and-spoke layer consists of the following major steps, which
are summarized in Algorithm 1.

(a) Intuitively, and as we previously observed in Fig. 3
(bottom plot), the more edges and the fewer nodes a layer
has the more hubs are needed. Algorithm 2 bases on this
observation. Layers with rL close to 1.0 obtain exactly one
hub. The lower the ratio, the higher probability that further
hubs will be assigned to the layer.

(b) Our generative model is designed to replicate a trans-
portation network. In networks of this type, hubs usually are
nodes with a central geographical location. To incorporate the
spatial aspect in our model, we randomly distribute nodes of a
layer on a rectangular grid of the size k×k with k = 3b

√
nc.

The grid points have discrete coordinates in the range [0, k].
Next, the minimum spanning tree, say T , is computed with
respect to the Euclidean distance between the nodes.

(c) The purpose of this step is to identify nodes in T to be
the hubs of the layer. For that, we iteratively reconnect low
degree nodes with nodes close to the spatial center of the tree.
This contraction of the tree is performed in three steps:

Algorithm 3: Contraction with respect to degree d
Input: a tree T = (VT , ET ), a degree value d
foreach u ∈ VT with deg(u) = d do

L = {s ∈ VT | (u, s) ∈ ET }, sort L by decreasing degree
v = L.pop(0)
foreach s ∈ L do

remove edge (u, s) from ET and append edge (v, s)

Output: T = (VT , ET )

Fig. 8. Contraction of a tree with respect to degree 2.

(c.1) Contract T w.r.t. degree 2 as outlined in Algorithm 3,
which works as follows: for every node u of degree d,
the highest degree neighbour, say v, is selected; all other
neighbours of u are disconnected from it and linked to v (cf.
Fig. 8).

(c.2) Discard all leaf-edges from T . Contract T to degree 2.
Add all previously discarded edges.

(c.3) Contract T w.r.t. degree d = 2, 3, . . . until as many
hubs are evolved as many assigned to the layer in step (a).
Note that, at this stage, we have a very sparse graph, and hence
Definition 2.1 cannot be applied to identify hubs. Therefore,
a node is tagged as a hub if all its three quantities (degree,
betweenness, and the s-metric) exceed the value 0.1. Once the
hubs are tagged, we make sure that all leaves are connected
to the closest hub.

(d) Bridges, i.e., nodes linked to two hubs, are built in this
step. The obvious candidates are nodes located relatively close
to both hubs. Therefore we create a list of all possible edges,
not yet in the tree, with one end being a hub. The list is sorted
increasingly by the distance. Next, we randomly set a number
m which amounts between 10 and 50% of the predetermined
layer edge count. The first m edges from the list are added to
the tree.

(e) Finally, to maintain the hub-and-spoke structure of the
layer, the remaining amount of edges is attached in such a
way that low degree nodes but leaves are preferably linked
with high degree nodes but hubs. If there are still leftover
edges, the preferential attachment method in Algorithm 4 is
performed.

B. Generating a point-to-point-structured layer

The routine to replicate a layer according to the point-to-
point strategy is outlined in Algorithm 5 and described next.

(a) We start with assigning nodes to points on a grid and
compute a minimum spanning tree (cf. Algorithm 1, step (b)).

(b) While adding further edges, we try to avoid too long
and too short distances. Therefore, we consider a list E of
all potential edges of the layer not yet in the tree and sort
it by lengths. Next, we sample random numbers with respect
to the normal probability distribution with µ and σ calculated



IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 6

Algorithm 4: Preferential attachment
Input: a graph G = (V,E), number of edges m to add
foreach k = 1 . . .m do

P =
{(

u, deg(u)∑
v∈V deg(v)

)
|u ∈ V

}
sample randomly nodes s, t ∈ V, s 6= t with respect to the

probability distribution P
while (s, t) ∈ E do

repeat the above sampling
add (s, t) to the set of edges E

Output: G = (V,E)

Algorithm 5: ANGEL point-to-point layer
Input: layer node count n, layer edge count m

(a) Assign nodes to grid points and compute a minimum
spanning tree T = (VT , ET )

(b) Sort E = {(u, v) |u, v ∈ VT , (u, v) /∈ ET } by edge len.,
select randomly m, 1 ≤ m ≤ m− |ET |,
pick up m edges with lengths close to the average.

(c) Add remaining edges using preferential attachment.
Output: A synthetic layer with n nodes and m edges

on the lengths of edges in E and select edges with lengths
close to these random values. The number of edges attached
in this manner is randomly chosen from the range (1,m−mT ),
where m is the predetermined edge-set size of the replicated
layer and mT is the edge count of the minimum spanning tree
calculated in step (a).

(c) The remaining edges are added according to a preferen-
tial attachment (cf. Algorithm 4).

Figure 9 presents four examples of layer replicas generated
according to Algorithms 1 and 5. In the first column to the
left examples of point-to-point-layers are shown, and hub-and-
spoke-layers in the remaining three. The ratio rL and the
number of hubs according to Def. 2.1 are displayed above
each layer.

C. Generating an ANGEL multiplex

The algorithms for layer creation we presented in the
previous section, are substantial steps in the methodology to
generate a whole multiplex. As outlined in Algorithm 6, the
procedure runs in four main steps. First, nodes (distributed on
a grid) are assigned to layers. Next, the hubs are distinguished
within the layers and connected across the layers. After that,
edges are supplemented to the layers. Finally, the multiplex
emerges as a multigraph on the union of the layers.

A crucial step in our methodology is to establish a subnet-
work based on all hubs within the multiplex, i. e. to connect
hubs from different layers. This has to be done before all edges
are added to the layers.

All input data for Algorithm 6 is introduced in Table III.
To account for the arbitrary size of the network as well as its
multilayer structure, we use a probability distribution on node
counts per layer, PnodeL, and edge counts per layer, PedgeL.
Furthermore, to control the node overlap across the layers
(Fig. 2), we apply a fitted distribution of the layer repetition
count per node, PlayerN .

Fig. 9. EATN layers (red, top) versus their ANGEL replicas (blue, bottom).
Node positions correspond to their geographical location.

TABLE III
NOTATION USED IN SECTION III-C

Notation Meaning
` number of layers, ` ∈ N
p number of layers with the point-to-point structure, p ≤ `

n, m n ∈ N, number of nodes, m ∈ N, number of edges
PlayerN the probability distribution of the layer repetition count per

node, used for the random selection of the number of layers
each node appears in

PnodeL the probability distribution of the node count per layer, used
for the random layer selection as nodes get assigned to layers

PedgeL the probability distribution of the edge count per layer, used
for the random edge-set size assignment to layers

Algorithm 6 works in detail as described next. Foremost,
a list of ` simple graphs is created and p of them is tagged
randomly to evolve the point-to-point structure. To incorporate
the spatial aspect of the mimicked multiplex, all n nodes of
the synthetic multiplex are randomly distributed on a grid in
the same manner as nodes of a single layer in step (b) of
Algorithm 1.

Nodes: A multiplex with n isolated nodes is initialized. To
each node u we assign its layer repetition count ru by sampling
a number in {1, 2, . . . , `} with probability weights PlayerN .
Next, each node u is added to ru different layers selected
randomly according to the probability distribution PnodeL.

Hubs: This step is performed only for layers of the hub-
and-spoke structure. For each of these layers Algorithm 1.(a)-
(c) is called. At this stage, hubs are identified and connected
to a clique within the layer. Next, hubs are connected across
the layers. According to Fig. 4 the node degrees of the hub-
subnetwork of the EATN are nearly uniformly distributed.
Thus we mimic this subnetwork by using the configuration
model with respect to a degree sequence sampled uniformly
between 1 and nH , where nH is the total hub count in the
multiplex. Self-loops are removed.

Edges: ` numbers are sampled randomly with respect to the
probability distribution PedgeL. Each number corresponds to
one layer’s edge-set size. Large values are assigned to layers
having a large node-set size. If a layer is tagged as point-to-
point, we call Algorithm 5, and Algorithm 1.(d)-(e) otherwise.

Multiplex: The multiplex emerges as a multigraph obtained
as the union of all nodes, discounting repetition, and all the
layers’ edges, allowing the repetition from different layers.
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Algorithm 6: The ANGEL multiplex creation method
Input: `, n, m, p, PlayerN , PnodeL, PedgeL

Initialize:
P - a list of p randomly selected different numbers in the range
1 . . . ` indicating point-to-point layers

L1, . . . , L` - empty graphs representing layers
H - an empty list to store hubs
map each node 1, . . . , n to a unique, randomly selected point

on the grid 3b
√
nc × 3b

√
nc

Nodes:
foreach u = 1 to n do

sample layer repetition count, ru, applying PlayerN

with respect to weights PnodeL select randomly ru
different layers from L1, . . . , L` to place u in

Hubs:
foreach i = 1 to `, i /∈ P do

call Algorithm 1.(a)-(c)
make a clique on all hubs in Li

add all hubs of layer Li to H

create a multigraph on nodes in H using configuration model
Edges:
sample ` numbers w.r.t. the probability distribution PedgeL

each value indicates a layer edge count
assign high values to layers with high node counts
foreach i = 1 to ` do

if i ∈ P call Algorithm 5 else call Algorithm 1.(d)-(e) end
Multiplex:
create a multigraph on the layers L1, . . . , L`

Output: The layers L1, . . . , L` and the multiplex

IV. A GENERALIZATION OF THE ANGEL MODEL

ANGEL is designed to mimic an air transportation network.
Nonetheless, a generalization of Algorithm 6 can in principle
be used to generate arbitrary multilayer networks. The input
of the model allows not only a free selection of the network’s
global values like node, edge and layer count. With arbitrarily
chosen probabilities PnodeL and PedgeL, one can control
the node and edge counts of the layers. The same applies
to the weights PlayerN , which are meant to stimulate the
overlap among the layers. The creation methods of single
layers, Algorithm 1 and 5, are called as plug-ins within
Algorithm 6. This also enables other layer creation methods
(e.g., the preferential attachment method); the same applies
to the method for building the hub-network, which can be
even disregarded. These generalizations lead to the Multiplex
Generation Emphasizing Layers (MGEL) model, summarized
in Algorithm 7.

V. ANALYSIS OF THE ANGEL MODEL

We organize the analysis of ANGEL into two main parts:
layers and the multiplex.

A. ANGEL layers

To validate the layer replication methods we create 100
replicas of each of the 37 EATN layers. The number of
nodes and edges of the reference layer is taken as the input
for the 100 replicas. The decision about which algorithm to
call—a hub-and-spoke or point-to point layer—is made as
follows. In Section II-B we pointed out that the s-metric
is a helpful measure to identify graphs with a hubs-spoke

Algorithm 7: The MGEL algorithm
Input: `, n, m, PlayerN , PnodeL, PedgeL

Initialize:
L1, . . . , L` - list of empty graphs representing layers
M - multiplex with n isolated nodes
Assign nodes to layers:
foreach u in M do

sample layer repetition count, ru, from the PlayerN

use PnodeL to select ru different layers from L1, . . . , L` to
place u in

Assign edge-set sizes to layers:
use PedgeL to assign number of edges to L1, . . . , L`

Create layers:
foreach i = 1 to ` do

call a layer creation procedure for Li

add all edges from Li to M

Output: The layers L1, . . . , L` and the multiplex M

Fig. 10. Boxplots of s-metric values (top left), hub counts per layer (bottom
left), and normalized counts of three representative degree groups (right) of
100 ANGEL layer-replicas versus EATN references.

structure. The higher the value, the more apparent the hub-
and-spoke formation. Based on experimental expertise, if the
reference layer has the normalized s-metric3 at least 0.5 we
call Algorithm 1 otherwise Algorithm 5. The boxplots in the
left top of Fig. 10 consolidate the s-metric values of the 100
copies. EATN values are connected by the solid red line.
Layers are depicted on the x-axis and ordered by the median of
the boxplots. The three first layers (with the lowest s-metric
value) are of the type point-to-point. As expected, hub-and-
spoke structured layers exhibit high values of the s-metric even
if they are not always coherent with the EATN reference. The
standard deviation values—computed for each boxplot with
respect to the corresponding EATN value—vary between 0
and 0.37 and have an average of 0.07. The bottom left plot in
Fig. 10 shows the performance of the prediction method, how
many hubs should span a layer, formulated in Algorithm 2.
On the y-axis we capture the hub counts in the layers, and
layers are here sorted according to the increasing number of
hub counts in the EATN references. The standard deviation
varies between 0 and 13.89, with average of 2.35. As one can
observe, the volatility of predicted hub numbers increases if
there is more than one hub in the references.

The right plot in Fig. 10 shows a normalized count of
three representative node degree groups. The y-values re-
flect the normalized count of vertices of degree less than t,
t ∈ {2, 4, 10}. The actual counts are divided by the number

3The s-metric is normalized by dividing it by squared number of edges in
the considered graph.
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Fig. 11. Boxplots with clustering coefficients (top left) and average shortest
path lengths (bottom left) of 100 ANGEL layer replicas versus EATN
references. The cumulative degree histograms of 100 ANGEL multiplex
replicas versus the EATN reference, with logarithmic scale on y-axis in the
inset (right).

of vertices in the particular layer. Each boxplot per layer
merges the values of the 100 replicas. The EATN values are
represented by the solid line. Layers are depicted on the x-axis
and are ordered by the median of the green group. Except for
a few outliers, most layers evolve in a similar manner as their
original counterparts with respect to the degree distribution.

In the left chart of Fig. 11, we display boxplots with
the transitivity (top) and the average shortest path lengths
(bottom) of the 100 samples along with the respective values
of EATN layers (connected as usual with a red line). In both
charts, the layers (x-axis) are ordered by the median of the
boxplots. The transitivity values close to zero correspond to the
star-shaped layers, which our method perfectly imitates. The
maximal standard deviation over all boxplots is 0.14, which
hints that ANGEL may reproduce the typically low-clustered
structures of the airline subnetworks. Note that the density of
EATN layers (grey line in the upper plot) is perfectly imitated
by all ANGEL replicas. Also, the synthetic layers tend to
have shorter path lengths than the originals. Nevertheless, the
standard deviation is 0.23 on average, which confirms short
path lengths typical for hub-and-spoke structured graphs.

B. ANGEL multiplex

In this section we compare the ANGEL multiplex generated
using Algorithm 6 with the EATN. For our tests, we sampled
100 synthetic multilayer networks, and set ` = 37, p = 4,
n = 417, m = 3588 as extracted from the EATN. The analysis
of the EATN urged to apply PDFe(x, 1, 3.88) for PlayerN
and PDFe(x, 40, 20), and PDFe(x, 40, 60) for PnodeL and
PedgeL, respectively (cf. Figs. 6 and 7).

In the right plot of Fig. 11, we compare the degree distribu-
tions of the multiplex networks. The reference EATN is repre-
sented by a red line, whereas the thick blue line corresponds
to the average over all the 100 degree distribution histograms,
plotted in light blue.4 The inset shows the curves with a
logarithmic scale on y-axis. The degrees of the reference vary
between 1 and 156. The maximum degree over all replicas is
283, though the average over the highest degree stays close
to 165. As one can observe, all replica histograms along with
their average follow the EATN shape.

4The average curve is calculated as follows: The list of values per each
replica is sorted increasingly. Values of all replicas are added per position
and the per-position average is taken. This procedure also applies through
other statistics shown in this section.

Fig. 12. Statistics of 100 ANGEL multiplex replicas versus the EATN.

TABLE IV
STATISTICS ON THE ANGEL MULTIPLEX REPLICAS.

ANGEL
min max EATN

max degree 103 283 156
min av. short. path (per node) 1.5566 1.8746 1.8216
max av. short. path (per node) 3.1108 4.4771 4.8602
min node centrality (per node) 0.2228 0.3206 0.2052
max node centrality (per node) 0.5321 0.6408 0.5476
density multigraph 0.0371 0.0422 0.0417
density simple graph 0.0327 0.0396 0.0343
transitivity 0.1734 0.2287 0.3035
average shortest path 2.4189 2.5865 2.7483
betweenness centrality 0.0034 0.0039 0.0042

In Fig. 12, we present a selection of statistics for 100
ANGEL multiplex replica. From the left, per multiplex the
average shortest path length per node is calculated and the
values sorted increasingly are connected by a line. Next, the
average node centrality is analogously calculated. According
to the plots, ANGEL multiplex networks have on average
shorter paths but higher node centrality. As one can read from
the remaining plots in Fig. 12, the density of the multiplex—
with (dens. (m)) or without (dens. (s)) multiple edges—is re-
produced by ANGEL. The remaining statistics on transitivity,
average shortest path, and betweenness centrality in ANGEL
multiplexes stay generally below their EATN counterparts,
though the difference is not striking. For a better overview,
in Table IV we list the minimum and maximum values over
all 100 multiplex replicas per statistic.

The similarity of the node and edge counts in ANGEL
replicas and in the EATN (left plot in Fig. 13) is not surprising,
since it results from application of the fitted probability
distributions to sample these sizes in the ANGEL model. The
same applies for the layer repetition count per node (right
plot in Fig. 13). However, in the ANGEL multiplex there are
nodes present in all layers, and these are usually hubs (as
consequently identified by the application of Def. 2.1). In the
EATN, the maximum layer-repetition count amounts to 27.
These discrepancies are due to the fact that the assignment of
the nodes to hubs is the least controlled in the model. As for
that matter, the performance of this statistic is appealing.

Statistics shown in Fig. 14 consider the subnetwork induced
by hubs. The range of degrees in the ANGEL model exceeds
the EATN’s range on both sides. There are isolated nodes in
the ANGEL, which is not the case in the EATN. Also, ANGEL
hubs tend to have higher degrees, which is coupled with the
higher layer repetition counts observed in the previous statistic.
Analyzing the density and the transitivity of the subnetwork,
we observe a very good approximation of the ANGEL values
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Fig. 13. Layer node and edge count distributions (left) and layer repetition
counts per node (right) of 100 ANGEL multiplex replicas versus the EATN.

Fig. 14. Statistics on the hub subnetwork on 100 ANGEL multiplex-replicas
versus the EATN reference. From the left: degree distribution and density
with and without multiple edges, transitivity, unique and repeated hub counts
in the multiplex.

towards the EATN. As the last boxplots to the right show,
we obtain a very good coherence in the hub counts. This
is an implicit outcome of Algorithm 2, which runs at the
beginning of the layer creation. During the layer formation
process, further nodes may evolve to hubs, or nodes assigned
to be hubs may not qualify to be a hub in the end.

C. Mesoscale structure analysis

In a further stage of evaluation, we share some insights into
the mesoscale structure of the ANGEL layers and multiplex
compared to the reference EATN. First, we investigated struc-
tural similarity aspects. Figure 15 shows the cosine similarity
per node-pair (i.e., the number of common neighbours of the
two nodes divided by the geometric mean of the two nodes’
degrees) of a randomly selected ANGEL-multiplex replica
(lower-left) versus the EATN (upper-right). Nodes, on x- and
y-axis, are sorted by the degree. According to the plot, in
both cases, the fraction of common neighbours increases with
the growing degree of the nodes in both cases - the darkest
area can be observed in the lower left corner. Apparently,
hubs share their neighbours. However, ANGEL’s transition
is smoother in comparison to the EATN, which features a
partially discrete texture.

Figure 16 summarizes a comparison between the k-core
decomposition obtained on the EATN compared to ANGEL
layers and multiplex. We generated 100 ANGEL-replicas per
layer and corresponding multiplexes, then we calculated the
coreness of each node in a layer-replica and in the multiplex,
and finally evaluated the correlation with the corresponding
node’s coreness in the EATN. Results are displayed in the
boxplots of Fig. 16 (boxplots corresponding to the layers are
sorted by the median value.) Recall that the coreness of a
node is the largest value k of a k-core containing that node,
where a k-core is a maximal subgraph that contains nodes of
degree at least k. It is noticeable that most of the ANGEL

Fig. 15. Cosine similarity per node
pair in an ANGEL multiplex (lower-
left) in comparison to the EATN
(upper-right).

Fig. 16. Boxplots of coreness corre-
lation over 100 ANGEL replicas per
layer, and the ANGEL multiplex (M),
versus the EATN.

layers’ boxplots correspond to moderately or highly positive
correlation with EATN references. In fact, by averaging over
all layers and multiplex, the mean of correlation versus EATN
is 0.73 (with standard deviation 0.11).

Due to space limitations of this article, we shall not delve
into any deeper into this mesoscale analysis. Nonetheless,
we would like to mention main qualitative findings in terms
of community structures that were detected in the EATN
layers and the ANGEL counterparts. By considering commu-
nities identified by either betweenness-based or modularity-
optimization-based methods as case in point, we found out
that the layer graphs of EATN against the ANGEL ones often
have similar community-structures, with comparable number
of communities especially in the case of star-shaped (i.e., hub-
and-spoke) structures. Details can be found in Sect. II of the
Supplemental Material.

VI. CONCLUSIONS AND FURTHER DIRECTIONS

In this work, we presented ANGEL, a novel approach to
generate synthetic multilayer networks. We focused on creat-
ing a multiplex having majority of the layers with a hub-and-
spoke structure to mimic a benchmark airline traffic network,
the EATN. We considered this network from the local point of
view, broken down by its layers, and from the global point of
view as a layer combination within a multiplex. The ANGEL
model convinces with its variety of aspects taken into account
and the deep concern for the structure layers composing the
multiplex. Also, the ANGEL model refrains from known so
far preferential attachment approaches and allows to design
a framework for an arbitrary random multiplex network. We
nonetheless observed that it is extremely difficult to fully
simulate the complexity of a multilayer network, especially
the inner- and inter-layer formation. Despite a wide portfolio
of statistical analysis we performed in this work, there is still
need for methods capturing simultaneously the global and
local structure of multilayer networks.

Our ANGEL model paves the way for the development
of several applications. Some of these are of major interest
to airline companies for pursuing a variety of goals, such
as organizing the airline routes in a cost-efficient way, sim-
ulating and validating hub-and-spoke, point-to-point or mixed
strategies, and investigating their system robustness against
various kinds of disruptions. A generative model like ours can



IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 10

also aid to address “indirect” applications. For example, if we
consider the millions of people traveling by flight every day, air
transportation networks play a key role in the spread of some
infections, hence ANGEL would be valuable to model and
simulate the diffusion of epidemics through air flights. Another
example of alternative application related to the massive use of
air transports refers to support for counter-terrorism: modeling
a synthetic network, e.g., to simulate potential or preferential
routes taken by selected targets would be helpful to unveil
important behavioral patterns of those people.
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