Appendix 2: Exponential and Logarithmic Functions

1. Exponential Functions: $f(x)=a^{x}$ where $a \in \mathbb{R}^{+}$is the general form.
2. examples of exponential functions: $f(x)=2^{x}$ or $g(x)=2^{-x}=\left(\frac{1}{2}\right)^{x}$
3. laws:

- $a^{-x}=\frac{1}{a^{x}}=\left(\frac{1}{a}\right)^{x}$
- $b^{x+y}=b^{x} b^{y}$
- $\left(b^{x}\right)^{y}=b^{x y}$

4. Logarithmic Functions: $f(x)=\log _{a} x$, where $a>1$ (logarithm of x base a).
5. common bases: $2,10, e$, for this book $\log x=\log _{2} x$ (other books will imply $\log x=$ $\left.\log _{10} x\right)$. Standard notation: $\ln x=\log _{e} x$
6. laws:
(a) $\log _{a} a=1$
(b) $\log _{a} 1=0$
(c) $a^{\log _{a} x}=x$
(d) $\log _{a}\left(a^{x}\right)=x \log _{a} a=x$
(e) $\log _{a}(x y)=\log _{a} x+\log _{a} y$ for $a>1, x, y \in \mathbb{R}^{+}$
(f) $\log _{a}\left(x^{y}\right)=y \log _{a} x$ for $a>1, x \in \mathbb{R}^{+}$
(g) $\log _{a} x=\frac{\log _{b} x}{\log _{b} a}$ for $a>1, b>1, x \in \mathbb{R}^{+}$
7. Graphs of the exponential and logarithmic functions:

Figure 1: Examples of (a) General plots of log versus exponential functions for $a>1$, (b) exponential functions for $a>1$ and $a<1$, and (c) logarithmic functions for $a>1$ and $a<1$

