CH 1: Functions as models

1.1 Four ways to represent a function

This section introduces the notion of a function.

1. recall that $|a|= \begin{cases}a & a \geq 0 \\ -a & a<0\end{cases}$
2. a function is a rule that assigns to each element x of a set D a unique element, namely $f(x)$ in some set E.
3. the set D is called domain, and the set E is called the range (it is possible for $\mathrm{D}=\mathrm{E}$)
4. the variable x is the independent variable, and the value $f(x)$ is the dependent variable
5. a function can be given or visualized as:
(a) verbally by a description of words
(b) numerically by a table of values for the independent and dependent variables
(c) a visually by a graph given by the ordered pairs $\{(x, f(x)): x \in D\}$ or an arrow diagram connecting the independent variables x to their images $f(x)$
(d) a algebraically by an explicit formula together with a domain and codomain
6. in determining the domain of a function, one should pay attention to:
(a) square roots: the quantity under the square root has to be ≥ 0
(b) fractions: the denominator must be 0 (including $\sin x$ and some other trig functions)
(c) logarithms: the quantity that you must take the logarithm of has to be >0
(d) other particular restrictions might apply but the above are the most common ones
7. in determining the range of a function: consider the lower and the upper values the function can take as you test different values of input
8. testing if a formula or graph represents a function: Vertical line test: any vertical line should intersect the graph at most one time.
9. a function is called increasing on an interval [a,b] if $x<y \rightarrow f(x)<f(y)$, for all $x, y \in[a, b]$
10. a function is called decreasing on an interval $[\mathrm{a}, \mathrm{b}]$ if $x<y \rightarrow f(x)>f(y)$, for all $x, y \in[a, b]$
11. a function is called constant on an interval $[\mathrm{a}, \mathrm{b}]$ if $\mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{y})$, for all $x, y \in[a, b]$
12. some functions can be increasing on part of their domain, and decreasing on other parts, and constant on other parts
