CH 1: Functions as models

1.3 New functions from old functions

This section presents transformations of functions.

- 1. VERTICAL AND HORIZONTAL SHIFTS:
 - (a) $y = f(x) + c \implies$ to get the graph of y shift the graph of f(x) up c units
 - (b) $y = f(x) c \Longrightarrow$ to get the graph of y shift the graph of f(x) down c units
 - (c) $y = f(x + c) \Longrightarrow$ to get the graph of y shift the graph of f(x) left c units
 - (d) $y = f(x c) \Longrightarrow$ to get the graph of y shift the graph of f(x) right c units
- 2. VERTICAL AND HORIZONTAL STRETCHES AND REFLECTIONS:
 - (a) $y = cf(x) \Longrightarrow$ to get the graph of y stretch the graph of f(x) vertically by a factor of c
 - (b) $y = \frac{f(x)}{c} \implies$ to get the graph of y shrink the graph of f(x) vertically by a factor of c
 - (c) $y = f(cx) \Longrightarrow$ to get the graph of y shrink the graph of f(x) horizontally by a factor of c
 - (d) $y = f(\frac{x}{c}) \Longrightarrow$ to get the graph of y stretch the graph of f(x) horizontally by a factor of c
 - (e) $y = -f(x) \Longrightarrow$ to get the graph of y reflect the graph of f(x) about the x-axis
 - (f) $y = f(-x) \Longrightarrow$ to get the graph of y reflect the graph of f(x) about the y-axis
- 3. addition, subtraction, multiplication and division (with nonzero denominator) of functions is done just by performing the same operation on the formulas of the functions. Also, addition and multiplication is commutative.
- 4. however, composition is different: $(f \circ g)(x) = f(g(x))$. Pay attention to the formulas, since first you have to apply g(x), which is the second function, and then f(x).