CH 1: Functions as models

1.5 Inverse Functions and Logarithms

This section presents the inverse functions.

- 1. a function is one-to-one if it passes the horizontal line test: no horizontal line intersects the graph more than once (i.e. does f(a) = f(b) imply a = b).
- 2. if a function f(x) = y is one-to-one with domain A and range B, then the inverse function on B exists and its formula is given by $f^{-1}(y) = x$. NOTE: $f^{-1}(x) \neq \frac{1}{f(x)}$, but rather it is the function that will undo whatever f did.
- 3. the graph of f^{-1} is obtained from the graph of f by reflecting the graph of f with the line y = x
- 4. properties of logs: $log_a x = y \iff a^y = x$, for all positive constants a

(a)
$$log_a(xy) = \log_a x + \log_a y$$

(b)
$$log_a(\frac{x}{y}) = \log_a x - \log_a y$$

- (c) $\log_a x^r = \log_a(x^r) = \log_a(x)^r = r \cdot \log_a x$
- (d) $\ln x = y \iff e^y = x$
- (e) $\ln e = 1$
- (f) $\ln e^x = x$ and generally $\log_a a^x = x$
- (g) $e^{\ln x} = x$ and generally $a^{\log_a x} = x$
- (h) change of base formula: $\log_a x = \frac{\ln x}{\ln a}$
- (i) general change of base formula: $\log_a x = \frac{\log_b x}{\log_b a}$