CH 1: Functions as models

1.5 Inverse Functions and Logarithms

This section presents the inverse functions.

1. a function is one-to-one if it passes the horizontal line test: no horizontal line intersects the graph more than once (i.e. does $f(a)=f(b)$ imply $a=b$).
2. if a function $f(x)=y$ is one-to-one with domain A and range B, then the inverse function on B exists and its formula is given by $f^{-1}(y)=x$. NOTE: $f^{-1}(x) \neq \frac{1}{f(x)}$, but rather it is the function that will undo whatever f did.
3. the graph of f^{-1} is obtained from the graph of f by reflecting the graph of f with the line $y=x$
4. properties of logs: $\log _{a} x=y \Longleftrightarrow a^{y}=x$, for all positive constants a
(a) $\log _{a}(x y)=\log _{a} x+\log _{a} y$
(b) $\log _{a}\left(\frac{x}{y}\right)=\log _{a} x-\log _{a} y$
(c) $\log _{a} x^{r}=\log _{a}\left(x^{r}\right)=\log _{a}(x)^{r}=r \cdot \log _{a} x$
(d) $\ln x=y \Longleftrightarrow e^{y}=x$
(e) $\ln e=1$
(f) $\ln e^{x}=x$ and generally $\log _{a} a^{x}=x$
(g) $e^{\ln x}=x$ and generally $a^{\log _{a} x}=x$
(h) change of base formula: $\log _{a} x=\frac{\ln x}{\ln a}$
(i) general change of base formula: $\log _{a} x=\frac{\log _{b} x}{\log _{b} a}$
