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Abstract. This paper presents an accurate, scalable, time-dependent synthetic
network model for the World Trade Web (WTW), whose nodes are the different
countries that traded from 1996-2020. Using only an initial distribution of coun-
tries’ global Gross Domestic Product (GDP) as an input, our synthetic network
model initializes weighted undirected edges corresponding to total trade between
two countries using the presence of a hidden fitness variable dependent on GDP.
The synthetic model simulates the creation and deletion of new and existing trade
relationships aligned with real-world data. Our results show that this simulated
network continues to faithfully approximate the data from WTW about 20 years
after creation within a reasonable degree of accuracy.

1 Introduction and Motivation

Massive global trade disruptions have persisted since the beginning of the COVID-
19 pandemic. Impediments to everyday life have been commonplace, and unforeseen
shortages in goods have stressed traditional supply chains. Accurate, scalable, and inter-
pretable models are essential for mitigating future disruptions to global supply chains.
An accurate approximation of real data through synthetic networks could provide ex-
traordinary results in the form of data for simulations, analysis of correlations between
factors, or predictive models. So long as we capture the underlying features of our real-
world data, synthetic networks are computationally cheap to produce, easily scalable
and may reduce bias when constructed to mimic desired properties of the real data.

Thus, in this research we develop a synthetic network generator that closely approx-
imates the real-world World Trade Web (WTW) using gross domestic product (GDP)
as an input. We will then create sample networks and compare our time-series synthetic
model against the WTW using key network metrics.

In the future, we envision our model being subject to a series of different attacks or
natural changes in attempts to simulate real-world disruptions, including both regional
and global events. If this synthetic network model reacts similarly to real-world trade
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disruptions, a synthetic network model generator could be used in the future to plan for
and mitigate disruptions in the WTW.

We use UN data [3] to create a weighted, directed temporal network [9], where each
time slice of the network represents a year’s worth of imports and exports in billions of
US dollars for 190 countries. This temporal network represents world trade data from
1996 to 2020. All traded goods are considered and valued in 2022 US dollars. We also
acquired world GDP data from the same timeframe from the World Bank [13].

2 Related Work

Interactions in many technological, biological, and social fields have been modeled as
complex networks [11]. Econometrics is an especially interesting field where networks
can provide additional explanatory power for both individual behavior and aggregate
outcomes [4]. Of specific interest are the properties of individual nodes within a net-
work that affect the probability of forming additional connections [1]. While the tra-
ditional “rich get richer" approach from the Barabási-Albert synthetic network model
works well for network growth, we seek improved modeling for networks with specific
interactions, such as the WTW.

Connecting two vertices in a relatively scale-free environment when the bidirec-
tional edge creates a mutual benefit is a standard interaction model [2]. In this model,
each node from the N node choices is assigned some fitness parameter, taken from a
distribution ρ(x). That is, for every pair of vertices (i, j), an edge is drawn with prob-
ability f (xi,x j). If f is constant for all nodes pairs, this will produce a standard Erdős-
Rényi Model, but a more dynamic probability function will produce a more scale-free
model [5].

These fitness-based models have been successfully used to model the World Trade
Web in both directed and undirected network models using unweighted edges [8, 6].
That is, we create a network whose nodes are the countries in a given data set, say
N countries, and edges are added by using hidden fitness variable xi proportional to
ith country’s GDP: the probability that an edge between countries is added i and j
(1 ≤ i ̸= j ≤ N) modeled as

PL[xi,x j] =
α0xix j

1+β0xix j
, (1)

where α0 and β0 are free parameters of the model input [6]. From this probability, we
can compute the expected number of links, Lexp as

Lexp = ∑
i̸= j

PL[xi,x j]. (2)

This metric is used for comparison between real and synthetic results in Section 4 [8].
Due to the nature of the WTW, it is not necessary to expand a model to the directed

case. After the collapse of the USSR, the number of countries has only increased slowly,
while the number of trade relationships has increased significantly faster, visible as
the WTW network becomes denser and denser. If we were to analyze the WTW in its
directed form, we would see mutually directed edges between countries becoming more
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and more common as time goes on. Eventually, if node i was connected to node j in the
directed network, node j would be connected to node i with a high probability. Thus,
it becomes feasible to view this directed network as an undirected network, with a low
probability p that each individual bidirectional edge be replaced with a directional edge
in an arbitrary direction [7]. While there is some loss of information in reduction to a
unidirectional network, important trade values can be recovered [8].

In order to maintain a consistent model across years, our network must be a temporal
network in which each time slice represents each year of the data set. Many temporal
networks have additional constraints, but since the WTW is mainly an industrial and
infrastructural network, most dynamic concepts such as latency and efficiencies may
probably be safely ignored [9].

3 Methodology

Our methodology for creating time-varying, weighted synthetic WTW networks is based
on existing methods for generating static instances of unweighted synthetic WTW net-
works. Previous research identified that the existence of trade relationships between
countries is strongly dependent on the relative sizes of the countries’ GDPs [6, 8]). This
insight was used to develop a method for synthetic WTW generation that takes in coun-
try GDP data as an input, and provides an unweighted, undirected network as an output.
The resulting unweighted, undirected network possesses a degree distribution approxi-
mating the real-world WTW when the corresponding real-world GDP data is provided
as input [6, 8]). Our work extends this method through: (1) random generation of ap-
propriate edge weights representing total annual trade between each connected country
pair and (2) implementation of a time-based evolution to the synthetic WTW network in
which edges with large trade weights are preferentially maintained, edges with smaller
trade weights may disappear, and new edges may be created. We incorporate these ad-
ditional phenomena into our model to provide coherence between each year’s model
output, which better matches real-world data. While these phenomena may be ascrib-
able to various complex economic or geopolitical mechanisms (e.g., “Globalization”),
the development of our model sets aside such underlying mechanisms in favor of heuris-
tically determined factors based on the trade data itself.

The following is a high-level summary of our iterative model. First, we use pro-
vided GDP data to create an initial random network based on the methodology of [6].
Then, we assign weights to each edge in the initial network using a heuristic distribu-
tion based on each country’s GDP. This step completes the initialization of our WTW
synthetic network as the first year’s network output. Each subsequent year’s output is
generated from the previous year’s output by (1) randomly adding more weighted edges
where none currently exist (as a function of the GDP of the two potential countries to be
connected), (2) deleting a random portion of existing trade edges according to a heuristi-
cally determined distribution, and (3) adjusting trade values for maintained edges based
on changes in the associated countries’ GDPs. The details of the model are provided in
the subsections below.
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3.1 Data Acquisition and Cleaning

We obtained our reference WTW data set from the United Nations (UN) Comtrade
Database from 1996 through 2020 [3]. We formed a temporal, undirected network from
this data, with each year as a time-step. A country’s interaction with another country in
a given year was modeled as an edge in that time-step, with an edge weight of the total
dollar amount of trade in both directions.

Some data cleaning was necessary. Several countries had no trade for specific years,
indicating either years in which that country reported nothing to the UN or errors in UN
data compilation. To avoid issues in our data analysis that such errors would bring forth,
we removed all countries whose trade disappeared for at least one year from the data
set. Combined, these countries amounted to a small proportion of our data set, and thus
their removal is unlikely to affect the underlying traits of the data.

We also gathered GDP data from the World Bank website [13]. Like the UN trade
data, GDP data was not always consistent, with several countries lacking GDP data in
certain years. These countries with inconsistent GDP data were likewise removed from
our analysis. In total, there were 162 countries that had consistent GDP and trade data
for the years 1996 through 2020. It is from this data set that we determined the global
parameters for our time-varying synthetic WTW model.

3.2 Synthetic Network: Initialization

We initialize the synthetic WTW model using the method of [6]: taking wi (i= 1, . . . ,N),
as the GDP of the i-th country in the initial year, we first normalize each country’s GDP
by the mean GDP to obtain each country’s so-called “fitness score” xi as

xi ≡
wi

∑
N
i=1 wi/N

. (3)

Next, we consider adding edges by looking at each pair of countries. We randomly
generate undirected, unweighted edges between the pair, where the probability of an
edge existing between each pair is computed via Eq. 1 [6].

To create realistic weights for these generated edges, we use a heuristic from the
distribution of relative edge weights in the cleaned 1996-2020 trade data. From this data,
we found that the distribution of the fraction of the smaller of the two country’s GDPs
very closely follows a reversed log-gamma distribution, as can be seen in Figure 1.

Thus, we generate random edge weights, ei j, according to the following formula:

ei j = 10−F ·min(wi,w j), (4)

where F ∼Γ (6.5571,0.5794). This method of generating random edge weights has the
benefit of always being a positive fraction of the smaller of the two countries GDP’s, and
avoids unrealistic scenarios where one country’s trade is several orders of magnitude
larger than its nominal GDP.

The creation of network edges and associated weights in the initial year completes
the initialization step of the model. The weighted adjacency matrix that is derived from
this network is the model’s output for the initial year.
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Fig. 1: Reversed distribution of relative trade edge weights in 1996-2020 data, overlaid
with fitted Gamma distribution. Analysis and figure creation performed in MATLAB.

3.3 Synthetic Network Growth: Subsequent Years

We generate each subsequent year in the model’s output from the previous year’s out-
put along with updated GDP data for each country. In a single-pass through the current
adjacency matrix, we check the trade relationship status for each pair of countries, with
action then taken dependent on this status as follows. If the two countries do not cur-
rently have a trade relationship, then an edge is created between them with probability:

PL[xi,x j] =
αxix j

1+βxix j
, (5)

where xi, x j, and PL have the meaning of the initialization step’s variables, albeit with
current year GDP values. The free parameters α and β are allowed to differ from the
initialization parameters α0 and β0 as discussed in Section 4. Weights are likewise as-
signed to any newly created edges using Eq. 4 with the current year’s GDP values.

If a trade relationship (i.e. weighted edge) already exists for the country pair under
inspection, the edge is subjected to random deletion. The probability of edge deletion,
PD, is a function of the current edge weight and the two countries’ respective GDPs:

y ≡ log10(
ei j

wi +w j
), (6)

PD[xi,x j] =

{
10(ay2+by+c), if y ≥ 10−10

0.36, otherwise.
(7)

We heuristically determine the parameters a =−0.0483, b =−0.961, c =−5.223,
and the general shape of Eq. 7 from the 1996-2020 trade data. First, we compute over-
lapping histograms of the different years showing the count of trade relationships that
are maintained versus trade relationships which are terminated in a year-over-year fash-
ion, stratified by the value of y from Eq. 6. We then plot the ratio of bin counts as a
function of y, and determine that these values follow a roughly quadratic curve in the
log-space of these ratios.
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Fitting a curve to the logarithm of the 10th through 30th bins yields the heuristic
for y > 10−10 in Eq. 7, summarized graphically in Figure 2. Note that only the 10th

through 30th bins were used since the other bins had too few instances of trade con-
tinuing or stopping for the ratio to be statistically meaningful. These 10th through 30th

bins roughly correspond with the range of orange bins which are visible in the top por-
tion of Figure 2. For values of y < 10−10, we simply set the the probability equal to
the maximum of the fitted curve, which is approximately 0.36 in the second plot of
Figure 2.

Fig. 2: Left: Histogram of previous year’s relative trade value when trade continued
and when trade stopped. Middle: Fraction of edges lost taken by computing ratio of
histogram bin counts from left image. Right: Log-space of fraction of edges lost for
the 10th through 30th bins in the histogram at left, along with fitted quadratic curve.
Figures and quadratic fit were generated using MATLAB.

If a trade relationship already exists for the country pair under inspection, and it is
not identified for deletion, the weight is slightly adjusted to account for year-over-year
changes in the GDPs of the associated countries. We define the relative change in GDP
between countries i and j, ri j, as:

ri j =
(min(wi(y),w j(y))−min(wi(y−1),w j(y−1))

min(wi(y−1),w j(y−1))
, (8)

where wi(y) is the GDP of country i in the current year y, and wi(y−1) is the GDP of
country i in the previous year. If ri j > 5%, then the current edge weight, ei j, is increased
by a factor uniformly drawn from the range [1,1+ 2ri j]. If ri j < −5%, then ei j is de-
creased by a factor uniformly drawn from the range [1+2ri j,1]. Otherwise, the change
in GDP is relatively minor, and so the weight is adjusted by a factor uniformly drawn
from the range [0.95,1.05]. This effect is to increase trade weights when GDP growth
allows, reduce trade weights when GDP shrinks, and randomly jitter trade weights when
GDP remains relatively constant.

3.4 Algorithmic Performance

The synthetic model takes as input a matrix of GDP data of size N ×M, where each of
the N rows represent individual countries, and each of the M columns represent years.
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The output of the synthetic model produces an N×N×M data cube, where each N×N
slice along the third dimension represents the weighted, symmetrical adjacency matrix
for the WTW for a given year. In this sense, the output is the time-varying adjacency
matrix of the graph representing the synthetic WTW.

The initialization and iterative loop are constructed such that each entry in the output
matrix is computed exactly once. Since the computation of each entry is deterministic,
the worst-case computation time for each entry of the output is a bounded constant.
The overall algorithm thus possesses a worst-case time complexity of O(N2M). Since
the initialization and iterative loop computations only require the current and previ-
ous year’s state information, intermediate variables used in the algorithm have a space
complexity bounded by the smaller of O(N2) and O(NM). Since each of these bounds
is smaller than the size of the N ×N ×M output, the overall space complexity of the
algorithm is also O(N2M).

As a reference point for future users, we ran the algorithm using our reference data
set (N = 162, M = 25) 100 times on a Windows 10 personal computer with an i5-
4670 (3.40 GHz) CPU and 32 GB of RAM. Chosen model parameters were α0 = 220,
β0 = 80, α = 200, β = 80. The mean execution time for the algorithm with these inputs
was found to be 0.519 seconds, with a standard deviation of 0.00907 seconds.

3.5 Connectivity Enforcement

The MATLAB implementation of the model was programmed supporting an option that
requires all nodes to be connected during each time-step of the output. When selecting
this option at the end of each time-step, the model merges two different components by
randomly creating a bridge between two nodes in each component. The weight for the
bridge is computed using Eq. 4. This merging processes is repeated until only a single
connected component remains.

Given the iterative nature of this process, and the relatively expensive computation
of the connected components during each iteration, this option has the potential to in-
crease the run-time of the algorithm. However, we found that using parameter values
of α0, α , β0, and β such that the synthetic WTW degree distribution approximates the
real-world WTW distribution, there was no appreciable difference in actual execution
time. This is due to the rarity of randomly obtaining multiple connected components
when using the parameter values that approximate the real-world WTW.

4 Results and Analysis

We organize the analysis of our model into four parts: initial construction, GDP param-
eters, simulation parameters, and topological structure analysis.

4.1 Initial Construction

Our first attempt at creating the initialization of the model from the 1996 data yielded
a smaller network characterized by a depressed degree distribution, especially among
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the high-degree nodes. This result is expected given that the edge construction prob-
abilities at each time step, stemming from chosen constants α and β , are predicated
on an existing representative network to add and remove edges. In the case of the base
year however, the synthetic network is only constructed by adding edges to an empty
graph of the appropriate order. Without data prior to the initial year, there are no exist-
ing edges to maintain, and so trade-link creation probabilities during initialization must
be higher to compensate. To achieve this, we establish alternate values for α and β for
model initialization. We refer to these parameters as α0 and β0.

Given the results from [6], we use the 1996 GDP distribution as the fitness variable
to specify the apparent topological characteristics of the real network. We then obtain
optimal values for α0 and β0 by minimizing the sum of the degree distribution error
through the Nelder-Mead simplex algorithm [10]. While any network metrics might be
optimized, we observe that reproducing the approximate degree distribution tends to
align the other topological characteristics of the synthetic network with the real net-
work. The values that optimize the degree distribution fit are α0 = 220 and β0 = 80.

4.2 GDP Parameters

We generate realistic GDP data using parameters measured from the real-world GDP
data. Using a log-normal distribution model for GDP data, we computed the mean and
standard deviation of this log-normal distribution (in log terms) for each year of avail-
able data. The results are presented in Figure 3. As shown, the base year has a mean of
approximately 23.2 (approximately $11.9B in nominal terms), and standard deviation
of 2.46. The growth in the mean is approximately linear over the 25 year data set, and
the standard deviation remains within a stable range between 2.35 and 2.47. Thus, we
generate the base year’s synthetic GDP data by randomly selecting values from the 1996
log-normal distribution for each country. Each subsequent year’s GDP is generated by
applying a random growth factor to the previous years’ GDP value.

Fig. 3: Top: Logarithm of mean GDP by year between 1996 and 2020, with fitted linear
curve. Bottom: Logarithm of standard deviation of GDP by year between 1996 and
2020, with fitted linear curve.
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4.3 Simulation Parameters

Due to the randomness inherent in our method with respect to GDP parameters and
edge weights, we simulated the synthetic WTW multiple times to avoid bias caused
by statistical outliers. Using experimentally determined parameter values of α0 = 200
and β0 = 80, we computed a running update of the mean and standard deviation of the
parameters in Table 2 after each iteration. We found no significant changes occurred in
the Table 2 entries after 30 iterations, and so the simulation was halted at that point.

4.4 Topological Structure Analysis

Tables 1 and 2 show statistics by year for the WTW network using real data and syn-
thetic networks, respectively. We apply the initial construction parameters to 1996 and
generate subsequent years iteratively via our methodology for adding and removing
trade links. We average the synthetic network statistics of 30 simulations. Each row
presents the statistics for each time slice of the temporal network, and global statistics
are provided at the bottom of each table. As expected, the year-to-year comparison pro-
vides more meaningful data than the average data, where each network in our model is
a time-dependent network stimulated by GDP growth and random processes.

The defining feature of the synthetic network is the annual increase in the number
of edges that both approximates the actual growth in world trade links and preserves the
remaining network topology. Many network characteristics are well-preserved, such as:
average degree, average shortest path, average clustering coefficient, and the maximum
k-core, with standard deviations as appropriate. We observe from Tables 1 and 2 that the
synthetic network presents excellent approximations in each of the relevant statistics.

Figure 4 shows the real and synthetic degree distributions for each year.

Fig. 4: Degree distribution of the real WTW (in blue) of the retained 162 countries and
the synthetic WTW (in red) created from the bootstrapped 1996 GDP values.
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We note that the synthetic data aligns well with the real data given the long time
frame of the model. Note that the recreation of the degree distribution is not the sole
indicator of a successful synthetic network. As a basis for comparison, we created a
random MR-configuration graph for each year’s actual degree distribution, which pre-
served none of the other desired topological characteristics. For example, an MR Con-
figuration random network of the 1996 degree distribution produced an average shortest
path length of 1.59, an average clustering coefficient of 0.5 and a max K-core of only
44. We observed similarly disparate statistics for the remaining years.

The tabulated statistics are derived from unweighted, undirected versions of the
network. Due to the extremely high density of the network and the extremely high
probability of reciprocal trade links, the topological characteristics of the weighted,
directed networks persist in their simplified reductions [12]. However, we inspected
several aspects of the weighted networks for verification and consistency. For example,
in 1996, the total value of traded goods was $999.3B out of a possible “worldwide" (the
162 countries in the data set) GDP valuation of $30.6T , while an average of 30 trials
in the synthetic network for that year estimated $885.7B of trade out of a simulated
$42.0T . Subsequent years produced similar metrics well within reasonable parameters
for our randomized modelling of GDP weights.

Table 1: Network statistics of the real WTW from 1996 to 2020.
Year N E Density µ Degree σ Degree µ Shortest Path σ Shortest Path µ Clustering Coeff σ Clustering Coeff Max k-Core
1996 162 7486 0.287 92.420 39.971 1.426 0.505 0.819 0.143 68
1997 162 7931 0.304 97.914 38.396 1.392 0.499 0.820 0.119 72
1998 162 8195 0.314 101.173 38.052 1.372 0.494 0.829 0.112 77
1999 162 8369 0.321 103.321 37.647 1.358 0.490 0.833 0.102 78
2000 162 9030 0.346 111.481 34.996 1.308 0.471 0.843 0.095 84
2001 162 9102 0.349 112.370 34.702 1.302 0.469 0.844 0.092 85
2002 162 9194 0.353 113.506 34.553 1.295 0.466 0.847 0.086 85
2003 162 9373 0.359 115.716 33.314 1.281 0.459 0.848 0.084 88
2004 162 9540 0.366 117.778 32.599 1.268 0.453 0.853 0.084 89
2005 162 9627 0.369 118.852 32.566 1.262 0.449 0.857 0.080 91
2006 162 9758 0.374 120.469 32.106 1.252 0.077 0.861 0.078 93
2007 162 9960 0.382 122.963 31.069 1.236 0.434 0.868 0.077 96
2008 162 9943 0.381 122.753 31.008 1.238 0.435 0.866 0.075 96
2009 162 10036 0.385 123.901 30.396 1.230 0.431 0.868 0.075 95
2010 162 10220 0.392 126.173 29.626 1.216 0.421 0.875 0.074 99
2011 162 10281 0.394 126.926 29.347 1.212 0.418 0.878 0.073 100
2012 162 10316 0.396 127.358 29.275 1.209 0.416 0.879 0.074 101
2013 162 10405 0.399 128.457 28.790 1.202 0.411 0.882 0.074 102
2014 162 10289 0.394 127.025 29.823 1.211 0.418 0.881 0.072 101
2015 162 10456 0.401 129.086 29.222 1.198 0.408 0.888 0.070 103
2016 162 10518 0.403 129.852 28.726 1.193 0.405 0.890 0.071 106
2017 162 10569 0.405 130.481 28.274 1.190 0.402 0.890 0.070 104
2018 162 10504 0.403 129.679 28.930 1.195 0.406 0.890 0.067 103
2019 162 10399 0.399 128.383 30.187 1.203 0.412 0.889 0.068 102
2020 162 9890 0.379 122.099 33.535 1.242 0.438 0.876 0.065 96

min 7486 0.287 92.420 28.274 1.190 0.402 0.819 0.065 68
max 10569 0.405 130.481 39.971 1.426 0.505 0.890 0.143 106
avg 9656 0.370 119.205 32.285 1.260 0.442 0.863 0.083 92.6
std 859.3 0.033 10.609 3.365 0.066 0.031 0.022 0.0181668 10.4
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Table 2: Network statistics for our synthetic WTW computed over 30 iterations.
Year N E Density µ Degree σ Degree µ Shortest Path σ Shortest Path µ Clustering Coeff σ Clustering Coeff Max k-Core
1996 162 7471 0.298 92.231 42.515 1.422 0.494 0.871 0.141 81
1997 162 7773 0.310 95.968 39.276 1.401 0.492 0.839 0.118 82
1998 162 8196 0.325 101.187 38.587 1.369 0.484 0.848 0.109 87
1999 162 8470 0.338 104.570 37.911 1.349 0.477 0.853 0.103 89
2000 162 8670 0.348 107.040 37.364 1.332 0.472 0.857 0.098 91
2001 162 8832 0.356 109.034 36.913 1.320 0.467 0.861 0.094 93
2002 162 8952 0.362 110.521 36.529 1.311 0.463 0.864 0.092 94
2003 162 9053 0.366 111.768 36.196 1.305 0.460 0.866 0.088 95
2004 162 9151 0.370 112.970 35.919 1.297 0.457 0.869 0.086 96
2005 162 9226 0.373 113.906 35.670 1.290 0.454 0.871 0.085 97
2006 162 9297 0.374 114.773 35.437 1.285 0.452 0.873 0.083 98
2007 162 9358 0.376 115.528 35.233 1.281 0.449 0.874 0.082 99
2008 162 9412 0.378 116.200 35.042 1.276 0.447 0.876 0.080 99
2009 162 9466 0.380 116.861 34.841 1.273 0.445 0.877 0.079 100
2010 162 9506 0.381 117.361 34.679 1.270 0.444 0.878 0.078 100
2011 162 9544 0.384 117.831 34.538 1.267 0.442 0.879 0.077 101
2012 162 9577 0.384 118.232 34.408 1.264 0.441 0.880 0.076 101
2013 162 9611 0.386 118.651 34.278 1.261 0.439 0.881 0.074 102
2014 162 9638 0.386 118.987 34.156 1.259 0.438 0.882 0.074 102
2015 162 9663 0.389 119.298 34.087 1.257 0.437 0.882 0.074 102
2016 162 9688 0.389 119.608 33.980 1.254 0.436 0.883 0.073 102
2017 162 9710 0.389 119.873 33.885 1.253 0.435 0.884 0.072 103
2018 162 9726 0.388 120.075 33.797 1.252 0.435 0.884 0.073 103
2019 162 9748 0.389 120.343 33.734 1.251 0.434 0.885 0.071 103
2020 162 9765 0.390 120.555 33.635 1.249 0.433 0.885 0.071 103

min 7471 0.298 92.231 33.635 1.249 0.433 0.839 0.071 81
max 9765 0.390 120.555 42.515 1.422 0.494 0.885 0.141 103
avg 9180.12 0.368 113.335 35.704 1.294 0.453 0.872 0.086 96.9
std 617.5 0.025 7.623 2.080 0.047 0.018 0.012 0.017 6.4

5 Conclusions and Further Directions

In this work, we presented a GDP growth-based, time-dependent world trade model to
forecast future synthetic networks of the WTW. Despite the underlying complexity and
geopolitical considerations likely driving real-world behavior, we find that the single
macroscopic measure of GDP can adequately drive the time-evolution of the WTW.
The model approximates, to a surprisingly high degree of accuracy, the real network
degree distribution, clustering behavior, and other relevant topological characteristics.

Future work may find value in more appropriate GDP approximations and edge
weight adjustments. While individual countries may slightly differ, global GDP growth
rates appear to follow a Cauchy distribution, vice our simplified linear model [14].
This application could improve our model’s ability to match real-world data years in
the future, as a small error in our approximation could compound year-by-year. Addi-
tional consideration of the edge weight adjustments could likewise be fruitful: instead
of heuristically tying edge weights to changes in an individual country’s GDP, a distri-
butional analysis of edge weights may improve model performance.

It is our hope that this lightweight, intuitive model can be used in the future to
demonstrate, reproduce, and analyze the economic effects of major world events to
yield further insights into the nature of our complex global trade system.
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