CH 1: Functions as models

1.2 Mathematical Models: A catalog of essential functions

This section studies the common function we will use in this class.

1. linear function: $f(x)=a x+b$ is a function whose graph is a straight line
2. polynomial $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$, where $a_{n}, a_{n 1}, \ldots, a_{1}, a_{0}$ are the coefficients (generally real numbers). Note that the powers of x are always nonnegative whole numbers. If $a_{n} \neq 0$, we say that the polynomial has degree n.
3. power function: $f(x)=x^{a}$, where a is the constant (here a doesn't have to be a whole number as it was above). So the power is constant and the variable is raised to the constant power. If the power is a fraction, then the function is a root function
4. rational function: $f(x)=\frac{P(x)}{Q(x)}$, where $P(x), Q(x)$ are polynomials, and $Q(x) \neq 0$.
5. algebraic function: $f(x)$ is some algebraic expression obtained from addition, subtraction, multiplication, quotient and root of polynomials.
6. trig function: $\sin \mathrm{x}, \cos \mathrm{x}, \tan \mathrm{x}$ and so on
7. exponential functions: $f(x)=a^{x}$, where a is a constant. Note the difference between exponential $\left(f(x)=x^{2}\right)$ and exponential function $\left(f(x)=2^{x}\right)$
8. logarithmic functions: $f(x)=\log _{a} x$, where $a>0$ is a constant. They are the inverse functions of exponential functions
9. transcendental function: they are nonalgebraic functions (i.e. functions obtained from combinations of other than polynomials and trig functions, exponential functions, logarithmic functions and any of them even with polynomials)
