1 The Foundations: Logic and Proofs

1.3 Propositional Equivalences

- 1. tautology is a compound proposition that is always true
- 2. <u>contradiction</u> is a compound proposition that is always false
- 3. contingency is a compound proposition that is neither always false nor always true
- 4. p and q are logically equivalent $(p\equiv q$) if $p\leftrightarrow q$ is a tautology.
- 5. $p \equiv q$ is not a compound proposition, but rather the statement that asserts that $p \leftrightarrow q$ is a tautology.
- 6. \equiv is a symbol that is not a connective like \lor, \land, \neg ...
- 7. In proving that two statements are logically equivalent, one can use:
 - truth tables
 - using the logical equivalences already established in Table 6 (one more: $p \to q \equiv \neg p \lor q$)
- 8. De Morgan's laws-they help negate compound propositions
- 9. a compound proposition is <u>satisfiable</u> if that proposition can be true for some assignment of truth values to its components, such an assignment is called a <u>solution</u> (compare this to a tautology where the proposition is true no matter what truth values are assigned to its components).