1 The Foundations: Logic and Proofs

1.5 Nested Quantifiers

- 1. in this section we combine more than one quantifier in the same mathematical statement
- 2. $\forall x \exists y, P(x, y)$ is the same as $\forall x, Q(x, y)$ where $Q(x, y) : \exists y, P(x, y)$
- 3. the order of the quantifiers is important: $\forall x \exists y, P(x, y) \not\equiv \exists y \forall x, P(x, y)$
- 4. Generally: if the two symbols are the same (such as $\forall x \forall y, P(x, y)$ or $\exists x \exists y, P(x, y)$) then the order of the variables doesn't matter. It is commonly written as: $\forall x \forall y, P(x, y) \equiv \forall x, y, P(x, y)$.
- 5. However, if the two symbols are not the same (such as $\forall x \exists y, P(x, y) \text{ or } \exists x \forall y, P(x, y)$) then the order matters, and the two propositions have different meanings (see table 1 page 53)
- 6. $\forall x \exists y, P(x, y)$ means that no matter what x you choose, there is y that makes P(x, y)true (most of the times y depends on x). Example: $\forall x \exists y, x + y = 0$. To see this, let y = -x.
- 7. now, $\exists x \forall y, P(x, y)$ means that you could find some x, such that no matter what y you choose (this y cannot depend on x, it should be any value y) P(x, y) is true. Example: $\exists x \forall y, x + y = 0$. This is not true, because you can always find some y that makes it false. However, the proposition $\exists x \forall y (y \neq 0), \frac{x}{y} = 0$ is true.
- 8. additive inverse of x is -x (so that adding them up you get 0)
- 9. multiplicative inverse of x is $\frac{1}{x}$ (so that when you multiply them you get 1)
- 10. when negating statements involving more quantifiers, each quantifier gets negated so that if it was \exists it becomes \forall , and backwards. Don't forget to negate the P(x, y) part that follows.
- 11. the negation of \lor is \land , and the negation of \land is \lor
- 12. the negation of \geq is <, and similarly for the other inequality signs
- 13. the negation of $p \to q$ is NOT $\neg p \to \neg q$. But rather: the negation of $p \to q$ is the negation of $\neg p \lor q$ which is logically equivalent to $p \land \neg q$