1 The Foundations: Logic and Proofs

1.5 Nested Quantifiers

1. in this section we combine more than one quantifier in the same mathematical statement
2. $\forall x \exists y, P(x, y)$ is the same as $\forall x, Q(x, y)$ where $Q(x, y): \exists y, P(x, y)$
3. the order of the quantifiers is important: $\forall x \exists y, P(x, y) \not \equiv \exists y \forall x, P(x, y)$
4. Generally: if the two symbols are the same (such as $\forall x \forall y, P(x, y)$ or $\exists x \exists y, P(x, y)$) then the order of the variables doesn't matter. It is commonly written as: $\forall x \forall y, P(x, y) \equiv \forall x, y, P(x, y)$.
5. However, if the two symbols are not the same (such as $\forall x \exists y, P(x, y)$ or $\exists x \forall y, P(x, y)$) then the order matters, and the two propositions have different meanings (see table 1 page 53)
6. $\forall x \exists y, P(x, y)$ means that no matter what x you choose, there is y that makes $P(x, y)$ true (most of the times y depends on x). Example: $\forall x \exists y, x+y=0$. To see this, let $y=-x$.
7. now, $\exists x \forall y, P(x, y)$ means that you could find some x, such that no matter what y you choose (this y cannot depend on x, it should be any value y) $P(x, y)$ is true. Example: $\exists x \forall y, x+y=0$. This is not true, because you can always find some y that makes it false. However, the proposition $\exists x \forall y(y \neq 0), \frac{x}{y}=0$ is true.
8. additive inverse of x is $-x$ (so that adding them up you get 0)
9. multiplicative inverse of x is $\frac{1}{x}$ (so that when you multiply them you get 1)
10. when negating statements involving more quantifiers, each quantifier gets negated so that if it was \exists it becomes \forall, and backwards. Don't forget to negate the $P(x, y)$ part that follows.
11. the negation of \vee is \wedge, and the negation of \wedge is \vee
12. the negation of \geq is $<$, and similarly for the other inequality signs
13. the negation of $p \rightarrow q$ is NOT $\neg p \rightarrow \neg q$. But rather: the negation of $p \rightarrow q$ is the negation of $\neg p \vee q$ which is logically equivalent to $\underline{p \wedge \neg q}$
