10 Graphs

10.2 Graph Terminology and Special Types of Graphs

For the rest of the chapter, G denotes a graph and:

- V or $V(G)$ for its vertex set,
- E or $E(G)$ for the edge set,
- lower case letter u, v, x, y, z, \ldots to denote vertices in the graph, and
- lower cases e, f, g, \ldots to denote edges of the graph.

For digraphs/oriented graphs, we use D

- with $V(D)$ and $E(D)$ for vertex and edge sets, respectively
- same notation for nodes and edges as we use for graphs.

Some more terminology so we can model data and seek solutions for our questions:

1. If $u v \in E(G)$, then the vertices u and v are adjacent, and so u is incident with the edge $e=u v, v$ is incident with the edge $\overline{e=u v}$, and e connects u and v
2. The degree of the vertex $v, \operatorname{deg} v$, is the number of edges incident with v
3. If $\operatorname{deg} v=0$ then v is an isolated vertex
4. If $\operatorname{deg} v=1$ then v is a pendant or an end vertex
5. The Handshaking Theorem (also called The First Theorem of Graph Theory): For a simple graph $G=(V(G), E(G))$, we have that

$$
\sum_{v \in V(G)} \operatorname{deg} v=2|E(G)|
$$

6. The theorem implies that sum of the degrees of the vertices has to be even
7. Thm: A simple graph has an even number of vertices of odd degree
8. If $v u \in D$, then v is adjacent to u, and u is adjacent from $v(v$ is the initial vertex of the arc, and u is the terminal vertex)
9. In D, the in-degree of $v, \operatorname{deg}^{-}(v)$ is the number of arcs that point to v, and the out-degree of $v, \operatorname{deg}^{+}(v)$ is the number of arcs that point away from v
10. Thm: For a digraph $D=(V(D), E(D))$, we have that

$$
\sum_{v \in V(D)} \operatorname{deg}^{-} v=\sum_{v \in V(D)} \operatorname{deg}^{+} v=|E(D)| .
$$

11. The underlying graph G of a digraph D, is the graph obtained from D by removing the orientation of the arcs (this graph could be simple or a multigraph)
12. Standard classes of simple graphs: they are simple graphs that follow a particular property (each class is infinite)

- complete graph, $K_{n}, n \geq 1$ is the graph on n vertices that has every possible edge present
- path, $P_{n}, n \geq 2$ is the graph on n vertices $v_{1}, v_{2}, \ldots, v_{n}$ such that $v_{i} v_{i+1} \in$ $\overline{E(G)}$ for $1 \leq i \leq n-1$ (it has the consecutive edges $v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4}, \ldots, v_{n-1} v_{n}$)
- cycle, $C_{n}, n \geq 3$ is the graph on n vertices $v_{1}, v_{2}, \ldots, v_{n}$ such that $v_{i} v_{i+1} \in$ $\overline{E(G)}$ for $1 \leq i \leq n$ where addition is performed modulo n (i.e. it has the consecutive edges $v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4}, \ldots, v_{n-1} v_{n}, v_{n} v_{1}$)
- wheel, $W_{n}, n \geq 3$ (or $W_{1, n}$) is the graph obtained from the cycle C_{n} and a vertex v, by adding an edge between v and each vertex of the cycle.
- $\underline{\text { n-Cube }} Q_{n}, n \geq 1$ is that graph that has vertices represent all the binary n strings, and two edges are adjacent if the two corresponding binary strings differ in just one bit (i.e the Hamming distance between the two bits is 1).
- complete bipartite graph, $K_{a, b},(a, b \geq 1)$ is the graph obtained by partitioning the vertices into two subsets of cardinality a and $b(n=a+b)$ and all edges between any vertex of the first partite set and the second partite set are present (so the number of edges is $a b$). If either a or b is 1 , we call the bipartite graph a star $K_{1, a}$

13. A bipartite graph: is a graph whose vertex set is partitioned into two subsets V_{1} and $V_{2}\left(\right.$ say $\left.V(G)=V_{1} \cup V_{2}\right)$, such that edges of the graph go between a vertex in V_{1} and a vertex in V_{2} (note that not every vertex of V_{1} is adjacent to each vertex of V_{2}, unless we have a complete bipartite graph)
14. Thm: G is bipartite $\Longleftrightarrow V(G)$ can be colored with exactly two colors, where no two adjacent vertices are colored the same.
15. Thm: G is bipartite $\Longleftrightarrow G$ contains no odd cycle.
16. A matching is a collection of edges (set of edges) so that no two edges share a common vertex. A maximum matching is a matching of maximum cardinality
17. A subgraph $H=(V(H), E(H))$ of a graph $G=(V(G), E(G))$ is a graph such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$
18. A graph K is supergraph to the graph G if G is a subgraph of K
19. The union, $G \cup H$, of two graphs G and H is the graph whose vertex set is the

20. The intersection, $G \cap H$, of two graphs G and H is the graph whose vertex set is the set $V(G) \cap V(H)$, and the edge set is $E(G) \cap E(H)$.
