10 Graphs

10.2 Graph Terminology and Special Types of Graphs

For the rest of the chapter, G denotes a graph and:

- V or V(G) for its vertex set,
- E or E(G) for the edge set,
- lower case letter u, v, x, y, z, \ldots to denote vertices in the graph, and
- lower cases e, f, g, \ldots to denote edges of the graph.

For digraphs/oriented graphs, we use D

- with V(D) and E(D) for vertex and edge sets, respectively
- same notation for nodes and edges as we use for graphs.

Some more terminology so we can model data and seek solutions for our questions:

- 1. If $uv \in E(G)$, then the vertices u and v are adjacent, and so u is <u>incident</u> with the edge e = uv, v is incident with the edge e = uv, and e connects u and v
- 2. The degree of the vertex v, deg v, is the number of edges incident with v
- 3. If deg v = 0 then v is an <u>isolated</u> vertex
- 4. If deg v = 1 then v is a pendant or an end vertex
- 5. The Handshaking Theorem (also called The First Theorem of Graph Theory): For a simple graph G = (V(G), E(G)), we have that

$$\sum_{v \in V(G)} \deg v = 2|E(G)|$$

- 6. The theorem implies that sum of the degrees of the vertices has to be even
- 7. Thm: A simple graph has an even number of vertices of odd degree
- 8. If $vu \in D$, then v is adjacent to u, and u is adjacent from v (v is the initial vertex of the arc, and u is the terminal vertex)
- 9. In *D*, the in-degree of v, deg⁻(v) is the number of arcs that point to v, and the out-degree of v, deg⁺(v) is the number of arcs that point away from v
- 10. <u>Thm</u>: For a digraph D = (V(D), E(D)), we have that

$$\sum_{v \in V(D)} \deg^{-} v = \sum_{v \in V(D)} \deg^{+} v = |E(D)|.$$

- 11. The underlying graph G of a digraph D, is the graph obtained from D by removing the orientation of the arcs (this graph could be simple or a multigraph)
- 12. Standard classes of **simple** graphs: they are simple graphs that follow a particular property (each class is infinite)
 - complete graph, $K_n, n \ge 1$ is the graph on *n* vertices that has every possible edge present
 - path, $P_n, n \ge 2$ is the graph on n vertices v_1, v_2, \ldots, v_n such that $v_i v_{i+1} \in \overline{E(G)}$ for $1 \le i \le n-1$ (it has the consecutive edges $v_1 v_2, v_2 v_3, v_3 v_4, \ldots, v_{n-1} v_n$)
 - cycle, $C_n, n \ge 3$ is the graph on n vertices v_1, v_2, \ldots, v_n such that $v_i v_{i+1} \in \overline{E(G)}$ for $1 \le i \le n$ where addition is performed modulo n (i.e. it has the consecutive edges $v_1 v_2, v_2 v_3, v_3 v_4, \ldots, v_{n-1} v_n, v_n v_1$)
 - wheel, $W_n, n \ge 3$ (or $W_{1,n}$) is the graph obtained from the cycle C_n and a vertex v, by adding an edge between v and each vertex of the cycle.
 - <u>n-Cube</u> $Q_n, n \ge 1$ is that graph that has vertices represent all the binary *n*-strings, and two edges are adjacent if the two corresponding binary strings differ in just one bit (i.e the Hamming distance between the two bits is 1).
 - complete bipartite graph, $K_{a,b}$, $(a, b \ge 1)$ is the graph obtained by partitioning the vertices into two subsets of cardinality a and b (n = a + b) and all edges between any vertex of the first partite set and the second partite set are present (so the number of edges is ab). If either a or b is 1, we call the bipartite graph a star $K_{1,a}$
- 13. A bipartite graph: is a graph whose vertex set is partitioned into two subsets V_1 and V_2 (say $V(G) = V_1 \cup V_2$), such that edges of the graph go between a vertex in V_1 and a vertex in V_2 (note that not every vertex of V_1 is adjacent to each vertex of V_2 , unless we have a complete bipartite graph)
- 14. <u>Thm</u>: G is bipartite $\iff V(G)$ can be colored with exactly two colors, where no two adjacent vertices are colored the same.
- 15. <u>Thm:</u> G is bipartite \iff G contains no odd cycle.
- 16. A <u>matching</u> is a collection of edges (set of edges) so that no two edges share a common vertex. A maximum matching is a matching of maximum cardinality
- 17. A subgraph H = (V(H), E(H)) of a graph G = (V(G), E(G)) is a graph such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$
- 18. A graph K is supergraph to the graph G if G is a subgraph of K
- 19. The union, $G \cup H$, of two graphs G and H is the graph whose vertex set is the set $V(G) \cup V(H)$, and the edge set is $E(G) \cup E(H)$ (not connected)
- 20. The intersection, $G \cap H$, of two graphs G and H is the graph whose vertex set is the set $V(G) \cap V(H)$, and the edge set is $E(G) \cap E(H)$.