2 Sets, Functions, Sequences, and Sums

2.1 Sets

1. A <u>set</u> is a collection of objects.

The objects of the set are called <u>elements</u> or <u>members</u>. Use capital letters : A, B, C, S, X, Y to denote the sets. Use lower case letters to denote the elements: a, b, c, x, y. If x is an element of the set X, we write $x \in X$. If x is not an element of the set X, we write $x \notin X$.

- 2. Describing a set
 - (a) <u>list all elements if the set consists of a small number of elements:</u> X = {a, b, c} S = {1,3,5,...} - generally list the first 3 elements to give away the pattern, unless more than 3 are needed to see the pattern. (S = {1,3,5,7,...} may be redundant, and S = {1,3,...} does not enough information.) NOTE:
 - $A = \{1, 2, 3\} = \{2, 1, 3\} = \{1, 1, 3, 2\}$
 - $\emptyset = \{\}$ is the empty set versus $Y = \{\emptyset\} \neq \emptyset$
 - (b) A set with condition(s): $S = \{x | p(x)\}$ or $\{x : p(x)\}$, that is: S contains all the elements x that satisfy the condition (or have the property) p(x) a property that depends on x. Ex: $A = \{x : x \text{ is even }\} = \{\dots, -4, -2, 0, 2, 4, \dots\}$. $S = \{x : (x - 1)(x + 2) = 0\} = \{1, -2\}$ $T = \{x : |x| = 1\} = \{-1, 1\}$ $X = \{x : x \text{ is a student in MA2025 }\}$. A more complex example: Let $A = \{1, 2, \dots, 10\}$. Then define $B = \{x \in A : x < 7\} = \{1, 2, 3, 4, 5, 6\}$
- 3. Special sets

 $\overline{\mathbb{N}} = \{0, 1, 2, \dots, \}$ is the set of all positive whole numbers $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$ is the set of integers (whole numbers) $\mathbb{Q} = \{\frac{p}{q} : p, q \in \mathbb{Z}, q \neq 0\}$ is the set of the rational numbers

- \mathbb{I} = the set of irrationals, for example: $\pi, \sqrt{2}, -\sqrt{3}$ \mathbb{R} = the real numbers
- \mathbb{C} = the set of complex numbers: a + bi
- 4. We say that a set A is a <u>subset</u> of a set B if every element of A is an element of B. If A is a subset of B, we write $A \subseteq B$.

$$\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}.$$

If a set A is <u>not</u> a subset of a set B, we write $A \not\subseteq B$. In this case, there is an element in the set A that is not in B.

The empty set \emptyset is a subset of every set. (vacuous proof)

- 5. Two sets A and B are equal if $A \subseteq B$ and $B \subseteq A$. We then write A = B. Note that A and B will have the same elements, but they might be expressed differently. If they are not equal then we write $A \neq B$ (and that means that either A has an element that is not in B, or that B has an element that is not in A).
- 6. For a set A, we say that S is a proper subset of a set B if $A \subseteq B$ and $A \neq B$, and it is denoted by $A \subset B$.

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}.$$

- 7. For a set S, the cardinality of S, |S|, is the number of elements in the set S. If the cardinality is a finite number, then S is said to be <u>finite</u>. Otherwise it is <u>infinite</u>. The set of natural numbers is an example of an infinite set.
- 8. The <u>intervals</u> are infinite sets, as described below. Let $a, b \in \mathbb{R}$ $[a, b] = \{x \in \mathbb{R} : a \le x \le b.\}$ $[a, b) = \{x \in \mathbb{R} : a \le x < b.\}$ $(a, b) = \{x \in \mathbb{R} : a < x \le b.\}$ $(a, b) = \{x \in \mathbb{R} : a < x < b.\}$ $(a, \infty) = \{x \in \mathbb{R} : a < x.\}$ $(-\infty, b] = \{x \in \mathbb{R} : x \le b.\}$
- 9. For a set A, the power set P(A) of A is the set of all subsets of A.
 Ex 1: A = {a,b}. Then P(A) = {∅, {a}, {b}, {a,b}} ≠ {∅, a, b, {a,b}} since a, b are not sets without the curly braces. |P(A)| = 4 = 2² = 2^{|A|}.
 Ex 2: C = {∅, {∅}}. Then P(B) = {∅, {∅}, {∅}}, {{∅}}, {{∅}}. [P(B)| = 2² = 2^{|B|}.
- 10. In general, for any set $T: |\mathcal{P}(T)| = 2^{|T|}$.
- 11. for a set A, we can recover A from its power set since

$$A = \bigcup_{S \in \mathcal{P} \ (\mathcal{A})} S$$

12. The cartesian product of two sets A and B is

$$A \times B = \{(a, b) : a \in A \text{ and } b \in B\}.$$

Note that (a, b) is an ordered pair!! That is $(a, b) \neq (b, a)$ Example: Let $A = \{x, y\}$ and $B = \{1, 2, 3\}$. Then

$$A \times B = \{(x, 1), (x, 2), (x, 3), (y, 1), (y, 2), (y, 3)\}$$

$$B \times A = \{(1, x), (1, y), (2, x), (2, y), (3, x), (3, y)\}.$$

Note that $A \times B \neq B \times A$.

- 13. What is $|A \times B|$? Well, $|A \times B| = |A| \times |B| = 6$ in this case.
- 14. If $A = \emptyset$, then $A \times B = \emptyset$ and $B \times A = \emptyset$, for any set B.
- 15. The <u>truth set</u> of a predicate P is the set of elements (in the given domain) that makes P true.