2 Sets, Functions, Sequences, and Sums

2.1 Sets

1. A <u>set</u> is a collection of objects.

The objects of the set are called <u>elements</u> or <u>members</u>.

Use capital letters: A, B, C, S, X, Y to denote the sets.

Use lower case letters to denote the elements: a, b, c, x, y.

If x is an element of the set X, we write $x \in X$.

If x is not an element of the set X, we write $x \notin X$.

2. Describing a set

(a) list all elements if the set consists of a small number of elements:

 $X = \{a, b, c\}$

 $A = \{1, 2, \dots, 100\}$ – need to list the first two elements to see the pattern

 $S = \{1, 3, 5, \ldots\}$ – list the first 3 elements to give away the pattern.(Not correct to list: $S = \{1, 3, 5, 7, \ldots\}$, which is redundant, nor $S = \{1, 3, \ldots\}$ because of not enough information.)

NOTE:

• $A = \{1, 2, 3\} = \{2, 1, 3\} = \{1, 1, 3, 2\}$

• $\emptyset = \{\}$ is the empty set versus $Y = \{\emptyset\} \neq \emptyset$

(b) A set with condition(s): $S = \{x | p(x)\}$ or $\{x : p(x)\}$, that is: S contains all the elements x that satisfy the condition (oe have the property) p(x) – a property that depends on x.

Ex: $A = \{x : x \text{ is even }\} = \{\dots, -4, -2, 0, 2, 4, \dots\}.$

 $S = \{x : (x-1)(x+2) = 0\} = \{1, -2\}$

 $T = \{x : |x| = 1\} = \{-1, 1\}$

 $X = \{x : x \text{ is a student in MA2025} \}.$

A more complex example: Let $A = \{1, 2, ..., 10\}$. Then define $B = \{x \in A : x \in A : x \in A\}$

 $x < 7\} = \{1, 2, 3, 4, 5, 6\}$

3. Special sets

 $\mathbb{N} = \{0, 1, 2, \dots, \}$ is the set of all positive whole numbers

 $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$ is the set of integers (whole numbers)

 $\mathbb{Q} = \{\frac{p}{q} : p, q \in \mathbb{Z}, q \neq 0\}$ is the set of the rational numbers

 \mathbb{I} = the set of irrationals, for example: $\pi, \sqrt{2}, -\sqrt{3}$

 \mathbb{R} = the real numbers

 \mathbb{C} = the set of complex numbers: a + bi

4. We say that a set A is a <u>subset</u> of a set B if every element of A is an element of B. If A is a subset of B, we write $A \subseteq B$.

$$\mathbb{N}\subseteq\mathbb{Z}\subseteq\mathbb{Q}\subseteq\mathbb{R}\subseteq\mathbb{C}.$$

If a set A is <u>not</u> a subset of a set B, we write $A \nsubseteq B$. In this case, there is an element in the set A that is not in B.

The empty set \emptyset is a subset of every set. (vacuous proof)

- 5. Two sets A and B are equal if $A \subseteq B$ and $B \subseteq A$. We then write A = B. Note that A and B will have the same elements, but they might be expressed differently. If they are not equal then we write $A \neq B$ (and that means that either A has an element that is not in B, or that B has an element that is not in A).
- 6. For a set A, we say that S is a proper subset of a set B if $A \subseteq B$ and $A \neq B$, and it is denoted by $A \subset B$.
- 7. For a set S, the cardinality of S, |S|, is the number of elements in the set S. If the cardinality is a finite number, then S is said to be <u>finite</u>. Otherwise it is <u>infinite</u>. The set of natural numbers is an example of an infinite set.
- 8. the <u>intervals</u> are infinite sets, as described below. Let $a, b \in \mathbb{R}$

$$[a,b] = \{x \in \mathbb{R} : a \le x \le b.\}$$

$$[a,b) = \{x \in \mathbb{R} : a \le x < b.\}$$

$$(a,b] = \{x \in \mathbb{R} : a < x \le b.\}$$

$$(a,b) = \{x \in \mathbb{R} : a < x < b.\}$$

$$(a,\infty) = \{x \in \mathbb{R} : a < x.\}$$

$$(-\infty,b] = \{x \in \mathbb{R} : x \le b.\}$$

- 9. For a set A, the power set P(A) of A is the set of all subsets of A.
 - Ex 1: $A = \{a, b\}$. Then $\mathcal{P}(A) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\} \neq \{\emptyset, a, b, \{a, b\}\}$ since a, b are not sets without the curly braces.

$$\mathcal{P}(A) = 4 = 2^2 = 2^{|A|}.$$

Ex 2:
$$C = \{\emptyset, \{\emptyset\}\}$$
. Then $\mathcal{P}(B) = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}$. $\mathcal{P}(B) = 4 = 2^2 = 2^{|B|}$.

- 10. In general: $|\mathcal{P}(A)| = 2^{|A|}$.
- 11. for a set A, we can recover A from its power set since

$$A = \bigcup_{S \in \mathcal{P} \, (\mathcal{A})} S$$

12. The <u>cartesian product</u> of two sets A and B is

$$A \times B = \{(a, b) : x \in A \text{ and } b \in B\}.$$

Note that (a, b) is an ordered pair!! That is $(a, b) \neq (b, a)$

Example: Let $A = \{x, y\}$ and $B = \{1, 2, 3\}$. Then

$$A\times B=\{(x,1),(x,2),(x,3),(y,1),(y,2),(y,3)\}$$

$$B \times A = \{(1, x), (1, y), (2, x), (2, y), (3, x), (3, y)\}.$$

Note that $A \times B \neq B \times A$.

- 13. What is $|A \times B|$? Well, $|A \times B| = |A| \times |B| = 6$ in this case.
- 14. If $A = \emptyset$, then $A \times B = \emptyset$ and $B \times A = \emptyset$, for any set B.
- 15. the <u>truth set</u> of a predicate P is the set of elements (in the given domain) that makes P true.