2 Sets, Functions, Sequences, and Sums

2.1 Sets

1. A set is a collection of objects.

The objects of the set are called elements or members.
Use capital letters : A, B, C, S, X, Y to denote the sets.
Use lower case letters to denote the elements: a, b, c, x, y.
If x is an element of the set X, we write $x \in X$.
If x is not an element of the set X, we write $x \notin X$.
2. Describing a set
(a) list all elements if the set consists of a small number of elements:
$X=\{a, b, c\}$
$A=\{1,2, \ldots, 100\}-$ need to list the first two elements to see the pattern
$S=\{1,3,5, \ldots\}$ - list the first 3 elements to give away the pattern. (Not correct to list: $S=\{1,3,5,7, \ldots\}$, which is redundant, nor $S=\{1,3, \ldots\}$ because of not enough information.)
NOTE:

- $A=\{1,2,3\}=\{2,1,3\}=\{1,1,3,2\}$
- $\emptyset=\{ \}$ is the empty set versus $Y=\{\emptyset\} \neq \emptyset$
(b) A set with condition(s): $S=\{x \mid p(x)\}$ or $\{x: p(x)\}$, that is: S contains all the elements x that satisfy the condition (oe have the property) $p(x)$ - a property that depends on x.
Ex: $A=\{x: x$ is even $\}=\{\ldots,-4,-2,0,2,4, \ldots\}$.
$S=\{x:(x-1)(x+2)=0\}=\{1,-2\}$
$T=\{x:|x|=1\}=\{-1,1\}$
$X=\{x: x$ is a student in MA2025 $\}$.
A more complex example: Let $A=\{1,2, \ldots, 10\}$. Then define $B=\{x \in A$: $x<7\}=\{1,2,3,4,5,6\}$

3. Special sets
$\overline{\mathbb{N}}=\{0,1,2, \ldots$,$\} is the set of all positive whole numbers$
$\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$ is the set of integers (whole numbers)
$\mathbb{Q}=\left\{\frac{p}{q}: p, q \in \mathbb{Z}, q \neq 0\right\}$ is the set of the rational numbers
$\mathbb{I}=$ the set of irrationals, for example: $\pi, \sqrt{2},-\sqrt{3}$
$\mathbb{R}=$ the real numbers
$\mathbb{C}=$ the set of complex numbers: $a+b i$
4. We say that a set A is a subset of a set B if every element of A is an element of B. If A is a subset of B, we write $A \subseteq B$.

$$
\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}
$$

If a set A is not a subset of a set B, we write $A \nsubseteq B$. In this case, there is an element in the set A that is not in B.
The empty set \emptyset is a subset of every set. (vacuous proof)
5. Two sets A and B are equal if $A \subseteq B$ and $B \subseteq A$. We then write $A=B$. Note that A and B will have the same elements, but they might be expressed differently. If they are not equal then we write $A \neq B$ (and that means that either A has an element that is not in B, or that B has an element that is not in A).
6. For a set A, we say that S is a proper subset of a set B if $A \subseteq B$ and $A \neq B$, and it is denoted by $A \subset B$.
7. For a set S, the cardinality of $S,|S|$, is the number of elements in the set S. If the cardinality is a finite number, then S is said to be finite. Otherwise it is infinite. The set of natural numbers is an example of an infinite set.
8. the intervals are infinite sets, as described below. Let $a, b \in \mathbb{R}$
$[a, b]=\{x \in \mathbb{R}: a \leq x \leq b$.
$[a, b)=\{x \in \mathbb{R}: a \leq x<b$.
$(a, b]=\{x \in \mathbb{R}: a<x \leq b$.
$(a, b)=\{x \in \mathbb{R}: a<x<b$.
$(a, \infty)=\{x \in \mathbb{R}: a<x$.
$(-\infty, b]=\{x \in \mathbb{R}: x \leq b$.
9. For a set A, the power set $P(A)$ of A is the set of all subsets of A.

Ex 1: $A=\{a, b\}$. Then $\mathcal{P}(A)=\{\emptyset,\{a\},\{b\},\{a, b\}\} \neq\{\emptyset, a, b,\{a, b\}\}$ since a, b are not sets without the curly braces.
$\mathcal{P}(A)=4=2^{2}=2^{|A|}$ 。
Ex 2: $C=\{\emptyset,\{\emptyset\}\}$. Then $\mathcal{P}(B)=\{\emptyset,\{\emptyset\},\{\{\emptyset\}\},\{\emptyset,\{\emptyset\}\}\}$.
$\mathcal{P}(B)=4=2^{2}=2^{|B|}$.
10. In general: $|\mathcal{P}(A)|=2^{|A|}$.
11. for a set A, we can recover A from its power set since

$$
A=\bigcup_{S \in \mathcal{P}(\mathcal{A})} S
$$

12. The cartesian product of two sets A and B is

$$
A \times B=\{(a, b): x \in A \text { and } b \in B\}
$$

Note that (a, b) is an ordered pair!! That is $(a, b) \neq(b, a)$
Example: Let $A=\{x, y\}$ and $B=\{1,2,3\}$. Then

$$
\begin{aligned}
& A \times B=\{(x, 1),(x, 2),(x, 3),(y, 1),(y, 2),(y, 3)\} \\
& B \times A=\{(1, x),(1, y),(2, x),(2, y),(3, x),(3, y)\}
\end{aligned}
$$

Note that $A \times B \neq B \times A$.
13. What is $|A \times B|$? Well, $|A \times B|=|A| \times|B|=6$ in this case.
14. If $A=\emptyset$, then $A \times B=\emptyset$ and $B \times A=\emptyset$, for any set B.
15. the truth set of a predicate P is the set of elements (in the given domain) that makes P true.

