2.2 The limit of a function

1. Intuition: given a sequence of numbers, if they get closer to (potentially achieving) a value, we call that value the limit
2. For a function $f(x)$, the limit at the point $x=a$ is $\lim _{x \rightarrow a} f(x)=L$ if the function $f(x)$ approaches (or even attains) the value L as x approaches a.
3. when finding a limit of an expression, you should first plug in the value to see if it exists: example let $f(x)=x^{2}-x+2$, then $\lim _{x \rightarrow 2} x^{2}-x+2=4=f(2)$.

4. the function may not be defined at the value or the value could be different than the limit:

- left limit: $\lim _{x \rightarrow a^{-}} f(x)$ and
- right limit $\lim _{x \rightarrow a^{+}} f(x)$.
- if the left and the right limit are equal, then the function has a limit at that point: $\lim _{x \rightarrow 0^{-}} \frac{1}{|x|}=\infty$ and $\lim _{x \rightarrow 0^{+}} \frac{1}{|x|}=\infty$ and so $\lim _{x \rightarrow 0} \frac{1}{|x|}=\infty$.
- if the left and the right limit are equal, then the limit does not exist (DNE) at that point:

$$
\lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty \text { and } \lim _{x \rightarrow 0^{+}} \frac{1}{x}=\infty, \text { and so } \lim _{x \rightarrow 0} \frac{1}{x} \text { DNE. }
$$

5. if the limit $\lim _{x \rightarrow a} f(x)$ is ∞ or $-\infty$ then the function has a vertical asymptote at $x=a$.
6. important limit: $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$ (it will be proved in chapter 3)
7. As you plug in the value, you can get a nonzero number divided by 0 , which will give you the limit to be ∞ or $-\infty$, and you need to use the left-hand and right-hand limit.
Ex 1: $\lim _{x \rightarrow 0} \frac{1}{x^{2}}=\infty$ since $\lim _{x \rightarrow 0^{+}} \frac{1}{x^{2}}=\infty$ and $\lim _{x \rightarrow 0^{-}} \frac{1}{x^{2}}=\infty$.
Ex 2: $\lim _{x \rightarrow 0} \frac{1}{x^{3}}$ DNE since $\lim _{x \rightarrow 0^{-}} \frac{1}{x^{3}}=-\infty$ and $\lim _{x \rightarrow 0^{+}} \frac{1}{x^{3}}=\infty$.
Ex 3: $\lim _{x \rightarrow 0} \frac{-1}{x^{2}}=-\infty$ since $\lim _{x \rightarrow 0^{+}} \frac{-1}{x^{2}}=-\infty$ and $\lim _{x \rightarrow 0^{-}} \frac{-1}{x^{2}}=-\infty$.
8. Example: $f(x)=\frac{x+1}{x^{2}-1}$. Then $\lim _{x \rightarrow 0} f(x)=f(0)=-1$, however $\lim _{x \rightarrow-1} f(x)=-\frac{1}{2}$ (a calculator will give an incorrect value here!!!)

We next learn how to evaluate limits

