## 2 Sets, Functions, Sequences, and Sums

## 2.3 Functions

- 1. a function f from A to B is an assignment of a unique value of B to each value of A. (Note that this means a function is well defined if each value of A is mapped to a unique value, and also, each value of A has to be mapped to some value of B.)
- 2. the set A above is called the domain, and the set B is called the codomain. A subset of the codomain makes the range of f, and that subset is the set of particular values of B that get assigned to values of A.
- 3. Let  $a \in A$  and say that f(a) = b, of course with  $b \in B$ . Then b is called the image of a, and a is called the preimage of b. Then f is said to map a to b.
- 4. two functions f and g are equal if they have the same domain and codomain, and f(x) = g(x) for every value  $\overline{x}$  of the domain
- 5. two functions can be added, subtracted, divided and multiply if they have the same domain (so that the new function will be defined)
- 6. a function is strictly increasing iff:  $\forall x, y, ((x < y) \rightarrow (f(x) < f(y)))$ .
- 7. a function is increasing iff:  $\forall x, y, ((x < y) \to (f(x) \le f(y)))$ .
- 8. a function is strictly decreasing iff:  $\forall x, y, ((x < y) \rightarrow (f(x) > f(y)))$ .
- 9. a function is decreasing iff:  $\forall x, y, ((x < y) \to (f(x) \ge f(y)))$ .
- 10. a function is one-to-one or injective iff (that is if and only if):

$$\forall x, y, \left( (f(x) = f(y)) \to (x = y) \right)$$

Note that the textbook has misprints: at the bottom of page 141 it needs to be "injective" rather than "injunction", and at the top of page 145 " $x \neq y$ " is extra

11. a function is onto or surjective iff:

$$\forall y \in B, \exists x \in A \ (f(x) = y)$$

12. a function that is both one-to-one and onto is <u>a one-to-one correspondence or bijective</u>. All linear functions are bijectives from reals to the reals  $(f : \mathbb{R} \to \mathbb{R})$ 

- 13. if a function  $f : A \to B$  is bijective (or one-to-one correspondence) with f(x) = ythen there is an <u>inverse function</u>  $f^{-1} : B \to A$  with f(y) = x. Example:  $f : \mathbb{R} \to \mathbb{R}, f(x) = 2x + 1$ , then the inverse function is  $f^{-1} : \mathbb{R} \to \mathbb{R}, f^{-1}(x) = \frac{x-1}{2}$  (note that the expression for the inverse function is not  $\frac{1}{2x+1}$ )
- 14. the composition of two functions  $g: A \to B$  and  $f: B \to C$  is defined by  $f \circ g: A \to \overline{C}, (f \circ g)(x) = f(g(x)).$



- 15. note that  $f \circ f^{-1} = f^{-1} \circ f = id$ , where *id* is the identity function id(x) = x). In other words,  $(f \circ f^{-1})(x) = x$  and  $(f^{-1} \circ f)(x) = x$ , for all x values of the domain
- 16. the graph of the function is the set of ordered pairs (x, f(x)) for all x in the domain
- 17. <u>the factorial function</u>  $f : \mathbb{Z} \to \mathbb{Z}$  is defined by  $f(n) = n! = n(n-1)(n-2)\cdots 3\cdot 2\cdot 1$ . For example  $f(4) = 4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24$
- 18. the floor function  $\lfloor x \rfloor : \mathbb{R} \to \mathbb{R}$  is the largest integer that is less than or equal to x(Example  $\lfloor 3.87 \rfloor = 3$  and  $\lfloor -3.87 \rfloor = -4$
- 19. the ceiling function  $\lceil x \rceil : \mathbb{R} \to \mathbb{R}$  is the smallest integer that is greater than or equal to x (Example  $\lceil 3.27 \rceil = 4$  and  $\lfloor -3.87 \rfloor = -3$
- 20. properties of floor and ceiling functions (n is an integer, but x is any real number):

| <b>TABLE 1</b> Useful Properties of the Floorand Ceiling Functions.(n is an integer, x is a real number)                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (1a) $\lfloor x \rfloor = n$ if and only if $n \le x < n + 1$<br>(1b) $\lceil x \rceil = n$ if and only if $n - 1 < x \le n$<br>(1c) $\lfloor x \rfloor = n$ if and only if $x - 1 < n \le x$<br>(1d) $\lceil x \rceil = n$ if and only if $x \le n < x + 1$ |
| (2) $x-1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x+1$                                                                                                                                                                                                |
| $(3a)  \lfloor -x \rfloor = -\lceil x \rceil$<br>(3b) $\lceil -x \rceil = -\lfloor x \rfloor$                                                                                                                                                                |
| (4a) $\lfloor x + n \rfloor = \lfloor x \rfloor + n$<br>(4b) $\lceil x + n \rceil = \lceil x \rceil + n$                                                                                                                                                     |