2.3 Calculating limits using the limit laws

This section introduces methods to evaluate limits

1. If the limits $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ exits, then

(a)
$$\lim_{x\to a}[f(x)\pm g(x)]=\lim_{x\to a}f(x)\pm\lim_{x\to a}g(x)$$
 (b)
$$\lim_{x\to a}[cf(x)]=c\lim_{x\to a}f(x)$$

(b)
$$\lim_{x\to a} [cf(x)] = c \lim_{x\to a} f(x)$$

(c)
$$\lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

(d)
$$\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{\lim_{x\to a} f(x)}{\lim_{x\to a} g(x)}$$
, where $\lim_{x\to a} g(x) \neq 0$

2.
$$\lim_{x \to a} (f^n(x)) = \lim_{x \to a} [(f(x))]^n = [\lim_{x \to a} (f(x))]^n$$

3.
$$\lim_{x\to a}$$
 constant = constant, and also $\lim_{x\to a} x=a$

4.
$$\lim_{x \to a} x^n = a^n$$
, if $n > 0$

5.
$$\lim_{x\to a} x^{\frac{p}{q}} = a^{\frac{p}{q}}$$
 as long as the pth-root is defined

6.
$$\lim_{x\to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x\to a} f(x)}$$
, for all functions $f(x)$ for which the n^{th} -root is defined.

7. if two functions are the same except at the point a where the limit is evaluated (i.e f(x) = g(x)when $x \neq a$), then $\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$

8. if
$$f(x) \le g(x)$$
, then $\lim_{x \to a} f(x) \le \lim_{x \to a} g(x)$

9. if
$$f(x) \ge g(x)$$
, then $\lim_{x \to a} f(x) \ge \lim_{x \to a} g(x)$

10. Squeeze Theorem: if
$$f(x) \leq g(x) \leq h(x)$$
, then $\lim_{x \to a} f(x) \leq \lim_{x \to a} g(x) \leq \lim_{x \to a} h(x)$. Particularly, if $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$ for some constant L , then we also obtain $\lim_{x \to a} g(x) = L$.

